Bourret, S.C.; Swansen, J.E.
1982-07-02
A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.
A Two-Step Approach for Producing an Ultrafine-Grain Structure in Cu-30Zn Brass (Postprint)
2015-08-13
crystallization anneal at 400 °C (0.55Tm, where Tm is the melting point ) for times ranging from 1 min to 10 hours, followed by water quenching; an additional...200 words) A two-step approach involving cryogenic rolling and subsequent recrystallization annealing was developed to produce an ultrafine-grain...b s t r a c t A two-step approach involving cryogenic rolling and subsequent recrystallization annealing was devel- oped to produce an ultrafine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawisza, I; Yan, H; Yin, F
Purpose: To assure that tumor motion is within the radiation field during high-dose and high-precision radiosurgery, real-time imaging and surrogate monitoring are employed. These methods are useful in providing real-time tumor/surrogate motion but no future information is available. In order to anticipate future tumor/surrogate motion and track target location precisely, an algorithm is developed and investigated for estimating surrogate motion multiple-steps ahead. Methods: The study utilized a one-dimensional surrogate motion signal divided into three components: (a) training component containing the primary data including the first frame to the beginning of the input subsequence; (b) input subsequence component of the surrogatemore » signal used as input to the prediction algorithm: (c) output subsequence component is the remaining signal used as the known output of the prediction algorithm for validation. The prediction algorithm consists of three major steps: (1) extracting subsequences from training component which best-match the input subsequence according to given criterion; (2) calculating weighting factors from these best-matched subsequence; (3) collecting the proceeding parts of the subsequences and combining them together with assigned weighting factors to form output. The prediction algorithm was examined for several patients, and its performance is assessed based on the correlation between prediction and known output. Results: Respiratory motion data was collected for 20 patients using the RPM system. The output subsequence is the last 50 samples (∼2 seconds) of a surrogate signal, and the input subsequence was 100 (∼3 seconds) frames prior to the output subsequence. Based on the analysis of correlation coefficient between predicted and known output subsequence, the average correlation is 0.9644±0.0394 and 0.9789±0.0239 for equal-weighting and relative-weighting strategies, respectively. Conclusion: Preliminary results indicate that the prediction algorithm is effective in estimating surrogate motion multiple-steps in advance. Relative-weighting method shows better prediction accuracy than equal-weighting method. More parameters of this algorithm are under investigation.« less
Mesfin, Mahlet N.; von Reyn, Catherine R.; Mott, Rosalind E.; Putt, Mary E.
2012-01-01
Abstract Striatal-enriched tyrosine phosphatase (STEP) has been identified as a component of physiological and pathophysiological signaling pathways mediated by N-methyl-d-aspartate (NMDA) receptor/calcineurin/calpain activation. Activation of these pathways produces a subsequent change in STEP isoform expression or activation via dephosphorylation. In this study, we evaluated changes in STEP phosphorylation and proteolysis in dissociated cortical neurons after sublethal and lethal mechanical injury using an in vitro stretch injury device. Sublethal stretch injury produces minimal changes in STEP phosphorylation at early time points, and increased STEP phosphorylation at 24 h that is blocked by the NMDA-receptor antagonist APV, the calcineurin-inhibitor FK506, and the sodium channel blocker tetrodotoxin. Lethal stretch injury produces rapid STEP dephosphorylation via NR2B-containing NMDA receptors, but not calcineurin, and a subsequent biphasic phosphorylation pattern. STEP61 expression progressively increases after sublethal stretch with no change in calpain-mediated STEP33 formation, while lethal stretch injury results in STEP33 formation via a NR2B-containing NMDA receptor pathway within 1 h of injury. Blocking calpain activation in the initial 30 min after stretch injury increases the ratio of active STEP in cells and blocks STEP33 formation, suggesting that STEP is an early substrate of calpain after mechanical injury. There is a strong correlation between the amount of STEP33 formed and the degree of cell death observed after lethal stretch injury. In summary, these data demonstrate that previously characterized pathways of STEP regulation via the NMDA receptor are generally conserved in mechanical injury, and suggest that calpain-mediated cleavage of STEP33 should be further examined as an early marker of neuronal fate after stretch injury. PMID:22435660
A coupled weather generator - rainfall-runoff approach on hourly time steps for flood risk analysis
NASA Astrophysics Data System (ADS)
Winter, Benjamin; Schneeberger, Klaus; Dung Nguyen, Viet; Vorogushyn, Sergiy; Huttenlau, Matthias; Merz, Bruno; Stötter, Johann
2017-04-01
The evaluation of potential monetary damage of flooding is an essential part of flood risk management. One possibility to estimate the monetary risk is to analyze long time series of observed flood events and their corresponding damages. In reality, however, only few flood events are documented. This limitation can be overcome by the generation of a set of synthetic, physically and spatial plausible flood events and subsequently the estimation of the resulting monetary damages. In the present work, a set of synthetic flood events is generated by a continuous rainfall-runoff simulation in combination with a coupled weather generator and temporal disaggregation procedure for the study area of Vorarlberg (Austria). Most flood risk studies focus on daily time steps, however, the mesoscale alpine study area is characterized by short concentration times, leading to large differences between daily mean and daily maximum discharge. Accordingly, an hourly time step is needed for the simulations. The hourly metrological input for the rainfall-runoff model is generated in a two-step approach. A synthetic daily dataset is generated by a multivariate and multisite weather generator and subsequently disaggregated to hourly time steps with a k-Nearest-Neighbor model. Following the event generation procedure, the negative consequences of flooding are analyzed. The corresponding flood damage for each synthetic event is estimated by combining the synthetic discharge at representative points of the river network with a loss probability relation for each community in the study area. The loss probability relation is based on exposure and susceptibility analyses on a single object basis (residential buildings) for certain return periods. For these impact analyses official inundation maps of the study area are used. Finally, by analyzing the total event time series of damages, the expected annual damage or losses associated with a certain probability of occurrence can be estimated for the entire study area.
NASA Technical Reports Server (NTRS)
Humphreys, E. A.
1981-01-01
A computerized, analytical methodology was developed to study damage accumulation during low velocity lateral impact of layered composite plates. The impact event was modeled as perfectly plastic with complete momentum transfer to the plate structure. A transient dynamic finite element approach was selected to predict the displacement time response of the plate structure. Composite ply and interlaminar stresses were computed at selected time intervals and subsequently evaluated to predict layer and interlaminar damage. The effects of damage on elemental stiffness were then incorporated back into the analysis for subsequent time steps. Damage predicted included fiber failure, matrix ply failure and interlaminar delamination.
Data-based control of a multi-step forming process
NASA Astrophysics Data System (ADS)
Schulte, R.; Frey, P.; Hildenbrand, P.; Vogel, M.; Betz, C.; Lechner, M.; Merklein, M.
2017-09-01
The fourth industrial revolution represents a new stage in the organization and management of the entire value chain. However, concerning the field of forming technology, the fourth industrial revolution has only arrived gradually until now. In order to make a valuable contribution to the digital factory the controlling of a multistage forming process was investigated. Within the framework of the investigation, an abstracted and transferable model is used to outline which data have to be collected, how an interface between the different forming machines can be designed tangible and which control tasks must be fulfilled. The goal of this investigation was to control the subsequent process step based on the data recorded in the first step. The investigated process chain links various metal forming processes, which are typical elements of a multi-step forming process. Data recorded in the first step of the process chain is analyzed and processed for an improved process control of the subsequent process. On the basis of the gained scientific knowledge, it is possible to make forming operations more robust and at the same time more flexible, and thus create the fundament for linking various production processes in an efficient way.
A Step-by-Step Framework on Discrete Events Simulation in Emergency Department; A Systematic Review.
Dehghani, Mahsa; Moftian, Nazila; Rezaei-Hachesu, Peyman; Samad-Soltani, Taha
2017-04-01
To systematically review the current literature of simulation in healthcare including the structured steps in the emergency healthcare sector by proposing a framework for simulation in the emergency department. For the purpose of collecting the data, PubMed and ACM databases were used between the years 2003 and 2013. The inclusion criteria were to select English-written articles available in full text with the closest objectives from among a total of 54 articles retrieved from the databases. Subsequently, 11 articles were selected for further analysis. The studies focused on the reduction of waiting time and patient stay, optimization of resources allocation, creation of crisis and maximum demand scenarios, identification of overcrowding bottlenecks, investigation of the impact of other systems on the existing system, and improvement of the system operations and functions. Subsequently, 10 simulation steps were derived from the relevant studies after an expert's evaluation. The 10-steps approach proposed on the basis of the selected studies provides simulation and planning specialists with a structured method for both analyzing problems and choosing best-case scenarios. Moreover, following this framework systematically enables the development of design processes as well as software implementation of simulation problems.
Simplified jet fuel reaction mechanism for lean burn combustion application
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman
1993-01-01
Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. Detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.
A Kalman filter for a two-dimensional shallow-water model
NASA Technical Reports Server (NTRS)
Parrish, D. F.; Cohn, S. E.
