Evolution of the Structure of Cu-1% Sn Bronze under High Pressure Torsion and Subsequent Annealing
NASA Astrophysics Data System (ADS)
Popov, V. V.; Popova, E. N.; Stolbovsky, A. V.; Falahutdinov, R. M.
2018-04-01
The evolution of the structure of tin bronze under the room-temperature high-pressure torsion with different degrees of deformation and the subsequent annealing has been investigated. The thermal stability of the structure formed, namely, its behavior upon annealing in the temperature range of 150-400°C has been studied. The possibility of alloying copper with tin has been analyzed with the purpose of obtaining a thermally stable nanostructure with high strength characteristics.
NASA Astrophysics Data System (ADS)
Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Grim, G.; Mariam, F.; Schwartz, C. L.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; Espinoza, C.; Lewis, D.; Bainbridge, J.; McNeil, W.; Rightley, P.; Marr-Lyon, M.
2012-05-01
We report proton transmission images obtained subsequent to the laser assisted thermal ignition of a sample of PBX 9501 (a plastic bonded formulation of the explosive nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)). We describe the laser assisted thermal ignition technique as a means to synchronize a non-linear thermal ignition event while preserving the subsequent post-ignition behavior. We have obtained dynamic proton transmission images at two spatial magnifications and viewed both the radial and transverse axis of a solid cylindrical sample encased in aluminum. Images have been obtained with 3 to 15 μs temporal resolution and approximately 100 μm spatial resolution at the higher magnification. We observe case expansion from very early in the experiment, until case fragmentation. We observe spatially anisotropic features in the transmission which we attribute to cracking in the solid explosive, in agreement with previous measurements conducted on two dimensional samples with optical viewing. Digital analysis of the images also reveals spatially isotropic features which we attribute to the evolution of the loss of density by burning subsequent to thermal ignition.
Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction
ERIC Educational Resources Information Center
Kitabayashi, Suguru; Nakano, Masayoshi; Nishikawa, Kazuyuki; Koga, Nobuyoshi
2016-01-01
A laboratory exercise for the education of students about thermal runaway reactions based on the reaction between aluminum and hydrochloric acid as a model reaction is proposed. In the introductory part of the exercise, the induction period and subsequent thermal runaway behavior are evaluated via a simple observation of hydrogen gas evolution and…
The role of thermal vapor diffusion in the subsurface hydrologic evolution of Mars
NASA Technical Reports Server (NTRS)
Clifford, Stephen M.
1991-01-01
The hydrologic response of groundwater to the thermal evolution of the early martian crust is considered. When a temperature gradient is present in a moist porous medium, it gives rise to a vapor-pressure gradient that drives the diffusion of water vapor from regions of high to low temperature. By this process, a geothermal gradient as small as 15 K/km could drive the vertical transport of 1 km of water to the freezing front at the base of the martian crysophere every 10 exp 6-10 exp 7 years, or the equivalent of about 100-1000 km of water over the course of martian geologic history. Models of the thermal history of Mars suggest that this thermally-driven vapor flux may have been as much as 3-5 times greater in the past. The magnitude of this transport suggests that the process of geothermally-induced vapor diffusion may have played a critical role in the initial emplacement of ground ice and the subsequent geomorphic and geochemical evolution of the martian crust.
NASA Astrophysics Data System (ADS)
Song, Dongfang; Glorie, Stijn; Xiao, Wenjiao; Collins, Alan S.; Gillespie, Jack; Jepson, Gilby; Li, Yongchen
2018-01-01
The Central Asian Orogenic Belt (CAOB) is regarded to have undergone multiple phases of intracontinental deformation during the Meso-Cenozoic. Located in a key position along the southern CAOB, the Alxa Tectonic Belt (ATB) connects the northernmost Tibetan Plateau with the Mongolian Plateau. In this paper we apply apatite U-Pb and fission track thermochronological studies on varieties of samples from the southwestern ATB, in order to constrain its thermal evolution. Precambrian bedrock samples yield late Ordovician-early Silurian ( 430-450 Ma) and late Permian ( 257 Ma) apatite U-Pb ages; the late Paleozoic magmatic-sedimentary samples yield relatively consistent early Permian ages from 276 to 290 Ma. These data reveal that the ATB experienced multiple Paleozoic tectono-thermal events, as the samples passed through the apatite U-Pb closure temperature ( 350-550 °C). We interpret these tectonic events to record the long-lived subduction-accretion processes of the Paleo-Asian Ocean during the formation of the southern CAOB, with possible thermal influence of the Permian Tarim mantle plume. Apatite fission track (AFT) data and thermal history modelling reveal discrete low-temperature thermal events for the ATB, inducing cooling/reheating through the AFT partial annealing zone ( 120-60 °C). During the Permian, the samples underwent rapid cooling via exhumation or denudation from deep crustal levels to temperatures < 200 °C. Subsequent thermal events in the Triassic were thought to be associated with the final amalgamation of the CAOB or the closure of the Paleotethys. During the Jurassic-Cretaceous the study area experienced heating by burial, followed by renewed cooling, which may be related with the construction and subsequent collapse of the Mongol-Okhotsk Orogeny, or the Lhasa-Eurasia collision and subsequent slab break-off. These results indicate that the ATB may have been stable after late Cretaceous in contrast to the Qilian Shan and Tianshan. Finally, our results indicate differential exhumation scenario occurred across the southwestern ATB during the Cretaceous.
Comment on "Intermittent plate tectonics?".
Korenaga, Jun
2008-06-06
Silver and Behn (Reports, 4 January 2008, p. 85) proposed that intermittent plate tectonics may resolve a long-standing paradox in Earth's thermal evolution. However, their analysis misses one important term, which subsequently brings their main conclusion into question. In addition, the Phanerozoic eustasy record indicates that the claimed effect of intermittency is probably weak.
Burn Propagation in a PBX 9501 Thermal Explosion
NASA Astrophysics Data System (ADS)
Henson, B. F.; Smilowitz, L.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.
2007-12-01
We have applied proton radiography to study the conversion of solid density to gaseous combustion products subsequent to ignition of a thermal explosion in PBX 9501. We apply a thermal boundary condition to the cylindrical walls of the case, ending with an induction period at 205 C. We then introduce a laser pulse that accelerates the thermal ignition and synchronizes the explosion with the proton accelerator. We then obtain fast, synchronized images of the evolution of density loss with few microsecond resolution during the approximately 100 microsecond duration of the explosion. We present images of the solid explosive during the explosion and discuss measured rates and assumed mechanisms of burning the role of pressure in this internal burning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selbach, Sverre M.; Tolchard, Julian R.; Fossdal, Anita
2012-12-15
The crystal structure, anisotropic thermal expansion and structural phase transition of the perovskite LaFeO{sub 3} has been studied by high-temperature X-ray diffraction from room temperature to 1533 K. The structural evolution of the orthorhombic phase with space group Pbnm and the rhombohedral phase with R3{sup Macron }c structure of LaFeO{sub 3} is reported in terms of lattice parameters, thermal expansion coefficients, atomic positions, octahedral rotations and polyhedral volumes. Non-linear lattice expansion across the antiferromagnetic to paramagnetic transition of LaFeO{sub 3} at T{sub N}=735 K was compared to the corresponding behavior of the ferroelectric antiferromagnet BiFeO{sub 3} to gain insight tomore » the magnetoelectric coupling in BiFeO{sub 3}, which is also multiferroic. The first order phase transition of LaFeO{sub 3} from Pbnm to R3{sup Macron }c was observed at 1228{+-}9 K, and a subsequent transition to Pm3{sup Macron }m was extrapolated to occur at 2140{+-}30 K. The stability of the Pbnm and R3{sup Macron }c polymorphs of LaFeO{sub 3} is discussed in terms of the competing enthalpy and entropy of the two crystal polymorphs and the thermal evolution of the polyhedral volume ratio V{sub A}/V{sub B}. - Graphical abstract: Aniostropic thermal evolution of the lattice parameters and phase transition of LaFeO{sub 3}. Highlights: Black-Right-Pointing-Pointer The crystal structure of LaFeO{sub 3} is studied by HTXRD from RT to 1533 K. Black-Right-Pointing-Pointer A non-linear expansion across the Neel temperature is observed for LaFeO{sub 3}. Black-Right-Pointing-Pointer The ratio V{sub A}/V{sub B} is used to rationalize the thermal evolution of the structure.« less
Ganymede - A relationship between thermal history and crater statistics
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Malin, M. C.
1980-01-01
An approach for factoring the effects of a planetary thermal history into a predicted set of crater statistics for an icy satellite is developed and forms the basis for subsequent data inversion studies. The key parameter is a thermal evolution-dependent critical time for which craters of a particular size forming earlier do not contribute to present-day statistics. An example is given for the satellite Ganymede and the effect of the thermal history is easily seen in the resulting predicted crater statistics. A preliminary comparison with the data, subject to the uncertainties in ice rheology and impact flux history, suggests a surface age of 3.8 x 10 to the 9th years and a radionuclide abundance of 0.3 times the chondritic value.
Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO
NASA Astrophysics Data System (ADS)
van Huis, M. A.; van Veen, A.; Schut, H.; Eijt, S. W. H.; Kooi, B. J.; De Hosson, J. Th. M.
2004-06-01
CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 × 10 16 Cd ions cm -2 and 210 keV, 1 × 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.
NASA Technical Reports Server (NTRS)
Spanos, G.; Ayers, J. D.; Vold, C. L.; Locci, I. E.
1993-01-01
A study is presented to determine if fine microstructures could be achieved using rapid solidification to produce a fine-grained fully austenitic starting structure and then using thermal processing cycles to produce an even finer ferrite-cementite structure. The evolution, mechanisms of grain refinement, and crystallography of the resultant microstructures were examined by TEM. A thermal processing cycle consisted of quenching the ribbon in liquid nitrogen, tempering at 600 C for 10 sec, 'upquenching' to 750 C for 10 sec, and subsequently quenching again in liquid nitrogen. The heat-treatment resulted in martensite grains with sizes of about 1 micron or less in both length and thickness and cementite particles of 0.4 micron or less. It is concluded that these microstructures could be used for producing fine-grained ultrahigh carbon steels of very high strength without the brittleness associated with the formation of coarse carbide particles of the loss of strength due to graphite formation.
NASA Astrophysics Data System (ADS)
Xie, Ying Peng; Liu, Gang; Lu, Gao Qing (Max); Cheng, Hui-Ming
2012-02-01
Here we show that B2O3-xNx nanoclusters can be formed on the surface of WO3 particles by a combination of thermal oxidation of tungsten boride (WB) in air and the subsequent nitriding process in gaseous ammonia. The resultant nanoclusters are found to play an apparent role in improving the photocatalytic oxygen evolution of WO3 by promoting the surface separation of photoexcited charge-carriers.Here we show that B2O3-xNx nanoclusters can be formed on the surface of WO3 particles by a combination of thermal oxidation of tungsten boride (WB) in air and the subsequent nitriding process in gaseous ammonia. The resultant nanoclusters are found to play an apparent role in improving the photocatalytic oxygen evolution of WO3 by promoting the surface separation of photoexcited charge-carriers. Electronic supplementary information (ESI) available: (1) Experimental section. (2) XRD patterns, FT-IR and Raman spectra of B2O3@WO3 and B2O3-xNx@WO3. (3) Time course of O2 evolution from water splitting using B2O3@WO3 and B2O3-xNx@WO3. (4) XRD pattern and SEM image of pure WO3, UV-visible absorption spectra of pure WO3 and N-WO3. (5) UV-visible absorption spectra of bulk B2O3 and schematic of band edges of WO3, bulk B2O3, and B2O3-xNx nanocluster. See DOI: 10.1039/c2nr11846g
Effects of basin-forming impacts on the thermal evolution and magnetic field of Mars
NASA Astrophysics Data System (ADS)
Roberts, J. H.; Arkani-Hamed, J.
2017-11-01
The youngest of the giant impact basins on Mars are either weakly magnetized or completely demagnetized, indicating that a global magnetic field was not present at the time those basins formed. Eight basins are sufficiently large that the impact heating associated with their formation could have penetrated below the core-mantle boundary (CMB). Here we investigate the thermal evolution of the martian interior and the fate of the global magnetic field using 3D mantle convection models coupled to a parameterized 1D core thermal evolution model. We find that the survival of the impact-induced temperature anomalies in the upper mantle is strongly controlled by the mantle viscosity. Impact heating from subsequent impacts can accumulate in stiffer mantles faster than it can be advected away, resulting in a thermal blanket that insulates an entire hemisphere. The impact heating in the core will halt dynamo activity, at least temporarily. If the mantle is initially cold, and the core initially superheated, dynamo activity may resume as quickly as a few Myr after each impact. However unless the lower mantle has either a low viscosity or a high thermal conductivity, this restored dynamo will last for only a few hundred Myr after the end of the sequence of impacts. Thus, we find that the longevity of the magnetic field is more strongly controlled by the lower mantle properties and relatively insensitive to the impact-induced temperature anomalies in the upper mantle.
Intrinsic stress evolution during amorphous oxide film growth on Al surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flötotto, D., E-mail: d.floetotto@is.mpg.de; Wang, Z. M.; Jeurgens, L. P. H.
2014-03-03
The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al{sub 2}O{sub 3} films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively.
Fabrication of porous noble metal thin-film electrode by reactive magnetron sputtering.
Cho, Tae-Shin; Choi, Heonjin; Kim, Joosun
2013-06-01
Porous platinum films have been fabricated by reactive sputtering combined with subsequent thermal annealing. Using the SEM, XRD, XPS, and polarization resistance measurement techniques, the microstructural development of the film and its resultant electrochemical properties have been characterized. Pore evolution was understood as a result of the thermal grooving of platinum during annealing process. We demonstrated that crystallization should be followed by agglomeration for the evolution of porous microstructures. Furthermore, reaction sputtering affected the adhesion enhancement between the film and substrate compared to the film deposited by non-reactive sputtering. The polarization resistance of the porous platinum film was five times lower than that of the dense platinum film. At 600 degrees C the resistance of the porous film was 5.67 omega x cm2, and that of the dense film was 38 omega x cm2.
NASA Astrophysics Data System (ADS)
de Silva, S. L.; Gregg, P. M.; Grocke, S.; Kern, J. M.; Kaiser, J. F.; Iriarte, R.; Burns, D. H.; Tierney, C.; Schmitt, A. K.; Gosnold, W. D.
2012-12-01
Recent work in the community has emphasized the importance of the thermal environment on the development, evolution, and eventual eruption of large silicic magma systems, commonly referred to as "supervolcanic". With particular reference to the Central Andes, our group has focused on three main themes: thermal preparation of the shallow crust; the importance of temperature-dependent rheology of the host rocks; and time scales of magma evolution. Integrated, these themes provide a useful framework in which to understand supervolcanic systems dominated by crystal-rich silicic magmas such as those also seen in the Great Basin and Southern Rocky Mountain Volcanic Field of the North America and Toba in Sumatra. For both regional and individual systems, the key driver is anomalous high mantle to crust fluxes on time scales of several millions of years. These trigger feedbacks between intermediate melt generation in the lower crust, transport of this melt/magma through the crust, thermal evolution of the crust, and eventual growth and stabilization of silicic upper crustal magma systems. Elevation of geotherms in the upper crust results in conditions that promote the development of large eruptible magma volumes. Specifically, incubation and growth of nascent magma systems is enhanced by the permissive thermal environment and ductile rheology of wall rocks. These conditions are, in our view, the critical ingredients to the formation of the largest systems. Subsequent stabilization and growth of these systems at shallow levels (3 to 7 km) over several hundred of thousands of years results in further, local, feedbacks between chamber volume, temperature, wall rock rheology that cause significant surface uplift (~1 km) above the growing magma system, and long crystallization histories. These conditions lead to mechanically unstable "perched" magma bodies that can reach an advanced state of evolution (high crystallinity) before catastrophic eruption and caldera formation.
Model 'zero-age' lunar thermal profiles resulting from electrical induction
NASA Technical Reports Server (NTRS)
Herbert, F.; Sonett, C. P.; Wiskerchen, M. J.
1977-01-01
Thermal profiles for the moon are calculated under the assumption that a pre-main-sequence T-Tauri-like solar wind excites both transverse magnetic and transverse electric induction while the moon is accreting. A substantial initial temperature rise occurs, possibly of sufficient magnitude to cause subsequent early extensive melting throughout the moon in conjunction with nominal long-lived radioactives. In these models, accretion is an unimportant direct source of thermal energy but is important because even small temperature rises from accretion cause significant changes in bulk electrical conductivity. Induction depends upon the radius of the moon, which we take to be accumulating while it is being heated electrically. The 'zero-age' profiles calculated in this paper are proposed as initial conditions for long-term thermal evolution of the moon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.D.; Lombardo, N.J.; Heard, F.J.
1988-04-01
Calculations were performed to determine core heatup, core damage, and subsequent hydrogen production of a hypothetical loss-of-cooling accident at the Department of Energy's N Reactor. The thermal transient response of the reactor core was solved using the TRUMP-BD computer program. Estimates of whole-core thermal damage and hydrogen production were made by weighting the results of multiple half-length pressure tube simulations at various power levels. The Baker-Just and Wilson parabolic rate equations for the metal-water chemical reactions modeled the key phenomena of chemical energy and hydrogen evolution. Unlimited steam was assumed available for continuous oxidation of exposed Zircaloy-2 surfaces and formore » uranium metal with fuel cladding beyond the failure temperature (1038 C). Intact fuel geometry was modeled. Maximum fuel temperatures (1181 C) in the cooled central regions of the core were predicted to occur one-half hour into the accident scenario. Maximum fuel temperatures of 1447 C occurred in the core GSCS-regions at the end of the 10-h transient. After 10-h 26% of the fuel inventory was predicted to have failed. Peak hydrogen evolution equaled 42 g/s, while 10-h integrated hydrogen evolution equaled 167 kg. 12 refs., 12 figs., 2 tabs.« less
Firework Model: Time Dependent Spectral Evolution of GRB
NASA Astrophysics Data System (ADS)
Barbiellini, Guido; Longo, Francesco; Ghirlanda, G.; Celotti, A.; Bosnjak, Z.
2004-09-01
The energetics of the long duration GRB phenomenon is compared with models of a rotating BH in a strong magnetic field generated by an accreting torus. The GRB energy emission is attributed to magnetic field vacuum breakdown that gives origin to a e +/- fireball. Its subsequent evolution is hypothesized in analogy with the in-flight decay of an elementary particle. An anisotropy in the fireball propagation is thus naturally produced. The recent discovery in some GRB of an initial phase characterized by a thermal spectrum could be interpreted as the photon emission of the fireball photosphere when it becomes transparent. In particular, the temporal evolution of the emission can be explained as the effect of a radiative deceleration of the out-moving ejecta.
NASA Astrophysics Data System (ADS)
Hu, Yu; Shi, Yonghua; Shen, Xiaoqin; Wang, Zhongmin
2018-05-01
A recently developed promising material, 2101 lean duplex stainless steel, represents an alternative to 304 austenite stainless steel. In this work, multi-pass 2101 weld joints were fabricated using the flux-cored arc welding method in a hyperbaric chamber. The pressure varied from 0 to 0.75 MPa. The evolution of the welding process and microstructure was investigated. γ 2 formation in the reheated zones of the WM and HAZ was not uniform. The closer the reheated zone is to the subsequent heat source, the greater the γ 2 formation in the reheated zone. Sufficient primary austenite transformation inhibited Cr2N precipitation and the subsequent intragranular γ 2 formation in the reheated weld passes of the 0.45 MPa weld metal. The localized corrosion resistance of each zone of the 0.45 MPa DSS joint was measured using non-destructive double-loop electrochemical potentiokinetic reactivation tests. The localized corrosion was induced by γ 2 and Cr2N. The root region of the 0.45 MPa weld metal underwent two subsequent welding thermal cycles, which induced increased γ 2 formation and lower resistance to corrosion because of the decreased pitting resistance value of γ 2. The correlation between microstructure evolution and the distribution of selective corrosion was determined.
NASA Astrophysics Data System (ADS)
Chen, Si; An, Tong; Qin, Fei; Chen, Pei
2017-10-01
Through-silicon vias (TSVs) have become an important technology for three-dimensional integrated circuit (3D IC) packaging. Protrusion of electroplated Cu-filled vias is a critical reliability issue for TSV technology. In this work, thermal cycling tests were carried out to identify how the microstructure affects protrusion during thermal cycling. Cu protrusion occurs when the loading temperature is higher than 149°C. During the first five thermal cycles, the grain size of Cu plays a dominant role in the protrusion behavior. Larger Cu grain size before thermal cycling results in greater Cu protrusion. With increasing thermal cycle number, the effect of the Cu grain size reduces and the microstrain begins to dominate the Cu protrusion behavior. Higher magnitude of microstrain within Cu results in greater protrusion increment during subsequent thermal cycles. When the thermal cycle number reaches 25, the protrusion rate of Cu slows down due to strain hardening. After 30 thermal cycles, the Cu protrusion stabilizes within the range of 1.92 μm to 2.09 μm.
NASA Technical Reports Server (NTRS)
Solomatov, V. S.; Stevenson, D. J.
1992-01-01
The evolution of an initially totally molten magma ocean is constrained on the basis of analysis of various physical problems in the magma ocean. First of all an equilibrium thermodynamics of the magma ocean is developed in the melting temperature range. The equilibrium thermodynamical parameters are found as functions only of temperature and pressure and are used in the subsequent models of kinetics and convection. Kinematic processes determine the crystal size and also determine a non-equilibrium thermodynamics of the system. Rheology controls all dynamical regimes of the magma ocean. The thermal convection models for different rheological laws are developed for both the laminar convection and for turbulent convection in the case of equilibrium thermodynamics of the multiphase system. The evolution is estimated on the basis of all the above analysis.
Du, Shichao; Ren, Zhiyu; Zhang, Jun; Wu, Jun; Xi, Wang; Zhu, Jiaqing; Fu, Honggang
2015-05-11
A large-area, self-supported Co3O4 nanocrystal/carbon fiber electrode for oxygen and hydrogen evolution reaction was fabricated via thermal decomposition of the [Co(NH3)n](2+)-oleic acid complex and subsequent spray deposition. Due to the exposed active sites and good electrical conductivity, its operate voltage for overall water splitting is nearly the same as commercial Pt/C.
Chen, Jin; Huang, Xingyi; Sun, Bin; Wang, Yuxin; Zhu, Yingke; Jiang, Pingkai
2017-09-13
The continuous evolution toward semiconductor technology in the "more-than-Moore" era and rapidly increasing power density of modern electronic devices call for advanced thermal interface materials (TIMs). Here, we report a novel strategy to construct flexible polymer nanocomposite TIMs for advanced thermal management applications. First, aligned polyvinyl alcohol (PVA) supported and interconnected 2D boron nitride nanosheets (BNNSs) composite fiber membranes were fabricated by electrospinning. Then, the nanocomposite TIMs were constructed by rolling the PVA/BNNS composite fiber membranes to form cylinders and subsequently vacuum-assisted impregnation of polydimethylsiloxane (PDMS) into the porous cylinders. The nanocomposite TIMs not only exhibit a superhigh through-plane thermal conductivity enhancement of about 10 times at a low BNNS loading of 15.6 vol % in comparison with the pristine PDMS but also show excellent electrical insulating property (i.e., high volume electrical resistivity). The outstanding thermal management capability of the nanocomposite TIMs was practically confirmed by capturing the surface temperature variations of a working LED chip integrated with the nanocomposite TIMs.
Thermalization of Wightman functions in AdS/CFT and quasinormal modes
NASA Astrophysics Data System (ADS)
Keränen, Ville; Kleinert, Philipp
2016-07-01
We study the time evolution of Wightman two-point functions of scalar fields in AdS3 -Vaidya, a spacetime undergoing gravitational collapse. In the boundary field theory, the collapse corresponds to a quench process where the dual 1 +1 -dimensional CFT is taken out of equilibrium and subsequently thermalizes. From the two-point function, we extract an effective occupation number in the boundary theory and study how it approaches the thermal Bose-Einstein distribution. We find that the Wightman functions, as well as the effective occupation numbers, thermalize with a rate set by the lowest quasinormal mode of the scalar field in the BTZ black hole background. We give a heuristic argument for the quasinormal decay, which is expected to apply to more general Vaidya spacetimes also in higher dimensions. This suggests a unified picture in which thermalization times of one- and two-point functions are determined by the lowest quasinormal mode. Finally, we study how these results compare to previous calculations of two-point functions based on the geodesic approximation.
A hot implantation study on the evolution of defects in He ion implanted MgO(1 0 0)
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; van Huis, M. A.; van Veen, A.
2002-05-01
Ion implantation at elevated temperature, so-called hot implantation, was used to study nucleation and thermal stability of the defects. In this work, MgO(1 0 0) single crystal samples were implanted with 30 keV He ions at various implantation temperatures. The implantation doses ranged from 10 14 to 10 16 cm -2. The implantation introduced defects were subsequently studied by thermal helium desorption spectroscopy (THDS) and Doppler broadening positron beam analysis (PBA). The THDS study provides vital information on the kinetics of He release from the sample. PBA technique, being sensitive to the open volume defects, provides complementary information on cavity evolution. The THD study has shown that in most cases helium release is characterised by the activation energy of Q=4.7±0.5 eV with the maximum release temperature of Tmax=1830 K. By applying first order desorption model the pre-exponent factor is estimated as ν=4.3×10 11 s -1.
Characterizing the Mineralogy of Potential Lunar Landing Sites
NASA Technical Reports Server (NTRS)
Pieters, Carle; Head, James W., III; Mustard, Jack; Boardman, Joe; Buratti, Bonnie; Clark, Roger; Green, Rob; Head, James W, III; McCord, Thomas B.; Mustard, Jack;
2006-01-01
Many processes active on the early Moon are common to most terrestrial planets, including the record of early and late impact bombardment. The Moon's surface provides a record of the earliest era of terrestrial planet evolution, and the type and composition of minerals that comprise a planetary surface are a direct result of the initial composition and subsequent thermal and physical processing. Lunar mineralogy seen today is thus a direct record of the early evolution of the lunar crust and subsequent geologic processes. Specifically, the distribution and concentration of specific minerals is closely tied to magma ocean products, lenses of intruded or remelted plutons, basaltic volcanism and fire-fountaining, and any process (e.g. cratering) that might redistribute or transform primary and secondary lunar crustal materials. The association of several lunar minerals with key geologic processes is illustrated in Figure 1. The geologic history of potential landing sites on the Moon can be read from the character and context of local mineralogy.
Radii and Orbits of Hot Jupiters
NASA Astrophysics Data System (ADS)
Wu, Yanqin
2011-09-01
Hot jupiters suffer extreme external (stellar) and internal (tidal, Ohmic and wind-power) heating. These lead to peculiar thermal evolution, which is potentially self-destrutive. For instance, the amount of energy deposited during tidal dissipation far exceeds the planets' binding energy. If this energy is mostly deposited in shallow layers, it does little damage to the planet. However, the presence of stellar insolation changes the picture, and Ohmic/wind-power heating further modifies the subsequent evolution of these jupiters. A diversity of planetary sizes results. We tie these thermodynamical processes together with the migration history of hot jupiters to explain the orbital distribution and physical radii of hot jupiters. Moreover, we constrain the location of tidal heating inside the planet.
Superstructure ZrV2O7 nanofibres: thermal expansion, electronic and lithium storage properties.
Li, Qidong; Zhao, Yanming; Kuang, Quan; Fan, Qinghua; Dong, Youzhong; Liu, Xudong
2016-11-30
ZrV 2 O 7 has attracted much attention as a negative thermal expansion (NTE) material due to its isotropic negative structure. However, rarely has investigation of the lithium storage behaviors been carried out except our first report on it. Meanwhile, the electrochemical behaviors and energy storage characteristics have not been studied in depth and will be explored in this article. Herein, we report on the synthesis, characterization and lithium intercalation mechanism of superstructure ZrV 2 O 7 nanofibres that were prepared through a facile solution-based method with a subsequent annealing process. The thermal in situ XRD technique combined with the Rietveld refinement method is adopted to analyze the change in the temperature-dependent crystal structure. Benefiting from the nanostructured morphology and relatively high electronic conductivity, it presents acceptable cyclic stability and rate capability. According to the operando evolution of the XRD patterns obtained from electrochemical in situ measurements, the Li intercalation mechanism of the solid solution process with a subsequent conversion reaction can be concluded. Finally, the amorphous state of the electrodes after the initial fully discharged state can effectively enhance the electrochemical performances.
Metastable Phase Evolution in Oxide Systems
NASA Astrophysics Data System (ADS)
Levi, Carlos G.
2005-03-01
Multi-component ceramics are often synthesized by routes that facilitate mixing at the molecular scale and subsequently generate a solid product at low homologous temperatures. Examples include chemical and physical vapor deposition, thermal spray, and pyrolytic decomposition of precursor solutions. In these processes the solid evolves rapidly from a highly energized state, typically in a temperature regime wherein long-range diffusion is largely constrained and the equilibrium configuration can be kinetically suppressed. The resulting product may exhibit various forms of metastability such as amorphization, nanocrystallinity, extended solid solubility and alternate crystalline forms. The approach allows access to novel combinations of structure and composition with unprecedented defect structures that, if reasonably durable, could have properties of potential technological interest. Understanding phase selection and evolution is facilitated by having a suitable reference framework depicting the thermodynamic hierarchy of the phases available to the system under the relevant processing conditions. When transformations are partitionless the phase menu and hierarchy can be readily derived from the relative position of the T0 curves/surfaces for the different pairs of phases. The result is a phase hierarchy map, which is an analog of the phase diagram for partitionless equilibrium. Such maps can then be used to assess the kinetic effects on the selection of metastable states and their subsequent evolution. This presentation will discuss the evolution of metastable phases in oxides, with emphasis on systems involving fluorite phases and their ordered or distorted derivatives. The concepts will be illustrated primarily with zirconia-based systems, notably those of interest in thermal barrier coatings, fuel cells and ferroelectrics (ZrO2-MO3/2, where M = Y, Sc, the lanthanides and combinations thereof, as well as ZrO2-YO3/2-TiO2, ZrO2-TiO2-PbO, etc.). Of particular interest are the durabilities of metastable phases in systems that operate at high temperature, their decomposition paths and the implications to their functionality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushwaha, Upendra; Joshi, Bhuwan; Moon, Yong-Jae
We investigate evolutionary phases of an M6.2 flare and the associated confined eruption of a prominence. The pre-flare phase exhibits spectacular large-scale contraction of overlying extreme ultraviolet (EUV) coronal loops during which the loop system was subjected to an altitude decrease of ∼20 Mm (40% of the initial height) for an extended span of ∼30 minutes. This contraction phase is accompanied by sequential EUV brightenings associated with hard X-ray (HXR; up to 25 keV) and microwave (MW) sources from low-lying loops in the core region which together with X-ray spectra indicate strong localized heating in the source region before themore » filament activation. With the onset of the flare’s impulsive phase, we detect HXR and MW sources that exhibit intricate temporal and spatial evolution in relation to the fast rise of the prominence. Following the flare maximum, the filament eruption slowed down and subsequently became confined within the large overlying active region loops. During the confinement process of the erupting prominence, we detect MW emission from the extended coronal region with multiple emission centroids, which likely represent emission from hot blobs of plasma formed after the collapse of the expanding flux rope and entailing prominence material. RHESSI spectroscopy reveals high plasma temperature (∼30 MK) and substantial non-thermal characteristics (δ ∼ 5) during the impulsive phase of the flare. The time evolution of thermal energy exhibits a good correspondence with the variations in cumulative non-thermal energy, which suggests that the energy of accelerated particles is efficiently converted to hot flare plasma, implying an effective validation of the Neupert effect.« less
Residual stress prediction in a powder bed fusion manufactured Ti6Al4V hip stem
NASA Astrophysics Data System (ADS)
Barrett, Richard A.; Etienne, Titouan; Duddy, Cormac; Harrison, Noel M.
2017-10-01
Powder bed fusion (PBF) is a category of additive manufacturing (AM) that is particularly suitable for the production of 3D metallic components. In PBF, only material in the current build layer is at the required melt temperature, with the previously melted and solidified layers reducing in temperature, thus generating a significant thermal gradient within the metallic component, particularly for laser based PBF components. The internal thermal stresses are subsequently relieved in a post-processing heat-treatment step. Failure to adequately remove these stresses can result in cracking and component failure. A prototype hip stem was manufactured from Ti6Al4V via laser PBF but was found to have fractured during over-seas shipping. This study examines the evolution of thermal stresses during the laser PBF manufacturing and heat treatment processes of the hip stem in a 2D finite element analysis (FEA) and compares it to an electron beam PBF process. A custom written script for the automatic conversion of a gross geometry finite element model into a thin layer- by-layer finite element model was developed. The build process, heat treatment (for laser PBF) and the subsequent cooling were simulated at the component level. The results demonstrate the effectiveness of the heat treatment in reducing PBF induced thermal stresses, and the concentration of stresses in the region that fractured.
New Laboratory Observations of Thermal Pressurization Weakening
NASA Astrophysics Data System (ADS)
Badt, N.; Tullis, T. E.; Hirth, G.
2017-12-01
Dynamic frictional weakening due to pore fluid thermal pressurization has been studied under elevated confining pressure in the laboratory, using a rotary-shear apparatus having a sample with independent pore pressure and confining pressure systems. Thermal pressurization is directly controlled by the permeability of the rocks, not only for the initiation of high-speed frictional weakening but also for a subsequent sequence of high-speed sliding events. First, the permeability is evaluated at different effective pressures using a method where the pore pressure drop and the flow-through rate are compared using Darcy's Law as well as a pore fluid oscillation method, the latter method also permitting measurement of the storage capacity. Then, the samples undergo a series of high-speed frictional sliding segments at a velocity of 2.5 mm/s, under an applied confining pressure and normal stress of 45 MPa and 50 MPa, respectively, and an initial pore pressure of 25 MPa. Finally the rock permeability and storage capacity are measured again to assess the evolution of the rock's pore fluid properties. For samples with a permeability of 10-20 m2 thermal pressurization promotes a 40% decrease in strength. However, after a sequence of three high-speed sliding events, the magnitude of weakening diminishes progressively from 40% to 15%. The weakening events coincide with dilation of the sliding interface. Moreover, the decrease in the weakening degree with progressive fast-slip events suggest that the hydraulic diffusivity may increase locally near the sliding interface during thermal pressurization-enhanced slip. This could result from stress- or thermally-induced damage to the host rock, which would perhaps increase both permeability and storage capacity, and so possibly decrease the susceptibility of dynamic weakening due to thermal pressurization in subsequent high-speed sliding events.
Entanglement tsunami: universal scaling in holographic thermalization.
Liu, Hong; Suh, S Josephine
2014-01-10
We consider the time evolution of entanglement entropy after a global quench in a strongly coupled holographic system, whose subsequent equilibration is described in the gravity dual by the gravitational collapse of a thin shell of matter resulting in a black hole. In the limit of large regions of entanglement, the evolution of entanglement entropy is controlled by the geometry around and inside the event horizon of the black hole, resulting in regimes of pre-local-equilibration quadratic growth (in time), post-local-equilibration linear growth, a late-time regime in which the evolution does not carry memory of the size and shape of the entangled region, and a saturation regime with critical behavior resembling those in continuous phase transitions. Collectively, these regimes suggest a picture of entanglement growth in which an "entanglement tsunami" carries entanglement inward from the boundary. We also make a conjecture on the maximal rate of entanglement growth in relativistic systems.
Thermal evolution of the earth
NASA Technical Reports Server (NTRS)
Spohn, T.
1984-01-01
The earth's heat budget and models of the earth's thermal evolution are discussed. Sources of the planetary heat are considered and modes of heat transport are addressed, including conduction, convection, and chemical convection. Thermal and convectional models of the earth are covered, and models of thermal evolution are discussed in detail, including changes in the core, the influence of layered mantle convection on the thermal evolution, and the effect of chemical differentiation on the continents.
Large-k exciton dynamics in GaN epilayers: Nonthermal and thermal regimes
NASA Astrophysics Data System (ADS)
Vinattieri, Anna; Bogani, Franco; Cavigli, Lucia; Manzi, Donatella; Gurioli, Massimo; Feltin, Eric; Carlin, Jean-François; Martin, Denis; Butté, Raphaël; Grandjean, Nicolas
2013-02-01
We present a detailed investigation performed at low temperature (T<50 K) concerning the exciton dynamics in GaN epilayers grown on c-plane sapphire substrates, focusing on the exciton formation and the transition from the nonthermal to the thermal regime. The time-resolved kinetics of longitudinal-optical-phonon replicas is used to address the energy relaxation in the excitonic band. From picosecond time-resolved spectra, we bring evidence for a long lasting nonthermal excitonic distribution, which accounts for the first 50 ps. Such a behavior is confirmed in different experimental conditions when both nonresonant and resonant excitations are used. At low excitation power density, the exciton formation and their subsequent thermalization are dominated by impurity scattering rather than by acoustic phonon scattering. The estimate of the average energy of the excitons as a function of delay after the excitation pulse provides information on the relaxation time, which describes the evolution of the exciton population to the thermal regime.
Thermal conductivity measurements of proton-heated warm dense aluminum
McKelvey, A.; Kemp, G. E.; Sterne, P. A.; ...
2017-08-01
Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5–2.7 g/cc and 2–10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rearmore » surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0–15 ps, likely due to non-equilibrium conditions.« less
Thermal conductivity measurements of proton-heated warm dense aluminum
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKelvey, A.; Kemp, G. E.; Sterne, P. A.
Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5–2.7 g/cc and 2–10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rearmore » surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0–15 ps, likely due to non-equilibrium conditions.« less
Coupled electronic and atomic effects on defect evolution in silicon carbide under ion irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanwen; Xue, Haizhou; Zarkadoula, Eva
Understanding energy dissipation processes in electronic/atomic subsystems and subsequent non-equilibrium defect evolution is a long-standing challenge in materials science. In the intermediate energy regime, energetic particles simultaneously deposit a significant amount of energy to both electronic and atomic subsystems of silicon carbide (SiC). Here we show that defect evolution in SiC closely depends on the electronic-to-nuclear energy loss ratio (S e/S n), nuclear stopping powers ( dE/dx nucl), electronic stopping powers ( dE/dx ele), and the temporal and spatial coupling of electronic and atomic subsystem for energy dissipation. The integrated experiments and simulations reveal that: (1) increasing S e/S nmore » slows damage accumulation; (2) the transient temperatures during the ionization-induced thermal spike increase with dE/dx ele, which causes efficient damage annealing along the ion trajectory; and (3) for more condensed displacement damage within the thermal spike, damage production is suppressed due to the coupled electronic and atomic dynamics. Ionization effects are expected to be more significant in materials with covalent/ionic bonding involving predominantly well-localized electrons. Here, insights into the complex electronic and atomic correlations may pave the way to better control and predict SiC response to extreme energy deposition« less
Flame filtering and perimeter localization of wildfires using aerial thermal imagery
NASA Astrophysics Data System (ADS)
Valero, Mario M.; Verstockt, Steven; Rios, Oriol; Pastor, Elsa; Vandecasteele, Florian; Planas, Eulàlia
2017-05-01
Airborne thermal infrared (TIR) imaging systems are being increasingly used for wild fire tactical monitoring since they show important advantages over spaceborne platforms and visible sensors while becoming much more affordable and much lighter than multispectral cameras. However, the analysis of aerial TIR images entails a number of difficulties which have thus far prevented monitoring tasks from being totally automated. One of these issues that needs to be addressed is the appearance of flame projections during the geo-correction of off-nadir images. Filtering these flames is essential in order to accurately estimate the geographical location of the fuel burning interface. Therefore, we present a methodology which allows the automatic localisation of the active fire contour free of flame projections. The actively burning area is detected in TIR georeferenced images through a combination of intensity thresholding techniques, morphological processing and active contours. Subsequently, flame projections are filtered out by the temporal frequency analysis of the appropriate contour descriptors. The proposed algorithm was tested on footages acquired during three large-scale field experimental burns. Results suggest this methodology may be suitable to automatise the acquisition of quantitative data about the fire evolution. As future work, a revision of the low-pass filter implemented for the temporal analysis (currently a median filter) was recommended. The availability of up-to-date information about the fire state would improve situational awareness during an emergency response and may be used to calibrate data-driven simulators capable of emitting short-term accurate forecasts of the subsequent fire evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galarraga, Haize; Warren, Robert J.; Lados, Diana A.
Electron beam melting (EBM) is a metal powder bed fusion additive manufacturing (AM) technology that is used to fabricate three-dimensional near-net-shaped parts directly from computer models. Ti-6Al-4V is the most widely used and studied alloy for this technology and is the focus of this work in its ELI (Extra Low Interstitial) variation. The mechanisms of microstructure formation, evolution, and its subsequent influence on mechanical properties of the alloy in as-fabricated condition have been documented by various researchers. In the present work, the thermal history resulting in the formation of the as-fabricated microstructure was analyzed and studied by a thermal simulation.more » Subsequently different heat treatments were performed based on three approaches in order to study the effects of heat treatments on the singular and exclusive microstructure formed during the EBM fabrication process. In the first approach, the effect of cooling rate after the solutionizing process was studied. In the second approach, the variation of α lath thickness during annealing treatment and correlation with mechanical properties was established. In the last approach, several solutionizing and aging experiments were conducted.« less
Correlated evolution of thermal niches and functional physiology in tropical freshwater fishes.
Culumber, Zachary W; Tobler, Michael
2018-05-01
The role of ecology in phenotypic and species diversification is widely documented. Nonetheless, numerous nonadaptive processes can shape realized niches and phenotypic variation in natural populations, complicating inferences about adaptive evolution at macroevolutionary scales. We tested for evolved differences in thermal tolerances and their association with the realized thermal niche (including metrics describing diurnal and seasonal patterns of temperature extremes and variability) across a genus of tropical freshwater fishes reared in a standardized environment. There was limited evolution along the thermal niche axis associated with variation in maximum temperature and in upper thermal limits. In contrast, there was considerable diversification along the first major axis of the thermal niche associated with minimum temperatures and in lower thermal limits. Across our adaptive landscape analyses, 70% of species exhibited evidence of divergence in thermal niches. Most importantly, the first two major axes of thermal niche variation were significantly correlated with variation in lower thermal limits. Our results indicate adaptation to divergent thermal niches and adaptive evolution of related functional traits, and highlight the importance of divergence in lower thermal limits for the evolution of tropical biodiversity. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Photon interferometry of Au+Au collisions at the BNL Relativistic Heavy-Ion Collider.
Bass, Steffen A; Müller, Berndt; Srivastava, Dinesh K
2004-10-15
We calculate the two-body correlation function of direct photons produced in central Au+Au collisions at the Relativistic Heavy-Ion Collider. Our calculation includes contributions from the early preequilibrium phase in which photons are produced via hard parton scatterings as well as radiation of photons from a thermalized quark-gluon plasma and the subsequent expanding hadron gas. We find that high energy photon interferometry provides a faithful probe of the details of the space-time evolution and of the early reaction stages of the system.
NASA Astrophysics Data System (ADS)
Spakman, W.; Van Hinsbergen, D. J.; Vissers, R.
2012-12-01
Geological studies have shown that Eo-Oligocene subduction related high-pressure, low-temperature metasediments and peridotites of the Alboran region (Spain, Morocco) and the Kabylides (Algeria) experienced a major Early Miocene (~21 Ma) thermal pulse requiring asthenospheric temperatures at ~60 km depth. Despite earlier propositions, the cause of this thermal pulse is still controversial while also the paleogeographic origin of the Alboran and Kabylides units is debated. Here, we relate the thermal pulse to segmentation of the West Alpine-Tethyan slab under the SE Iberian margin (Baleares-Sardinia). We restore the Alboran rocks farther east than previously assumed, to close to the Balearic Islands, adjacent to Sardinia. We identify three major lithosphere faults, the NW-SE trending North Balearic Transform Zone (NBTZ) and the ~W-E trending Emile Baudot and North African transforms that accommodated the Miocene subduction evolution of slab segmentation, rollback, and migration of Alboran and Kabylides rocks to their current positions. The heat pulse occurred S-SE of the Baleares where slab segmentation along the NBTZ triggered radially outgrowing S-SW rollback opening a slab window that facilitated local ascent of asthenosphere below the rapidly extending Alboran-Kabylides accretionary prism. Subsequent slab rollback carried the Kabylides and Alboran domains to their present positions. Our new reconstruction is in line with tomographically imaged mantle structure and focuses attention on the crucial role of evolving subduction segmentation driving HT-metamorphism and subsequent extension, fragmentation, and dispersion of geological terrains.
Irradiation stability and thermo-mechanical properties of NITE-SiC irradiated to 10 dpa
Terrani, Kurt A.; Ang, Caen; Snead, Lance L.; ...
2017-11-24
In this study, five variants of nano-infiltration transient eutectic (NITE) SiC were prepared using nanopowder feedstock and sintering additive contents of <10 wt%. The dense monolithic materials were subsequently irradiated to 2 and 10 dpa in a mixed spectrum fission reactor at nominally 400 and 700°C. The evolution in swelling, strength, and thermal conductivity of these materials were examined after irradiation, where in all cases properties saturated at < 2dpa, without appreciable change for further irradiation to 10 dpa. Swelling behavior appeared similar to high-purity chemical vapor deposition (CVD) SiC within measurement uncertainty. The strength roughly doubled after irradiation. Finally,more » thermal resistivity increase as a result of irradiation was ~20% higher when compared to CVD-SiC.« less
Irradiation stability and thermo-mechanical properties of NITE-SiC irradiated to 10 dpa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrani, Kurt A.; Ang, Caen; Snead, Lance L.
In this study, five variants of nano-infiltration transient eutectic (NITE) SiC were prepared using nanopowder feedstock and sintering additive contents of <10 wt%. The dense monolithic materials were subsequently irradiated to 2 and 10 dpa in a mixed spectrum fission reactor at nominally 400 and 700°C. The evolution in swelling, strength, and thermal conductivity of these materials were examined after irradiation, where in all cases properties saturated at < 2dpa, without appreciable change for further irradiation to 10 dpa. Swelling behavior appeared similar to high-purity chemical vapor deposition (CVD) SiC within measurement uncertainty. The strength roughly doubled after irradiation. Finally,more » thermal resistivity increase as a result of irradiation was ~20% higher when compared to CVD-SiC.« less
Contribution of silent mutations to thermal adaptation of RNA bacteriophage Qβ.
Kashiwagi, Akiko; Sugawara, Ryu; Sano Tsushima, Fumie; Kumagai, Tomofumi; Yomo, Tetsuya
2014-10-01
Changes in protein function and other biological properties, such as RNA structure, are crucial for adaptation of organisms to novel or inhibitory environments. To investigate how mutations that do not alter amino acid sequence may be positively selected, we performed a thermal adaptation experiment using the single-stranded RNA bacteriophage Qβ in which the culture temperature was increased from 37.2°C to 41.2°C and finally to an inhibitory temperature of 43.6°C in a stepwise manner in three independent lines. Whole-genome analysis revealed 31 mutations, including 14 mutations that did not result in amino acid sequence alterations, in this thermal adaptation. Eight of the 31 mutations were observed in all three lines. Reconstruction and fitness analyses of Qβ strains containing only mutations observed in all three lines indicated that five mutations that did not result in amino acid sequence changes but increased the amplification ratio appeared in the course of adaptation to growth at 41.2°C. Moreover, these mutations provided a suitable genetic background for subsequent mutations, altering the fitness contribution from deleterious to beneficial. These results clearly showed that mutations that do not alter the amino acid sequence play important roles in adaptation of this single-stranded RNA virus to elevated temperature. Recent studies using whole-genome analysis technology suggested the importance of mutations that do not alter the amino acid sequence for adaptation of organisms to novel environmental conditions. It is necessary to investigate how these mutations may be positively selected and to determine to what degree such mutations that do not alter amino acid sequences contribute to adaptive evolution. Here, we report the roles of these silent mutations in thermal adaptation of RNA bacteriophage Qβ based on experimental evolution during which Qβ showed adaptation to growth at an inhibitory temperature. Intriguingly, four synonymous mutations and one mutation in the untranslated region that spread widely in the Qβ population during the adaptation process at moderately high temperature provided a suitable genetic background to alter the fitness contribution of subsequent mutations from deleterious to beneficial at a higher temperature. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
The relationship between crustal tectonics and internal evolution in the moon and Mercury
NASA Technical Reports Server (NTRS)
Solomon, S. C.
1977-01-01
The relationship between crustal tectonics and thermal evolution is discussed in terms of the moon and Mercury. Finite strain theory and depth and temperature-dependent thermal expansion are used to evaluate previous conclusions about early lunar history. Factors bringing about core differentiation in the first 0.6 b.y. of Mercurian evolution are described. The influence of concentrating radioactive heat sources located in Mercury's crust on the predicted contraction is outlined. The predicted planetary volume change is explored with regard to quantitative limits on the extent of Mercurian core solidification. Lunar and Mercurian thermal stresses involved in thermal evolution are reviewed, noting the history of surface volcanism. It is concluded that surface faulting and volcanism are closely associated with the thermal evolution of the whole planetary volume. As the planet cools or is heated, several types of tectonic and volcanic effects may be produced by thermal stress occurring in the lithosphere.
Lateral thinking: 2-D interpretation of thermochronology in convergent orogenic settings
NASA Astrophysics Data System (ADS)
Batt, Geoffrey E.; Brandon, Mark T.
2002-05-01
Lateral motion of material relative to the regional thermal and kinematic frameworks is important in the interpretation of thermochronology in convergent orogens. Although cooling ages in denuded settings are commonly linked to exhumation, such data are not related to instantaneous behavior but rather to an integration of the exhumation rates experienced between the thermochronological 'closure' at depth and subsequent exposure at the surface. The short spatial wavelength variation of thermal structure and denudation rate typical of orogenic regions thus renders thermochronometers sensitive to lateral motion during exhumation. The significance of this lateral motion varies in proportion with closure temperature, which controls the depth at which isotopic closure occurs, and hence, the range of time and length scales over which such data integrate sample histories. Different chronometers thus vary in the fundamental aspects of the orogenic character to which they are sensitive. Isotopic systems with high closure temperature are more sensitive to exhumation paths and the variation in denudation and thermal structure across a region, while those of lower closure temperature constrain shorter-term behaviour and more local conditions. Discounting lateral motion through an orogenic region and interpreting cooling ages purely in terms of vertical exhumation can produce ambiguous results because variation in the cooling rate can result from either change in kinematics over time or the translation of samples through spatially varying conditions. Resolving this ambiguity requires explicit consideration of the physical and thermal framework experienced by samples during their exhumation. This can be best achieved through numerical simulations coupling kinematic deformation to thermal evolution. Such an approach allows the thermochronological implications of different kinematic scenarios to be tested, and thus provides an important means of assessing the contribution of lateral motion to orogenic evolution.
SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions
NASA Astrophysics Data System (ADS)
Iyer, Karthik; Svensen, Henrik; Schmid, Daniel W.
2018-01-01
Igneous intrusions in sedimentary basins may have a profound effect on the thermal structure and physical properties of the hosting sedimentary rocks. These include mechanical effects such as deformation and uplift of sedimentary layers, generation of overpressure, mineral reactions and porosity evolution, and fracturing and vent formation following devolatilization reactions and the generation of CO2 and CH4. The gas generation and subsequent migration and venting may have contributed to several of the past climatic changes such as the end-Permian event and the Paleocene-Eocene Thermal Maximum. Additionally, the generation and expulsion of hydrocarbons and cracking of pre-existing oil reservoirs around a hot magmatic intrusion are of significant interest to the energy industry. In this paper, we present a user-friendly 1-D finite element method (FEM)-based tool, SILLi, which calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The model is accompanied by three case studies of sills emplaced in two different sedimentary basins, the Karoo Basin in South Africa and the Vøring Basin off the shore of Norway. An additional example includes emplacement of a dyke in a cooling pluton which forgoes sedimentation within a basin. Input data for the model are the present-day well log or sedimentary column with an Excel input file and include rock parameters such as thermal conductivity, total organic carbon (TOC) content, porosity and latent heats. The model accounts for sedimentation and burial based on a rate calculated by the sedimentary layer thickness and age. Erosion of the sedimentary column is also included to account for realistic basin evolution. Multiple sills can be emplaced within the system with varying ages. The emplacement of a sill occurs instantaneously. The model can be applied to volcanic sedimentary basins occurring globally. The model output includes the thermal evolution of the sedimentary column through time and the changes that take place following sill emplacement such as TOC changes, thermal maturity and the amount of organic and carbonate-derived CO2. The TOC and vitrinite results can be readily benchmarked within the tool to present-day values measured within the sedimentary column. This allows the user to determine the conditions required to obtain results that match observables and leads to a better understanding of metamorphic processes in sedimentary basins.
NASA Astrophysics Data System (ADS)
Sediako, Dimitry G.; Kasprzak, Wojciech
2015-09-01
Understanding of the kinetics of solid-phase evolution in solidification of hypereutectic aluminum alloys is a key to control their as-cast microstructure and resultant mechanical properties, and in turn, to enhance the service characteristics of actual components. This study was performed to evaluate the solidification kinetics for three P-modified hypereutectic Al-19 pct Si alloys: namely, Al-Si binary alloy and with the subsequent addition of 2.8 pct Cu and 2.8 pct Cu + 0.7 pct Mg. Metallurgical evaluation included thermodynamic calculations of the solidification process using the FactSage™ 6.2 software package, as well as experimental thermal analysis, and in situ neutron diffraction. The study revealed kinetics of solid α-Al, solid Si, Al2Cu, and Mg2Si evolution, as well as the individual effects of Cu and Mg alloying additions on the solidification path of the Al-Si system. Various techniques applied in this study resulted in some discrepancies in the results. For example, the FactSage computations, in general, resulted in 281 K to 286 K (8 °C to 13 °C) higher Al-Si eutectic temperatures than the ones recorded in the thermal analysis, which are also ~278 K (~5 °C) higher than those observed in the in situ neutron diffraction. None of the techniques can provide a definite value for the solidus temperature, as this is affected by the chosen calculation path [283 K to 303 K (10 °C to 30 °C) higher for equilibrium solidification vs non-equilibrium] for the FactSage analysis; and further complicated by evolution of secondary Al-Cu and Mg-Si phases that commenced at the end of solidification. An explanation of the discrepancies observed and complications associated with every technique applied is offered in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarley, Brooke A.; Manero, Albert; Cotelo, Jose
2017-01-01
Selective laser melting (SLM) is an additive manufacturing process that uses laser scanning to achieve melting and solidification of a metal powder bed. This process, when applied to develop high temperature material systems, holds great promise for more efficient manufacturing of turbine components that withstand extreme temperatures, heat fluxes, and high mechanical stresses associated with engine environments. These extreme operational conditions demand stringent tolerances and an understanding of the material evolution under thermal loading. This work presents a real-time approach to elucidating the evolution of precipitate phases in SLM Inconel 718 (IN718) under high temperatures using high-energy synchrotron x-ray diffraction.more » Four representative samples (taken along variable build height) were studied in room temperature conditions. Two samples were studied as-processed (samples 1 and 4) and two samples after different thermal treatments (samples 2 and 3). The as-processed samples were found to contain greater amounts of weakening phase, δ. Precipitation hardening of Sample 2 reduced the detectable volume of δ, while also promoting growth of γ00 in the γ matrix. Inversely, solution treatment of Sample 3 produced an overall decrease in precipitate phases. High-temperature, in-situ synchrotron scans during ramp-up, hold, and cool down of two different thermal cycles show the development of precipitate phases. Sample 1 was held at 870°C and subsequently ramped up to 1100°C, during which the high temperature instability of strengthening precipitate, γ00, was seen. γ00 dissolution occurred after 15 minutes at 870°C and was followed by an increase of δ-phase. Sample 4 was held at 800°C and exhibited growth of γ00 after 20 minutes at this temperature. These experiments use in-situ observations to understand the intrinsic thermal effect of the SLM process and the use of heat treatment to manipulate the phase composition of SLM IN718.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serra, A.; Rossi, M.; Buccolieri, A.
2014-06-19
The structural and morphological evolution of nanostructured thin films obtained from thermal evaporation of polycrystalline Sn-Se starting charge as a function of the subsequent annealing temperature in an oxygen flow has been analysed. High-resolution transmission electron microscopy, small area electron diffraction, digital image processing, x-ray diffraction and Raman spectroscopy have been employed in order to investigate the structure and the morphology of the obtained films. The results evidenced, in the temperature range from RT to 500°C, the transition of the material from a homogeneous mixture of SnSe and SnSe{sub 2} nanocrystals, towards a homogeneous mixture of SnO{sub 2} and SeO{submore » 2} nanocrystals, with an intermediate stage in which only SnSe{sub 2} nanocrystals are present.« less
Galarraga, Haize; Warren, Robert J.; Lados, Diana A.; ...
2017-01-06
Electron beam melting (EBM) is a metal powder bed fusion additive manufacturing (AM) technology that is used to fabricate three-dimensional near-net-shaped parts directly from computer models. Ti-6Al-4V is the most widely used and studied alloy for this technology and is the focus of this work in its ELI (Extra Low Interstitial) variation. The mechanisms of microstructure formation, evolution, and its subsequent influence on mechanical properties of the alloy in as-fabricated condition have been documented by various researchers. In the present work, the thermal history resulting in the formation of the as-fabricated microstructure was analyzed and studied by a thermal simulation.more » Subsequently different heat treatments were performed based on three approaches in order to study the effects of heat treatments on the singular and exclusive microstructure formed during the EBM fabrication process. In the first approach, the effect of cooling rate after the solutionizing process was studied. In the second approach, the variation of α lath thickness during annealing treatment and correlation with mechanical properties was established. In the last approach, several solutionizing and aging experiments were conducted.« less
Lee, Chen-Ting; Zhong, Lingwen; Mace, Thomas A.; Repasky, Elizabeth A.
2012-01-01
Macrophages are often considered the sentries in innate immunity, sounding early immunological alarms, a function which speeds the response to infection. Compared to the large volume of studies on regulation of macrophage function by pathogens or cytokines, relatively little attention has been devoted to the role of physical parameters such as temperature. Given that temperature is elevated during fever, a long-recognized cardinal feature of inflammation, it is possible that macrophage function is responsive to thermal signals. To explore this idea, we used LPS to model an aseptic endotoxin-induced inflammatory response in BALB/c mice and found that raising mouse body temperature by mild external heat treatment significantly enhances subsequent LPS-induced release of TNF-α into the peritoneal fluid. It also reprograms macrophages, resulting in sustained subsequent responsiveness to LPS, i.e., this treatment reduces “endotoxin tolerance” in vitro and in vivo. At the molecular level, elevating body temperature of mice results in a increase in LPS-induced downstream signaling including enhanced phosphorylation of IKK and IκB, NF-κB nuclear translocation and binding to the TNF-α promoter in macrophages upon secondary stimulation. Mild heat treatment also induces expression of HSP70 and use of HSP70 inhibitors (KNK437 or Pifithrin-µ) largely abrogates the ability of the thermal treatment to enhance TNF-α, suggesting that the induction of HSP70 is important for mediation of thermal effects on macrophage function. Collectively, these results support the idea that there has been integration between the evolution of body temperature regulation and macrophage function that could help to explain the known survival benefits of fever in organisms following infection. PMID:22253887
Ouyang, Jianshu; Chen, Bo; Huang, Dahai
2018-01-01
Concretes with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures or devices, are important for civil engineering applications, such as dams, bridges, and buildings. In natural materials, thermal expansion usually cannot be easily regulated and an extremely low thermal expansion coefficient (TEC) is still uncommon. Here we propose a novel cementitious composite, doped with ZrW2O8, showing a wide range of tunable thermal expansion coefficients, from 8.65 × 10−6 °C−1 to 2.48 × 10−6 °C−1. Macro-scale experiments are implemented to quantify the evolution of the thermal expansion coefficients, compressive and flexural strength over a wide range of temperature. Scanning Electron Microscope (SEM) imaging was conducted to quantify the specimens’ microstructural characteristics including pores ratio and size. It is shown that the TEC of the proposed composites depends on the proportion of ZrW2O8 and the ambient curing temperature. Macro-scale experimental results and microstructures have a good agreement. The TEC and strength gradually decrease as ZrW2O8 increases from 0% to 20%, subsequently fluctuates until 60%. The findings reported here provide a new routine to design cementitious composites with tunable thermal expansion for a wide range of engineering applications. PMID:29735957
NASA Astrophysics Data System (ADS)
Glorie, Stijn; Agostino, Kate; Dutch, Rian; Pawley, Mark; Hall, James; Danišík, Martin; Evans, Noreen J.; Collins, Alan S.
2017-04-01
Multi-method geo- and thermochronological data obtained for Palaeo- and Mesoproterozoic granitoids traversing the main structural architecture of the eastern Musgrave Province within South Australia reveal multiphase cooling histories. Apatite U-Pb dating on six samples yield consistent ages of 1075-1025 Ma, suggesting a thermal reset coinciding with mantle-derived magmatism of the greater Warakurna Large Igneous Province ( 1080-1040 Ma). Apatite fission track (AFT) analysis indicate that four discrete thermal events affected the study area, inducing cooling through the AFT partial annealing zone ( 60-120 °C), supported by apatite and zircon (U-Th-Sm)/He data. Late Neoproterozoic cooling from deep crustal levels to temperatures < 200 °C was discerned, which is thought to be related to exhumation and denudation during the Petermann Orogeny. Subsequent cooling events at 450-400 Ma (Silurian-Devonian) and 310-290 Ma (Late Carboniferous) are interpreted to represent exhumation associated with the Alice Springs Orogeny. The latter event exhumed the sampled plutons to shallow crustal depths. An additional Triassic - early Jurassic thermal event, likely recording elevated geothermal gradients at that time, was observed throughout the study area, however, more data is needed to further support this interpretation. The high sample density across the structural architecture of the study area furthermore reveals patterns of fault reactivation and resulting differential exhumation, indicating shallower exhumation levels in the centre and deeper exhumation towards the margins of the sampled transect. The observed differential exhumation patterns match with existing seismic data and fit a model of an inverted graben system for the Phanerozoic evolution of the eastern Musgraves. The results highlight a complex Phanerozoic thermal history for the eastern Musgraves and help to elucidate the poorly appreciated tectonic evolution of inland Australia. This study further demonstrates how high-density sample transects across structural architecture can assess the relative crustal level and associated preservation of the thermal history record within fault-reactivated terranes.
NASA Astrophysics Data System (ADS)
Thigpen, R.; Ashley, K. T.; Law, R. D.; Mako, C. A.
2017-12-01
In natural systems, two key observations indicate that major strain discontinuities such as faults and shear zones should play a fundamental role in orogenic thermal evolution: (1) Large faults and shear zones often separate components of the composite orogen that have experienced broadly different thermal and deformational histories, and (2) quantitative metamorphic and diffusional studies indicate that heating rates are much faster and the duration of peak conditions much shorter in natural collisional systems than those predicted by numerical continuum deformation models. Because heat transfer processes such as conduction usually operate at much slower time scales than rates of other tectonic processes, thermal evolution is often transient and thus can be strongly influenced by tectonic disturbances that occur at rates much faster than thermal relaxation. Here, we use coupled thermal-mechanical finite element models of thrust faults to explore how fault slip rate may fundamentally influence the thermal evolution of individual footwall and hanging wall thrust slices. The model geometry involves a single crustal-scale thrust with a dip of 25° that is translated up the ramp at average velocities of 20, 35, and 50 km Myr-1, interpreted to represent average to relatively high slip rates observed in many collisional systems. Boundary conditions include crustal radioactive heat production, basal mantle heat flow, and surface erosion rates that are a function of thrust rate and subsequent topography generation. In the models, translation of the hanging wall along the crustal-scale detachment results in erosion, exhumation, and retrograde metamorphism of the emerging hanging wall topography and coeval burial, `hot iron' heating, and prograde metamorphism of the thrust footwall. Thrust slip rates of 20, 35, and 50 km Myr-1 yield maximum footwall heating rates ranging from 55-90° C Myr-1 and maximum hanging wall cooling rates of 138-303° C Myr-1. These relatively rapid heating rates explain, in part, the presence of chemical diffusion profiles in metamorphic minerals that are indicative of high heating rates. Additionally, the relatively high cooling rates explain preservation of chemical zoning, as rapid cooling prevents diffusive profiles from being substantially modified during exhumation.
NASA Astrophysics Data System (ADS)
Barboni, M.; Bussy, F.; Ovtcharova, M.; Schoene, B.
2009-12-01
Understanding the emplacement and growth of intrusive bodies in terms of mechanism, duration, thermal evolution and rates are fundamental aspects of crustal evolution. Recent studies show that many plutons grow in several Ma by in situ accretion of discrete magma pulses, which constitute small-scale magmatic reservoirs. The residence time of magmas, and hence their capacities to interact and differentiate, are controlled by the local thermal environment. The latter is highly dependant on 1) the emplacement depth, 2) the magmas and country rock composition, 3) the country rock thermal conductivity, 4) the rate of magma injection and 5) the geometry of the intrusion. In shallow level plutons, where magmas solidify quickly, evidence for magma mixing and/or differentiation processes is considered by many authors to be inherited from deeper levels. We show however that in-situ differentiation and magma interactions occurred within basaltic and felsic sills at shallow depth (0.3 GPa) in the St-Jean-du-Doigt bimodal intrusion, France. Field evidence coupled to high precision zircon U-Pb dating document progressive thermal maturation within the incrementally built laccolith. Early m-thick mafic sills are homogeneous and fine-grained with planar contacts with neighbouring felsic sills; within a minimal 0.5 Ma time span, the system gets warmer, adjacent sills interact and mingle, and mafic sills are differentiating in the top 40 cm of the layer. Rheological and thermal modelling show that observed in-situ differentiation-accumulation processes may be achieved in less than 10 years at shallow depth, provided that (1) the differentiating sills are injected beneath consolidated, yet still warm basalt sills, which act as low conductive insulating screens, (2) the early mafic sills accreted under the roof of the laccolith as a 100m thick top layer within 0.5 My, and (3) subsequent and sustained magmatic activity occurred on a short time scale (years) at an injection rate of ca. 0.5m/y. Extraction of differentiated residual liquids might eventually take place and mix with newly injected magma as documented in active syn-emplacement shear-zones. These low-pressure differentiated liquids can potentially contribute to subaerial volcanic activity along the major shear-zones.
Mass-loss evolution of close-in exoplanets: Evaporation of hot Jupiters and the effect on population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurokawa, H.; Nakamoto, T., E-mail: kurokawa@nagoya-u.jp
2014-03-01
During their evolution, short-period exoplanets may lose envelope mass through atmospheric escape owing to intense X-ray and extreme ultraviolet (XUV) radiation from their host stars. Roche-lobe overflow induced by orbital evolution or intense atmospheric escape can also contribute to mass loss. To study the effects of mass loss on inner planet populations, we calculate the evolution of hot Jupiters considering mass loss of their envelopes and thermal contraction. Mass loss is assumed to occur through XUV-driven atmospheric escape and the following Roche-lobe overflow. The runaway effect of mass loss results in a dichotomy of populations: hot Jupiters that retain theirmore » envelopes and super Earths whose envelopes are completely lost. Evolution primarily depends on the core masses of planets and only slightly on migration history. In hot Jupiters with small cores (≅ 10 Earth masses), runaway atmospheric escape followed by Roche-lobe overflow may create sub-Jupiter deserts, as observed in both mass and radius distributions of planetary populations. Comparing our results with formation scenarios and observed exoplanets populations, we propose that populations of closely orbiting exoplanets are formed by capturing planets at/inside the inner edges of protoplanetary disks and subsequent evaporation of sub-Jupiters.« less
Zhang, Yanwen; Stocks, G. Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.