1985-01-01
A two-dimensional Kalman filter is described for data assimilation for making weather forecasts. The filter is regarded as superior to the optimal interpolation method because the filter determines the forecast error covariance matrix exactly instead of using an approximation. A generalized time step is defined which includes expressions for one time step of the forecast model, the error covariance matrix, the gain matrix, and the evolution of the covariance matrix. Subsequent time steps are achieved by quantifying the forecast variables or employing a linear extrapolation from a current variable set, assuming the forecast dynamics are linear. Calculations for the evolution of the error covariance matrix are banded, i.e., are performed only with the elements significantly different from zero. Experimental results are provided from an application of the filter to a shallow-water simulation covering a 6000 x 6000 km grid.
Spike-frequency adaptation in the inferior colliculus.
Ingham, Neil J; McAlpine, David
2004-02-01
We investigated spike-frequency adaptation of neurons sensitive to interaural phase disparities (IPDs) in the inferior colliculus (IC) of urethane-anesthetized guinea pigs using a stimulus paradigm designed to exclude the influence of adaptation below the level of binaural integration. The IPD-step stimulus consists of a binaural 3,000-ms tone, in which the first 1,000 ms is held at a neuron's least favorable ("worst") IPD, adapting out monaural components, before being stepped rapidly to a neuron's most favorable ("best") IPD for 300 ms. After some variable interval (1-1,000 ms), IPD is again stepped to the best IPD for 300 ms, before being returned to a neuron's worst IPD for the remainder of the stimulus. Exponential decay functions fitted to the response to best-IPD steps revealed an average adaptation time constant of 52.9 +/- 26.4 ms. Recovery from adaptation to best IPD steps showed an average time constant of 225.5 +/- 210.2 ms. Recovery time constants were not correlated with adaptation time constants. During the recovery period, adaptation to a 2nd best-IPD step followed similar kinetics to adaptation during the 1st best-IPD step. The mean adaptation time constant at stimulus onset (at worst IPD) was 34.8 +/- 19.7 ms, similar to the 38.4 +/- 22.1 ms recorded to contralateral stimulation alone. Individual time constants after stimulus onset were correlated with each other but not with time constants during the best-IPD step. We conclude that such binaurally derived measures of adaptation reflect processes that occur above the level of exclusively monaural pathways, and subsequent to the site of primary binaural interaction.
A Step-by-Step Framework on Discrete Events Simulation in Emergency Department; A Systematic Review
Dehghani, Mahsa; Moftian, Nazila; Rezaei-Hachesu, Peyman; Samad-Soltani, Taha
2017-01-01
Objective: To systematically review the current literature of simulation in healthcare including the structured steps in the emergency healthcare sector by proposing a framework for simulation in the emergency department. Methods: For the purpose of collecting the data, PubMed and ACM databases were used between the years 2003 and 2013. The inclusion criteria were to select English-written articles available in full text with the closest objectives from among a total of 54 articles retrieved from the databases. Subsequently, 11 articles were selected for further analysis. Results: The studies focused on the reduction of waiting time and patient stay, optimization of resources allocation, creation of crisis and maximum demand scenarios, identification of overcrowding bottlenecks, investigation of the impact of other systems on the existing system, and improvement of the system operations and functions. Subsequently, 10 simulation steps were derived from the relevant studies after an expert’s evaluation. Conclusion: The 10-steps approach proposed on the basis of the selected studies provides simulation and planning specialists with a structured method for both analyzing problems and choosing best-case scenarios. Moreover, following this framework systematically enables the development of design processes as well as software implementation of simulation problems. PMID:28507994
NASA Astrophysics Data System (ADS)
Müller, H.; Haberlandt, U.
2018-01-01
Rainfall time series of high temporal resolution and spatial density are crucial for urban hydrology. The multiplicative random cascade model can be used for temporal rainfall disaggregation of daily data to generate such time series. Here, the uniform splitting approach with a branching number of 3 in the first disaggregation step is applied. To achieve a final resolution of 5 min, subsequent steps after disaggregation are necessary. Three modifications at different disaggregation levels are tested in this investigation (uniform splitting at Δt = 15 min, linear interpolation at Δt = 7.5 min and Δt = 3.75 min). Results are compared both with observations and an often used approach, based on the assumption that a time steps with Δt = 5.625 min, as resulting if a branching number of 2 is applied throughout, can be replaced with Δt = 5 min (called the 1280 min approach). Spatial consistence is implemented in the disaggregated time series using a resampling algorithm. In total, 24 recording stations in Lower Saxony, Northern Germany with a 5 min resolution have been used for the validation of the disaggregation procedure. The urban-hydrological suitability is tested with an artificial combined sewer system of about 170 hectares. The results show that all three variations outperform the 1280 min approach regarding reproduction of wet spell duration, average intensity, fraction of dry intervals and lag-1 autocorrelation. Extreme values with durations of 5 min are also better represented. For durations of 1 h, all approaches show only slight deviations from the observed extremes. The applied resampling algorithm is capable to achieve sufficient spatial consistence. The effects on the urban hydrological simulations are significant. Without spatial consistence, flood volumes of manholes and combined sewer overflow are strongly underestimated. After resampling, results using disaggregated time series as input are in the range of those using observed time series. Best overall performance regarding rainfall statistics are obtained by the method in which the disaggregation process ends at time steps with 7.5 min duration, deriving the 5 min time steps by linear interpolation. With subsequent resampling this method leads to a good representation of manhole flooding and combined sewer overflow volume in terms of hydrological simulations and outperforms the 1280 min approach.
Stepped-to-dart Leaders in Cloud-to-ground Lightning
NASA Astrophysics Data System (ADS)
Stolzenburg, M.; Marshall, T. C.; Karunarathne, S.; Karunarathna, N.; Warner, T.; Orville, R. E.
2013-12-01
Using time-correlated high-speed video (50,000 frames per second) and fast electric field change (5 MegaSamples per second) data for lightning flashes in East-central Florida, we describe an apparently rare type of subsequent leader: a stepped leader that finds and follows a previously used channel. The observed 'stepped-to-dart leaders' occur in three natural negative ground flashes. Stepped-to-dart leader connection altitudes are 3.3, 1.6 and 0.7 km above ground in the three cases. Prior to the stepped-to-dart connection, the advancing leaders have properties typical of stepped leaders. After the connection, the behavior changes almost immediately (within 40-60 us) to dart or dart-stepped leader, with larger amplitude E-change pulses and faster average propagation speeds. In this presentation, we will also describe the upward luminosity after the connection in the prior return stroke channel and in the stepped leader path, along with properties of the return strokes and other leaders in the three flashes.
A novel method to accurately locate and count large numbers of steps by photobleaching
Tsekouras, Konstantinos; Custer, Thomas C.; Jashnsaz, Hossein; Walter, Nils G.; Pressé, Steve
2016-01-01
Photobleaching event counting is a single-molecule fluorescence technique that is increasingly being used to determine the stoichiometry of protein and RNA complexes composed of many subunits in vivo as well as in vitro. By tagging protein or RNA subunits with fluorophores, activating them, and subsequently observing as the fluorophores photobleach, one obtains information on the number of subunits in a complex. The noise properties in a photobleaching time trace depend on the number of active fluorescent subunits. Thus, as fluorophores stochastically photobleach, noise properties of the time trace change stochastically, and these varying noise properties have created a challenge in identifying photobleaching steps in a time trace. Although photobleaching steps are often detected by eye, this method only works for high individual fluorophore emission signal-to-noise ratios and small numbers of fluorophores. With filtering methods or currently available algorithms, it is possible to reliably identify photobleaching steps for up to 20–30 fluorophores and signal-to-noise ratios down to ∼1. Here we present a new Bayesian method of counting steps in photobleaching time traces that takes into account stochastic noise variation in addition to complications such as overlapping photobleaching events that may arise from fluorophore interactions, as well as on-off blinking. Our method is capable of detecting ≥50 photobleaching steps even for signal-to-noise ratios as low as 0.1, can find up to ≥500 steps for more favorable noise profiles, and is computationally inexpensive. PMID:27654946
Cuddy, Monica M; Winward, Marcia L; Johnston, Mary M; Lipner, Rebecca S; Clauser, Brian E
2016-01-01
To add to the small body of validity research addressing whether scores from performance assessments of clinical skills are related to performance in supervised patient settings, the authors examined relationships between United States Medical Licensing Examination (USMLE) Step 2 Clinical Skills (CS) data gathering and data interpretation scores and subsequent performance in history taking and physical examination in internal medicine residency training. The sample included 6,306 examinees from 238 internal medicine residency programs who completed Step 2 CS for the first time in 2005 and whose performance ratings from their first year of residency training were available. Hierarchical linear modeling techniques were used to examine the relationships among Step 2 CS data gathering and data interpretation scores and history-taking and physical examination ratings. Step 2 CS data interpretation scores were positively related to both history-taking and physical examination ratings. Step 2 CS data gathering scores were not related to either history-taking or physical examination ratings after other USMLE scores were taken into account. Step 2 CS data interpretation scores provide useful information for predicting subsequent performance in history taking and physical examination in supervised practice and thus provide validity evidence for their intended use as an indication of readiness to enter supervised practice. The results show that there is less evidence to support the usefulness of Step 2 CS data gathering scores. This study provides important information for practitioners interested in Step 2 CS specifically or in performance assessments of medical students' clinical skills more generally.