2015-01-01
A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. PMID:26507943
Thermal fluctuations of dark matter in bouncing cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Changhong, E-mail: changhongli@ynu.edu.cn
We investigate the statistical nature of the dark matter particles produced in bouncing cosmology, especially, the evolution of its thermal fluctuations. By explicitly deriving and solving the equation of motion of super-horizon mode, we fully determine the evolution of thermal perturbation of dark matter in a generic bouncing background. And we also show that the evolution of super-horizon modes is stable and will not ruin the background evolution of a generic bouncing universe till the Planck scale. Given no super-horizon thermal perturbation of dark matter appears in standard inflation scenario such as WIMP(-less) miracles, such super-horizon thermal perturbation of darkmore » matter generated during the generic bouncing universe scenario may be significant for testing and distinguishing these two scenario in near future.« less
Chemical energy in cold-cloud aggregates - The origin of meteoritic chondrules
NASA Technical Reports Server (NTRS)
Clayton, D. D.
1980-01-01
If interstellar particles and molecules accumulate into larger particles during the collapse of a cold cloud, the resulting aggregates contain a large store of internal chemical energy. It is here proposed that subsequent warming of these accumulates leads to a thermal runaway when exothermic chemical reactions begin within the aggregate. These, after cooling, are the crystalline chondrules found so abundantly within chondritic meteorites. Chemical energy can also heat meteoritic parent bodies of any size, and both thermal metamorphism and certain molten meteorites are proposed to have occurred in this way. If this new theory is correct, (1) the model of chemical condensation in a hot gaseous solar system is eliminated, and (2) a new way of studying the chemical evolution of the interstellar medium has been found. A simple dust experiment on a comet flyby is proposed to test some features of this controversy.
NASA Technical Reports Server (NTRS)
Cartier, S. L.; Dangelo, N.; Merlino, R. L.
1986-01-01
A laboratory study related to energetic upstreaming ions in the ionosphere-magnetosphere system is described. The experiment was carried out in a cesium Q machine plasma with a region of nonuniform magnetic field. Electrostatic ion cyclotron waves were excited by drawing an electron current to a small biased exciter electrode. In the presence of the instability, ions are heated in the direction perpendicular to B. Using a gridded retarding potential ion energy analyzer, the evolution of the ion velocity distribution was followed as the ions passed through the heating region and subsequently flowed out along the diverging B field lines. As expected, the heated ions transfer their energy from perpendicular to parallel motion as they move through the region of diverging B field. Both their parallel thermal energy and the parallel drift energy increase at the expense of the perpendicular energy.
Influence of shell thickness on thermal stability of bimetallic Al-Pd nanoparticles
NASA Astrophysics Data System (ADS)
Wen, John Z.; Nguyen, Ngoc Ha; Rawlins, John; Petre, Catalin F.; Ringuette, Sophie
2014-07-01
Aluminum-based bimetallic core-shell nanoparticles have shown promising applications in civil and defense industries. This study addresses the thermal stability of aluminum-palladium (Al-Pd) core/shell nanoparticles with a varying shell thickness of 5, 6, and 7 Å, respectively. The classic molecular dynamics (MD) simulations are performed in order to investigate the effects of the shell thickness on the ignition mechanism and subsequent energetic processes of these nanoparticles. The histograms of temperature change and structural evolution clearly show the inhibition role of the Pd shell during ignition. While the nanoparticle with a thicker shell is more thermally stable and hence requires more excess energy, stored as the potential energy of the nanoparticle and provided through numerically heating, to initiate the thermite reaction, a higher adiabatic temperature can be produced from this nanoparticle, thanks to its greater content of Pd. The two-stage thermite reactions are discussed with their activation energy based on the energy balance processes during MD heating and production. Analyses of the simulation results reveal that the inner pressure of the core-shell nanoparticle increases with both temperature and the absorbed thermal energy during heating, which may result in a breakup of the Pd shell.
NASA Astrophysics Data System (ADS)
Klusemann, Benjamin; Bambach, Markus
2018-05-01
Processing conditions play a crucial role for the resulting microstructure and properties of the material. In particular, processing materials under non-equilibrium conditions can lead to a remarkable improvement of the final properties [1]. Additive manufacturing represents a specific process example considered in this study. Models for the prediction of residual stresses and microstructure in additive manufacturing processes, such as laser metal deposition, are being developed with huge efforts to support the development of materials and processes as well as to support process design [2-4]. Since the microstructure predicted after each heating and cooling cycle induced by the moving laser source enters the phase transformation kinetics and microstucture evolution of the subsequent heating and cooling cycle, a feed-back loop for the microstructure calculation is created. This calculation loop may become unstable so that the computed microstructure and related properties become very sensitive to small variations in the input parameters, e.g. thermal conductivity. In this paper, a model for phase transformation in Ti-6Al-4V, originally proposed by Charles Murgau et al. [5], is adopted and minimal adjusted concerning the decomposition of the martensite phase are made. This model is subsequently used to study the changes in the predictions of the different phase volume fractions during heating and cooling under the conditions of laser metal deposition with respect to slight variations in the thermal process history.
NASA Astrophysics Data System (ADS)
Cao, Shuyun; Neubauer, Franz; Liu, Junlai; Bernroider, Manfred; Genser, Johann
2016-04-01
The presence of deep exhumed crustal rocks with a dominant but contrasting mineralogy results in shear concentration in the rheological weakest layer, which exhibits contrasting patterns of fabrics and thermal conditions during their formation. We tested a combination of methodologies including microstructural and textural investigations, geochronology and geothermometry on deformed rocks from exhumed strike-slip fault, Ailao Shan-Red River, SE, Asian. Results indicate that the exhumed deep crustal rocks since late Oligocene (ca. 28 Ma) to Pliocene (ca. 4 Ma) typically involve dynamic microstructural, textural and thermal evolution processes, which typically record a progressive deformation and syn-kinematic reactions from ductile to semi-ductile and brittle behavior during exhumation. This transformation also resulted in dramatic strength reduction that promoted strain localization along the strike-slip and transtensional faults. Detailed analysis has revealed the co-existence of microfabrics ranging from high-temperatures (granulite facies conditions) to overprinting low-temperatures (lower greenschist facies conditions). The high-temperature microstructures and textures are in part or entirely altered by subsequent, overprinting low-temperature shearing. In quartz-rich rocks, quartz was deformed in the dislocation creep regime and records transition of microfabrics and slip systems during decreasing temperature, which lasted until retrogression related to final exhumation. As a result, grain-size reduction associated by fluids circulating within the strike-slip fault zone at brittle-ductile transition leads to rock softening, which resulted in strain localization, weak rock rheology and the overall hot thermal structure of the crust. Decompression occurred during shearing and as a result of tectonic exhumation. All these results demonstrate that the ductile to ductile-brittle transition involves a combination of different deformation mechanisms, rheological transition features and feedbacks between deformation, decreasing temperature and fluids.
Optical activity and defect/dopant evolution in ZnO implanted with Er
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azarov, Alexander; Galeckas, Augustinas; Kuznetsov, Andrej
2015-09-28
The effects of annealing on the optical properties and defect/dopant evolution in wurtzite (0001) ZnO single crystals implanted with Er ions are studied using a combination of Rutherford backscattering/channeling spectrometry and photoluminescence measurements. The results suggest a lattice recovery behavior dependent on ion dose and involving formation/evolution of an anomalous multipeak defect distribution, thermal stability of optically active Er complexes, and Er outdiffusion. An intermediate defect band occurring between the surface and ion-induced defects in the bulk is stable up to 900 °C and has a photoluminescence signature around 420 nm well corresponding to Zn interstitials. The optical activity of the Ermore » atoms reaches a maximum after annealing at 700 °C but is not directly associated to the ideal Zn site configuration, since the Er substitutional fraction is maximal already in the as-implanted state. In its turn, annealing at temperatures above 700 °C leads to dissociation of the optically active Er complexes with subsequent outdiffusion of Er accompanied by the efficient lattice recovery.« less
Numerical investigation of electromagnetic pulse welded interfaces between dissimilar metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Sun, Xin
Electromagnetic pulse welding (EMPW), an innovative high-speed joining technique, is a potential method for the automotive industry in joining and assembly of dissimilar lightweight metals with drastically different melting temperatures and other thermal physical properties, such as thermal conductivity and thermal expansion coefficients. The weld quality of EMPW is significantly affected by a variety of interacting physical phenomena including large plastic deformation, materials mixing, localized heating and rapid cooling, possible localized melting and subsequent diffusion and solidification, micro-cracking and void, etc. In the present study, a thermo-mechanically coupled dynamic model has been developed to quantitatively resolve the high-speed impact joiningmore » interface characteristics as well as the process-induced interface temperature evolution, defect formation and possible microstructural composition variation. Reasonably good agreement has been obtained between the predicted results and experimental measurements in terms of interfacial morphology characteristics. The modeling framework is expected to provide further understanding of the hierarchical interfacial features of the non-equilibrium material joining process and weld formation mechanisms involved in the EMPW operation, thus accelerating future development and deployment of this advanced joining technology.« less
Atkinson III, Robert W.; Unocic, Raymond R.; Unocic, Kinga A.; ...
2015-04-23
Metallic, mixed-phase, and alloyed bimetallic Pt-Ru nanotubes were synthesized by a novel route based on the sublimation of metal acetylacetonate precursors and their subsequent vapor deposition within anodic alumina templates. Nanotube architectures were tuned by thermal annealing treatments. As-synthesized nanotubes are composed of nanoparticulate, metallic platinum and hydrous ruthenium oxide whose respective thicknesses depend on the sample chemical composition. The Pt-decorated, hydrous Ru oxide nanotubes may be thermally annealed to promote a series of chemical and physical changes to the nanotube structures including alloy formation, crystallite growth and morphological evolution. Annealed Pt-Ru alloy nanotubes and their as-synthesized analogs demonstrate relativelymore » high specific activities for the oxidation of methanol. As-synthesized, mixed-phase Pt-Ru nanotubes (0.39 mA/cm2) and metallic alloyed Pt64Ru36NTs (0.33 mA/cm2) have considerably higher area-normalized activities than PtRu black (0.22 mA/cm2) at 0.65 V vs. RHE.« less
Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, G. H.; Smith, K.; Ireland, J.
2012-07-15
A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ionmore » battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.« less
Structural evolution in Ar+ implanted Si-rich silicon oxide
NASA Astrophysics Data System (ADS)
Brusa, R. S.; Karwasz, G. P.; Mariotto, G.; Zecca, A.; Ferragut, R.; Folegati, P.; Dupasquier, A.; Ottaviani, G.; Tonini, R.
2003-12-01
Silicon-rich silicon oxide films were deposited by plasma-enhanced chemical vapor deposition. Energy was released into the film by ion bombardment, with the aim of promoting formation of Si nanoclusters and reordering the oxide matrix. The effect of the initial stoichiometry, as well as the evolution of the oxide films due to the ion bombardment and to subsequent thermal treatments, has been studied by depth-resolved positron annihilation Doppler spectroscopy, Raman scattering and Fourier transform infrared spectroscopy. As-deposited films were found to contain an open volume fraction in the form of subnanometric cavities that are positively correlated with oxygen deficiency. No Si aggregates were observed. The ion bombardment was found to promote the formation of amorphous Si nanoclusters, together with a reduction of the open volume in the matrix and a substantial release of hydrogen. It also leaves electrically active sites in the oxide and produces gas-filled vacancy defects in the substrate, with the concentrations depending on the implantation temperature. Thermal treatment at 500 °C removes charge defects in the oxide, but vacancy defects are not completely annealed even at 1100 °C. In one case, heating at 1100 °C produced cavities of about 0.6 nm in the oxide. Transformation of Si nanoclusters into nanocrystals is observed to occur from 800 °C.
Molecular evolution and thermal adaptation
NASA Astrophysics Data System (ADS)
Chen, Peiqiu
2011-12-01
In this thesis, we address problems in molecular evolution, thermal adaptation, and the kinetics of adaptation of bacteria and viruses to elevated environmental temperatures. We use a nearly neutral fitness model where the replication speed of an organism is proportional to the copy number of folded proteins. Our model reproduces the distribution of stabilities of natural proteins in excellent agreement with experiment. We find that species with high mutation rates tend to have less stable proteins compared to species with low mutation rate. We found that a broad distribution of protein stabilities observed in the model and in experiment is the key determinant of thermal response for viruses and bacteria. Our results explain most of the earlier experimental observations: striking asymmetry of thermal response curves, the absence of evolutionary trade-off which was expected but not found in experiments, correlation between denaturation temperature for several protein families and the Optimal Growth Temperature (OGT) of their carrier organisms, and proximity of bacterial or viral OGTs to their evolutionary temperatures. Our theory quantitatively and with high accuracy described thermal response curves for 35 bacterial species. The model also addresses the key to adaptation is in weak-link genes (WLG), which encode least thermodynamically stable essential proteins in the proteome. We observe, as in experiment, a two-stage adaptation process. The first stage is a Luria-Delbruck type of selection, whereby rare WLG alleles, whose proteins are more stable than WLG proteins of the majority of the population (either due to standing genetic variation or due to an early acquired mutation), rapidly rise to fixation. The second stage constitutes subsequent slow accumulation of mutations in an adapted population. As adaptation progresses, selection regime changes from positive to neutral: Selection coefficient of beneficial mutations scales as a negative power of number of generations. Diversity plays an important role in thermal adaptation: While monoclonal strains adapt via acquisition and rapid fixation of new early mutations, wild population adapt via standing genetic variations, and they are more robust against thermal shocks due to greater diversity within the initial population.
Off- and Along-Axis Slow Spreading Ridge Segment Characters: Insights From 3d Thermal Modeling
NASA Astrophysics Data System (ADS)
Gac, S.; Tisseau, C.; Dyment, J.
2001-12-01
Many observations along the Mid-Atlantic Ridge segments suggest a correlation between surface characters (length, axial morphology) and the thermal state of the segment. Thibaud et al. (1998) classify segments according to their thermal state: "colder" segments shorter than 30 km show a weak magmatic activity, and "hotter" segments as long as 90 km show a robust magmatic activity. The existence of such a correlation suggests that the thermal structure of a slow spreading ridge segment explains most of the surface observations. Here we test the physical coherence of such an integrated thermal model and evaluate it quantitatively. The different kinds of segment would constitute different phases in a segment evolution, the segment evolving progressively from a "colder" to a "hotter" so to a "colder" state. Here we test the consistency of such an evolution scheme. To test these hypotheses we have developed a 3D numerical model for the thermal structure and evolution of a slow spreading ridge segment. The thermal structure is controlled by the geometry and the dimensions of a permanently hot zone, imposed beneath the segment center, where is simulated the adiabatic ascent of magmatic material. To compare the model with the observations several geophysic quantities which depend on the thermal state are simulated: crustal thickness variations along axis, gravity anomalies (reflecting density variations) and earthquake maximum depth (corresponding to the 750° C isotherm depth). The thermal structure of a particular segment is constrained by comparing the simulated quantities to the real ones. Considering realistic magnetization parameters, the magnetic anomalies generated from the same thermal structure and evolution reproduce the observed magnetic anomaly amplitude variations along the segment. The thermal structures accounting for observations are determined for each kind of segment (from "colder" to "hotter"). The evolution of the thermal structure from the "colder" to the "hotter" segments gives credence to a temporal relationship between the different kinds of segment. The resulting thermal evolution model of slow spreading ridge segments may explain the rhomboedric shapes observed off-axis.
Study of the damage evolution function of tin silver copper in cycling
NASA Astrophysics Data System (ADS)
Qasaimeh, Awni
The present research focused on the assessment of solder joint fatigue life in microelectronics assemblies. A general concern of any reliability engineer is whether accelerated tests are relevant to field conditions. The risk of this was minimized by developing an approach to reduce the duration of an accelerated thermal cycling test, thus allowing for the use of less accelerated test conditions. For this purpose the conventional dye and pry technique was improved and used together with artificial neural networks to measure and characterize very early stages of crack growth. The same work also demonstrated a quantitative link between thermal cycling induced recrystallization and a strong acceleration of the subsequent fatigue crack growth and failure. A new study was conducted in which different combinations of annealing and isothermal cycling provided a systematic characterization of the effects of a range of individual parameters on the recrystallization. Experiments showed the ongoing coarsening of secondary precipitates to have a clear effect on recrystallization. The rate of recrystallization was also shown not to scale with the inelastic energy deposition. This means that the most popular current thermal cycling model cannot apply to SnAgCu solder joints. Recrystallization of the Sn grains is usually not the rate limiting mechanism in isothermal cycling. The crack initiation stage often takes up a much greater fraction of the overall life, and the eventual failure of BGA joints tends to involve transgranular crack growth instead. Cycling of individual solder joints allowed for monitoring of the evolution of the solder properties and the rate of inelastic energy deposition. Both the number of cycles to crack initiation and the subsequent number of cycles to failure were shown to be determined by the inelastic energy deposition. This provides for a simple model for the extrapolation of accelerated test results to the much milder cycling amplitudes characteristic of long term service conditions based on conventional Finite Element Modeling. It also offers a critical basis for the ongoing development of a practical model to account for the often dramatic break-down of Miner's rule of linear damage accumulation under variable cycling amplitudes as expected in realistic applications.
NASA Technical Reports Server (NTRS)
Thurber, C. H.; Hsui, A. T.; Toksoz, M. N.
1980-01-01
The imaging experiments of the Voyager 1 and 2 fly-by missions have provided a large amount of information about the nature of the surfaces of the Galilean satellites. The present investigation is concerned with the development of models regarding the thermal evolution of Ganymede and Callisto, taking into account the approach of parameterized convection. Attention is given to the physical, chemical, and geological data which are available as constraints on the thermal evolution of Ganymede and Callisto. Both satellites appear to possess surfaces composed of silicates and ice. However, their surface features are distinctly different from each other. In the discussion of thermal evolution models, attention is given to ice-dominant rheology, silicate-dominant rheology, and aspects of phase changes and solid-state convection.
Archean komatiite volcanism controlled by the evolution of early continents.
Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John
2014-07-15
The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.
Archean komatiite volcanism controlled by the evolution of early continents
Mole, David R.; Fiorentini, Marco L.; Thebaud, Nicolas; Cassidy, Kevin F.; McCuaig, T. Campbell; Kirkland, Christopher L.; Romano, Sandra S.; Doublier, Michael P.; Belousova, Elena A.; Barnes, Stephen J.; Miller, John
2014-01-01
The generation and evolution of Earth’s continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50–30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean–Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits. PMID:24958873
Fontanillas, Eric; Galzitskaya, Oxana V.; Lecompte, Odile; Lobanov, Mikhail Y.; Tanguy, Arnaud; Mary, Jean; Girguis, Peter R.; Hourdez, Stéphane
2017-01-01
Temperature, perhaps more than any other environmental factor, is likely to influence the evolution of all organisms. It is also a very interesting factor to understand how genomes are shaped by selection over evolutionary timescales, as it potentially affects the whole genome. Among thermophilic prokaryotes, temperature affects both codon usage and protein composition to increase the stability of the transcriptional/translational machinery, and the resulting proteins need to be functional at high temperatures. Among eukaryotes less is known about genome evolution, and the tube-dwelling worms of the family Alvinellidae represent an excellent opportunity to test hypotheses about the emergence of thermophily in ectothermic metazoans. The Alvinellidae are a group of worms that experience varying thermal regimes, presumably having evolved into these niches over evolutionary times. Here we analyzed 423 putative orthologous loci derived from 6 alvinellid species including the thermophilic Alvinella pompejana and Paralvinella sulfincola. This comparative approach allowed us to assess amino acid composition, codon usage, divergence, direction of residue changes and the strength of selection along the alvinellid phylogeny, and to design a new eukaryotic thermophilic criterion based on significant differences in the residue composition of proteins. Contrary to expectations, the alvinellid ancestor of all present-day species seems to have been thermophilic, a trait subsequently maintained by purifying selection in lineages that still inhabit higher temperature environments. In contrast, lineages currently living in colder habitats likely evolved under selective relaxation, with some degree of positive selection for low-temperature adaptation at the protein level. PMID:28082607
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Qin; Zhao, Qing
Grain boundary engineering (GBE) of nickel-based alloy 825 tubes was carried out with different cold drawing deformations by using a draw-bench on a factory production line and subsequent annealing at various temperatures. The microstructure evolution of alloy 825 during thermal-mechanical processing (TMP) was characterized by means of the electron backscatter diffraction (EBSD) technique to study the TMP effects on the grain boundary network and the evolution of grain boundary character distributions during high temperature annealing. The results showed that the proportion of ∑ 3{sup n} coincidence site lattice (CSL) boundaries of alloy 825 tubes could be increased to > 75%more » by the TMP of 5% cold drawing and subsequent annealing at 1050 °C for 10 min. The microstructures of the partially recrystallized samples and the fully recrystallized samples suggested that the proportion of low ∑ CSL grain boundaries depended on the annealing time. The frequency of low ∑ CSL grain boundaries increases rapidly with increasing annealing time associating with the formation of large-size highly-twinned grains-cluster microstructure during recrystallization. However, upon further increasing annealing time, the frequency of low ∑ CSL grain boundaries decreased markedly during grain growth. So it is concluded that grain boundary engineering is achieved through recrystallization rather than grain growth. - Highlights: •The grain boundary engineering (GBE) is applicable to 825 tubes. •GBE is achieved through recrystallization rather than grain growth. •The low ∑ CSL grain boundaries in 825 tubes can be increased to > 75%.« less
Nonclassical thermal-state superpositions: Analytical evolution law and decoherence behavior
NASA Astrophysics Data System (ADS)
Meng, Xiang-guo; Goan, Hsi-Sheng; Wang, Ji-suo; Zhang, Ran
2018-03-01
Employing the integration technique within normal products of bosonic operators, we present normal product representations of thermal-state superpositions and investigate their nonclassical features, such as quadrature squeezing, sub-Poissonian distribution, and partial negativity of the Wigner function. We also analytically and numerically investigate their evolution law and decoherence characteristics in an amplitude-decay model via the variations of the probability distributions and the negative volumes of Wigner functions in phase space. The results indicate that the evolution formulas of two thermal component states for amplitude decay can be viewed as the same integral form as a displaced thermal state ρ(V , d) , but governed by the combined action of photon loss and thermal noise. In addition, the larger values of the displacement d and noise V lead to faster decoherence for thermal-state superpositions.
Thermal Evolution of Neutron Stars
NASA Astrophysics Data System (ADS)
Geppert, Ulrich R. M. E.
The thermal evolution of neutron stars is a subject of intense research, both theoretical and observational. The evolution depends very sensitively on the state of dense matter at supranuclear densities, which essentially controls the neutrino emission. The evolution depends, too, on the structure of the stellar outer layers which control the photon emission. Various internal heating processes and the magnetic field strength and structure will influence the thermal evolution. Of great importance for the cooling processes is also whether, when, and where superfluidity and superconductivity appear within the neutron star. This article describes and discusses these issues and presents neutron star cooling calculations based on a broad collection of equations of state for neutron star matter and internal magnetic field geometries. X-ray observations provide reliable data, which allow conclusions about the surface temperatures of neutron stars. To verify the thermal evolution models, the results of model calculations are compared with the body of observed surface temperatures and their distribution. Through these comparisons, a better understanding can be obtained of the physical processes that take place under extreme conditions in the interior of neutron
Thermal waves or beam heating in the 1980, November 5 flare
NASA Technical Reports Server (NTRS)
Smith, Dean F.
1986-01-01
Observations of the temporal evolution of loop BC in soft X rays in the November 5, 1980 flare are reviewed. Calculations are performed to model this evolution. The most consistent interpretation involving a minimum account of energy is the following. Thermal heating near B gives rise to a conduction front which moves out along the loop uninhibited for about 27 s. Beam heating near C gives rise to a second conduction front which moves in the opposite direction and prevents any energy reaching C by thermal conduction from B. Thus both thermal waves and beam heating are required to explain the observed evolution.
NASA Astrophysics Data System (ADS)
Pourteau, Amaury; Scherer, Erik; Schmidt, Alexander; Bast, Rebecca
2015-04-01
The thermal structure of subduction zones plays a key role on mechanical and chemical processes taking place along the slab-mantle interface. Until now, changes through time of this thermal structure have been explored mostly by the means of numerical simulations. However, both "warm" (i.e., epidote-bearing), and "cold" (i.e., lawsonite-bearing) HP oceanic rocks have been reported in some fossil subduction complexes exposed at the Earth's surface (e.g., Franciscan Complex, California; Rio San Juan Complex, Hispañola; Halilbağı Unit, Central Anatolia). These a-priori "incompatible" rocks witness different thermal stages of ancient subduction zones and their study might provide complementary constraints to numerical models. To decipher the meaning of these contrasting metamorphic rocks in the Halilbağı Unit, we are carrying out Lu-Hf geochronology on garnet (grt) and lws from a variety of HP oceanic rocks, as well as the metamorphic sole of the overlying ophiolite. We selected five samples that are representative of the variety of metamorphic evolutions (i.e. peak conditions and P-T paths) encountered in this area. Preliminary analyses yielded 110 Ma (grt-hbl isochron) for a sub-ophiolitic grt amphibolite; 92 Ma (grt-omp) for an eclogite with prograde and retrograde ep; 90 Ma (grt-omp) for an eclogitic metabasite with prograde ep and retrograde ep+lws; 87 Ma (grt-gln) for a lws eclogite with prograde ep; and 86 Ma (grt-gln) for a blueschist with prograde and retrograde lws. These ages are mainly two-point isochrons. Further-refined data will be presented at the EGU General Assembly 2015, in Vienna. The consistent younging trend from "warm" to "cold" metamorphic rocks revealed by these first-order results points to metamorphic-sole formation during the initiation of intra-oceanic subduction at ~110 Ma, and subsequent cooling of the slab-mantle interface between 92 and 86 Ma. Therefore, the contrasting metamorphic evolutions encountered in the Halilbağı Unit record the progressive thermal maturation of the juvenile Neotethyan subduction zone. This period of ~23 myr between subduction initiation and thermal "steady state" is significantly shorter than that obtained for the Rio San Juan Complex (~60 myr; Krebs et al. 2008, Lithos, 103, 106-137), but compares well with that for the Franciscan Complex (~22 myr; Anczkiewicz et al. 2004, EPSL, 225, 147-161) and falls in the range predicted in numerical simulations (e.g., Gerya et al. 2002, Tectonics, 21/6, 1056).
New Measurement for Correlation of Co-evolution Relationship of Subsequences in Protein.
Gao, Hongyun; Yu, Xiaoqing; Dou, Yongchao; Wang, Jun
2015-12-01
Many computational tools have been developed to measure the protein residues co-evolution. Most of them only focus on co-evolution for pairwise residues in a protein sequence. However, number of residues participate in co-evolution might be multiple. And some co-evolved residues are clustered in several distinct regions in primary structure. Therefore, the co-evolution among the adjacent residues and the correlation between the distinct regions offer insights into function and evolution of the protein and residues. Subsequence is used to represent the adjacent multiple residues in one distinct region. In the paper, co-evolution relationship in each subsequence is represented by mutual information matrix (MIM). Then, Pearson's correlation coefficient: R value is developed to measure the similarity correlation of two MIMs. MSAs from Catalytic Data Base (Catalytic Site Atlas, CSA) are used for testing. R value characterizes a specific class of residues. In contrast to individual pairwise co-evolved residues, adjacent residues without high individual MI values are found since the co-evolved relationship among them is similar to that among another set of adjacent residues. These subsequences possess some flexibility in the composition of side chains, such as the catalyzed environment.
Thermal control design of the Galaxy Evolution Explorer (GALEX)
NASA Technical Reports Server (NTRS)
Tsuyuki, G. T.; Lee, S. C.
2001-01-01
This paper describes the thermal control design of GALEX, an ultraviolet telescope that investigates the UV properties of local galaxies, history of star formation, and global causes of star formation and evolution.
Passive Thermal Compensation of the Optical Bench of the Galaxy Evolution Explorer
NASA Technical Reports Server (NTRS)
Ford, Virginia; Parks, Rick; Coleman, Michelle
2004-01-01
The Galaxy Evolution Explorer is an orbiting space telescope that will collect information on star formation by observing galaxies and stars in ultraviolet wavelengths. The optical bench supporting detectors and related optical components used an interesting and unusual passive thermal compensation technique to accommodate thermally-induced focal length changes in the optical system. The proposed paper will describe the optical bench thermal compensation design including concept, analysis, assembly and testing results.
Thermal design and test verification of GALAXY evolution explorer (GALEX)
NASA Technical Reports Server (NTRS)
Wu, P. S.; Lee, S. -C.
2002-01-01
This paper describes the thermal control design of GALEX, an ultraviolet telescope that investigates the UV properties of local galaxies, history of star formation, and global causes of star formation and evolution.
Ultrafast surface carrier dynamics in the topological insulator Bi₂Te₃.
Hajlaoui, M; Papalazarou, E; Mauchain, J; Lantz, G; Moisan, N; Boschetto, D; Jiang, Z; Miotkowski, I; Chen, Y P; Taleb-Ibrahimi, A; Perfetti, L; Marsi, M
2012-07-11
We discuss the ultrafast evolution of the surface electronic structure of the topological insulator Bi(2)Te(3) following a femtosecond laser excitation. Using time and angle-resolved photoelectron spectroscopy, we provide a direct real-time visualization of the transient carrier population of both the surface states and the bulk conduction band. We find that the thermalization of the surface states is initially determined by interband scattering from the bulk conduction band, lasting for about 0.5 ps; subsequently, few picoseconds are necessary for the Dirac cone nonequilibrium electrons to recover a Fermi-Dirac distribution, while their relaxation extends over more than 10 ps. The surface sensitivity of our measurements makes it possible to estimate the range of the bulk-surface interband scattering channel, indicating that the process is effective over a distance of 5 nm or less. This establishes a correlation between the nanoscale thickness of the bulk charge reservoir and the evolution of the ultrafast carrier dynamics in the surface Dirac cone.
Degradation Mechanisms of an Advanced Jet Engine Service-Retired TBC Component
NASA Astrophysics Data System (ADS)
Wu, Rudder T.; Osawa, Makoto; Yokokawa, Tadaharu; Kawagishi, Kyoko; Harada, Hiroshi
Current use of TBCs is subjected to premature spallation failure mainly due to the formation of thermally grown oxides (TGOs). Although extensive research has been carried out to gain better understanding of the thermo - mechanical and -chemical characteristics of TBCs, laboratory-scale studies and simulation tests are often carried out in conditions significantly differed from the complex and extreme environment typically of a modern gas-turbine engine, thus, failed to truly model service conditions. In particular, the difference in oxygen partial pressure and the effects of contaminants present in the engine compartment have often been neglected. In this respect, an investigation is carried out to study the in-service degradation of an EB-PVD TBC coated nozzle-guide vane. Several modes of degradation were observed due to three factors: 1) presence of residual stresses induced by the thermal-expansion mismatches, 2) evolution of bond coat microstructure and subsequent formation of oxide spinels, 3) deposition of CMAS on the surface of TBC.
NASA Astrophysics Data System (ADS)
Karakas, O.; Dufek, J.; Mangan, M.; Wright, H. M. N.
2014-12-01
Heat transfer in active volcanic areas is governed by complex coupling between tectonic and magmatic processes. These two processes provide unique imprints on the petrologic and thermal evolution of magma by controlling the geometry, depth, longevity, composition, and fraction of melt in the crust. The active volcanism, tectonic extension, and significantly high surface heat flow in Salton Sea Geothermal Field, CA, provides information about the dynamic heat transfer processes in its crust. The volcanism in the area is associated with tectonic extension over the last 500 ka, followed by subsidence and sedimentation at the surface level and dike emplacement in the lower crust. Although significant progress has been made describing the tectonic evolution and petrology of the erupted products of the Salton Buttes, their coupled control on the crustal heat transfer and feedback on the melt evolution remain unclear. To address these concepts, we develop a two-dimensional finite volume model and investigate the compositional and thermal evolution of the melt and crust in the Salton Sea Geothermal Field through a one-way coupled thermal model that accounts for tectonic extension, lower crustal magma emplacement, sedimentation, and subsidence. Through our simulations, we give quantitative estimates to the thermal and compositional evolution and longevity of the lower crustal melt source in the crustal section. We further compare the model results with petrologic constraints. Our thermal balance equations show that crustal melting is limited and the melt is dominated by mantle-derived material. Similarly, petrologic work on δ18O isotope ratios suggests fractional crystallization of basalt with minor crustal assimilation. In addition, we suggest scenarios for the melt fraction, composition, enthalpy release, geometry and depth of magma reservoirs, their temporal evolution, and the timescales of magmatic storage and evolution processes. These parameters provide the source conditions for the dynamics of surface volcanism and the presence of a geothermal system, which modify the thermal and mechanical structure of the crust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jae Jin; Suh, Hyo Seon; Zhou, Chun
Tungsten oxide (WO3-x) nanostructures with hexagonal in-plane arrangements were fabricated by sequential infiltration synthesis (SIS), using the selective interaction of gas phase precursors with functional groups in one domain of a block copolymer (BCP) self-assembled template. Such structures are highly desirable for various practical applications and as model systems for fundamental studies. The nanostructures were characterized by cross-sectional scanning electron microscopy, grazing-incidence small/wide-angle X-ray scattering (GISAXS/GIWAXS), and X-ray absorption near edge structure (XANES) measurements at each stage during the SIS process and subsequent thermal treatments, to provide a comprehensive picture of their evolution in morphology, crystallography and electronic structure. Inmore » particular, we discuss the critical role of SIS Al2O3 seeds toward modifying the chemical affinity and free volume in a polymer for subsequent infiltration of gas phase precursors. The insights into SIS growth obtained from this study are valuable to the design and fabrication of a wide range of targeted nanostructures.« less
Solar Flare Dynamic Microwave Imaging with EOVSA
NASA Astrophysics Data System (ADS)
Gary, D. E.; Chen, B.; Nita, G. M.; Fleishman, G. D.; Yu, S.; White, S. M.; Hurford, G. J.; McTiernan, J. M.
2017-12-01
The Expanded Owens Valley Solar Array (EOVSA) is both an expansion of our existing solar array and serves as a prototype for a much larger future project, the Frequency Agile Solar Radiotelescope (FASR). EOVSA is now complete, and is producing daily imaging of the full solar disk, including active regions and solar radio bursts at hundreds of frequencies in the range 2.8-18 GHz. We present highlights of the 1-s-cadence dynamic imaging spectroscropy of radio bursts we have obtained to date, along with deeper analysis of multi-wavelength observations and modeling of a well-observed burst. These observations are revealing the full life-cycle of the trapped population of high-energy electrons, from their initial acceleration and subsequent energy-evolution to their eventual decay through escape and thermalization. All of our data are being made available for download in both quick-look image form and in the form of the community-standard CASA measurement sets for subsequent imaging and analysis.
Li, Weibin; Xu, Chunguang; Cho, Younho
2016-02-19
Laminate composites which are widely used in the aeronautical industry, are usually subjected to frequency variation of environmental temperature and excessive humidity in the in-service environment. The thermal fatigue and moisture absorption in composites may induce material degradation. There is a demand to investigate the coupling damages mechanism and characterize the degradation evolution of composite laminates for the particular application. In this paper, the degradation evolution in unidirectional carbon/epoxy composite laminates subjected to thermal fatigue and moisture absorption is characterized by Lamb waves. The decrease rate of Lamb wave velocity is used to track the degradation evolution in the specimens. The results show that there are two stages for the progressive degradation of composites under the coupling effect of thermal cyclic loading and moisture diffusion. The present work provides an alternative to monitoring the degradation evolution of in-service aircraft composite Laminates.
Kivelä, Sami M; Svensson, Beatrice; Tiwe, Alma; Gotthard, Karl
2015-09-01
Polyphenism, the expression of discrete alternative phenotypes, is often a consequence of a developmental switch. Physiological changes induced by a developmental switch potentially affect reaction norms, but the evolution and existence of alternative reaction norms remains poorly understood. Here, we demonstrate that, in the butterfly Pieris napi (Lepidoptera: Pieridae), thermal reaction norms of several life history traits vary adaptively among switch-induced alternative developmental pathways of diapause and direct development. The switch was affected both by photoperiod and temperature, ambient temperature during late development having the potential to override earlier photoperiodic cues. Directly developing larvae had higher development and growth rates than diapausing ones across the studied thermal gradient. Reaction norm shapes also differed between the alternative developmental pathways, indicating pathway-specific selection on thermal sensitivity. Relative mass increments decreased linearly with increasing temperature and were higher under direct development than diapause. Contrary to predictions, population phenology did not explain trait variation or thermal sensitivity, but our experimental design probably lacks power for finding subtle phenology effects. We demonstrate adaptive differentiation in thermal reaction norms among alternative phenotypes, and suggest that the consequences of an environmentally dependent developmental switch primarily drive the evolution of alternative thermal reaction norms in P. napi. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
The Co-Evolution of Galaxies, their ISM, and the ICM: The Hydrodynamics of Galaxy Transformation
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Rukmani; Sarazin, Craig L.; Ricker, Paul M.
2017-01-01
Cluster of galaxies are hostile environments. Infalling cluster galaxies are stripped of their dark matter, stars, and hot and cold interstellar medium gas. The ISM, in addition to tidal and ram pressure stripping, can evaporate due to thermal conduction. Gas loss and the subsequent suppression of star formation is not straightforward: magnetic fields in the ISM and ICM shield galaxies and their stripped tails from shear instabilities and conduction, radiative cooling can inhibit gas loss, and feedback from stars and AGN can replenish the ISM. While there is observational evidence that these processes operate, a theoretical understanding of the physics controlling the energy cycle in cluster galaxies remains elusive. Additionally, galaxies have a significant impact on ICM evolution: orbiting galaxies stir up and stretch ICM magnetic field lines, inject turbulence into the ICM via their wakes and g-waves, and infuse metals into the ICM. Quantifying the balance between processes that remove, retain, and replenish the ISM, and the impact of galaxies on the ICM require specialized hydrodynamic simulations of the cluster environment and its galaxies. I will present results from some of these simulations that include ram pressure stripping of galaxies' hot ISM, the effect of magnetic fields on this process, and the effectiveness of isotropic and anisotropic thermal conduction in removing and retaining the ISM.
Thermal noise in a boost-invariant matter expansion in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Chattopadhyay, Chandrodoy; Bhalerao, Rajeev S.; Pal, Subrata
2018-05-01
We formulate a general theory of thermal fluctuations within causal second-order viscous hydrodynamic evolution of matter formed in relativistic heavy-ion collisions. The fluctuation is treated perturbatively on top of a boost-invariant longitudinal expansion. Numerical simulation of thermal noise is performed for a lattice quantum chromodynamics equation of state and for various second-order dissipative evolution equations. Phenomenological effects of thermal fluctuations on the two-particle rapidity correlations are studied.
A neutron Albedo system with time rejection for landmine and IED detection
NASA Astrophysics Data System (ADS)
Kovaltchouk, V. D.; Andrews, H. R.; Clifford, E. T. H.; Faust, A. A.; Ing, H.; McFee, J. E.
2011-10-01
A neutron Albedo system has been developed for imaging of buried landmines and improvised explosive devices (IEDs). It involves irradiating the ground with fast neutrons and subsequently detecting the thermalized neutrons that return. A scintillating 6Li loaded ZnS(Ag) screen with a sensitive area of 40 cm×40 cm is used as a thermal neutron detector. Scintillation light is captured by orthogonal arrays of wavelength-shifting fibers placed on either side of the scintillator surface and then transferred to X and Y multi-pixel PMTs. A timing circuit, used with pulsed neutron sources, records the time when a neutron detection takes place relative to an external synchronization pulse from the pulsed source. Experimental tests of the Albedo system performance have been done in a sand box with a 252Cf neutron source (no time gating) and with pulsed D-D (2.6 MeV) neutrons from the Defense R&D Ottawa Van de Graaff accelerator (with time gating). Information contained in the time evolution of the thermal neutron field provided improved detection capability and image reconstruction. The detector design is described and experimental results are discussed.
Recent Loads Calibration Experience With a Delta Wing Airplane
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.; Kuhl, Albert E.
1977-01-01
Aircraft which are designed for supersonic and hypersonic flight are evolving with delta wing configurations. An integral part of the evolution of all new aircraft is the flight test phase. Included in the flight test phase is an effort to identify and evaluate the loads environment of the aircraft. The most effective way of examining the loads environment is to utilize calibrated strain gages to provide load magnitudes. Using strain gage data to accomplish this has turned out to be anything but a straightforward task. The delta wing configuration has turned out to be a very difficult type of wing structure to calibrate. Elevated structural temperatures result in thermal effects which contaminate strain gage data being used to deduce flight loads. The concept of thermally calibrating a strain gage system is an approach to solving this problem. This paper will address how these problems were approached on a program directed toward measuring loads on the wing of a large, flexible supersonic aircraft. Structural configurations typical of high-speed delta wing aircraft will be examined. The temperature environment will be examined to see how it induces thermal stresses which subsequently cause errors in loads equations used to deduce the flight loads.
NASA Astrophysics Data System (ADS)
Kamata, S.
2017-12-01
Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection. Adopting this new definition of l, I investigate the thermal evolution of Dione and Enceladus under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a 30-km-thick global subsurface ocean. Dynamical tides may be able to account for such an amount of heat, though their ices need to be highly viscous.
Denny, M W; Dowd, W W
2012-03-15
As the air temperature of the Earth rises, ecological relationships within a community might shift, in part due to differences in the thermal physiology of species. Prediction of these shifts - an urgent task for ecologists - will be complicated if thermal tolerance itself can rapidly evolve. Here, we employ a mechanistic approach to predict the potential for rapid evolution of thermal tolerance in the intertidal limpet Lottia gigantea. Using biophysical principles to predict body temperature as a function of the state of the environment, and an environmental bootstrap procedure to predict how the environment fluctuates through time, we create hypothetical time-series of limpet body temperatures, which are in turn used as a test platform for a mechanistic evolutionary model of thermal tolerance. Our simulations suggest that environmentally driven stochastic variation of L. gigantea body temperature results in rapid evolution of a substantial 'safety margin': the average lethal limit is 5-7°C above the average annual maximum temperature. This predicted safety margin approximately matches that found in nature, and once established is sufficient, in our simulations, to allow some limpet populations to survive a drastic, century-long increase in air temperature. By contrast, in the absence of environmental stochasticity, the safety margin is dramatically reduced. We suggest that the risk of exceeding the safety margin, rather than the absolute value of the safety margin, plays an underappreciated role in the evolution of thermal tolerance. Our predictions are based on a simple, hypothetical, allelic model that connects genetics to thermal physiology. To move beyond this simple model - and thereby potentially to predict differential evolution among populations and among species - will require significant advances in our ability to translate the details of thermal histories into physiological and population-genetic consequences.
Early evolution of the earth - Accretion, atmosphere formation, and thermal history
NASA Technical Reports Server (NTRS)
Abe, Yutaka; Matsui, Takafumi
1986-01-01
The thermal and atmospheric evolution of the earth growing planetesimal impacts are studied. The generation of an H2O protoatmosphere is examined, and the surface temperatures are estimated. The evolution of an impact-induced H2O atmosphere is analyzed. Consideration is given to the formation time of a 'magma ocean'and internal water budgets. The thermal history of an accreting earth is reviewed. The wet convection and greenhouse effects are discussed, and the role of Fe oxidation on the evolution of an impact-induced H2O atmopshere is described. The relationship between differentiation processes and core segregation, the H2O and FeO content of the mantle, and the origin of the hydrosphere is also examined.
NASA Astrophysics Data System (ADS)
Song, Ying; Stepashko, Andrei; Liu, Keyu; He, Qingkun; Shen, Chuanbo; Shi, Bingjie; Ren, Jianye
2018-03-01
The classic lithosphere-stretching model predicts that the post-rift evolution of extensional basin should be exclusively controlled by decaying thermal subsidence. However, the stratigraphy of the Songliao Basin in northeastern China shows that the post-rift evolution was punctuated by multiple episodes of uplift and exhumation events, commonly attributed to the response to regional tectonic events, including the far-field compression from plate margins. Three prominent tectonostratigraphic post-rift unconformities are recognized in the Late Cretaceous strata of the basin: T11, T03, and T02. The subsequent Cenozoic history is less constrained due to the incomplete record of younger deposits. In this paper, we utilize detrital apatite fission track (AFT) thermochronology to unravel the enigmatic timing and origin of post-rift unconformities. Relating the AFT results to the unconformities and other geological data, we conclude that in the post-rift stage, the basin experienced a multiepisodic tectonic evolution with four distinct cooling and exhumation events. The thermal history and age pattern document the timing of the unconformities in the Cretaceous succession: the T11 unconformity at 88-86 Ma, the T03 unconformity at 79-75 Ma, and the T02 unconformity at 65-50 Ma. A previously unrecognized Oligocene unconformity is also defined by a 32-24 Ma cooling event. Tectonically, all the cooling episodes were regional, controlled by plate boundary stresses. We propose that Pacific dynamics influenced the wider part of eastern Asia during the Late Cretaceous until Cenozoic, whereas the far-field effects of the Neo-Tethys subduction and collision processes became another tectonic driver in the later Cenozoic.
Studying the Thermal and Structural Evolution of Planetary Bodies
NASA Astrophysics Data System (ADS)
Karimi, Mohammadali
The focus of this research is to study the thermal and structural evolution of three planetary bodies, Mars, Venus and the asteroid Vesta. The almost uniform spatial distribution of craters on the surfaces of planets makes them excellent candidates to examine the evolution of planets as a whole. By modeling the viscoelastic deformation of craters at the surface and subsurface with the Finite Element Method (FEM), this study investigated the role of lower crustal flow in crater relaxation, and since lower crustal flow is sensitive to the thermal state, it serves as a probe into the thermal evolution of planets. The thermal history of Mars was explored by modeling the evolution of large craters and Quasi-Circular Depressions (QCDs) in the Southern Highlands and Northern Lowlands, respectively. Because of the spatial distribution of craters, this study yielded a thermal map for Mars that is more complete and less biased regionally relative to other studies. The results revealed a higher background heat flux for the Northern Lowlands relative to the Southern Highlands during the most ancient Noachian epoch, which suggests a thermal fingerprint to whatever process that formed the hemispherical crustal dichotomy, the oldest and most prominent geomorphic feature on Mars. Next, the largest crater on the surface of Venus, Mead, also appears to have undergone significant lower crustal flow. Modeling the viscoelastic deformation of Mead puts constraints on the thermal state of our sister planet in the vicinity of the basin. The background heat flux of Venus estimated here is higher than globally average values predicted by previous thermal models. Moreover, this study showed that Venus's crust and mantle seem to be dry relative to those of the Earth. Last, modeling the evolution of two large craters in the south polar region of Vesta (Rheasilvia and Veneneia) showed that the shallow topography and large central peak of these craters are likely the products of a planetary scale impact, and not relaxation. Additionally, the possibility of relaxation of the rotational bulge was tested for the asteroid and showed that True Polar Wander (TPW) is not a likely scenario for Vesta.
A non-linear dimension reduction methodology for generating data-driven stochastic input models
NASA Astrophysics Data System (ADS)
Ganapathysubramanian, Baskar; Zabaras, Nicholas
2008-06-01
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low-dimensional input stochastic models to represent thermal diffusivity in two-phase microstructures. This model is used in analyzing the effect of topological variations of two-phase microstructures on the evolution of temperature in heat conduction processes.
Abelleira-Pereira, Jose M; Pérez-Elvira, Sara I; Sánchez-Oneto, Jezabel; de la Cruz, Roberto; Portela, Juan R; Nebot, Enrique
2015-03-15
Studies on the development and evolution of anaerobic digestion (AD) pretreatments are nowadays becoming widespread, due to the outstanding benefits that these processes could entail in the management of sewage sludge. Production of sewage sludge in wastewater treatment plants (WWTPs) is becoming an extremely important environmental issue. The work presented in this paper is a continuation of our previous studies with the aim of understanding and developing the advanced thermal hydrolysis (ATH) process. ATH is a novel AD pretreatment based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H2O2) addition that takes advantage of a peroxidation/direct steam injection synergistic effect. The main goal of the present research was to compare the performance of TH and ATH, conducted at a wide range of operating conditions, as pretreatments of mesophilic AD with an emphasis on methane production enhancement as a key parameter and its connection with the sludge solubilization. Results showed that both TH and ATH patently improved methane production in subsequent mesophilic BMP (biochemical methane potential) tests in comparison with BMP control tests (raw secondary sewage sludge). Besides other interesting results and discussions, a promising result was obtained since ATH, operated at temperature (115 °C), pretreatment time (5 min) and pressure (1 bar) considerably below those typically used in TH (170 °C, 30 min, 8 bar), managed to enhance the methane production in subsequent mesophilic BMP tests [biodegradability factor (fB) = cumulative CH4production/cumulative CH4production (Control) = 1.51 ± 0.01] to quite similar levels than conventional TH pretreatment [fB = 1.52 ± 0.03]. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hemmer, H.; Grong, Ø.
1999-11-01
The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.
Scientific Considerations for Future Spectroscopic Measurements from Space of Activity on the Sun
NASA Technical Reports Server (NTRS)
Holman, Gordon D.
2016-01-01
High-resolution UV and X-ray spectroscopy are important to understanding the origin and evolution of magnetic energy release in the solar atmosphere, as well as the subsequent evolution of heated plasma and accelerated particles. Electromagnetic radiation is observed from plasma heated to temperatures ranging from about 10 k K to above 10 MK, from accelerated electrons emitting photons primarily at X-ray energies, and from ions emitting in gamma rays. These observations require space-based instruments sensitive to emissions at wavelengths shorter than the near UV. This article reviews some recent observations with emphasis on solar eruptive events, the models that describe them, and the measurements they indicate are needed for substantial progress in the future. Specific examples are discussed demonstrating that imaging spectroscopy with a cadence of seconds or better is needed to follow, understand, and predict the evolution of solar activity. Critical to substantial progress is the combination of a judicious choice of UV, EUV, and soft X-ray imaging spectroscopy sensitive to the evolution of this thermal plasma combined with hard X-ray imaging spectroscopy sensitive to suprathermal electrons. The major challenge will be to conceive instruments that, within the bounds of possible technologies and funding, have the flexibility and field of view to obtain spectroscopic observations where and when events occur while providing an optimum balance of dynamic range, spectral resolution and range, and spatial resolution.
NASA Astrophysics Data System (ADS)
Kunz, Matthew W.; Mouschovias, Telemachos Ch.
2009-03-01
We formulate the problem of the formation and subsequent evolution of fragments (or cores) in magnetically supported, self-gravitating molecular clouds in two spatial dimensions. The six-fluid (neutrals, electrons, molecular and atomic ions, positively charged, negatively charged, and neutral grains) physical system is governed by the radiation, nonideal magnetohydrodynamic equations. The magnetic flux is not assumed to be frozen in any of the charged species. Its evolution is determined by a newly derived generalized Ohm's law, which accounts for the contributions of both elastic and inelastic collisions to ambipolar diffusion and Ohmic dissipation. The species abundances are calculated using an extensive chemical-equilibrium network. Both MRN and uniform grain size distributions are considered. The thermal evolution of the protostellar core and its effect on the dynamics are followed by employing the gray flux-limited diffusion approximation. Realistic temperature-dependent grain opacities are used that account for a variety of grain compositions. We have augmented the publicly available Zeus-MP code to take into consideration all these effects and have modified several of its algorithms to improve convergence, accuracy, and efficiency. Results of magnetic star formation simulations that accurately track the evolution of a protostellar fragment from a density sime103 cm-3 to a density sime1015 cm-3, while rigorously accounting for both nonideal MHD processes and radiative transfer, are presented in a separate paper.
Heliocentric zoning of the asteroid belt by aluminum-26 heating
NASA Technical Reports Server (NTRS)
Grimm, R. E.; Mcsween, H. Y., Jr.
1993-01-01
Variations in petrology among meteorites attest to a strong heating event early in solar system history, but the heat source has remained unresolved. Aluminum-26 has been considered the most likely high-energy, short-lived radionuclide (half-life 0.72 million years) since the discovery of its decay product - excess Mg-26 - in Allende CAI's. Furthermore, observation of relict Mg-26 in an achondritic clast and in feldspars within ordinary chondrites (3,4) provided strong evidence for live Al-26 in meteorite parent bodies and not just in refractory nebular condensates. The inferred amount of Al-26 is consistent with constraints on the thermal evolution of both ordinary and carbonaceous chondrite parent objects up to a few hundred kilometers in diameter. Meteorites can constrain the early thermal evolution of their parent body locations, provided that a link can be established between asteroid spectrophotometric signature and meteorite class. Asteroid compositions are heliocentrically distributed: objects thought to have experienced high metamorphic or even melting temperatures are located closer to the sun, whereas apparently unaltered or mildly heated asteroids are located farther away. Heliocentric zoning could be the result of Al-26 heating if the initial amount of the radionuclide incorporated into planetesimals was controlled by accretion time, which in turn varies with semimajor axis. Analytic expressions for planetary accretion may be integrated to given the time, tau, required for a planetesimal to grow to a specified radius: tau varies as a(sup n), where n = 1.5 to 3 depending on the assumptions about variations in the surface density of the planetesimal swarm. Numerical simulations of planetesimal accretion at fixed semimajor axis demonstrate that variations in accretion time among small planetesimals can be strongly nonlinear depending on the initial conditions and model assumptions. The general relationship with semimajor axis remains valid because it depends only on the initial orbit properties and distribution of the planesimal swarm. In order to demonstrate the basic dependence of thermal evolution on semimajor axis, we parameterized accretion time across the asteroid belt according to tau varies as a(sup n) and calculated the subsequent thermal history. Objects at a specified semimajor axis were assumed to have the same accretion time, regardless of size. We set the initial Al-26/Al-27 ratio = 6 x 10(exp -5) and treated n and tau(sub 0) at a(sub 0) = 3 AU as adjustable parameters. The thermal model included temperature-dependent properties of ice and rock (CM chondrite analog) and the thermodynamic effects of phase transitions.
Sheth, Seema N; Angert, Amy L
2014-10-01
The geographic ranges of closely related species can vary dramatically, yet we do not fully grasp the mechanisms underlying such variation. The niche breadth hypothesis posits that species that have evolved broad environmental tolerances can achieve larger geographic ranges than species with narrow environmental tolerances. In turn, plasticity and genetic variation in ecologically important traits and adaptation to environmentally variable areas can facilitate the evolution of broad environmental tolerance. We used five pairs of western North American monkeyflowers to experimentally test these ideas by quantifying performance across eight temperature regimes. In four species pairs, species with broader thermal tolerances had larger geographic ranges, supporting the niche breadth hypothesis. As predicted, species with broader thermal tolerances also had more within-population genetic variation in thermal reaction norms and experienced greater thermal variation across their geographic ranges than species with narrow thermal tolerances. Species with narrow thermal tolerance may be particularly vulnerable to changing climatic conditions due to lack of plasticity and insufficient genetic variation to respond to novel selection pressures. Conversely, species experiencing high variation in temperature across their ranges may be buffered against extinction due to climatic changes because they have evolved tolerance to a broad range of temperatures. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Basking behavior predicts the evolution of heat tolerance in Australian rainforest lizards.
Muñoz, Martha M; Langham, Gary M; Brandley, Matthew C; Rosauer, Dan F; Williams, Stephen E; Moritz, Craig
2016-11-01
There is pressing urgency to understand how tropical ectotherms can behaviorally and physiologically respond to climate warming. We examine how basking behavior and thermal environment interact to influence evolutionary variation in thermal physiology of multiple species of lygosomine rainforest skinks from the Wet Tropics of northeastern Queensland, Australia (AWT). These tropical lizards are behaviorally specialized to exploit canopy or sun, and are distributed across marked thermal clines in the AWT. Using phylogenetic analyses, we demonstrate that physiological parameters are either associated with changes in local thermal habitat or to basking behavior, but not both. Cold tolerance, the optimal sprint speed, and performance breadth are primarily influenced by local thermal environment. Specifically, montane lizards are more cool tolerant, have broader performance breadths, and higher optimum sprinting temperatures than their lowland counterparts. Heat tolerance, in contrast, is strongly affected by basking behavior: there are two evolutionary optima, with basking species having considerably higher heat tolerance than shade skinks, with no effect of elevation. These distinct responses among traits indicate the multiple selective pressures and constraints that shape the evolution of thermal performance. We discuss how behavior and physiology interact to shape organisms' vulnerability and potential resilience to climate change. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Spiers, E. M.; Schmidt, B. E.
2018-05-01
I aim to acquire better understanding of coupled thermal evolution and geochemical fluxes of an ocean world through a box model. A box model divides the system into plainer elements with realistically-solvable, dynamic equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Bite; Muralidharan, Govindarajan; Kurumaddali, Nalini Kanth
2014-01-01
Understanding the reliability of eutectic Sn-3.5Ag lead-free solders in high temperature packaging applications is of significant interest in power electronics for the next generation electric grid. Large area (2.5mm 2.5mm) Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates were thermally cycled between 5 C and 200 C. Sn crystal orientation and microstructure evolution during thermal cycling were characterized by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Comparisons are made between observed initial texture and microstructure and its evolution during thermal cycling. Gradual lattice rotation and grain boundary misorientation evolution suggested the continuous recrystallization mechanism. Recrystallizationmore » behavior was correlated with dislocation slip activities.« less
NASA Astrophysics Data System (ADS)
Jiang, Yunpeng; Qiu, Kun; Sun, Longgang; Wu, Qingqing
2018-01-01
The relationship among processing, microstructure, and mechanical performance is the most important for metallic glass matrix composites (MGCs). Numerical modeling was performed on the shear banding in MGCs, and the impacts of particle concentration, morphology, agglomerate, size, and thermal residual stress were revealed. Based on the shear damage criterion, the equivalent plastic strain acted as an internal state variable to depict the nucleation, growth, and coalescence of shear bands. The element deletion technique was employed to describe the process of transformation from shear band to micro-crack. The impedance effect of particle morphology on the propagation of shear bands was discussed, whereby the toughening mechanism was clearly interpreted. The present work contributes to the subsequent strengthening and toughening design of MGCs.
Visible and infrared investigations of planet-crossing asteroids and outer solar system objects
NASA Technical Reports Server (NTRS)
Tholen, David J.
1991-01-01
The project is supporting lightcurve photometry, colorimetry, thermal radiometry, and astrometry of selected asteroids. Targets include the planet-crossing population, particularly Earth approachers, which are believed to be the immediate source of terrestrial meteorites, future spacecraft targets, and those objects in the outer belt, primarily the Hilda and Trojan populations, that are dynamically isolated from the main asteroid belt. Goals include the determination of population statistics for the planet-crossing objects, the characterization of spacecraft targets to assist in encounter planning and subsequent interpretation of the data, a comparison of the collisional evolution of dynamically isolated Hilda and Trojan populations with the main belt, and the determination of the mechanism driving the activity of the distant object 2060 Chiron.
NASA Astrophysics Data System (ADS)
Li, Bo; Bian, Haibo; Fang, Yi
2017-12-01
BaO-CaO-Al2O3-B2O3-SiO2 (BCABS) glass-ceramics were prepared via the method of controlled crystallization. The effect of CaO modification on the microstructure, phase evolution, as well as thermal, mechanical, and dielectric properties was investigated. XRD identified that quartz is the major crystal phase; cristobalite and bazirite are the minor crystal phases. Moreover, the increase of CaO could inhibit the phase transformation from quartz to cristobalite, but excessive CaO would increase the porosity of the ceramics. Additionally, with increasing the amount of CaO, the thermal expansion curve tends to be linear, and subsequently the CTE value decreases gradually, which is attributed to the decrease of cristobalite with high CTE and the formation of CaSiO3 with low CTE. The results indicated that a moderate amount of CaO helps attaining excellent mechanical, thermal, and dielectric properties, that is, the specimen with 9 wt% CaO sintered at 950 °C has a high CTE value (11.5 × 10-6/°C), a high flexural strength (165.7 MPa), and good dielectric properties (ɛr = 6.2, tanδ = 1.8 × 10-4, ρ = 4.6 × 1011 Ω•cm).
Thermal Evolution of the Earth from a Plate Tectonics Point of View
NASA Astrophysics Data System (ADS)
Grigne, C.; Combes, M.; Le Yaouanq, S.; Husson, L.; Conrad, C. P.; Tisseau, C.
2011-12-01
Earth's thermal history is classically studied using scaling laws that link the surface heat loss to the temperature and viscosity of the convecting mantle. When such a parameterization is used in the global heat budget of the Earth to integrate the mantle temperature backwards in time, a runaway increase of temperature is obtained, leading to the so-called "thermal catastrophe". We propose a new approach that does not rely on convective scaling laws but instead considers the dynamics of plate tectonics, including temperature-dependent surface processes. We use a multi-agent system to simulate time-dependent plate tectonics in a 2D cylindrical geometry with evolutive plate boundaries. Plate velocities are computed using local force balance and explicit parameterizations for plate boundary processes such as trench migration, subduction initiation, continental breakup and plate suturing. The number of plates is not imposed but emerges naturally. At a given time step, heat flux is integrated from the seafloor age distribution and a global heat budget is used to compute the evolution of mantle temperature. This approach has a very low computational cost and allows us to study the effect of a wide range of input parameters on the long-term thermal evolution of the system. For Earth-like parameters, an average cooling rate of 60-70K per billion years is obtained, which is consistent with petrological and rheological constraints. Two time scales arise in the evolution of the heat flux: a linear long-term decrease and high-amplitude short-term fluctuations due to tectonic rearrangements. We show that the viscosity of the mantle is not a key parameter in the thermal evolution of the system and that no thermal catastrophe occurs when considering tectonic processes. The cooling rate of the Earth depends mainly on its ability to replace old insulating seafloor by young thin oceanic lithosphere. Therefore, the main controlling factors are parameters such as the resistance of continental lithosphere to breakup or the critical age for subduction initiation. We infer that simple convective considerations alone cannot account for the complex nature of mantle heat loss and that tectonic processes dictate the thermal evolution of the Earth.
NASA Astrophysics Data System (ADS)
Bousquet, Romain; Nalpas, Thierry
2017-04-01
Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie, 1978), as a kind of dogma, is used to understanding and modeling the formation and evolution of sedimentary basins. The study of the thermal evolution, coupled with other tectonic models, and its consequences have never been studied in detail, although the differences may be significant. And it is clear that the petrological changes associated with changes in temperature conditions, influence changes reliefs. Constrained by the new field data of north Pyrenean basins on thermal evolution of pre-rift and syn-rift sediments, we explore the petrological changes associated to different thermal evolution and the consequences on the subsidence of the basins. We will also present numerical models quantifying mineralogical and physical changes inside the whole lithosphere during rifting processes. In the light of these models, we discuss the consequences of different thermal evolution on the subsidence processes as well as on gravimetry and seismic velocities signature of passive margins. We are able to distinguish two types of margins according to their thermal evolution: - An Alpine-type basin in which the temperature rise is 50 to 100 Ma older than the tectonic extension, leading to the "cold" opening of the ocean. - A Pyrenean type basin in which temperature changes are synchronous with basin formation, leading to a crustal boudignage and to the formation of a "anomalous" geophysical layer at the OCT
Calculation of thermal expansion coefficient of glasses based on topological constraint theory
NASA Astrophysics Data System (ADS)
Zeng, Huidan; Ye, Feng; Li, Xiang; Wang, Ling; Yang, Bin; Chen, Jianding; Zhang, Xianghua; Sun, Luyi
2016-10-01
In this work, the thermal expansion behavior and the structure configuration evolution of glasses were studied. Degree of freedom based on the topological constraint theory is correlated with configuration evolution; considering the chemical composition and the configuration change, the analytical equation for calculating the thermal expansion coefficient of glasses from degree of freedom was derived. The thermal expansion of typical silicate and chalcogenide glasses was examined by calculating their thermal expansion coefficients (TEC) using the approach stated above. The results showed that this approach was energetically favorable for glass materials and revealed the corresponding underlying essence from viewpoint of configuration entropy. This work establishes a configuration-based methodology to calculate the thermal expansion coefficient of glasses that, lack periodic order.
Self-Consistent Ring Current/Electromagnetic Ion Cyclotron Waves Modeling
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.
2006-01-01
The self-consistent treatment of the RC ion dynamics and EMIC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. For example, the EMlC waves cause the RC decay on a time scale of about one hour or less during the main phase of storms. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt by EMIC wave scattering during a magnetic storm. That is why the modeling of EMIC waves is critical and timely issue in magnetospheric physics. This study will generalize the self-consistent theoretical description of RC ions and EMIC waves that has been developed by Khazanov et al. [2002, 2003] and include the heavy ions and propagation effects of EMIC waves in the global dynamic of self-consistent RC - EMIC waves coupling. The results of our newly developed model that will be presented at the meeting, focusing mainly on the dynamic of EMIC waves and comparison of these results with the previous global RC modeling studies devoted to EMIC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.
Tobler, Ray; Hermisson, Joachim; Schlötterer, Christian
2015-07-01
Thermal stress is a pervasive selective agent in natural populations that impacts organismal growth, survival, and reproduction. Drosophila melanogaster exhibits a variety of putatively adaptive phenotypic responses to thermal stress in natural and experimental settings; however, accompanying assessments of fitness are typically lacking. Here, we quantify changes in fitness and known thermal tolerance traits in replicated experimental D. melanogaster populations following more than 40 generations of evolution to either cyclic cold or hot temperatures. By evaluating fitness for both evolved populations alongside a reconstituted starting population, we show that the evolved populations were the best adapted within their respective thermal environments. More strikingly, the evolved populations exhibited increased fitness in both environments and improved resistance to both acute heat and cold stress. This unexpected parallel response appeared to be an adaptation to the rapid temperature changes that drove the cycling thermal regimes, as parallel fitness changes were not observed when tested in a constant thermal environment. Our results add to a small, but growing group of studies that demonstrate the importance of fluctuating temperature changes for thermal adaptation and highlight the need for additional work in this area. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry
NASA Astrophysics Data System (ADS)
Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin; Chiavassa, Thierry; Danger, Grégoire
2017-09-01
In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH3OH), binary (H2O:CH3OH, CH3OH:NH3), and ternary ice analogs (H2O:CH3OH:NH3) were VUV-processed and warmed. The evolution of volatile organic compounds in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.
NASA Astrophysics Data System (ADS)
Rashidi, M. M. N.; Paul, A.; Kim, J.-Y.; Jacobs, L. J.; Kurtis, K. E.
2015-03-01
The use of the Nonlinear Impact Resonance Acoustic Spectroscopy (NIRAS) method to monitor the evolution of damage due to delayed ettringite formation (DEF) is examined. In practice, the temperature of concrete during casting of precast concrete members or massive concrete structures may reach higher than 70°C which can provide suitable conditions for damage to occur due to DEF, particularly in concrete which is subsequently exposed to wet environments. While expansion - often in excess of 1% - is characteristic of DEF, the evolution of damage begins with microcracking. Unfortunately, there is no standard to test the susceptibility of materials or material combinations to DEF. On the other hand, NIRAS shows great sensitivity to the detection of microcracks and has been successfully applied to concrete to detect thermal and alkali silica reaction in concrete. In this preliminary research, the NIRAS method is used to discriminate among mortar samples which are relatively undamaged and those in the early stages of DEF. The results show that NIRAS could be a reliable and robust method in the detection of microcracks due to DEF.