DiMango, Emily; Rogers, Linda; Reibman, Joan; Gerald, Lynn B; Brown, Mark; Sugar, Elizabeth A; Henderson, Robert; Holbrook, Janet T
2018-06-04
Although national and international guidelines recommend reduction of asthma controller therapy or 'step-down" therapy in patients with well controlled asthma, it is expected that some individuals may experience worsening of asthma symptoms or asthma exacerbations during step-down. Characteristics associated with subsequent exacerbations during step-down therapy have not been well defined. The effect of environmental tobacco smoke (ETS) exposure on risk of treatment failure during asthma step down therapy has not been reported. To identify baseline characteristics associated with treatment failure and asthma exacerbation during maintenance and guideline-based step-down therapy. The present analysis uses data collected from a completed randomized controlled trial of optimal step-down therapy in patients with well controlled asthma taking moderate dose combination inhaled corticosteroids/long acting beta agonists. Participants were 12 years or older with physician diagnosed asthma and were enrolled between December 2011 and May 2014. An Emergency Room visit in the previous year was predictive of a subsequent treatment failure (HR 1.53 (1.06, 2.21 CI). For every 10% increase in baseline forced expiratory volume in one second percent predicted, the hazard for treatment failure was reduced by 14% (95% CI: 0.74-0.99). There was no difference in risk of treatment failure between adults and children, nor did duration of asthma increase risk of treatment failure. Age of asthma onset was not associated with increased risk of treatment failure. Unexpected emergency room visit in the previous year was the only risk factor significantly associated with subsequent asthma exacerbations requiring systemic corticosteroids. Time to treatment failure or exacerbation did not differ in participants with and without self-report of ETS exposure. The present findings can help clinicians identify patients more likely to develop treatment failures and exacerbations and who may therefore require closer monitoring during asthma step-down treatment. Individuals with reduced pulmonary function, a history of exacerbations, and early onset disease, even if otherwise well controlled, may require closer observation to prevent treatment failures and asthma exacerbations. Clinical trial registered with ClinicalTrials.gov (NCT01437995).
Autonomous antenna tracking system for mobile symphonie ground stations
NASA Technical Reports Server (NTRS)
Ernsberger, K.; Lorch, G.; Waffenschmidt, E.
1982-01-01
The implementation of a satellite tracking and antenna control system is described. Due to the loss of inclination control for the symphonie satellites, it became necessary to equip the parabolic antennas of the mobile Symphonie ground station with tracking facilities. For the relatively low required tracking accuracy of 0.5 dB, a low cost, step track system was selected. The step track system developed for this purpose and tested over a long period of time in 7 ground stations is based on a search step method with subsequent parabola interpolation. As compared with the real search step method, the system has the advantage of a higher pointing angle resolution, and thus a higher tracking accuracy. When the pilot signal has been switched off for a long period of time, as for instance after the eclipse, the antenna is repointed towards the satellite by an automatically initiated spiral search scan. The function and design of the tracking system are detailed, while easy handling and tracking results.
Real-time color image processing for forensic fiber investigations
NASA Astrophysics Data System (ADS)
Paulsson, Nils
1995-09-01
This paper describes a system for automatic fiber debris detection based on color identification. The properties of the system are fast analysis and high selectivity, a necessity when analyzing forensic fiber samples. An ordinary investigation separates the material into well above 100,000 video images to analyze. The system is based on standard techniques such as CCD-camera, motorized sample table, and IBM-compatible PC/AT with add-on-boards for video frame digitalization and stepping motor control as the main parts. It is possible to operate the instrument at full video rate (25 image/s) with aid of the HSI-color system (hue- saturation-intensity) and software optimization. High selectivity is achieved by separating the analysis into several steps. The first step is fast direct color identification of objects in the analyzed video images and the second step analyzes detected objects with a more complex and time consuming stage of the investigation to identify single fiber fragments for subsequent analysis with more selective techniques.
Rank, Matthew A; Johnson, Ryan; Branda, Megan; Herrin, Jeph; van Houten, Holly; Gionfriddo, Michael R; Shah, Nilay D
2015-09-01
Long-term outcomes after stepping down asthma medications are not well described. This study was a retrospective time-to-event analysis of individuals diagnosed with asthma who stepped down their asthma controller medications using a US claims database spanning 2000 to 2012. Four-month intervals were established and a step-down event was defined by a ≥ 50% decrease in days-supplied of controller medications from one interval to the next; this definition is inclusive of step-down that occurred without health-care provider guidance or as a consequence of a medication adherence lapse. Asthma stability in the period prior to step-down was defined by not having an asthma exacerbation (inpatient visit, ED visit, or dispensing of a systemic corticosteroid linked to an asthma visit) and having fewer than two rescue inhaler claims in a 4-month period. The primary outcome in the period following step-down was time-to-first asthma exacerbation. Thirty-two percent of the 26,292 included individuals had an asthma exacerbation in the 24-month period following step-down of asthma controller medication, though only 7% had an ED visit or hospitalization for asthma. The length of asthma stability prior to stepping down asthma medication was strongly associated with the risk of an asthma exacerbation in the subsequent 24-month period: < 4 months' stability, 44%; 4 to 7 months, 34%; 8 to 11 months, 30%; and ≥ 12 months, 21% (P < .001). In a large, claims-based, real-world study setting, 32% of individuals have an asthma exacerbation in the 2 years following a step-down event.
Cluster observations of ion dispersion discontinuities in the polar cusp
NASA Astrophysics Data System (ADS)
Escoubet, C. P.; Berchem, J.; Pitout, F.; Richard, R. L.; Trattner, K. J.; Grison, B.; Taylor, M. G.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.
2009-12-01
The reconnection between the interplanetary magnetic field (IMF) and the Earth’s magnetic field is taking place at the magnetopause on magnetic field lines threading through the polar cusp. When the IMF is southward, reconnection occurs near the subsolar point, which is magnetically connected to the equatorward boundary of the polar cusp. Subsequently the ions injected through the reconnection point precipitate in the cusp and are dispersed poleward. If reconnection is continuous and operates at constant rate, the ion dispersion is smooth and continuous. On the other hand if the reconnection rate varies, we expect interruption in the dispersion forming energy steps or staircase. Similarly, multiple entries near the magnetopause could also produce steps at low or mid-altitude when a spacecraft is crossing subsequently the field lines originating from these multiple sources. In addition, motion of the magnetopause induced by solar wind pressure changes or erosion due to reconnection can also induce a motion of the polar cusp and a disruption of the ions dispersion observed by a spacecraft. Cluster with four spacecraft following each other in the mid-altitude cusp can be used to distinguish between these “temporal” and “spatial” effects. We will present a cusp crossing with two spacecraft, separated by around two minutes. The two spacecraft observed a very similar dispersion with a step in energy in its centre and two other dispersions poleward. We will show that the steps could be temporal (assuming that the time between two reconnection bursts corresponds to the time delay between the two spacecraft) but it would be a fortuitous coincidence. On the other hand the steps and the two poleward dispersions could be explained by spatial effects if we take into account the motion of the open-closed boundary between the two spacecraft crossings.
Labeling of indocyanine green with carrier-free iodine-123
Ansari, Azizullah N.; Lambrecht, Richard M.; Redvanly, Carol S.; Wolf, Alfred P.
1976-01-01
The method of labeling indocyanine green (ICG) with carrier-free iodine-123 comprising the steps of condensing xenon-123 on crystals of ICG followed by permitting decay of the .sup.123 Xe a sufficient length of time to produce .sup.123 I-electronically excited ions and atoms which subsequently label ICG.
Histopathologic changes in fallopian tubes subsequent to sterilization procedures.
Stock, R J
1983-01-01
Longitudinal serial and serial step sections of fallopian tubes from more than 100 patients, subsequent to tubal sterilization procedures, were examined. Thirteen of these patients had pregnancies following their sterilizations. The histologic findings at the previous surgical sites were compatible with what would be expected for a normal healing process. Evidence for a unique tubal epithelial process, as suggested by the terms "endosalpingiosis" or "recanalization," was lacking. Likewise, the author found no evidence of tuboperitoneal fistula formation and/or the subsequent occurrence of pregnancy secondary to localized endometriosis. The histologic notations of proximal luminal dilatation, plical attenuation, chronic inflammatory infiltrates with pseudopolyp formation, and the findings of plical thickening in the distal segment of remaining tube after an interruption type of procedure seem to be associated with the length of time from the sterilization procedure. These may be factors related to the apparent reduced success rate, with time, of microsurgical reanastomotic procedures.
Patterned titania nanostructures produced by electrochemical anodization of titanium sheet
NASA Astrophysics Data System (ADS)
Dong, Junzhe; Ariyanti, Dessy; Gao, Wei; Niu, Zhenjiang; Weil, Emeline
2017-07-01
A two-step anodization method has been used to produce patterned arrays of TiO2 on the surface of Ti sheet. Hexagonal ripples were created on Ti substrate after removing the TiO2 layer produced by first-step anodization. The shallow concaves were served as an ideal position for the subsequent step anodization due to their low electrical resistance, resulting in novel hierarchical nanostructures with small pits inside the original ripples. The mechanism of morphology evolution during patterned anodization was studied through changing the anodizing voltages and duration time. This work provides a new idea for controlling nanostructures and thus tailoring the photocatalytic property and wettability of anodic TiO2.
Characteristics of downward leaders in a cloud-to-ground lightning strike on a lightning rod
NASA Astrophysics Data System (ADS)
Wang, Caixia; Sun, Zhuling; Jiang, Rubin; Tian, Yangmeng; Qie, Xiushu
2018-05-01
A natural downward negative cloud-to-ground (CG) lightning was observed at a close distance of 370 m by using electric field change measurements and a high-speed camera at 5400 frames per second (fps). Two subsequent leader-return strokes of the lightning hit a lightning rod installed on the top of a seven-story building in Beijing city, while the grounding point for the stepped leader-first return stroke was 12 m away, on the roof of the building. The 2-D average speed of the downward stepped leader (L1) before the first return stroke (R1) was approximately 5.1 × 104 m/s during its propagation over the 306 m above the building, and those before the subsequent strokes (R2 and R3) ranged from 1.1 × 106 m/s to 2.2 × 106 m/s. An attempted leader (AL) occurred 201 ms after R1 and 10 ms before R2 reached approximately 99 m above the roof and failed to connect to the ground. The 2-D average speed of the AL was approximately 7.4 × 104 m/s. The luminosity at tip of the leader was brighter than the channel behind it. The leader inducing the R2 with an alteration of terminating point was a dart-stepped leader (DSL), which propagated through the channel of AL and continued to develop downward with new branches at about 17 m above the roof. The 2-D speed of the DSL at the bottom 99 m was 6.6 × 105 m/s. The average time interval between the stepped pulses of the DSL was approximately 10 μs, smaller than that of L1 with value of about 17 μs. The average step lengths of the DSL were approximately 6.6 m. The study shows that the stepped leader-first return stroke of lightning will not always hit the tip of a tall metal rod due to the significant branching property of the leader. However, under certain conditions, the subsequent return strokes may alter the grounding point to the tip of a tall metal rod. For the lightning rod, the protection against subsequent return strokes may be better than that against the first return stroke.
High-Speed Photographic Study of Wave Propagation and Impact Damage in Transparent Laminates
2008-04-01
23 8.2 Generating Optimized Power Diagrams for FEM Analysis...dimensions which removes short edges (and areas) such that a larger time step in a subsequent FEM analysis can be used...a zone where most contacts have already failed.............32 Figure 47. Insufficiency of generic FEM approaches. A steel impactor hits an AlON
Ye, Caihong; Yuan, Haiping; Dai, Xiaohu; Lou, Ziyang; Zhu, Nanwen
2016-11-01
Waste activated sludge (WAS) requires a long digestion time because of a rate-limiting hydrolysis step - the first phase of anaerobic digestion (AD). Pretreatment can be used prior to AD to facilitate the hydrolysis step and improve the efficiency of WAS digestion. This study evaluated a novel application of electrochemical (EC) technology employed as the pretreatment method prior to AD of WAS, focusing on the effect of process conditions on sludge disintegration and subsequent AD process. A superior process condition of EC pretreatment was obtained by reaction time of 30 min, electrolysis voltage of 20 V, and electrode distance of 5 cm, under which the disintegration degree of WAS ranged between 9.02% and 9.72%. In the subsequent batch AD tests, 206 mL/g volatile solid (VS) methane production in EC pretreated sludge was obtained, which was 20.47% higher than that of unpretreated sludge. The AD time was 19 days shorter for EC pretreated sludge compared to the unpretreated sludge. Additionally, the EC + AD reactor achieved 41.84% of VS removal at the end of AD. The analysis of energy consumption showed that EC pretreatment could be effective in enhancing sludge AD with reduced energy consumption when compared to other pretreatment methods.
A discrete classical space-time could require 6 extra-dimensions
NASA Astrophysics Data System (ADS)
Guillemant, Philippe; Medale, Marc; Abid, Cherifa
2018-01-01
We consider a discrete space-time in which conservation laws are computed in such a way that the density of information is kept bounded. We use a 2D billiard as a toy model to compute the uncertainty propagation in ball positions after every shock and the corresponding loss of phase information. Our main result is the computation of a critical time step above which billiard calculations are no longer deterministic, meaning that a multiverse of distinct billiard histories begins to appear, caused by the lack of information. Then, we highlight unexpected properties of this critical time step and the subsequent exponential evolution of the number of histories with time, to observe that after certain duration all billiard states could become possible final states, independent of initial conditions. We conclude that if our space-time is really a discrete one, one would need to introduce extra-dimensions in order to provide supplementary constraints that specify which history should be played.
A novel method to accurately locate and count large numbers of steps by photobleaching.
Tsekouras, Konstantinos; Custer, Thomas C; Jashnsaz, Hossein; Walter, Nils G; Pressé, Steve
2016-11-07
Photobleaching event counting is a single-molecule fluorescence technique that is increasingly being used to determine the stoichiometry of protein and RNA complexes composed of many subunits in vivo as well as in vitro. By tagging protein or RNA subunits with fluorophores, activating them, and subsequently observing as the fluorophores photobleach, one obtains information on the number of subunits in a complex. The noise properties in a photobleaching time trace depend on the number of active fluorescent subunits. Thus, as fluorophores stochastically photobleach, noise properties of the time trace change stochastically, and these varying noise properties have created a challenge in identifying photobleaching steps in a time trace. Although photobleaching steps are often detected by eye, this method only works for high individual fluorophore emission signal-to-noise ratios and small numbers of fluorophores. With filtering methods or currently available algorithms, it is possible to reliably identify photobleaching steps for up to 20-30 fluorophores and signal-to-noise ratios down to ∼1. Here we present a new Bayesian method of counting steps in photobleaching time traces that takes into account stochastic noise variation in addition to complications such as overlapping photobleaching events that may arise from fluorophore interactions, as well as on-off blinking. Our method is capable of detecting ≥50 photobleaching steps even for signal-to-noise ratios as low as 0.1, can find up to ≥500 steps for more favorable noise profiles, and is computationally inexpensive. © 2016 Tsekouras et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Model compilation for real-time planning and diagnosis with feedback
NASA Technical Reports Server (NTRS)
Barrett, Anthony
2005-01-01
This paper describes MEXEC, an implemented micro executive that compiles a device model that can have feedback into a structure for subsequent evaluation. This system computes both the most likely current device mode from n sets of sensor measurements and the n-1 step reconfiguration plan that is most likely to result in reaching a target mode - if such a plan exists. A user tunes the system by increasing n to improve system capability at the cost of real-time performance.
Aging effect on step adjustments and stability control in visually perturbed gait initiation.
Sun, Ruopeng; Cui, Chuyi; Shea, John B
2017-10-01
Gait adaptability is essential for fall avoidance during locomotion. It requires the ability to rapidly inhibit original motor planning, select and execute alternative motor commands, while also maintaining the stability of locomotion. This study investigated the aging effect on gait adaptability and dynamic stability control during a visually perturbed gait initiation task. A novel approach was used such that the anticipatory postural adjustment (APA) during gait initiation were used to trigger the unpredictable relocation of a foot-size stepping target. Participants (10 young adults and 10 older adults) completed visually perturbed gait initiation in three adjustment timing conditions (early, intermediate, late; all extracted from the stereotypical APA pattern) and two adjustment direction conditions (medial, lateral). Stepping accuracy, foot rotation at landing, and Margin of Dynamic Stability (MDS) were analyzed and compared across test conditions and groups using a linear mixed model. Stepping accuracy decreased as a function of adjustment timing as well as stepping direction, with older subjects exhibited a significantly greater undershoot in foot placement to late lateral stepping. Late adjustment also elicited a reaching-like movement (i.e. foot rotation prior to landing in order to step on the target), regardless of stepping direction. MDS measures in the medial-lateral and anterior-posterior direction revealed both young and older adults exhibited reduced stability in the adjustment step and subsequent steps. However, young adults returned to stable gait faster than older adults. These findings could be useful for future study of screening deficits in gait adaptability and preventing falls. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparison of normal and phase stepping shearographic NDE
NASA Astrophysics Data System (ADS)
Andhee, A.; Gryzagoridis, J.; Findeis, D.
2005-05-01
The paper presents results of non-destructive testing of composite main rotor helicopter blade calibration specimens using the laser based optical NDE technique known as Shearography. The tests were performed initially using the already well established near real-time non-destructive technique of Shearography, with the specimens perturbed during testing for a few seconds using the hot air from a domestic hair dryer. Subsequent to modification of the shearing device utilized in the shearographic setup, phase stepping of one of the sheared images to be captured by the CCD camera was enabled and identical tests were performed on the composite main rotor helicopter blade specimens. Considerable enhancement of the images manifesting or depicting the defects on the specimens is noted suggesting that phase stepping is a desirable enhancement technique to the traditional Shearographic setup.