Multiscale Monte Carlo equilibration: Two-color QCD with two fermion flavors
Detmold, William; Endres, Michael G.
2016-12-02
In this study, we demonstrate the applicability of a recently proposed multiscale thermalization algorithm to two-color quantum chromodynamics (QCD) with two mass-degenerate fermion flavors. The algorithm involves refining an ensemble of gauge configurations that had been generated using a renormalization group (RG) matched coarse action, thereby producing a fine ensemble that is close to the thermalized distribution of a target fine action; the refined ensemble is subsequently rethermalized using conventional algorithms. Although the generalization of this algorithm from pure Yang-Mills theory to QCD with dynamical fermions is straightforward, we find that in the latter case, the method is susceptible tomore » numerical instabilities during the initial stages of rethermalization when using the hybrid Monte Carlo algorithm. We find that these instabilities arise from large fermion forces in the evolution, which are attributed to an accumulation of spurious near-zero modes of the Dirac operator. We propose a simple strategy for curing this problem, and demonstrate that rapid thermalization--as probed by a variety of gluonic and fermionic operators--is possible with the use of this solution. Also, we study the sensitivity of rethermalization rates to the RG matching of the coarse and fine actions, and identify effective matching conditions based on a variety of measured scales.« less
Numazawa, Satoshi; Smith, Roger
2011-10-01
Classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The scheme is then used to determine transitions that can be applied in a lattice-based kinetic Monte Carlo (KMC) atomistic simulation model. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements are considered as local transition events constrained in potential energy wells over certain local time periods. These processes are represented by Markov chains of multidimensional Boolean valued functions in three-dimensional lattice space. The events inhibited by the barriers under a certain level are regarded as thermal fluctuations of the canonical ensemble and accepted freely. Consequently, the fluctuating system evolution process is implemented as a Markov chain of equivalence class objects. It is shown that the process can be characterized by the acceptance of metastable local transitions. The method is applied to a problem of Au and Ag cluster growth on a rippled surface. The simulation predicts the existence of a morphology-dependent transition time limit from a local metastable to stable state for subsequent cluster growth by accretion. Excellent agreement with observed experimental results is obtained.
Holocene evolution of Hans Tausen Iskappe (Greenland): merging constraints and models
NASA Astrophysics Data System (ADS)
Zekollari, Harry; Lecavalier, Benoit S.; Huybrechts, Philippe
2017-04-01
In this study the Holocene evolution of Hans Tausen Iskappe (western Peary Land, Greenland) is investigated. Constraints on the ice cap evolution are combined with climatic records in a numerical ice flow - surface mass balance (SMB) model to better understand the palaeoenvironmental and climatic evolution of this region. Our simulations suggest that after disconnecting from the Greenland Ice Sheet (GrIS) the ice cap had roughly its present-day size and geometry around 8.5-9 ka ago. An ice core drilled to the bed indicates that the southern part of the ice cap subsequently disappeared during the Holocene Thermal Maximum (HTM) and this collapse can be reproduced, but the model suggests that the northern part of the ice cap most likely survived this warmer period. The late Holocene growth of the ice cap to its Little Ice Age (LIA) maximum neoglacial extent can be reproduced from the temperature reconstruction. The simulations suggest that over the last millennia the local precipitation may have been up to 70-80% higher than at present. By coupling the pre-industrial temperature forcing to a post-LIA warming trend, it is concluded that the warming between the end of the LIA and the period 1961-1990 was between 1 and 2°C. In all experiments the ice flow model complexity and horizontal resolution have only a minor effect on the long-term evolution of the ice cap, which is largely driven by SMB changes. On the other hand the glacial isostatic adjustments (GIA) need to be accounted for in a detailed manner, as this has a large impact on the modelled Holocene ice cap evolution.
EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalomeni, B.; Rappaport, S.; Molnar, M.
We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43more » donor-star masses (0.1–4.7 M {sub ⊙}), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P {sub orb}– M {sub don}) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P {sub orb}( M {sub wd}) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P {sub orb}– M {sub don} the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.« less
Evolution of Cataclysmic Variables and Related Binaries Containing a White Dwarf
NASA Astrophysics Data System (ADS)
Kalomeni, B.; Nelson, L.; Rappaport, S.; Molnar, M.; Quintin, J.; Yakut, K.
2016-12-01
We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1-4.7 M ⊙), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass (P orb-M don) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P orb(M wd) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P orb-M don the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.
Role of solution structure in self-assembly of conjugated block copolymer thin films
Brady, Michael A.; Ku, Sung -Yu; Perez, Louis A.; ...
2016-10-24
Conjugated block copolymers provide a pathway to achieve thermally stable nanostructured thin films for organic solar cells. We characterized the structural evolution of poly(3-hexylthiophene)- block-poly(diketopyrrolopyrrole–terthiophene) (P3HT- b-DPPT-T) from solution to nanostructured thin films. Aggregation of the DPPT-T block of P3HT- b-DPPT-T was found in solution by small-angle X-ray scattering with the P3HT block remaining well-solvated. The nanostructure in thin films was determined using a combination of wide and small-angle X-ray scattering techniques as a function of processing conditions. The structure in solution controlled the initial nanostructure in spin-cast thin films, allowing subsequent thermal annealing processes to further improve the ordering.more » In contrast to the results for thin films, nanostructural ordering was not observed in the bulk samples by small-angle X-ray scattering. Finally, these results suggest the importance of controlling solvent induced aggregation in forming nanostructured thin films of conjugated block copolymers.« less
3D analysis of thermal and stress evolution during laser cladding of bioactive glass coatings.
Krzyzanowski, Michal; Bajda, Szymon; Liu, Yijun; Triantaphyllou, Andrew; Mark Rainforth, W; Glendenning, Malcolm
2016-06-01
Thermal and strain-stress transient fields during laser cladding of bioactive glass coatings on the Ti6Al4V alloy basement were numerically calculated and analysed. Conditions leading to micro-cracking susceptibility of the coating have been investigated using the finite element based modelling supported by experimental results of microscopic investigation of the sample coatings. Consecutive temperature and stress peaks are developed within the cladded material as a result of the laser beam moving along the complex trajectory, which can lead to micro-cracking. The preheated to 500°C base plate allowed for decrease of the laser power and lowering of the cooling speed between the consecutive temperature peaks contributing in such way to achievement of lower cracking susceptibility. The cooling rate during cladding of the second and the third layer was lower than during cladding of the first one, in such way, contributing towards improvement of cracking resistance of the subsequent layers due to progressive accumulation of heat over the process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Role of solution structure in self-assembly of conjugated block copolymer thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Michael A.; Ku, Sung -Yu; Perez, Louis A.
Conjugated block copolymers provide a pathway to achieve thermally stable nanostructured thin films for organic solar cells. We characterized the structural evolution of poly(3-hexylthiophene)- block-poly(diketopyrrolopyrrole–terthiophene) (P3HT- b-DPPT-T) from solution to nanostructured thin films. Aggregation of the DPPT-T block of P3HT- b-DPPT-T was found in solution by small-angle X-ray scattering with the P3HT block remaining well-solvated. The nanostructure in thin films was determined using a combination of wide and small-angle X-ray scattering techniques as a function of processing conditions. The structure in solution controlled the initial nanostructure in spin-cast thin films, allowing subsequent thermal annealing processes to further improve the ordering.more » In contrast to the results for thin films, nanostructural ordering was not observed in the bulk samples by small-angle X-ray scattering. Finally, these results suggest the importance of controlling solvent induced aggregation in forming nanostructured thin films of conjugated block copolymers.« less
Proton Radiography of a Thermal Explosion in PBX9501
NASA Astrophysics Data System (ADS)
Smilowitz, L.; Henson, B. F.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.
2007-12-01
The understanding of thermal explosions and burn propagation lags that of detonations and shock propagation. Diagnostics such as high energy radiography have been used to image shocks, but have been previously precluded from use in thermal explosions due to their stringent timing requirements: shock propagation can be synchronized to an external diagnostic while thermal explosion can not. This issue is solved by following the evolution of the ignition volume in a thermal explosion and using a laser pulse to provide a temperature jump in that central volume during the final thermal runaway leading to ignition. Thermal explosion experiments have been conducted at the Los Alamos Proton Radiography facility and have yielded images of the evolution of ignition, post-ignition burn propagation, and case failure in a radially confined cylinder of PBX 9501. This paper presents images taken during the hours long quasistatic heating, the final minutes of thermal runaway, and the post ignition burn propagation.
On the effects of higher convection modes on the thermal evolution of small planetary bodies
NASA Technical Reports Server (NTRS)
Arkani-Hamed, J.
1979-01-01
The effects of higher modes of convection on the thermal evolution of a small planetary body is investigated. Three sets of models are designed to specify an initially cold and differentiated, an initially hot and differentiated, and an initially cold and undifferentiated Moon-type body. The strong temperature dependence of viscosity enhances the thickening of lithosphere so that a lithosphere of about 400 km thickness is developed within the first billion years of the evolution of a Moon-type body. The thermally isolating effect of such a lithosphere hampers the heat flux out of the body and increases the temperature of the interior, causing the solid-state convection to occur with high velocity so that even the lower modes of convection can maintain an adiabatic temperature gradient there. It is demonstrated that the effect of solid-state convection on the thermal evolution of the models may be adequately determined by a combination of convection modes up to the third or the fourth order harmonic. The inclusion of higher modes does not affect the results significantly.
Synthesis of Sr0.9K0.1FeO3-δ electrocatalysts by mechanical activation
NASA Astrophysics Data System (ADS)
Monteiro, J. F.; Waerenborgh, J. C.; Kovalevsky, A. V.; Yaremchenko, A. A.; Frade, J. R.
2013-02-01
Potassium-substituted SrFeO3-δ for possible application as oxygen evolution electrode in alkaline or molten salt media was prepared by mechanical activation and characterized by X-ray diffraction, dilatometric and thermogravimetric analysis, Mössbauer spectroscopy, and electrical conductivity measurements. Room temperature mechanical activation of a mixture of oxide precursors with subsequent thermal treatments at 700-900 °C results in the formation of Sr0.9K0.1FeO3-δ with tetragonal perovskite-like structure. Such allows to decrease the synthesis temperature, if compared to the conventional solid-state route, and to prevent possible volatilization of potassium. The results of Mössbauer spectroscopy studies indicate that the oxygen nonstoichiometry in the samples annealed in air at 900-1100 °C with subsequent rapid cooling vary in the range δ=0.30-0.32. The electrical conductivity in air exhibits a metal-like behaviour at temperatures above 400 °C and semiconductor behaviour in the low-temperature range, reaching 13-30 S/cm under prospective operation conditions for alkaline electrolyzers (≤90 °C).
Constraints on Thermal Evolution of Mars from Relaxation Models of Crustal and Topographic Dichotomy
NASA Technical Reports Server (NTRS)
Guest, A.; Smrekar, S. E.
2005-01-01
The early thermal evolution of Mars is largely unconstrained. Models such as degree one convection [1,2,3], plate tectonics [4], and a transition to stagnant lid [5] have been proposed to explain formation of the dichotomy, the Tharsis rise, crustal production, and dynamo evolution. Here we model both the early deformation of the dichotomy and the long-term preservation as a means of examining the plausibility of a range of early thermal evolution models. Constraints include the preservation of crustal thickness and topographic differences between the northern and southern hemispheres and the geologic history of the dichotomy [6]). Our previous modeling indicates that the lower crust must have been weak enough to allow for relaxation early on, but the Martian interior had to cool fast enough to preserve the crustal difference and the associated topographic difference (5 km) over approx. 3-3.5 Gyr [7].
Asynchronous evolution of physiology and morphology in Anolis lizards.
Hertz, Paul E; Arima, Yuzo; Harrison, Alexis; Huey, Raymond B; Losos, Jonathan B; Glor, Richard E
2013-07-01
Species-rich adaptive radiations typically diversify along several distinct ecological axes, each characterized by morphological, physiological, and behavioral adaptations. We test here whether different types of adaptive traits share similar patterns of evolution within a radiation by investigating patterns of evolution of morphological traits associated with microhabitat specialization and of physiological traits associated with thermal biology in Anolis lizards. Previous studies of anoles suggest that close relatives share the same "structural niche" (i.e., use the same types of perches) and are similar in body size and shape, but live in different "climatic niches" (i.e., use habitats with different insolation and temperature profiles). Because morphology is closely tied to structural niche and field active body temperatures are tied to climatic niches in Anolis, we expected phylogenetic analyses to show that morphology is more evolutionarily conservative than thermal physiology. In support of this hypothesis, we find (1) that thermal biology exhibits more divergence among recently diverged Anolis taxa than does morphology; and (2) diversification of thermal biology among all species often follows diversification in morphology. These conclusions are remarkably consistent with predictions made by anole biologists in the 1960s and 1970s. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Revealing the Evolution of Non-thermal Electrons in Solar Flares Using 3D Modeling
NASA Astrophysics Data System (ADS)
Fleishman, Gregory D.; Nita, Gelu M.; Kuroda, Natsuha; Jia, Sabina; Tong, Kevin; Wen, Richard R.; Zhizhuo, Zhou
2018-05-01
Understanding non-thermal particle generation, transport, and escape in solar flares requires detailed quantification of the particle evolution in the realistic 3D domain where the flare takes place. Rather surprisingly, apart from the standard flare scenario and integral characteristics of non-thermal electrons, not much is known about the actual evolution of non-thermal electrons in the 3D spatial domain. This paper attempts to begin to remedy this situation by creating sets of evolving 3D models, the synthesized emission from which matches the evolving observed emission. Here, we investigate two contrasting flares: a dense, “coronal-thick-target” flare SOL2002-04-12T17:42, that contained a single flare loop observed in both microwaves and X-rays, and a more complex flare, SOL2015-06-22T17:50, that contained at least four distinct flaring loops needed to consistently reproduce the microwave and X-ray emission. Our analysis reveals differing evolution patterns for the non-thermal electrons in the dense and tenuous loops; however, both patterns suggest that resonant wave–particle interactions with turbulence play a central role. These results offer new constraints for theory and models of the particle acceleration and transport in solar flares.
Lower crustal mush generation and evolution
NASA Astrophysics Data System (ADS)
Karakas, Ozge; Bachmann, Olivier; Dufek, Josef; Wright, Heather; Mangan, Margaret
2016-04-01
Recent seismic, field, and petrologic studies on several active and fossil volcanic settings provide important constraints on the time, volume, and melt fraction of their lower crustal magma bodies. However, these studies provide an incomplete picture of the time and length scales involved during their thermal and compositional evolution. What has been lacking is a thermal model that explains the temporal evolution and state of the lower crustal magma bodies during their growth. Here we use a two-dimensional thermal model and quantify the time and length scales involved in the long-term thermal and compositional evolution of the lower crustal mush regions underlying the Salton Sea Geothermal Field (USA), Mt St Helens (USA), and the Ivrea-Verbano Zone (North Italy). Although a number of seismic, tectonic, petrologic, and field studies explained the tectonic and magmatic evolution of these regions, controversy remains on their lower crustal heat sources, melt fraction, and origin of erupted magmas. Our thermal modeling results suggest that given a geologically reasonable range of basalt fluxes (~10^-3 to 10^-4 km3/yr), a long-lived (>105 yr) crystalline mush is formed in the lower crust. The state of the lower crustal mush is strongly influenced by the magma flux, crustal thickness, and water content of intruded basalt, giving an average melt fraction of <0.2 in thin crust with dry injections (Salton Sea Geothermal Field) and up to 0.4-0.5 in thicker crust with wet injections (Mt St Helens and Ivrea Zone). The melt in the lower crustal mush is mainly evolving through fractional crystallization of basalt with minor crustal assimilation in all regions, in agreement with isotopic studies. Quantification of the lower crustal mush regions is key to understanding the mass and heat balance in the crust, evolution of magma plumbing systems, and geothermal energy exploration.
Thermal Casimir-Polder forces on a V-type three-level atom
NASA Astrophysics Data System (ADS)
Xu, Chen-Ran; Xu, Jing-Ping; Al-amri, M.; Zhu, Cheng-Jie; Xie, Shuang-Yuan; Yang, Ya-Ping
2017-09-01
We study the thermal Casimir-Polder (CP) forces on a V-type three-level atom. The competition between the thermal effect and the quantum interference of the two transition dipoles on the force is investigated. To shed light onto the role of the quantum interference, we analyze two kinds of initial states of the atom, i.e., the superradiant state and the subradiant state. Considering the atom being in the thermal reservoir, the resonant CP force arising from the real photon emission dominates in the evolution of the CP force. Under the zero-temperature condition, the quantum interference can effectively modify the amplitude and the evolution of the force, leading to a long-time force or even the cancellation of the force. Our results reveal that in the finite-temperature case, the thermal photons can enhance the amplitude of all force elements, but have no influence on the net resonant CP force in the steady state, which means that the second law of thermodynamics still works. For the ideal degenerate V-type atom with parallel dipoles under the initial subradiant state, the robust destructive quantum interference overrides the thermal fluctuations, leading to the trapping of the atom in the subradiant state and the disappearance of the CP force. However, in terms of a realistic Zeeman atom, the thermal photons play a significant role during the evolution of the CP force. The thermal fluctuations can enhance the amplitude of the initial CP force by increasing the temperature, and weaken the influence of the quantum interference on the evolution of the CP force from the initial superradiant (subradiant) state to the steady state.
How Life and Rocks Have Co-Evolved
NASA Astrophysics Data System (ADS)
Hazen, R.
2014-04-01
The near-surface environment of terrestrial planets and moons evolves as a consequence of selective physical, chemical, and biological processes - an evolution that is preserved in the mineralogical record. Mineral evolution begins with approximately 12 different refractory minerals that form in the cooling envelopes of exploding stars. Subsequent aqueous and thermal alteration of planetessimals results in the approximately 250 minerals now found in unweathered lunar and meteorite samples. Following Earth's accretion and differentiation, mineral evolution resulted from a sequence of geochemical and petrologic processes, which led to perhaps 1500 mineral species. According to some origin-of-life scenarios, a planet must progress through at least some of these stages of chemical processing as a prerequisite for life. Once life emerged, mineralogy and biology co-evolved and dramatically increased Earth's mineral diversity to >4000 species. Sequential stages of a planet's near-surface evolution arise from three primary mechanisms: (1) the progressive separation and concentration of the elements from their original relatively uniform distribution in the presolar nebula; (2) the increase in range of intensive variables such as pressure, temperature, and volatile activities; and (3) the generation of far-from-equilibrium conditions by living systems. Remote observations of the mineralogy of other terrestrial bodies may thus provide evidence for biological influences beyond Earth. Recent studies of mineral diversification through time reveal striking correlations with major geochemical, tectonic, and biological events, including large-changes in ocean chemistry, the supercontinent cycle, the increase of atmospheric oxygen, and the rise of the terrestrial biosphere.
Water oxidation catalysts and methods of use thereof
Hill, Craig L.; Gueletii, Yurii V.; Musaev, Djamaladdin G.; Yin, Qiushi; Botar, Bogdan
2017-12-05
Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.
Polyoxometalate water oxidation catalysts and methods of use thereof
Hill, Craig L.; Gueletii, Yurii V.; Musaev, Djamaladdin G.; Yin, Qiushi; Botar, Bogdan
2014-09-02
Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.
Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.
Zhao, Shou; Abu-Omar, Mahdi M
2015-07-13
Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules.
1983-05-01
worn in the heat affects thermal comfort and with an added solar heat load subsequently interferes with the ability to dissipate stored body heat...worn in the heat affects thermal comfort and with an added solar heat load subsequently interferes with the ability to dissipate stored body heat...ratio; thermal comfort ; evaporative cooling; permeability; physiological responses mA]X .................................... INTRODUCTION The Temperate
Origin and thermal evolution of Mars
NASA Technical Reports Server (NTRS)
Schubert, G.; Solomon, Sean C.; Turcotte, D. L.; Drake, M. J.; Sleep, N. H.
1993-01-01
The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle and mantle heat production. Geological, geophysical, and geochemical observations of the composition and structure of the interior and of the timing of major events in Martian evolution, such as global differentiation, atmospheric outgassing and the formation of the hemispherical dichotomy and Tharsis, are used to constrain the model computations. Isotope systematics of SNC meteorites suggest core formation essentially contemporaneously with the completion of accretion. Other aspects of this investigation are discussed.
IMPULSIVE SPOT HEATING AND THERMAL EXPLOSION OF INTERSTELLAR GRAINS REVISITED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivlev, A. V.; Röcker, T. B.; Vasyunin, A.
The problem of the impulsive heating of dust grains in cold, dense interstellar clouds is revisited theoretically with the aim of better understanding the leading mechanisms of the explosive desorption of icy mantles. We rigorously show that if the heating of a reactive medium occurs within a sufficiently localized spot (e.g., the heating of mantles by cosmic rays (CRs)), then the subsequent thermal evolution is characterized by a single dimensionless number λ. This number identifies a bifurcation between two distinct regimes: when λ exceeds a critical value (threshold), the heat equation exhibits the explosive solution, i.e., the thermal (chemical) explosionmore » is triggered. Otherwise, thermal diffusion causes the deposited heat to spread over the entire grain—this regime is commonly known as whole-grain heating. The theory allows us to find a critical combination of physical parameters that govern the explosion of icy mantles due to impulsive spot heating. In particular, our calculations suggest that heavy CR species (e.g., iron ions) colliding with dust are able to trigger the explosion. Based on recently calculated local CR spectra, we estimate the expected rate of explosive desorption. The efficiency of the desorption, which in principle affects all solid species independent of their binding energy, is shown to be comparable to other CR desorption mechanisms typically considered in the literature. Also, the theory allows us to estimate the maximum abundances of reactive species that may be stored in the mantles, which provides important constraints on the available astrochemical models.« less
NASA Astrophysics Data System (ADS)
Kamata, Shunichi
2018-01-01
Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection, for a bottom-heated convective layer. Adopting this new definition of l, I investigate the thermal evolution of Saturnian icy satellites, Dione and Enceladus, under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a thick global subsurface ocean suggested from geophysical analyses. Dynamical tides may be able to account for such an amount of heat, though the reference viscosity of Dione's ice and the ammonia content of Dione's ocean need to be very high. Otherwise, a thick global ocean in Dione cannot be maintained, implying that its shell is not in a minimum stress state.
A numerical analysis of the performance of unpumped SBE 41 sensors at low flushing rates
NASA Astrophysics Data System (ADS)
Alvarez, A.
2018-05-01
The thermal and hydrodynamic response of a Sea-Bird unpumped CTD SBE 41, is numerically modeled to assess the biases occurring at the slow flushing rates typical of glider operations. Based on symmetry considerations, the sensor response is approximated by coupling the incompressible Navier-Stokes and the thermal advection-diffusion equations in two dimensions. Numerical results illustrate three regimes in the thermal response of the SBE 41 sensor, when crossing water layers with different thermal signatures. A linear decay in time of the bulk temperature of the conductivity cell is initially found. This is induced by the transit of the inflow through the conductivity cell in the form of a relatively narrow jet. Water masses with new thermal signatures do not immediately fill the sensor chambers, where the cross-section widens. Thermal equilibrium of these water masses is then achieved, in a second regime, via a cross-flow thermal diffusion between the boundary of the jet and the walls. Consequently, the evolution of the bulk temperature scales with the square root of time. In a third regime, the evolution of the bulk temperature depends on the thermal gradient between the fluid and the coating material. This results on an exponential decay of the bulk temperature with time. A comprehensive analytical model of the time evolution of the bulk temperature inside a cell is proposed based on these results.
Thermal modeling in Ceuta, Maracaibo Basin, Venezuela
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcano, F.; Padron, S.
1993-02-01
Hydrocarbon generation from Upper Cretaceous source rocks (Fm.La Luna) in Ceuta, center-eastern Maracaibo lake area in Venezuela, is modeled here, using a kinetic method and the conventional Time-Temperature Index (TTI) procedure. Geological evolution, burial and erosional history is based on available interpretation of 3D seismic and well data. Fragmentary present-day subsurface temperature data comes from corrected measurements in a few wells. Paleogradient/heat paleoflux was estimated during the thermal modeling on wells, by calculating vitrinite reflectances (Ro) or Tmax values and then comparing them with measured ones. However, thermal-indicator data does not always appear to be consistent and some data hadmore » to be rejected. Paleogradient evolution in the Cretaceous is controlled by the development of a isolated thermal compartment related to overpressures in a thick shaly sequence in the Upper Cretaceous. A geological section was studied in detail to illustrate possible migration paths to known fields and undrilled traps. Results show a good fit between the thermal evolution of the source rock and the maturity of the crude produced in the area.« less
Bhagavatula, Abhijit; Huffman, Gerald; Shah, Naresh; ...
2014-01-01
The thermal evolution profiles and kinetic parameters for the pyrolysis of two Montana coals (DECS-38 subbituminous coal and DECS-25 lignite coal), one biomass sample (corn stover), and their blends (10%, 20%, and 30% by weight of corn stover) have been investigated at a heating rate of 5°C/min in an inert nitrogen atmosphere, using thermogravimetric analysis. The thermal evolution profiles of subbituminous coal and lignite coal display only one major peak over a wide temperature distribution, ~152–814°C and ~175–818°C, respectively, whereas the thermal decomposition profile for corn stover falls in a much narrower band than that of the coals, ~226–608°C. Themore » nonlinearity in the evolution of volatile matter with increasing percentage of corn stover in the blends verifies the possibility of synergistic behavior in the blends with subbituminous coal where deviations from the predicted yield ranging between 2% and 7% were observed whereas very little deviations (1%–3%) from predicted yield were observed in blends with lignite indicating no significant interactions with corn stover. In addition, a single first-order reaction model using the Coats-Redfern approximation was utilized to predict the kinetic parameters of the pyrolysis reaction. The kinetic analysis indicated that each thermal evolution profile may be represented as a single first-order reaction. Three temperature regimes were identified for each of the coals while corn stover and the blends were analyzed using two and four temperature regimes, respectively.« less
THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamenkovic, Vlada; Noack, Lena; Spohn, Tilman
2012-03-20
We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths-resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary massmore » even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution-the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhagavatula, Abhijit; Huffman, Gerald; Shah, Naresh
The thermal evolution profiles and kinetic parameters for the pyrolysis of two Montana coals (DECS-38 subbituminous coal and DECS-25 lignite coal), one biomass sample (corn stover), and their blends (10%, 20%, and 30% by weight of corn stover) have been investigated at a heating rate of 5°C/min in an inert nitrogen atmosphere, using thermogravimetric analysis. The thermal evolution profiles of subbituminous coal and lignite coal display only one major peak over a wide temperature distribution, ~152–814°C and ~175–818°C, respectively, whereas the thermal decomposition profile for corn stover falls in a much narrower band than that of the coals, ~226–608°C. Themore » nonlinearity in the evolution of volatile matter with increasing percentage of corn stover in the blends verifies the possibility of synergistic behavior in the blends with subbituminous coal where deviations from the predicted yield ranging between 2% and 7% were observed whereas very little deviations (1%–3%) from predicted yield were observed in blends with lignite indicating no significant interactions with corn stover. In addition, a single first-order reaction model using the Coats-Redfern approximation was utilized to predict the kinetic parameters of the pyrolysis reaction. The kinetic analysis indicated that each thermal evolution profile may be represented as a single first-order reaction. Three temperature regimes were identified for each of the coals while corn stover and the blends were analyzed using two and four temperature regimes, respectively.« less
Thermal Fatigue Evaluation of Pb-Free Solder Joints: Results, Lessons Learned, and Future Trends
NASA Astrophysics Data System (ADS)
Coyle, Richard J.; Sweatman, Keith; Arfaei, Babak
2015-09-01
Thermal fatigue is a major source of failure of solder joints in surface mount electronic components and it is critically important in high reliability applications such as telecommunication, military, and aeronautics. The electronic packaging industry has seen an increase in the number of Pb-free solder alloy choices beyond the common near-eutectic Sn-Ag-Cu alloys first established as replacements for eutectic SnPb. This paper discusses the results from Pb-free solder joint reliability programs sponsored by two industry consortia. The characteristic life in accelerated thermal cycling is reported for 12 different Pb-free solder alloys and a SnPb control in 9 different accelerated thermal cycling test profiles in terms of the effects of component type, accelerated thermal cycling profile and dwell time. Microstructural analysis on assembled and failed samples was performed to investigate the effect of initial microstructure and its evolution during accelerated thermal cycling test. A significant finding from the study is that the beneficial effect of Ag on accelerated thermal cycling reliability (measured by characteristic lifetime) diminishes as the severity of the accelerated thermal cycling, defined by greater ΔT, higher peak temperature, and longer dwell time increases. The results also indicate that all the Pb-free solders are more reliable in accelerated thermal cycling than the SnPb alloy they have replaced. Suggestions are made for future work, particularly with respect to the continued evolution of alloy development for emerging application requirements and the value of using advanced analytical methods to provide a better understanding of the effect of microstructure and its evolution on accelerated thermal cycling performance.
Simultaneous Modeling of the Thermophysical and Dynamical Evolution of Saturn's Icy Satellites
NASA Astrophysics Data System (ADS)
Johnson, Torrence V.; Castillo-Rogez, J. C.; Matson, D. L.; Sotin, C.; Lunine, J. I.
2007-10-01
This poster describes the methodology we use in modeling the geophysical and dynamical evolution of the icy satellites of Saturn. For each of the model's modules we identify the relevant physical, chemical, mineralogical, and material science principals that are used. Then we present the logic of the modeling approach and its implementation. The main modules handle thermal, geological, and dynamical processes. Key parameters such as temperature, thermal conductivity, rigidity, viscosity, Young's modulus, dynamic Love number k2, and frequency-dependent dissipation factor Q(ω) are transmitted between the modules in the course of calculating an evolutionary sequence. Important initial conditions include volatile and nonvolatile compositions, formation time, rotation period and shape, orbital eccentricity and semimajor axis, and temperature and porosity profiles. The thermal module treats the thermal effects of accretion, melting of ice, differentiation and tidal dissipation. Heat transfer is by conduction only because in the cases thus far studied the criterion for convection is not met. The geological module handles the evolution of porosity, shape, and lithospheric strength. The dynamical module calculates despinning and orbital evolution. Chief outputs include the orbital evolution, the interior temperatures as a function of time and depth, and other parameters of interest such as k2, and Q(ω) as a function of time. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA.
Thermal Evolution of Diapirs with Complex Mantle Wedge Flow
NASA Astrophysics Data System (ADS)
Sylvia, R. T.; Kincaid, C.
2016-12-01
Subduction of oceanic lithosphere drives heat and mass exchange between Earth's interior and surface. One proposed transport mechanism for thermally and chemically distinct material through the wedge is the diapir model. The dominant driver of flow in the upper mantle is a mode of forced convection responding to motion of a tabular slab. A set of 4D laboratory experiments was conducted exploring the relationship between buoyancy flux and subduction parameters and subsequent effects on diapir transport. Variable subduction styles tested include downdip and rollback motion, slab gaps, slab steepening and backarc extension. The mantle is modeled using viscous glucose syrup with an Arrhenius type temperature dependent viscosity. Diapirs representing homogeneous mechanically mixed melange layer are introduced as buoyant fluid injected at multiple point sources situated along the surface of the sinking slab. Laboratory data is collected using high definition time-lapse photography and quantified using image velocimetry techniques. Here we present results from numerical simulation of the thermal evolution of spherical mantle wedge diapirs using 2D axisymmetric advection-diffusion model with internal diapir flow described by an analytic potential flow solution. A suite of wedge temperature profiles are used as thermal forcing on diapirs traversing the wedge along experimentally observed 4D ascent pathways. Scaling arguments suggest that for systems with Péclet number on the order of 15 advective heat transport is expected to dominate over diffusive heat transport, but the range of observed P-T-t paths and vigorous internal flow complicate this assumption. Interactions between modes of free (diapiric) and forced (wedge) convection lead to complex spatio-temporal variability in slab-to-arc connectivity patterns. Rollback induced toroidal flow, along trench changes in dip, convergence rate and backarc extension all produce a significant ( 500 km) trench-parallel transport component. Combined with diapir-diapir interactions these factors produce a spectrum of transit times and pathlengths, ranging from much shorter to much longer than those from simple 2D model estimates. Results highlight the broad range of expected internal temperature distributions derived from variable transit paths.
A non-linear dimension reduction methodology for generating data-driven stochastic input models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganapathysubramanian, Baskar; Zabaras, Nicholas
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem ofmore » manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R{sup n}. An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R{sup d}(d<
NASA Astrophysics Data System (ADS)
Rat, Juliette; Mouthereau, Frédéric; Bernet, Matthias; Brichau, Stéphanie; Balvay, Mélanie; Garzanti, Eduardo; Ando, Sergio
2017-04-01
Detrital content of sediments preserved in basins provide constraints on the nature of source rocks, dynamics of sediment transport, and potentially on tectonics and climate changes. U-Pb dating method on detrital zircon is ideally suited for provenance studies due to the ability of U-Pb age data to resist several orogenic cycles. However, with the aim to track sediment source evolution over a single orogenic cycle and determine characteristic time and parameters controlling the geochronological signal preservation throughout the cycle from rifting, mountain building to post-collision evolution, low-temperature thermochronology combined with sediment petrography are more appropriate than the U-Pb dating approach taken alone. To better understanding processes at play in the long-term geochronological signal preservation we focus on the sediment record associated with the Iberia plate tectonic evolution, which is part of the OROGEN research project, co-financed by BRGM, TOTAL & CNRS. The Iberian plate recorded a period of extension in the Late Jurassic, followed during the Early Cretaceous (Aptian-Albian) by a major thinning event documented by thick syn-rift sediments in intraplate basins and plate-scale heating/cooling of the Iberia crust, as argued by published fission track ages. Paleogeographic reconstructions that are based on stratigraphic and lithofacies analyses in northern Iberia (Iberian Range, Pyrenees and Basque-Cantabrians Range), describe a large domain of continental/fluvial and shallow-marine siliciclastic deposition. The related detrital content was then recycled during the subsequent Pyrenean orogenic phase in the Ebro foreland basin, and eventually transfer to the Mediterranean realm during post-orogenic re-excavation of the Ebro basin. In this study, we complete the published time-temperature paths in the mesozoic syn-rift basins by providing new thermo-chronological analyses of well-dated syn-collision and post-collision stratigraphic sections of the Ebro basin to determine thermal control on preservation through burial and geothermal evolution. We combined this study with sediments petrography analyses to identify relative control of source petrography, hydraulic sorting, alteration and diagenesis processes on the signal preservation during sediment transfer. All these observations will ultimately be incorporated in a geodynamic reconstruction of Iberia, and compared with age predictions from a model coupling surface processes and thermal evolution.
Huang, Yu-Tuan; Hseu, Zeng-Yei; Hsi, Hsing-Cheng
2011-08-01
Thermal treatment is a useful tool to remove Hg from contaminated soils. However, thermal treatment may greatly alter the soil properties and cause the coexisting contaminants, especially trace metals, to transform and repartition. The metal repartitioning may increase the difficulty in the subsequent process of a treatment train approach. In this study, three Hg-contaminated soils were thermally treated to evaluate the effects of treating temperature and duration on Hg removal. Thermogravimetric analysis was performed to project the suitable heating parameters for subsequent bench-scale fixed-bed operation. Results showed that thermal decontamination at temperature>400°C successfully lowered the Hg content to<20 mg kg(-1). The organic carbon content decreased by 0.06-0.11% and the change in soil particle size was less significant, even when the soils were thermally treated to 550°C. Soil clay minerals such as kaolinite were shown to be decomposed. Aggregates were observed on the surface of soil particles after the treatment. The heavy metals tended to transform into acid-extractable, organic-matter bound, and residual forms from the Fe/Mn oxide bound form. These results suggest that thermal treatment may markedly influence the effectiveness of subsequent decontamination methods, such as acid washing or solvent extraction. Copyright © 2011 Elsevier Ltd. All rights reserved.
Stirred, Not Clumped: Evolution of Temperature Profiles in the Outskirts of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Avestruz, Camille; Nagai, Daisuke; Lau, Erwin T.
2016-12-01
Recent statistical X-ray measurements of the intracluster medium (ICM) indicate that gas temperature profiles in the outskirts of galaxy clusters deviate from self-similar evolution. Using a mass-limited sample of galaxy clusters from cosmological hydrodynamical simulations, we show that the departure from self-similarity can be explained by non-thermal gas motions driven by mergers and accretion. Contrary to previous claims, gaseous substructures only play a minor role in the temperature evolution in cluster outskirts. A careful choice of halo overdensity definition in self-similar scaling mitigates these departures. Our work highlights the importance of non-thermal gas motions in ICM evolution and the use of galaxy clusters as cosmological probes.
Enthalpy-Based Thermal Evolution of Loops: III. Comparison of Zero-Dimensional Models
NASA Technical Reports Server (NTRS)
Cargill, P. J.; Bradshaw, Stephen J.; Klimchuk, James A.
2012-01-01
Zero dimensional (0D) hydrodynamic models, provide a simple and quick way to study the thermal evolution of coronal loops subjected to time-dependent heating. This paper presents a comparison of a number of 0D models that have been published in the past and is intended to provide a guide for those interested in either using the old models or developing new ones. The principal difference between the models is the way the exchange of mass and energy between corona, transition region and chromosphere is treated, as plasma cycles into and out of a loop during a heating-cooling cycle. It is shown that models based on the principles of mass and energy conservation can give satisfactory results at some, or, in the case of the Enthalpy Based Thermal Evolution of Loops (EBTEL) model, all stages of the loop evolution. Empirical models can lead to low coronal densities, spurious delays between the peak density and temperature, and, for short heating pulses, overly short loop lifetimes.
NASA Astrophysics Data System (ADS)
Zhang, Nan; Dygert, Nick; Liang, Yan; Parmentier, E. M.
2017-07-01
Lunar cumulate mantle overturn and the subsequent upwelling of overturned mantle cumulates provide a potential framework for understanding the first-order thermochemical evolution of the Moon. Upwelling of ilmenite-bearing cumulates (IBCs) after the overturn has a dominant influence on the dynamics and long-term thermal evolution of the lunar mantle. An important parameter determining the stability and convective behavior of the IBC is its viscosity, which was recently constrained through rock deformation experiments. To examine the effect of IBC viscosity on the upwelling of overturned lunar cumulate mantle, here we conduct three-dimensional mantle convection models with an evolving core superposed by an IBC-rich layer, which resulted from mantle overturn after magma ocean solidification. Our modeling shows that a reduction of mantle viscosity by 1 order of magnitude, due to the presence of ilmenite, can dramatically change convective planform and long-term lunar mantle evolution. Our model results suggest a relatively stable partially molten IBC layer that has surrounded the lunar core to the present day.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki
We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less
Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki; ...
2016-09-01
We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiang; Mo, Kun; Miao, Yinbin
The nickel-base Alloy 617 has been considered as the lead candidate structural material for the intermediate heat exchanger (IHX) of the Very-High-Temperature Reactor (VHTR). In order to assess the long-term performance of Alloy 617, thermal aging experiments up to 10,000 h in duration were performed at 1000 degrees C. Subsequently, in-situ synchrotron wide-angle X-ray scattering (WAXS) tensile tests were carried out at ambient temperature. M23C6 carbides were identified as the primary precipitates, while a smaller amount of M6C was also observed. The aging effects were quantified in several aspects: (1) macroscopic tensile properties, (2) volume fraction of the M23C6 Phase,more » (3) the lattice strain evolution of both the matrix and the M23C6 precipitates, and (4) the dislocation density evolution during plastic deformation. The property-microstructure relationship is described with a focus on the evolution of the M23C6 phase. For aging up to 3000 h, the yield strength (YS) and ultimate tensile strength (UTS) showed little variation, with average values being 454 MPa and 787 MPa, respectively. At 10,000 h, the YS and UTS reduced to 380 MPa and 720 MPa, respectively. The reduction in YS and UTS is mainly due to the coarsening of the M23C6 Precipitates. After long term aging, the volume fraction of the M23C6 phase reached a plateau and its maximum internal stress was reduced, implying that under large internal stresses the carbides were more susceptible to fracture or decohesion from the matrix. Finally, the calculated dislocation densities were in good agreement with transmission electron microscopy (TEM) measurements. The square roots of the dislocation densities and the true stresses displayed typical linear behavior and no significant change was observed in the alloys in different aging conditions.« less
NASA Astrophysics Data System (ADS)
Woitischek, Julia; Dietzel, Martin; Virgílio Cruz, J.; Inguaggiato, Salvatore; Leis, Albrecht; Böttcher, Michael E.
2016-04-01
A conceptual model is presented to better constrain the origin and evolution of discharges at Sete Cidades, Fogo and Furnas Volcano, using geochemical and isotopic analyses of rock and water as well as recalculated gas composition. The evolution of thermal water clearly reveals that Na-HCO3 and Na-SO4 type of springs have their origin in meteoric water as isotope data are close to the local meteoric water line (δ 18OH2O =-3 ± 1 ‰ V-SMOW; δ DH2O= -13 ± 7 ‰ V-SMOW) with exception of a Na-Cl spring named Ferraria, Sete Cidades area (δ 18OH2O = 0.45 ‰ V-SMOW ; δ DH2O= 4.18 ‰ V-SMOW). Analysed solutions are chemical evolved by evaporation, uptake of volcanic gas, leaching of local basaltic rocks, precipitation of solids, partly admixture of sea water and/or biological activity. Following the individual concentrations supports this model e.g.: HCO3 concentration and the recalculated isotopic composition of gaseous CO2 (δ 13CCO_2 = -4 ± 2.5 ‰ V-PDB) reflect evolved magmatic CO2 uptake and the subsequent leaching progress; High SO42- concentration of up to 16.5 mmol L-1 with δ 34SSO4 = 0.35 ± 0.3 ‰ (V-CDT) reflects magmatic origin which mainly control water chemistry of boiling pools of both Fogo and Furnas lake; δ 18OSO4 = 10.5 ‰ (V-SMOW) suggests organic origin and fits together with the observation of stromatolitic structures in the related precipitates; Molar Mg/Caratio (≈ 0.77) of all thermal discharges reflects leaching of analysed local basalt (Mg/Ca≈ 0.78). Furthermore, shallow and evolved outgassing effects can be distinguished. Equilibrium temperatures for various minerals given in SI vs. T plots and further geothermometers (e.g. Na-K, Na-K-Ca geothermometers) were discussed to estimate temperatures of reservoirs.
Pore-Scale X-ray Micro-CT Imaging and Analysis of Oil Shales
NASA Astrophysics Data System (ADS)
Saif, T.
2015-12-01
The pore structure and the connectivity of the pore space during the pyrolysis of oil shales are important characteristics which determine hydrocarbon flow behaviour and ultimate recovery. We study the effect of temperature on the evolution of pore space and subsequent permeability on five oil shale samples: (1) Vernal Utah United States, (2) El Lajjun Al Karak Jordan, (3) Gladstone Queensland Australia (4) Fushun China and (5) Kimmerdige United Kingdom. Oil Shale cores of 5mm in diameter were pyrolized at 300, 400 and 500 °C. 3D imaging of 5mm diameter core samples was performed at 1μm voxel resolution using X-ray micro computed tomography (CT) and the evolution of the pore structures were characterized. The experimental results indicate that the thermal decomposition of kerogen at high temperatures is a major factor causing micro-scale changes in the internal structure of oil shales. At the early stage of pyrolysis, micron-scale heterogeneous pores were formed and with a further increase in temperature, the pores expanded and became interconnected by fractures. Permeability for each oil shale sample at each temperature was computed by simulation directly on the image voxels and by pore network extraction and simulation. Future work will investigate different samples and pursue insitu micro-CT imaging of oil shale pyrolysis to characterize the time evolution of the pore space.
Uller, Tobias; While, Geoffrey M; Cadby, Chloe D; Harts, Anna; O'Connor, Katherine; Pen, Ido; Wapstra, Erik
2011-08-01
Plastic responses to temperature during embryonic development are common in ectotherms, but their evolutionary relevance is poorly understood. Using a combination of field and laboratory approaches, we demonstrate altitudinal divergence in the strength of effects of maternal thermal opportunity on offspring birth date and body mass in a live-bearing lizard (Niveoscincus ocellatus). Poor thermal opportunity decreased birth weight at low altitudes where selection on body mass was negligible. In contrast, there was no effect of maternal thermal opportunity on body mass at high altitudes where natural selection favored heavy offspring. The weaker effect of poor maternal thermal opportunity on offspring development at high altitude was accompanied by a more active thermoregulation and higher body temperature in highland females. This may suggest that passive effects of temperature on embryonic development have resulted in evolution of adaptive behavioral compensation for poor thermal opportunity at high altitudes, but that direct effects of maternal thermal environment are maintained at low altitudes because they are not selected against. More generally, we suggest that phenotypic effects of maternal thermal opportunity or incubation temperature in reptiles will most commonly reflect weak selection for canalization or selection on maternal strategies rather than adaptive plasticity to match postnatal environments. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
The Effects of Tidal Dissipation on the Thermal Evolution of Triton
NASA Astrophysics Data System (ADS)
Gaeman, J.; Hier-Majumder, S.; Roberts, J. H.
2009-12-01
This work explores the coupled structural, thermal, and orbital evolution of Neptune's icy satellite, Triton. Recent geyser activity, ridge formation, and volatile transport, observed on Triton's surface, indicate possible activity within Triton's interior [1,2]. Triton is hypothesized to have been captured from an initially heliocentric orbit. During the circularization of Triton's orbit following its capture by Neptune, intense tidal heating likely contributed to the formation of a subsurface ocean [3]. Although the time of Triton's capture is not exactly known, it is likely that the event took place earlier in the history of our solar system, when the probability of binary capture was higher [4, 5]. This work examines the thermal evolution of Triton by employing a coupled tidal and two-phase thermal evolution model, for both an early and late capture scenario. Thermal evolution of a solid crust underlain by an H2O-NH3 mushy layer is driven by the evolution of tidal heating, as Triton's orbital eccentricity evolves following its capture. The governing equations for tidal heating are solved using the propagator matrix method [6, 7], while the governing equation for the coupled crust-multiphase layer thermal evolution were numerically solved using a finite volume discretization. The results indicate that the existence of a subsurface ocean is strongly dependent on ammonia content as larger concentrations of ammonia influence liquidus temperature and density contrast between solid and liquid phases [8]. Preliminary results indicate that an ocean likely exists for compositions containing a relatively high percentage of ammonia for both early and late capture of the satellite. In contrast, the subsurface ocean freezes completely for lower ammonia content. [1] Brown, R. H., Kirk, R. L. (1994). Journal of Geophysical Research 99, 1965-981. [2] Prockter, L. M., Nimmo, F., Pappalardo, R. T. (2005). Geophysical Research Letters 32, L14202. [3] Ross, M. N., Schubert, G. (1990). Geophysical Research Letters 17, 1749-752. [4] Agnor, C. B., Hamilton, D. P. (2006). Nature 441, 192-94. [5] Schenk, P. M., Zahnle, K. (2007). Icarus 192, 135-49. [6] Roberts, J. H., Nimmo, F. (2008). Icarus 194, 675-689. [7] Sabadini, R., Vermeersen, B., (2004). Global Dynamics of the Earth. Kluwer Academic Publishers. [8] Hogenboom, D. L., Kargel, J. S., Concolmagno, G. J., Holden, T. C., Lee, L., Buyyounouski, M. (1997). Icarus 128, 171-80.
Development of an air flow thermal balance calorimeter
NASA Technical Reports Server (NTRS)
Sherfey, J. M.
1972-01-01
An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.
NASA Astrophysics Data System (ADS)
Dulal, Prabesh
The massive amount of data that we produce and share today is the result of advancements made in the semiconductor and magnetic recording industries. As the number of transistors per unit area in integrated circuits continues to rise, power dissipation is reaching alarming levels. Photonics, which essentially is a marriage of semiconductor with laser technology has shown great promise in tackling the issue of power dissipation. The first part of this work focuses on optical isolators, which are essential to halt back-reflections that interfere with the laser source of the photonic systems. Novel terbium iron garnet thin-film optical isolators have been developed on semiconductor platforms and their magneto-optical properties are explored. Modesolver and finite-difference simulations are done to assess their device-feasibility and efficiency. Subsequently, a new photonic device has been developed using current semiconductor microelectronic fabrication techniques. Advancement in magnetic recording is equally vital to keep up with the demand for more data at faster speeds as the current perpendicular recording technique is fast-approaching its areal density limitations. Heat assisted magnetic recording (HAMR) is the next step in the evolution of hard drives. HAMR involves heating of magnetic media using plasmonic near field transducers (NFTs), which must be able to withstand elevated temperatures for extended times. The second part of this work presents a statistical crystallographic study of thermally induced deformation of Au NFTs. Subsequently, the most thermally stable crystallographic orientation for Au NFT has been determined that could lead to significant improvements in HAMR drive reliability.
Ortega-García, Stephanie; Guevara, Lázaro; Arroyo-Cabrales, Joaquín; Lindig-Cisneros, Roberto; Martínez-Meyer, Enrique; Vega, Ernesto; Schondube, Jorge E
2017-09-01
The thermal niche of a species is one of the main determinants of its ecology and biogeography. In this study, we determined the thermal niche of 23 species of Neotropical nectar-feeding bats of the subfamily Glossophaginae (Chiroptera, Phyllostomidae). We calculated their thermal niches using temperature data obtained from collection records, by generating a distribution curve of the maximum and minimum temperatures per locality, and using the inflection points of the temperature distributions to estimate the species optimal (STZ) and suboptimal (SRZ) zones of the thermal niche. Additionally, by mapping the values of the STZ and SRZ on a phylogeny of the group, we generated a hypothesis of the evolution of the thermal niches of this clade of nectar-feeding bats. Finally, we used the characteristics of their thermal niches to predict the responses of these organisms to climate change. We found a large variation in the width and limits of the thermal niches of nectar-feeding bats. Additionally, while the upper limits of the thermal niches varied little among species, their lower limits differ wildly. The ancestral reconstruction of the thermal niche indicated that this group of Neotropical bats evolved under cooler temperatures. The two clades inside the Glossophaginae differ in the evolution of their thermal niches, with most members of the clade Choeronycterines evolving "colder" thermal niches, while the majority of the species in the clade Glossophagines evolving "warmer" thermal niches. By comparing thermal niches with climate change models, we found that all species could be affected by an increase of 1°C in temperature at the end of this century. This suggests that even nocturnal species could suffer important physiological costs from global warming. Our study highlights the value of scientific collections to obtain ecologically significant physiological data for a large number of species.
Spontaneous dissipation of elastic energy by self-localizing thermal runaway
NASA Astrophysics Data System (ADS)
Braeck, S.; Podladchikov, Y. Y.; Medvedev, S.
2009-10-01
Thermal runaway instability induced by material softening due to shear heating represents a potential mechanism for mechanical failure of viscoelastic solids. In this work we present a model based on a continuum formulation of a viscoelastic material with Arrhenius dependence of viscosity on temperature and investigate the behavior of the thermal runaway phenomenon by analytical and numerical methods. Approximate analytical descriptions of the problem reveal that onset of thermal runaway instability is controlled by only two dimensionless combinations of physical parameters. Numerical simulations of the model independently verify these analytical results and allow a quantitative examination of the complete time evolutions of the shear stress and the spatial distributions of temperature and displacement during runaway instability. Thus we find that thermal runaway processes may well develop under nonadiabatic conditions. Moreover, nonadiabaticity of the unstable runaway mode leads to continuous and extreme localization of the strain and temperature profiles in space, demonstrating that the thermal runaway process can cause shear banding. Examples of time evolutions of the spatial distribution of the shear displacement between the interior of the shear band and the essentially nondeforming material outside are presented. Finally, a simple relation between evolution of shear stress, displacement, shear-band width, and temperature rise during runaway instability is given.
Saito, Shigeru; Ohkita, Masashi; Saito, Claire T.; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio
2016-01-01
Temperature is one of the most critical environmental factors affecting survival, and thus species that inhabit different thermal niches have evolved thermal sensitivities suitable for their respective habitats. During the process of shifting thermal niches, various types of genes expressed in diverse tissues, including those of the peripheral to central nervous systems, are potentially involved in the evolutionary changes in thermosensation. To elucidate the molecular mechanisms behind the evolution of thermosensation, thermal responses were compared between two species of clawed frogs (Xenopus laevis and Xenopus tropicalis) adapted to different thermal environments. X. laevis was much more sensitive to heat stimulation than X. tropicalis at the behavioral and neural levels. The activity and sensitivity of the heat-sensing TRPA1 channel were higher in X. laevis compared with those of X. tropicalis. The thermal responses of another heat-sensing channel, TRPV1, also differed between the two Xenopus species. The species differences in Xenopus TRPV1 heat responses were largely determined by three amino acid substitutions located in the first three ankyrin repeat domains, known to be involved in the regulation of rat TRPV1 activity. In addition, Xenopus TRPV1 exhibited drastic species differences in sensitivity to capsaicin, contained in chili peppers, between the two Xenopus species. Another single amino acid substitution within Xenopus TRPV1 is responsible for this species difference, which likely alters the neural and behavioral responses to capsaicin. These combined subtle amino acid substitutions in peripheral thermal sensors potentially serve as a driving force for the evolution of thermal and chemical sensation. PMID:27022021
NASA Astrophysics Data System (ADS)
Chin, G.; Sagdeev, R.; Su, J. J.; Murray, J.; Livengood, T. A.
2015-12-01
Determining the quantity and vertical distribution of volatile species on and below the surface of planetary bodies is vital to understand the primordial chemical inventory and subsequent evolution of planets. Volatiles may provide resources to support future human exploration. This is particularly true for the Moon, which is well observed by many methods from ground-based, lunar orbit, and in situ, and is an accessible destination or way station for human exploration. We present Geant4 models of relative fluxes of Fast, Epithermal, and Thermal neutron emission generated in a planetary regolith by galactic cosmic rays to reveal the first 1-2 meters vertical structure of embedded hydrogen or water. Varying ratios of Thermal versus Epithermal, low-energy-Epithermal versus high-energy-Epithermal, and Thermal versus Fast neutron emissions are diagnostics of the depth in which hydrogen/water layers are buried within the top 1-2 meters of the regolith. In addition, we apply model calculations to Lunar Exploration Neutron Detector (LEND) thermal and epithermal data, acquired on the Lunar Reconnaissance Orbiter (LRO), in specific regions of the Moon to retrieve the vertical distribution of buried ice from the remote sensing information. GEANT4 is a set of particle physics transport simulation codes that exploits object-oriented software methods to deliver a comprehensive and flexible toolkit that is modular and extensible, based on a free open-source development model. GEANT4 has become a standard tool to simulate applications as diverse as particle telescope and detector response, space radiation shielding and optimization, total ionizing dose in spacecraft components, and biological effects of radiation.
Vertical movements following intracontinental magmatism: An example from southern Israel
NASA Astrophysics Data System (ADS)
Gvirtzman, Zohar; Garfunkel, Zvi
1997-02-01
We present a quantitative thermal model for vertical movements following continental magmatism, focusing on how the associated elevation changes depend on the depth of intrusion. When an intrusion is emplaced within the lithosphere, its buoyancy causes a quick initial movement which is followed by long-term movements caused by thermal relaxation. Intrusions emplaced within the gabbro stability field produce initial uplifting which is about 12% of their thickness. Subsequent thermal relaxation reduces the uplift to a residual value of 9-10% of the intrusion thickness. In contrast, intrusions emplaced within the eclogite stability field produce a small subsidence from the very beginning which is slowly increased by thermal relaxation and may reach a residual value of some 4% of the intrusion thickness. In both cases the rates of the thermal subsidence depend on the depth of intrusion: it is relatively fast when the intrusions are shallow but considerably slower when the intrusions are deep. The model enables us to infer volumes and depths of intrusions from amplitudes and rates of vertical movements. As an example we apply the model to analyze the geodynamic evolution of the central Negev, southern Israel, during the Early Cretaceous. Two distinct magmatic pulses that were recognized there represent the two basic situations envisaged by the model, i.e., shallow magma emplacement in the gabbro field associated with uplifting, and deep intrusion in the eclogite field associated with subsidence. In a wider context we think that this model may help in understanding intracratonic basins in nonextensional settings. In particular, deep and thick eclogite intrusions can explain subsidence of regions which were not extended nor uplifted and in regions where crustal magmatism and heating were not observed.
XMMSL1 J074008.2-853927: a tidal disruption event with thermal and non-thermal components
NASA Astrophysics Data System (ADS)
Saxton, R. D.; Read, A. M.; Komossa, S.; Lira, P.; Alexander, K. D.; Wieringa, M. H.
2017-02-01
Aims: We study X-ray bright tidal disruption events (TDE), close to the peak of their emission, with the intention of understanding the evolution of their light curves and spectra. Methods: Candidate TDE are identified by searching for soft X-ray flares from non-active galaxies in recent XMM-Newton slew data. Results: In April 2014, X-ray emission was detected from the galaxy XMMSL1 J074008.2-853927 (a.k.a. 2MASX 07400785-8539307), a factor 20 times higher than an upper limit from 20 years earlier. Both the X-ray and UV flux subsequently fell, by factors of 70 and 12 respectively. The bolometric luminosity peaked at Lbol 2 × 1044 ergs s-1 with a spectrum that may be modelled with thermal emission in the UV band, a power-law with Γ 2 dominating in the X-ray band above 2 keV and a soft X-ray excess with an effective temperature of 86 eV. Rapid variability locates the X-ray emission to within <73 Rg of the nuclear black hole. Radio emission of flux density 1 mJy, peaking at 1.5 GHz was detected 21 months after discovery. Optical spectra indicate that the galaxy, at a distance of 73 Mpc (z = 0.0173), underwent a starburst 2 Gyr ago and is now quiescent. We consider a tidal disruption event to be the most likely cause of the flare. If this proves to be correct then this is a very clean example of a disruption exhibiting both thermal and non-thermal radiation. Data for this object are available within the Open TDE Catalog at http://https://tde.space/tde/XMMSL1 J0740-85
Electron Spin Resonance (ESR) Studies of Returned Comet Nucleus Samples
NASA Technical Reports Server (NTRS)
Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.
1997-01-01
Electron Spin Resonance (ESR) studies have been carried out on organic and inorganic free radicals generated by gamma-ray and/or UV-irradiation and trapped in ice matrices. It is suggested that the concentration of these free radicals together with their thermal stability can be used as an accurate built-in geothermometer and radiation probe for returned comet nucleus sample studies. ESR studies have also been carried out on paramagnetic (Mn(2+), Ti(3+), and Fe(3+)) and ferromagnetic (ferric oxide and metallic iron) centers known to be present in terrestrial and extraterrestrial samples. The presence or absence of these magnetic centers coupled with their characteristic ESR lineshape can be used to investigate the shock effects, quenching/cooling rate and oxidation-reduction conditions in the formation and subsequent evolution of returned comet nucleus samples.
NASA Astrophysics Data System (ADS)
Chabri, Sumit; Bera, S.; Mondal, B. N.; Basumallick, A.; Chattopadhyay, P. P.
2017-03-01
Microstructure and magnetic behavior of nanocrystalline 50Cu-40Co-10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450-650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.
Cellular structure of lean hydrogen flames in microgravity
NASA Technical Reports Server (NTRS)
Patnaik, G.; Kailasanath, K.
1990-01-01
Detailed, time-dependent, two-dimensional numerical simulations of premixed laminar flames have been used to study the initiation and subsequent development of cellular structures in lean hydrogen-air flames. The model includes detailed hydrogen-oxygen combustion with 24 elementary reactions of eight reactive species and a nitrogen diluent, molecular diffusion of all species, thermal conduction, viscosity, and convection. This model has been used to study the nonlinear evolution of cellular flame structure and shows that cell splitting, as observed in experiments, can be predicted numerically for sufficiently reactive mixtures. The structures that evolved also resembled the cellular structures observed in experiments. The present study shows that the 'cell-split limit' postulated from experimental observations is an intrinsic property of the mixture and that external factors such as heat losses are not necessary to cause this limit.
Technology for Space Station Evolution. Volume 5: Structures and Materials/Thermal Control System
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 5 consists of the technology discipline sections for Structures/Materials and the Thermal Control System. For each technology discipline, there is a level 3 subsystem description, along with papers.
Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices.
Yang, Hui; Leow, Wan Ru; Chen, Xiaodong
2018-03-01
Thermal runway constitutes the most pressing safety issue in lithium-ion batteries and supercapacitors of large-scale and high-power density due to risks of fire or explosion. However, traditional strategies for averting thermal runaway do not enable the charging-discharging rate to change according to temperature or the original performance to resume when the device is cooled to room temperature. To efficiently control thermal runaway, thermal-responsive polymers provide a feasible and reversible strategy due to their ability to sense and subsequently act according to a predetermined sequence when triggered by heat. Herein, recent research progress on the use of thermal-responsive polymers to enhance the thermal safety of electrochemical storage devices is reviewed. First, a brief discussion is provided on the methods of preventing thermal runaway in electrochemical storage devices. Subsequently, a short review is provided on the different types of thermal-responsive polymers that can efficiently avoid thermal runaway, such as phase change polymers, polymers with sol-gel transitions, and polymers with positive temperature coefficients. The results represent the important development of thermal-responsive polymers toward the prevention of thermal runaway in next-generation smart electrochemical storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermally induced evolution of hydrogenated amorphous carbon
NASA Astrophysics Data System (ADS)
Mangolini, Filippo; Rose, Franck; Hilbert, James; Carpick, Robert W.
2013-10-01
The thermally induced structural evolution of hydrogenated amorphous carbon (a-C:H) films was investigated in situ by X-ray photoelectron spectroscopy for annealing temperatures up to 500 °C. A model for the conversion of sp3- to sp2-hybridized carbon in a-C:H vs. temperature and time was developed and applied to determine the ranges of activation energies for the thermally activated processes occurring. The energies are consistent with ordering and clustering of sp2 carbon, scission of sp3 carbon-hydrogen bonds and formation of sp2 carbon, and direct transformation of sp3- to sp2-hybridized carbon.
Reusable thermal protection system development: A prospective
NASA Technical Reports Server (NTRS)
Goldstein, Howard
1992-01-01
The state of the art in passive reusable thermal protection system materials is described. Development of the Space Shuttle Orbiter, which was the first reusable vehicle, is discussed. The thermal protection materials and given concepts and some of the shuttle development and manufacturing problems are described. Evolution of a family of grid and flexible ceramic external insulation materials from the initial shuttle concept in the early 1970's to the present time is described. The important properties and their evolution are documented. Application of these materials to vehicles currently being developed and plans for research to meet the space programs future needs are summarized.
Chasing the Patagonian sun: comparative thermal biology of Liolaemus lizards.
Azócar, Débora Lina Moreno; Vanhooydonck, Bieke; Bonino, Marcelo F; Perotti, M Gabriela; Abdala, Cristian S; Schulte, James A; Cruz, Félix B
2013-04-01
The importance of the thermal environment for ectotherms and its relationship with thermal physiology and ecology is widely recognized. Several models have been proposed to explain the evolution of the thermal biology of ectotherms, but experimental studies have provided mixed support. Lizards from the Liolaemus goetschi group can be found along a wide latitudinal range across Argentina. The group is monophyletic and widely distributed, and therefore provides excellent opportunities to study the evolution of thermal biology. We studied thermal variables of 13 species of the L. goetschi group, in order to answer three questions. First, are aspects of the thermal biology of the L. goetschi group modelled by the environment or are they evolutionarily conservative? Second, have thermal characteristics of these animals co-evolved? And third, how do the patterns of co-evolution observed within the L. goetschi group compare to those in a taxonomically wider selection of species of Liolaemus? We collected data on 13 focal species and used species information of Liolaemus lizards available in the literature and additional data obtained by the authors. We tackled these questions using both conventional and phylogenetically based analyses. Our results show that lizards from the L. goetschi group and the genus Liolaemus in general vary in critical thermal minimum in relation to mean air temperature, and particularly the L. goetschi group shows that air temperature is associated with critical thermal range, as well as with body temperature. Although the effect of phylogeny cannot be ignored, our results indicate that these thermal biology aspects are modelled by cold environments of Patagonia, while other aspects (preferred body temperature and critical thermal maximum) are more conservative. We found evidence of co-evolutionary patterns between critical thermal minimum and preferred body temperature at both phylogenetic scales (the L. goetschi group and the extended sample of 68 Liolaemus species).
Lithosphere erosion and continental breakup: Interaction of extension, plume upwelling and melting
NASA Astrophysics Data System (ADS)
Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart
2017-06-01
We present the results of thermo-mechanical modelling of extension and breakup of a heterogeneous continental lithosphere, subjected to plume impingement in presence of intraplate stress field. We incorporate partial melting of the extending lithosphere, underlying upper mantle and plume, caused by pressure-temperature variations during the thermo-mechanical evolution of the conjugate passive margin system. Effects of melting included in the model account for thermal effects, causing viscosity reduction due to host rock heating, and mechanical effects, due to cohesion loss. Our study provides better understanding on how presence of melts can influence the evolution of rifting. Here we focus particularly on the role of melting for the temporal and spatial evolution of passive margin geometry and rift migration. Depending on the lithospheric structure, melt presence may have a significant impact on the characteristics of areas affected by lithospheric extension. Pre-existing lithosphere heterogeneities determine the location of initial breakup, but in presence of plumes the subsequent evolution is more difficult to predict. For small distances between plume and area of initial rifting, the development of symmetric passive margins is favored, whereas increasing the distance promotes asymmetry. For a plume-rifting distance large enough to prevent interaction, the effect of plumes on the overlying lithosphere is negligible and the rift persists at the location of the initial lithospheric weakness. When the melt effect is included, the development of asymmetric passive continental margins is fostered. In this case, melt-induced lithospheric weakening may be strong enough to cause rift jumps toward the plume location.
The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin
2017-09-10
In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH{sub 3}OH), binary (H{sub 2}O:CH{sub 3}OH, CH{sub 3}OH:NH{sub 3}), and ternary ice analogs (H{sub 2}O:CH{sub 3}OH:NH{sub 3}) were VUV-processed and warmed. The evolution of volatile organic compoundsmore » in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.« less
Surface self-organization in multilayer film coatings
NASA Astrophysics Data System (ADS)
Shuvalov, Gleb M.; Kostyrko, Sergey A.
2017-12-01
It is a recognized fact that during film deposition and subsequent thermal processing the film surface evolves into an undulating profile. Surface roughness affects many important aspects in the engineering application of thin film materials such as wetting, heat transfer, mechanical, electromagnetic and optical properties. To accurately control the morphological surface modifications at the micro- and nanoscale and improve manufacturing techniques, we design a mathematical model of the surface self-organization process in multilayer film materials. In this paper, we consider a solid film coating with an arbitrary number of layers under plane strain conditions. The film surface has a small initial perturbation described by a periodic function. It is assumed that the evolution of the surface relief is governed by surface and volume diffusion. Based on Gibbs thermodynamics and linear theory of elasticity, we present a procedure for constructing a governing equation that gives the amplitude change of the surface perturbation with time. A parametric study of the evolution equation leads to the definition of a critical undulation wavelength that stabilizes the surface. As a numerical result, the influence of geometrical and physical parameters on the morphological stability of an isotropic two-layered film coating is analyzed.
STIRRED, NOT CLUMPED: EVOLUTION OF TEMPERATURE PROFILES IN THE OUTSKIRTS OF GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avestruz, Camille; Nagai, Daisuke; Lau, Erwin T., E-mail: avestruz@uchicago.edu
Recent statistical X-ray measurements of the intracluster medium (ICM) indicate that gas temperature profiles in the outskirts of galaxy clusters deviate from self-similar evolution. Using a mass-limited sample of galaxy clusters from cosmological hydrodynamical simulations, we show that the departure from self-similarity can be explained by non-thermal gas motions driven by mergers and accretion. Contrary to previous claims, gaseous substructures only play a minor role in the temperature evolution in cluster outskirts. A careful choice of halo overdensity definition in self-similar scaling mitigates these departures. Our work highlights the importance of non-thermal gas motions in ICM evolution and the usemore » of galaxy clusters as cosmological probes.« less
The evolution of the moon and the terrestrial planets
NASA Technical Reports Server (NTRS)
Toksoez, M. N.; Johnston, D. H.
1977-01-01
The thermal evolutions of the Moon, Mars, Venus, and Mercury were calculated theoretically starting from cosmochemical condensation models. An assortment of geological, geochemical, and geophysical data were used to constrain both the present day temperature and the thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history.
Thermal evolution of old white dwarfs
NASA Astrophysics Data System (ADS)
Kozhberov, Andrew
2017-11-01
This work is devoted to a description of thermodynamic properties of Coulomb crystals which are expected to form in white dwarf interiors. Effects of magnetic field, isotopic impurities, polarization of the electron background and crystal lattice type on the thermal evolution of white dwarfs are discussed. It is shown that the electron polarization could play a noticeable role in the cooling process. While other parameters in concern do not make a significant impact.
Microstructure and properties of thermally sprayed Al-Sn-based alloys for plain bearing applications
NASA Astrophysics Data System (ADS)
Marrocco, T.; Driver, L. C.; Harris, S. J.; McCartney, D. G.
2006-12-01
Al-Sn plain bearings for automotive applications traditionally comprise a multilayer structure. Conventionally, bearing manufacturing involves casting the Al-Sn alloy and roll-bonding to a steel backing strip. Recently, high-velocity oxyfuel (HVOF) thermal spraying has been used as a novel alternative manufacturing route. The present project extends previous work on ternary Al-Sn-Cu alloys to quaternary systems, which contain specific additions for potentially enhanced properties. Two alloys were studied in detail, namely, Al-20wt.%Sn-1wt.%Cu-2wt.%Ni and Al-20wt.%Sn-1wt.%Cu-7wt.%Si. This article will describe the microstructural evolution of these alloys following HVOF spraying onto steel substrates and subsequent heat treatment. The microstructures of powders and coatings were investigated by scanning electron microscopy, and the phases were identified by x-ray diffraction. Coating microhardnesses were determined under both as-sprayed and heat-treated conditions, and by the differences related to the microstructures that developed. Finally, the wear behavior of the sprayed and heat-treated coatings in hot engine oil was measured using an industry standard test and was compared with that of previous work on a ternary alloy.
Thermal Decomposition of Nitromethane and Reaction between CH3 and NO2.
Matsugi, Akira; Shiina, Hiroumi
2017-06-08
The thermal decomposition of gaseous nitromethane and the subsequent bimolecular reaction between CH 3 and NO 2 have been experimentally studied using time-resolved cavity-enhanced absorption spectroscopy behind reflected shock waves in the temperature range 1336-1827 K and at a pressure of 100 kPa. Temporal evolution of NO 2 was observed following the pyrolysis of nitromethane (diluted to 80-140 ppm in argon) by monitoring the absorption around 400 nm. The primary objectives of the current work were to evaluate the rate constant for the CH 3 + NO 2 reaction (k 2 ) and to examine the contribution of the roaming isomerization pathway in nitromethane decomposition. The resultant rate constant can be expressed as k 2 = (9.3 ± 1.8) × 10 -10 (T/K) -0.5 cm 3 molecule -1 s -1 , which is in reasonable agreement with available literature data. The decomposition of nitromethane was found to predominantly proceed with the C-N bond fission process with the branching fraction of 0.97 ± 0.06. Therefore, the upper limit of the branching fraction for the roaming pathway was evaluated to be 0.09.
Thermal Cycling Life Prediction of Sn-3.0Ag-0.5Cu Solder Joint Using Type-I Censored Data
Mi, Jinhua; Yang, Yuan-Jian; Huang, Hong-Zhong
2014-01-01
Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA) and fine-pitch ball grid array (FBGA) interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products. PMID:25121138
Growth and evolution of nickel germanide nanostructures on Ge(001).
Grzela, T; Capellini, G; Koczorowski, W; Schubert, M A; Czajka, R; Curson, N J; Heidmann, I; Schmidt, Th; Falta, J; Schroeder, T
2015-09-25
Nickel germanide is deemed an excellent material system for low resistance contact formation for future Ge device modules integrated into mainstream, Si-based integrated circuit technologies. In this study, we present a multi-technique experimental study on the formation processes of nickel germanides on Ge(001). We demonstrate that room temperature deposition of ∼1 nm of Ni on Ge(001) is realized in the Volmer-Weber growth mode. Subsequent thermal annealing results first in the formation of a continuous NixGey wetting layer featuring well-defined terrace morphology. Upon increasing the annealing temperature to 300 °C, we observed the onset of a de-wetting process, characterized by the appearance of voids on the NixGey terraces. Annealing above 300 °C enhances this de-wetting process and the surface evolves gradually towards the formation of well-ordered, rectangular NixGey 3D nanostructures. Annealing up to 500 °C induces an Ostwald ripening phenomenon, with smaller nanoislands disappearing and larger ones increasing their size. Subsequent annealing to higher temperatures drives the Ni-germanide diffusion into the bulk and the consequent formation of highly ordered, {111} faceted Ni-Ge nanocrystals featuring an epitaxial relationship with the substrate Ni-Ge (101); (010) || Ge(001); (110).
NASA Astrophysics Data System (ADS)
Peace, Alexander; McCaffrey, Ken; Imber, Jonny; van Hunen, Jeroen; Hobbs, Richard; Gerdes, Keith
2013-04-01
Passive margins are produced by continental breakup and subsequent seafloor spreading, leaving a transition from continental to oceanic crust. Magmatism is associated with many passive margins and produces diagnostic criteria that include 1) abundant breakup related magmatism resulting in a thick igneous crust, 2) a high velocity zone in the lower crust and 3) seaward dipping reflectors (SDRs) in seismic studies. These Volcanic Passive Margins (VPMs) represent around 75% of the Atlantic passive margins, but beyond this high level description, these magma-rich settings remain poorly understood and present numerous challenges to petroleum exploration. In VPMs the extent to which the volume, timing, location and emplacement history of magma has played a role in controlling heat flow and thermal evolution during margin development remains poorly constrained. Reasons for this include; 1) paucity of direct heat flow and thermal gradient measurements at adequate depth ranges across the margins, 2) poor onshore exposure 3) highly eroded flood basalts and 4) poor seismic imaging beneath thick offshore basalt sequences. As a result, accurately modelling the thermal history of the basins located on VPMs is challenging, despite the obvious importance for determining the maturation history of potential source rocks in these settings. Magmatism appears to have affected the thermal history of the Vøring Basin on the Norwegian VPM, in contrast the effects on the Faeroe-Shetland Basin was minimal. The more localised effects in the Faeroe-Shetland Basin compared to Vøring Basin may be explained by the fact that the main reservoir sandstones appear to be synchronous with thermal uplift along the basin margin and pulsed volcanism, indicating that the bulk of the magmatism occurred at the basin extremities in the Faeroe-Shetland Basin, where its effect on source maturation was lessened. Our hypothesis is that source maturation occurs as a result of regional temperature and pressure increases, and the effects of even a large singular magmatic event are small beyond the immediate vicinity, therefore quantifying cumulative regional heat flow is of utmost importance. The apparently complex relationships between source rock maturation and magmatism are not limited to the north-east Atlantic margins. Other VPMs of interest include the regions between West Greenland and Eastern Canada (Labrador Sea, Davis Strait and Baffin Bay), East Greenland, NW Australia, Western India and segments of the Western African and Eastern South American margins. This project utilises 1D numerical modelling of magmatic intrusions into a sedimentary column to gain an understanding into the thermal influence of post-breakup magmatic activity on source rock maturation in representative VPMs. Considerations include the timing, periodicity of intrusions, thickness, spacing and background heat in the basin.
McElroy, Matthew T
2014-01-01
Physiological function in ectotherms is tightly linked to body temperature. As a result, the thermal sensitivity of physiological function may evolve to optimize fitness across different thermal environments. One hypothesis for the evolution of thermal sensitivity, coadaptation, predicts that optimal temperatures for performance should evolve to match the temperatures that an organism experiences in nature. Another hypothesis, countergradient variation, posits that genetic variation can compensate for decreased performance in cool environments, leading to physiological phenotypes that do not track environmental temperatures. On Mo'orea, French Polynesia, thermal ecology and physiology were studied in two morphologically similar skinks that differ in habitat use. Previous studies show that Emoia impar tends to inhabit closed-canopy and interior habitats that are cooler compared to those inhabited by Emoia cyanura, but these differences had not been quantified on Mo'orea. The goal of this study was to determine whether this pattern of habitat partitioning exists on Mo'orea and relates to interspecific differences in thermal physiology and to evaluate whether the evolution of thermal sensitivity supports coadaptation or countergradient variation. I found that E. impar inhabits closed-canopy habitats with cooler substrates and with higher altitudes compared to habitats of E. cyanura. Although the two species do not differ significantly in critical thermal minimum, E. impar has a significantly lower preferred body temperature and critical thermal maximum than does E. cyanura. Despite a preference for cooler habitats and temperatures, E. impar has a warmer optimal temperature for sprint speed and sprints faster than E. cyanura at all temperatures, which supports the countergradient model of thermal adaptation. These results are robust to three different curve-fitting functions and support the view that generalist/specialist trade-offs do not universally constrain the evolution of performance curves.
Protobiological informatoin, bidirectional recognition and reverse translation
NASA Technical Reports Server (NTRS)
Fox, S. W.; Nakashima, T.; Przybylski, A.; Vaughan, G.
1986-01-01
Emergence of protobiological information has been suggested by experiments in which heated mixtures of alpha-amino acids order themselves into a self limited array of thermal proteins. The polymers display selective catalytic, hormonal, and other activities. Interactions of varied cationic thermal proteins with polynucleotides indicate selective recognition in both directions. Reverse translation is partly a missing link in the molecular evolution flowsheet. The self ordering of amino acids serves conceptually as a deterministic evolutionary precursor of the modern coding mechanism. The possibility for the evolution of information at an early nontemplated protein stage is supported by findings of electrical signals from proteinoid microspheres prepared with no DNA/RNA in their history. The deposition of thermal copolyamino acids on lipid membranes in the Mueller-Rudin apparatus has here been found to produce electrical behavior like that evoked by bacterial EIM polypeptide. A new procedure is to make a film of membrane on the electrode; the results provide maximal repeatability. The principle of nonrandom biomacromolecular specificity identified by these studies in molecular evolution have been extrapolated to principles of evolution of advanced organisms.
Evolution and structure of Mercury's interior from MESSENGER observations
NASA Astrophysics Data System (ADS)
Tosi, Nicola
2015-04-01
During the past four years, the MESSENGER mission (MErcury Surface, Space Environment, GEochemistry and Ranging) has delivered a wealth of information that has been dramatically advancing the understanding of the geological, chemical, and physical state of Mercury. Taking into account the latest constraints on the interior structure, surface composition, volcanic and tectonic history, we employed numerical models to simulate the thermo-chemical evolution of the planet's interior [1]. Typical evolution scenarios that allow the observational constraints to be satisfied consist of an initial phase of mantle heating accompanied by planetary expansion and the production of a substantial amount of partial melt. The evolution subsequent to 2 Ga is characterised by secular cooling that proceeds approximately at a constant rate and implies that contraction should be still ongoing. Most of the models also predict mantle convection to cease after 3-4 Ga, indicating that Mercury may be no longer dynamically active. In addition, the topography, measured by laser altimetry and the gravity field, obtained from radio-tracking, represent fundamental observations that can be interpreted in terms of the chemical and mechanical structure of the interior. The observed geoid-to-topography ratios at intermediate wavelengths are well explained by the isostatic compensation of the topography associated with lateral variations of the crustal thickness, whose mean value can be estimated to be ~35 km, broadly confirming the predictions of the evolution simulations [2]. Finally, we will show that the degree-2 and 4 of the topography and geoid spectra can be explained in terms of the long-wavelength deformation of the lithosphere resulting from deep thermal anomalies caused by the large latitudinal and longitudinal variations in temperature experienced by Mercury's surface. [1] Tosi N., M. Grott, A.-C. Plesa and D. Breuer (2013). Thermo-chemical evolution of Mercury's interior. Journal of Geophysical Research - Planets, 118, 2474-2487. [2] Padovan S., M. Wieczorek, J.-L. Margot, N. Tosi, and S. Solomon (2015). Thickness of the crust of Mercury from geoid-to-topography ratios. Geophysical Research Letters. In press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarm, Samuel C.; Mburu, Sarah N.; Kolli, Ratna P.
Cast duplex stainless steel piping in light water nuclear reactors expe- rience thermal aging embrittlement during operational service. Interest in extending the operational life to 80 years requires an increased understanding of the microstructural evolution and corresponding changes in mechanical behavior. We analyze the evolution of the microstructure during thermal aging of cast CF-3 and CF-8 stainless steels using electron microscopy and atom probe tomography. The evolution of the mechanical properties is measured concurrently by mechanical methods such as tensile tests, Charpy V-notch tests, and instrumented nanoinden- tation. A microstructure-based finite element method model is developed and uti- lized inmore » conjunction with the characterization results in order to correlate the local stress-strain effects in the microstructure with the bulk measurements. This work is supported by the DOE Nuclear Energy University Programs (NEUP), contract number DE-NE0000724.« less
NASA Astrophysics Data System (ADS)
Dupuy, Pascal; Harter, Jean
1995-09-01
Iris is a modular infrared thermal image developed by SAGEM since 1988, based on a 288 by 4 IRCCD detector. The first section of the presentation gives a description of the different modules of the IRIS thermal imager and their evolution in recent years. The second section covers the description of the major evolution, namely the integrated detector cooler assembly (IDCA), using a SOFRADIR 288 by 4 detector and a SAGEM microcooler, now integrated in the IRIS thermal imagers. The third section gives the description of two functions integrated in the IRIS thermal imager: (1) image enhancement, using a digital convolution filter, and (2) automatic hot points detection and tracking, offering an assistance to surveillance and automatic detection. The last section presents several programs for navy, air forces, and land applications for which IRIS has already been selected and achieved.
NASA Astrophysics Data System (ADS)
Ulmer, Christopher J.; Motta, Arthur T.
2017-11-01
The development of TEM-visible damage in materials under irradiation at cryogenic temperatures cannot be explained using classical rate theory modeling with thermally activated reactions since at low temperatures thermal reaction rates are too low. Although point defect mobility approaches zero at low temperature, the thermal spikes induced by displacement cascades enable some atom mobility as it cools. In this work a model is developed to calculate "athermal" reaction rates from the atomic mobility within the irradiation-induced thermal spikes, including both displacement cascades and electronic stopping. The athermal reaction rates are added to a simple rate theory cluster dynamics model to allow for the simulation of microstructure evolution during irradiation at cryogenic temperatures. The rate theory model is applied to in-situ irradiation of ZrC and compares well at cryogenic temperatures. The results show that the addition of the thermal spike model makes it possible to rationalize microstructure evolution in the low temperature regime.
NASA Astrophysics Data System (ADS)
Hnatiuc, B.; Brisset, J. L.; Astanei, D.; Ursache, M.; Mares, M.; Hnatiuc, E.; Felea, C.
2016-12-01
This paper aims to present the evolution of the construction and performances of non-thermal plasma reactors, identifying specific requirements for various known applications, setting out quality indicators that would allow on the one hand comparing devices that use different kinds of electrical discharges but also their rigorous classification by identification of criteria in order to choose the correct cold plasma reactors for a specific application. It briefly comments the post-discharge effect but also the current dilemma on non-thermal plasma direct treatments versus indirect treatments, using plasma activated water (PAW) or plasma activated medium (PAM), promising in cancer treatment.
Carbides Evolution in a Ni-16Mo-7Cr Base Superalloy during Long-Term Thermal Exposure
Han, Fenfen; Jiang, Li; Ye, Xiangxi; Lu, Yanling; Li, Zhijun; Zhou, Xingtai
2017-01-01
The effect of long-term thermal exposure on the carbide evolution in a Ni-16Mo-7Cr base superalloy was investigated. The results show that M12C carbides are mainly precipitated on the grain boundaries during thermal exposure, and the primary massive M6C carbides can be completely transformed to M12C carbides in situ at temperatures above 750 °C for long-term thermal exposure. The transformation from M6C carbides to M12C carbides is attributed to the release of C atoms from M6C, which results in the morphology changes of massive carbides, and stabilization of the sizes of M12C carbides precipitated on the grain boundaries. PMID:28772881
NASA Astrophysics Data System (ADS)
Stippich, Christian; Krob, Florian; Glasmacher, Ulrich Anton; Hackspacher, Peter Christian
2017-04-01
The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. The research integrates published (Karl et al., 2013) and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones (Karl et al., 2013) are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. Following up on our latest publication (Braun et al., 2016) regarding the effect of variability in rock thermal conductivity on exhumation rate estimates we performed a sensitivity analysis to quantify the effect of a differentiated lithospheric crust on the thermal evolution of the Florianópolis block versus exhumation rates estimated from modelling a lithospheric uniform crustal block. The long-term landscape evolution models with process rates were computed with the software code PECUBE (Braun, 2003; Braun et al., 2012). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameters, values, and rates can be constrained. References Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. Braun, J., Stippich, C., Glasmacher, U. A., 2016. The effect of variability in rock thermal conductivity on exhumation rate estimates from thermochronological data. Tectonophysics, v.690, pp.288-297 Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C., 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. Karl, M., Glasmacher, U.A., Kollenz, S., Franco-Magalhaes, A.O.B., Stockli, D.F., Hackspacher, P., 2013. Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data. Tectonophysics, Volume 604, Pages 224-244.
Directed evolution of GH43 ß-xylosidase XylBH43 thermal stability and L186 saturation
USDA-ARS?s Scientific Manuscript database
Directed evolution of ß-xylosidase XylBH43 using DNA family shuffling identified three mutations R45K, M69P, and L186Y that affect thermal stability parameter Kt0.5 by -1.8±0.1 º C, 1.7±0.3 º C, and 3.2±0.4 º C, respectively. In addition, a cluster of four mutations near hairpin loop-D83 improved K...
Fluid dynamics analysis of a gas attenuator for X-ray FELs under high-repetition-rate operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bo; Wu, Juhao; Raubenheimer, Tor O.
Newtonian fluid dynamics simulations were performed using the Navier–Stokes–Fourier formulations to elucidate the short time-scale (µs and longer) evolution of the density and temperature distributions in an argon-gas-filled attenuator for an X-ray free-electron laser under high-repetition-rate operation. Both hydrodynamic motions of the gas molecules and thermal conductions were included in a finite-volume calculation. It was found that the hydrodynamic wave motions play the primary role in creating a density depression (also known as a filament) by advectively transporting gas particles away from the X-ray laser–gas interaction region, where large pressure and temperature gradients have been built upon the initial energymore » depositionviaX-ray photoelectric absorption and subsequent thermalization. Concurrent outward heat conduction tends to reduce the pressure in the filament core region, generating a counter gas flow to backfill the filament, but on an initially slower time scale. If the inter-pulse separation is sufficiently short so the filament cannot recover, the depth of the filament progressively increases as the trailing pulses remove additional gas particles. Since the rate of hydrodynamic removal decreases while the rate of heat conduction back flow increases as time elapses, the two competing mechanisms ultimately reach a dynamic balance, establishing a repeating pattern for each pulse cycle. Finally, by performing simulations at higher repetition rates but lower per pulse energies while maintaining a constant time-averaged power, the amplitude of the hydrodynamic motion per pulse becomes smaller, and the evolution of the temperature and density distributions approach asymptotically towards, as expected, those calculated for a continuous-wave input of the equivalent power.« less
Fluid-assisted melting in a collisional orogen
NASA Astrophysics Data System (ADS)
Berger, A.; Burri, T.; Engi, M.; Roselle, G. T.
2003-04-01
The Southern Steep Belt (SSB) of the Central Alps is the location of backthrusting during syn- to post-collisional deformation. From its metamorphic evolution and lithological contents the SSB has been interpreted as a tectonic accretion channel (TAC [1]). The central part of the SSB is additionally characterized by anatexites, leucogranitic aplites and pegmatites. Dehydration melting of muscovite is rare but did occurr locally. Moreover, no evidence of dehydration melting of biotite has been formed in that products of incongruent melting reactions (garnet, opx or cordierite) are missing. The melts are mainly produced by the infiltration of an external aqueous fluid. The fluids must have originated from the breakdown of hydrous minerals at temperatures below the water saturated solidus of the quartz-feldspar-system, such that the liberated fluids could not been trapped in the melt. Using the thermal modeling program MELONPIT [2] and assuming that solid fragments ascended in combination with tectonic accreated radioactive material, a complex thermal evolution inside the TAC has been derived. During subduction of the downgoing plate, isotherms were locally inverted, then subsequently relaxed, when subduction slowed down. At the collisional stage a small region develope, where the isotherms were still bent, and where temperatures increased during decompression. Assuming that dehydration reactions were followed by upward flow of fluids released from this region fluid present partial melting was triggered. The flow direction of the fluid was controlled by the pressure gradient and the steeply oriented foliations in the SSB. According to the model, the area of upward flowing fluids should be limited to the SSB. This is consistent with the observed regional distribution of leucosomes derived from in-situ melts. [1] Engi et al. (2001) Geology 29: 1143-1146 [2] Roselle et al. (2002) Am. J. Sci. 302: 381-409
Fluid dynamics analysis of a gas attenuator for X-ray FELs under high-repetition-rate operation
Yang, Bo; Wu, Juhao; Raubenheimer, Tor O.; ...
2017-05-01
Newtonian fluid dynamics simulations were performed using the Navier–Stokes–Fourier formulations to elucidate the short time-scale (µs and longer) evolution of the density and temperature distributions in an argon-gas-filled attenuator for an X-ray free-electron laser under high-repetition-rate operation. Both hydrodynamic motions of the gas molecules and thermal conductions were included in a finite-volume calculation. It was found that the hydrodynamic wave motions play the primary role in creating a density depression (also known as a filament) by advectively transporting gas particles away from the X-ray laser–gas interaction region, where large pressure and temperature gradients have been built upon the initial energymore » depositionviaX-ray photoelectric absorption and subsequent thermalization. Concurrent outward heat conduction tends to reduce the pressure in the filament core region, generating a counter gas flow to backfill the filament, but on an initially slower time scale. If the inter-pulse separation is sufficiently short so the filament cannot recover, the depth of the filament progressively increases as the trailing pulses remove additional gas particles. Since the rate of hydrodynamic removal decreases while the rate of heat conduction back flow increases as time elapses, the two competing mechanisms ultimately reach a dynamic balance, establishing a repeating pattern for each pulse cycle. Finally, by performing simulations at higher repetition rates but lower per pulse energies while maintaining a constant time-averaged power, the amplitude of the hydrodynamic motion per pulse becomes smaller, and the evolution of the temperature and density distributions approach asymptotically towards, as expected, those calculated for a continuous-wave input of the equivalent power.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Verne V.; Cunha, Katia; Shetrone, Matthew D.
2013-03-01
High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can bemore » derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.« less
Laser-Assisted Cold-Sprayed Corrosion- and Wear-Resistant Coatings: A Review
NASA Astrophysics Data System (ADS)
Olakanmi, E. O.; Doyoyo, M.
2014-06-01
Laser-assisted cold spray (LACS) process will be increasingly employed for depositing coatings because of its unique advantages: solid-state deposition of dense, homogeneous, and pore-free coatings onto a range of substrates; and high build rate at reduced operating costs without the use of expensive heating and process inert gases. Depositing coatings with excellent performance indicators via LACS demands an accurate knowledge and control of processing and materials' variables. By varying the LACS process parameters and their interactions, the functional properties of coatings can be manipulated. Moreover, thermal effect due to laser irradiation and microstructural evolution complicate the interpretation of LACS mechanical deformation mechanism which is essential for elucidating its physical phenomena. In order to provide a basis for follow-on-research that leads to the development of high-productivity LACS processing of coatings, this review focuses on the latest developments in depositing corrosion- and wear-resistant coatings with the emphasis on the composition, structure, and mechanical and functional properties. Historical developments and fundamentals of LACS are addressed in an attempt to describe the physics behind the process. Typical technological applications of LACS coatings are also identified. The investigations of all process sequences, from laser irradiation of the powder-laden gas stream and the substrate, to the impingement of thermally softened particles on the deposition site, and subsequent further processes, are described. Existing gaps in the literature relating to LACS-dependent microstructural evolution, mechanical deformation mechanisms, correlation between functional properties and process parameters, processing challenges, and industrial applications have been identified in order to provide insights for further investigations and innovation in LACS deposition of wear- and corrosion-resistant coatings.
NASA Astrophysics Data System (ADS)
Drexler, Andreas; Ecker, Werner; Hessert, Roland; Oberwinkler, Bernd; Gänser, Hans-Peter; Keckes, Jozef; Hofmann, Michael; Fischersworring-Bunk, Andreas
2017-10-01
In this work the evolution of the residual stress field in a forged and heat treated turbine disk of Alloy 718 and its subsequent relaxation during machining was simulated and measured. After forging at around 1000 °C the disks were natural air cooled to room temperature and direct aged in a furnace at 720 °C for 8 hours and at 620 °C for 8 hours. The machining of the Alloy 718 turbine disk was performed in two steps: The machining of the Alloy 718 turbine disk was performed in two steps: First, from the forging contour to a contour used for ultra-sonic testing. Second, from the latter to the final contour. The thermal boundary conditions in the finite element model for air cooling and furnace heating were estimated based on analytical equations from literature. A constitutive model developed for the unified description of rate dependent and rate independent mechanical material behavior of Alloy 718 under in-service conditions up to temperatures of 1000 °C was extended and parametrized to meet the manufacturing conditions with temperatures up to 1000 °C. The results of the finite element model were validated with measurements on real-scale turbine disks. The thermal boundary conditions were validated in-field with measured cooling curves. For that purpose holes were drilled at different positions into the turbine disk and thermocouples were mounted in these holes to record the time-temperature curves during natural cooling and heating. The simulated residual stresses were validated by using the hole drilling method and the neutron diffraction technique. The accuracy of the finite element model for the final manufacturing step investigated was ±50 MPa.
Structural evolution of tunneling oxide passivating contact upon thermal annealing.
Choi, Sungjin; Min, Kwan Hong; Jeong, Myeong Sang; Lee, Jeong In; Kang, Min Gu; Song, Hee-Eun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan; Kim, Ka-Hyun
2017-10-16
We report on the structural evolution of tunneling oxide passivating contact (TOPCon) for high efficient solar cells upon thermal annealing. The evolution of doped hydrogenated amorphous silicon (a-Si:H) into polycrystalline-silicon (poly-Si) by thermal annealing was accompanied with significant structural changes. Annealing at 600 °C for one minute introduced an increase in the implied open circuit voltage (V oc ) due to the hydrogen motion, but the implied V oc decreased again at 600 °C for five minutes. At annealing temperature above 800 °C, a-Si:H crystallized and formed poly-Si and thickness of tunneling oxide slightly decreased. The thickness of the interface tunneling oxide gradually decreased and the pinholes are formed through the tunneling oxide at a higher annealing temperature up to 1000 °C, which introduced the deteriorated carrier selectivity of the TOPCon structure. Our results indicate a correlation between the structural evolution of the TOPCon passivating contact and its passivation property at different stages of structural transition from the a-Si:H to the poly-Si as well as changes in the thickness profile of the tunneling oxide upon thermal annealing. Our result suggests that there is an optimum thickness of the tunneling oxide for passivating electron contact, in a range between 1.2 to 1.5 nm.
Pathway-engineering for highly-aligned block copolymer arrays.
Choo, Youngwoo; Majewski, Paweł W; Fukuto, Masafumi; Osuji, Chinedum O; Yager, Kevin G
2017-12-21
While the ultimate driving force in self-assembly is energy minimization and the corresponding evolution towards equilibrium, kinetic effects can also play a very strong role. These kinetic effects, such as trapping in metastable states, slow coarsening kinetics, and pathway-dependent assembly, are often viewed as complications to be overcome. Here, we instead exploit these effects to engineer a desired final nano-structure in a block copolymer thin film, by selecting a particular ordering pathway through the self-assembly energy landscape. In particular, we combine photothermal shearing with high-temperature annealing to yield hexagonal arrays of block copolymer cylinders that are aligned in a single prescribed direction over macroscopic sample dimensions. Photothermal shearing is first used to generate a highly-aligned horizontal cylinder state, with subsequent thermal processing used to reorient the morphology to the vertical cylinder state in a templated manner. Finally, we demonstrate the successful transfer of engineered morphologies into inorganic replicas.
Comparing Turbulence Simulation with Experiment in DIII-D
NASA Astrophysics Data System (ADS)
Ross, D. W.; Bravenec, R. V.; Dorland, W.; Beer, M. A.; Hammett, G. W.; McKee, G. R.; Murakami, M.; Jackson, G. L.
2000-10-01
Gyrofluid simulations of DIII-D discharges with the GRYFFIN code(D. W. Ross et al.), Transport Task Force Workshop, Burlington, VT, (2000). are compared with transport and fluctuation measurements. The evolution of confinement-improved discharges(G. R. McKee et al.), Phys. Plasmas 7, 1870 (200) is studied at early times following impurity injection, when EXB rotational shear plays a small role. The ion thermal transport predicted by the code is consistent with the experimental values. Experimentally, changes in density profiles resulting from the injection of neon, lead to reduction in fluctuation levels and transport following the injection. This triggers subsequent changes in the shearing rate that further reduce the turbulence.(M. Murakami et al.), European Physical Society, Budapest (2000); M. Murakami et al., this meeting. Estimated uncertainties in the plasma profiles, however, make it difficult to simulate these reductions with the code. These cases will also be studied with the GS2 gyrokinetic code.
Universal quantum uncertainty relations between nonergodicity and loss of information
NASA Astrophysics Data System (ADS)
Awasthi, Natasha; Bhattacharya, Samyadeb; SenDe, Aditi; Sen, Ujjwal
2018-03-01
We establish uncertainty relations between information loss in general open quantum systems and the amount of nonergodicity of the corresponding dynamics. The relations hold for arbitrary quantum systems interacting with an arbitrary quantum environment. The elements of the uncertainty relations are quantified via distance measures on the space of quantum density matrices. The relations hold for arbitrary distance measures satisfying a set of intuitively satisfactory axioms. The relations show that as the nonergodicity of the dynamics increases, the lower bound on information loss decreases, which validates the belief that nonergodicity plays an important role in preserving information of quantum states undergoing lossy evolution. We also consider a model of a central qubit interacting with a fermionic thermal bath and derive its reduced dynamics to subsequently investigate the information loss and nonergodicity in such dynamics. We comment on the "minimal" situations that saturate the uncertainty relations.
NASA Astrophysics Data System (ADS)
Li, Zhao; Hudson, Mary; Patel, Maulik; Wiltberger, Michael; Boyd, Alex; Turner, Drew
2017-07-01
The 17 March 2015 St. Patrick's Day Storm is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward interplanetary magnetic field Bz causing loss; however, a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. The 17 March 2013 storm also shows similar effects on outer zone electrons: first, a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the prestorm level early in the recovery phase and a slow increase over the next 12 days. These phases can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instruments on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements, we simulated both St. Patrick's Day 2013 and 2015 events, analyzing Lyon-Fedder-Mobarry electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code, using the measured electron phase space density following the local heating as the initial radial profile and outer boundary condition for subsequent temporal evolution over the next 12 days, beginning 18 March. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument suite on Van Allen Probes was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parameterized by a global geomagnetic activity index.
NASA Astrophysics Data System (ADS)
Li, Z.; Hudson, M.; Paral, J.; Wiltberger, M. J.; Boyd, A. J.; Turner, D. L.
2016-12-01
The 17 March 2015 `St. Patrick's Day Storm' is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. Local heating has been modeled by other groups for this and the 17 March 2013 storm, only slightly weaker and showing a similar effect on electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the pre-storm level and an even greater slow increase likely due to radial diffusion. The latter can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements with the Magneotsphere-Ionosphere Coupler (MIX), we have simulated both `St. Patrick's Day'events, analyzing LFM electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code using the measured electron phase space density profile following the local heating and as the outer boundary condition for subsequent temporally evolution over the next 12 days, beginning 18 March 2015. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument on Van Allen Probes (30 keV - 4 MeV) was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parametrized by a global geomagnetic activity index.
van der Lelij, Roelant; Spikings, Richard A.; Kerr, Andrew C.; Kounov, Alexandre; Cosca, Michael; Chew, David; Villagomez, Diego
2010-01-01
Tectonic reconstructions of the Caribbean Plate are severely hampered by a paucity of geochronologic and exhumation constraints from anastomosed basement blocks along its southern margin. New U/Pb, 40Ar/39Ar, apatite fission track, and apatite (U-Th)/He data constrain quantitative thermal and exhumation histories, which have been used to propose a model for the tectonic evolution of the emergent parts of the Bonaire Block and the southern Caribbean Plate boundary zone. An east facing arc system intruded through an oceanic plateau during ~90 to ~87 Ma and crops out on Aruba. Subsequent structural displacements resulted in >80°C of cooling on Aruba during 70–60 Ma. In contrast, exhumation of the island arc sequence exposed on Bonaire occurred at 85–80 Ma and 55–45 Ma. Santonian exhumation on Bonaire occurred immediately subsequent to burial metamorphism and may have been driven by the collision of a west facing island arc with the Caribbean Plate. Island arc rocks intruded oceanic plateau rocks on Gran Roque at ~65 Ma and exhumed rapidly at 55–45 Ma. We attribute Maastrichtian-Danian exhumation on Aruba and early Eocene exhumation on Bonaire and Gran Roque to sequential diachronous accretion of their basement units to the South American Plate. Widespread unconformities indicate late Eocene subaerial exposure. Late Oligocene–early Miocene dextral transtension within the Bonaire Block drove subsidence and burial of crystalline basement rocks of the Leeward Antilles to ≤1 km. Late Miocene–recent transpression caused inversion and ≤1 km of exhumation, possibly as a result of the northward escape of the Maracaibo Block.
NASA Astrophysics Data System (ADS)
Rubio, Ernesto Javier
High-temperature coatings are critical to the future power-generation systems and industries. Thermal barrier coatings (TBCs), which are usually the ceramic materials applied as thin coatings, protect engine components and allow further increase in engine temperatures for higher efficiency. Thus, the durability and reliability of the coating systems have to be more robust compared to current natural gas based engines. While a near and mid-term target is to develop TBC architecture with a 1300 °C surface temperature tolerance, a deeper understanding of the structure evolution and thermal behavior of the TBC-bond coat interface, specifically the thermally grown oxide (TGO), is of primary importance. In the present work, attention is directed towards yttria-stabilized hafnia (YSH) coatings on alumina (α-Al2O 3) to simulate the TBC-TGO interface and understand the phase evolution, microstructure and thermal oxidation of the coatings. YSH coatings were grown on α-Al2O3 substrates by sputter deposition by varying coating thickness in a wide range ˜30-1000 nm. The effect of coating thickness on the structure, morphology and the residual stress has been investigated using X-ray diffraction (XRD) and high resolution scanning electron microscopy (SEM). Thermal oxidation behavior of the coatings has been evaluated using the isothermal oxidation measurements under static conditions. X-ray diffraction analyses revealed the existence of monoclinic hafnia phase for relatively thin coatings indicating that the interfacial phenomena are dominant in phase stabilization. The evolution towards pure stabilized cubic phase of hafnia with the increasing coating thickness is observed. The SEM results indicate the changes in morphology of the coatings; the average grain size increases from 15 to 500 nm with increasing thickness. Residual stress was calculated employing XRD using the variable ψ-angle. Relation between residual stress and structural change is also studied. The results obtained on the thermal oxidation behavior indicate that the YSH coatings exhibit initial mass gain in the first 6 hours and sustained structure for extended hours of thermal treatment.
Inward, Daegan J G; Vogler, Alfried P; Eggleton, Paul
2007-09-01
The first comprehensive combined molecular and morphological phylogenetic analysis of the major groups of termites is presented. This was based on the analysis of three genes (cytochrome oxidase II, 12S and 28S) and worker characters for approximately 250 species of termites. Parsimony analysis of the aligned dataset showed that the monophyly of Hodotermitidae, Kalotermitidae and Termitidae were well supported, while Termopsidae and Rhinotermitidae were both paraphyletic on the estimated cladogram. Within Termitidae, the most diverse and ecologically most important family, the monophyly of Macrotermitinae, Foraminitermitinae, Apicotermitinae, Syntermitinae and Nasutitermitinae were all broadly supported, but Termitinae was paraphyletic. The pantropical genera Termes, Amitermes and Nasutitermes were all paraphyletic on the estimated cladogram, with at least 17 genera nested within Nasutitermes, given the presently accepted generic limits. Key biological features were mapped onto the cladogram. It was not possible to reconstruct the evolution of true workers unambiguously, as it was as parsimonious to assume a basal evolution of true workers and subsequent evolution of pseudergates, as to assume a basal condition of pseudergates and subsequent evolution of true workers. However, true workers were only found in species with either separate- or intermediate-type nests, so that the mapping of nest habit and worker type onto the cladogram were perfectly correlated. Feeding group evolution, however, showed a much more complex pattern, particularly within the Termitidae, where it proved impossible to estimate unambiguously the ancestral state within the family (which is associated with the loss of worker gut flagellates). However, one biologically plausible optimization implies an initial evolution from wood-feeding to fungus-growing, proposed as the ancestral condition within the Termitidae, followed by the very early evolution of soil-feeding and subsequent re-evolution of wood-feeding in numerous lineages.
Vollhardt, K. Peter C.; Segalman, Rachel A; Majumdar, Arunava; Meier, Steven
2015-02-10
A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release. At the thermal energy release station, the high-energy organometallic compound is catalytically converted back to the photochemically active organometallic compound by an exothermic process, while the released thermal energy is captured for subsequent use.
NASA Technical Reports Server (NTRS)
1986-01-01
Topics addressed include: greenstone belt tectonics, thermal constaints, geological structure, rock components, crustal accretion model, geological evolution, synsedimentary deformation, Archean structures and geological faults.
The influence of flash lamp annealing on the minority carrier lifetime of Czochralski silicon wafers
NASA Astrophysics Data System (ADS)
Kissinger, G.; Kot, D.; Sattler, A.
2014-02-01
Flash lamp annealing of moderately B-doped CZ silicon wafers for 20 ms with a normalized irradiance of about 0.9 was used to efficiently suppress oxygen precipitation during subsequent thermal processing. In this way, the minority carrier lifetime measured at high injection level by microwave-detected photo-conductance decay (μ-PCD) was increased from about 30 microseconds to about 300 microseconds after a thermal process consisting of 780 °C 3 h + 1000 °C 16 h. The grown-in oxide precipitate nuclei were shrunken to a subcritical size during the flash lamp anneal which prevents further growth during subsequent thermal processing.
Origin and thermal evolution of Mars
NASA Technical Reports Server (NTRS)
Schubert, Gerald; Soloman, S. C.; Turcotte, D. L.; Drake, M. J.; Sleep, N. H.
1990-01-01
The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle, and mantle heat production. Geological, geophysical, and geochemical observations of the compositon and structure of the interior and of the timing of major events in Martian evolution are used to constrain the model computations. Such evolutionary events include global differentiation, atmospheric outgassing, and the formation of the hemispherical dichotomy and Tharsis. Numerical calculations of fully three-dimensional, spherical convection in a shell the size of the Martian mantle are performed to explore plausible patterns of Martian mantel convection and to relate convective features, such as plumes, to surface features, such as Tharsis. The results from the model calculations are presented.
More Efficient Solar Thermal-Energy Receiver
NASA Technical Reports Server (NTRS)
Dustin, M. O.
1987-01-01
Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.
Cascella, Kévin; Jollivet, Didier; Papot, Claire; Léger, Nelly; Corre, Erwan; Ravaux, Juliette; Clark, Melody S; Toullec, Jean-Yves
2015-01-01
A comparative thermal tolerance study was undertaken on two sister species of Euphausiids (Antarctic krills) Euphausia superba and Euphausia crystallorophias. Both are essential components of the Southern Ocean ecosystem, but occupy distinct environmental geographical locations with slightly different temperature regimes. They therefore provide a useful model system for the investigation of adaptations to thermal tolerance. Initial CTmax studies showed that E. superba was slightly more thermotolerant than E. crystallorophias. Five Hsp70 mRNAs were characterized from the RNAseq data of both species and subsequent expression kinetics studies revealed notable differences in induction of each of the 5 orthologues between the two species, with E. crystallorophias reacting more rapidly than E. superba. Furthermore, analyses conducted to estimate the evolutionary rates and selection strengths acting on each gene tended to support the hypothesis that diversifying selection has contributed to the diversification of this gene family, and led to the selective relaxation on the inducible C form with its possible loss of function in the two krill species. The sensitivity of the epipelagic species E. crystallorophias to temperature variations and/or its adaptation to cold is enhanced when compared with its sister species, E. superba. These results indicate that ice krill could be the first of the two species to be impacted by the warming of coastal waters of the Austral ocean in the coming years due to climate change.
Wind Enhanced Escape, Ion Pickup and the Evolution of Water on Mars
NASA Technical Reports Server (NTRS)
Hartle, Richard
1999-01-01
Preferential loss of hydrogen over deuterium from Mars has produced a deuterium rich atmosphere possessing a D/B ratio 5.2 times that of terrestrial water. Rayleigh fractionation is applied, constrained by the deuterium enrichment factor, to determine the magnitudes of ancient and present water reservoirs on the planet. The dominant lose mechanisms of R and D from the current atmosphere are thought to be thermal escape and solar wind ion pickup of the neutral and ion forms of theme constituents, respectively. During an earlier martian epoch, only thermal escape was significant because Mars had a terrestrial sized magnetosphere that protected the atmosphere from solar wind scavenging processes. The magnitudes of present and ancient water reservoirs are estimated when thermal escape is considered alone and subsequently when the effects of ion pickup are added. The escape fluxes of R and D are significantly increased above the respective Jeans fluxes when the effects of thermospheric winds and planetary rotation are accounted for at the exobase. Such wind enhanced escape also increases as the mass of an escaping constituent increases; thus, the increase in the escape flux of D is greater than that of H. When the fractionation process is also constrained by the D/H ratio observed in hydrous minerals of SNC meteorites, an ancient crustal reservoir of Martian water in derived, tens of meters in global-equivalent depth, considerably exceeding that obtained with no winds. The reservoir becomes even larger when ion pickup processes are added.
A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster
NASA Astrophysics Data System (ADS)
Lin, Dacheng; Strader, Jay; Carrasco, Eleazar R.; Page, Dany; Romanowsky, Aaron J.; Homan, Jeroen; Irwin, Jimmy A.; Remillard, Ronald A.; Godet, Olivier; Webb, Natalie A.; Baumgardt, Holger; Wijnands, Rudy; Barret, Didier; Duc, Pierre-Alain; Brodie, Jean P.; Gwyn, Stephen D. J.
2018-06-01
A unique signature for the presence of massive black holes in very dense stellar regions is occasional giant-amplitude outbursts of multi-wavelength radiation from tidal disruption and subsequent accretion of stars that make a close approach to the black holes1. Previous strong tidal disruption event (TDE) candidates were all associated with the centres of largely isolated galaxies2-6. Here, we report the discovery of a luminous X-ray outburst from a massive star cluster at a projected distance of 12.5 kpc from the centre of a large lenticular galaxy. The luminosity peaked at 1043 erg s-1 and decayed systematically over 10 years, approximately following a trend that supports the identification of the event as a TDE. The X-ray spectra were all very soft, with emission confined to be ≲3.0 keV, and could be described with a standard thermal disk. The disk cooled significantly as the luminosity decreased—a key thermal-state signature often observed in accreting stellar-mass black holes. This thermal-state signature, coupled with very high luminosities, ultrasoft X-ray spectra and the characteristic power-law evolution of the light curve, provides strong evidence that the source contains an intermediate-mass black hole with a mass tens of thousand times that of the solar mass. This event demonstrates that one of the most effective means of detecting intermediate-mass black holes is through X-ray flares from TDEs in star clusters.
Signatures of a Nonthermal Metastable State in Copropagating Quantum Hall Edge Channels
NASA Astrophysics Data System (ADS)
Itoh, Kosuke; Nakazawa, Ryo; Ota, Tomoaki; Hashisaka, Masayuki; Muraki, Koji; Fujisawa, Toshimasa
2018-05-01
A Tomonaga-Luttinger (TL) liquid is known as an integrable system, in which a nonequilibrium many-body state survives without relaxing to a thermalized state. This intriguing characteristic is tested experimentally in copropagating quantum Hall edge channels at bulk filling factor ν =2 . The unidirectional transport allows us to investigate the time evolution by measuring the spatial evolution of the electronic states. The initial state is prepared with a biased quantum point contact, and its spatial evolution is measured with a quantum-dot energy spectrometer. We find strong evidence for a nonthermal metastable state in agreement with the TL theory before the system relaxes to thermal equilibrium with coupling to the environment.
Prior stress exposure increases pain behaviors in a rat model of full thickness thermal injury.
Nyland, Jennifer E; McLean, Samuel A; Averitt, Dayna L
2015-12-01
Thermal burns among individuals working in highly stressful environments, such as firefighters and military Service Members, are common. Evidence suggests that pre-injury stress may exaggerate pain following thermal injury; however current animal models of burn have not evaluated the potential influence of pre-burn stress. This sham-controlled study evaluated the influence of prior stress exposure on post-burn thermal and mechanical sensitivity in male Sprague-Dawley rats. Rats were exposed to 20 min of inescapable swim stress or sham stress once per day for three days. Exposure to inescapable swim stress (1) increased the intensity and duration of thermal hyperalgesia after subsequent burn and (2) accelerated the onset of thermal hyperalgesia and mechanical allodynia after subsequent burn. This stress-induced exacerbation of pain sensitivity was reversed by pretreatment and concurrent treatment with the serotonin-norepinephrine reuptake inhibitor (SNRI) duloxetine. These data suggest a better understanding of mechanisms by which prior stress augments pain after thermal burn may lead to improved pain treatments for burn survivors. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
NASA Astrophysics Data System (ADS)
Pickett, Brian K.; Cassen, Patrick; Durisen, Richard H.; Link, Robert
2000-02-01
In the paper ``The Effects of Thermal Energetics on Three-dimensional Hydrodynamic Instabilities in Massive Protostellar Disks. II. High-Resolution and Adiabatic Evolutions'' by Brian K. Pickett, Patrick Cassen, Richard H. Durisen, and Robert Link (ApJ, 529, 1034 [2000]), the wrong version of Figure 10 was published as a result of an error at the Press. The correct version of Figure 10 appears below. The Press sincerely regrets this error.
NASA Astrophysics Data System (ADS)
Blackwell, D. D.; Thakur, M.
2007-12-01
Birch (1968) first showed the linear correlation of surface heat flow and radioactive heat production (Qs = Qo + bAs ) in granites in New England, USA and discussed implications to the vertical scale of radioactive heat generation in the crust. Subsequently similar relationships have been found worldwide and numerous papers written describing more details and expanding the implications of Birch's Law. The results are a powerful contribution from heat flow research to the understanding of the lithosphere and its evolution. Models are both well constrained experimentally and simple in implications. However, there still exist thermal models of the crust and lithosphere that do not have the same firm foundation and involve unnecessary ad hoc assumptions. A main point of confusion has been that the several of the original relationships were so low in error as to be considered by some to be "fortuitous". Interestingly a "similar" relationship has been proposed based on regional scale averaging of Qs -As data. A second point of confusion is that one admissible crustal radioactivity distribution model (the constant heat generation to depth b) has been criticized as unrealistic for a number of reasons, including the effect of erosion. However, it is appropriate to refer to the Qs -As relationship as a law because in fact the relationship holds as long as the vertical distribution is "geologically realistic." as will be demonstrated in this paper. All geologic and geophysical models of the continental crust imply decreasing heat production as a function of depth (i.e. the seismic layering for example) except in very special cases. This general decrease with depth is the only condition required for the existence of a "linear" Qs -As relationship. A comparison of all the Qs -As relationships proposed for terrains not affected by thermal events over the last 150 to 200 Ma shows a remarkably uniformity in slope (10 ± 3 km) and intercept value (30 ± 5 mWm-2 ). Therefore these parameters of Birch's Law equation represent the starting place for discussions of lithospheric thermal regime and evolution. The stability of the values of intercept Qo for areas with thermal ages of Paleozoic and older prove that the lithosphere heat flow does not vary significantly with age as is demonstrated in the companion paper. The minimum mantle heat flow for preMesozoic thermal terrains is 20 - 25 mWm-2. This value is consistent with the lack of indication from xenolith data that lithosphere thickness changes with age and with theoretical models of mantle convection.
HOW SIGNIFICANT IS RADIATION PRESSURE IN THE DYNAMICS OF THE GAS AROUND YOUNG STELLAR CLUSTERS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silich, Sergiy; Tenorio-Tagle, Guillermo, E-mail: silich@inaoep.mx
2013-03-01
The impact of radiation pressure on the dynamics of the gas in the vicinity of young stellar clusters is thoroughly discussed. The radiation over the thermal/ram pressure ratio time evolution is calculated explicitly and the crucial roles of the cluster mechanical power, the strong time evolution of the ionizing photon flux, and the bolometric luminosity of the exciting cluster are stressed. It is shown that radiation has only a narrow window of opportunity to dominate the wind-driven shell dynamics. This may occur only at early stages of the bubble evolution and if the shell expands into a dusty and/or amore » very dense proto-cluster medium. The impact of radiation pressure on the wind-driven shell always becomes negligible after about 3 Myr. Finally, the wind-driven model results allow one to compare the model predictions with the distribution of thermal pressure derived from X-ray observations. The shape of the thermal pressure profile then allows us to distinguish between the energy and the momentum-dominated regimes of expansion and thus conclude whether radiative losses of energy or the leakage of hot gas from the bubble interior have been significant during bubble evolution.« less
NASA Astrophysics Data System (ADS)
Bennai, F.; Issaadi, N.; Abahri, K.; Belarbi, R.; Tahakourt, A.
2018-04-01
The incorporation of plant crops in construction materials offers very good hygrothermal performance to the building, ensuring substantial environmental and ecological benefits. This paper focuses on studying the evolution of hygrothermal properties of hemp concrete over age (7, 30 and 60 days). The analysis is done with respect to two main hygric and thermal properties, respectively: sorption isotherms, water vapor permeability, thermal conductivity and heat capacity. In fact, most of these parameters are very susceptible to change function of the age of the material. This influence of the aging is mainly due to the evolution of the microstructure with the binder hydration over time and the creation of new hydrates which can reduces the porosity of the material and consequently modify its properties. All the tested hemp concrete samples presented high moisture storage capacity and high-water vapor permeability whatever the age of such hygroscopic material. These hygric parameters increase significantly for high relative humidity requiring more consideration of such variability during the modeling of coupled heat and mass transfer within the material. By the same, the thermal conductivity and heat capacity tests highlighted the impact of the temperature and hygric state of the studied material.
NASA Astrophysics Data System (ADS)
Sonibare, W. A.; Scheck-Wenderoth, M.; Sippel, J.; Mikeš, D.
2012-04-01
In recent years, construction of 3D geological models and their subsequent upscaling for reservoir simulation has become an important tool within the oil industry for managing hydrocarbon reservoirs and increasing recovery rate. Incorporating petroleum system elements (i.e. source, reservoir and trap) into these models is a relatively new concept that seems very promising to play/prospect risk assessment and reservoir characterisation alike. However, yet to be fully integrated into this multi-disciplinary modelling approach are the qualitative and quantitative impacts of crust-scale basin dynamics on the observed basin-fill architecture and geometries. The focus of this study i.e. Western Bredasdorp Basin constitutes the extreme western section of the larger Bredasdorp sub-basin, which is the westernmost depocentre of the four southern Africa offshore sub-basins (others being Pletmos, Gamtoos and Algoa). These basins, which appear to be initiated by volcanically influenced continental rifting and break-up related to passive margin evolution (during the Mid-Late Jurassic to latest Valanginian), remain previously unstudied for crust-scale basin margin evolution, and particularly in terms of relating deep crustal processes to depo-system reconstruction and petroleum system evolution. Seismic interpretation of 42 2D seismic-reflection profiles forms the basis for maps of 6 stratigraphic horizons which record the syn-rift to post-rift (i.e. early drift and late drift to present-day seafloor) successions. In addition to this established seismic markers, high quality seismic profiles have shown evidence for a pre-rift sequence (i.e. older than Late Jurassic >130 Ma). The first goal of this study is the construction of a 3D gravity-constrained, crust-scale basin model from integration of seismics, well data and cores. This basin model is constructed using GMS (in-house GFZ Geo-Modelling Software) while testing its consistency with the gravity field is performed using IGMAS+ (Interactive Gravity and Magnetic Assistant System; Götze et al., 2010 and Schmidt et al., 2011). The ensuing model will be applied to predict the present-day deep crustal configuration and thermal field characteristics of the basin. Thereafter, 3D volumetric backstripping analysis will be performed to predict basin subsidence mechanisms (i.e. tectonic, thermal and sediment load) through time as well as to estimate paleo-water depths for paleogeographic reconstruction. The information gathered from crust-scale basin dynamics will be subsequently used at the petroleum system modelling stage to holistically assess the hydrocarbon potential of the basin in terms of source rock maturity and hydrocarbon generation, migration, timing and accumulation.
Thermal and structural behavior of anhydrous milk fat. 3. Influence of cooling rate.
Lopez, C; Lesieur, P; Bourgaux, C; Ollivon, M
2005-02-01
The crystallization behavior of anhydrous milk fat has been examined with a new instrument coupling time-resolved synchrotron x-ray diffraction as a function of temperature (XRDT) at both small and wide angles and high-sensitivity differential scanning calorimetry. Crystallizations were monitored at cooling rates of 3 and 1 degrees C/ min from 60 to -10 degrees C to determine the triacylglycerol organizations formed. Simultaneous thermal analysis permitted the correlation of the formation/melting of the different crystalline species monitored by XRDT to the thermal events recorded by differential scanning calorimetry. At intermediate cooling rates, milk fat triacylglycerols sequentially crystallize in 3 different lamellar structures with double-chain length of 46 and 38.5 A and a triple-chain length of 72 A stackings of alpha type, which are correlated to 2 exothermic peaks at 17.2 and 13.7 degrees C, respectively. A time-dependent slow sub-alpha <--> alpha reversible transition is observed at -10 degrees C. Subsequent heating at 2 degrees C/min has shown numerous structural rearrangements of the alpha varieties into a single beta' form before final melting. This polymorphic evolution on heating, as well as the final melting point observed (approximately 39 degrees C), confirmed that cooling at 3 degrees C/min leads to the formation of crystalline varieties that are not at equilibrium. An overall comparison of the thermal and structural properties of the crystalline species formed as a function of the cooling rate and stabilization time is presented. The influence on crystal size of the cooling rates applied in situ using temperature-controlled polarized microscopy is also determined for comparison.
Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation.
Pallarés, Susana; Botella-Cruz, María; Arribas, Paula; Millán, Andrés; Velasco, Josefa
2017-04-01
Exposing organisms to a particular stressor may enhance tolerance to a subsequent stress, when protective mechanisms against the two stressors are shared. Such cross-tolerance is a common adaptive response in dynamic multivariate environments and often indicates potential co-evolution of stress traits. Many aquatic insects in inland saline waters from Mediterranean-climate regions are sequentially challenged with salinity and desiccation stress. Thus, cross-tolerance to these physiologically similar stressors could have been positively selected in insects of these regions. We used adults of the saline water beetles Enochrus jesusarribasi (Hydrophilidae) and Nebrioporus baeticus (Dytiscidae) to test cross-tolerance responses to desiccation and salinity. In independent laboratory experiments, we evaluated the effects of (i) salinity stress on the subsequent resistance to desiccation and (ii) desiccation stress (rapid and slow dehydration) on the subsequent tolerance to salinity. Survival, water loss and haemolymph osmolality were measured. Exposure to stressful salinity improved water control under subsequent desiccation stress in both species, with a clear cross-tolerance (enhanced performance) in N. baeticus In contrast, general negative effects on performance were found under the inverse stress sequence. The rapid and slow dehydration produced different water loss and haemolymph osmolality dynamics that were reflected in different survival patterns. Our finding of cross-tolerance to salinity and desiccation in ecologically similar species from distant lineages, together with parallel responses between salinity and thermal stress previously found in several aquatic taxa, highlights the central role of adaption to salinity and co-occurring stressors in arid inland waters, having important implications for the species' persistence under climate change. © 2017. Published by The Company of Biologists Ltd.
ERIC Educational Resources Information Center
Fakhruddin, Hasan
1993-01-01
Describes a paradox in the equation for thermal expansion. If the calculations for heating a rod and subsequently cooling a rod are determined, the new length of the cool rod is shorter than expected. (PR)
Griffiths, Jennifer R.; Schindler, Daniel E.; Balistrieri, Laurie S.; Ruggerone, Gregory T.
2011-01-01
We used a hydrodynamics model to assess the consequences of climate warming and contemporary geomorphic evolution for thermal conditions in a large, shallow Alaskan lake. We evaluated the effects of both known climate and landscape change, including rapid outlet erosion and migration of the principal inlet stream, over the past 50 yr as well as future scenarios of geomorphic restoration. Compared to effects of air temperature during the past 50 yr, lake thermal properties showed little sensitivity to substantial (~60%) loss of lake volume, as the lake maximum depth declined from 6 m to 4 m driven by outlet erosion. The direction and magnitude of future lake thermal responses will be driven largely by the extent of inlet stream migration when it occurs simultaneously with outlet erosion. Maintaining connectivity with inlet streams had substantial effects on buffering lake thermal responses to warming climate. Failing to account for changing rates and types of geomorphic processes under continuing climate change may misidentify the primary drivers of lake thermal responses and reduce our ability to understand the consequences for aquatic organisms.
NASA Technical Reports Server (NTRS)
Chamberlin, P. C.; Milligan, R. O.; Woods, T. N.
2012-01-01
This paper describes the methods used to obtain the thermal evolution and radiative output during solar flares as observed by the Extreme u ltraviolet Variability Experiment (EVE) onboard the Solar Dynamics Ob servatory (SDO). Presented and discussed in detail are how EVE measur ements, due to its temporal cadence, spectral resolution and spectral range, can be used to determine how the thermal plasma radiates at v arious temperatures throughout the impulsive and gradual phase of fla res. EVE can very accurately determine the radiative output of flares due to pre- and in-flight calibrations. Events are presented that sh ow the total radiated output of flares depends more on the flare duration than the typical GOES X-ray peak magnitude classification. With S DO observing every flare throughout its entire duration and over a la rge temperature range, new insights into flare heating and cooling as well as the radiative energy release in EUV wavelengths support exis ting research into understanding the evolution of solar flares.
Thermal energy storage effort at JPL
NASA Technical Reports Server (NTRS)
Young, D. L.
1980-01-01
The technical, operational, and economic readiness of parabolic dish systems for electric and thermal applications was investigated. A parabolic dish system was then developed to the point at which subsequent commercialization activities can lead to successful market penetration. The immediate possible applications of the dish system to thermal energy storage are discussed.
Doosti-Irani, Amin; Mansournia, Mohammad Ali; Rahimi-Foroushani, Abbas; Haddad, Peiman
2017-01-01
Background Palliative treatments and stents are necessary for relieving dysphagia in patients with esophageal cancer. The aim of this study was to simultaneously compare available treatments in terms of complications. Methods Web of Science, Medline, Scopus, Cochrane Library and Embase were searched. Statistical heterogeneity was assessed using the Chi2 test and was quantified by I2. The results of this study were summarized in terms of Risk Ratio (RR). The random effects model was used to report the results. The rank probability for each treatment was calculated using the p-score. Results Out of 17855 references, 24 RCTs reported complications including treatment related death (TRD), bleeding, stent migration, aspiration, severe pain and fistula formation. In the ranking of treatments, thermal ablative therapy (p-score = 0.82), covered Evolution® stent (p-score = 0.70), brachytherapy (p-score = 0.72) and antireflux stent (p-score = 0.74) were better treatments in the network of TRD. Thermal ablative therapy (p-score = 0.86), the conventional stent (p-score = 0.62), covered Evolution® stent (p-score = 0.96) and brachytherapy (p-score = 0.82) were better treatments in the network of bleeding complications. Covered Evolution® (p-score = 0.78), uncovered (p-score = 0.88) and irradiation stents (p-score = 0.65) were better treatments in network of stent migration complications. In the network of severe pain, Conventional self-expandable nitinol alloy covered stent (p-score = 0.73), polyflex (p-score = 0.79), latex prosthesis (p-score = 0.96) and brachytherapy (p-score = 0.65) were better treatments. Conclusion According to our results, thermal ablative therapy, covered Evolution® stents, brachytherapy, and antireflux stents are associated with a lower risk of TRD. Moreover, thermal ablative therapy, conventional, covered Evolution® and brachytherapy had lower risks of bleeding. Overall, fewer complications were associated with covered Evolution® stent and brachytherapy. PMID:28968416
Present-day Mars' Seismicity Predicted from 3-D Thermal Evolution Models of Interior Dynamics
NASA Astrophysics Data System (ADS)
Knapmeyer, M.; Plesa, A. C.; Golombek, M.
2016-12-01
The InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) mission, to be launched in 2018, will carry the first in-situ seismic and heat flow instruments as well as a precision tracking on Mars. This Discovery-class mission will perform the most comprehensive geophysical investigation of the planet and provide an important baseline to constrain the present-day interior structure and heat budget of the planet, and, in turn, the thermal and chemical evolution of its interior. As the InSight lander will perform the measurements at a single location, numerical simulations of planetary interiors will greatly help to interpret the data in a global context. In this study we have used a series of numerical models of thermal evolution in a 3-D spherical geometry to assess the magnitude of present-day Mars seismicity. Our models assume a fixed crust with a variable thickness as inferred from gravity and topography data, that is enriched in radiogenic heat sources according to the surface abundances inferred from gamma-ray measurements. We test a diversity of parameters by varying the mantle reference viscosity as well as the depth-dependence of the viscosity, considering constant and variable thermal expansivity, varying the crustal thermal conductivity and the size of the core [1]. Our results predict an annual moment release between 1.60 x 1016 Nm and 5.46 x 1018 Nm similar to the values presented previously in [2] and [3]. However, while [2] used a mapping of tectonic surface faults to predict the spatial distribution of epicenters, we derive the distribution from the thermal evolution. Besides the Null-Hypothesis of a uniform distribution and the model of [2], this provides a new, self-consistent, competing hypothesis for both the amount and distribution of seismicity on Mars. [1] Plesa et al., LPSC, 2016 [2] Knapmeyer et al., JGR, 2006 [3] Golombek et al., Science 1992; LPSC 2002
Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions
Barnes, R.
2015-01-01
Abstract The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the “tidal zone,” where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life. Key Words: Tidal dissipation—Thermal history—Planetary interiors—Magnetic field. Astrobiology 15, 739–760. PMID:26393398
Thermal Emission Spectrometer Results: Mars Atmospheric Thermal Structure and Aerosol Distribution
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Pearl, John C.; Conrath, Barney J.; Christensen, Philip R.; Vondrak, Richard R. (Technical Monitor)
2001-01-01
Infrared spectra returned by the Thermal Emission Spectrometer (TES) are well suited for retrieval of the thermal structure and the distribution of aerosols in the Martian atmosphere. Combined nadir- and limb-viewing spectra allow global monitoring of the atmosphere up to 0.01 mbar (65 km). We report here on the atmospheric thermal structure and the distribution of aerosols as observed thus far during the mapping phase of the Mars Global Surveyor mission. Zonal and temporal mean cross sections are used to examine the seasonal evolution of atmospheric temperatures and zonal winds during a period extending from northern hemisphere mid-summer through vernal equinox (L(sub s) = 104-360 deg). Temperature maps at selected pressure levels provide a characterization of planetary-scale waves. Retrieved atmospheric infrared dust opacity maps show the formation and evolution of regional dust storms during southern hemisphere summer. Response of the atmospheric thermal structure to the changing dust loading is observed. Maps of water-ice clouds as viewed in the thermal infrared are presented along with seasonal trends of infrared water-ice opacity. Uses of these observations for diagnostic studies of the dynamics of the atmosphere are discussed.
The early thermal evolution of Mars
NASA Astrophysics Data System (ADS)
Bhatia, G. K.; Sahijpal, S.
2016-01-01
Hf-W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short-lived radio-nuclides 26Al, 60Fe, and the long-lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core-mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core-mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.
Timing of mantle overturn during magma ocean solidification
NASA Astrophysics Data System (ADS)
Boukaré, C.-E.; Parmentier, E. M.; Parman, S. W.
2018-06-01
Solidification of magma oceans (MOs) formed early in the evolution of planetary bodies sets the initial condition for their evolution on much longer time scales. Ideal fractional crystallization would generate an unstable chemical stratification that subsequently overturns to form a stably stratified mantle. The simplest model of overturn assumes that cumulates remain immobile until the end of MO solidification. However, overturning of cumulates and thermal convection during solidification may act to reduce this stratification and introduce chemical heterogeneity on scales smaller than the MO thickness. We explore overturning of cumulates before the end of MO crystallization and the possible consequences for mantle structure and composition. In this model, increasingly dense iron-rich layers, crystallized from the overlying residual liquid MO, are deposited on a thickening cumulate layer. Overturn during solidification occurs if the dimensionless parameter, Rc, measuring the ratio of the MO time of crystallization τMO to the timescale associated with compositional overturn τov = μ / ΔρgH exceeds a threshold value. If overturn did not occur until after solidification, this implies that the viscosity of the solidified mantle must have been sufficiently high (possibly requiring efficient melt extraction from the cumulate) for a given rate of solidification. For the lunar MO, possible implications for the generation of the Mg-suites and mare basalt are suggested.
Lee, Jihoon; Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kunwar, Sundar
2015-12-01
Au nanoparticles (NPs) have been utilized in a wide range of device applications as well as catalysts for the fabrication of nanopores and nanowires, in which the performance of the associated devices and morphology of nanopores and nanowires are strongly dependent on the size, density, and configuration of the Au NPs. In this paper, the evolution of the self-assembled Au nanostructures and NPs on sapphire (0001) is systematically investigated with the variation of annealing temperature (AT) and dwelling time (DT). At the low-temperature range between 300 and 600 °C, three distinct regimes of the Au nanostructure configuration are observed, i.e., the vermiform-like Au piles, irregular Au nano-mounds, and Au islands. Subsequently, being provided with relatively high thermal energy between 700 and 900 °C, the round dome-shaped Au NPs are fabricated based on the Volmer-Weber growth model. With the increased AT, the size of the Au NPs is gradually increased due to a more favorable surface diffusion while the density is gradually decreased as a compensation. On the other hand, with the increased DT, the size and density of Au NPs decrease due to the evaporation of Au at relatively high annealing temperature at 950 °C.