Exploding Nitromethane in Silico, in Real Time.
Fileti, Eudes Eterno; Chaban, Vitaly V; Prezhdo, Oleg V
2014-10-02
Nitromethane (NM) is widely applied in chemical technology as a solvent for extraction, cleaning, and chemical synthesis. NM was considered safe for a long time, until a railroad tanker car exploded in 1958. We investigate the detonation kinetics and explosion reaction mechanisms in a variety of systems consisting of NM, molecular oxygen, and water vapor. Reactive molecular dynamics allows us to simulate reactions in time-domain, as they occur in real life. High polarity of the NM molecule is shown to play a key role, driving the first exothermic step of the reaction. Rapid temperature and pressure growth stimulate the subsequent reaction steps. Oxygen is important for faster oxidation, whereas its optimal concentration is in agreement with the proposed reaction mechanism. Addition of water (50 mol %) inhibits detonation; however, water does not prevent detonation entirely. The reported results provide important insights for improving applications of NM and preserving the safety of industrial processes.
Motion of kinesin in a viscoelastic medium
NASA Astrophysics Data System (ADS)
Knoops, Gert; Vanderzande, Carlo
2018-05-01
Kinesin is a molecular motor that transports cargo along microtubules. The results of many in vitro experiments on kinesin-1 are described by kinetic models in which one transition corresponds to the forward motion and subsequent binding of the tethered motor head. We argue that in a viscoelastic medium like the cytosol of a cell this step is not Markov and has to be described by a nonexponential waiting time distribution. We introduce a semi-Markov kinetic model for kinesin that takes this effect into account. We calculate, for arbitrary waiting time distributions, the moment generating function of the number of steps made, and determine from this the average velocity and the diffusion constant of the motor. We illustrate our results for the case of a waiting time distribution that is Weibull. We find that for realistic parameter values, viscoelasticity decreases the velocity and the diffusion constant, but increases the randomness (or Fano factor).
Mobility assessment: Sensitivity and specificity of measurement sets in older adults
Panzer, Victoria P.; Wakefield, Dorothy B.; Hall, Charles B.; Wolfson, Leslie I.
2011-01-01
Objective To identify quantitative measurement variables that characterize mobility in older adults, meet reliability and validity criteria, distinguish fall-risk and predict future falls. Design Observational study with 1-year weekly falls follow-up Setting Mobility laboratory Participants Community-dwelling volunteers (n=74; 65–94 years old) categorized at entry as 27 ‘Non-fallers’ or 47 ‘Fallers’ by Medicare criteria (1 injury fall or >1 non-injury falls in the previous year). Interventions None Outcome Measures Test-retest and within-subject reliability, criterion and concurrent validity; predictive ability indicated by observed sensitivity and specificity to entry fall-risk group (Falls-status), Tinetti Performance Oriented Mobility Assessment (POMA), Computerized Dynamic Posturography Sensory Organization Test (SOT) and subsequent falls reported weekly. Results Measurement variables were selected that met reliability (ICC > 0.6) and/or discrimination (p<.01) criteria (Clinical variables- Turn- steps, time, Gait- velocity, Step-in-tub-time, and Downstairs- time; Force plate variables- Quiet standing Romberg ratio sway-area, Maximal lean- anterior-posterior excursion, Sit-to-stand medial-lateral excursion and sway-area). Sets were created (3 clinical, 2 force plate) utilizing combinations of variables appropriate for older adults with different functional activity levels and composite scores were calculated. Scores identified entry Falls-status and concurred with POMA and SOT. The Full clinical set (5 measurement variables) produced sensitivity/specificity (.80/.74) to Falls-status. Composite scores were sensitive and specific in predicting subsequent injury falls and multiple falls compared to Falls-status, POMA or SOT. Conclusions Sets of quantitative measurement variables obtained with this mobility battery provided sensitive prediction of future injury falls and screening for multiple subsequent falls using tasks that should be appropriate to diverse participants. PMID:21621667
Model of multistep electron transfer in a single-mode polar medium
NASA Astrophysics Data System (ADS)
Feskov, S. V.; Yudanov, V. V.
2017-09-01
A mathematical model of multistep photoinduced electron transfer (PET) in a polar medium with a single relaxation time (Debye solvent) is developed. The model includes the polarization nonequilibrity formed in the vicinity of the donor-acceptor molecular system at the initial steps of photoreaction and its influence on the subsequent steps of PET. It is established that the results from numerical simulation of transient luminescence spectra of photoexcited donor-acceptor complexes (DAC) conform to calculated data obtained on the basis of the familiar experimental technique used to measure the relaxation function of solvent polarization in the vicinity of DAC in the picosecond and subpicosecond ranges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chengzhou; Fu, Shaofang; Song, Junhua
In this study, self-assembled M–N-doped carbon nanotube aerogels with single-atom catalyst feature are for the first time reported through one-step hydrothermal route and subsequent facile annealing treatment. By taking advantage of the porous nanostructures, 1D nanotubes as well as single-atom catalyst feature, the resultant Fe–N-doped carbon nanotube aerogels exhibit excellent oxygen reduction reaction electrocatalytic performance even better than commercial Pt/C in alkaline solution.
Evans, Christopher M; Love, Alyssa M; Weiss, Emily A
2012-10-17
This article reports control of the competition between step-growth and living chain-growth polymerization mechanisms in the formation of cadmium chalcogenide colloidal quantum dots (QDs) from CdSe(S) clusters by varying the concentration of anionic surfactant in the synthetic reaction mixture. The growth of the particles proceeds by step-addition from initially nucleated clusters in the absence of excess phosphinic or carboxylic acids, which adsorb as their anionic conjugate bases, and proceeds indirectly by dissolution of clusters, and subsequent chain-addition of monomers to stable clusters (Ostwald ripening) in the presence of excess phosphinic or carboxylic acid. Fusion of clusters by step-growth polymerization is an explanation for the consistent observation of so-called "magic-sized" clusters in QD growth reactions. Living chain-addition (chain addition with no explicit termination step) produces QDs over a larger range of sizes with better size dispersity than step-addition. Tuning the molar ratio of surfactant to Se(2-)(S(2-)), the limiting ionic reagent, within the living chain-addition polymerization allows for stoichiometric control of QD radius without relying on reaction time.
Fast and Flexible Multivariate Time Series Subsequence Search
NASA Technical Reports Server (NTRS)
Bhaduri, Kanishka; Oza, Nikunj C.; Zhu, Qiang; Srivastava, Ashok N.
2010-01-01
Multivariate Time-Series (MTS) are ubiquitous, and are generated in areas as disparate as sensor recordings in aerospace systems, music and video streams, medical monitoring, and financial systems. Domain experts are often interested in searching for interesting multivariate patterns from these MTS databases which often contain several gigabytes of data. Surprisingly, research on MTS search is very limited. Most of the existing work only supports queries with the same length of data, or queries on a fixed set of variables. In this paper, we propose an efficient and flexible subsequence search framework for massive MTS databases, that, for the first time, enables querying on any subset of variables with arbitrary time delays between them. We propose two algorithms to solve this problem (1) a List Based Search (LBS) algorithm which uses sorted lists for indexing, and (2) a R*-tree Based Search (RBS) which uses Minimum Bounding Rectangles (MBR) to organize the subsequences. Both algorithms guarantee that all matching patterns within the specified thresholds will be returned (no false dismissals). The very few false alarms can be removed by a post-processing step. Since our framework is also capable of Univariate Time-Series (UTS) subsequence search, we first demonstrate the efficiency of our algorithms on several UTS datasets previously used in the literature. We follow this up with experiments using two large MTS databases from the aviation domain, each containing several millions of observations. Both these tests show that our algorithms have very high prune rates (>99%) thus needing actual disk access for only less than 1% of the observations. To the best of our knowledge, MTS subsequence search has never been attempted on datasets of the size we have used in this paper.
New cellular automaton designed to simulate geometration in gel electrophoresis
NASA Astrophysics Data System (ADS)
Krawczyk, M. J.; Kułakowski, K.; Maksymowicz, A. Z.
2002-08-01
We propose a new kind of cellular automaton to simulate transportation of molecules of DNA through agarose gel. Two processes are taken into account: reptation at strong electric field E, described in the particle model, and geometration, i.e. subsequent hookings and releases of long molecules at and from gel fibres. The automaton rules are deterministic and they are designed to describe both processes within one unified approach. Thermal fluctuations are not taken into account. The number of simultaneous hookings is limited by the molecule length. The features of the automaton are: (i) the size of the cell neighbourhood for the automaton rule varies dynamically, from nearest neighbors to the entire molecule; (ii) the length of the time step is determined at each step according to dynamic rules. Calculations are made up to N=244 reptons in a molecule. Two subsequent stages of the motion are found. Firstly, an initial set of random configurations of molecules is transformed into a more ordered phase, where most molecules are elongated along the applied field direction. After some transient time, the mobility μ reaches a constant value. Then, it varies with N as 1/ N for long molecules. The band dispersion varies with time t approximately as Nt1/2. Our results indicate that the well-known plateau of the mobility μ vs. N does not hold at large electric fields.