Large impacts and the evolution of Venus; an atmosphere/mantle coupled model.
NASA Astrophysics Data System (ADS)
Gillmann, Cedric; Tackley, Paul; Golabek, Gregor
2014-05-01
We investigate the evolution of atmosphere and surface conditions on Venus through a coupled model of mantle/atmosphere evolution by including meteoritic impacts mechanisms. Our main focuses are mechanisms that deplete or replenish the atmosphere: volcanic degassing, atmospheric escape and impacts. The coupling is obtained using feedback of the atmosphere on the mantle evolution. Atmospheric escape modeling involves two different aspects: hydrodynamic escape (dominant during the first few hundred million years) and non-thermal escape mechanisms as observed by the ASPERA instrument. Post 4 Ga escape is low. The atmosphere is replenished by volcanic degassing, using an adapted version of the StagYY mantle dynamics model (Armann and Tackley, 2012) and including episodic lithospheric overturn. Volatile fluxes are estimated for different mantle compositions and partitioning ratios. The evolving surface temperature is calculated from CO2 and water in the atmosphere with a gray radiative-convective atmosphere model. This surface temperature in turn acts as a boundary condition for the mantle dynamics model and has an influence on the convection, volcanism and subsequent degassing. We take into account the effects of meteorites in our simulations by adapting each relevant part of the model. They can bring volatiles as well as erode the atmosphere. Mantle dynamics are modified since the impact itself can also bring large amounts of energy to the mantle. A 2D distribution of the thermal anomaly due to the impact is used and can lead to melting. Volatile evolution due to impacts (especially the large ones) is heavily debated so we test a broad range of impactor parameters (size, velocity, timing) and test different assumptions related to impact erosion going from large eroding power (Ahrens 1993) to recent parameterization (Shuvalov, 2009, 2010). We are able to produce models leading to present-day-like conditions through episodic volcanic activity consistent with Venus observations. Without any impact, CO2 pressure only slightly increases due to degassing. On the other hand, water pressure varies rapidly leading to variations in surface temperatures of up to 200K, which have been identified to have an effect on volcanic activity. We observe a clear correlation between low temperature and mobile lid regime. We observe short term and long term effects of the impacts on planetary evolution. While small (less than kilometer scale) meteorites have a negligible effect, large ones (up to around 100 km) are able to bring volatiles to the planet and generate melt both at the impact and later on, due to volcanic events they triggered due to the changes they make to mantle dynamics. A significant amount of volatiles can be released on a short timescale. Depending on the timing of the impact, this can have significant long term effects on the surface condition evolution. Atmospheric erosion caused by impacts, on the other hand, and according to recent studies seems to have a marginal effect on the simulations, although the effects of the largest impactors is still debatable.
Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pu, Hung-Yi; Wu, Kinwah; Younsi, Ziri
The general-relativistic magnetohydrodynamical (GRMHD) formulation for black hole-powered jets naturally gives rise to a stagnation surface, where inflows and outflows along magnetic field lines that thread the black hole event horizon originate. We derive a conservative formulation for the transport of energetic electrons, which are initially injected at the stagnation surface and subsequently transported along flow streamlines. With this formulation the energy spectra evolution of the electrons along the flow in the presence of radiative and adiabatic cooling is determined. For flows regulated by synchrotron radiative losses and adiabatic cooling, the effective radio emission region is found to be finite,more » and geometrically it is more extended along the jet central axis. Moreover, the emission from regions adjacent to the stagnation surface is expected to be the most luminous as this is where the freshly injected energetic electrons are concentrated. An observable stagnation surface is thus a strong prediction of the GRMHD jet model with the prescribed non-thermal electron injection. Future millimeter/submillimeter (mm/sub-mm) very-long-baseline interferometric observations of supermassive black hole candidates, such as the one at the center of M87, can verify this GRMHD jet model and its associated non-thermal electron injection mechanism.« less
Gilbert, Maarten J; Duim, Birgitta; Timmerman, Arjen J; Zomer, Aldert L; Wagenaar, Jaap A
2017-08-21
Reptiles have been shown to host a significant Helicobacter diversity. In order to survive, reptile-associated Helicobacter lineages need to be adapted to the thermally dynamic environment encountered in a poikilothermic host. The whole genomes of reptile-associated Helicobacter lineages can provide insights in Helicobacter host adaptation and coevolution. These aspects were explored by comparing the genomes of reptile-, bird-, and mammal-associated Helicobacter lineages. Based on average nucleotide identity, all reptile-associated Helicobacter lineages in this study could be considered distinct species. A whole genome-based phylogeny showed two distinct clades, one associated with chelonians and one associated with lizards. The phylogeny indicates initial adaptation to an anatomical niche, which is followed by an ancient host jump and subsequent diversification. Furthermore, the ability to grow at low temperatures, which might reflect thermal adaptation to a reptilian host, originated at least twice in Helicobacter evolution. A putative tricarballylate catabolism locus was specifically present in Campylobacter and Helicobacter isolates from reptiles. The phylogeny of reptile-associated Helicobacter parallels host association, indicating a high level of host specificity. The high diversity and deep branching within these clades supports long-term coevolution with, and extensive radiation within the respective reptilian host type.
NASA Astrophysics Data System (ADS)
Johnson, Kyle L.; Rodgers, Theron M.; Underwood, Olivia D.; Madison, Jonathan D.; Ford, Kurtis R.; Whetten, Shaun R.; Dagel, Daryl J.; Bishop, Joseph E.
2018-05-01
Additive manufacturing enables the production of previously unachievable designs in conjunction with time and cost savings. However, spatially and temporally fluctuating thermal histories can lead to residual stress states and microstructural variations that challenge conventional assumptions used to predict part performance. Numerical simulations offer a viable way to explore the root causes of these characteristics, and can provide insight into methods of controlling them. Here, the thermal history of a 304L stainless steel cylinder produced using the Laser Engineered Net Shape process is simulated using finite element analysis (FEA). The resultant thermal history is coupled to both a solid mechanics FEA simulation to predict residual stress and a kinetic Monte Carlo model to predict the three-dimensional grain structure evolution. Experimental EBSD measurements of grain structure and in-process infrared thermal data are compared to the predictions.
NASA Astrophysics Data System (ADS)
Johnson, Kyle L.; Rodgers, Theron M.; Underwood, Olivia D.; Madison, Jonathan D.; Ford, Kurtis R.; Whetten, Shaun R.; Dagel, Daryl J.; Bishop, Joseph E.
2017-12-01
Additive manufacturing enables the production of previously unachievable designs in conjunction with time and cost savings. However, spatially and temporally fluctuating thermal histories can lead to residual stress states and microstructural variations that challenge conventional assumptions used to predict part performance. Numerical simulations offer a viable way to explore the root causes of these characteristics, and can provide insight into methods of controlling them. Here, the thermal history of a 304L stainless steel cylinder produced using the Laser Engineered Net Shape process is simulated using finite element analysis (FEA). The resultant thermal history is coupled to both a solid mechanics FEA simulation to predict residual stress and a kinetic Monte Carlo model to predict the three-dimensional grain structure evolution. Experimental EBSD measurements of grain structure and in-process infrared thermal data are compared to the predictions.
Non Thermal Emission from Clusters of Galaxies: the Importance of a Joint LOFAR/Simbol-X View
NASA Astrophysics Data System (ADS)
Ferrari, C.
2009-05-01
Deep radio observations of galaxy clusters have revealed the existence of diffuse radio sources (``halos'' and ``relics'') related to the presence of relativistic electrons and weak magnetic fields in the intracluster volume. I will outline our current knowledge about the presence and properties of this non-thermal cluster component. Despite the recent progress made in observational and theoretical studies of the non-thermal emission in galaxy clusters, a number of open questions about its origin and its effects on the thermo-dynamical evolution of galaxy clusters need to be answered. I will show the importance of combining galaxy cluster observations by new-generation instruments such as LOFAR and Simbol-X. A deeper knowledge of the non-thermal cluster component, together with statistical studies of radio halos and relics, will allow to test the current cluster formation scenario and to better constrain the physics of large scale structure evolution.
Development of time-domain differential Raman for transient thermal probing of materials
Xu, Shen; Wang, Tianyu; Hurley, David; ...
2015-01-01
A novel transient thermal characterization technology is developed based on the principles of transient optical heating and Raman probing: time-domain differential Raman. It employs a square-wave modulated laser of varying duty cycle to realize controlled heating and transient thermal probing. Very well defined extension of the heating time in each measurement changes the temperature evolution profile and the probed temperature field at μs resolution. Using this new technique, the transient thermal response of a tipless Si cantilever is investigated along the length direction. A physical model is developed to reconstruct the Raman spectrum considering the temperature evolution, while taking intomore » account the temperature dependence of the Raman emission. By fitting the variation of the normalized Raman peak intensity, wavenumber, and peak area against the heating time, the thermal diffusivity is determined as 9.17 × 10⁻⁵, 8.14 × 10⁻⁵, and 9.51 × 10⁻⁵ m²/s. These results agree well with the reference value of 8.66 × 10⁻⁵ m²/s considering the 10% fitting uncertainty. The time-domain differential Raman provides a novel way to introduce transient thermal excitation of materials, probe the thermal response, and measure the thermal diffusivity, all with high accuracy.« less
Thermal Shock Properties of a 2D-C/SiC Composite Prepared by Chemical Vapor Infiltration
NASA Astrophysics Data System (ADS)
Zhang, Chengyu; Wang, Xuanwei; Wang, Bo; Liu, Yongsheng; Han, Dong; Qiao, Shengru; Guo, Yong
2013-06-01
The thermal shock properties of a two-dimensional carbon fiber-reinforced silicon carbide composite with a multilayered self-healing coating (2D-C/SiC) were investigated in air. The composite was prepared by low-pressure chemical vapor infiltration. 2D-C/SiC specimens were thermally shocked for different cycles between 900 and 300 °C. The thermal shock resistance was characterized by residual tensile properties and mass variation. The change of the surface morphology and microstructural evolution of the composite were examined by a scanning electron microscope. In addition, the phase evolution on the surfaces was identified using an X-ray diffractometer. It is found that the composite retains its tensile strength within 20 thermal shock cycles. However, the modulus of 2D-C/SiC decreases gradually with increasing thermal shock cycles. Extensive pullout of fibers on the fractured surface and peeling off of the coating suggest that the damage caused by the thermal shock involves weakening of the bonding strength of coating/composite and fiber/matrix. In addition, the carbon fibers in the near-surface zone were oxidized through the matrix cracks, and the fiber/matrix interfaces delaminated when the composite was subjected to a larger number of thermal shock cycles.
NASA Technical Reports Server (NTRS)
Scanvic, J. Y. (Principal Investigator)
1980-01-01
Thermal zones delimited on HCMM images, by visual interpretation only, were correlated with geological units and carbonated rocks, granitic, and volcanic rocks were individualized. Rock signature is an evolutive parameter and some distinctions were made by addition of day, night and seasonal thermal image interpretation. This analysis also demonstrated that forest cover does not mask the underlying rocks thermal signature. Thermal anomalies were discovered. Geological targets were defined in the Paris Basin and the Montmarault granite.
NASA Astrophysics Data System (ADS)
Baughman, J. S.; Flowers, R. M.
2017-12-01
Cratons are the most stable portions of continents, but the degree to which they are affected by post-cratonization tectonic and magmatic processes is unclear. Complete time-temperature (t-T) histories are necessary to understand the timing, extent, and characteristics of post-cratonization events that disrupted these regions. However, deciphering extended cratonic t-T records is difficult owing to the incomplete stratigraphic records of continental interior settings, and the challenge of accessing the appropriate thermal history range with conventional thermochronometers. The Kaapvaal craton in South Africa is an archetypal craton that initially stabilized in the Archean and was subsequently affected by magmatic and marginal accretionary events. Here we exploit titanite and zircon (U-Th)/He (THe, ZHe) thermochronology to better decipher the somewhat cryptic Proterozoic through early Paleozoic history of the craton. Radiation damage effects on the He diffusivity of these two minerals provides the potential to access a wide temperature window from 200°C to near surface conditions. Existing low-temperature apatite (U-Th)/He and fission-track results constrain Late Paleozoic to Mesozoic burial of the Karoo basin and subsequent Cretaceous unroofing, while 40Ar/39Ar and Rb-Sr data document cooling through temperatures of 300°C by 2 Ga. We obtained THe and ZHe dates from across the northern Kaapvaal craton to fill in the thermal history gap between these constraints. THe and ZHe dates range from 1200 to 200 Ma, and 1000 to 30 Ma, respectively. Both sets of dates are negatively correlated with effective uranium concentration (eU), manifesting the effect of radiation damage on the He retentivity, and therefore closure temperature, of these minerals. The results allow us to assess the Mesoproterozoic through present day thermal history of the northern Kaapvaal craton. The THe data suggest that Mesoproterozoic exhumation and large-scale reheating associated with Namaqua-Natal orogenesis affected the region. While, the ZHe data constrain maximum burial temperatures during Mesozoic Karoo burial. Together the results show the power of exploiting thermochronologic advances to access new information about long-term continental evolution.
Speckle contrast techniques in the study of tissue thermal modification and denaturation
NASA Astrophysics Data System (ADS)
Agafonov, Dmitry N.; Kuznetsova, Liana V.; Zimnyakov, Dmitry A.; Sviridov, Alexander P.; Omelchenko, Alexander I.
2002-05-01
Results of the contrast analysis of time-averaged dynamic speckle patterns in application to monitoring of the structure modification of the thermally treated collagenous tissue such as cartilage are presented. The modification presumably induced by the bound to free water phase transition in the matrix of the treated tissue cause the specific feature of evolution of the time-averaged speckle contrast with the change of the current temperature of modified collagen tissue. This evolution appears as hysteresis associated with irreversible changes in tissue structure.
NASA Astrophysics Data System (ADS)
Surikov, Vad. I.; Surikov, Val. I.; Danilov, S. V.; Semenyuk, N. A.; Egorova, V. A.; Eysmont, N. G.
2018-06-01
The results of investigations of heat capacity Cp of a series of V1-xFexO2-solid solutions at the temperatures from 4.2 to 25 K are reported. It is found out that at these temperatures considerable contributions into the heat capacity come from the crystal lattice proper and crystal lattice defects formed in the course of material synthesis. The results of investigating the evolution of these materials during thermal cycling are also reported.
Ultrafast Non-thermal Response of Plasmonic Resonance in Gold Nanoantennas
NASA Astrophysics Data System (ADS)
Soavi, Giancarlo; Valle, Giuseppe Della; Biagioni, Paolo; Cattoni, Andrea; Longhi, Stefano; Cerullo, Giulio; Brida, Daniele
Ultrafast thermalization of electrons in metal nanostructures is studied by means of pump-probe spectroscopy. We track in real-time the plasmon resonance evolution, providing a tool for understanding and controlling gold nanoantennas non-linear optical response.
NASA Astrophysics Data System (ADS)
Thiriet, M.; Plesa, A. C.; Breuer, D.; Michaut, C.
2017-12-01
To model the thermal evolution of terrestrial planets, 1D parametrized models are often used as 2 or 3D mantle convection codes are very time-consuming. In these parameterized models, scaling laws that describe the convective heat transfer rate as a function of the convective parameters are derived from 2-3D steady state convection models. However, so far there has been no comprehensive comparison whether they can be applied to model the thermal evolution of a cooling planet. Here we compare 2D and 3D thermal evolution models in the stagnant lid regime with 1D parametrized models and use parameters representing the cooling of the Martian mantle. For the 1D parameterized models, we use the approach of Grasset and Parmentier (1998) and treat the stagnant lid and the convecting layer separately. In the convecting layer, the scaling law for a fluid with constant viscosity is valid with Nu (Ra/Rac) ?, with Rac the critical Rayleigh number at which the thermal boundary layers (TBL) - top or bottom - destabilize. ? varies between 1/3 and 1/4 depending on the heating mode and previous studies have proposed intermediate values of b 0.28-0.32 according to their model set-up. The base of the stagnant lid is defined by the temperature at which the mantle viscosity has increased by a factor of 10; it thus depends on the rate of viscosity change with temperature multiplied by a factor? , whose value appears to vary depending on the geometry and convection conditions. In applying Monte Carlo simulations, we search for the best fit to temperature profiles and heat flux using three free parameters, i.e. ? of the upper TBL, ? and the Rac of the lower TBL. We find that depending on the definition of the stagnant lid thickness in the 2-3D models several combinations of ? and ? for the upper TBL can retrieve suitable fits. E.g. combinations of ? = 0.329 and ? = 2.19 but also ? = 0.295 and ? = 2.97 are possible; Rac of the lower TBL is 10 for all best fits. The results show that although the heating conditions change from bottom to mainly internally heating as a function of time, the thermal evolution can be represented by one set of parameters.
NASA Technical Reports Server (NTRS)
Leake, M. A.
1982-01-01
Recent and more complex thermal models of Mercury and the terrestrial planets are discussed or noted. These models isolate a particular aspect of the planet's thermal history in an attempt to understand that parameter. Among these topics are thermal conductivity, convection, radiogenic sources of heat, other heat sources, and the problem of the molten core and regenerative dynamo.
Berger, D; Walters, R J; Blanckenhorn, W U
2014-09-01
Theory predicts the emergence of generalists in variable environments and antagonistic pleiotropy to favour specialists in constant environments, but empirical data seldom support such generalist-specialist trade-offs. We selected for generalists and specialists in the dung fly Sepsis punctum (Diptera: Sepsidae) under conditions that we predicted would reveal antagonistic pleiotropy and multivariate trade-offs underlying thermal reaction norms for juvenile development. We performed replicated laboratory evolution using four treatments: adaptation at a hot (31 °C) or a cold (15 °C) temperature, or under regimes fluctuating between these temperatures, either within or between generations. After 20 generations, we assessed parental effects and genetic responses of thermal reaction norms for three correlated life-history traits: size at maturity, juvenile growth rate and juvenile survival. We find evidence for antagonistic pleiotropy for performance at hot and cold temperatures, and a temperature-mediated trade-off between juvenile survival and size at maturity, suggesting that trade-offs associated with environmental tolerance can arise via intensified evolutionary compromises between genetically correlated traits. However, despite this antagonistic pleiotropy, we found no support for the evolution of increased thermal tolerance breadth at the expense of reduced maximal performance, suggesting low genetic variance in the generalist-specialist dimension. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Thermal Evolution of a Failed Flux Rope Eruption Revealed by Temperature Maps
NASA Astrophysics Data System (ADS)
Song, H.; Zhang, J.; CHEN, Y.
2013-12-01
Flux rope is generally considered to be the fundamental magnetic configuration of a coronal mass ejection (CME). Recent observations suggest that hot channel or blob structures during the eruptions be the direct observational manifestation of flux ropes. In this study, we report our analysis of thermal evolution of a failed solar eruption with an apparent flux rope embedded. The thermal structure of the eruption is revealed through differential emission measure (DEM) analysis technique, which shows detailed temperature maps in both high spatial resolution and high temperature resolution based on SDO/AIA observations. Our results show that the flux rope exists in the corona before the eruption, and its temperature can quickly rise to over 10 MK within one minute of the eruption. The correlation study between the flux rope temperature and the soft x-ray flux suggests that the flux rope should be heated through the direct thermal energy release of magnetic reconnection. Further, we study the kinematic evolution process of the flux rope, in an effort to find the physical mechanism that prevents the magnetic rope eruption to become a full coronal mass ejection. This kind of study using temperature maps might reveal where and when magnetic reconnection takes place during solar eruptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okoro, Chukwudi, E-mail: chukwudi.okoro@nist.gov; Obeng, Yaw; Levine, Lyle E.
2014-06-28
One of the main causes of failure during the lifetime of microelectronics devices is their exposure to fluctuating temperatures. In this work, synchrotron-based X-ray micro-diffraction is used to study the evolution of stresses in copper through-silicon via (TSV) interconnects, “as-received” and after 1000 thermal cycles. For both test conditions, significant fluctuations in the measured normal and shear stresses with depth are attributed to variations in the Cu grain orientation. Nevertheless, the mean hydrostatic stresses in the “as-received” Cu TSV were very low, at (16 ± 44) MPa, most likely due to room temperature stress relaxation. In contrast, the mean hydrostatic stresses alongmore » the entire length of the Cu TSV that had undergone 1000 thermal cycles (123 ± 37) MPa were found to be eight times greater, which was attributed to increased strain-hardening. The evolution in stresses with thermal cycling is a clear indication that the impact of Cu TSVs on front-end-of-line (FEOL) device performance will change through the lifetime of the 3D stacked dies, and ought to be accounted for during FEOL keep-out-zone design rules development.« less
Thermalization dynamics in a quenched many-body state
NASA Astrophysics Data System (ADS)
Kaufman, Adam; Preiss, Philipp; Tai, Eric; Lukin, Alex; Rispoli, Matthew; Schittko, Robert; Greiner, Markus
2016-05-01
Quantum and classical many-body systems appear to have disparate behavior due to the different mechanisms that govern their evolution. The dynamics of a classical many-body system equilibrate to maximally entropic states and quickly re-thermalize when perturbed. The assumptions of ergodicity and unbiased configurations lead to a successful framework of describing classical systems by a sampling of thermal ensembles that are blind to the system's microscopic details. By contrast, an isolated quantum many-body system is governed by unitary evolution: the system retains memory of past dynamics and constant global entropy. However, even with differing characteristics, the long-term behavior for local observables in quenched, non-integrable quantum systems are often well described by the same thermal framework. We explore the onset of this convergence in a many-body system of bosonic atoms in an optical lattice. Our system's finite size allows us to verify full state purity and measure local observables. We observe rapid growth and saturation of the entanglement entropy with constant global purity. The combination of global purity and thermalized local observables agree with the Eigenstate Thermalization Hypothesis in the presence of a near-volume law in the entanglement entropy.
NASA Astrophysics Data System (ADS)
McClymont, Alastair F.; Hayashi, Masaki; Bentley, Laurence R.; Christensen, Brendan S.
2013-09-01
our current understanding of permafrost thaw in subarctic regions in response to rising air temperatures, little is known about the subsurface geometry and distribution of discontinuous permafrost bodies in peat-covered, wetland-dominated terrains and their responses to rising temperature. Using electrical resistivity tomography, ground-penetrating radar profiling, and thermal-conduction modeling, we show how the land cover distributions influence thawing of discontinuous permafrost at a study site in the Northwest Territories, Canada. Permafrost bodies in this region occur under forested peat plateaus and have thicknesses of 5-13 m. Our geophysical data reveal different stages of thaw resulting from disturbances within the active layer: from widening and deepening of differential thaw features under small frost-table depressions to complete thaw of permafrost under an isolated bog. By using two-dimensional geometric constraints derived from our geophysics profiles and meteorological data, we model seasonal and interannual changes to permafrost distribution in response to contemporary climatic conditions and changes in land cover. Modeling results show that in this environment (1) differences in land cover have a strong influence on subsurface thermal gradients such that lateral thaw dominates over vertical thaw and (2) in accordance with field observations, thaw-induced subsidence and flooding at the lateral margins of peat plateaus represents a positive feedback that leads to enhanced warming along the margins of peat plateaus and subsequent lateral heat conduction. Based on our analysis, we suggest that subsurface energy transfer processes (and feedbacks) at scales of 1-100 m have a strong influence on overall permafrost degradation rates at much larger scales.
Hidalgo-Galiana, A; Monge, M; Biron, D G; Canals, F; Ribera, I; Cieslak, A
2016-01-01
Physiological changes associated with evolutionary and ecological processes such as diversification, range expansion or speciation are still incompletely understood, especially for non-model species. Here we study differences in protein expression in response to temperature in a western Mediterranean diving beetle species complex, using two-dimensional differential gel electrophoresis with one Moroccan and one Iberian population each of Agabus ramblae and Agabus brunneus. We identified proteins with significant expression differences after thermal treatments comparing them with a reference EST library generated from one of the species of the complex (A. ramblae). The colonisation during the Middle Pleistocene of the Iberian peninsula by A. ramblae, where maximum temperatures and seasonality are lower than in the ancestral north African range, was associated with changes in the response to 27 °C in proteins related to energy metabolism. The subsequent speciation of A. brunneus from within populations of Iberian A. ramblae was associated with changes in the expression of several stress-related proteins (mostly chaperons) when exposed to 4 °C. These changes are in agreement with the known tolerance to lower temperatures of A. brunneus, which occupies a larger geographical area with a wider range of climatic conditions. In both cases, protein expression changes paralleled the evolution of thermal tolerance and the climatic conditions experienced by the species. However, although the colonisation of the Iberian peninsula did not result in morphological change, the speciation process of A. brunneus within Iberia involved genetic isolation and substantial differences in male genitalia and body size and shape.
Hidalgo-Galiana, A; Monge, M; Biron, D G; Canals, F; Ribera, I; Cieslak, A
2016-01-01
Physiological changes associated with evolutionary and ecological processes such as diversification, range expansion or speciation are still incompletely understood, especially for non-model species. Here we study differences in protein expression in response to temperature in a western Mediterranean diving beetle species complex, using two-dimensional differential gel electrophoresis with one Moroccan and one Iberian population each of Agabus ramblae and Agabus brunneus. We identified proteins with significant expression differences after thermal treatments comparing them with a reference EST library generated from one of the species of the complex (A. ramblae). The colonisation during the Middle Pleistocene of the Iberian peninsula by A. ramblae, where maximum temperatures and seasonality are lower than in the ancestral north African range, was associated with changes in the response to 27 °C in proteins related to energy metabolism. The subsequent speciation of A. brunneus from within populations of Iberian A. ramblae was associated with changes in the expression of several stress-related proteins (mostly chaperons) when exposed to 4 °C. These changes are in agreement with the known tolerance to lower temperatures of A. brunneus, which occupies a larger geographical area with a wider range of climatic conditions. In both cases, protein expression changes paralleled the evolution of thermal tolerance and the climatic conditions experienced by the species. However, although the colonisation of the Iberian peninsula did not result in morphological change, the speciation process of A. brunneus within Iberia involved genetic isolation and substantial differences in male genitalia and body size and shape. PMID:26328758
Recrystallization Behavior in SAC305 and SAC305 + 3.0POSS Solder Joints Under Thermal Shock
NASA Astrophysics Data System (ADS)
Han, Jing; Gu, Penghao; Ma, Limin; Guo, Fu; Liu, Jianping
2018-04-01
Sn-3.0Ag-0.5Cu (SAC305) and SAC305 + 3.0 polyhedral oligomeric silsesquioxanes (POSS) ball grid array (BGA) assemblies have been prepared, observed, and subjected to thermal shock. The microstructure and grain orientation evolution of the solder joints located at the same position of the package were characterized by scanning electron microscopy and electron backscattering diffraction, respectively. The results showed that the microstructure of the solder joints was refined by addition of POSS particles. In addition, compared with the single-grained or tricrystal joints normally observed in SAC305 BGA solder joints, the frequency of single-grained as-reflowed SAC305 + 3.0POSS BGA joints was greatly reduced, and the solder joints were typically composed of multicrystals with orientations separated by high-angle grain boundaries. These multicrystal joints appear to be obtained by dominant tricrystals or double tricrystals with deviation of the preferred [110] and [1\\bar{1}0] growth directions of Sn dendrites in Sn-Ag-based solder alloys during solidification from the melt. After 928 thermal shock cycles, the SAC305 solder joint had large-area recrystallization and cracks in contrast to the SAC305 + 3.0POSS solder joint located at the same position of the package, indicating that addition of POSS to SAC305 solder joints may contribute to postponement of recrystallization and subsequent crack initiation and propagation along recrystallized grain boundaries by pinning grain boundaries and movement of dislocations. This finding also confirms the double tricrystal solidification twinning nucleation behavior in Pb-free solder joints.
Uses of vitrinite reflectance in determining thermal history in sedimentary basins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castano, J.R.
1985-02-01
Vitrinite reflectance (VR), adapted from coal petrology, came into routine use in the petroleum industry in the late 1960s. Initially, the principal goal was to help establish the VR limits for oil and gas generation. Subsequently, VR has become accepted as the most useful measure of burial history and paleotemperature, largely because VR affords the most practical means of measuring the progression of organic metamorphism. VR is used to correlate other measures of thermal history such as chemical maturity parameters, Rock-Eval t/sub max/, and burial-history reconstruction. VR can aid in identifying unconformities, geopressured sections, and thermally altered zones. Combined withmore » good temperature data, the determination of VR equivalents from temperature and burial time are used to evaluate the relationship of depth to log VR obtained directly. The time and temperature required for maturation in Tertiary basins stresses the interplay of both factors in the maturation process. Reflectance has been employed in deciphering the burial history and tectonic evolution of many areas, including structurally complex regions as the Alps and the Wyoming Overthrust Belt. Interpretational problems that arise include: (1) VR can be altered by the absorption of hydrogen-rich materials, oxidation, and natural coking; (2) the presence of reworked and caved organic matter produces multiple reflectance populations; and (3) vitrinite is sometimes difficult to distinguish from solid hydrocarbons and some inerts if the particle size is small. Most of these problems are resolved at the microscope. Interpretation is improved significantly by analyzing a series of samples rather than an isolated sample.« less
A model for the hydrologic and climatic behavior of water on Mars
NASA Technical Reports Server (NTRS)
Clifford, Stephen M.
1993-01-01
An analysis is carried out of the hydrologic response of a water-rich Mars to climate change and to the physical and thermal evolution of its crust, with particular attention given to the potential role of the subsurface transport, assuming that the current models of insolation-driven change describe reasonably the atmospheric leg of the planet's long-term hydrologic cycle. Among the items considered are the thermal and hydrologic properties of the crust, the potential distribution of ground ice and ground water, the stability and replenishment of equatorial ground ice, basal melting and the polar mass balance, the thermal evolution of the early cryosphere, the recharge of the valley networks and outflow, and several processes that are likely to drive the large-scale vertical and horizontal transport of H2O within the crust. The results lead to the conclusion that subsurface transport has likely played an important role in the geomorphic evolution of the Martian surface and the long-term cycling of H2O between the atmosphere, polar caps, and near-surface crust.
NASA Technical Reports Server (NTRS)
Head, James W.; Parmentier, E. M.; Hess, P. C.
1993-01-01
Observations from Magellan show that: (1) the surface of Venus is generally geologically young, (2) there is no evidence for widespread recent crustal spreading or subduction, (3) the crater population permits the hypothesis that the surface is in production, and (4) relatively few impact craters appear to be embayed by volcanic deposits suggesting that the volcanic flux has drastically decreased as a function of time. These observations have led to consideration of hypotheses suggesting that the geological history of Venus may have changed dramatically as a function of time due to general thermal evolution, and/or thermal and chemical evolution of a depleted mantle layer, perhaps punctuated by catastrophic overturn of upper layers or episodic plate tectonics. We have previously examined the geological implications of some of these models, and here we review the predictions associated with two periods of Venus history. Stationary thick lithosphere and depleted mantle layer, and development of regional to global development of regional to global instabilities, and compare these predictions to the geological characteristics of Venus revealed by Magellan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Lance; Contescu, Christian I.; Byun, Thak Sang
2016-08-01
The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 *C up to 9.3E25 n/m2 (E > 0.1 MeV). Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free conditions. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3e40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsworth, Derek; Izadi, Ghazal; Gan, Quan
This work has investigated the roles of effective stress induced by changes in fluid pressure, temperature and chemistry in contributing to the evolution of permeability and induced seismicity in geothermal reservoirs. This work has developed continuum models [1] to represent the progress or seismicity during both stimulation [2] and production [3]. These methods have been used to resolve anomalous observations of induced seismicity at the Newberry Volcano demonstration project [4] through the application of modeling and experimentation. Later work then focuses on the occurrence of late stage seismicity induced by thermal stresses [5] including the codifying of the timing andmore » severity of such responses [6]. Furthermore, mechanistic linkages between observed seismicity and the evolution of permeability have been developed using data from the Newberry project [7] and benchmarked against field injection experiments. Finally, discontinuum models [8] incorporating the roles of discrete fracture networks have been applied to represent stimulation and then thermal recovery for new arrangements of geothermal wells incorporating the development of flow manifolds [9] in order to increase thermal output and longevity in EGS systems.« less
Snead, Lance L.; Contescu, C. I.; Byun, T. S.; ...
2016-04-23
The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 C up to 9.3x10 25 n/m 2 (E>0.1 MeV.) Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free condition. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3-40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less
Hwang, Gaeun; Park, Hyungmin; Bok, Taesoo; Choi, Sinho; Lee, Sungjun; Hwang, Inchan; Choi, Nam-Soon; Seo, Kwanyong; Park, Soojin
2015-03-14
Nanostructured micrometer-sized Al-Si particles are synthesized via a facile selective etching process of Al-Si alloy powder. Subsequent thin Al2O3 layers are introduced on the Si foam surface via a selective thermal wet oxidation process of etched Al-Si particles. The resulting Si/Al2O3 foam anodes exhibit outstanding cycling stability (a capacity retention of 78% after 300 cycles at the C/5 rate) and excellent rate capability.
NASA Astrophysics Data System (ADS)
Griffiths, Luke; Heap, Michael; Lengliné, Olivier; Schmittbuhl, Jean; Baud, Patrick
2017-04-01
Rock undergoes fluctuations in temperature in various settings in Earth's crust, including areas of volcanic or geothermal activity, or industrial environments such as hydrocarbon or geothermal reservoirs. Changes in temperature can cause thermal stresses that can result in the formation of microcracks, which affect the mechanical, physical, and transport properties of rocks. Of the affected physical properties, the elastic wave velocity of rock is particularly sensitive to microcracking. Monitoring the evolution of elastic wave velocity during the thermal stressing of rock therefore provides valuable insight into thermal cracking processes. One monitoring technique is Coda Wave Interferometry (CWI), which infers high-resolution changes in the medium from changes in multiple-scattered elastic waves. We have designed a new experimental setup to perform CWI whilst cyclically heating and cooling samples of granite (cylinders of 20 mm diameter and 40 mm length). In our setup, the samples are held between two pistons within a tube furnace and are heated and cooled at a rate of 1 °C/min to temperatures of up to 300 °C. Two high temperature piezo-transducers are each in contact with an opposing face of the rock sample. The servo-controlled uniaxial press compensates for the thermal expansion and contraction of the pistons and the sample, keeping the coupling between the transducers and the sample, and the axial force acting on the sample, constant throughout. Our setup is designed for simultaneous acoustic emission monitoring (AE is commonly used as a proxy for microcracking), and so we can follow thermal microcracking precisely by combining the AE and CWI techniques. We find that during the first heating/cooling cycle, the onset of thermal microcracking occurs at a relatively low temperature of around 65 °C. The CWI shows that elastic wave velocity decreases with increasing temperature and increases during cooling. Upon cooling, back to room temperature, there is an irreversible relative decrease in velocity of several percent associated with the presence of new thermal microcracks. Our data suggest that few new microcracks were formed when the same sample was subject to subsequent identical heating/cooling cycles as changes in the elastic wave velocity are near-reversible. Our results shed light on the temperature conditions required for thermal microcracking and the influence of temperature on elastic wave velocity with applications to a wide variety of geoscientific disciplines.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Avuthu, V.; Galgalikar, R.; Zhang, Z.
2015-09-01
A thermo-mechanical finite element analysis of the friction stir welding (FSW) process is carried out and the evolution of the material state (e.g., temperature, the extent of plastic deformation, etc.) monitored. Subsequently, the finite-element results are used as input to a Monte-Carlo simulation algorithm in order to predict the evolution of the grain microstructure within different weld zones, during the FSW process and the subsequent cooling of the material within the weld to room temperature. To help delineate different weld zones, (a) temperature and deformation fields during the welding process, and during the subsequent cooling, are monitored; and (b) competition between the grain growth (driven by the reduction in the total grain-boundary surface area) and dynamic-recrystallization grain refinement (driven by the replacement of highly deformed material with an effectively "dislocation-free" material) is simulated. The results obtained clearly revealed that different weld zones form as a result of different outcomes of the competition between the grain growth and grain refinement processes.
NASA Astrophysics Data System (ADS)
Schmidt, B.; Dyl, K.
2014-07-01
The mid-outer main belt is rich in possible parent bodies for the water-bearing carbonaceous chondrites, given their dark surfaces and frequent presence of hydrated minerals (e.g., Feierberg et al. 1985). Ceres (Thomas et al. 2005) and Pallas (Schmidt et al. 2009) possess shapes that indicate that these bodies have achieved hydrostatic equilibrium and may be differentiated (rock from ice). Dynamical calculations suggest asteroids formed rapidly to large sizes to produce the size frequency distribution within today's main belt (e.g., Morbidelli et al. 2009). Water-ice bound to organics has now been detected on the surface of Themis (Rivkin and Emery 2009, Campins et al. 2009), and indirect evidence for ice on many of the remaining family members, including main-belt comets (Hsieh & Jewitt 2006, Castillo-Rogez & Schmidt 2010), supports the theory that the ''C-class'' asteroids formed early and ice-rich. The carbonaceous chondrites represent a rich history of the thermal and aqueous evolution of early planetesimals (e.g., McSween 1979, Bunch and Chang, 1980, Zolensky and McSween 1988, Clayton 1993, Rowe et al., 1994). The composition of these meteorites reflects the timing and duration of water flow, as well as subsequent mineral alteration and isotopic evolution that can constrain temperature and water-rock ratios in which these systematics were set (e.g., Young et al. 1999, Dyl et al. 2012). Debate exists as to how the chemical and thermal consequences of fluid flow on carbonaceous chondrite parent bodies relate to parent-body characteristics: small, static water bodies (e.g., McSween 1979); small, convecting but homogeneous bodies (e.g., Young et al. 1999, 2003); or larger convecting bodies (e.g., Grimm and McSween 1989, Palguta et al. 2010). Heterogeneous thermal and aqueous evolution on larger asteroids that suggests more than one class of carbonaceous chondrite may be produced on the same body (e.g., Castillo-Rogez & Schmidt 2010, Elkins-Tanton et al. 2011, Schmidt & Castillo-Rogez 2012) if the chemical consequences can be reconciled (e.g., Young 2001, Young et al. 2003). Both models (Schmidt and Castillo-Rogez 2012) and experiments (e.g., Hiroi et al. 1996) suggest that water loss from asteroids is an important factor in interpreting the connections between the C-class asteroids and meteorites. The arrival of the Dawn spacecraft to Ceres will determine its much-debated internal structure and finally answer the following question: did large, icy planetesimals form and thermally evolve in the inner solar system? Even if Ceres is not icy, Dawn observations will shed light on its surface composition, and by extension on the surfaces of objects with similar surface properties. This presentation will focus on tying the observational evidence for water on evolving and contemporary asteroids with detailed studies of the carbonaceous chondrites in an effort to synthesize physical and chemical realities with the observational record, bridging the gap between the asteroid and meteorite communities.
Dehant, V; Asael, D; Baland, R M; Baludikay, B K; Beghin, J; Belza, J; Beuthe, M; Breuer, D; Chernonozhkin, S; Claeys, Ph; Cornet, Y; Cornet, L; Coyette, A; Debaille, V; Delvigne, C; Deproost, M H; De WInter, N; Duchemin, C; El Atrassi, F; François, C; De Keyser, J; Gillmann, C; Gloesener, E; Goderis, S; Hidaka, Y; Höning, D; Huber, M; Hublet, G; Javaux, E J; Karatekin, Ö; Kodolanyi, J; Revilla, L Lobo; Maes, L; Maggiolo, R; Mattielli, N; Maurice, M; McKibbin, S; Morschhauser, A; Neumann, W; Noack, L; Pham, L B S; Pittarello, L; Plesa, A C; Rivoldini, A; Robert, S; Rosenblatt, P; Spohn, T; Storme, J -Y; Tosi, N; Trinh, A; Valdes, M; Vandaele, A C; Vanhaecke, F; Van Hoolst, T; Van Roosbroek, N; Wilquet, V; Yseboodt, M
2016-11-01
The Interuniversity Attraction Pole (IAP) 'PLANET TOPERS' (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their Reservoirs) addresses the fundamental understanding of the thermal and compositional evolution of the different reservoirs of planetary bodies (core, mantle, crust, atmosphere, hydrosphere, cryosphere, and space) considering interactions and feedback mechanisms. Here we present the first results after 2 years of project work.
Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation
NASA Astrophysics Data System (ADS)
Biggin, A. J.; Piispa, E. J.; Pesonen, L. J.; Holme, R.; Paterson, G. A.; Veikkolainen, T.; Tauxe, L.
2015-10-01
The Earth's inner core grows by the freezing of liquid iron at its surface. The point in history at which this process initiated marks a step-change in the thermal evolution of the planet. Recent computational and experimental studies have presented radically differing estimates of the thermal conductivity of the Earth's core, resulting in estimates of the timing of inner-core nucleation ranging from less than half a billion to nearly two billion years ago. Recent inner-core nucleation (high thermal conductivity) requires high outer-core temperatures in the early Earth that complicate models of thermal evolution. The nucleation of the core leads to a different convective regime and potentially different magnetic field structures that produce an observable signal in the palaeomagnetic record and allow the date of inner-core nucleation to be estimated directly. Previous studies searching for this signature have been hampered by the paucity of palaeomagnetic intensity measurements, by the lack of an effective means of assessing their reliability, and by shorter-timescale geomagnetic variations. Here we examine results from an expanded Precambrian database of palaeomagnetic intensity measurements selected using a new set of reliability criteria. Our analysis provides intensity-based support for the dominant dipolarity of the time-averaged Precambrian field, a crucial requirement for palaeomagnetic reconstructions of continents. We also present firm evidence for the existence of very long-term variations in geomagnetic strength. The most prominent and robust transition in the record is an increase in both average field strength and variability that is observed to occur between a billion and 1.5 billion years ago. This observation is most readily explained by the nucleation of the inner core occurring during this interval; the timing would tend to favour a modest value of core thermal conductivity and supports a simple thermal evolution model for the Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia
In this paper, we illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions thatmore » simulate magma rise from a deep (≥ 8 km depth) to shallow (2–6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. Finally, the simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).« less
Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia; ...
2016-11-11
In this paper, we illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions thatmore » simulate magma rise from a deep (≥ 8 km depth) to shallow (2–6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. Finally, the simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).« less
Modelling evolution of asteroid's rotation due to the YORP effect
NASA Astrophysics Data System (ADS)
Golubov, Oleksiy; Lipatova, Veronika; Scheeres, Daniel J.
2016-05-01
The Yarkovsky--O'Keefe--Radzievskii--Paddack (or YORP) effect is influence of light pressure on rotation of asteroids. It is the most important factor for evolution of rotation state of small asteroids, which can drastically alter their rotation rate and obliquity over cosmologic timescales.In the poster we present our program, which calculates evolution of ratation state of small asteroids subject to the YORP effect. The program accounts for both axial and obliquity components of YORP, takes into account the thermal inertia of the asteroid's soil, and the tangential YORP. The axial component of YORP is computed using the model by Steinberg and Sari (AJ, 141, 55). The thermal inertia is accounted for in the framework of Golubov et al. 2016 (MNRAS, stw540). Computation of the tangential YORP is based on a siple analytical model, whose applicability is verified via comparison to exact numeric simulations.We apply the program to different shape models of asteroids, and study coupled evolution of their rotation rate and obliquity.
Ketola, Tarmo; Mikonranta, Lauri; Zhang, Ji; Saarinen, Kati; Ormälä, Anni-Maria; Friman, Ville-Petri; Mappes, Johanna; Laakso, Jouni
2013-10-01
Environmental fluctuations can select for generalism, which is also hypothesized to increase organisms' ability to invade novel environments. Here, we show that across a range of temperatures, opportunistic bacterial pathogen Serratia marcescens that evolved in fluctuating temperature (daily variation between 24°C and 38°C, mean 31°C) outperforms the strains that evolved in constant temperature (31°C). The growth advantage was also evident in novel environments in the presence of parasitic viruses and predatory protozoans, but less clear in the presence of stressful chemicals. Adaptation to fluctuating temperature also led to reduced virulence in Drosophila melanogaster host, which suggests that generalism can still be costly in terms of reduced fitness in other ecological contexts. While supporting the hypothesis that evolution of generalism is coupled with tolerance to several novel environments, our results also suggest that thermal fluctuations driven by the climate change could affect both species' invasiveness and virulence. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Dao-ming, Lu
2018-05-01
The negativity of Wigner function (WF) is one of the important symbols of non-classical properties of light field. Therefore, it is of great significance to study the evolution of WF in dissipative process. The evolution formula of WF in laser process under the action of linear resonance force is given by virtue of thermo entangled state representation and the technique of integration within an ordered product of operator. As its application, the evolution of WF of thermal field and that of single-photon-added coherent state are discussed. The results show that the WF of thermal field maintains its original character. On the other hand, the negative region size and the depth of negativity of WF of single- photon-added coherent state decrease until it vanishes with dissipation. This shows that the non-classical property of single-photon-added coherent state is weakened, until it disappears with dissipation time increasing.
Origins of the protein synthesis cycle
NASA Technical Reports Server (NTRS)
Fox, S. W.
1981-01-01
Largely derived from experiments in molecular evolution, a theory of protein synthesis cycles has been constructed. The sequence begins with ordered thermal proteins resulting from the self-sequencing of mixed amino acids. Ordered thermal proteins then aggregate to cell-like structures. When they contained proteinoids sufficiently rich in lysine, the structures were able to synthesize offspring peptides. Since lysine-rich proteinoid (LRP) also catalyzes the polymerization of nucleoside triphosphate to polynucleotides, the same microspheres containing LRP could have synthesized both original cellular proteins and cellular nucleic acids. The LRP within protocells would have provided proximity advantageous for the origin and evolution of the genetic code.
Deciphering the influence of the thermal processes on the early passive margins formation
NASA Astrophysics Data System (ADS)
Bousquet, Romain; Nalpas, Thierry; Ballard, Jean-François; Ringenbach, Jean-Claude; Chelalou, Roman; Clerc, Camille
2015-04-01
Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie , 1978), as a dogma, is used to understanding and modeling the formation and evolution of sedimentary basins . This model is based on the assumption that the extension is only by pure shear and it is instantaneous. Under this approach, the sedimentary deposits occur in two stages. i) A short step , 1 to 10 Ma , controlled by tectonics. ii) A longer step , at least 50 Ma as a result of the thermal evolution of the lithosphere. However, most stratigraphic data indicate that less thermal model can account for documented vertical movements. The study of the thermal evolution , coupled with other tectonic models , and its consequences have never been studied in detail , although the differences may be significant and it is clear that the petrological changes associated with changes in temperature conditions , influence changes reliefs. In addition, it seems that the relationship between basin formation and thermal evolution is not always the same: - Sometimes the temperature rise above 50 to 100 Ma tectonic extension. In the Alps, a significant rise in geothermal gradient Permo -Triassic followed by a "cold" extension , leading to the opening of the Ligurian- Piedmont ocean, from the Middle Jurassic . - Other examples show that temperature changes are synchronous with basin formation . For example, extensive ponds Cretaceous North Pyrenean clearly indicate that the "cooking" of contemporary sediment deposit. In the light of new models, we discuss the consequences of the formation of LP-granulites during rifting on deformation and the subsidence processes.
NASA Astrophysics Data System (ADS)
Kargel, J. S.; Furfaro, R.
2013-12-01
Thermal gradients within conductive layers of icy satellite and asteroids depend partly on heat flow, which is related to the secular decay of radioactive isotopes, to heat released by chemical phase changes, by conversion of gravitational potential energy to heat during differentiation, tidal energy dissipation, and to release of heat stored from prior periods. Thermal gradients are also dependent on the thermal conductivity of materials, which in turn depends on their composition, crystallinity, porosity, crystal fabric anisotropy, and details of their mixture with other materials. Small impurities can produce lattice defects and changes in polymerization, and thereby have a huge influence on thermal conductivity, as can cage-inclusion (clathrate) compounds. Heat flow and thermal gradients can be affected by fluid phase advection of mass and heat (in oceans or sublimating upper crusts), by refraction related to heterogeneities of thermal conductivity due to lateral variations and composition or porosity. Thermal profiles depend also on the surface temperature controlled by albedo and climate, surface relief, and latitude, orbital obliquity and surface insolation, solid state greenhouses, and endogenic heating of the surface. The thermal state of icy moon interiors and thermal gradients can be limited at depth by fluid phase advection of heat (e.g., percolating meteoric methane or gas emission), by the latent heat of phase transitions (melting, solid-state transitions, and sublimation), by solid-state convective or diapiric heat transfer, and by foundering. Rapid burial of thick volatile deposits can also affect thermal gradients. For geologically inactive or simple icy objects, most of these controls on heat flow and thermal gradients are irrelevant, but for many other icy objects they can be important, in some cases causing large lateral and depth variations in thermal gradients, large variations in heat flow, and dynamically evolving thermal states. Many of these processes result in transient thermal states and hence rapid evolution of icy body interiors. Interesting heat-flow phenomena (approximated as steady-state thermal states) have been modeled in volatile-rich main belt asteroids, Io, Europa, Enceladus, Titan, Pluto, and Makemake (2005 FY9). Thermal conditions can activate geologic processes, but the occurrence of geologic activity can fundamentally alter the thermal conductivity and elasticity of icy objects, which then further affects the distribution and type of subsequent geologic activity. For example, cryoclastic volcanism on Enceladus can increase solid-state greenhouse heating of the upper crust, reduce thermal conductivity, and increase retention of heat and spur further cryovolcanism. Sulfur extrusion on Io can produce low-thermal-conductivity flows, high thermal gradients, basal melting of the flows, and lateral extrusion and spreading of the flows or formation of solid-crusted lava lakes. Impact formation of regoliths and fine-grained dust deposits on large asteroids may generate local variations in thermal gradients. Interior heating and geologic activity can either (1) emplace low-conductivity materials on the surface and cause further interior heating, or (2) drive metamorphism, sintering, and volatile loss, and increase thermal conductivity and cool the object. Thus, the type and distribution of present-day geologic activity on icy worlds is dependent on geologic history. Geology begets geology.
NASA Technical Reports Server (NTRS)
Solomon, Sean C.; Zuber, Maria T.; Phillips, Roger J.; Smith, David E.; Tyler, G. Leonard; Aharonson, Oded; Balmino, Georges; Banerdt, W. B.; Head, James W.; Johnson, Catherine L.
2000-01-01
Regional variations in the thickness of the elastic lithosphere on Mars derived from a combined analysis of topography and gravity anomalies determined by Mars Global Surveyor provide new insight into the planet's thermal history.
Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.
Driscoll, P E; Barnes, R
2015-09-01
The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pareige, P.; Russell, K.F.; Stoller, R.E.
1998-03-01
Atom probe field ion microscopy (APFIM) investigations of the microstructure of unaged (as-fabricated) and long-term thermally aged ({approximately} 100,000 h at 280 C) surveillance materials from commercial reactor pressure vessel steels were performed. This combination of materials and conditions permitted the investigation of potential thermal-aging effects. This microstructural study focused on the quantification of the compositions of the matrix and carbides. The APFIM results indicate that there was no significant microstructural evolution after a long-term thermal exposure in weld, plate, or forging materials. The matrix depletion of copper that was observed in weld materials was consistent with the copper concentrationmore » in the matrix after the stress-relief heat treatment. The compositions of cementite carbides aged for 100,000 h were compared with the Thermocalc{trademark} prediction. The APFIM comparisons of materials under these conditions are consistent with the measured change in mechanical properties such as the Charpy transition temperature.« less
NASA Astrophysics Data System (ADS)
Bitzer, Klaus
1999-05-01
Geological processes that create sedimentary basins or act during their formation can be simulated using the public domain computer code `BASIN'. For a given set of geological initial and boundary conditions the sedimentary basin evolution is calculated in a forward modeling approach. The basin is represented in a two-dimensional vertical cross section with individual layers. The stratigraphic, tectonic, hydrodynamic and thermal evolution is calculated beginning at an initial state, and subsequent changes of basin geometry are calculated from sedimentation rates, compaction and pore fluid mobilization, isostatic compensation, fault movement and subsidence. The sedimentologic, hydraulic and thermal parameters are stored at discrete time steps allowing the temporal evolution of the basin to be analyzed. A maximum flexibility in terms of geological conditions is achieved by using individual program modules representing geological processes which can be switched on and off depending on the data available for a specific simulation experiment. The code incorporates a module for clastic and carbonate sedimentation, taking into account the impact of clastic sediment supply on carbonate production. A maximum of four different sediment types, which may be mixed during sedimentation, can be defined. Compaction and fluid flow are coupled through the consolidation equation and the nonlinear form of the equation of state for porosity, allowing nonequilibrium compaction and overpressuring to be calculated. Instead of empirical porosity-effective stress equations, a physically consistent consolidation model is applied which incorporates a porosity dependent sediment compressibility. Transient solute transport and heat flow are calculated as well, applying calculated fluid flow rates from the hydraulic model. As a measure for hydrocarbon generation, the Time-Temperature Index (TTI) is calculated. Three postprocessing programs are available to provide graphic output in PostScript format: BASINVIEW is used to display the distribution of parameters in the simulated cross-section of the basin for defined time steps. It is used in conjunction with the Ghostview software, which is freeware and available on most computer systems. AIBASIN provides PostScript output for Adobe Illustrator®, taking advantage of the layer-concept which facilitates further graphic manipulation. BASELINE is used to display parameter distribution at a defined well or to visualize the temporal evolution of individual elements located in the simulated sedimentary basin. The modular structure of the BASIN code allows additional processes to be included. A module to simulate reactive transport and diagenetic reactions is planned for future versions. The program has been applied to existing sedimentary basins, and it has also shown a high potential for classroom instruction, giving the possibility to create hypothetical basins and to interpret basin evolution in terms of sequence stratigraphy or petroleum potential.
Light-Weight Low-Loss Dielectric Polymer Composites Containing Carbon Nanostructure
2014-10-17
increases in temperature. Subsequent thermal breakdown and carbonization of the polyurethane coating and polyimide substrate significantly reduced the RF...measurements through HD-GNR films. For the highly uniform films produced in separate experiments on a glass substrate with sufficient thermal conductivity ...further carbonized the polyurethane- coated polyimide substrate. This was attributed to the electromagnetic and the resulting thermal energy
Research and Development of High-performance Explosives
Cornell, Rodger; Wrobel, Erik; Anderson, Paul E.
2016-01-01
Developmental testing of high explosives for military applications involves small-scale formulation, safety testing, and finally detonation performance tests to verify theoretical calculations. small-scale For newly developed formulations, the process begins with small-scale mixes, thermal testing, and impact and friction sensitivity. Only then do subsequent larger scale formulations proceed to detonation testing, which will be covered in this paper. Recent advances in characterization techniques have led to unparalleled precision in the characterization of early-time evolution of detonations. The new technique of photo-Doppler velocimetry (PDV) for the measurement of detonation pressure and velocity will be shared and compared with traditional fiber-optic detonation velocity and plate-dent calculation of detonation pressure. In particular, the role of aluminum in explosive formulations will be discussed. Recent developments led to the development of explosive formulations that result in reaction of aluminum very early in the detonation product expansion. This enhanced reaction leads to changes in the detonation velocity and pressure due to reaction of the aluminum with oxygen in the expanding gas products. PMID:26966969
Sloof, Willem G; Pei, Ruizhi; McDonald, Samuel A; Fife, Julie L; Shen, Lu; Boatemaa, Linda; Farle, Ann-Sophie; Yan, Kun; Zhang, Xun; van der Zwaag, Sybrand; Lee, Peter D; Withers, Philip J
2016-03-14
MAX phase materials are emerging as attractive engineering materials in applications where the material is exposed to severe thermal and mechanical conditions in an oxidative environment. The Ti2AlC MAX phase possesses attractive thermomechanical properties even beyond a temperature of 1000 K. An attractive feature of this material is its capacity for the autonomous healing of cracks when operating at high temperatures. Coupling a specialized thermomechanical setup to a synchrotron X-ray tomographic microscopy endstation at the TOMCAT beamline, we captured the temporal evolution of local crack opening and healing during multiple cracking and autonomous repair cycles at a temperature of 1500 K. For the first time, the rate and position dependence of crack repair in pristine Ti2AlC material and in previously healed cracks has been quantified. Our results demonstrate that healed cracks can have sufficient mechanical integrity to make subsequent cracks form elsewhere upon reloading after healing.
Study of Damage and Recovery of Electron Irradiated Polyimide using EPR and NMR Spectroscopy
NASA Astrophysics Data System (ADS)
Humagain, Sunita; Jhonson, Jessica; Stallworth, Phillip; Engelhart, Daniel; Plis, Elena; Ferguson, Dale; Cooper, Russell; Hoffmann, Ryan; Greenbaum, Steve
The main objective of this research is to probe radical concentrations in electron irradiated polyimide (PI, Kapton®) and to examine the impact on the electrical properties using EPR and NMR spectroscopy. PI is an electrical insulator used in space missions as a thermal management blanketing material, it is therefore critical for spacecraft designers to understand the nature of electron transport (electrical conductivity) within the bulk of the material. The recovery mechanism (radical evolution) of PI in vacuum, argon and air after having been subjected to 90 KeV electron irradiation, was studied. The formation and subsequent exponential decay of the radical concentrations was recorded using EPR. This signal decay agrees well with the recovery mechanism being probed by electrical conductivity measurements and implies a strong relation between the two. To investigate the distribution of radicals in the polymer, 1H NMR relaxation time (T1) were measured at 300MHz. Additional NMR experiments, in particular 13C, were performed to search for direct evidence of structural defects.
NASA Astrophysics Data System (ADS)
Castin, N.; Bakaev, A.; Bonny, G.; Sand, A. E.; Malerba, L.; Terentyev, D.
2017-09-01
We propose an object kinetic Monte Carlo (OKMC) model for describing the microstructural evolution in pure tungsten under neutron irradiation. We here focus on low doses (under 1 dpa), and we neglect transmutation in first approximation. The emphasis is mainly centred on an adequate description of neutron irradiation, the subsequent introduction of primary defects, and their thermal diffusion properties. Besides grain boundaries and the dislocation network, our model includes the contribution of carbon impurities, which are shown to have a strong influence on the onset of void swelling. Our parametric study analyses the quality of our model in detail, and confronts its predictions with experimental microstructural observations with satisfactory agreement. We highlight the importance for an accurate determination of the dissolved carbon content in the tungsten matrix, and we advocate for an accurate description of atomic collision cascades, in light of the sensitivity of our results with respect to correlated recombination.
NASA Astrophysics Data System (ADS)
Wu, Qiong; Liu, Jiaqi; Yuan, Chenpei; Li, Qiang; Wang, Heng-guo
2017-12-01
Nitrogen-doped 3D flower-like carbon materials (NFCs) have been fabricated using a simple and effective strategy, namely, the hierarchical assembly of polyimide (PI) and subsequent thermal treatment. The effect of pyrolysis temperature on the structural evolution process of PI is also investigated systematically. When evaluated as anode materials for lithium ion batteries (LIBs), the as-obtained NFCs, especially NFCs-550, exhibit good electrochemical performance, including a high reversible capacity (1488.1 mAh g-1 at 0.05 A g-1), excellent rate performance (287.6 mAh g-1 at 2 A g-1), and good cycling stability (645 mAh g-1 with 96% retention after 300 cycles at 0.1 A g-1). The good electrochemical performance is attributed to the synergistic effect between 3D flower-like nanostructure and high nitrogen content. This approach may provide some inspiration to construct a series of heteroatom doped and hierarchical structured carbon materials using polymers for LIBs.
Amini, Abbas; Cheng, Chun; Kan, Qianhua; Naebe, Minoo; Song, Haisheng
2013-01-01
Hysteresis energy decreased significantly as nanocrystalline NiTi shape memory alloy was under triangular cyclic nanoindentation loadings at high rate. Jagged curves evidenced discrete stress relaxations. With a large recovery state of maximum deformation in each cycle, this behavior concluded in several nucleation sites of phase transformation in stressed bulk. Additionally, the higher initial propagation velocity of interface and thermal activation volume, and higher levels of phase transition stress in subsequent cycles explained the monotonic decreasing trend of dissipated energy. In contrast, the dissipated energy showed an opposite increasing trend during triangular cyclic loadings at a low rate and 60 sec holding time after each unloading stage. Due to the isothermal loading rate and the holding time, a major part of the released latent heat was transferred during the cyclic loading resulting in an unchanged phase transition stress. This fact with the reorientation phenomenon explained the monotonic increasing trend of hysteresis energy. PMID:24336228
Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen
2016-05-28
We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1980-01-01
The various thermal gradients in the coastal zones of France were mapped with regard to natural phenomena and man made thermal effluents. The mesoscale thermal features of the English Channel, the Bay of Biscay, and the northwestern Mediterranean Sea were also studied. The evolution of the thermal gradients generated by the main estuaries of the French coastal zones was investigated along with the modeling of diurnal heating of the sea surface and its influence on the oceanic surface layers.
Evolutionary dynamics of selfish DNA explains the abundance distribution of genomic subsequences
Sheinman, Michael; Ramisch, Anna; Massip, Florian; Arndt, Peter F.
2016-01-01
Since the sequencing of large genomes, many statistical features of their sequences have been found. One intriguing feature is that certain subsequences are much more abundant than others. In fact, abundances of subsequences of a given length are distributed with a scale-free power-law tail, resembling properties of human texts, such as Zipf’s law. Despite recent efforts, the understanding of this phenomenon is still lacking. Here we find that selfish DNA elements, such as those belonging to the Alu family of repeats, dominate the power-law tail. Interestingly, for the Alu elements the power-law exponent increases with the length of the considered subsequences. Motivated by these observations, we develop a model of selfish DNA expansion. The predictions of this model qualitatively and quantitatively agree with the empirical observations. This allows us to estimate parameters for the process of selfish DNA spreading in a genome during its evolution. The obtained results shed light on how evolution of selfish DNA elements shapes non-trivial statistical properties of genomes. PMID:27488939
Weinberger, Christian; Roggenbuck, Jan; Hanss, Jan; Tiemann, Michael
2015-01-01
A variety of metal nitrates were filled into the pores of an ordered mesoporous CMK-3 carbon matrix by solution-based impregnation. Thermal conversion of the metal nitrates into the respective metal oxides, and subsequent removal of the carbon matrix by thermal combustion, provides a versatile means to prepare mesoporous metal oxides (so-called nanocasting). This study aims to monitor the thermally induced processes by thermogravimetric analysis (TGA), coupled with mass ion detection (MS). The highly dispersed metal nitrates in the pores of the carbon matrix tend to react to the respective metal oxides at lower temperature than reported in the literature for pure, i.e., carbon-free, metal nitrates. The subsequent thermal combustion of the CMK-3 carbon matrix also occurs at lower temperature, which is explained by a catalytic effect of the metal oxides present in the pores. This catalytic effect is particularly strong for oxides of redox active metals, such as transition group VII and VIII metals (Mn, Fe, Co, Ni), Cu, and Ce. PMID:28347073
Impact effects and regional tectonic insights: Backstripping the Chesapeake Bay impact structure
Hayden, T.; Kominz, M.; Powars, D.S.; Edwards, L.E.; Miller, K.G.; Browning, J.V.; Kulpecz, A.A.
2008-01-01
The Chesapeake Bay impact structure is a ca. 35.4 Ma crater located on the eastern seaboard of North America. Deposition returned to normal shortly after impact, resulting in a unique record of both impact-related and subsequent passive margin sedimentation. We use backstripping to show that the impact strongly affected sedimentation for 7 m.y. through impact-derived crustal-scale tectonics, dominated by the effects of sediment compaction and the introduction and subsequent removal of a negative thermal anomaly instead of the expected positive thermal anomaly. After this, the area was dominated by passive margin thermal subsidence overprinted by periods of regional-scale vertical tectonic events, on the order of tens of meters. Loading due to prograding sediment bodies may have generated these events. ?? 2008 The Geological Society of America.
NASA Technical Reports Server (NTRS)
Ruzdjak, Vladimir (Editor); Tandberg-Hanssen, Einar (Editor)
1990-01-01
Topics discussed include formation of a filament around a magnetic region, evolution of fine structures in a filament, the spatial distribution of prominence threads, high resolution analysis of quiescent prominences at NSO/Sacramento Peak Observatory, small-scale Doppler velocities in a quiescent prominence, Doppler velocity oscillations in quiescent prominences, oscillatory relaxation of an eruptive prominence, and matter flow velocities in an active region emission loop observed in H-alpha. Attention is also given to an automated procedure for measurement of prominence transverse velocities, the nonlinear evolution of magnetized filaments, thermal equilibrium of coronal loops and prominence formation, thermal instability in planar coronal strucutres, radiative transfer in cylindrical prominence threads, numerical simulation of a catastrophe model for prominence eruptions, and the law of evolution and destruction of solar prominences.
Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field
NASA Astrophysics Data System (ADS)
Huang, Zhiming
2018-04-01
In this article, the dynamics of quantum memory-assisted entropic uncertainty relation for two atoms immersed in a thermal bath of fluctuating massless scalar field is investigated. The master equation that governs the system evolution process is derived. It is found that the mixedness is closely associated with entropic uncertainty. For equilibrium state, the tightness of uncertainty vanishes. For the initial maximum entangled state, the tightness of uncertainty undergoes a slight increase and then declines to zero with evolution time. It is found that temperature can increase the uncertainty, but two-atom separation does not always increase the uncertainty. The uncertainty evolves to different relatively stable values for different temperatures and converges to a fixed value for different two-atom distances with evolution time. Furthermore, weak measurement reversal is employed to control the entropic uncertainty.
NASA Astrophysics Data System (ADS)
Benage, M. C.; Dufek, J.; Degruyter, W.
2010-12-01
The thermal history of pyroclastic density currents (PDCs) is critical in determining flow dynamics and deposit characteristics. The thermal history of these flows depends on the particles’ internal rate of heat transfer and heat exchange between discrete particles and a gas phase. We examine the thermal history of a class of dense PDC exemplified by the eruption of Tungurahua (2006) and Cotopaxi (1877) that have abundant breadcrust bombs segregated in levees and in flow snouts. An open question in this type of PDC is the amount of air entrainment (and cooling) during transport. To understand the entrainment and cooling history of these flows we use a multiphase numerical model coupled with a Lagrangian model (Eulerian-Eulerian-Lagrangian [EEL]) that tracks the internal heat transfer and post-eruption bubble evolution in juvenile clasts. We combine the numerical study with the observation of the morphology and vesicularity of breadcrust bombs from dense pyroclastic density currents from Tungurahua and Cotopaxi. Breadcrust bombs are common in many deposits from mafic explosive eruptions, e.g. Montserrat, Cotopaxi, Guagua Pichincha, and Tungurahua volcanoes. At many locations these bombs have likely been transported as ballistics (interacting mostly with ambient air), although several instances of dense scoria bomb flows have been noted (e.g. Cotopaxi and Tungurahua, Ecuador). The dense flow deposits are generally rich in unabraided breadcrust bombs along the flow levee and occasionally along the entire transect of the flow. The breadcrust bombs range in size from tens of centimeters to meters. They can also be found draping around previous deposits suggesting a high temperature of deposition. We discuss the use of clast morphology with other thermal proxies to better understand the thermal evolution of individual PDC and the proportion of time clasts underwent transport in dense flows as compared to ballistic transport.
Flash Infrared Thermography Contrast Data Analysis Technique
NASA Technical Reports Server (NTRS)
Koshti, Ajay
2014-01-01
This paper provides information on an IR Contrast technique that involves extracting normalized contrast versus time evolutions from the flash thermography inspection infrared video data. The analysis calculates thermal measurement features from the contrast evolution. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat-bottom holes in the subject material. The measurement features and the contrast simulation are used to evaluate flash thermography data in order to characterize delamination-like anomalies. The thermal measurement features relate to the anomaly characteristics. The contrast evolution simulation is matched to the measured contrast evolution over an anomaly to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat-bottom hole (EFBH) similar to that used as input to the simulation. A similar analysis, in terms of diameter and depth of an equivalent uniform gap (EUG) providing a best match with the measured contrast evolution, is also provided. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH/EUG diameter are compared to evaluate the anomaly. The information provided here is geared towards explaining the IR Contrast technique. Results from a limited amount of validation data on reinforced carbon-carbon (RCC) hardware are included in this paper.
The thermal evolution of Mercury's Fe-Si core
NASA Astrophysics Data System (ADS)
Knibbe, Jurriën Sebastiaan; van Westrenen, Wim
2018-01-01
We have studied the thermal and magnetic field evolution of planet Mercury with a core of Fe-Si alloy to assess whether an Fe-Si core matches its present-day partially molten state, Mercury's magnetic field strength, and the observed ancient crustal magnetization. The main advantages of an Fe-Si core, opposed to a previously assumed Fe-S core, are that a Si-bearing core is consistent with the highly reduced nature of Mercury and that no compositional convection is generated upon core solidification, in agreement with magnetic field indications of a stable layer at the top of Mercury's core. This study also present the first implementation of a conductive temperature profile in the core where heat fluxes are sub-adiabatic in a global thermal evolution model. We show that heat migrates from the deep core to the outer part of the core as soon as heat fluxes at the outer core become sub-adiabatic. As a result, the deep core cools throughout Mercury's evolution independent of the temperature evolution at the core-mantle boundary, causing an early start of inner core solidification and magnetic field generation. The conductive layer at the outer core suppresses the rate of core growth after temperature differences between the deep and shallow core are relaxed, such that a magnetic field can be generated until the present. Also, the outer core and mantle operate at higher temperatures than previously thought, which prolongs mantle melting and mantle convection. The results indicate that S is not a necessary ingredient of Mercury's core, bringing bulk compositional models of Mercury more in line with reduced meteorite analogues.
NASA Astrophysics Data System (ADS)
Leon, Angel; Perez, Marta; Barasinski, Anais; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco
2017-12-01
Advanced thermoplastic composite materials look to add functional properties to the mechanical ones, the latter usually ensured by the continuous fibers involved in the composite preforms. For that purpose the use of reinforced thermoplastic resins are being considered. These resins usually integrate manometric particles, with a variety of shapes (rods, spheres, discs, ...) with enhanced functional properties, ensuring for example the increase of thermal or electrical conductivities. However, even when considering adequate particles distribution and orientation in the preforms, forming processes induced properties cannot be ignored and they are particuarly critical at the ply interfaces level, where the degree of intimate contact must be maximized while ensuring equivalent functional properties to the ones existing in the bulk. One possibility for maximizing the intimate contact and at the same time controlling the induced functional anisotropy consists of designing engineered surfaces consolidated by the combined action of temperature and pressure. The combined effect results in a microscopic flow that induces at its turn the evolution of the position and orientation of the particles, and consequently the evolution of the associated properties, e.g. thermal and electrical conductivities. In the present work we address a simplified modeling framework of the functional properties evolution during the consolidation of unidirectional tapes. It combines the squeeze flow modeling, the flow induced microstructural anisotropy and its impact on the thermal and electrical conductivities.
The role of hard turbulent thermal convection in the Earth's early thermal evolution
NASA Technical Reports Server (NTRS)
Hansen, Ulli; Yuen, David A.; Zhao, Wuling; Malevsky, Andrei V.
1992-01-01
In the last several years great progress was made in the study of a new transition in thermal convection, called hard turbulence. Initial experiments were conducted with helium gas, then with water. It was shown that for base-heated Newtonian convection a transition occurred at Rayleigh numbers between 10(exp 7) and 10(exp 8). This transition is characterized by the appearance of disconnected plume structures in contrast to continuous plumes with mushroom-shaped tops found for lower Rayleigh numbers. This new hydrodynamic transition is expected to play an important role in reshaping our concepts of mantle convection in the early stages of planetary evolution. We have conducted two-dimensional calculations for large and small aspect-ratio configuration to see whether such a transition would take place for infinite Prandtl number fluids.
Satellite Power Systems (SPS) Concept Definition Study. Volume 3: SPS Concept Evolution
NASA Technical Reports Server (NTRS)
Hanley, G.
1978-01-01
A solar photovoltaic satellite based upon the utilization of a GaAlAs solar cell is defined. Topics covered include silicon-based photovoltaics, solar thermal power conversion, microwave energy transmission, power distribution, structures, attitude control and stationkeeping, thermal, and information management and control.
Janssens, Lizanne; Dinh Van, Khuong; Debecker, Sara; Bervoets, Lieven; Stoks, Robby
2014-03-01
The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants.
Quasiperiodicity in time evolution of the Bloch vector under the thermal Jaynes-Cummings model
NASA Astrophysics Data System (ADS)
Azuma, Hiroo; Ban, Masashi
2014-07-01
We study a quasiperiodic structure in the time evolution of the Bloch vector, whose dynamics is governed by the thermal Jaynes-Cummings model (JCM). Putting the two-level atom into a certain pure state and the cavity field into a mixed state in thermal equilibrium at initial time, we let the whole system evolve according to the JCM Hamiltonian. During this time evolution, motion of the Bloch vector seems to be in disorder. Because of the thermal photon distribution, both a norm and a direction of the Bloch vector change hard at random. In this paper, taking a different viewpoint compared with ones that we have been used to, we investigate quasiperiodicity of the Bloch vector’s trajectories. Introducing the concept of the quasiperiodic motion, we can explain the confused behaviour of the system as an intermediate state between periodic and chaotic motions. More specifically, we discuss the following two facts: (1) If we adjust the time interval Δt properly, figures consisting of plotted dots at the constant time interval acquire scale invariance under replacement of Δt by sΔt, where s(>1) is an arbitrary real but not transcendental number. (2) We can compute values of the time variable t, which let |Sz(t)| (the absolute value of the z-component of the Bloch vector) be very small, with the Diophantine approximation (a rational approximation of an irrational number).
Thermally promoted evolution of open-volume defects and Cu precipitates in the deformed FeCu alloys
NASA Astrophysics Data System (ADS)
Jin, Shuoxue; Cao, Xingzhong; Cheng, Guodong; Lian, Xiangyu; Zhu, Te; Zhang, Peng; Yu, Runsheng; Wang, Baoyi
2018-04-01
We have studied the effect of isothermal annealing on the evolution of the open-volume defect and the Cu precipitate in deformed Fe0.15Cu, Fe0.3Cu and Fe0.6Cu alloys. Using the coincidence Doppler broadening, positron annihilation lifetime and the S-W couples, the evolution of local electronic circumstance around the annihilation sites, open-volume defects and interaction between open-volume defects and Cu precipitates were measured as a function of the isothermal annealing temperatures. Cold rolling deformation induced an obvious increment in S parameters due to the formation of open-volume defects. Annealing not only resulted in gradual recovery of open-volume defects and Cu thermal precipitation, but also promoted the combination and interaction between defects and Cu precipitates. The interaction between open-volume defects and Cu precipitates was revealed clearly by the view point of S-W relationship. The S-W interaction for the different CumVn complexes was also calculated theoretically by MIKA-Doppler, which supports our experimental observations qualitatively. The results indicate that open-volume defects were formed first after cold rolling, followed by the Cu precipitation and recovery of open-volume defects, Cu precipitates recovered at the end. It is interesting that the trajectory of (S, W) points with increasing annealing temperature formed a similar closed "Parallelogram" shape. It is benefit for revealing the behavior of Cu thermal precipitation and their evolution in various Cu-bearing steels under thermal treatment. In addition, we also investigated the Cu content effect on the Cu precipitation in FeCu alloys, and the Cu precipitate phenomenon was enhanced in higher Cu content alloys.
Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees
NASA Astrophysics Data System (ADS)
Hart, Nicole R.; Stockli, Daniel F.; Lavier, Luc L.; Hayman, Nicholas W.
2017-06-01
Onshore and offshore geological and geophysical observations and numerical modeling have greatly improved the conceptual understanding of magma-poor rifted margins. However, critical questions remain concerning the thermal evolution of the prerift to synrift phases of thinning ending with the formation of hyperextended crust and mantle exhumation. In the western Pyrenees, the Mauléon Basin preserves the structural and stratigraphic record of Cretaceous extension, exhumation, and sedimentation of the proximal-to-distal margin development. Pyrenean shortening uplifted basement and overlying sedimentary basins without pervasive shortening or reheating, making the Mauléon Basin an ideal locality to study the temporal and thermal evolution of magma-poor hyperextended rift systems through coupling bedrock and detrital zircon (U-Th)/He thermochronometric data from transects characterizing different structural rifting domains. These new data indicate that the basin was heated during early rifting to >180°C with geothermal gradients of 80-100°C/km. The proximal margin recorded rift-related exhumation/cooling at circa 98 Ma, whereas the distal margin remained >180°C until the onset of Paleocene Pyrenean shortening. Lithospheric-scale numerical modeling shows that high geothermal gradients, >80°C/km, and synrift sediments >180°C, can be reached early in rift evolution via heat advection by lithospheric depth-dependent thinning and blanketing caused by the lower thermal conductivity of synrift sediments. Mauléon Basin thermochronometric data and numerical modeling illustrate that reheating of basement and synrift strata might play an important role and should be considered in the future development of conceptual and numerical models for hyperextended magma-poor continental rifted margins.
Some remarks on the early evolution of Enceladus
NASA Astrophysics Data System (ADS)
Czechowski, Leszek
2014-12-01
Thermal history of Enceladus is investigated from the beginning of accretion to formation of its core (~400 My). We consider model with solid state convection (in a solid layer) as well as liquid state convection (in molten parts of the satellite). The numerical model of convection uses full conservative finite difference method. The roles of two modes of convection are considered using the parameterized theory of convection. The following heat sources are included: short lived and long lived radioactive isotopes, accretion, serpentinization, and phase changes. Heat transfer processes are: conduction, solid state convection, and liquid state convection. It is found that core formation was completed only when liquid state convection had slowed down. Eventually, the porous core with pores filled with water was formed. Recent data concerning gravity field of Enceladus confirm low density of the core. We investigated also thermal history for different values of the following parameters: time of beginning of accretion tini, duration of accretion tacr, viscosity of ice close to the melting point ηm, activation energy in formula for viscosity E, thermal conductivity of silicate component ksil, ammonia content XNH3, and energy of serpentinization cserp. All these parameters are important for evolution, but not dramatic differences are found for realistic values. Moreover, the hypothesis of proto-Enceladus (stating that initially Enceladus was substantially larger) is considered and thermal history of such body is calculated. The last subject is the Mimas-Enceladus paradox. Comparison of thermal models of Mimas and Enceladus indicates that period favorable for 'excited path of evolution' was significantly shorter for Mimas than for Enceladus.
Thermal Aspects of Lithium Ion Cells
NASA Technical Reports Server (NTRS)
Frank, H.; Shakkottai, P.; Bugga, R.; Smart, M.; Huang, C. K.; Timmerman, P.; Surampudi, S.
2000-01-01
This viewgraph presentation outlines the development of a thermal model of Li-ion cells in terms of heat generation, thermal mass, and thermal resistance. Intended for incorporation into battery model. The approach was to estimate heat generation: with semi-theoretical model, and then to check accuracy with efficiency measurements. Another objective was to compute thermal mass from component weights and specific heats, and to compute the thermal resistance from component dimensions and conductivities. Two lithium batteries are compared, the Cylindrical lithium battery, and the prismatic lithium cell. It reviews methodology for estimating the heat generation rate. Graphs of the Open-circuit curves of the cells and the heat evolution during discharge are given.
Gaussian ancillary bombardment
NASA Astrophysics Data System (ADS)
Grimmer, Daniel; Brown, Eric; Kempf, Achim; Mann, Robert B.; Martín-Martínez, Eduardo
2018-05-01
We analyze in full detail the time evolution of an open Gaussian quantum system rapidly bombarded by Gaussian ancillae. As a particular case this analysis covers the thermalization (or not) of a harmonic oscillator coupled to a thermal reservoir made of harmonic oscillators. We derive general results for this scenario and apply them to the problem of thermalization. We show that only a particular family of system-environment couplings will cause the system to thermalize to the temperature of its environment. We discuss that if we want to understand thermalization as ensuing from the Markovian interaction of a system with the individual microconstituents of its (thermal) environment then the process of thermalization is not as robust as one might expect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Kazushi, E-mail: hayashi.kazushi@kobelco.com; Hino, Aya; Tao, Hiroaki
Total photoyield emission spectroscopy (TPYS) was applied to study the evolution of sub-gap states in hydrogen-treated amorphous In-Ga-Zn-O (a-IGZO) thin films. The a-IGZO thin films were subjected to hydrogen radicals and subsequently annealed in ultra-high vacuum (UHV) conditions. A clear onset of the electron emission was observed at around 4.3 eV from the hydrogen-treated a-IGZO thin films. After successive UHV annealing at 300 °C, the onset in the TPYS spectra was shifted to 4.15 eV, and the photoelectron emission from the sub-gap states was decreased as the annealing temperature was increased. In conjunction with the results of thermal desorption spectrometer, it was deducedmore » that the hydrogen atoms incorporated in the a-IGZO thin films induced metastable sub-gap states at around 4.3 eV from vacuum level just after the hydrogenation. It was also suggested that the defect configuration was changed due to the higher temperature UHV annealing, and that the hydrogen atoms desorbed with the involvement of Zn atoms. These experiments produced direct evidence to show the formation of sub-gap states as a result of hydrogen incorporation into the a-IGZO thin films.« less
Streck, Martin J.; Broderick, Cindy A.; Thronber, Carl R.; Clynne, Michael A.; Pallister, John S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
We propose that crystals with no dissolution surfaces are those that were supplied last to the shallow reservoir, whereas plagioclase with increasingly more complex zoning patterns (that is, the number of zoned bands bounded by dissolution surfaces) result from prolonged residency and evolution in the reservoir. We propose that banding and An zoning across multiple bands are primarily a response to thermally induced fluctuations in crystallinity of the magma in combination with recharge; a lesser role is ascribed to cycling crystals through pressure gradients. Crystals without dissolution surfaces, in contrast, could have grown only in response to steady(?) decompression. Some heating-cooling cycles probably postdate the final eruption in 1986. They resulted from small recharge events that supplied new crystals that then experienced resorption-growth cycles. We suggest that magmatic events shortly prior to the current eruption, recorded in the outermost zones of plagioclase phenocrysts, began with the incorporation of acicular orthopyroxene, followed by last resorption, and concluded with crystallization of euhedral rims. Finally, we propose that 2004-5 dacite is composed mostly of dacite magma that remained after 1986 and underwent subsequent magmatic evolution but, more importantly, contains a component of new dacite from deeper in the magmatic system, which may have triggered the new eruption.
NASA Astrophysics Data System (ADS)
Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng
2016-10-01
Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm-2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting.
Effects of high pressure nitrogen on the thermal stability of SiC fibers
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.
1991-01-01
Polymer-derived SiC fibers were exposed to nitrogen gas pressures of 7 and 50 atm at temperatures up to 1800 C. The fiber weight loss, chemical composition, and tensile strength were then measured at room temperature in order to understand the effects of nitrogen exposure on fiber stability. High pressure nitrogen treatments limited weight loss to 3 percent or less for temperatures up to 1800 C. The bulk Si-C-O chemical composition of the fiber remained relatively constant up to 1800 C with only a slight increase in nitrogen content after treatment at 50 atm; however, fiber strength retention was significantly improved. To further understand the effects of the nitrogen atmosphere on the fiber stability, the results of previous high pressure argon treatments were compared to those of the high pressure nitrogen treatments. High pressure inert gas can temporarily maintain fiber strength by physically inhibiting the evolution of gaseous species which result from internal reactions. In addition to this physical effect, it would appear that high pressure nitrogen further improved fiber temperature capability by chemically reacting with the fiber surface, thereby reducing the rate of gas evolution. Subsequent low pressure argon treatments following the initial nitrogen treatments resulted in stronger fibers than after argon treatment alone, further supporting the chemical reaction mechanism and its beneficial effects on fiber strength.
Discovery and Evolution of the New Black Hole Candidate Swift J1539.2-6227 During Its 2008 Outburst
NASA Technical Reports Server (NTRS)
Krimm, H. A.; Tomsick, J. A.; Markwardt, C. B.; Brocksopp, C.; Grise, F.; Kaaret, P.; Romano, P.
2010-01-01
We report on the discovery by the Swift Gamma-Ray Burst Explorer of the black hole candidate Swift J1539.2-6227 and the subsequent course of an outburst beginning in November 2008 and lasting at least seven months. The source was discovered during normal observations with the Swift Burst Alert Telescope (BAT) on 2008 November 25. An extended observing campaign with the Rossi X-Ray Timing Explorer (RXTE) and Swift provided near-daily coverage over 176 days, giving us a rare opportunity to track the evolution of spectral and timing parameters with fine temporal resolution through a series of spectral states. The source was first detected in a hard state during which strong low-frequency quasiperiodic oscillations (QPOs) were detected. The QPOs persisted for about 35 days and a signature of the transition from the hard to soft intermediate states was seen in the timing data. The source entered a short-lived thermal state about 40 days after the start of the outburst. There were variations in spectral hardness as the source flux declined and returned to a hard state at the end of the outburst. The progression of spectral states and the nature of the timing features provide strong evidence that Swift J1539.2-6227 is a candidate black hole in a low-mass X-ray binary system.
Current-Sheet Formation and Reconnection at a Magnetic X Line in Particle-in-Cell Simulations
NASA Technical Reports Server (NTRS)
Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; Kuznetsova, M. M.; Zenitani, S.
2011-01-01
The integration of kinetic effects into macroscopic numerical models is currently of great interest to the heliophysics community, particularly in the context of magnetic reconnection. Reconnection governs the large-scale energy release and topological rearrangement of magnetic fields in a wide variety of laboratory, heliophysical, and astrophysical systems. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high-resolution particle-in-cell (PIC) simulations. The initial minimum-energy, potential magnetic field is perturbed by excess thermal pressure introduced into the particle distribution function far from the X line. Subsequently, the relaxation of this added stress leads self-consistently to the development of a current sheet that reconnects for imposed stress of sufficient strength. We compare the time-dependent evolution and final state of our PIC simulations with macroscopic magnetohydrodynamic simulations assuming both uniform and localized electrical resistivities (C. R. DeVore et al., this meeting), as well as with force-free magnetic-field equilibria in which the amount of reconnection across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for understanding magnetic-reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the solar corona and terrestrial magnetotail.
Zhang, Jingsi; Li, Ning; Dai, Xiaohu; Tao, Wenquan; Jenkinson, Ian R; Li, Zhuo
2017-12-19
Comprehensive insights into the sludge digestate dewaterability were gained through porous network structure of sludge. We measured the evolution of digestate dewaterability, represented by the solid content of centrifugally dewatered cake, in high-solids sequencing batch digesters with and without thermal hydrolysis pretreatment (THP). The results show that the dewaterability of the sludge after digestion was improved by 3.5% (±0.5%) for unpretreated sludge and 5.1% (±0.4%) for thermally hydrolyzed sludge. Compared to the unpretreated sludge digestate, thermal hydrolysis pretreatment eventually resulted in an improvement of dewaterability by 4.6% (±0.5%). Smaller particle size and larger surface area of sludge were induced by thermal hydrolysis and anaerobic digestion treatments. The structure strength and compactness of sludge, represented by elastic modulus and fractal dimension respectively, decreased with increase of digestion time. The porous network structure was broken up by thermal hydrolysis pretreatment and was further weakened during anaerobic digestion, which correspondingly improved the dewaterability of digestates. The logarithm of elastic modulus increased linearly with fractal dimension regardless of the pretreatment. Both fractal dimension and elastic modulus showed linear relationship with dewaterability. The rheological characterization combined with the analysis of fractal dimension of sewage sludge porous network structure was found applicable in quantitative evaluation of sludge dewaterability, which depended positively on both thermal hydrolysis and anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of DMMP on the pyrolysis products of polyurethane foam materials in the gaseous phase
NASA Astrophysics Data System (ADS)
Liu, W.; Li, F.; Ge, X. G.; Zhang, Z. J.; He, J.; Gao, N.
2016-07-01
Dimethyl methylphosphonate (DMMP) has been used as a flame retardant containing phosphorus to decrease the flammability of the polyurethane foam material (PUF). Flame retardancy and thermal degradation of PUF samples have been investigated by the LOI tests and thermal analysis. The results show that LOI values of all PUF/DMMP samples are higher than that of the neat PUF sample and the LOI value of the samples increases with both DMMP concentration and the %P value. Thermal analysis indicates that flame retardant PUF shows a dominant condensed flame retardant activity during combustion. Thermogravimetric analysis-infrared spectrometry (TG-FTIR) has been used to study the influence of DMMP on the pyrolysis products in the gaseous phase during the thermal degradation of the PUF sample. Fourier transform infrared spectrometry (FTIR) spectra of the PUF sample at the maximum evolution rates and the generated trends of water and the products containing -NCO have been examined to obtain more information about the pyrolysis product evolutions of the samples at high temperature. These results reveal that although DMMP could improve the thermal stability of PUF samples through the formation of the residual char layer between fire and the decomposed materials, the influence of DMMP on the gaseous phase can be also observed during the thermal degradation process of materials.
Ten reasons why a thermalized system cannot be described by a many-particle wave function
NASA Astrophysics Data System (ADS)
Drossel, Barbara
2017-05-01
It is widely believed that the underlying reality behind statistical mechanics is a deterministic and unitary time evolution of a many-particle wave function, even though this is in conflict with the irreversible, stochastic nature of statistical mechanics. The usual attempts to resolve this conflict for instance by appealing to decoherence or eigenstate thermalization are riddled with problems. This paper considers theoretical physics of thermalized systems as it is done in practice and shows that all approaches to thermalized systems presuppose in some form limits to linear superposition and deterministic time evolution. These considerations include, among others, the classical limit, extensivity, the concepts of entropy and equilibrium, and symmetry breaking in phase transitions and quantum measurement. As a conclusion, the paper suggests that the irreversibility and stochasticity of statistical mechanics should be taken as a real property of nature. It follows that a gas of a macroscopic number N of atoms in thermal equilibrium is best represented by a collection of N wave packets of a size of the order of the thermal de Broglie wave length, which behave quantum mechanically below this scale but classically sufficiently far beyond this scale. In particular, these wave packets must localize again after scattering events, which requires stochasticity and indicates a connection to the measurement process.
The origins of Asteroidal rock disaggregation: Interplay of thermal fatigue and microstructure
NASA Astrophysics Data System (ADS)
Hazeli, Kavan; El Mir, Charles; Papanikolaou, Stefanos; Delbo, Marco; Ramesh, K. T.
2018-04-01
The distributions of size and chemical composition in regolith on airless bodies provide clues to the evolution of the solar system. Recently, the regolith on asteroid (25143) Itokawa, visited by the JAXA Hayabusa spacecraft, was observed to contain millimeter to centimeter sized particles. Itokawa boulders commonly display well-rounded profiles and surface textures that appear inconsistent with mechanical fragmentation during meteorite impact; the rounded profiles have been hypothesized to arise from rolling and movement on the surface as a consequence of seismic shaking. This investigation provides a possible explanation of these observations by exploring the primary crack propagation mechanism during thermal fatigue of a chondrite. Herein, we present the evolution of the full-field strains on the surface as a function of temperature and microstructure, and examine the crack growth during thermal cycling. Our experimental results demonstrate that thermal-fatigue-driven fracture occurs under these conditions. The results suggest that the primary fatigue crack path preferentially follows the interfaces between monominerals, leaving the minerals themselves intact after fragmentation. These observations are explained through a microstructure-based finite element model that is quantitatively compared with our experimental results. These results on the interactions of thermal fatigue cracking with the microstructure may ultimately allow us to distinguish between thermally induced fragments and impact products.
A Teaching Module about Stellar Structure and Evolution
ERIC Educational Resources Information Center
Colantonio, Arturo; Galano, Silvia; Leccia, Silvio; Puddu, Emanuella; Testa, Italo
2017-01-01
In this paper, we present a teaching module about stellar structure, functioning and evolution. Drawing from literature in astronomy education, we designed the activities around three key ideas: spectral analysis, mechanical and thermal equilibrium, energy and nuclear reactions. The module is divided into four phases, in which the key ideas for…
Catherine F. Bowers; Hugh G. Hanlin; David C. Guynn; John P. McLendon; James R. Davis
2000-01-01
Pen Branch, a third order stream on the Savannah River Site (SRS), located near Aiken, SC, USA, received thermal effluents from the cooling system of a nuclear production reactor from 1954 to 1988. The thermal effluent and increased flow destroyed vegetation in the stream corridor (i.e. impacted portion of the floodplain), and subsequent erosion created a braided...
NASA Astrophysics Data System (ADS)
Thomas Paul, V.; Sudha, C.; Saroja, S.
2015-08-01
9Cr-Reduced Activation Ferritic-Martensitic steels with 1 and 1.4 wt pct tungsten are materials of choice for the test blanket module in fusion reactors. The steels possess a tempered martensite microstructure with a decoration of inter- and intra-lath carbides, which undergoes extensive modification on application of heat. The change in substructure and precipitation behavior on welding and subsequent thermal exposure has been studied using both experimental and computational techniques. Changes i.e., formation of various phases, their volume fraction, size, and morphology in different regions of the weldment due to prolonged thermal exposure was influenced not only by the time and temperature of exposure but also the prior microstructure. Laves phase of type Fe2W was formed in the high tungsten steel, on aging the weldment at 823 K (550 °C). It formed in the fine-grained heat-affected zone (HAZ) at much shorter durations than in the base metal. The accelerated kinetics has been understood in terms of enhanced precipitation of carbides at lath/grain boundaries during aging and the concomitant depletion of carbon and chromium and enrichment of tungsten in the vicinity of the carbides. Therefore, the fine-grained HAZ in the weldment was identified as a region susceptible for failure during service.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliviero, E.; David, M. L.; Beaufort, M. F.
The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes placemore » and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.« less
Bochdanovits, Zoltán; de Jong, Gerdien
2003-08-01
In Drosophila, both the phenotypic and evolutionary effect of temperature on adult size involves alterations to larval resource processing and affects other life-history traits, that is, development time but most notably, larval survival. Therefore, thermal evolution of adult body size might not be independent of simultaneous adaptation of larval traits to resource availability. Using experimental evolution lines adapted to high and low temperatures at different levels of food, we show that selection pressures interact in shaping larval resource processing. Evolution on poor food invariably leads to lower resource acquisition suggesting a cost to feeding behavior. However, following low temperature selection, lower resource acquisition led to a higher adult body size, probably by more efficient allocation to growth. In contrast, following high temperature selection, low resource acquisition benefited larval survival, possibly by reducing feeding-associated costs. We show that evolved differences to larval resource processing provide a possible proximate mechanism to variation in a suite of correlated life-history traits during adaptation to different climates. The implication for natural populations is that in nature, thermal evolution drives populations to opposite ends of an adult size versus larval survival trade-off by altering resource processing, if resource availability is limited.
Reactive simulation of the chemistry behind the condensed-phase ignition of RDX from hot spots.
Joshi, Kaushik L; Chaudhuri, Santanu
2015-07-28
Chemical events that lead to thermal initiation and spontaneous ignition of the high-pressure phase of RDX are presented using reactive molecular dynamics simulations. In order to initiate the chemistry behind thermal ignition, approximately 5% of RDX crystal is subjected to a constant temperature thermal pulse for various time durations to create a hot spot. After application of the thermal pulse, the ensuing chemical evolution of the system is monitored using reactive molecular dynamics under adiabatic conditions. Thermal pulses lasting longer than certain time durations lead to the spontaneous ignition of RDX after an incubation period. For cases where the ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. Contrary to the widely accepted unimolecular models of initiation chemistry, N-N bond dissociations that produce NO2 species are suppressed in the condensed phase. The gradual temperature and pressure increase in the incubation period is accompanied by the accumulation of short-lived, heavier polyradicals. The polyradicals contain intact triazine rings from the RDX molecules. At certain temperatures and pressures, the polyradicals undergo ring-opening reactions, which fuel a series of rapid exothermic chemical reactions leading to a thermal runaway regime with stable gas-products such as N2, H2O and CO2. The evolution of the RDX crystal throughout the thermal initiation, incubation and thermal runaway phases observed in the reactive simulations contains a rich diversity of condensed-phase chemistry of nitramines under high-temperature/pressure conditions.
Divergence of gastropod life history in contrasting thermal environments in a geothermal lake.
Johansson, M P; Ermold, F; Kristjánsson, B K; Laurila, A
2016-10-01
Experiments using natural populations have provided mixed support for thermal adaptation models, probably because the conditions are often confounded with additional environmental factors like seasonality. The contrasting geothermal environments within Lake Mývatn, northern Iceland, provide a unique opportunity to evaluate thermal adaptation models using closely located natural populations. We conducted laboratory common garden and field reciprocal transplant experiments to investigate how thermal origin influences the life history of Radix balthica snails originating from stable cold (6 °C), stable warm (23 °C) thermal environments or from areas with seasonal temperature variation. Supporting thermal optimality models, warm-origin snails survived poorly at 6 °C in the common garden experiment and better than cold-origin and seasonal-origin snails in the warm habitat in the reciprocal transplant experiment. Contrary to thermal adaptation models, growth rate in both experiments was highest in the warm populations irrespective of temperature, indicating cogradient variation. The optimal temperatures for growth and reproduction were similar irrespective of origin, but cold-origin snails always had the lowest performance, and seasonal-origin snails often performed at an intermediate level compared to snails originating in either stable environment. Our results indicate that central life-history traits can differ in their mode of evolution, with survival following the predictions of thermal optimality models, whereas ecological constraints have shaped the evolution of growth rates in local populations. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Internal sub-sonic burning during an explosion viewed via dynamic X-ray radiography
NASA Astrophysics Data System (ADS)
Smilowitz, L.; Henson, B. F.; Oschwald, D.; Suvorova, N.; Remelius, D.
2017-10-01
We observe internal convective and conductive burn front propagation and solid consumption subsequent to thermal ignition for plastic bonded formulations of the solid organic secondary explosives octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene. This work describes x-ray radiographic diagnostics enabling the study of solid density in a fully encased explosive during internal burning subsequent to ignition. The result of this study is the ability to directly observe and measure rates of energy release during a thermal explosion.
Ice sintering timescales at the surface of Europa and implications for surface properties
NASA Astrophysics Data System (ADS)
Phillips, C. B.; Molaro, J.; Meirion-Griffith, G.
2017-12-01
The planned exploration of Europa by NASA's Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa's landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a "neck" between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa's subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts. Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa's surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa's surface age, suggesting that loose surface ice forms a weak and porous crust. Furthermore, our results suggest that existing models do not accurately quantify all stages of the sintering process for ice, emphasizing the need for more laboratory studies on this topic.
NASA Astrophysics Data System (ADS)
Bohrson, W. A.; Spera, F. J.
2004-12-01
Energy-Constrained Eruption, Recharge, Assimilation and Fractional Crystallization (E'RAχFC) tracks the evolution of an open-system magmatic system by coupling conservation equations governing energy, mass and species (isotopes and trace elements). By linking the compositional characteristics of a composite magmatic system (host magma, recharge magma, wallrock, eruptive reservoir) to its mass and energy fluxes, predictions can be made about the chemical evolution of systems characterized by distinct compositional and thermal characteristics. An interesting application of E'RAχFC involves documenting the influence distinct thermal regimes have on the chemical evolution of magmatic systems. Heat transfer between a magma-country rock system at epizonal depths can be viewed as a conjugate heat transfer problem in which the average country rock-magma boundary temperature, Tb, is governed by the relative vigor of hydrothermal convection in the country rock vs. magma convection. For cases where hydrothermal circulation is vigorous and magmatic heat is efficiently transported away from the boundary, contact aureole temperatures (~Tb) are low. In cases where magmatic heat can not be efficiently transported away from the boundary and hydrothermal cells are absent or poorly developed, Tb is relatively high. Simultaneous solution of the differential equations governing momentum and energy conservation and continuity for the coupled hydrothermal-magmatic conjugate heat transfer system enables calculation of the characteristic timescale for EC-RAFC evolution and development of hydrothermal deposits as a function of material and medium properties, sizes of systems and relative efficiency of hydrothermal vs. magmatic heat transfer. Characteristic timescales lie in the range 102-106 yr depending on system size, magma properties and permeability among other parameters. In E'RAχFC, Tb is approximated by the user-defined equilibration temperature, Teq, which is the temperature at which all parts of the composite magmatic system achieve thermal equilibrium. Comparison of the results of three EC-AFC simulations at different Teq (1150° C, 1050° C, 1000° C) for a mafic magma intruding middle-upper crust of mafic-intermediate composition illustrate the distinctions that can be imparted by a range of thermal regimes. Model parameters relevant to the following results include: initial Sr concentration, isotope composition and bulk D for host magma are 700 ppm, 0.7035, and 1.5, respectively; those for wallrock are 230 ppm, 0.7100, 0.05. The 1150° C case (i.e., high Tb) yields the least crust-like Sr isotope signatures. The mass of wallrock that reaches thermal equilibrium is relatively small (0.26, normalized to the mass of initial host magma), although the degree of melting is high (97%). In contrast, the 1000° C case (i.e., low Tb) yields the most crust-like Sr isotope signatures. This case is also characterized by the largest mass of wallrock (0.98, normalized to the mass of initial host magma) that achieves thermal equilibrium, but the degree to which this wallrock melts is small (10%). A fundamental issue that derives from these results is the relationship between the chemical evolution of the hydrothermal system and the chemical evolution of associated melt and cumulates. In particular, to what extent can predictions be made from the thermal interactions between magma and wallrock on the chemical signatures of the associated magmatic rocks and hydrothermal deposits?
Variations in thermal history lead to dissynchronous diapause development
USDA-ARS?s Scientific Manuscript database
The alfalfa leafcutting bee, Megachile rotundata, is the world’s most intensively managed solitary bee for commercial pollination. It is the primary pollinator for alfalfa seed production. Managed bees are subjected to thermal regimes for overwintering and subsequent adult emergence in time for al...
Mirror Neurons and the Evolution of Language
ERIC Educational Resources Information Center
Corballis, Michael C.
2010-01-01
The mirror system provided a natural platform for the subsequent evolution of language. In nonhuman primates, the system provides for the understanding of biological action, and possibly for imitation, both prerequisites for language. I argue that language evolved from manual gestures, initially as a system of pantomime, but with gestures…
NASA Astrophysics Data System (ADS)
Chelle-Michou, Cyril; Chiaradia, Massimo; Ovtcharova, Maria; Ulianov, Alexey; Wotzlaw, Jörn-Frederik
2014-06-01
We present zircon geochronologic (LA-ICPMS and ID-TIMS), trace element and Hf isotopic evidence for a complex evolution of the plutonic roots of the Eocene Coroccohuayco porphyry system, southern Peru. LA-ICPMS U-Pb dating has initially been carried out to optimize grain selection for subsequent high-precision ID-TIMS dating and to characterize crustal assimilation (xenocrystic cores). This combined in-situ and whole-grain U-Pb dating of the same grains has been further exploited to derive a robust temporal interpretation of the complex magmatic system associated with the Coroccohuayco porphyry-skarn deposit. Our data reveal that a heterogeneous gabbrodioritic complex was emplaced at ca. 40.4 Ma and was followed by a nearly 5 Ma-long magmatic lull until the emplacement of dacitic porphyry stocks and dykes associated with the mineralizing event at ca. 35.6 Ma. However, at the sample scale, zircons from the porphyries provide insight into a 2 Ma-long lived “hidden” magmatism (probably at 4-9 km paleodepth) prior to porphyry intrusion and mineralization for which no other evidence can be found on the surface today. These dates together with zircon trace element analysis and Hf isotopes argue for the development of a long-lived magmatic system dominated by amphibole fractionation with an increasing amount of crustal assimilation and the development of a large and sustained thermal anomaly. The system was probably rejuvenated at an increasing rate from 37.5 to 35.6 Ma with injection of fresh and oxidized magma from the lower crust, which caused cannibalism and remelting of proto-plutons. The porphyry intrusions at Coroccohuayco were emplaced at the peak thermal conditions of this upper crustal magma chamber, which subsequently cooled and expelled ore fluids. Zircon xenocrysts and Hf isotopes in the porphyritic rocks suggest that this large upper crustal system evolved at stratigraphic levels corresponding to Triassic sediments similar to the Mitu group that may be present below the district. Using the zircon Ce anomaly as a proxy for oxidation state of the magma through time, we show that the high oxidation state of the porphyries is not the result of upper-crustal processes but is rather controlled by magmatic processes occurring at deeper levels. A comparison of our data with available high-precision geochronologic data at other porphyry systems suggests that such deposits may form when injection rate, volume and heat of their long-lived upper crustal magmatic system reach their peaks. These features might be diagnostic of a productive deposit.
NASA Astrophysics Data System (ADS)
Brandstätter, Jennifer; Kurz, Walter; Krenn, Kurt; Richoz, Sylvain
2017-04-01
IODP Expedition 344 is the second expedition in course of the Costa Rica Seismogenesis Project (Program A), that was designed to reveal processes that effect nucleation and seismic rupture of large earthquakes at erosional subduction zones. Site 344-U1414, located 1 km seaward of the deformation front offshore Costa Rica, serves to evaluate fluid-rock interaction and geochemical processes linked with the tectonic evolution of the incoming Cocos Plate from the Early Miocene up to recent times. Combined isotope analyses and microthermometric analyses of fluid inclusions of hydrothermal veins within lithified sediments and the igneous basement (Cocos Ridge basalt), was used to reveal the thermal history of Site 344-U1414. Veins in the sedimentary rocks are mainly filled by coarse-grained calcite and subordinately by quartz. Veins within the basalt show polymineralic filling of clay minerals, calcite, aragonite and quartz. Blocky veins with embedded wall rock fragments, appearing in the sediments and in the basalt, indicate hydraulic fracturing. The carbon isotopic composition of the vein calcite suggest the influence of a CO2 -rich fluid mixed with seawater (-3.0 to -0.4‰ V-PDB) and the δ18O values can be differentiated in two groups, depending on the formation temperature (-13.6 to -9.3‰ and -10.8 to -4.7‰ V-PDB). 87Sr/86Sr ratios from the veins confirm the results of the stable isotope analyses, with a higher 87Sr/86Sr ratio close to seawater composition and lower ratios indicating the influence of basalt alteration. The hydrothermal veins contain different types of fluid inclusions with high and low entrapment temperatures and low saline fluids. The occurrence of decrepitated fluid inclusions, formed by increased internal overpressure, is related to isobaric heating. Elongated fluid inclusion planes, arc-like fluid inclusions and low homogenization temperatures suggest subsequent isobaric cooling. The stable isotopic content, strontium isotopic composition and the results of fluid inclusion analyses indicate that the source of fluids is a mixture of mobilized pore water and invaded seawater that communicated with high temperature CO2-rich fluids. We propose that lithification of the sediments was accompanied with a first stage of vein development in the Middle Miocene and was a result of the Galapagos hotspot activity. Heat advection led to subsequent vein modification related to isobaric heating. The latest mineralization occurred during crustal cooling up to recent times.
Using SDO/AIA to Understand the Thermal Evolution of Solar Prominence Formation
NASA Astrophysics Data System (ADS)
Viall, Nicholeen; M.; Kucera, Therese T.; Karpen, Judith
2016-10-01
In this study, we investigate prominence formation using time series analysis of Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA) data. We investigate the thermal properties of forming prominences by analyzing observed light curves using the same technique that we have already successfully applied to active regions to diagnose heating and cooling cycles. This technique tracks the thermal evolution using emission formed at different temperatures, made possible by AIA's different wavebands and high time resolution. We also compute the predicted light curves in the same SDO/AIA channels of a hydrodynamic model of thermal nonequilibrium formation of prominence material, an evaporation-condensation model. In these models of prominence formation, heating at the foot-points of sheared coronal flux-tubes results in evaporation of material of a few MK into the corona followed by catastrophic cooling of the hot material to form cool ( 10,000 K) prominence material. We demonstrate that the SDO/AIA light curves for flux tubes undergoing thermal nonequilibrium vary at different locations along the flux tube, especially in the region where the condensate forms, and we compare the predicted light curves with those observed. Supported by NASA's Living with a Star program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.
Mechanical testing and microstructural characterization were performed on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials – CF3, CF3M, CF8, and CF8M – were thermally aged for 1500 hours at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/ α`, precipitationmore » of G-phase in the δ-ferrite, segregation of solute to the austenite/ ferrite interphase boundary, and growth of M23C6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. A comprehensive model is being developed to correlate the microstructural evolution with mechanical behavior and simulation for predictive evaluations of LWR coolant system components.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luscher, Darby J.
We detail a modeling approach to simulate the anisotropic thermal expansion of polycrystalline (1,3,5-triamino-2,4,6-trinitrobenzene) TATB-based explosives that utilizes microstructural information including porosity, crystal aspect ratio, and processing-induced texture. This report, the first in a series, focuses on nonlinear thermal expansion of “neat-pressed” polycrystalline TATB specimens which do not contain any binder; additional complexities related to polymeric binder and irreversible ratcheting behavior are briefly discussed, however detailed investigation of these aspects are deferred to subsequent reports. In this work we have, for the first time, developed a mesoscale continuum model relating the thermal expansion of polycrystal TATB specimens to their microstructuralmore » characteristics. A self-consistent homogenization procedure is used to relate macroscopic thermoelastic response to the constitutive behavior of single-crystal TATB. The model includes a representation of grain aspect ratio, porosity, and crystallographic texture attributed to the consolidation process. A quantitative model is proposed to describe the evolution of preferred orientation of graphitic planes in TATB during consolidation and an algorithm constructed to develop a discrete representation of the associated orientation distribution function. Analytical and numerical solutions using this model are shown to produce textures consistent with previous measurements and characterization for isostatic and uniaxial “die-pressed” specimens. Predicted thermal strain versus temperature for textured specimens are shown to be in agreement with corresponding experimental measurements. Using the developed modeling approach, several simulations have been run to investigate the influence of microstructure on macroscopic thermal expansion behavior. Results from these simulations are used to identify qualitative trends. Implications of the identified trends are discussed in the context of thermal deformation of engineered components whose consolidation process is generally more complex than isostatic or die-pressed specimens. Finally, an envisioned application of the modeling approach to simulating thermal expansion of weapon systems and components is outlined along with necessary future work to introduce the effects of binder and ratcheting behavior. Key conclusions from this work include the following. Both porosity and grain aspect ratio have an influence on the thermal expansion of polycrystal TATB considering realistic material variability. Thepreferred orientation of the single crystal TATB [001] poles within a polycrystal gives rise to pronounced anisotropy of the macroscopic thermal expansion. The extent of this preferred orientation depends on the magnitude of deformation, and consequently, is expected to vary spatially throughout manufactured components much like porosity. The modeling approach presented here has utility toward bringing spatially variable microstructural features into macroscale system engineering modelsAbstract Not Provided« less
NASA Astrophysics Data System (ADS)
Malekpour Alamdari, A.; Axen, G. J.; Hassanzadeh, J.
2014-12-01
Our knowledge about the spatial and temporal relationship between continental extension and its related magmatism is mainly from the western US where removal of a flat subducting slab from under the continent controlled thermal weakening and some extensional collapse. The Iranian plateau, where flat-slab subduction and its subsequent rollback is suggested for the Tertiary magmatic evolution, is an ideal place to see if a similar interaction exists. Between the Late Cretaceous and, at least, the Early Eocene, large-scale continental extension affected the NE Iranian plateau. An ~100 km-long, SE tilted upper to mid-crustal section was exhumed by slip along a low-angle, NW-dipping detachment fault. From SE to NW (young to old) this section includes late Cretaceous pelagic limestones of the Kashmar ophiolites, Late and Early Cretaceous sedimentary rocks, and the Late Triassic and older crystalline rocks of the Biarjmand-Shotor Kuh metamorphic core complex. Little pre-extensional magmatic activity exists in the tilted sequence and in surrounding regions, as Late Jurassic and Early Cretaceous dikes. Similarly, syn-extensional magmatism is absent. In contrast, the tilted sequence is unconformably overlain by >4000 m of volcanic rocks with age ranging from the Middle Eocene (explosive, calc-alkaline?) to the Late Eocene (effusive, alkaline). The absence of considerable pre-extensional magmatism in the NE Iranian plateau does not support magma underplating, subsequent thermal weakening and collapse as a mechanism for the extension in this region. It also indicates that the models that consider waning of volcanism as a controlling mechanism for triggering of extensional faulting (Sonder & Jones, 1999) is not applicable for this region. The amagmatic extension may reflect magma crystallization at depth due to reduced confining pressure resulted from active normal faulting and fracturing (Gans & Bohrson, 1998). The extension and related asthenospheric rise may be developed in a back-arc system.
Water and the thermal evolution of carbonaceous chondrite parent bodies
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Mcsween, Harry Y., Jr.
1989-01-01
Two hypotheses are proposed for the aqueous alteration of carbonaceous chondrites within their parent bodies, in which respectively the alteration occurs (1) throughout the parent body interior, or (2) in a postaccretional surface regolith; both models assume an initially homogeneous mixture of ice and rock that is heated through the decay of Al-26. Water is seen to exert a powerful influence on chondrite evolution through its role of thermal buffer, permitting substitution of a low temperature aqueous alteration for high temperature recrystallization. It is quantitatively demonstrated that liquid water may be introduced by either hydrothermal circulation, vapor diffusion from below, or venting due to fracture.
Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma
NASA Technical Reports Server (NTRS)
Leiter, D.; Boldt, E.
1982-01-01
A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually emerge from an earlier stage at z approx = 4 in which they are the thermal X-ray sources responsible for most of the cosmic X-ray background (CXB). The conjecture is pursued that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx. 10 to the 8th power years these central black holes are spun-up to a canonical Kerr equilibrium state (A/M = 0.998; Thorne 1974) and shown how they then can lead to spectral evolution involving non-thermal emission extending to gamma rays, at the expense of reduced thermal disk radiation. That major portion of the CXB remaining after the contribution of usual AGN are considered, while a superposition of AGN sources at z 1 can account for the gamma ray background. Extensive X-ray measurements carried out with the HEAO 1 and 2 missions as well as gamma ray and optical data are shown to compare favorably with principal features of this model.
Mars atmospheric escape and evolution; interaction with the solar wind
NASA Astrophysics Data System (ADS)
Chassefière, Eric; Leblanc, François
2004-09-01
This tutorial deals with the question of atmospheric escape on Mars. After a brief introduction describing the general context of Mars escape studies, we will present in Section 2 a simplified theory of thermal escape, of both Jeans and hydrodynamic types. The phenomenon of hydrodynamic escape, still hypothetical and not proved to have ever existed on terrestrial planets, will be treated with the help of two well known examples: (i) the isotopic fractionation of xenon in Mars and Earth atmospheres, (ii) the paradox of missing oxygen in Venus atmosphere. In Section 3, a simplified approach of non-thermal escape will be developed, treating in a specific way the different kinds of escape (photochemical escape, ion sputtering, ion escape and ionospheric outflow). As a matter of illustration, some calculations of the relative contributions of these mechanisms, and of their time evolutions, will be given, and the magnitude of the total amount of atmosphere lost by non-thermal escape will be estimated. Section 4 will present the state of knowledge concerning the constraints derived from Mars isotopic geochemistry in terms of past escape and evolution. Finally, a few conclusions, which are more interrogations, will be proposed.
New 3D thermal evolution model for icy bodies application to trans-Neptunian objects
NASA Astrophysics Data System (ADS)
Guilbert-Lepoutre, A.; Lasue, J.; Federico, C.; Coradini, A.; Orosei, R.; Rosenberg, E. D.
2011-05-01
Context. Thermal evolution models have been developed over the years to investigate the evolution of thermal properties based on the transfer of heat fluxes or transport of gas through a porous matrix, among others. Applications of such models to trans-Neptunian objects (TNOs) and Centaurs has shown that these bodies could be strongly differentiated from the point of view of chemistry (i.e. loss of most volatile ices), as well as from physics (e.g. melting of water ice), resulting in stratified internal structures with differentiated cores and potential pristine material close to the surface. In this context, some observational results, such as the detection of crystalline water ice or volatiles, remain puzzling. Aims: In this paper, we would like to present a new fully three-dimensional thermal evolution model. With this model, we aim to improve determination of the temperature distribution inside icy bodies such as TNOs by accounting for lateral heat fluxes, which have been proven to be important for accurate simulations. We also would like to be able to account for heterogeneous boundary conditions at the surface through various albedo properties, for example, that might induce different local temperature distributions. Methods: In a departure from published modeling approaches, the heat diffusion problem and its boundary conditions are represented in terms of real spherical harmonics, increasing the numerical efficiency by roughly an order of magnitude. We then compare this new model and another 3D model recently published to illustrate the advantages and limits of the new model. We try to put some constraints on the presence of crystalline water ice at the surface of TNOs. Results: The results obtained with this new model are in excellent agreement with results obtained by different groups with various models. Small TNOs could remain primitive unless they are formed quickly (less than 2 Myr) or are debris from the disruption of larger bodies. We find that, for large objects with a thermal evolution dominated by the decay of long-lived isotopes (objects with a formation period greater than 2 to 3 Myr), the presence of crystalline water ice would require both a large radius (>300 km) and high density (>1500 kg m-3). In particular, objects with intermediate radii and densities would be an interesting transitory population deserving a detailed study of individual fates.
Disentangling the Correlated Evolution of Monogamy and Cooperation.
Dillard, Jacqueline R; Westneat, David F
2016-07-01
Lifetime genetic monogamy, by increasing sibling relatedness, has been proposed as an important causal factor in the evolution of altruism. Monogamy, however, could influence the subsequent evolution of cooperation in other ways. We present several alternative, non-mutually exclusive, evolutionary processes that could explain the correlated evolution of monogamy and cooperation. Our analysis of these possibilities reveals that many ecological or social factors can affect all three variables of Hamilton's Rule simultaneously, thus calling for a more holistic, systems-level approach to studying the evolution of social traits. This perspective reveals novel dimensions to coevolutionary relationships and provides solutions for assigning causality in complex cases of correlated social trait evolution, such as the sequential evolution of monogamy and cooperation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Variations in thermal history lead to dyssynchronous diapause development
USDA-ARS?s Scientific Manuscript database
The alfalfa leafcutting bee, Megachile rotundata, is the world’s most intensively managed solitary bee and the primary pollinator for alfalfa seed production. Managed bees are subjected to thermal regimes for overwintering and subsequent adult emergence in time for alfalfa bloom. In nature, first ge...
Development of space-stable thermal control coatings for use on large space vehicles
NASA Technical Reports Server (NTRS)
Gilligan, J. E.; Harada, Y.
1976-01-01
The potential of zinc orthotitanate as a pigment for spacecraft thermal control was demonstrated. The properties and performance of pigments prepared by solid state, coprecipitation, and mixed oxalate methods were compared. Environmental tests and subsequent spectral analysis were given primary emphasis.
NASA Astrophysics Data System (ADS)
Wan, Linfeng; Cheng, Xin; Shi, Tong; Su, Wei; Ding, M. D.
2016-08-01
In this paper, we study the formation and early evolution of a limb coronal mass ejection (CME) and its associated shock wave that occurred on 2014 January 8. The extreme ultraviolet (EUV) images provided by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory disclose that the CME first appears as a bubble-like structure. Subsequently, its expansion forms the CME and causes a quasi-circular EUV wave. Interestingly, both the CME and the wave front are clearly visible at all of the AIA EUV passbands. Through a detailed kinematical analysis, it is found that the expansion of the CME undergoes two phases: a first phase with a strong but transient lateral over-expansion followed by a second phase with a self-similar expansion. The temporal evolution of the expansion velocity coincides very well with the variation of the 25-50 keV hard X-ray flux of the associated flare, which indicates that magnetic reconnection most likely plays an important role in driving the expansion. Moreover, we find that, when the velocity of the CME reaches ˜600 km s-1, the EUV wave starts to evolve into a shock wave, which is evidenced by the appearance of a type II radio burst. The shock’s formation height is estimated to be ˜0.2 R sun, which is much lower than the height derived previously. Finally, we also study the thermal properties of the CME and the EUV wave. We find that the plasma in the CME leading front and the wave front has a temperature of ˜2 MK, while that in the CME core region and the flare region has a much higher temperature of ≥8 MK.
A kinematic model for the development of the Afar Depression and its paleogeographic implications
NASA Astrophysics Data System (ADS)
Redfield, T. F.; Wheeler, W. H.; Often, M.
2003-11-01
The Afar Depression is a highly extended region of continental to transitional oceanic crust lying at the junction of the Red Sea, the Gulf of Aden and the Ethiopian rifts. We analyze the evolution of the Afar crust using plate kinematics and published crustal models to constrain the temporal and volumetric evolution of the rift basin. Our reconstruction constrains the regional-scale initial 3D geometry and subsequent extension and is well calibrated at the onset of rifting (˜20 Ma) and from the time of earliest documented sea-floor spreading anomalies (˜6 Ma Red Sea; ˜10 Ma Gulf of Aden). It also suggests the Danakil block is a highly extended body, having undergone between ˜200% and ˜400% stretch. Syn-rift sedimentary and magmatic additions to the crust are taken from the literature. Our analysis reveals a discrepancy: either the base of the crust has not been properly imaged, or a (plume-related?) process has somehow caused bulk removal of crustal material since extension began. Inferring subsidence history from thermal modeling and flexural considerations, we conclude subsidence in Afar was virtually complete by Mid Pliocene time. Our analysis contradicts interpretations of late (post 3 Ma) large (˜2 km) subsidence of the Hadar area near the Ethiopian Plateau, suggesting paleoclimatic data record regional, not local, climate change. Tectonic reconstruction (supported by paleontologic and isotopic data) suggests that a land bridge connected Africa and Arabia, via Danakil, up to the Early to Middle Pliocene. The temporal constraints on land bridge and escarpment morphology constrain Afar paleogeography, climate, and faunal migration routes. These constraints (particularly the development of geographic isolation) are fundamentally important for models evaluating and interpreting biologic evolution in the Afar, including speciation and human origins.
Thickness of Mercury's crust from MESSENGER gravity and altimetry data
NASA Astrophysics Data System (ADS)
Padovan, S.; Wieczorek, M. A.; Margot, J. L.; Tosi, N.; Solomon, S. C.
2014-12-01
The major igneous events that form and shape the crust of a rocky body, such as magma ocean solidification and volcanism, affect the interior thermo-chemical evolution through control on the bulk volatile content, partitioning of heat-producing elements, and heat loss. Therefore, characterizing the crust of a body provides information on that object's origin, differentiation, and subsequent geologic evolution. For Mercury, the crust may hold clues in particular to the still poorly understood processes of formation of this planet. Analysis of geoid-to-topography ratios (GTRs) has been previously applied to infer the thickness of the crust of the Moon, Mars, and Venus. We perform a similar analysis for Mercury with the gravity and altimetry data acquired by the MESSENGER spacecraft. We consider only the northern hemisphere, where the gravity field and topography are well constrained. We assume that Airy isostasy is the principal mechanism of support of variations in topography, and we therefore exclude from the analysis regions that might not be compatible with this assumption, such as large expanses of smooth plains and large impact basins. For a conservative range of densities of the crust, we infer a crustal thickness of 35±18 km (one standard deviation). This new mean value is substantially less than earlier estimates that were based on viscous relaxation of topography, on the relation between the low-degree gravity field and equatorial ellipticity, and on the depth of the brittle-ductile transition as constrained by models of thrust faulting and thermal evolution. This relatively thin crust allows for the possibility of excavation of mantle material during the formation of large impact basins (such as Caloris). Such material might be observed with instruments on MESSENGER and the BepiColombo spacecraft now in development.
Thermo-mechanical simulation of liquid-supported stretch blow molding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmer, J.; Stommel, M.
2015-05-22
Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg∼85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way,more » a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullen, A.B.; Pigott, J.D.
1990-06-01
The present-day North New Guinea basin is a Plio-Pleistocene successor basin that formed subsequent to accretion of the Finisterre volcanic arc to the Australian Plate. The Ramu, Sepik, and Piore infrabasins formed in a forearc setting relative to the continental Maramuni magmatic arc. The evolution of these infrabasins was strongly influenced by accretion of the composite Torricelli-Prince Alexander terrane to the Australian Plate. Regional reflection seismic data and tectonic subsidence-subsidence rate calculations for seven wells drilled in the North New Guinea basin reveal a complex history. The timing and magnitude of subsidence and changes in subsidence rates differ between eachmore » of the Miocene infrabasins. A diachronous middle to late Miocene unconformity generally truncates infrabasin sequences. The Nopan No. 1 in the Sepik basin, however, has a complete middle Miocene to Pleistocene sedimentary record. This well records late Miocene negative subsidence rates documenting that the Nopan anticline grew as erosion occurred elsewhere in the region. This circumstance suggests that the major, sequence-bounding unconformity results from regional uplift and deformation, rather than changes in global sea level. The Plio-Pleistocene evolution of the North New Guinea basin has two profound implications regarding hydrocarbon exploration. First, the late Pliocene structural inversion of parts of the basin hinders stratigraphic and facies correlation inferred from the present setting. The recognition of basin inversion is particularly important in the Piore basin for predicting the distribution of potential reservoir facies in the Miocene carbonates. Second, the subsidence data suggest that although potential source rocks may be thermally within the oil window, these rocks may not have had sufficient time to mature owing to their recent burial.« less
NASA Technical Reports Server (NTRS)
Malcuit, Robert J.; Winters, Ronald R.
1993-01-01
Regardless of one's favorite model for the origin of the Earth-Moon system (fission, coformation, tidal capture, giant-impact) the early history of lunar orbital evolution would produce significant thermal and earth and ocean tidal effects on the primitive earth. Three of the above lunar origin models (fission, coformation, giant-impact) feature a circular orbit which undergoes a progressive increase in orbital radius from the time of origin to the present time. In contrast, a tidal capture model places the moon in an elliptical orbit undergoing progressive circularization from the time of capture (for model purposes about 3.9 billion years ago) for at least a few 10(exp 8) years following the capture event. Once the orbit is circularized, the subsequent tidal history for a tidal capture scenario is similar to that for other models of lunar origin and features a progressive increase in orbital radius to the current state of the lunar orbit. This elliptical orbit phase, if it occurred, should have left a distinctive signature in the terrestrial and lunar rock records. Depositional events would be associated terrestrial shorelines characterized by abnormally high, but progressively decreasing, ocean tidal amplitudes and ranges associated with such an orbital evolution. Several rock units in the age range 3.6-2.5 billion years before present are reported to have a major tidal component. Examples are the Warrawoona, Fortescue, and Hamersley Groups of Western Australia and the Pangola and Witwatersand Supergroups of South Africa. Detailed study of the features of these tidal sequences may be helpful in deciphering the style of lunar orbital evolution during the Archean Eon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stökl, Alexander; Dorfi, Ernst A.; Johnstone, Colin P.
2016-07-10
In the early, disk-embedded phase of evolution of terrestrial planets, a protoplanetary core can accumulate gas from the circumstellar disk into a planetary envelope. In order to relate the accumulation and structure of this primordial atmosphere to the thermal evolution of the planetary core, we calculated atmosphere models characterized by the surface temperature of the core. We considered cores with masses between 0.1 and 5 M {sub ⊕} situated in the habitable zone around a solar-like star. The time-dependent simulations in 1D-spherical symmetry include the hydrodynamics equations, gray radiative transport, and convective energy transport. Using an implicit time integration scheme,more » we can use large time steps and and thus efficiently cover evolutionary timescales. Our results show that planetary atmospheres, when considered with reference to a fixed core temperature, are not necessarily stable, and multiple solutions may exist for one core temperature. As the structure and properties of nebula-embedded planetary atmospheres are an inherently time-dependent problem, we calculated estimates for the amount of primordial atmosphere by simulating the accretion process of disk gas onto planetary cores and the subsequent evolution of the embedded atmospheres. The temperature of the planetary core is thereby determined from the computation of the internal energy budget of the core. For cores more massive than about one Earth mass, we obtain that a comparatively short duration of the disk-embedded phase (∼10{sup 5} years) is sufficient for the accumulation of significant amounts of hydrogen atmosphere that are unlikely to be removed by later atmospheric escape processes.« less
Formation and Evolution of a Multi-Threaded Prominence
NASA Technical Reports Server (NTRS)
Luna, M.; Karpen, J. T.; DeVore, C. R.
2012-01-01
We investigate the process of formation and subsequent evolution of prominence plasma in a filament channel and its overlying arcade. We construct a three-dimensional time-dependent model of a filament-channel prominence suitable to be compared with observations. We combine this magnetic field structure with one-dimensional independent simulations of many flux tubes. The magnetic structure is a three-dimensional sheared double arcade, and the thermal non-equilibrium process governs the plasma evolution. We have found that the condensations in the corona can be divided into two populations: threads and blobs. Threads are massive condensations that linger in the field line dips. Blobs are ubiquitous small condensations that are produced throughout the filament and overlying arcade magnetic structure, and rapidly fall to the chromosphere. The total prominence mass is in agreement with observations. The threads are the principal contributors to the total mass, whereas the blob contribution is small. The motion of the threads is basically horizontal, while blobs move in all directions along the field. The peak velocities for both populations are comparable, but there is a weak tendency for the velocity to increase with the inclination, and the blobs with motion near vertical have the largest values of the velocity. We have generated synthetic images of the whole structure in an H proxy and in two EUV channels of the AIA instrument aboard SDO. These images show the plasma at cool, warm and hot temperatures. The theoretical differential emission measure of our system agrees very well with observations in the temperature range log T = 4.6-5.7. We conclude that the sheared-arcade magnetic structure and plasma dynamics fit well the abundant observational evidence.
The hydrothermal evolution of the Kawerau geothermal system, New Zealand
NASA Astrophysics Data System (ADS)
Milicich, S. D.; Chambefort, I.; Wilson, C. J. N.; Charlier, B. L. A.; Tepley, F. J.
2018-03-01
Hydrothermal alteration zoning and processes provide insights into the evolution of heat source(s) and fluid compositions associated with geothermal systems. Traditional petrological techniques, combined with hydrothermal alteration studies, stable isotope analyses and geochronology can resolve the nature of the fluids involved in hydrothermal processes and their changes through time. We report here new findings along with previous unpublished works on alteration patterns, fluid inclusion measurements and stable isotope data to provide insights into the thermal and chemical evolution of the Kawerau geothermal system, New Zealand. These data indicate the presence of two hydrothermal events that can be coupled with chronological data. The earlier period of hydrothermal activity was initiated at 400 ka, with the heat driving the hydrothermal system inferred to be from the magmatic system that gave rise to rhyolite lavas and sills of the Caxton Formation. Isotopic data fingerprint fluids attributed to this event as meteoric, indicating that the magma primarily served as a heat source driving fluid circulation, and was not releasing magmatic fluids in sufficient quantity to affect the rock mineralogy and thus inferred fluid compositions. The modern Kawerau system was initiated at 16 ka with hydrothermal eruptions linked to shallow intrusion of magma at the onset of activity that gave rise to the Putauaki andesite cone. Likely associated with this later event was a pulse of magmatic CO2, resulting in large-scale deposition of hydrothermal calcite enriched in 18O. Meteoric water-dominated fluids subsequently overwhelmed the magmatic fluids associated with this 18O-rich signature, and both the fluid inclusion microthermometry and stable isotope data reflect a change to the present-day fluid chemistry of low salinity, meteoric-dominated waters.
Constraints in cancer evolution.
Venkatesan, Subramanian; Birkbak, Nicolai J; Swanton, Charles
2017-02-08
Next-generation deep genome sequencing has only recently allowed us to quantitatively dissect the extent of heterogeneity within a tumour, resolving patterns of cancer evolution. Intratumour heterogeneity and natural selection contribute to resistance to anticancer therapies in the advanced setting. Recent evidence has also revealed that cancer evolution might be constrained. In this review, we discuss the origins of intratumour heterogeneity and subsequently focus on constraints imposed upon cancer evolution. The presence of (1) parallel evolution, (2) convergent evolution and (3) the biological impact of acquiring mutations in specific orders suggest that cancer evolution may be exploitable. These constraints on cancer evolution may help us identify cancer evolutionary rule books, which could eventually inform both diagnostic and therapeutic approaches to improve survival outcomes. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
2015-01-01
Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance. PMID:24684494
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
1999-01-01
Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.
Thermally evaporated hybrid perovskite for hetero-structured green light-emitting diodes
NASA Astrophysics Data System (ADS)
Mariano, Fabrizio; Listorti, Andrea; Rizzo, Aurora; Colella, Silvia; Gigli, Giuseppe; Mazzeo, Marco
2017-10-01
Thermal evaporation of green-light emitting perovskite (MaPbBr3) films is reported. Morphological studies show that a soft thermal treatment is needed to induce an outstanding crystal growth and film organization. Hetero-structured light-emitting diodes, embedding as-deposited and annealed MAPbBr3 films as active layers, are fabricated and their performances are compared, highlighting that the perovskite evolution is strongly dependent on the growing substrate, too.
Purity of Gaussian states: Measurement schemes and time evolution in noisy channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paris, Matteo G.A.; Illuminati, Fabrizio; Serafini, Alessio
2003-07-01
We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme are tested by means of Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general Gaussian states both in thermal and in squeezed thermalmore » baths. We show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the input state.« less
Thermal evolution of defects in undoped zinc oxide grown by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Wang, Zilan; Su, Shichen; Ling, Francis Chi-Chung; Anwand, W.; Wagner, A.
2014-07-01
Undoped ZnO films are grown by pulsed laser deposition on c-plane sapphire with different oxygen pressures. Thermal evolutions of defects in the ZnO films are studied by secondary ion mass spectroscopy (SIMS), Raman spectroscopy, and positron annihilation spectroscopy (PAS), and with the electrical properties characterized by the room temperature Hall measurement. Oxygen deficient defect related Raman lines 560 cm-1 and 584 cm-1 are identified and their origins are discussed. Thermal annealing induces extensive Zn out-diffusion at the ZnO/sapphire interface and leaves out Zn-vacancy in the ZnO film. Two types of Zn-vacancy related defects with different microstructures are identified in the films. One of them dominates in the samples grown without oxygen. Annealing the sample grown without oxygen or growing the samples in oxygen would favor the Zn-vacancy with another microstructure, and this Zn-vacancy defect persists after 1100 °C annealing.