Tudor-Locke, Catrine; Brashear, Meghan M; Johnson, William D; Katzmarzyk, Peter T
2010-08-03
The 2005-2006 National Health and Nutrition Examination Survey (NHANES) is used to describe an accelerometer-derived physical activity/inactivity profile in normal weight (BMI < 25 kg/m2), overweight (25 = BMI < 30 kg/m2), and obese (BMI >/= 30 kg/m2) U.S. adults. We computed physical activity volume indicators (activity counts/day, uncensored and censored steps/day), rate indicators (e.g., steps/minute), time indicators (employing NHANES activity counts/minute cut points to infer time in non-wear, sedentary, low, light, moderate, and vigorous intensities), the number of breaks in sedentary time (occasions when activity counts rose from < 100 activity/counts in one minute to >/= 100 activity counts in the subsequent minute), achievement of public health guidelines, and classification by step-defined physical activity levels. Data were examined for evidence of consistent and significant gradients across BMI-defined categories. In 2005-2006, U.S adults averaged 6,564 +/- SE 107 censored steps/day, and after considering non-wear time, they spent approximately 56.8% of the rest of the waking day in sedentary time, 23.7% in low intensity, 16.7% in light intensity, 2.6% in moderate intensity, and 0.2% in vigorous intensity. Overall, approximately 3.2% of U.S. adults achieved public health guidelines. The normal weight category took 7,190 +/- SE 157 steps/day, and spent 25.7 +/- 0.9 minutes/day in moderate intensity and 7.3 +/- 0.4 minutes/day in vigorous intensity physical activity. The corresponding numbers for the overweight category were 6,879 +/- 140 steps/day, 25.3 +/- 0.9 minutes/day, and 5.3 +/- 0.5 minutes/day and for the obese category 5,784 +/- 124 steps/day, 17.3 +/- 0.7 minutes/day and 3.2 +/- 0.4 minutes/day. Across BMI categories, increasing gradients and significant trends were apparent in males for sedentary time and decreasing gradients and significant trends were evident in time spent in light intensity, moderate intensity, and vigorous intensity. For females, there were only consistent gradients and significant trends apparent for decreasing amounts of time spent in moderate and vigorous intensity. Simple indicators of physical activity volume (i.e., steps/day) and time in light, moderate or vigorous intensity physical activity differ across BMI categories for both sexes, suggesting that these should continue to be targets for surveillance.
Zakaria, Philip; Dicinoski, Greg W; Ng, Boon Khing; Shellie, Robert A; Hanna-Brown, Melissa; Haddad, Paul R
2009-09-18
The ion-exchange separation of organic anions of varying molecular mass has been demonstrated using ion chromatography with isocratic, gradient and multi-step eluent profiles on commercially available columns with UV detection. A retention model derived previously for inorganic ions and based solely on electrostatic interactions between the analytes and the stationary phase was applied. This model was found to accurately describe the observed elution of all the anions under isocratic, gradient and multi-step eluent conditions. Hydrophobic interactions, although likely to be present to varying degrees, did not limit the applicability of the ion-exchange retention model. Various instrumental configurations were investigated to overcome problems associated with the use of organic modifiers in the eluent which caused compatibility issues with the electrolytically derived, and subsequently suppressed, eluent. The preferred configuration allowed the organic modifier stream to bypass the eluent generator, followed by subsequent mixing before entering the injection valve and column. Accurate elution prediction was achieved even when using 5-step eluent profiles with errors in retention time generally being less than 1% relative standard deviation (RSD) and all being less than 5% RSD. Peak widths for linear gradient separations were also modelled and showed good agreement with experimentally determined values.
NASA Astrophysics Data System (ADS)
Liu, Lang; Li, Han-Yu; Yu, Yao; Liu, Lin; Wu, Yue
2018-02-01
The fabrication of a current collector-contained in-plane micro-supercapacitor (MSC) usually requires the patterning of the current collector first and then subsequent patterning of the active material with the assistance of a photoresist and mask. However, this two-step patterning process is too complicated and the photoresist used is harmful to the properties of nanomaterials. Here, we demonstrate a one-step, mask-free strategy to pattern the current collector and the active material at the same time, for the fabrication of an all-solid-state flexible in-plane MSC. Silver nanowires (AgNWs) are used as the current collector. An atmospheric pressure pulsed cold micro-plasma-jet is used to realize the one-step, mask-free production of interdigitated multi-walled carbon nanotube (MWCNT)/AgNW electrodes. Remarkably, the fabricated MWCNT/AgNW-based MSC shows good flexibility and excellent rate capability. Moreover, the performance of properties including cyclic stability, equivalent series resistance, relaxation time and energy/power densities of the MWCNT/AgNW-based MSC are significantly enhanced by the presence of the AgNW current collector.
Cognitive and emotional factors associated with elective breast augmentation among young women.
Moser, Stephanie E; Aiken, Leona S
2011-01-01
The purpose of this research was to propose and evaluate a psychosocial model of young women's intentions to obtain breast implants and the preparatory steps taken towards having breast implant surgery. The model integrated anticipated regret, descriptive norms and image norms from the media into the theory of planned behaviour (TPB). Focus groups (n = 58) informed development of measures of outcome expectancies, preparatory steps and normative influence. The model was tested and replicated among two samples of young women who had ever considered getting breast implants (n = 200, n = 152). Intentions and preparatory steps served as outcomes. Model constructs and outcomes were initially assessed; outcomes were re-assessed 11 weeks later. Evaluative attitudes and anticipated regret predicted intentions; in turn, intentions, along with descriptive norms, predicted subsequent preparatory steps. Perceived risk (susceptibility, severity) of negative medical consequences of breast implants predicted anticipated regret, which predicted evaluative attitudes. Intentions and preparatory steps exhibited interplay over time. This research provides the first comprehensive model predicting intentions and preparatory steps towards breast augmentation surgery. It supports the addition of anticipated regret to the TPB and suggests mutual influence between intentions and preparatory steps towards a final behavioural outcome.
Preclinic group education sessions reduce waiting times and costs at public pain medicine units.
Davies, Stephanie; Quintner, John; Parsons, Richard; Parkitny, Luke; Knight, Paul; Forrester, Elizabeth; Roberts, Mary; Graham, Carl; Visser, Eric; Antill, Tracy; Packer, Tanya; Schug, Stephan A
2011-01-01
To assess the effects of preclinic group education sessions and system redesign on tertiary pain medicine units and patient outcomes. Prospective cohort study. Two public hospital multidisciplinary pain medicine units. People with persistent pain. A system redesign from a "traditional" model (initial individual medical appointments) to a model that delivers group education sessions prior to individual appointments. Based on Patient Triage Questionnaires patients were scheduled to attend Self-Training Educative Pain Sessions (STEPS), a two day eight hour group education program, followed by optional patient-initiated clinic appointments. Number of patients completing STEPS who subsequently requested individual outpatient clinic appointment(s); wait-times; unit cost per new patient referred; recurrent health care utilization; patient satisfaction; Global Perceived Impression of Change (GPIC); and utilized pain management strategies. Following STEPS 48% of attendees requested individual outpatient appointments. Wait times reduced from 105.6 to 16.1 weeks at one pain unit and 37.3 to 15.2 weeks at the second. Unit cost per new patient appointed reduced from $1,805 Australian Dollars (AUD) to AUD$541 (for STEPS). At 3 months, patients scored their satisfaction with "the treatment received for their pain" more positively than at baseline (change score=0.88; P=0.0003), GPIC improved (change score=0.46; P<0.0001) and mean number of active strategies utilized increased by 4.12 per patient (P=0.0004). The introduction of STEPS was associated with reduced wait-times and costs at public pain medicine units and increased both the use of active pain management strategies and patient satisfaction. Wiley Periodicals, Inc.
Quantization of charged fields in the presence of critical potential steps
NASA Astrophysics Data System (ADS)
Gavrilov, S. P.; Gitman, D. M.
2016-02-01
QED with strong external backgrounds that can create particles from the vacuum is well developed for the so-called t -electric potential steps, which are time-dependent external electric fields that are switched on and off at some time instants. However, there exist many physically interesting situations where external backgrounds do not switch off at the time infinity. E.g., these are time-independent nonuniform electric fields that are concentrated in restricted space areas. The latter backgrounds represent a kind of spatial x -electric potential steps for charged particles. They can also create particles from the vacuum, the Klein paradox being closely related to this process. Approaches elaborated for treating quantum effects in the t -electric potential steps are not directly applicable to the x -electric potential steps and their generalization for x -electric potential steps was not sufficiently developed. We believe that the present work represents a consistent solution of the latter problem. We have considered a canonical quantization of the Dirac and scalar fields with x -electric potential step and have found in- and out-creation and annihilation operators that allow one to have particle interpretation of the physical system under consideration. To identify in- and out-operators we have performed a detailed mathematical and physical analysis of solutions of the relativistic wave equations with an x -electric potential step with subsequent QFT analysis of correctness of such an identification. We elaborated a nonperturbative (in the external field) technique that allows one to calculate all characteristics of zero-order processes, such, for example, scattering, reflection, and electron-positron pair creation, without radiation corrections, and also to calculate Feynman diagrams that describe all characteristics of processes with interaction between the in-, out-particles and photons. These diagrams have formally the usual form, but contain special propagators. Expressions for these propagators in terms of in- and out-solutions are presented. We apply the elaborated approach to two popular exactly solvable cases of x -electric potential steps, namely, to the Sauter potential and to the Klein step.
Factors Associated With Surgery Clerkship Performance and Subsequent USMLE Step Scores.
Dong, Ting; Copeland, Annesley; Gangidine, Matthew; Schreiber-Gregory, Deanna; Ritter, E Matthew; Durning, Steven J
2018-03-12
We conducted an in-depth empirical investigation to achieve a better understanding of the surgery clerkship from multiple perspectives, including the influence of clerkship sequence on performance, the relationship between self-logged work hours and performance, as well as the association between surgery clerkship performance with subsequent USMLE Step exams' scores. The study cohort consisted of medical students graduating between 2015 and 2018 (n = 687). The primary measures of interest were clerkship sequence (internal medicine clerkship before or after surgery clerkship), self-logged work hours during surgery clerkship, surgery NBME subject exam score, surgery clerkship overall grade, and Step 1, Step 2 CK, and Step 3 exam scores. We reported the descriptive statistics and conducted correlation analysis, stepwise linear regression analysis, and variable selection analysis of logistic regression to answer the research questions. Students who completed internal medicine clerkship prior to surgery clerkship had better performance on surgery subject exam. The subject exam score explained an additional 28% of the variance of the Step 2 CK score, and the clerkship overall score accounted for an additional 24% of the variance after the MCAT scores and undergraduate GPA were controlled. Our finding suggests that the clerkship sequence does matter when it comes to performance on the surgery NBME subject exam. Performance on the surgery subject exam is predictive of subsequent performance on future USMLE Step exams. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Accelerating Biomedical Signal Processing Using GPU: A Case Study of Snore Sound Feature Extraction.
Guo, Jian; Qian, Kun; Zhang, Gongxuan; Xu, Huijie; Schuller, Björn
2017-12-01
The advent of 'Big Data' and 'Deep Learning' offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for 'feeding' the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these 'big' data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770-990 MB per subject - in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system.
Accurate step-FMCW ultrasound ranging and comparison with pulse-echo signaling methods
NASA Astrophysics Data System (ADS)
Natarajan, Shyam; Singh, Rahul S.; Lee, Michael; Cox, Brian P.; Culjat, Martin O.; Grundfest, Warren S.; Lee, Hua
2010-03-01
This paper presents a method setup for high-frequency ultrasound ranging based on stepped frequency-modulated continuous waves (FMCW), potentially capable of producing a higher signal-to-noise ratio (SNR) compared to traditional pulse-echo signaling. In current ultrasound systems, the use of higher frequencies (10-20 MHz) to enhance resolution lowers signal quality due to frequency-dependent attenuation. The proposed ultrasound signaling format, step-FMCW, is well-known in the radar community, and features lower peak power, wider dynamic range, lower noise figure and simpler electronics in comparison to pulse-echo systems. In pulse-echo ultrasound ranging, distances are calculated using the transmit times between a pulse and its subsequent echoes. In step-FMCW ultrasonic ranging, the phase and magnitude differences at stepped frequencies are used to sample the frequency domain. Thus, by taking the inverse Fourier transform, a comprehensive range profile is recovered that has increased immunity to noise over conventional ranging methods. Step-FMCW and pulse-echo waveforms were created using custom-built hardware consisting of an arbitrary waveform generator and dual-channel super heterodyne receiver, providing high SNR and in turn, accuracy in detection.
Lightning channel current persists between strokes
NASA Astrophysics Data System (ADS)
Wendel, JoAnna
2014-09-01
The usual cloud-to-ground lightning occurs when a large negative charge contained in a "stepped leader" travels down toward the Earth's surface. It then meets a positive charge that comes up tens of meters from the ground, resulting in a powerful neutralizing explosion that begins the first return stroke of the lightning flash. The entire flash lasts only a few hundred milliseconds, but during that time, multiple subsequent stroke-return stroke sequences usually occur.
Singer, Jonathan C; McIlroy, William E; Prentice, Stephen D
2014-11-07
Research examining age-related changes in dynamic stability during stepping has recognised the importance of the restabilisation phase, subsequent to foot-contact. While regulation of the net ground reaction force (GRFnet) line of action is believed to influence dynamic stability during steady-state locomotion, such control during restabilisation remains unknown. This work explored the origins of age-related decline in mediolateral dynamic stability by examining the line of action of GRFnet relative to the centre of mass (COM) during restabilisation following voluntary stepping. Healthy younger and older adults (n=20 per group) performed three single-step tasks (varying speed and step placement), altering the challenge to stability control. Age-related differences in magnitude and intertrial variability of the angle of divergence of GRFnet line of action relative to the COM were quantified, along with the peak mediolateral and vertical GRFnet components. The angle of divergence was further examined at discrete points during restabilisation, to uncover events of potential importance to stability control. Older adults exhibited a reduced angle of divergence throughout restabilisation. Temporal and spatial constraints on stepping increased the magnitude and intertrial variability of the angle of divergence, although not differentially among the older adults. Analysis of the time-varying angle of divergence revealed age-related reductions in magnitude, with increases in timing and intertrial timing variability during the later phase of restabilisation. This work further supports the idea that age-related challenges in lateral stability control emerge during restabilisation. Age-related alterations during the later phase of restabilisation may signify challenges with reactive control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Empirical scaling of the length of the longest increasing subsequences of random walks
NASA Astrophysics Data System (ADS)
Mendonça, J. Ricardo G.
2017-02-01
We provide Monte Carlo estimates of the scaling of the length L n of the longest increasing subsequences of n-step random walks for several different distributions of step lengths, short and heavy-tailed. Our simulations indicate that, barring possible logarithmic corrections, {{L}n}∼ {{n}θ} with the leading scaling exponent 0.60≲ θ ≲ 0.69 for the heavy-tailed distributions of step lengths examined, with values increasing as the distribution becomes more heavy-tailed, and θ ≃ 0.57 for distributions of finite variance, irrespective of the particular distribution. The results are consistent with existing rigorous bounds for θ, although in a somewhat surprising manner. For random walks with step lengths of finite variance, we conjecture that the correct asymptotic behavior of L n is given by \\sqrt{n}\\ln n , and also propose the form for the subleading asymptotics. The distribution of L n was found to follow a simple scaling form with scaling functions that vary with θ. Accordingly, when the step lengths are of finite variance they seem to be universal. The nature of this scaling remains unclear, since we lack a working model, microscopic or hydrodynamic, for the behavior of the length of the longest increasing subsequences of random walks.
NASA Astrophysics Data System (ADS)
Scharfenberg, Franz-Josef; Bogner, Franz X.
2011-08-01
Emphasis on improving higher level biology education continues. A new two-step approach to the experimental phases within an outreach gene technology lab, derived from cognitive load theory, is presented. We compared our approach using a quasi-experimental design with the conventional one-step mode. The difference consisted of additional focused discussions combined with students writing down their ideas (step one) prior to starting any experimental procedure (step two). We monitored students' activities during the experimental phases by continuously videotaping 20 work groups within each approach ( N = 131). Subsequent classification of students' activities yielded 10 categories (with well-fitting intra- and inter-observer scores with respect to reliability). Based on the students' individual time budgets, we evaluated students' roles during experimentation from their prevalent activities (by independently using two cluster analysis methods). Independently of the approach, two common clusters emerged, which we labeled as `all-rounders' and as `passive students', and two clusters specific to each approach: `observers' as well as `high-experimenters' were identified only within the one-step approach whereas under the two-step conditions `managers' and `scribes' were identified. Potential changes in group-leadership style during experimentation are discussed, and conclusions for optimizing science teaching are drawn.
Comparing the efficacy of metronome beeps and stepping stones to adjust gait: steps to follow!
Bank, Paulina J M; Roerdink, Melvyn; Peper, C E
2011-03-01
Acoustic metronomes and visual targets have been used in rehabilitation practice to improve pathological gait. In addition, they may be instrumental in evaluating and training instantaneous gait adjustments. The aim of this study was to compare the efficacy of two cue types in inducing gait adjustments, viz. acoustic temporal cues in the form of metronome beeps and visual spatial cues in the form of projected stepping stones. Twenty healthy elderly (aged 63.2 ± 3.6 years) were recruited to walk on an instrumented treadmill at preferred speed and cadence, paced by either metronome beeps or projected stepping stones. Gait adaptations were induced using two manipulations: by perturbing the sequence of cues and by imposing switches from one cueing type to the other. Responses to these manipulations were quantified in terms of step-length and step-time adjustments, the percentage correction achieved over subsequent steps, and the number of steps required to restore the relation between gait and the beeps or stepping stones. The results showed that perturbations in a sequence of stepping stones were overcome faster than those in a sequence of metronome beeps. In switching trials, switching from metronome beeps to stepping stones was achieved faster than vice versa, indicating that gait was influenced more strongly by the stepping stones than the metronome beeps. Together these results revealed that, in healthy elderly, the stepping stones induced gait adjustments more effectively than did the metronome beeps. Potential implications for the use of metronome beeps and stepping stones in gait rehabilitation practice are discussed.