NASA Astrophysics Data System (ADS)
Zheng, Yuanyuan; Zhou, Chengshuang; Hong, Yuanjian; Zheng, Jinyang; Zhang, Lin
2018-05-01
Nanoindentation has been used to study the effects of thermal-aging and hydrogen on the mechanical property of the metastable austenitic stainless steel. Thermal-aging at 473 K decreases the nanohardness of austenite, while it increases the nanohardness of strain-induced ɑ‧ martensite. Hydrogen-charging at 473 K increases the nanohardness of austenite, while it decreases the nanohardness of strain-induced ɑ‧ martensite. The opposite effect on austenite and ɑ‧ martensite is first found in the same pre-strained sample. This abnormal evolution behavior of hardness can be attributed to the interaction between dislocation and solute atoms (carbon and hydrogen). Carbon atoms are difficult to move and redistribute in austenite compared with ɑ‧ martensite. Therefore, the difference in the diffusivity of solute atoms between austenite and ɑ‧ martensite may result in the change of hardness.
The dynamics of layered and non-layered oscillatory double-diffusive convection
NASA Astrophysics Data System (ADS)
Moll, Ryan D.
Oscillatory double diffusive convection (ODDC) is a double diffusive instability that occurs in fluids that are unstably stratified in temperature and stably stratified in chemical composition. Regions unstable to ODDC are common in the interiors of stars and giant planets, and knowing thermal and compositional transport through these regions is important for stellar and planetary evolution models. Using 3D direct numerical simulations, Rosenblum et al. 2011 first showed that ODDC can either lead to the spontaneous formation of convective layers, or remain in a state dominated by large scale gravity waves. Subsequent studies focused on identifying the conditions for layer formation (Mirouh et al. 2012), and quantifying transport through layered systems (Wood et al. 2013). This document includes 3 works that build on the results of these earlier studies. The subject of the first is transport through non-layered ODDC and shows that in the absence of layered convection, ODDC is dominated by large scale gravity waves that grow to the size of the domain. We find that while these gravity waves induce small amounts of turbulent mixing, turbulent transport through non-layered systems is not significant for the purposes of astrophysical modeling (unlike in layered convection). The second study pertains to ODDC in the presence of Coriolis forces, and shows that rotating systems can be categorized depending on the strength of the rotation. We find that in the slowly rotating regime, the presence of rotation does not significantly affect qualitative behavior, but leads to modest reductions in thermal and compositional transport, while in the fast rotation regime qualitative behaviors are radically different, and systems are dominated by vortices that affect thermal and compositional transport in complex ways. In the final work we study simulations of ODDC at non-layered parameters that are forced into a layered configuration by initial conditions. Our results show that measurements of thermal and compositional transport deviate from values predicted by oft-cited geophysical transport laws.
Frostbite in Ski Boots for Marines
2005-05-01
tested with regards to thermal comfort , manifested by insulation measurements, water vapour transport and water tightness of the combination. In the...et.al. 2004), you can determine the water vapour transport and heat resistance as important parameters for thermal comfort . On three subsequent...morbidity and risk factors. (in Dutch). Schols, E.H.M., Eijnde, W. van den & Heus, R (2004). A method for assessing thermal comfort of shoes using a
Study of Selected Composites Copper Concentrate-Plastic Waste Using Thermal Analysis
NASA Astrophysics Data System (ADS)
Szyszka, Danuta
2017-12-01
The paper presents thermal analysis of selected composites (copper concentrate, plastic waste) in two stages. The first stage consisted in thermogravimetric analysis and differential thermal analysis on the applied plastic waste and copper concentrate, and subsequently, a comparative study has been carried out on products obtained, constituting composites of those materials. As a result of analyses, it was found that up to ca. 400 °C composites show high thermal stability, whereas above that temperature, a thermal decomposition of the composite occurs, resulting in emissions of organic compounds, i.e. hydrocarbon compounds and organic oxygenate derivatives.
NASA Technical Reports Server (NTRS)
Talay, T. A.; Sykes, K. W.; Kuo, C. Y.
1979-01-01
On May 17, 1977, a remote sensing experiment was conducted on the James River, Virginia, whereby thermal spectrometer and near-infrared photography data of thermal discharges at Hopewell and the Surry nuclear power plant were obtained by an aircraft for one tidal cycle. These data were used in subsequent investigations into the near field discharge trajectories. For the Gravelly Run thermal plume at Hopewell, several empirical expressions for the plume centerline were evaluated by comparisons of the computed trajectories and those observed in the remote sensing images.
Thermal stability of Cu-Cr-Zr alloy processed by equal-channel angular pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abib, Khadidja
Thermal stability of a Cu-Cr-Zr alloy processed by equal-channel angular pressing up to16 passes was investigated using isochronal annealing ranging from 250 to 850 °C for 1 h. The microstructure, crystallographic texture and micro hardness of samples were characterized through electron back scatter diffraction and Vickers micro hardness measurements. The recrystallized grain size was stable between 250 °C and 500 °C then increased quickly. The achieved mean grain size, after 1, 4 and 16 ECAP passes, was around 5.5 μm. A discontinuous mode of recrystallization was found to occur and a Particle Simulated Nucleation mechanism was evidenced. The evolution ofmore » the high angle grain boundary fraction increased notably after annealing above 550 °C. The crystallographic texture after isochronal annealing was similar to that of ECAP simple shear, no change of the texture during annealing was observed but only slight intensity variations. Micro hardness of all Cu–Cr–Zr samples showed a hardening with two peaks at 400 and 500 °C associated with precipitation of Cu cluster and Cu{sub 5}Zr phase respectively, followed by a subsequent softening upon increasing the annealing temperature due to recrystallization. - Highlight: •The Cu-1Cr-0.1Zr alloy shows a very good thermal stability up to 550 °C after ECAP. •A discontinuous recrystallization was found to occur and PSN mechanism was evidenced. •The annealing texture was found weak and some new components appear. •Hardening is attributed to the Cr clustering followed by the Cu{sub 51}Zr{sub 14} precipitation. •Softening is a result of recrystallization and grain growth progressing.« less
NASA Astrophysics Data System (ADS)
Lowenstern, J. B.; Bergfeld, D.; Evans, W. C.; Hurwitz, S.
2012-01-01
We sampled fumaroles and hot springs from the Heart Lake Geyser Basin (HLGB), measured water and gas discharge, and estimated heat and mass flux from this geothermal area in 2009. The combined data set reveals that diverse fluids share an origin by mixing of deep solute-rich parent water with dilute heated meteoric water, accompanied by subsequent boiling. A variety of chemical and isotopic geothermometers are consistent with a parent water that equilibrates with rocks at 205°C ± 10°C and then undergoes 21% ± 2% adiabatic boiling. Measured diffuse CO2 flux and fumarole compositions are consistent with an initial dissolved CO2 concentration of 21 ± 7 mmol upon arrival at the caldera boundary and prior to southeast flow, boiling, and discharge along the Witch Creek drainage. The calculated advective flow from the basin is 78 ± 16 L s-1of parent thermal water, corresponding to 68 ± 14 MW, or ˜1% of the estimated thermal flux from Yellowstone. Helium and carbon isotopes reveal minor addition of locally derived crustal, biogenic, and meteoric gases as this fluid boils and degasses, reducing the He isotope ratio (Rc/Ra) from 2.91 to 1.09. The HLGB is one of the few thermal areas at Yellowstone that approaches a closed system, where a series of progressively boiled waters can be sampled along with related steam and noncondensable gas. At other Yellowstone locations, steam and gas are found without associated neutral Cl waters (e.g., Hot Spring Basin) or Cl-rich waters emerge without significant associated steam and gas (Upper Geyser Basin).
The distribution of ground ice on Mars
NASA Technical Reports Server (NTRS)
Mellon, M. T.; Jakosky, B. M.
1993-01-01
A wealth of geologic evidence indicates that subsurface water ice has played an important role in the evolution of Martian landforms. Theoretical models of the stability of ground ice show that in the near-surface regolith ice is currently stable at latitudes poleward of about +/- 40 deg and below a depth of a few centimeters to a meter, with some variations with longitude. If ice is not previously present at a particular location where it is stable, atmospheric water will diffuse into the regolith and condense as ice, driven by the annual subsurface thermal oscillations. The lower boundary of this ice deposit is found to occur at a depth (typically a few meters) where the annual thermal oscillations give way to the geothermal gradient. In the equatorial regions near-surface ice is currently not stable, resulting in the sublimation of any existing ice and subsequent loss to the atmosphere. However, subliming ice might be maintained at a steady-state depth, where diffusion and loss to the atmosphere are balanced by resupply from a possible deeper source of water (either deeper, not yet depleted, ice deposits or ground water). This depth is typically a few tens to hundreds of meters and depends primarily on the surface temperature and the nature of the geothermal gradient, being deeper for a higher surface temperature and a lower geothermal gradient. Such an equatorial deposit is characterized by the regolith ice content being low nearer the surface and increasing with depth in the deposit. Oscillations in the orbit will affect this picture of ground ice in two ways: by causing periodic changes in the pattern of near-surface stability and by producing subsurface thermal waves that may be capable of driving water ice deeper into the regolith.
Lowenstern, J. B.; Bergfeld, D.; Evans, William C.; Hurwitz, S.
2012-01-01
We sampled fumaroles and hot springs from the Heart Lake Geyser Basin (HLGB), measured water and gas discharge, and estimated heat and mass flux from this geothermal area in 2009. The combined data set reveals that diverse fluids share an origin by mixing of deep solute-rich parent water with dilute heated meteoric water, accompanied by subsequent boiling. A variety of chemical and isotopic geothermometers are consistent with a parent water that equilibrates with rocks at 205°C ± 10°C and then undergoes 21% ± 2% adiabatic boiling. Measured diffuse CO2 flux and fumarole compositions are consistent with an initial dissolved CO2 concentration of 21 ± 7 mmol upon arrival at the caldera boundary and prior to southeast flow, boiling, and discharge along the Witch Creek drainage. The calculated advective flow from the basin is 78 ± 16 L s−1 of parent thermal water, corresponding to 68 ± 14 MW, or –1% of the estimated thermal flux from Yellowstone. Helium and carbon isotopes reveal minor addition of locally derived crustal, biogenic, and meteoric gases as this fluid boils and degasses, reducing the He isotope ratio (Rc/Ra) from 2.91 to 1.09. The HLGB is one of the few thermal areas at Yellowstone that approaches a closed system, where a series of progressively boiled waters can be sampled along with related steam and noncondensable gas. At other Yellowstone locations, steam and gas are found without associated neutral Cl waters (e.g., Hot Spring Basin) or Cl-rich waters emerge without significant associated steam and gas (Upper Geyser Basin).
NASA Technical Reports Server (NTRS)
Madhusudhan, Nikku; Harrington, Joseph; Nymeyer, Sarah; Campo, Christopher J.; Wheatley, Peter J.; Deming, Drake; Blecie, Jasmina; Hardy, Ryan A.; Lust, Nate B.; Anderson, David R.;
2010-01-01
The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior as opposed to the silicate-dominated composition as found on Earth; the solar C/O is 0.54. Theory, shows that high C/O leads to a diversity of carbon-rich planets that can have very different interiors and atmospheres from those in the solar system. Here we report the detection of C/O greater than or equal to 1 in a planetary atmosphere. The transiting hot Jupiter WASP-12b has a dayside atmosphere depleted in water vapour and enhanced in methane by over two orders of magnitude compared to a solar-abundance chemical equilibrium model at the expected temperatures. The observed concentrations of the prominent molecules CO, CH4, and H2O are consistent with theoretical expectations for an atmosphere with the observed C/O = 1. The C/O ratios are not known for giant planets in the solar system, although they are expected to equal the solar value. If high C/O ratios are common, then extrasolar planets are likely very different in interior composition, and formed very differently, from expectations based on solar composition, potentially explaining the large diversity in observed radii. We also find that the extremely irradiated atmosphere (greater than 2500 K) of WASP-12b lacks a prominent thermal inversion, or a stratosphere, and has very efficient day-night energy circulation. The absence of a strong thermal inversion is in stark contrast to theoretical predictions for the most highly irradiated hot-Jupiter atmospheres.
The Formation and Early Evolution of a CME and the Associated Shock on 2014 January 8
NASA Astrophysics Data System (ADS)
Wan, Linfeng; Cheng, Xin; Shi, Tong; Su, Wei; Ding, Mingde
2017-08-01
We study the formation and early evolution of a limb coronal mass ejection (CME) and its associated shock wave that occurred on 2014 January 8. The extreme ultraviolet (EUV) images provided by AIA on board \\textit{Solar Dynamics Observatory} disclose that the CME first appears as a bubble-like structure. Subsequently, its expansion forms the CME and causes a quasi-circular EUV wave. Both the CME and the wave front are clearly visible at all of the AIA EUV passbands. Through a detailed kinematical analysis, it is found that the expansion of the CME undergoes two phases: a first phase with a strong but transient lateral over-expansion followed by a second phase with a self-similar expansion. The temporal evolution of the expansion velocity coincides very well with the variation of the 25--50 keV hard X-ray (HXR) flux of the associated flare, which indicates that magnetic reconnection most likely plays an important role in driving the expansion. Moreover, we find that, when the velocity of the CME reaches $\\sim$600 km s$^{-1}$, the EUV wave starts to evolve into a shock wave, which is evidenced by the appearance of a type II radio burst. Interestingly, we also notice an unusual solar radio signal at $\\sim$4 GHz that is similar to the pattern of a type II radio burst but drifts to higher frequencies at a rate of $\\sim$0.3 MHz per second during about 7 minutes. Its derived density is $\\sim$5$\\times$10$^{10}$ cm$^{-3}$ and increases slowly with time. Joint imaging observations of HXR and EUV help to locate the loop-top region and calculate its thermal proprieties, including slowly increasing densities ($\\sim$5$\\times$10$^{10}$ cm$^{-3}$) and temperatures ($\\sim$14 MK). The similar results obtained from two different ways above imply the possibility of this scenario: plasma blobs that are ejected along the current sheet via magnetic reconnection collide with underlying flare loops that are undergoing chromospheric evaporation. Finally, we also study the thermal properties of the CME and the EUV wave. We find that the plasma in the CME leading front and the wave front has a temperature of $\\sim$2 MK, while that in the CME core region and the flare region has a much higher temperature of $\\ge$8 MK.
NASA Astrophysics Data System (ADS)
Zhang, L.
2017-12-01
Heat flow is an important constraint to study the thermal structure and evolution in modeling experiments. Based on the surface heat flow map and recent geochemistry results, a 2D transient heat conduction-advection model is used to investigate how the effects of sedimentation rate, magmatic intrusion, extension duration and rate on the surface heat flow distribution of the Okinawa Trough. Surface heat flow distribution map is interpolated based on a data set with 664 measurements in the Ryukyu trench-arc-basin system. The map shows an obviously correspondence between heat flows and tectonic zones, characterized by belts in E-W and blocks in S-N. The heat flow is extremely high and variable in the central Okinawa Trough (COT). The lowest heat values are distributed in the northwest of West Philippine Sea near the Ryukyu Trench. This phenomenon is likely related to increasing hydrothermal circulation of cold water into the upper portion of the incoming plate because of bend-faulting and little sediment coverage. Simulation results show that (1) High sedimentation rate can reduce heat flow by 30-35 % in the southern OT. (2) The sedimentation-corrected heat flow indicates that mantle upwelling occurred in the whole OT. The isotherm of 1000°C reaches to the depth of 19 km in the axil of the COT after 10 Ma. (3) The heat flow can be improved drastically by dyke intrusion along normal faults, but subsequent decreases rapidly about 15% after 0.1 Ma, which indicates the age of dyke intrusion under the Iheya area is younger than 0.5 Ma, and the depth is shallower than 2 km. Moreover, the magma fluid upward migrated along the magma conduits is required for the extremely high heat flow and its Darcy velocity can reach to 9 cm/yr. Based on the distribution of heat flow, we suggest that there is a different evolution model between the central- northern OT and the southern. The time of rifting in the NOT-COT began at 10 Ma with the mean rate of 0.4 cm/yr, while the rifting of the SOT started from 6 Ma with higher rate of 0.6 cm/yr.
Infrared Contrast Analysis Technique for Flash Thermography Nondestructive Evaluation
NASA Technical Reports Server (NTRS)
Koshti, Ajay
2014-01-01
The paper deals with the infrared flash thermography inspection to detect and analyze delamination-like anomalies in nonmetallic materials. It provides information on an IR Contrast technique that involves extracting normalized contrast verses time evolutions from the flash thermography infrared video data. The paper provides the analytical model used in the simulation of infrared image contrast. The contrast evolution simulation is achieved through calibration on measured contrast evolutions from many flat bottom holes in the subject material. The paper also provides formulas to calculate values of the thermal measurement features from the measured contrast evolution curve. Many thermal measurement features of the contrast evolution that relate to the anomaly characteristics are calculated. The measurement features and the contrast simulation are used to evaluate flash thermography inspection data in order to characterize the delamination-like anomalies. In addition, the contrast evolution prediction is matched to the measured anomaly contrast evolution to provide an assessment of the anomaly depth and width in terms of depth and diameter of the corresponding equivalent flat-bottom hole (EFBH) or equivalent uniform gap (EUG). The paper provides anomaly edge detection technique called the half-max technique which is also used to estimate width of an indication. The EFBH/EUG and half-max width estimations are used to assess anomaly size. The paper also provides some information on the "IR Contrast" software application, half-max technique and IR Contrast feature imaging application, which are based on models provided in this paper.
Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States
USDA-ARS?s Scientific Manuscript database
Several lineages of influenza A viruses (IAV) currently circulate in North American pigs. Genetic diversity is further increased by the bidirectional transmission of IAV between swine and humans and the subsequent processes of antigenic shift and drift. Such evolution can be the basis for changes in...
Acquisition of Complex Systemic Thinking: Mental Models of Evolution
ERIC Educational Resources Information Center
d'Apollonia, Sylvia T.; Charles, Elizabeth S.; Boyd, Gary M.
2004-01-01
We investigated the impact of introducing college students to complex adaptive systems on their subsequent mental models of evolution compared to those of students taught in the same manner but with no reference to complex systems. The students' mental models (derived from similarity ratings of 12 evolutionary terms using the pathfinder algorithm)…
Early dynamical evolution of young substructured clusters
NASA Astrophysics Data System (ADS)
Dorval, Julien; Boily, Christian
2017-03-01
Stellar clusters form with a high level of substructure, inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system. The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth and velocity inheritance. We introduce a new way to create clumpy initial conditions through a ''Hubble expansion'' which naturally produces self consistent clumps, velocity-wise. In depth analysis of the resulting clumps shows consistency with hydrodynamical simulations of young star clusters. We use these initial conditions to investigate the dynamical evolution of young subvirial clusters. We find the collapse to be soft, with hierarchical merging leading to a high level of mass segregation. The subsequent evolution is less pronounced than the equilibrium achieved from a cold collapse formation scenario.
NASA Astrophysics Data System (ADS)
Peace, Alexander L.; Welford, J. Kim; Foulger, Gillian R.; McCaffrey, Ken J. W.
2017-04-01
Continental extension, subsequent rifting and eventual breakup result in the development of passive margins with transitional crust between extended continental crust and newly created oceanic crust. Globally, passive margins are typically classified as either magma-rich or magma-poor. Despite this simple classification, magma-poor margins like the West Orphan Basin, offshore Newfoundland, do exhibit some evidence of localized magmatism, as magmatism to some extent invariably accompanies all continental breakup. For example, on the Newfoundland margin, a small volcanic province has been interpreted near the termination of the Charlie Gibbs Fracture Zone, whereas on the conjugate Irish margin within the Rockall Basin, magmatism appears to be more widespread and has been documented both in the north and in the south. The broader region over which volcanism has been identified on the Irish margin is suggestive of magmatic asymmetry across this conjugate margin pair and this may have direct implications for the mechanisms governing the nature of rifting and breakup. Possible causes of the magmatic asymmetry include asymmetric rifting (simple shear), post-breakup thermal anomalies in the mantle, or pre-existing compositional zones in the crust that predispose one of the margins to more melting than its conjugate. A greater understanding of the mechanisms leading to conjugate margin asymmetry will enhance our fundamental understanding of rifting processes and will also reduce hydrocarbon exploration risk by better characterizing the structural and thermal evolution of hydrocarbon bearing basins on magma-poor margins where evidence of localized magmatism exists. Here, the latest results of a conjugate margin study of the Newfoundland-Ireland pair utilizing seismic interpretation integrated with other geological and geophysical datasets are presented. Our analysis has begun to reveal the nature and timing of rift-related magmatism and the degree to which magmatic asymmetry exists between these conjugate margins. The main implications from this work are that different processes may have operated during and after rifting on these conjugate margins. This concept should be carried forward when conducting conjugate margin studies elsewhere, particularly when exploring for hydrocarbons as prospectivity on one margin may not be predictive for its conjugate as different thermal and structural regimes may have been in operation during conjugate basin evolution.
NASA Astrophysics Data System (ADS)
Cao, X. Y.; Zhu, P.; Ding, X. F.; Lu, Y. H.; Shoji, T.
2017-04-01
Microstructural evolution and mechanical property change of E308L stainless steel weld overlay cladding aged at 400 °C for 400, 1000 and 5000 h were investigated by transmission electron microscope (TEM) and small punch test (SPT). The results indicated that thermal aging had no obvious effect on the volume fraction of ferrite, but can cause microstructural evolution by spinodal decomposotion and G-phase precipitation in the ferrite phase. Spinodal decomposition took place after aging up to 1000 h, while G-phase formed along dislocations, and growed up to 2-11 nm after aging for 5000 h. The total energy for inducing deformation and fracture by the small punch tests decreased with the increase of thermal aging time, and this decline was associated with spinodal decomposition and G-phase precipitation. Plastic deformation of the aged ferrite proceeded via formation of curvilinear slip bands. Nucleation of microcracks occurred at the δ/γ interface along the slip bands. The hardening of the ferrite and high stress concentration on δ/γ phase interface resulted in brittle fracture and phase boundary separation after thermal aging.
Thermal evolution of a partially differentiated H chondrite parent body
NASA Astrophysics Data System (ADS)
Abrahams, J. N. H.; Bryson, J. F. J.; Weiss, B. P.; Nimmo, F.
2016-12-01
It has traditionally been assumed that planetesimals either melted entirely or remained completely undifferentiated as they accreted. The unmelted textures and cooling histories of chondrites have been used to argue that these meteorites originated from bodies that never differentiated. However, paleomagnetic measurements indicate that some chondrites (e.g., the H chondrite Portales Valley and several CV chondrites) were magnetized by a core dynamo magnetic field, implying that their parent bodies were partially differentiated. It has been unclear, however, whether planetesimal histories consistent with dynamo production can also be consistent with the diversity of chondrite cooling rates and ages. To address this, we modeled the thermal evolution of the H chondrite parent body, considering a variety of accretion histories and parent body radii. We considered partial differentiation using two-stage accretion involving the initial formation and differentiation of a small body, followed by the later addition of low thermal conductivity chondritic material that remains mostly unmelted. We were able to reproduce the measured thermal evolution of multiple H chondrites for a range of parent body parameters, including initial radii from 70-150 km, chondritic layer thicknesses from 50 km to over 100 km, and second stage accretion times of 2.5-3 Myr after solar system formation. Our predicted rates of core cooling and crystallization are consistent with dynamo generation by compositional convection beginning 60-200 Myr after solar system formation and lasting for at least tens of millions of years. This is consistent with magnetic studies of Portales Valley [Bryson et al., this meeting]. In summary, we find that thermal models of partial differentiation are consistent the radiometric ages, magnetization, and cooling rates of a diversity H chondrites.
Exploring optimal topology of thermal cloaks by CMA-ES
NASA Astrophysics Data System (ADS)
Fujii, Garuda; Akimoto, Youhei; Takahashi, Masayuki
2018-02-01
This paper presents topology optimization for thermal cloaks expressed by level-set functions and explored using the covariance matrix adaptation evolution strategy (CMA-ES). Designed optimal configurations provide superior performances in thermal cloaks for the steady-state thermal conduction and succeed in realizing thermal invisibility, despite the structures being simply composed of iron and aluminum and without inhomogeneities caused by employing metamaterials. To design thermal cloaks, a prescribed objective function is used to evaluate the difference between the temperature field controlled by a thermal cloak and when no thermal insulator is present. The CMA-ES involves searches for optimal sets of level-set functions as design variables that minimize a regularized fitness involving a perimeter constraint. Through topology optimization subject to structural symmetries about four axes, we obtain a concept design of a thermal cloak that functions in an isotropic heat flux.
Rubab, Zakya; Siddiqi, Humaira M.; Saeed, Shaukat
2014-01-01
This paper presents the synthesis and thermal and mechanical properties of epoxy-titania composites. First, submicron titania particles are prepared via surfactant-free sol-gel method using TiCl4 as precursor. These particles are subsequently used as inorganic fillers (or reinforcement) for thermally cured epoxy polymers. Epoxy-titania composites are prepared via mechanical mixing of titania particles with liquid epoxy resin and subsequently curing the mixture with an aliphatic diamine. The amount of titania particles integrated into epoxy matrix is varied between 2.5 and 10.0 wt.% to investigate the effect of sub-micron titania particles on thermal and mechanical properties of epoxy-titania composites. These composites are characterized by X-ray photoelectron (XPS) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric (TG), and mechanical analyses. It is found that sub-micron titania particles significantly enhance the glass transition temperature (>6.7%), thermal oxidative stability (>12.0%), tensile strength (>21.8%), and Young's modulus (>16.8%) of epoxy polymers. Epoxy-titania composites with 5.0 wt.% sub-micron titania particles perform best at elevated temperatures as well as under high stress. PMID:24578638
Temperature, metabolic power and the evolution of endothermy.
Clarke, Andrew; Pörtner, Hans-Otto
2010-11-01
Endothermy has evolved at least twice, in the precursors to modern mammals and birds. The most widely accepted explanation for the evolution of endothermy has been selection for enhanced aerobic capacity. We review this hypothesis in the light of advances in our understanding of ATP generation by mitochondria and muscle performance. Together with the development of isotope-based techniques for the measurement of metabolic rate in free-ranging vertebrates these have confirmed the importance of aerobic scope in the evolution of endothermy: absolute aerobic scope, ATP generation by mitochondria and muscle power output are all strongly temperature-dependent, indicating that there would have been significant improvement in whole-organism locomotor ability with a warmer body. New data on mitochondrial ATP generation and proton leak suggest that the thermal physiology of mitochondria may differ between organisms of contrasting ecology and thermal flexibility. Together with recent biophysical modelling, this strengthens the long-held view that endothermy originated in smaller, active eurythermal ectotherms living in a cool but variable thermal environment. We propose that rather than being a secondary consequence of the evolution of an enhanced aerobic scope, a warmer body was the means by which that enhanced aerobic scope was achieved. This modified hypothesis requires that the rise in metabolic rate and the insulation necessary to retain metabolic heat arose early in the lineages leading to birds and mammals. Large dinosaurs were warm, but were not endotherms, and the metabolic status of pterosaurs remains unresolved. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Page, D.; Geppert, U.; Zannias, T.
2000-08-01
We investigate the thermal, magnetic and rotational evolution of isolated neutron stars assuming that the dipolar magnetic field is confined to the crust. Our treatment, for the first time, uses a fully general relativistic formalism not only for the thermal but also for the magnetic part, and includes partial general relativistic effects in the rotational part. Due to the fact that the combined evolution depends crucially upon the compactness of the star, three different equations of state have been employed in the calculations. In the absence of general relativistic effects, while upon increasing compactness a decrease of the crust thickness takes place leading into an accelerating field decay, the inclusion of general relativistic effects intend to "decelerate this acceleration". As a consequence we find that, within the crustal field hypothesis, a given equation of state is compatible with the observed distribution of pulsar periods P and period derivative &mathaccent "705Frelax dot; provided the initial field strength and current location as well as the magnitude of the impurity content are appropriately constrained. Finally, we access the flexibility of the soft, medium and stiff classes of equations of state as candidates in describing the state of the matter in the neutron star interiors. The comparison of our model calculations with observations, together with the consideration of independent information about neutron star evolution, suggests that a not too soft equation of state describes neutron star interiors and its cooling proceeds along the `standard' scenario.
NASA Technical Reports Server (NTRS)
Solomon, Sean C. (Editor); Sharpton, Virgil L. (Editor); Zimbelman, James R. (Editor)
1990-01-01
The objectives of the Mars: Evolution of Volcanism, Tectonics, and Volatiles (MEVTV) project are to outline the volcanic and tectonic history of Mars; to determine the influence of volatiles on Martian volcanic and tectonic processes; and to attempt to determine the compositional, thermal, and volatile history of Mars from its volcanic and tectonic evolution. Available data sets were used to test general models of the volcanic and tectonic history of Mars.
A New Relationship Between Soft X-Rays and EUV Flare Light Curves
NASA Astrophysics Data System (ADS)
Thiemann, Edward
2016-05-01
Solar flares are the result of magnetic reconnection in the solar corona which converts magnetic energy into kinetic energy resulting in the rapid heating of solar plasma. As this plasma cools, it emits radiation at different EUV wavelengths when the dropping temperature passes a line’s temperature of formation. This results in a delay in the emissions from cooler EUV lines relative to hotter EUV lines. Therefore, characterizing how this hot plasma cools is important for understanding how the corresponding geo-effective extreme ultraviolet (EUV) irradiance evolves in time. I present a simple new framework in which to study flare cooling by using a Lumped Element Thermal Model (LETM). LETM is frequently used in science and engineering to simplify a complex multi-dimensional thermal system by reducing it to a 0-D thermal circuit. For example, a structure that conducts heat out of a system is simplified with a resistive element and a structure that allows a system to store heat is simplified with a capacitive element. A major advantage of LETM is that the specific geometry of a system can be ignored, allowing for an intuitive analysis of the major thermal processes. I show that LETM is able to accurately reproduce the temporal evolution of cooler flare emission lines based on hotter emission line evolution. In particular, it can be used to predict the evolution of EUV flare light curves using the NOAA X-Ray Sensor (XRS).
Functional specialization in regulation and quality control in thermal adaptive evolution.
Yama, Kazuma; Matsumoto, Yuki; Murakami, Yoshie; Seno, Shigeto; Matsuda, Hideo; Gotoh, Kazuyoshi; Motooka, Daisuke; Nakamura, Shota; Ying, Bei-Wen; Yomo, Tetsuya
2015-11-01
Distinctive survival strategies, specialized in regulation and in quality control, were observed in thermal adaptive evolution with a laboratory Escherichia coli strain. The two specialists carried a single mutation either within rpoH or upstream of groESL, which led to the activated global regulation by sigma factor 32 or an increased amount of GroEL/ES chaperonins, respectively. Although both specialists succeeded in thermal adaptation, the common winner of the evolution was the specialist in quality control, that is, the strategy of chaperonin-mediated protein folding. To understand this evolutionary consequence, multilevel analyses of cellular status, for example, transcriptome, protein and growth fitness, were carried out. The specialist in quality control showed less change in transcriptional reorganization responding to temperature increase, which was consistent with the finding of that the two specialists showed the biased expression of molecular chaperones. Such repressed changes in gene expression seemed to be advantageous for long-term sustainability because a specific increase in chaperonins not only facilitated the folding of essential gene products but also saved cost in gene expression compared with the overall transcriptional increase induced by rpoH regulation. Functional specialization offered two strategies for successful thermal adaptation, whereas the evolutionary advantageous was more at the points of cost-saving in gene expression and the essentiality in protein folding. © 2015 The Authors. Genes to Cells published by Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.
NASA Astrophysics Data System (ADS)
Frantziskonis, George N.; Gur, Sourav
2017-06-01
Thermally induced phase transformation in NiTi shape memory alloys (SMAs) shows strong size and shape, collectively termed length scale effects, at the nano to micrometer scales, and that has important implications for the design and use of devices and structures at such scales. This paper, based on a recently developed multiscale model that utilizes molecular dynamics (MDs) simulations at small scales and MD-verified phase field (PhF) simulations at larger scales, reports results on specific length scale effects, i.e. length scale effects in martensite phase fraction (MPF) evolution, transformation temperatures (martensite and austenite start and finish) and in the thermally cyclic transformation between austenitic and martensitic phase. The multiscale study identifies saturation points for length scale effects and studies, for the first time, the length scale effect on the kinetics (i.e. developed internal strains) in the B19‧ phase during phase transformation. The major part of the work addresses small scale single crystals in specific orientations. However, the multiscale method is used in a unique and novel way to indirectly study length scale and grain size effects on evolution kinetics in polycrystalline NiTi, and to compare the simulation results to experiments. The interplay of the grain size and the length scale effect on the thermally induced MPF evolution is also shown in this present study. Finally, the multiscale coupling results are employed to improve phenomenological material models for NiTi SMA.
NASA Astrophysics Data System (ADS)
Parmentier, E. M.; Mustard, J. F.; Ehlmann, B. L.; Roach, L. H.
2007-12-01
Both orbital remote sensing and geophysical observations indicate an important role for hydrothermal crustal cooling during the Noachian epoch. Orbital remote sensing shows that phyllosilicate minerals are common in Noachian-aged terrains but have not been observed in younger terrains (<3.8 Ga). Throughout the Noachian highlands, phyllosilicates are observed in deeply eroded terrains as well as in association with impact craters, in their walls, rims, ejecta, and in central peaks of craters as large as 45 km, corresponding to excavation depths of 4-5 km. CRISM and OMEGA mapping typically show phyllosilicate-bearing rocks occupy the lowest observable stratigraphic unit, and the most common alteration minerals are iron magnesium smectites which typically form at low pressures and temperatures <200°C. Widespread occurrences of phyllosilicates to depths of at least 4-5 km may provide evidence for deep crustal hydrothermal circulation during the Noachian. Geophysical evidence from surface deformation associated with faulting and from the analysis of the relationship of gravity and topography suggest elastic lithosphere thicknesses a large as ~30 km near the end of the Noachian, corresponding to surface heatflux of 20-40 mW/m2. Relaxation of elastic stresses due to thermally activated creep results in elastic lithosphere thicknesses sensitive to crustal temperatures. Plausible planetary thermal evolution models with chondritic abundances of heat producing elements predict a surface heat flux of 50-60 mW/m2 near the end of the Noachian. The difference in the heat flux required for planetary cooling and that inferred from elastic lithospheric thickness, suggests that a significant fraction of heatflow reaching the surface may be transported by hydrothermal convection rather than by conduction alone. Relaxation of crustal thickness variations due to lower crustal flow is sensitive to both the temperature and geothermal gradient at the crust-mantle boundary. In the presence of a low thermal conductivity regolith, thermal evolution models also indicate that crustal thickness variations created during the Noachian would not be preserved, even with a creep-resistant dry diabase rheology. Thus, a mechanism enhancing heat flux in the Noachian Martian crust is indicated. The studies to be reported will summarize these individual constraints on thermal structure and explore their combined implications for the depth and vigor of hydrothermal circulation during the early crustal evolution of Mars.
NASA Astrophysics Data System (ADS)
Mahin Shirazi, Sam
Accelerated thermal cycling (ATC) tests are the most commonly used tests for the thermo-mechanical performance assessment of microelectronics assemblies. Currently used reliability models have failed to incorporate the microstructural dependency of lead free solder joint behavior and its microstructure evolution during cycling. Thus, it is essential to have a mechanistic understanding of the effect of cycling parameters on damage evolution and failure of lead free solder joints in ATC. Recrystallization has been identified as the damage rate controlling mechanism in ATC. Usually it takes 1/3 of life for completion of recrystallization regardless of cycling parameters. Thus, the life of the solder joints can be predicted by estimating global recrystallization. The objective of the first part of the study was to examine whether the damage scenario applies in service is the same as the harsh thermal cycling tests (i.e. 0/100 °C and -40/125 °C) commonly used in industry. Microstructure analysis results on a variety of lead free solder SnAgCu assemblies subjected to the both harsh (0/100 °C) and mild (20/80 °C) ATC confirmed similar failure mechanism under the both testing conditions. Sn grain morphology (interlaced versus beach ball) has a significant effect on the thermo-mechanical performance (and thus the model) of the lead free solder joints. The longer thermal cycling lifetime observed in the interlaced solder joints subjected to the ATC compared to the beach ball structure was correlated to the different initial microstructure and the microstructure evolution during cycling. For the modeling proposes, the present study was focused on Sn-Ag-Cu solder joints with either a single Sn grain or beach ball structure. Microstructural analysis results of the simulated thermal cycling experiment revealed that, the life can be approximated as determined by the accumulation of a certain amount of work during the high temperature dwells. Finally the effect of precipitates spacing on acceleration factor was investigated. Results indicated that a smaller initial precipitate spacing would tend to result in a longer life in mild thermal cycling/service (where there is lower stresses). Accordingly, it is essential to incorporate the dependence of damage rate (i.e. recrystallization) on precipitate coarsening in any predictions.
NASA Astrophysics Data System (ADS)
Trubač, Jakub; Janoušek, Vojtěch; Žák, Jiří; Somr, Michael; Kabele, Petr; Švancara, Jan; Gerdes, Axel; Žáčková, Eliška
2017-04-01
This study integrates gravimetry and thermal modelling with petrology, U-Th-Pb monazite and zircon geochronology and whole-rock geochemistry of the early Carboniferous Říčany Pluton, Bohemian Massif, in order to discuss the origin of compositional and textural zoning in granitic plutons and complex histories of horizontally stratified, multiply replenished magma chambers. The pluton consists of two coeval, nested biotite (-muscovite) granite facies: outer one, strongly porphyritic (SPm) and inner one, weakly porphyritic (WPc). Their contact is concealed but is likely gradational over several hundreds of meters. The two facies have nearly identical modal composition, are subaluminous to slightly peraluminous and geochemically evolved. Mafic microgranular enclaves, commonly associated with K-feldspar phenocryst patches, are abundant in the pluton center and indicate a repeated basic magma injection and its multistage interactions with the granitic magma and nearly solidified cumulates. Furthermore, the gravimetric data show that the nested pluton is only a small outcrop of a large anvil-like body reaching the depth of at least 14 km, where the pluton root is expected. Trace-element compositions reveal that the pluton is doubly reversely zoned. On the pluton scale, the outer SRG is geochemically more evolved than the inner WPc. On the scale of individual units, outward whole-rock geochemical variations within each facies (SPm, WPc) are compatible with fractional crystallization dominated by feldspars. The proposed genetic model invokes vertical overturn of a deeper, horizontally stratified anvil-shaped magma chamber. The overturn was driven by reactivation of resident felsic magma from the K-feldspar-rich crystal mush. The energy for the melt remobilization, extraction and subsequent ascent is thought to be provided by a long-lived thermal anomaly above the pluton feeding zone, enhanced by the multiple injections of hot basic magmas. In general, it is concluded that the three-dimensional shape of the granitic bodies exerts a first-order control on their cooling histories and thus also on their physico-chemical evolution. Thicker and longer lived portions of magma chambers are the favourable sites for extensive fractionation and/or, potentially vigorous interaction with the basic magmas. These hot domains are then particularly prone to rejuvenation and subsequent extraction of highly mobile magma leading potentially to volcanic eruptions.
Thermal emission before earthquakes by analyzing satellite infra-red data
NASA Astrophysics Data System (ADS)
Ouzounov, D.; Taylor, P.; Bryant, N.; Pulinets, S.; Freund, F.
2004-05-01
Satellite thermal imaging data indicate long-lived thermal anomaly fields associated with large linear structures and fault systems in the Earth's crust but also with short-lived anomalies prior to major earthquakes. Positive anomalous land surface temperature excursions of the order of 3-4oC have been observed from NOAA/AVHRR, GOES/METEOSAT and EOS Terra/Aqua satellites prior to some major earthquake around the world. The rapid time-dependent evolution of the "thermal anomaly" suggests that is changing mid-IR emissivity from the earth. These short-lived "thermal anomalies", however, are very transient therefore there origin has yet to be determined. Their areal extent and temporal evolution may be dependent on geology, tectonic, focal mechanism, meteorological conditions and other factors.This work addresses the relationship between tectonic stress, electro-chemical and thermodynamic processes in the atmosphere and increasing mid-IR flux as part of a larger family of electromagnetic (EM) phenomena related to seismic activity.We still need to understand better the link between seismo-mechanical processes in the crust, on the surface, and at the earth-atmospheric interface that trigger thermal anomalies. This work serves as an introduction to our effort to find an answer to this question. We will present examples from the strong earthquakes that have occurred in the Americas during 2003/2004 and the techniques used to record the thermal emission mid-IR anomalies, geomagnetic and ionospheric variations that appear to associated with impending earthquake activity.
Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank
NASA Astrophysics Data System (ADS)
Szelinski, B.; Lange, H.; Röttger, C.; Sacher, H.; Weiland, S.; Zell, D.
2012-12-01
In the frame of the Future Launcher Preparatory Program (FLPP) investigating advancing technologies for the Next Generation of Launchers (NGL) a number of novel key technologies are presently under development for significantly improving vehicle performance in terms of payload capacity and mission versatility. As a respective ESA guided technology development program, Cryogenic Upper Stage Technologies (CUST) has been launched within FLPP that hosts among others the development of a common bulkhead to separate liquid hydrogen from the liquid oxygen compartment. In this context, MT Aerospace proposed an advanced sandwich design concept which is currently in the development phase reaching for TRL4 under MT Aerospace responsibility. Key components of this sandwich common bulkhead are a specific core material, situated in-between two thin aluminum face sheets, and an innovative thermal decoupling element at the equatorial region. The combination of these elements provides excellent thermal insulation capabilities and mechanical performance at a minimum weight, since mechanical and thermal functions are merged in the same component. This improvement is expressed by substantial performance figures of the proposed concept that include high resistance against reverse pressure, an optimized heat leak and minimized mass, involving the sandwich dome structure and the adjacent interface rings. The development of single sub-technologies, all contributing to maturate the sandwich common bulkhead towards the desired technology readiness level (TRL), is described in the context of the given design constraints as well as technical, functional and programmatic requirements, issued from the stage level. This includes the thermal and mechanical characterization of core materials, manufacturing issues as well as non-destructive testing and the thermal and structural analyses and dimensioning of the complete common bulkhead system. Dedicated TRL assessments in the Ariane 5 Mid-life Evolution (A5-ME) program track the progress of these technology developments and analyze their applicability in time for A5-ME. In order to approximate A5-ME concerned preconditions, activities are initiated aiming at harmonization of the available specifications. Hence, a look-out towards a further technology step approaching TRL6 in a subsequent phase is given, briefly addressing topics of full scale manufacture and appropriate thermo-mechanical testing of an entire sandwich common bulkhead.
Kuznets, E I; Bobrov, A F; Bekreneva, L N; Mikhailova, L I; Utekhin, B A; Pruzhinina, T I; Iakovleva, E V; Chadov, V I
1996-01-01
The problem of evaluating and predicting the thermal status of a cosmonaut in the long-term space mission is a pressing one and remains to be solved. The previous studies indicated that the best plan to be followed is to evaluate the thermal status of a cosmonaut during his egress into outer space with the use of the procedure of parotid thermometry of the mean body temperature.
NASA Astrophysics Data System (ADS)
Glišović, Petar; Forte, Alessandro M.
2014-03-01
The lack of knowledge of the initial thermal state of the mantle in the geological past is an outstanding problem in mantle convection. The resolution of this problem also requires the modelling of 3-D mantle evolution that yields maximum consistency with a wide suite of geophysical constraints. Quantifying the robustness of the reconstructed thermal evolution is another major concern. To solve and estimate the robustness of the time-reversed (inverse) problem of mantle convection, we analyse two different numerical techniques: the quasi-reversible (QRV) and the backward advection (BAD) methods. Our investigation extends over the 65 Myr interval encompassing the Cenozoic era using a pseudo-spectral solution for compressible-flow thermal convection in 3-D spherical geometry. We find that the two dominant issues for solving the inverse problem of mantle convection are the choice of horizontally-averaged temperature (i.e., geotherm) and mechanical surface boundary conditions. We find, in particular, that the inclusion of thermal boundary layers that yield Earth-like heat flux at the top and bottom of the mantle has a critical impact on the reconstruction of mantle evolution. We have developed a new regularisation scheme for the QRV method using a time-dependent regularisation function. This revised implementation of the QRV method delivers time-dependent reconstructions of mantle heterogeneity that reveal: (1) the stability of Pacific and African ‘large low shear velocity provinces’ (LLSVP) over the last 65 Myr; (2) strong upward deflections of the CMB topography at 65 Ma beneath: the North Atlantic, the south-central Pacific, the East Pacific Rise (EPR) and the eastern Antarctica; (3) an anchored deep-mantle plume ascending directly under the EPR (Easter and Pitcairn hotspots) throughout the Cenozoic era; and (4) the appearance of the transient Reunion plume head beneath the western edge of the Deccan Plateau at 65 Ma. Our reconstructions of Cenozoic mantle evolution thus suggest that mantle plumes play a key role in driving surface tectonic processes and large-scale volcanism.
P2O5-doping in waste glasses: evolution of viscosity and crystallization processes
NASA Astrophysics Data System (ADS)
Tarrago, Mariona; Espuñes, Alex; Garcia-Valles, Maite; Martinez, Salvador
2015-04-01
Current concern for environmental preservation is the main motive for the study of new, more sustainable materials. Increasing amounts of sewage sludge are produced in wastewater treatment plants over the world every day. This fact represents a major problem for the municipalities and industries due to the volume of waste and also to the contaminant elements it may bear, which require expensive conditions for disposal in landfills. Vitrification is an established technique in the inertization of different types of toxic wastes (such as nuclear wastes and contaminated soils) that has been used successfully for sewage sludge. Glasses of basaltic composition (43.48SiO2-14.00Al2O3-12.86Fe2O3-10.00CaO-9.94MgO-3.27Na2O-1.96K2O-0.17MnO-0.55P2O5-2.48TiO2) are used as a laboratory analogous of wastes such as sewage sludge and galvanic sludge to study the properties of the inertization matrix. This basaltic matrix is doped by adding 1%, 2%, 3%, 4% and 20% of P5O5 in order to cover the compositional range of phosphate in sewage sludge encountered in the literature. In this study, the focus has been placed in the effect of the concentration of phosphate (P2O5) in glass stability, thermal properties and evolution of viscosity with temperature. The dependence of viscosity on temperature and the thermal behaviour of these glasses are critical parameters in the design of their production process. Regarding the compositional limits of the mixture, it has been observed that melt reactivity is much increased when P2O5 content is over 4%, hindering the glass conformation process. Moreover, stanfieldite (calcium and magnesium phosphate) crystallized during glass making when phosphate concentration approached 20%, hence establishing the upper limit for glass stability. Viscosity is also dramatically increased in this range, hence requiring production amends. Differential thermal analysis has provided nucleation and crystallization temperatures of the glasses around 915°C and 1050°C respectively at phosphate contents up to 4%. Subsequent analysis by X-Ray Diffraction has proved that newly formed phases are iron oxides, Ca - Mg silicates and feldspars. Glass transition temperature (Tg; approximately 635°C) obtained by dilatometry remains almost constant until very high phosphate contents; even then, the increase is not large (650°C at 20% P2O5). Hot-Stage microscopy (HSM) has shown the evolution of viscosity with temperature through the analysis of the morphological evolution of cylindrical probes of glass according to German standard DIN 51730. The annealing range (viscosity between 1013.5 and 1012 is reached at temperatures between 600 and 700°C. The temperatures of the lower limit of the working range (viscosity under 103 Pa-s) are between 1325 and 1375°C; decreasing slightly with the addition of P2O5.
NASA Astrophysics Data System (ADS)
Ghosh, Tapas; Satpati, Biswarup
2017-05-01
The effect of the thermal annealing on silver nanoparticles deposited on silicon surface has been studied. The silver nanoparticles have been deposited by the galvanic displacement reaction. Rapid thermal annealing (RTA) has been performed on the Si substrate, containing the silver nanoparticles. The scanning transmission electron microscopy (STEM), energy dispersive X-ray (EDX) spectroscopy and scanning electron microscopy (SEM) study show that the galvanic displacement reaction and subsequent rapid thermal annealing could lead to well separated and spherical shaped larger silver nanoparticles on silicon substrate.
Below-Ambient and Cryogenic Thermal Testing
NASA Technical Reports Server (NTRS)
Fesmire, James E.
2016-01-01
Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.
NASA Astrophysics Data System (ADS)
De Gerónimo, F. C.; Althaus, L. G.; Córsico, A. H.; Romero, A. D.; Kepler, S. O.
2018-05-01
Context. The thermally pulsing phase on the asymptotic giant branch (TP-AGB) is the last nuclear burning phase experienced by most low- and intermediate-mass stars. During this phase, the outer chemical stratification above the C/O core of the emerging white dwarf (WD) is built up. The chemical structure resulting from progenitor evolution strongly impacts the whole pulsation spectrum exhibited by ZZ Ceti stars, which are pulsating C/O core white dwarfs located on a narrow instability strip at Teff 12 000 K. Several physical processes occurring during progenitor evolution strongly affect the chemical structure of these stars; those found during the TP-AGB phase are the most relevant for the pulsational properties of ZZ Ceti stars. Aims: We present a study of the impact of the chemical structure built up during the TP-AGB evolution on the stellar parameters inferred from asteroseismological fits of ZZ Ceti stars. Methods: Our analysis is based on a set of carbon-oxygen core white dwarf models with masses from 0.534 to 0.6463 M⊙ derived from full evolutionary computations from the ZAMS to the ZZ Ceti domain. We computed evolutionary sequences that experience different number of thermal pulses (TP). Results: We find that the occurrence or not of thermal pulses during AGB evolution implies an average deviation in the asteroseimological effective temperature of ZZ Ceti stars of at most 8% and on the order of ≲5% in the stellar mass. For the mass of the hydrogen envelope, however, we find deviations up to 2 orders of magnitude in the case of cool ZZ Ceti stars. Hot and intermediate temperature ZZ Ceti stars show no differences in the hydrogen envelope mass in most cases. Conclusions: Our results show that, in general, the impact of the occurrence or not of thermal pulses in the progenitor stars is not negligible and must be taken into account in asteroseismological studies of ZZ Ceti stars.
Basin scale permeability and thermal evolution of a magmatic hydrothermal system
NASA Astrophysics Data System (ADS)
Taron, J.; Hickman, S. H.; Ingebritsen, S.; Williams, C.
2013-12-01
Large-scale hydrothermal systems are potentially valuable energy resources and are of general scientific interest due to extreme conditions of stress, temperature, and reactive chemistry that can act to modify crustal rheology and composition. With many proposed sites for Enhanced Geothermal Systems (EGS) located on the margins of large-scale hydrothermal systems, understanding the temporal evolution of these systems contributes to site selection, characterization and design of EGS. This understanding is also needed to address the long-term sustainability of EGS once they are created. Many important insights into heat and mass transfer within natural hydrothermal systems can be obtained through hydrothermal modeling assuming that stress and permeability structure do not evolve over time. However, this is not fully representative of natural systems, where the effects of thermo-elastic stress changes, chemical fluid-rock interactions, and rock failure on fluid flow and thermal evolution can be significant. The quantitative importance of an evolving permeability field within the overall behavior of a large-scale hydrothermal system is somewhat untested, and providing such a parametric understanding is one of the goals of this study. We explore the thermal evolution of a sedimentary basin hydrothermal system following the emplacement of a magma body. The Salton Sea geothermal field and its associated magmatic system in southern California is utilized as a general backdrop to define the initial state. Working within the general framework of the open-source scientific computing initiative OpenGeoSys (www.opengeosys.org), we introduce full treatment of thermodynamic properties at the extreme conditions following magma emplacement. This treatment utilizes a combination of standard Galerkin and control-volume finite elements to balance fluid mass, mechanical deformation, and thermal energy with consideration of local thermal non-equilibrium (LTNE) between fluids and solids. Permeability is allowed to evolve under several constitutive models tailored to both porous media and fractures, considering the influence of both mechanical stress and diagenesis. In this first analysis, a relatively simple mechanical model is used; complexity will be added incrementally to represent specific characteristics of the Salton Sea hydrothermal field.
Global thermal models of the lithosphere
NASA Astrophysics Data System (ADS)
Cammarano, F.; Guerri, M.
2017-12-01
Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations required by geophysical observations can be included.
Lattice thermal conductivity of silicate glasses at high pressures
NASA Astrophysics Data System (ADS)
Chang, Y. Y.; Hsieh, W. P.
2016-12-01
Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.
NASA Astrophysics Data System (ADS)
Prado, F. O.; de Almeida, N. G.; Duzzioni, E. I.; Moussa, M. H. Y.; Villas-Boas, C. J.
2011-07-01
In this paper we detail some results advanced in a recent letter [Prado , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.073008 102, 073008 (2009).] showing how to engineer reservoirs for two-level systems at absolute zero by means of a time-dependent master equation leading to a nonstationary superposition equilibrium state. We also present a general recipe showing how to build nonadiabatic coherent evolutions of a fermionic system interacting with a bosonic mode and investigate the influence of thermal reservoirs at finite temperature on the fidelity of the protected superposition state. Our analytical results are supported by numerical analysis of the full Hamiltonian model.
A study of lunar models based on Apollo and other data
NASA Technical Reports Server (NTRS)
1973-01-01
The research concerned with the interpretation of lunar data developed during the Apollo Program is reported. The areas of research include: X-ray emission spectra and molecular orbitals of lunar materials, magnetic properties of lunar rock, lunar features, thermal history and evolution of the moon, and the internal constitution and evolution of the moon.
Early evolution of transversally thermalized partons
NASA Astrophysics Data System (ADS)
Bialas, Andrzej; Chojnacki, Mikolaj; Florkowski, Wojciech
2008-03-01
The idea that the parton system created in relativistic heavy-ion collisions (i) emerges in a state with transverse momenta close to thermodynamic equilibrium and (ii) its evolution at early times is dominated by the 2-dimensional (transverse) hydrodynamics of the ideal fluid is investigated. It is argued that this mechanism may help to solve the problem of early equilibration.
Radzvilavicius, Arunas L.; Blackstone, Neil W.
2015-01-01
Roughly 1.5–2.0 Gya, the eukaryotic cell evolved from an endosymbiosis of an archaeal host and proteobacterial symbionts. The timing of this endosymbiosis relative to the evolution of eukaryotic features remains subject to considerable debate, yet the evolutionary process itself constrains the timing of these events. Endosymbiosis entailed levels-of-selection conflicts, and mechanisms of conflict mediation had to evolve for eukaryogenesis to proceed. The initial mechanisms of conflict mediation (e.g. signalling with calcium and soluble adenylyl cyclase, substrate carriers, adenine nucleotide translocase, uncouplers) led to metabolic homeostasis in the eukaryotic cell. Later mechanisms (e.g. mitochondrial gene loss) contributed to the chimeric eukaryotic genome. These integral features of eukaryotes were derived because of, and therefore subsequent to, endosymbiosis. Perhaps the greatest opportunity for conflict arose with the emergence of eukaryotic sex, involving whole-cell fusion. A simple model demonstrates that competition on the lower level severely hinders the evolution of sex. Cytoplasmic mixing, however, is beneficial for non-cooperative endosymbionts, which could have used their aerobic metabolism to manipulate the life history of the host. While early evolution of sex may have facilitated symbiont acquisition, sex would have also destabilized the subsequent endosymbiosis. More plausibly, the evolution of sex and the true nucleus concluded the transition. PMID:26468067
Radzvilavicius, Arunas L; Blackstone, Neil W
2015-10-06
Roughly 1.5-2.0 Gya, the eukaryotic cell evolved from an endosymbiosis of an archaeal host and proteobacterial symbionts. The timing of this endosymbiosis relative to the evolution of eukaryotic features remains subject to considerable debate, yet the evolutionary process itself constrains the timing of these events. Endosymbiosis entailed levels-of-selection conflicts, and mechanisms of conflict mediation had to evolve for eukaryogenesis to proceed. The initial mechanisms of conflict mediation (e.g. signalling with calcium and soluble adenylyl cyclase, substrate carriers, adenine nucleotide translocase, uncouplers) led to metabolic homeostasis in the eukaryotic cell. Later mechanisms (e.g. mitochondrial gene loss) contributed to the chimeric eukaryotic genome. These integral features of eukaryotes were derived because of, and therefore subsequent to, endosymbiosis. Perhaps the greatest opportunity for conflict arose with the emergence of eukaryotic sex, involving whole-cell fusion. A simple model demonstrates that competition on the lower level severely hinders the evolution of sex. Cytoplasmic mixing, however, is beneficial for non-cooperative endosymbionts, which could have used their aerobic metabolism to manipulate the life history of the host. While early evolution of sex may have facilitated symbiont acquisition, sex would have also destabilized the subsequent endosymbiosis. More plausibly, the evolution of sex and the true nucleus concluded the transition. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Simpson, R.; Broussely, M.; Edwards, G.; Robinson, D.; Cozzani, A.; Casarosa, G.
2012-07-01
The National Physical Laboratory (NPL) and The European Space Research and Technology Centre (ESTEC) have performed for the first time successful surface temperature measurements using infrared thermal imaging in the ESTEC Large Space Simulator (LSS) under vacuum and with the Sun Simulator (SUSI) switched on during thermal qualification tests of the GAIA Deployable Sunshield Assembly (DSA). The thermal imager temperature measurements, with radiosity model corrections, show good agreement with thermocouple readings on well characterised regions of the spacecraft. In addition, the thermal imaging measurements identified potentially misleading thermocouple temperature readings and provided qualitative real-time observations of the thermal and spatial evolution of surface structure changes and heat dissipation during hot test loadings, which may yield additional thermal and physical measurement information through further research.
NASA Astrophysics Data System (ADS)
Lee, Tae-Kyu; Ma, Hongtao; Liu, Kuo-Chuan; Xue, Jie
2010-12-01
The interaction between isothermal aging and the long-term reliability of fine-pitch ball grid array (BGA) packages with Sn-3.0Ag-0.5Cu (wt.%) solder ball interconnects was investigated. In this study, 0.4-mm fine-pitch packages with 300- μm-diameter Sn-Ag-Cu solder balls were used. Two different package substrate surface finishes were selected to compare their effects on the final solder composition, especially the effect of Ni, during thermal cycling. To study the impact on thermal performance and long-term reliability, samples were isothermally aged and thermally cycled from 0°C to 100°C with 10 min dwell time. Based on Weibull plots for each aging condition, package lifetime was reduced by approximately 44% by aging at 150°C. Aging at 100°C showed a smaller impact but similar trend. The microstructure evolution was observed during thermal aging and thermal cycling with different phase microstructure transformations between electrolytic Ni/Au and organic solderability preservative (OSP) surface finishes, focusing on the microstructure evolution near the package-side interface. Different mechanisms after aging at various conditions were observed, and their impacts on the fatigue lifetime of solder joints are discussed.
Krochmal, Aaron R; Bakken, George S; LaDuc, Travis J
2004-11-01
Pitvipers (Viperidae: Crotalinae) possess thermal radiation receptors, the facial pits, which allow them to detect modest temperature fluctuations within their environments. It was previously thought that these organs were used solely to aid in prey acquisition, but recent findings demonstrated that western diamondback rattlesnakes (Crotalus atrox) use them to direct behavioral thermoregulation, suggesting that facial pits might be general purpose organs used to drive a suite of behaviors. To investigate this further, we conducted a phylogenetic survey of viperine thermoregulatory behavior cued by thermal radiation. We assessed this behavior in 12 pitviper species, representing key nodes in the evolution of pitvipers and a broad range of thermal environments, and a single species of true viper (Viperidae: Viperinae), a closely related subfamily of snakes that lack facial pits but possess a putative thermal radiation receptor. All pitviper species were able to rely on their facial pits to direct thermoregulatory movements, while the true viper was unable to do so. Our results suggest that thermoregulatory behavior cued by thermal radiation is a universal role of facial pits and probably represents an ancestral trait among pitvipers. Further, they establish behavioral thermoregulation as a plausible hypothesis explaining the evolutionary origin of the facial pit.
`Reverse Chemical Evolution': A New Method to Search for Thermally Stable Biopolymers
NASA Astrophysics Data System (ADS)
Mitsuzawa, Shigenobu; Yukawa, Tetsuyuki
2003-04-01
The primitive sea on Earth may have had high-temperature and high-pressure conditions similar to those in present-day hydrothermal environments. If life originated in the hot sea, thermal stability of the constituent molecules would have been necessary. Thus far, however, it has been reported that biopolymers hydrolyze too rapidly to support life at temperatures of more than 200 °C. We herein propose a novel approach, called reverse chemical evolution, to search for biopolymers notably more stable against thermal decomposition than previously reported. The essence of the approach is that hydrolysis of a protein or functional RNA (m-, t-, r-RNA) at high temperature and high pressure simulating the ancient sea environment may yield thermally stable peptides or RNAs at higher concentrations than other peptides or RNAs. An experimental test hydrolyzing bovine ribonuclease A in aqueous solution at 205 °C and 25 MPa yielded three prominently stable molecules weighing 859, 1030 and 695 Da. They are thermally some tens or hundreds times more stable than a polyglycine of comparable mass. Sequence analyses of the 859- and 1030-Da molecules revealed that they are a heptapeptide and its homologue, respectively, elongated by two amino acids at the N-terminal region, originally embedded as residues 112-120 in the protein. They consist mainly of hydrophobic amino acids.
THE LAUNCHING OF COLD CLOUDS BY GALAXY OUTFLOWS. II. THE ROLE OF THERMAL CONDUCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brüggen, Marcus; Scannapieco, Evan
2016-05-01
We explore the impact of electron thermal conduction on the evolution of radiatively cooled cold clouds embedded in flows of hot and fast material as it occurs in outflowing galaxies. Performing a parameter study of three-dimensional adaptive mesh refinement hydrodynamical simulations, we show that electron thermal conduction causes cold clouds to evaporate, but it can also extend their lifetimes by compressing them into dense filaments. We distinguish between low column-density clouds, which are disrupted on very short times, and high-column density clouds with much longer disruption times that are set by a balance between impinging thermal energy and evaporation. Wemore » provide fits to the cloud lifetimes and velocities that can be used in galaxy-scale simulations of outflows in which the evolution of individual clouds cannot be modeled with the required resolution. Moreover, we show that the clouds are only accelerated to a small fraction of the ambient velocity because compression by evaporation causes the clouds to present a small cross-section to the ambient flow. This means that either magnetic fields must suppress thermal conduction, or that the cold clouds observed in galaxy outflows are not formed of cold material carried out from the galaxy.« less
ERIC Educational Resources Information Center
Schwendimann, Beat A.; Linn, Marcia C.
2016-01-01
Concept map activities often lack a subsequent revision step that facilitates knowledge integration. This study compares two collaborative critique activities using a Knowledge Integration Map (KIM), a form of concept map. Four classes of high school biology students (n?=?81) using an online inquiry-based learning unit on evolution were assigned…
NASA Technical Reports Server (NTRS)
Margulis, L.
1972-01-01
Study of the evolutionary developments that occurred subsequent to the origin of ancestral cells. Microbial physiology and ecology are potential sharp tools for shaping concepts of microbial evolution. Some popular unjustified assumptions are discussed. It is considered that certain principles derived mainly from the advances of molecular biology can be used to order the natural groups (genera) of extant prokaryotes and their patterns phylogenetically.
USDA-ARS?s Scientific Manuscript database
The genomes of most flowering plants have undergone polyploidization at some point in their evolution. How such polyploidization events have impacted the subsequent evolution of genome structure is poorly understood. We sequenced two homoeologous regions in soybean (Glycine max), which underwent a...
Thermal conduction and gravitational collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, L.; Jimenez, J.; Esculpi, M.
1987-11-15
A method used to study the evolution of radiating spheres, reported some years ago by Herrera, Jimenez, and Ruggeri, is extended to the case in which thermal conduction within the sphere is taken into account. By means of an explicit example it is shown that heat flow, if present, may play an important role, affecting the final outcome of collapse.
NASA Technical Reports Server (NTRS)
Jackson, C. E., Jr.
1976-01-01
The NTA Level 15.5.2/3, was used to provide non-linear steady-state (NLSS) and non-linear transient (NLTR) thermal predictions for the International Ultraviolet Explorer (IUE) Scientific Instrument (SI). NASTRAN structural models were used as the basis for the thermal models, which were produced by a straight forward conversion procedure. The accuracy of this technique was sub-sequently demonstrated by a comparison of NTA predicts with the results of a thermal vacuum test of the IUE Engineering Test Unit (ETU). Completion of these tasks was aided by the use of NTA subroutines.
NASA Technical Reports Server (NTRS)
Reuter, Dennis
2015-01-01
The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard SpaceFlight Center (GSFC) Thermal Engineering Branch (Code 545): This short course will present the science goals for a variety of types of imaging and spectral measurements, the thermal requirements that these goals impose on the instruments designed to obtain the measurements, and some of the types of trades that can be made among instrument subsystems to ensure the required performance is maintained. Examples of thermal system evolution from initial concept to final implementation will be given for several actual systems.
Numerical Simulations of Supernova Remnant Evolution in a Cloudy Interstellar Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slavin, Jonathan D.; Smith, Randall K.; Foster, Adam
The mixed morphology class of supernova remnants has centrally peaked X-ray emission along with a shell-like morphology in radio emission. White and Long proposed that these remnants are evolving in a cloudy medium wherein the clouds are evaporated via thermal conduction once being overrun by the expanding shock. Their analytical model made detailed predictions regarding temperature, density, and emission profiles as well as shock evolution. We present numerical hydrodynamical models in 2D and 3D including thermal conduction, testing the White and Long model and presenting results for the evolution and emission from remnants evolving in a cloudy medium. We findmore » that, while certain general results of the White and Long model hold, such as the way the remnants expand and the flattening of the X-ray surface brightness distribution, in detail there are substantial differences. In particular we find that the X-ray luminosity is dominated by emission from shocked cloud gas early on, leading to a bright peak, which then declines and flattens as evaporation becomes more important. In addition, the effects of thermal conduction on the intercloud gas, which is not included in the White and Long model, are important and lead to further flattening of the X-ray brightness profile as well as lower X-ray emission temperatures.« less
Onset and Cessation of Thermal Convection within Titan's Ice Shell
NASA Astrophysics Data System (ADS)
Mitri, G.; Tobie, G.; Choblet, G.
2015-12-01
The onset of thermal convection within the outer ice shell of Titan is believed to be at the origin of methane outgassing on Titan (Tobie et al., 2006), a possible factor in Titan's resurfacing processes (Mitri et al., 2008), and to have a major role in the evolution and tectonic activity of this Saturnian icy satellite (Tobie et al., 2005; Mitri and Showman, 2008; Mitri et al., 2010). Recent measurements of the gravity field (Iess et al., 2010, 2012) and the modeling of the shape and topography (Zebker et al., 2009; Mitri et al., 2014) have recently improved our knowledge of the thermal state and structure of Titan's outer ice shell. Mitri et al. (2014) found that Titan's surface topography is consistent with an isostatically compensated ice shell of variable thickness, likely at the present in a thermally conductive state (see also Nimmo and Bills, 2010; Hemingway et al., 2013), overlying a relatively dense (~1200-1350 kg m-3) subsurface ocean. As Titan's ice shell is not currently experiencing thermal convection it is likely that the ice shell could have experienced during its history both the onset and the cessation of thermal convection; thermal convection could be present within the ice shell for limited times or in fact be episodic. We investigate the evolution of Titan's outer ice shell from the crystallization of the underlying ocean with a focus on the onset and cessation of thermal convection. To simulate convection in a growing ice shell, we numerically solve the thermal convection equations for a Newtonian rheology in a two dimensional Cartesian domain using finite element method, with a moving bottom boundary to ocean crystallization. We discuss how the crystallization process affects the onset of convection and in which conditions the cessation of thermal convection may occur. The geological consequences of the changes of the thermal state and structure of the outer ice shell will also be discussed.
A thermal conductivity model for U-Si compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Andersson, Anders David Ragnar
U 3Si 2 is a candidate for accident tolerant nuclear fuel being developed as an alternative to UO 2 in commercial light water reactors (LWRs). One of its main benefits compared to UO 2 is higher thermal conductivity that increases with temperature. This increase is contrary to UO 2, for which the thermal conductivity decreases with temperature. The reason for the difference is the electronic origin of thermal conductivity in U 3Si 2, as compared to the phonon mechanism responsible for thermal transport in UO 2. The phonon thermal conductivity in UO 2 is unusually low for a fluorite oxidemore » due to the strong interaction with the spins in the paramagnetic phase. The thermal conductivity of U 3Si 2 as well as other U-Si compounds has been measured experimentally [1-4]. However, for fuel performance simulations it is also critical to model the degradation of the thermal conductivity due to damage and microstructure evolution caused by the reactor environment (irradiation and high temperature). For UO 2 this reduction is substantial and it has been the topic of extensive NEAMS research resulting in several publications [5, 6]. There are no data or models for the evolution of the U 3Si 2 thermal conductivity under irradiation. We know that the intrinsic thermal conductivities of UO 2 (semi-conductor) and U 3Si 2 (metal) are very different, and we do not necessarily expect the dependence on damage to be the same either, which could present another advantage for the silicide fuel. In this report we summarize the first step in developing a model for the thermal conductivity of U-Si compounds with the goal of capturing the effect of damage in U 3Si 2. Next year, we will focus on lattice damage. We will also attempt to assess the impact of fission gas bubbles.« less
NASA Technical Reports Server (NTRS)
Golombek, M. P.; Banerdt, W. B.
1985-01-01
While it is generally agreed that the strength of a planet's lithosphere is controlled by a combination of brittle sliding and ductile flow laws, predicting the geometry and initial characteristics of faults due to failure from stresses imposed on the lithospheric strength envelope has not been thoroughly explored. Researchers used lithospheric strength envelopes to analyze the extensional features found on Ganymede. This application provides a quantitative means of estimating early thermal profiles on Ganymede, thereby constraining its early thermal evolution.
Thermal Analysis of Post-eruption Loops from 80,000 to 1.6 million K
NASA Technical Reports Server (NTRS)
Kucera, T.; Landi, E.
2006-01-01
We analyze the thermal properties of a set of post eruptive loops which appeared after a prominence eruption on April 30, 2004. The event was observed by TRACE and SOHO/SUMER. The SUMER data was taken from a single slit location with a 90 second cadence and included a number of lines spanning the temperature range 80,000 to 1.6 million K. We perform a differential emission measure analysis of the loops in order to study their thermal evolution.
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1982-01-01
Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery.
2011-05-04
pubs.acs.org/JPCB Thermal Decomposition of Condensed-Phase Nitromethane from Molecular Dynamics from ReaxFF Reactive Dynamics Si-ping Han,†,‡ Adri C. T. van...ABSTRACT: We studied the thermal decomposition and subsequent reaction of the energetic material nitromethane (CH3NO2) using molec- ular dynamics...with ReaxFF, a first principles-based reactive force field. We characterize the chemistry of liquid and solid nitromethane at high temperatures (2000
NASA Technical Reports Server (NTRS)
Shah, Ashwin
2001-01-01
Literature survey related to the EBC/TBC (environmental barrier coating/thermal barrier coating) fife models, failure mechanisms in EBC/TBC and the initial work plan for the proposed EBC/TBC life prediction methods development was developed as well as the finite element model for the thermal/stress analysis of the GRC-developed EBC system was prepared. Technical report for these activities is given in the subsequent sections.
Basin-forming impacts on Mars and the coupled thermal evolution of the interior
NASA Astrophysics Data System (ADS)
Arkani-Hamed, J.; Roberts, J. H.
2015-12-01
The youngest of the Noachian giant impact basins on Mars, are either weakly magnetized or completely demagnetized, indicating that a global magnetic field was not present and that a core dynamo was not operating at the time those basins formed. Shock heating from this sequence of basin-forming impacts modified the pattern of mantle convection. The heating produced by the eight largest impacts (Acidalia, Amazonis, Ares, Chryse, Daedalia, Hellas, Scopolus, and Utopia) penetrates below the core-mantle boundary (CMB). Here, we extend previous workon coupled thermal evolution into 3D, in order to accurately model the spatial relationship between impact basins. At the time of each impact we introduce a temperature perturbation resulting from shock heating into the core and mantle. Stratification of the core occurs very quickly compared to mantle dynamics, and we horizontally average the temperature in the core.We model mantle convection using the 3D finite element code CitcomS, and the thermal evolution of the core using a 1D parameterization.Each impact alters the pattern of mantle dynamics and a significant amount of impact melt is produced in the near surface. However, only the outermost part of the core is affected; the inner core temperature is still adiabatic. Immediately following the impact, the inner core may remain convective. The top of the core will cool by conduction into the deeper core faster than across the CMB, deepening the zone of stable stratification. Further core cooling results in formation of a convecting zone at the top of the core that propagates downwards as the thermal gradient becomes adiabatic at greater depths. Our goal is to obtain a better estimate of the time scale for restoration of post-impact core dynamo activity. Because the disappearance of the magnetic field exposes the early atmosphere to solar wind activity, constraining the history of the dynamo is critical for understanding climate evolution and habitability of the surface.
Meyer, Joseph; Gorbach, Alexander M.; Liu, Wei-Min; Medic, Nevenka; Young, Michael; Nelson, Celeste; Arceo, Sarah; Desai, Avanti; Metcalfe, Dean D.; Komarow, Hirsh D.
2013-01-01
Background While a number of the consequences of mast cell degranulation within tissues have been documented including tissue-specific changes such as bronchospasm and the subsequent cellular infiltrate, there is little known about the immediate effects of mast cell degranulation on the associated vasculature, critical to understanding the evolution of mast cell dependent inflammation. Objective To characterize the microcirculatory events that follow mast cell degranulation. Methodology/Principal Findings Perturbations in dermal blood flow, temperature and skin color were analyzed using laser-speckle contrast imaging, infrared and polarized-light colorimetry following cold-hand immersion (CHI) challenge in patients with cold-induced urticaria compared to the response in healthy controls. Evidence for mast cell degranulation was established by documentation of serum histamine levels and the localized release of tryptase in post-challenge urticarial biopsies. Laser-speckle contrast imaging quantified the attenuated response to cold challenge in patients on cetirizine. We found that the histamine-associated vascular response accompanying mast cell degranulation is rapid and extensive. At the tissue level, it is characterized by a uniform pattern of increased blood flow, thermal warming, vasodilation, and recruitment of collateral circulation. These vascular responses are modified by the administration of an antihistamine. Conclusions/Significance Monitoring the hemodynamic responses within tissues that are associated with mast cell degranulation provides additional insight into the evolution of the acute inflammatory response and offers a unique approach to assess the effectiveness of treatment intervention. PMID:23451084
Nanosized IrO2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer
NASA Astrophysics Data System (ADS)
Cruz, J. C.; Baglio, V.; Siracusano, S.; Ornelas, R.; Ortiz-Frade, L.; Arriaga, L. G.; Antonucci, V.; Aricò, A. S.
2011-04-01
Nanosized IrO2 electrocatalysts ( d 7-9 nm) with specific surface area up to 100 m2 g-1 were synthesized and characterized for the oxygen evolution reaction in a solid polymer electrolyte (SPE) electrolyzer. The catalysts were prepared by a colloidal method in aqueous solution and a subsequent thermal treatment. An iridium hydroxide hydrate precursor was obtained at 100 °C, which was, successively, calcined at different temperatures from 200 to 500 °C. The physico-chemical characterization was carried out by X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC) and transmission electron microscopy (TEM). IrO2 catalysts were sprayed onto a Nafion 115 membrane up to a loading of 3 mg cm-2. A Pt catalyst was used at the cathode compartment with a loading of 0.6 mg cm-2. The electrochemical activity for water electrolysis of the membrane-electrode assemblies (MEAs) was investigated in a single cell SPE electrolyzer by steady-state polarization curves, impedance spectroscopy and chrono-amperometric measurements. A maximum current density of 1.3 A cm-2 was obtained at 1.8 V and 80 °C for the IrO2 catalyst calcined at 400 °C for 1 h. A stable performance was recorded in single cell for this anode catalyst at 80 °C. The suitable catalytic activity and stability of the most performing catalyst were interpreted in terms of proper combination between nanostructure and suitable morphology.
Orbital occupancy evolution across spin- and charge-ordering transitions in YBaFe2O5
NASA Astrophysics Data System (ADS)
Lindén, J.; Lindroos, F.; Karen, P.
2017-08-01
Thermal evolution of the Fe2+-Fe3+ valence mixing in YBaFe2O5 is investigated using Mössbauer spectroscopy. In this high-spin double-cell perovskite, the d6 and d5 Fe states differ by the single minority-spin electron which then controls all the spin- and charge-ordering transitions. Orbital occupancies can be extracted from the spectra in terms of the dxz , dz2 and either dx2-y2 (Main Article) or dxy (Supplement) populations of this electron upon conserving its angular momentum. At low temperatures, the minority-spin electrons fill up the ordered dxz orbitals of Fe2+, in agreement with the considerable orthorhombic distortion of the structure. Heating through the Verwey transition supplies 93% of the mixing entropy, at which point the predominantly mixing electron occupies mainly the dx2-y2 /dxy orbitals weakly bonding the two Fe atoms that face each other across the bases of their coordination pyramids. This might stabilize a weak coulombic checkerboard order suggested by McQueeney et alii in Phys. Rev. B 87(2013)045127. When the remaining 7% of entropy is supplied at a subsequent transition, the mixing electron couples the two Fe atoms predominantly via their dz2 orbitals. The valence mixing concerns more than 95% of the Fe atoms present in the crystalline solid; the rest is semi-quantitatively interpreted as domain walls and antiphase boundaries formed upon cooling through the Néel and Verwey-transition temperatures, respectively.
Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng
2016-01-01
Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm−2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting. PMID:27748380
The Case for a Heat-Pipe Phase of Planet Evolution on the Moon
NASA Technical Reports Server (NTRS)
Simon, J. I.; Moore, W. B.; Webb, A. A. G.
2015-01-01
The prevalence of anorthosite in the lunar highlands is generally attributed to the flotation of less dense plagioclase in the late stages of the solidification of the lunar magma ocean. It is not clear, however, that these models are capable of producing the extremely high plagioclase contents (near 100%) observed in both Apollo samples and remote sensing data, since a mostly solid lithosphere forms (at 60-70% solidification) before plagioclase feldspar reaches saturation (at approximately 80% solidification). Formation as a floating cumulate is made even more problematic by the near uniformity of the alkali composition of the plagioclase, even as the mafic phases record significant variations in Mg/(Mg+Fe) ratios. These problems can be resolved for the Moon if the plagioclase-rich crust is produced and refined through a widespread episode of heat-pipe magmatism rather than a process dominated by density-driven plagioclase flotation. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io's present activity. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an early episode of heat-pipe cooling. As the Moon likely represents the most wellpreserved example of early planetary thermal evolution in our solar system, studies of the lunar surface and of lunar materials provide useful data to test the idea of a universal model of the way terrestrial bodies transition from a magma ocean state into subsequent single-plate, rigid-lid convection or plate tectonic phases.
NASA Astrophysics Data System (ADS)
Chen, Faner; Li, Qiang; Hua, Mingxin; Zhan, Zhenlin; Xie, Shusen; Zhang, Xianzeng
2016-10-01
Liquid-assisted hard biotissue ablation with the pulsed lasers takes advantages in precision and compatibility than mechanical tools in traditional surgery. The objective of this study was to monitor the dynamic process of the cavitation bubble evolution induced by Ho:YAG laser under water and identify the opening time of channel formation between the fiber tip to the target tissue surface. A free-running Ho:YAG laser was used in the experiment. The wavelength was 2.1 μm with a pulse duration of 350 us and pulse energy varied from 500 mJ to 2000 mJ. The high-speed camera (PCO. dimax, Germany, PCO) applied to monitor the whole ablation process was setting at a frame rate of 52000 frames/s. The results showed that the cavitation bubble induced by laser energy experienced an oscillation process including occurrence, expansion, contraction and subsequent collapse. A channel connected the fiber tip and target tissue surface was formed during the dynamic process which allowed the following pulse energy transmitted through the channel with a relative low absorption and directly interacted with the target tissue. The beginning time of channel formation, as well as the duration of channel opening, as functions of incident laser energy were also presented. A micro-explosion was observed near the tissue surface during the bubble collapse, which may contribute to produce a clean cut, reduce the thermal injury and improve the morphology of ablation crater.
Correlation of Predicted and Observed Optical Properties of Multilayer Thermal Control Coatings
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
1998-01-01
Thermal control coatings on spacecraft will be increasingly important, as spacecraft grow smaller and more compact. New thermal control coatings will be needed to meet the demanding requirements of next generation spacecraft. Computer programs are now available to design optical coatings and one such program was used to design several thermal control coatings consisting of alternating layers of WO3 and SiO2. The coatings were subsequently manufactured with electron beam evaporation and characterized with both optical and thermal techniques. Optical data were collected in both the visible region of the spectrum and the infrared. Predictions of solar absorptance and infrared emittance were successfully correlated to the observed thermal control properties. Functional performance of the coatings was verified in a bench top thermal vacuum chamber.
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2015-04-01
The paper provides information on a new infrared (IR) image contrast data post-processing method that involves converting raw data to normalized contrast versus time evolutions from the flash infrared thermography inspection video data. Thermal measurement features such as peak contrast, peak contrast time, persistence time, and persistence energy are calculated from the contrast evolutions. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat bottom holes in a test plate of the subject material. The measurement features are used to monitor growth of anomalies and to characterize the void-like anomalies. The method was developed to monitor and analyze void-like anomalies in reinforced carbon-carbon (RCC) materials used on the wing leading edge of the NASA Space Shuttle Orbiters, but the method is equally applicable to other materials. The thermal measurement features relate to the anomaly characteristics such as depth and size. Calibration of the contrast is used to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat bottom hole (EFBH) from the calibration data. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH diameter are compared with actual widths to evaluate utility of IR Contrast method. Some thermal measurements relate to gap thickness of the delaminations. Results of IR Contrast method on RCC hardware are provided. Keywords: normalized contrast, flash infrared thermography.
On the Evolution of Terrestrial Planets: Implications of Evolutionary Paths and Evolving Lid-States
NASA Astrophysics Data System (ADS)
Weller, M. B.; Lenardic, A.
2015-12-01
Growing geodynamic and geochemical evidence suggests that plate tectonics may not have operated on the early Earth, with both the timing of its onset and the length of its activity far from certain [e.g., 1, 2, and references therein]. Accordingly, information from current observations and processes have the potential of sampling portions of the Earth that has both formed under and been modified by differing tectonic regimes. Here we use coupled 3D mantle convection and planetary tectonics simulations to explore evolutionary paths and planetary tectonic regimes. Early in the geologic lifetime of a terrestrial planet, high mantle temperatures favour stagnant-lids. As radiogenics decay, an initial stagnant-lid may yield into a high temperature mobile-lid state. The transition from an initial stagnant-lid is a function of yield strength, in addition to both internal and surface temperatures. Each lid-state has specific diagnostics and implications for internal parameters, and consequently planetary evolution. The implication within this framework is that a system with a different thermal evolution has the potential to migrate through tectonic regimes at the same 'thermal time' (e.g. temperature), but very different 'temporal times'. This indicate that multiple modes of convection and surface tectonics can potentially operate on a single planetary body at different times in its evolution, as consequence of changing internal parameters, surface temperatures, and differing thermal histories. We will discuss the implications of terrestrial worlds that can alternate, and be offset between multiple tectonic states over giga-year timescales. [1] O'Neill et. al. (2013b) Geol. Soc. London; [2] Weller et al. (2015) EPSL
NASA Astrophysics Data System (ADS)
Giordano, N.; Arato, A.; Comina, C.; Mandrone, G.
2017-05-01
A Borehole Thermal Energy Storage living lab was built up nearby Torino (Northern Italy). This living lab aims at testing the ability of the alluvial deposits of the north-western Po Plain to store the thermal energy collected by solar thermal panels and the efficiency of energy storage systems in this climatic context. Different monitoring approaches have been tested and analyzed since the start of the thermal injection in April 2014. Underground temperature monitoring is constantly undertaken by means of several temperature sensors located along the borehole heat exchangers and within the hydraulic circuit. Nevertheless, this can provide only pointwise information about underground temperature distribution. For this reason, a geophysical approach is proposed in order to image the thermally affected zone (TAZ) caused by the heat injection: surface electrical resistivity measurements were carried out with this purpose. In the present paper, results of time-lapse acquisitions during a heating day are reported with the aim of imaging the thermal plume evolution within the subsoil. Resistivity data, calibrated on local temperature measurements, have shown their potentiality in imaging the heated plume of the system and depicting its evolution throughout the day. Different types of data processing were adopted in order to face issues mainly related to a highly urbanized environment. The use of apparent resistivity proved to be in valid agreement with the results of different inversion approaches. The inversion processes did not significantly improve the qualitative and quantitative TAZ imaging in comparison to the pseudo-sections. This suggested the usefulness of apparent resistivity data alone for a rough monitoring of TAZ in this kind of applications.
NASA Technical Reports Server (NTRS)
Rubincam, David P.
2013-01-01
The thermal expansion and contraction of ring particles orbiting a planet or asteroid can cause secular orbit evolution. This effect, called here the thermal expansion effect, depends on ring particles entering and exiting the shadow of the body they orbit. A particle cools off in the shadow and heats up again in the sunshine, suffering thermal contraction and expansion. The changing cross-section it presents to solar radiation pressure plus time lags due to thermal inertia lead to a net along-track force. The effect causes outward drift for rocky particles. For the equatorial orbits considered here, the thermal expansion effect is larger than Poynting-Robertson drag in the inner solar system for particles in the size range approx. 0.001 - 0.02 m. This leads to a net increase in the semimajor axis from the two opposing effects at rates ranging from approx. 0.1 R per million years for Mars to approx. 1 R per million years for Mercury, for distances approx. 2R from the body, where R is the body's radius. Asteroid 243 Ida has approx. 10 R per million years, while a hypothetical Near-Earth Asteroid (NEA) can have faster rates of approx. 0.5 R per thousand years, due chiefly to its small radius compared to the planets. The thermal expansion effect weakens greatly at Jupiter and is overwhelmed by Poynting-Robertson for icy particles orbiting Saturn. Meteoroids in eccentric orbits about the Sun also suffer the thermal expansion effect, but with only approx. 0.0003e2 AU change in semimajor axis over a million years for a 2 m meteoroid orbiting between Mercury and Earth.
Thermal evolution of sedimentary basins in Alaska
Johnsson, Mark J.; Howell, D.G.
1996-01-01
The complex tectonic collage of Alaska is reflected in the conjunction of rocks of widely varying thermal maturity. Indicators of the level of thermal maturity of rocks exposed at the surface, such as vitrinite reflectance and conodont color alteration index, can help constrain the tectonic evolution of such complex regions and, when combined with petrographic, modern heat flow, thermogeochronologic, and isotopic data, allow for the detailed evaluation of a region?s burial and uplift history. We have collected and assembled nearly 10,000 vitrinite-reflectance and conodont-color-alteration index values from the literature, previous U.S. Geological Survey investigations, and our own studies in Alaska. This database allows for the first synthesis of thermal maturity on a broadly regional scale. Post-accretionary sedimentary basins in Alaska show wide variability in terms of thermal maturity. The Tertiary interior basins, as well as some of the forearc and backarc basins associated with the Aleutian Arc, are presently at their greatest depth of burial, with immature rocks exposed at the surface. Other basins, such as some backarc basins on the Alaska Peninsula, show higher thermal maturities, indicating modest uplift, perhaps in conjunction with higher geothermal gradients related to the arc itself. Cretaceous ?flysch? basins, such as the Yukon-Koyukuk basin, are at much higher thermal maturity, reflecting great amounts of uplift perhaps associated with compressional regimes generated through terrane accretion. Many sedimentary basins in Alaska, such as the Yukon-Koyukuk and Colville basins, show higher thermal maturity at basin margins, perhaps reflecting greater uplift of the margins in response to isostatic unloading, owing to erosion of the hinterland adjacent to the basin or to compressional stresses adjacent to basin margins.
Factors affecting the strength of multipass low-alloy steel weld metal
NASA Technical Reports Server (NTRS)
Krantz, B. M.
1972-01-01
The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.
NASA Astrophysics Data System (ADS)
Vanhove, Emilie; Roussel, Jean-François; Remaury, Stéphanie; Faye, Delphine; Guigue, Pascale
2014-09-01
The in-orbit aging of thermo-optical properties of thermal coatings critically impacts both spacecraft thermal balance and heating power consumption. Nevertheless, in-flight thermal coating aging is generally larger than the one measured on ground and the current knowledge does not allow making reliable predictions1. As a result, a large oversizing of thermal control systems is required. To address this issue, the Centre National d'Etudes Spatiales has developed a low-cost experiment, called THERME, which enables to monitor the in-flight time-evolution of the solar absorptivity of a large variety of coatings, including commonly used coatings and new materials by measuring their temperature. This experiment has been carried out on sunsynchronous spacecrafts for more than 27 years, allowing thus the generation of a very large set of telemetry measurements. The aim of this work was to develop a model able to semi-quantitatively reproduce these data with a restraint number of parameters. The underlying objectives were to better understand the contribution of the different involved phenomena and, later on, to predict the thermal coating aging at end of life. The physical processes modeled include contamination deposition, UV aging of both contamination layers and intrinsic material and atomic oxygen erosion. Efforts were particularly focused on the satellite leading wall as this face is exposed to the highest variations in environmental conditions during the solar cycle. The non-monotonous time-evolution of the solar absorptivity of thermal coatings is shown to be due to a succession of contamination and contaminant erosion by atomic oxygen phased with the solar cycle.
A Mechanistic Thermal Fatigue Model for SnAgCu Solder Joints
NASA Astrophysics Data System (ADS)
Borgesen, Peter; Wentlent, Luke; Hamasha, Sa'd.; Khasawneh, Saif; Shirazi, Sam; Schmitz, Debora; Alghoul, Thaer; Greene, Chris; Yin, Liang
2018-02-01
The present work offers both a complete, quantitative model and a conservative acceleration factor expression for the life span of SnAgCu solder joints in thermal cycling. A broad range of thermal cycling experiments, conducted over many years, has revealed a series of systematic trends that are not compatible with common damage functions or constitutive relations. Complementary mechanical testing and systematic studies of the evolution of the microstructure and damage have led to a fundamental understanding of the progression of thermal fatigue and failure. A special experiment was developed to allow the effective deconstruction of conventional thermal cycling experiments and the finalization of our model. According to this model, the evolution of damage and failure in thermal cycling is controlled by a continuous recrystallization process which is dominated by the coalescence and rotation of dislocation cell structures continuously added to during the high-temperature dwell. The dominance of this dynamic recrystallization contribution is not consistent with the common assumption of a correlation between the number of cycles to failure and the total work done on the solder joint in question in each cycle. It is, however, consistent with an apparent dependence on the work done during the high-temperature dwell. Importantly, the onset of this recrystallization is delayed by pinning on the Ag3Sn precipitates until these have coarsened sufficiently, leading to a model with two terms where one tends to dominate in service and the other in accelerated thermal cycling tests. Accumulation of damage under realistic service conditions with varying dwell temperatures and times is also addressed.
NASA Astrophysics Data System (ADS)
Gong, Yihao; Jin, Shuoxue; Zhu, Te; Cheng, Long; Cao, Xingzhong; You, Li; Lu, Guanghong; Guo, Liping; Wang, Baoyi
2018-04-01
A large number of dislocation networks were introduced in to 316L stainless steel by cold rolling. Subsequently, low energy (40 eV) helium ions were implanted by exposing the steel to helium plasma. Thermal desorption and positron annihilation spectroscopy were used to study the behavior of helium in the presence of dislocations, with emphasis on helium self-trapping and migration behaviors. Helium desorption behaviour from different helium trapping states was measured by the thermal desorption spectroscopy. Most of the helium desorbed from the He m V n clusters, and the corresponding desorption peak is located at ~650 K. The desorption peak from helium-dislocation clusters (He m D) is at approximately 805 K. The effect of annealing on the defect evolution was investigated by positron annihilation spectroscopy. For the specimen exposed to helium plasma without displacement damage, the increment of S parameter meant the existence of helium self-trapping behavior (He m V n ). Helium atoms could diffuse two to three orders of magnitude deeper than the implantation depth calculated by SRIM. The diffusing helium atoms were gradually trapped by dislocation lines and formed He m D. Elevated temperatures enhance the self-trapping behavior and cause helium atoms to dissociate/desorb from the He m V n clusters, increasing the S parameters at 473-673 K. The gradual recovery of vacancies in the He m V n clusters decreased the S parameter above 673 K.
NASA Astrophysics Data System (ADS)
Hunt, Alison C.; Cook, David L.; Lichtenberg, Tim; Reger, Philip M.; Ek, Mattias; Golabek, Gregor J.; Schönbächler, Maria
2018-01-01
The short-lived 182Hf-182W decay system is a powerful chronometer for constraining the timing of metal-silicate separation and core formation in planetesimals and planets. Neutron capture effects on W isotopes, however, significantly hamper the application of this tool. In order to correct for neutron capture effects, Pt isotopes have emerged as a reliable in-situ neutron dosimeter. This study applies this method to IAB iron meteorites, in order to constrain the timing of metal segregation on the IAB parent body. The ε182W values obtained for the IAB iron meteorites range from -3.61 ± 0.10 to -2.73 ± 0.09. Correlating εiPt with ε182W data yields a pre-neutron capture ε182W of -2.90 ± 0.06. This corresponds to a metal-silicate separation age of 6.0 ± 0.8 Ma after CAI for the IAB parent body, and is interpreted to represent a body-wide melting event. Later, between 10 and 14 Ma after CAI, an impact led to a catastrophic break-up and subsequent reassembly of the parent body. Thermal models of the interior evolution that are consistent with these estimates suggest that the IAB parent body underwent metal-silicate separation as a result of internal heating by short-lived radionuclides and accreted at around 1.4 ± 0.1 Ma after CAIs with a radius of greater than 60 km.
Subsidence history and tectonic evolution of Campos basin, offshore Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohriak, W.U.; Karner, G.D.; Dewey, J.F.
1987-05-01
The tectonic component of subsidence in the Campos basin reflects different stages of crustal reequilibration subsequent to the stretching that preceded the breakup of Pangea. Concomitant with rifting in the South Atlantic, Neocomian lacustrine rocks, with associated widespread mafic volcanism, were deposited on a vary rapidly subsiding crust. The proto-oceanic stage (Aptian) is marked by a sequence of evaporitic rocks whose originally greater sedimentary thickness is indicated by residual evaporitic layers with abundant salt flow features. An open marine environment begins with thick Albian/Cenomanian limestones that grade upward and basinward into shales. This section, with halokinetic features and listric detachedmore » faulting sloping out on salt, is characterized by an increased sedimentation rate. The marine Upper Cretaceous to Recent clastic section, associated with the more quiescent phase of thermal subsidence, is characterized by drastic changes in sedimentation rate. Stratigraphic modeling of the sedimentary facies suggests a flexurally controlled loading mechanism (regional compensation) with a temporally and spatially variable rigidity. Locally, the subsidence in the rift-phase fault-bounded blocks shows no correspondence with the overall thermal subsidence, implying that the crust was not effectively thinned by simple, vertically balanced stretching. Deep reflection seismic sections show a general correspondence between sedimentary isopachs and Moho topography, which broadly compensates for the observed subsidence. However, even the Moho is locally affected by crustal-scale master faults that apparently are also controlling the movement mechanisms during the rift-phase faulting.« less
The Hydrodynamics of Galaxy Transformation in Extreme Cluster Environments
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Rukmani
2017-08-01
Cluster of galaxies are hostile environments. Infalling cluster galaxies are stripped of their dark matter, stars, and hot and cold interstellar medium gas. The ISM, in addition to tidal and ram pressure stripping, can evaporate due to thermal conduction. Gas loss and the subsequent suppression of star formation is not straightforward: magnetic fields in the ISM and ICM shield galaxies and their stripped tails from shear instabilities and conduction, radiative cooling can inhibit gas loss, and feedback from stars and AGN can replenish the ISM. While there is observational evidence that these processes operate, a theoretical understanding of the physics controlling the energy cycle in cluster galaxies remains elusive. Additionally, galaxies have a significant impact on ICM evolution: orbiting galaxies stir up and stretch ICM magnetic field lines, inject turbulence into the ICM via their wakes and g-waves, and infuse metals into the ICM. Quantifying the balance between processes that remove, retain, and replenish the ISM, and the impact of galaxies on the ICM require specialized hydrodynamic simulations of the cluster environment and its galaxies. I will present results from some of these simulations that include ram pressure stripping of galaxies' hot ISM, the effect of magnetic fields on this process, and the effectiveness of isotropic and anisotropic thermal conduction in removing and retaining the ISM. I will also quantify magnetic field amplification and turbulence injection due to orbiting galaxies, and implications for X-ray and radio observations and measurements of galactic coronae, tails, magnetic fields, and turbulence.
idRHa+ProMod - Rail Hardening Control System
NASA Astrophysics Data System (ADS)
Ferro, L.
2016-03-01
idRHa+ProMod is the process control system developed by Primetals Technologies to foresee the thermo-mechanical evolution and micro-structural composition of rail steels subjected to slack quenching into idRHa+ Rail Hardening equipments in a simulation environment. This tool can be used both off-line or in-line, giving the user the chance to test and study the best cooling strategies or letting the automatic control system free to adjust the proper cooling recipe. Optimization criteria have been tailored in order to determine the best cooling conditions according to the metallurgical requirements imposed by the main rail standards and also taking into account the elastoplastic bending phenomena occurring during all stages of the head hardening process. The computational core of idRHa+ProMod is a thermal finite element procedure coupled with special algorithms developed to work out the main thermo-physical properties of steel, to predict the non-isothermal austenite decomposition into all the relevant phases and subsequently to evaluate the amount of latent heat of transformation released, the compound thermal expansion coefficient and the amount of plastic deformation in the material. Air mist and air blades boundary conditions have been carefully investigated by means of pilot plant tests aimed to study the jet impingement on rail surfaces and the cooling efficiency at all working conditions. Heat transfer coefficients have been further checked and adjusted directly on field during commissioning. idRHa+ is a trademark of Primetals Technologies Italy Srl
Kishimoto, Toshihiko; Iijima, Leo; Tatsumi, Makoto; Ono, Naoaki; Oyake, Ayana; Hashimoto, Tomomi; Matsuo, Moe; Okubo, Masato; Suzuki, Shingo; Mori, Kotaro; Kashiwagi, Akiko; Furusawa, Chikara; Ying, Bei-Wen; Yomo, Tetsuya
2010-10-21
It remains to be determined experimentally whether increasing fitness is related to positive selection, while stationary fitness is related to neutral evolution. Long-term laboratory evolution in Escherichia coli was performed under conditions of thermal stress under defined laboratory conditions. The complete cell growth data showed common continuous fitness recovery to every 2°C or 4°C stepwise temperature upshift, finally resulting in an evolved E. coli strain with an improved upper temperature limit as high as 45.9°C after 523 days of serial transfer, equivalent to 7,560 generations, in minimal medium. Two-phase fitness dynamics, a rapid growth recovery phase followed by a gradual increasing growth phase, was clearly observed at diverse temperatures throughout the entire evolutionary process. Whole-genome sequence analysis revealed the transition from positive to neutral in mutation fixation, accompanied with a considerable escalation of spontaneous substitution rate in the late fitness recovery phase. It suggested that continually increasing fitness not always resulted in the reduction of genetic diversity due to the sequential takeovers by fit mutants, but caused the accumulation of a considerable number of mutations that facilitated the neutral evolution.
The T-REX valley wind intercomparison project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidli, J; Billings, B J; Burton, R
2008-08-07
An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the currentmore » state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).« less
NASA Technical Reports Server (NTRS)
Miller, J. M.
1980-01-01
ATMOS is a Fourier transform spectrometer to measure atmospheric trace molecules over a spectral range of 2-16 microns. Assessment of the system performance of ATMOS includes evaluations of optical system errors induced by thermal and structural effects. In order to assess the optical system errors induced from thermal and structural effects, error budgets are assembled during system engineering tasks and line of sight and wavefront deformations predictions (using operational thermal and vibration environments and computer models) are subsequently compared to the error budgets. This paper discusses the thermal/structural error budgets, modelling and analysis methods used to predict thermal/structural induced errors and the comparisons that show that predictions are within the error budgets.
Spin evolution of Earth-sized exoplanets, including atmospheric tides and core-mantle friction
NASA Astrophysics Data System (ADS)
Cunha, Diana; Correia, Alexandre C. M.; Laskar, Jacques
2015-04-01
Planets with masses between 0.1 and 10 M ⊕ are believed to host dense atmospheres. These atmospheres can play an important role on the planet's spin evolution, since thermal atmospheric tides, driven by the host star, may counterbalance gravitational tides. In this work, we study the long-term spin evolution of Earth-sized exoplanets. We generalize previous works by including the effect of eccentric orbits and obliquity. We show that under the effect of tides and core-mantle friction, the obliquity of the planets evolves either to 0° or 180°. The rotation of these planets is also expected to evolve into a very restricted number of equilibrium configurations. In general, none of these equilibria is synchronous with the orbital mean motion. The role of thermal atmospheric tides becomes more important for Earth-sized planets in the habitable zones of their systems; so they cannot be neglected when we search for their potential habitability.
Woźniak, Natalia Joanna; Sicard, Adrien
2018-07-01
Flowers represent a key innovation during plant evolution. Driven by reproductive optimization, evolution of flower morphology has been central in boosting species diversification. In most cases, this has happened through specialized interactions with animal pollinators and subsequent reduction of gene flow between specialized morphs. While radiation has led to an enormous variability in flower forms and sizes, recurrent evolutionary patterns can be observed. Here, we discuss the targets of selection involved in major trends of pollinator-driven flower evolution. We review recent findings on their adaptive values, developmental grounds and genetic bases, in an attempt to better understand the repeated nature of pollinator-driven flower evolution. This analysis highlights how structural innovation can provide flexibility in phenotypic evolution, adaptation and speciation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Holbeck, H. J.; Ireland, S. J.
1979-01-01
The siting issues associated with small, dispersed solar thermal power plants for utility/small community applications of less than 10 MWe are reported. Some specific requirements are refered to the first engineering experiment for the Small Power Systems Applications (SPSA) Project. The background for the subsequent issue discussions is provided. The SPSA Project and the requirements for the first engineering experiment are described, and the objectives and scope for the report as a whole. A overview of solar thermal technologies and some technology options are discussed.
RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jie; Ding, M. D.; Carlsson, Mats, E-mail: dmd@nju.edu.cn
Ellerman bombs (EBs) are brightenings in the H α line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the H α line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the H α line core, and with a longer lifetime. This differencemore » in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the H α line will be unrealistically strong and there are still no clear UV burst signatures.« less
RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs
NASA Astrophysics Data System (ADS)
Hong, Jie; Carlsson, Mats; Ding, M. D.
2017-08-01
Ellerman bombs (EBs) are brightenings in the Hα line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the Hα line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the Hα line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the Hα line will be unrealistically strong and there are still no clear UV burst signatures.
Behavior of ionic conducting IPN actuators in simulated space conditions
NASA Astrophysics Data System (ADS)
Fannir, Adelyne; Plesse, Cédric; Nguyen, Giao T. M.; Laurent, Elisabeth; Cadiergues, Laurent; Vidal, Frédéric
2016-04-01
The presentation focuses on the performances of flexible all-polymer electroactive actuators under space-hazardous environmental factors in laboratory conditions. These bending actuators are based on high molecular weight nitrile butadiene rubber (NBR), poly(ethylene oxide) (PEO) derivative and poly(3,4-ethylenedioxithiophene) (PEDOT). The electroactive PEDOT is embedded within the PEO/NBR membrane which is subsequently swollen with an ionic liquid as electrolyte. Actuators have been submitted to thermal cycling test between -25 to 60°C under vacuum (2.4 10-8 mbar) and to ionizing Gamma radiations at a level of 210 rad/h during 100 h. Actuators have been characterized before and after space environmental condition ageing. In particular, the viscoelasticity properties and mechanical resistance of the materials have been determined by dynamic mechanical analysis and tensile tests. The evolution of the actuation properties as the strain and the output force have been characterized as well. The long-term vacuuming, the freezing temperature and the Gamma radiations do not affect significantly the thermomechanical properties of conducting IPNs actuators. Only a slight decrease on actuation performances has been observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, Leo J.; Brumbach, Michael T.; Clem, Paul G.
A new multi-step, solution-phase method for the spontaneous deposition of tungsten from a room temperature ethereal solution is reported. This immersion process relies on the deposition of a sacrificial zinc coating which is galvanically displaced by the ether-mediated reduction of oxophilic WCl 6. Subsequent thermal treatment renders a crystalline, metallic tungsten film. The chemical evolution of the surface and formation of a complex intermediate tungsten species is characterized by X-ray diffraction, infrared spectroscopy, and X-ray photoelectron spectroscopy. Efficient metallic tungsten deposition is first characterized on a graphite substrate and then demonstrated on a functional carbon foam electrode. The resulting electrochemicalmore » performance of the modified electrode is interrogated with the canonical aqueous ferricyanide system. A tungsten-coated carbon foam electrode showed that both electrode resistance and overall electrochemical cell resistance were reduced by 50%, resulting in a concomitant decrease in redox peak separation from 1.902 V to 0.783 V. Furthermore, this process promises voltage efficiency gains in electrodes for energy storage technologies and demonstrates the viability of a new route to tungsten coating for technologies and industries where high conductivity and chemical stability are paramount.« less
NASA Astrophysics Data System (ADS)
Nicholson, D. E.; Padula, S. A.; Benafan, O.; Vaidyanathan, R.
2017-06-01
In situ neutron diffraction was used to provide insights into martensite variant microstructures during isothermal, isobaric, and isostrain loading in shape memory NiTi. The results show that variant microstructures were equivalent for the corresponding strain, and more importantly, the reversibility and equivalency were immediately evident in variant microstructures that were first formed isobarically but then reoriented to near random self-accommodated microstructures following isothermal deformation. Variant microstructures formed isothermally were not significantly affected by a subsequent thermal cycle under constant strain. In all loading cases considered, the resulting variant microstructure correlated with strain and did not correlate with stress. Based on the ability to select a variant microstructure for a given strain despite thermomechanical loading history, the results demonstrated here can be obtained by following any sequence of thermomechanical loading paths over multiple cycles. Thus, for training shape memory alloys (repeating thermomechanical cycling to obtain the desired variant microstructure), optimal paths can be selected so as to minimize the number of training cycles required, thereby increasing the overall stability and fatigue life of these alloys in actuator or medical applications.
Nonlinear dynamics of ice-wedge networks and resulting sensitivity to severe cooling events.
Plug, L J; Werner, B T
2002-06-27
Patterns of subsurface wedges of ice that form along cooling-induced tension fractures, expressed at the ground surface by ridges or troughs spaced 10 30 m apart, are ubiquitous in polar lowlands. Fossilized ice wedges, which are widespread at lower latitudes, have been used to infer the duration and mean temperature of cold periods within Proterozoic and Quaternary climates, and recent climate trends have been inferred from fracture frequency in active ice wedges. Here we present simulations from a numerical model for the evolution of ice-wedge networks over a range of climate scenarios, based on the interactions between thermal tensile stress, fracture and ice wedges. We find that short-lived periods of severe cooling permanently alter the spacing between ice wedges as well as their fracture frequency. This affects the rate at which the widths of ice wedges increase as well as the network's response to subsequent climate change. We conclude that wedge spacing and width in ice-wedge networks mainly reflect infrequent episodes of rapidly falling ground temperatures rather than mean conditions.
Impacts of the Detection of Cassiopeia A Point Source.
Umeda; Nomoto; Tsuruta; Mineshige
2000-05-10
Very recently the Chandra first light observation discovered a point-like source in the Cassiopeia A supernova remnant. This detection was subsequently confirmed by the analyses of the archival data from both ROSAT and Einstein observations. Here we compare the results from these observations with the scenarios involving both black holes (BHs) and neutron stars (NSs). If this point source is a BH, we offer as a promising model a disk-corona type model with a low accretion rate in which a soft photon source at approximately 0.1 keV is Comptonized by higher energy electrons in the corona. If it is an NS, the dominant radiation observed by Chandra most likely originates from smaller, hotter regions of the stellar surface, but we argue that it is still worthwhile to compare the cooler component from the rest of the surface with cooling theories. We emphasize that the detection of this point source itself should potentially provide enormous impacts on the theories of supernova explosion, progenitor scenario, compact remnant formation, accretion to compact objects, and NS thermal evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei -Zhen; Nie, Lei; Cheng, Yingwen
With the capability of MgAl 2O 4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement inmore » Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H 2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less
NASA Astrophysics Data System (ADS)
Han, Jian; Jiang, Nan
2012-07-01
The instability of a hypersonic boundary layer on a cone is investigated by bicoherence spectrum analysis. The experiment is conducted at Mach number 6 in a hypersonic wind tunnel. The time series signals of instantaneous fluctuating surface-thermal-flux are measured by Pt-thin-film thermocouple temperature sensors mounted at 28 stations on the cone surface along streamwise direction to investigate the development of the unstable disturbances. The bicoherence spectrum analysis based on wavelet transform is employed to investigate the nonlinear interactions of the instability of Mack modes in hypersonic laminar boundary layer transition. The results show that wavelet bicoherence is a powerful tool in studying the unstable mode nonlinear interaction of hypersonic laminar-turbulent transition. The first mode instability gives rise to frequency shifts to higher unstable modes at the early stage of hypersonic laminar-turbulent transition. The modulations subsequently lead to the second mode instability occurrence. The second mode instability governs the last stage of instability and final breakdown to turbulence with multi-scale disturbances growth.
Li, Wei -Zhen; Nie, Lei; Cheng, Yingwen; ...
2017-01-13
With the capability of MgAl 2O 4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement inmore » Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H 2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less
NASA Astrophysics Data System (ADS)
Wentlent, Luke; Alghoul, Thaer M.; Greene, Christopher M.; Borgesen, Peter
2018-02-01
Although apparently simpler than in thermal cycling, the behavior of SnAgCu (SAC) solder joints in cyclic bending or vibration is not currently well understood. The rate of damage has been shown to scale with the inelastic work per cycle, and excursions to higher amplitudes lead to an apparent softening, some of which remains so that damage accumulation is faster in subsequent cycling at lower amplitudes. This frequently leads to a dramatic breakdown of current damage accumulation rules. An empirical damage accumulation rule has been proposed to account for this, but any applicability to the extrapolation of accelerated test results to life under realistic long-term service conditions remains to be validated. This will require a better understanding of the underlying mechanisms. The present work provides experimental evidence to support recent suggestions that the observed behavior is a result of cycling-induced dislocation structures providing for increased diffusion creep. It is argued that this means that the measured work is an indicator of the instantaneous dislocation density, rather than necessarily reflecting the actual work involved in the creation of the damage.
NASA Astrophysics Data System (ADS)
Shu, Qijiang; Yang, Jie; Chi, Qingbin; Sun, Tao; Wang, Chong; Yang, Yu
2018-04-01
Ge/Si quantum dots (QDs) are fabricated by driving the transformation of a Ge thin film-deposited using the direct current (DC) magnetron sputtering technique by controlling the subsequent in situ annealing processes. The experimental results indicate that, with the increase in annealing temperature, the volume of Ge QDs increases monotonically, while the QD density initially increases then decreases. The maximal QD density can reach 1.1 × 1011 cm‑2 after a 10 min annealing at 650 °C. The Ge–Ge peak of Ge QDs obtained by Raman spectroscopy initially undergoes a blue shift and then a red shift with increasing annealing temperature. This behavior results from the competition between the dislocation and the strain relaxation in QDs. Concurrently, a series of photoelectric detectors are fabricated to evaluate the photoelectric performance of these annealed Ge QD samples. A high-photoelectricity response is demonstrated in the QD sample annealed at 650 °C. Our results pave a promising way for whole-silicon-material optical-electronic integration based on a simple and practicable fabrication method.
Formation of organized nanostructures from unstable bilayers of thin metallic liquids
NASA Astrophysics Data System (ADS)
Khenner, Mikhail; Yadavali, Sagar; Kalyanaraman, Ramki
2011-12-01
Dewetting of pulsed-laser irradiated, thin (<20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.
NASA Technical Reports Server (NTRS)
Scanvic, J. Y. (Principal Investigator)
1980-01-01
Thermal zones delimited on HCMM images, by visual interpretation only, were correlated with geological units and carbonated rocks, granitic, and volcanic rocks were individualized rock signature is evolutive parameter and some distinctions were made by addition of day, night and seasonal thermal image interpretation. This analysis also demonstrated that forest cover does not mask the underlying rocks thermal signature. Thermal linears are associated with known tectonics but the observed thermal variations from day to night and from one to another represent a promising concept to be studied in function of neotectonics and hydrogeology. The thermal anomalies discovered represent a potential interest which is to be evaluated. Significant results were obtained in the Mont Dore area and additional geological targets were defined in the Paris Basin and the Montmarault granite.
Supernova 1987A - the evolution from blue to red
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuchman, Y.; Wheeler, J.C.
1989-09-01
The evolution of stars with mass comparable to that of the progenitor of SN 1987A from the main sequence to the Hayashi track is critically examined to determine why some models evolve to the red on nuclear time scales, some on thermal time scales, and some not at all. Thermal equilibrium solutions to a parametrized series of structural models with active hydrogen burning shells have two stable solutions with different T(eff) for the same helium core M(He) mass and a minimum M(He) below which no blue thermal equlibrium solution is possible. The dependence of the equilibrium solutions on stellar mass,more » envelope composition, and mass loss are investigated. The solutions quantitatively account for the 'gap' in the HR diagrams of massive stars in the Galaxy and LMC and suggest that the outer envelopes are not substantially enriched in helium during the first passage from the main sequence to the Hayashi track. 23 refs.« less
Saveleva, Viktoriia A; Wang, Li; Teschner, Detre; Jones, Travis; Gago, Aldo S; Friedrich, K Andreas; Zafeiratos, Spyridon; Schlögl, Robert; Savinova, Elena R
2018-06-07
Progress in the development of proton exchange membrane (PEM) water electrolysis technology requires decreasing the anode overpotential, where the sluggish multistep oxygen evolution reaction (OER) occurs. This calls for an understanding of the nature of the active OER sites and reaction intermediates, which are still being debated. In this work, we apply synchrotron radiation-based near-ambient pressure X-ray photoelectron and absorption spectroscopies under operando conditions in order to unveil the nature of the reaction intermediates and shed light on the OER mechanism on electrocatalysts most widely used in PEM electrolyzers-electrochemical and thermal iridium oxides. Analysis of the O K-edge and Ir 4f spectra backed by density functional calculations reveals a universal oxygen anion red-ox mechanism regardless of the nature (electrochemical or thermal) of the iridium oxide. The formation of molecular oxygen is considered to occur through a chemical step from the electrophilic O I- species, which itself is formed in an electrochemical step.
The evolution of space simulation
NASA Technical Reports Server (NTRS)
Edwards, Arthur A.
1992-01-01
Thirty years have passed since the first large (more than 15 ft diameter) thermal vacuum space simulation chambers were built in this country. Many changes have been made since then, and the industry has learned a great deal as the designs have evolved in that time. I was fortunate to have been part of that beginning, and have participated in many of the changes that have occurred since. While talking with vacuum friends recently, I realized that many of the engineers working in the industry today may not be aware of the evolution of space simulation because they did not experience the changes that brought us today's technology. With that in mind, it seems to be appropriate to take a moment and review some of the events that were a big part of the past thirty years in the thermal vacuum business. Perhaps this review will help to understand a little of the 'why' as well as the 'how' of building and operating large thermal vacuum chambers.
NASA Astrophysics Data System (ADS)
Yao, Lu; Ma, Shengli; Niemeijer, André R.; Shimamoto, Toshihiko; Platt, John D.
2016-07-01
To examine whether faults can be lubricated by preexisting and newly formed nanoparticles, we perform high-velocity friction experiments on periclase (MgO) nanoparticles and on bare surfaces of Carrara marble cylinders/slices, respectively. Variable temperature conditions were simulated by using host blocks of different thermal conductivities. When temperature rises are relatively low, we observe high friction in nano-MgO tests and unexpected slip strengthening following initial weakening in marble slice tests, suggesting that the dominant weakening mechanisms are of thermal origin. Solely the rolling of nanoparticles without significant temperature rise is insufficient to cause dynamic fault weakening. For nano-MgO experiments, comprehensive investigations suggest that flash heating is the most likely weakening mechanism. In marble experiments, flash heating controls the unique evolutions of friction, and the competition between bulk temperature rise and wear-induced changes of asperity contact numbers seems to strongly affect the efficiency of flash heating.
Thermalization and its mechanism for generic quantum isolated systems
NASA Astrophysics Data System (ADS)
Olshanii, Maxim; Dunjko, Vanja; Rigol, Marcos
2008-05-01
Time dynamics of isolated many-body quantum systems has long been an elusive subject, perhaps most urgently needed in the foundations of quantum statistical mechanics. In generic systems, one expects the nonequilibrium dynamics to lead to thermalization: a relaxation to states where the values of macroscopic quantities are stationary, universal with respect to widely differing initial conditions, and predictable through the time-tested recipe of statistical mechanics. The relaxation mechanism is not obvious, however; dynamical chaos cannot play the key role as it does in classical systems since quantum evolution is linear. Here we demonstrateootnotetextM. Rigol, V. Dunjko, and M. Olshanii, to appear in Nature (2008), using the results of an ab initio numerical experiment with 5 hard-core bosons moving in a 5x5 lattice, that in quantum systems thermalization happens not in course of time evolution but instead at the level of individual eigenstates, as first proposed by DeutschootnotetextJ. M. Deutsch, Phys.Rev. A 43, 2046 (1991) and SrednickiootnotetextM. Srednicki, Phys. Rev. E 50, 888 (1994).
Solar-Wind Observations of Collisional Thermalization among Multiple Ion-Species
NASA Astrophysics Data System (ADS)
Maruca, B.; Qudzi, R.; Hellinger, P.; Stevens, M. L.; Kasper, J. C.; Korreck, K. E.
2017-12-01
The rate of Coulomb collisions among ions in the solar wind is low enough that significant departures from thermal equilibrium (e.g., different ion species having different temperatures) are frequently observed. Nevertheless, collisions have been found to play an important role in the plasma's large-scale evolution as it expands from the corona and through the heliosphere. Many statistical analyses have found that the temperature ratio of the two most abundant ions, protons (ionized hydrogen) and alpha-particles (fully ionized helium), is heavily influenced by collisional thermalization. This ongoing study expands on this work by including oxygen +6, which, during select periods (of cold, slow, dense plasma), the Wind spacecraft's Faraday Cups can measure at high cadences. Using well-established models of collisional relaxation, the in-situ measurements at 1 AU can be used to estimate ion conditions earlier in the plasma's expansion history. Assessing the physicality of these predictions can indicate to what degree preferential heating and/or heating beyond the corona affected the plasma's evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, J. C.; Tong, P., E-mail: tongpeng@issp.ac.cn; Lin, S.
2015-02-23
The thermal expansion and magnetic properties of antiperovskite manganese nitrides Ag{sub 1−x}NMn{sub 3+x} were reported. The substitution of Mn for Ag effectively broadens the temperature range of negative thermal expansion and drives it to cryogenic temperatures. As x increases, the paramagnetic (PM) to antiferromagnetic (AFM) phase transition temperature decreases. At x ∼ 0.2, the PM-AFM transition overlaps with the AFM to glass-like state transition. Above x = 0.2, two new distinct magnetic transitions were observed: One occurs above room temperature from PM to ferromagnetic (FM), and the other one evolves at a lower temperature (T{sup *}) below which both AFM and FM orderings aremore » involved. Further, electron spin resonance measurement suggests that the broadened volume change near T{sup *} is closely related with the evolution of Γ{sup 5g} AFM ordering.« less
Nothing in the History of Spanish "Anis" Makes Sense, Except in the Light of Evolution
ERIC Educational Resources Information Center
Delgado, Juan Antonio; Palma, Ricardo Luis
2011-01-01
We describe, discuss and illustrate a metaphoric parallel between the history of the most famous Spanish liqueur, "Anis del Mono" ("Anis" of the Monkey), and the evolution of living organisms in the light of Darwinian theory and other biological hypotheses published subsequent to Charles Darwin's "Origin of Species." Also, we report the use of a…
Origin and evolution of the Saturn system
NASA Technical Reports Server (NTRS)
Pollack, J. B.; Consolmagno, G.
1983-01-01
A review is provided of current concepts concerning the formation of the Saturn system and the subsequent history of the planet, its satellites, and rings. Emphasis is placed upon numerical models of Saturn's evolution and interior models of its satellites. Alternative theories are presented and assessed for the origins of the Saturn system, the rings of Saturn, and the atmosphere of Titan.
In this study, the unresolved complex mixture (UCM) in size resolved fine aerosol emissions from residential wood combustion (RWC) is examined. The aerosols are sorted by size in an electrical low-pressure impactor (ELPI) and subsequently analyzed by thermal desorbtion/gas chroma...
In-situ X-ray CT results of damage evolution in L6 ordinary chondrite meteorites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuadra, Jefferson A.; Hazeli, Kavan; Ramesh, K. T.
2016-06-17
These are slides about in-situ X-ray CT results of damage evolution in L6 ordinary chondrite meteorites. The following topics are covered: mechanical and thermal damage characterization, list of Grosvenor Mountain (GRO) meteorite samples, in-situ x-ray compression test setup, GRO-chipped reference at 0 N - existing cracks, GRO-chipped loaded at 1580 N, in-situ x-ray thermal fatigue test setup, GRO-B14 room temperature reference, GRO-B14 Cycle 47 at 200°C, GRO-B14 Cycle 47 at room temperature, conclusions from qualitative analysis, future work and next steps. Conclusions are the following: Both GRO-Chipped and GRO-B14 had existing voids and cracks within the volume. These sites withmore » existing damage were selected for CT images from mechanically and thermally loaded scans since they are prone to damage initiation. The GRO-Chipped sample was loaded to 1580 N which resulted in a 14% compressive engineering strain, calculated using LVDT. Based on the CT cross sectional images, the GRO-B14 sample at 200°C has a thermal expansion of approximately 96 μm in height (i.e. ~1.6% engineering strain).« less
Evolution of midplate hotspot swells: Numerical solutions
NASA Technical Reports Server (NTRS)
Liu, Mian; Chase, Clement G.
1990-01-01
The evolution of midplate hotspot swells on an oceanic plate moving over a hot, upwelling mantle plume is numerically simulated. The plume supplies a Gaussian-shaped thermal perturbation and thermally-induced dynamic support. The lithosphere is treated as a thermal boundary layer with a strongly temperature-dependent viscosity. The two fundamental mechanisms of transferring heat, conduction and convection, during the interaction of the lithosphere with the mantle plume are considered. The transient heat transfer equations, with boundary conditions varying in both time and space, are solved in cylindrical coordinates using the finite difference ADI (alternating direction implicit) method on a 100 x 100 grid. The topography, geoid anomaly, and heat flow anomaly of the Hawaiian swell and the Bermuda rise are used to constrain the models. Results confirm the conclusion of previous works that the Hawaiian swell can not be explained by conductive heating alone, even if extremely high thermal perturbation is allowed. On the other hand, the model of convective thinning predicts successfully the topography, geoid anomaly, and the heat flow anomaly around the Hawaiian islands, as well as the changes in the topography and anomalous heat flow along the Hawaiian volcanic chain.
NASA Astrophysics Data System (ADS)
Jin, Chuanyu; Zhou, Lingping; Fu, Licai; Zhu, Jiajun; Li, Deyi; Yang, Wulin
2017-06-01
The intermediate phase of NiS2 is thought to be a bottleneck currently to improve the overall performance of Li/NiS2 thermal batteries because of its low conductivity and close formation enthalpy between NiS2 and the intermediate phase (NiS, Ni3S2, etc). For improving the discharge performances of Li/NiS2 thermal batteries, the nano NiS2 with an average size of 85 ± 5 nm is designated as a cathode material. The electrochemical measurements show that the specific capacity of nano NiS2 cathode is higher than micro NiS2. The nano NiS2 cathode exhibits excellent electrochemical performances with high specific capacities of 794 and 654 mAh g-1 at current density of 0.1 and 0.5 A cm-2 under a cut-off voltage of 0.5 V, respectively. These results show that the rapid intermediate phase evolution from the nanocrystallization can obviously enhance use efficiency of NiS2 and improve discharge performances of thermal batteries.
Fisicaro, G; Pelaz, L; Lopez, P; La Magna, A
2012-09-01
Pulsed laser irradiation of damaged solids promotes ultrafast nonequilibrium kinetics, on the submicrosecond scale, leading to microscopic modifications of the material state. Reliable theoretical predictions of this evolution can be achieved only by simulating particle interactions in the presence of large and transient gradients of the thermal field. We propose a kinetic Monte Carlo (KMC) method for the simulation of damaged systems in the extremely far-from-equilibrium conditions caused by the laser irradiation. The reference systems are nonideal crystals containing point defect excesses, an order of magnitude larger than the equilibrium density, due to a preirradiation ion implantation process. The thermal and, eventual, melting problem is solved within the phase-field methodology, and the numerical solutions for the space- and time-dependent thermal field were then dynamically coupled to the KMC code. The formalism, implementation, and related tests of our computational code are discussed in detail. As an application example we analyze the evolution of the defect system caused by P ion implantation in Si under nanosecond pulsed irradiation. The simulation results suggest a significant annihilation of the implantation damage which can be well controlled by the laser fluence.
NASA Astrophysics Data System (ADS)
Reiser, Martin; Fügenschuh, Bernhard; Schuster, Ralf
2010-05-01
The Apuseni mountains in Romania take a central position in the Alpine Carpathian Dinaride system and separate the Pannonian basin in the west from the Transsylvanian basin in the east. The Cretaceous age nappe stack involves from bottom to top Tisza- (Bihor and Codru) and Dacia-derived units (Biharia, according to Schmid et al., 2008) overlain by the South Apuseni and Transylvanian ophiolite belt. This study tries to provide new and additional information on the structural and metamorphic evolution of these units from the Jurassic obduction to neotectonic activity. This also comprises information on their interaction with the neighbouring basins. The objective is to show the impact of large scale (plate) tectonics (f.i. in terms of its thermal configuration and strengths profile) and the impact of early-formed tectonic features for the further evolution, specifically the formation of the surrounding basins together with its feedback with topography. This approach includes investigation of kinematics along first order contacts during distinct events together with the thermotectonic characterization of the involved units. While the early "high-grade" evolution will be geochronologically addressed by Sm/Nd, Rb/Sr and Ar/Ar dating, fission track analysis on zircon and apatite will be used to constrain the low-temperature part of the story. Already available data by Sanders (1998), Schuller (2004), Merten (in preparation) and Kounov (in preparation) together with new own data will be used to provide a 4D model for the late-stage thermal evolution of the Apuseni mountains. Thermal modelling will be compared and integrated with numerical modelling of the landscape evolution. The hereby generated data and information on erosion and exhumation will be further used in associated partner projects of the Source to Sink research network which addresses the evolution of the Danube system from the hinterland to the Black Sea. References: Sanders, C. A. E. (1998), Tectonics and erosion - Competitive forces in a compressive orogen: A fission track study of the Romanian Carpathians, PhD-thesis, Vrije Universiteit, Amsterdam, pp. 204. Schuller, V. (2004), Evolution and geodynamic significance of the Upper Cretaceous Gosau basin in the Apuseni Mountains (Romania), PhD Thesis, Tubinger Geowiss. Arb. Reihe A70, 112 pp. Schmid, S. M., D. Bernoulli, B. Fügenschuh, L. Matenco, S. Schaefer, R. Schuster, M. Tischler and K. Ustaszewski (2008), The Alps-Carpathians-Dinaridic orogenic system: correlation and evolution of tectonic units, Swiss Journal of Geosciences, 2008.
Fine characterization rock thermal damage by acoustic emission technique
NASA Astrophysics Data System (ADS)
Kong, Biao; Li, Zenghua; Wang, Enyuan
2018-02-01
This paper examines the differences in the thermal mechanical properties and acoustic emission (AE) characteristics during the deformation and fracture of rock under the action of continuous heating and after high-temperature treatment. Using AE 3D positioning technology, the development and evolution of the internal thermal cracks and the time domain of AE signals in rock were analyzed. High-temperature treatment causes thermal damage to rock. Under the action of continuous heating, the phase characteristics of AE time series correspond to the five stages of rock thermal deformation and fracture, respectively: the micro-defect development stage, the threshold interval of rock micro-cracks, the crack initiation stage, the crack propagation stage, and the crack multistage propagation evolution. When the initial crack propagates, the crack initiation of the rock causes the AE signal to produce a sudden mutation change. Mechanical fraction characteristics during rock uniaxial compression after temperature treatment indicated that the decrease rate of the rock compressive strength, wave velocity, and elastic modulus are relatively large during uniaxial compression tests after high-temperature treatment. During the deformation and fracture of rock under loading, there is faster growth of AE counts and AE events, indicating an increase in the speed of rock deformation and fracture under loading. AE counts show obvious changes during the latter loading stages, whereas AE events show obvious changes during the loading process. The results obtained are valuable for rock thermal stability detection and evaluation in actual underground engineering.
NASA Astrophysics Data System (ADS)
Fratanduono, D.
2015-12-01
The thermal history of terrestrial planets depends upon the melt boundary as it represents the largest rheological transition a material can undergo. This change in rheological behavior with solidification corresponds to a dramatic change in the thermal and chemical transport properties. Because of this dramatic change in thermal transport, recent work by Stixrude et al.[1] suggests that the silicate melt curve sets the thermal profile within super-Earths during their early thermal evolution. Here we present recent decaying shock wave experiments studying both enstatite and forsterite. The continuously measured shock pressure and temperature in these studies ranged from 8 to 1.5 Mbar and 20,000-4,000 K, respectively. We find a point on the MgSiO3 liquidus at 6800 K and 285 GPa, which is nearly a factor of two higher pressure than previously measured and provides a strong constraint on the temperature profile within super-Earths. Our shock temperature measurements on forsterite and enstatite provide much needed equation of state information to the planetary impact modeling community since the shock temperature data can be used to constrain the initial entropy state of a growing planet. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 1. Stixrude, L., Melting in super-earths. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2014. 372(2014).
Magma oceanography. I - Thermal evolution. [of lunar surface
NASA Technical Reports Server (NTRS)
Solomon, S. C.; Longhi, J.
1977-01-01
Fractional crystallization and flotation of cumulate plagioclase in a cooling 'magma ocean' provides the simplest explanation for early emplacement of a thick feldspar-rich lunar crust. The complementary mafic cumulates resulting from the differentiation of such a magma ocean have been identified as the ultimate source of mare basalt liquids on the basis or rare-earth abundance patterns and experimental petrology studies. A study is conducted concerning the thermal evolution of the early differentiation processes. A range of models of increasing sophistication are considered. The models developed contain the essence of the energetics and the time scale for magma ocean differentiation. Attention is given to constraints on a magma ocean, modeling procedures, single-component magma oceans, fractionating magma oceans, and evolving magma oceans.
NASA Technical Reports Server (NTRS)
Walker, James L.; Richter, Joel D.
2006-01-01
Three nondestructive evaluation methods are being developed to identify defects in the foam thermal protection system (TPS) of the Space Shuttle External Tank (ET). Shearography is being developed to identify shallow delaminations, shallow voids and crush damage in the foam while terahertz imaging and backscatter radiography are being developed to identify voids and cracks in thick foam regions. The basic theory of operation along with factors affecting the results of these methods will be described. Also, the evolution of these methods from lab tools to implementation on the ET will be discussed. Results from both test panels and flight tank inspections will be provided to show the range in defect sizes and types that can be readily detected.
Thermal monitoring of a granitic exfoliation sheet and cliff in Yosemite Valley, California (USA)
NASA Astrophysics Data System (ADS)
Guerin, Antoine; Matasci, Battista; Collins, Brian D.; Stock, Greg M.; Derron, Marc-Henri; Jaboyedoff, Michel
2015-04-01
In recent years, new remote sensing techniques such as Terrestrial Laser Scanner (TLS) and Infrared Thermography (IRT) have been used in parallel for rock weathering and weakness detection in slope stability analysis. Nevertheless, the effects of thermal stresses on rock face deformation are still poorly quantified, especially for steep and inaccessible cliffs. To better understand how daily temperature fluctuations influence the behavior of exfoliation joints (i.e., fractures separating exfoliation sheets), we monitored a granitic exfoliation sheet in detail using TLS and IRT over a several day period and also compiled a single TLS-IRT thermal panorama of a larger nearby granitic cliff composed of hundreds to thousands of similar exfoliation sheets. The exfoliation sheet had been previously instrumented for 3.5 years beginning in May 2010 using crackmeters and temperature sensors (Collins and Stock, 2010 and 2012), thereby providing an important baseline to compare our IRT measurements. For several consecutive days, a series of infrared thermal images (collected every 20 min.) of the exfoliation flake (19 m by 4 m by 0.1 m) was taken with a long range IRISYS IRI 4040 thermal imager, as well as several ground-based LiDAR scans, collected at 4 mm point spacing. These pictures were draped on the TLS triangular meshes to quantify the lateral propagation of temperature during the warming and cooling periods. The evolution of vertical and horizontal temperature profiles was also investigated. Results show that the sheet edge undergoes the most significant temperature changes and that warming takes place from the inside part to the border of the flake; conversely cooling takes place from the outside-inwards. Furthermore, the comparison of point clouds indicates a maximum crack aperture of over 1 cm occurring in the afternoon (12:00 to 15:00), when temperatures are at their maximum. The thermal panoramic image of the cliff (600 m wide by 300 m tall) was created using over 100 stitched pictures and also draped on a TLS mesh to generate a 3D color model. This model shows the apparent temperatures measured according to position and surface orientation of the cliff. This rock wall has many recent rockfall scars with lighter colored rock surface; these scars appear as spots of lower temperature surrounded by warmer areas and may undergo increased stress related to the thermal variations. However, these first results must be verified by further testing using calibrated models to distinguish the effects of emissivity and thermal radiation. Subsequently, we plan to fix the thermal camera on a GigaPan EPIC Pro device to take sequences of panoramas during rock cooling and heating and to perform additional investigation on air and water propagation in fractured zones.
Laser induced thermal therapy (LITT) for pediatric brain tumors: case-based review
Riordan, Margaret
2014-01-01
Integration of Laser induced thermal therapy (LITT) to magnetic resonance imaging (MRI) have created new options for treating surgically challenging tumors in locations that would otherwise have represented an intrinsic comorbidity by the approach itself. As new applications and variations of the use are discussed, we present a case-based review of the history, development, and subsequent updates of minimally invasive MRI-guided laser interstitial thermal therapy (MRgLITT) ablation in pediatric brain tumors. PMID:26835340