An adaptive scale factor based MPPT algorithm for changing solar irradiation levels in outer space
NASA Astrophysics Data System (ADS)
Kwan, Trevor Hocksun; Wu, Xiaofeng
2017-03-01
Maximum power point tracking (MPPT) techniques are popularly used for maximizing the output of solar panels by continuously tracking the maximum power point (MPP) of their P-V curves, which depend both on the panel temperature and the input insolation. Various MPPT algorithms have been studied in literature, including perturb and observe (P&O), hill climbing, incremental conductance, fuzzy logic control and neural networks. This paper presents an algorithm which improves the MPP tracking performance by adaptively scaling the DC-DC converter duty cycle. The principle of the proposed algorithm is to detect the oscillation by checking the sign (ie. direction) of the duty cycle perturbation between the current and previous time steps. If there is a difference in the signs then it is clear an oscillation is present and the DC-DC converter duty cycle perturbation is subsequently scaled down by a constant factor. By repeating this process, the steady state oscillations become negligibly small which subsequently allows for a smooth steady state MPP response. To verify the proposed MPPT algorithm, a simulation involving irradiances levels that are typically encountered in outer space is conducted. Simulation and experimental results prove that the proposed algorithm is fast and stable in comparison to not only the conventional fixed step counterparts, but also to previous variable step size algorithms.
Twisk, J W R; Hoogendijk, E O; Zwijsen, S A; de Boer, M R
2016-04-01
Within epidemiology, a stepped wedge trial design (i.e., a one-way crossover trial in which several arms start the intervention at different time points) is increasingly popular as an alternative to a classical cluster randomized controlled trial. Despite this increasing popularity, there is a huge variation in the methods used to analyze data from a stepped wedge trial design. Four linear mixed models were used to analyze data from a stepped wedge trial design on two example data sets. The four methods were chosen because they have been (frequently) used in practice. Method 1 compares all the intervention measurements with the control measurements. Method 2 treats the intervention variable as a time-independent categorical variable comparing the different arms with each other. In method 3, the intervention variable is a time-dependent categorical variable comparing groups with different number of intervention measurements, whereas in method 4, the changes in the outcome variable between subsequent measurements are analyzed. Regarding the results in the first example data set, methods 1 and 3 showed a strong positive intervention effect, which disappeared after adjusting for time. Method 2 showed an inverse intervention effect, whereas method 4 did not show a significant effect at all. In the second example data set, the results were the opposite. Both methods 2 and 4 showed significant intervention effects, whereas the other two methods did not. For method 4, the intervention effect attenuated after adjustment for time. Different methods to analyze data from a stepped wedge trial design reveal different aspects of a possible intervention effect. The choice of a method partly depends on the type of the intervention and the possible time-dependent effect of the intervention. Furthermore, it is advised to combine the results of the different methods to obtain an interpretable overall result. Copyright © 2016 Elsevier Inc. All rights reserved.
Clomiphene Stair-Step Protocol for Women With Polycystic Ovary Syndrome.
Jones, Tiffanny; Ho, Jacqueline R; Gualtieri, Marc; Bruno-Gaston, Janet; Chung, Karine; Paulson, Richard J; Bendikson, Kristin A
2018-01-01
To compare time to ovulation, ovulation rates, and side effect profile of traditional and the stair-step protocol for ovulation induction using clomiphene citrate in women with polycystic ovary syndrome (PCOS). We performed a retrospective study of women seeking care for infertility with a diagnosis of PCOS at a university-based infertility clinic from July 2012 to July 2014. We included patients who were resistant to the initial starting dose of 50 mg clomiphene. The primary outcome was time to ovulation. Secondary outcomes included ovulation rates, clinical pregnancy rates, and mild and moderate-to-severe side effects based on dose. For the traditional protocol, higher doses of clomiphene were used each subsequent month if no ovulation occurred. For the stair-step protocol, higher doses of clomiphene were given 7 days after the last dose if no dominant follicles were seen on ultrasonography. Our study had 80% power to detect a 20% difference in ovulation. One hundred nine patients were included in the analysis with 66 (60.6%) in the traditional and 43 (39.4%) in the stair-step protocol. Age and body mass index were similar between groups. The time to ovulation was decreased in the stair-step protocol group compared with the traditional protocol group (23.1±0.9 days vs 47.5±6.3 days). Ovulation rates were increased in the stair-step group compared with the traditional group at 150 mg (16 [37%] vs 8 [12%], P=.004) and at 200 mg (9 [21%] vs 3 [5%], P=.01). Pregnancy rates were similar between groups once ovulation was achieved (12 [18.1%] vs 7 [16.3%], P=.08). The stair-step protocol had an increased incidence of mild side effects (vasomotor flushes, headaches, gastrointestinal disturbance, mastalgia, changes in mood; 18 [41%] vs 8 [12%]), but there was no difference in the incidence of severe side effects (headaches, visual disturbances). For women with PCOS, the stair-step clomiphene protocol is associated with decreased time to ovulation and increased ovulation rates at higher doses when compared with the traditional protocol.
Variable-mesh method of solving differential equations
NASA Technical Reports Server (NTRS)
Van Wyk, R.
1969-01-01
Multistep predictor-corrector method for numerical solution of ordinary differential equations retains high local accuracy and convergence properties. In addition, the method was developed in a form conducive to the generation of effective criteria for the selection of subsequent step sizes in step-by-step solution of differential equations.
Scheurer, Marco; Storck, Florian R; Brauch, Heinz-J; Lange, Frank T
2010-06-01
Due to incomplete removal of artificial sweeteners in wastewater treatment plants some of these compounds end up in receiving surface waters, which are used for drinking water production. The sum of removal efficiency of single treatment steps in multi-barrier treatment systems affects the concentrations of these compounds in the provided drinking water. This is the first systematic study revealing the effectiveness of single treatment steps in laboratory experiments and in waterworks. Six full-scale waterworks using surface water influenced raw water were sampled up to ten times to study the fate of acesulfame, saccharin, cyclamate and sucralose. For the most important treatment technologies the results were confirmed by laboratory batch experiments. Saccharin and cyclamate proved to play a minor role for drinking water treatment plants as they were eliminated by nearly 100% in all waterworks with biologically active treatment units like river bank filtration (RBF) or artificial groundwater recharge. Acesulfame and sucralose were not biodegraded during RBF and their suitability as wastewater tracers under aerobic conditions was confirmed. Sucralose proved to be persistent against ozone and its transformation was < 20% in lab and field investigations. Remaining traces were completely removed by subsequent granular activated carbon (GAC) filters. Acesulfame readily reacts with ozone (pseudo first-order rate constant k = 1.3 x 10(-3) s(-1) at 1 mg L(-1) ozone concentration). However, the applied ozone concentrations and contact times under typical waterworks conditions only led to an incomplete removal (18-60%) in the ozonation step. Acesulfame was efficiently removed by subsequent GAC filters with a low throughput of less than 30 m(3) kg(-1), but removal strongly depended on the GAC preload. Thus, acesulfame was detected up to 0.76 microg L(-1) in finished water. 2010 Elsevier Ltd. All rights reserved.
Wickizer, Thomas M; Franklin, Gary; Fulton-Kehoe, Deborah; Turner, Judith A; Mootz, Robert; Smith-Weller, Terri
2004-01-01
Objective To determine what aspects of patient satisfaction are most important in explaining the variance in patients' overall treatment experience and to evaluate the relationship between treatment experience and subsequent outcomes. Data Sources and Setting Data from a population-based survey of 804 randomly selected injured workers in Washington State filing a workers' compensation claim between November 1999 and February 2000 were combined with insurance claims data indicating whether survey respondents were receiving disability compensation payments for being out of work at 6 or 12 months after claim filing. Study Design We conducted a two-step analysis. In the first step, we tested a multiple linear regression model to assess the relationship of satisfaction measures to patients' overall treatment experience. In the second step, we used logistic regression to assess the relationship of treatment experience to subsequent outcomes. Principal Findings Among injured workers who had ongoing follow-up care after their initial treatment (n=681), satisfaction with interpersonal and technical aspects of care and with care coordination was strongly and positively associated with overall treatment experience (p<0.001). As a group, the satisfaction measures explained 38 percent of the variance in treatment experience after controlling for demographics, satisfaction with medical care prior to injury, job satisfaction, type of injury, and provider type. Injured workers who reported less-favorable treatment experience were 3.54 times as likely (95 percent confidence interval, 1.20–10.95, p=.021) to be receiving time-loss compensation for inability to work due to injury 6 or 12 months after filing a claim, compared to patients whose treatment experience was more positive. PMID:15230925
Ohrt, Thomas; Odenwälder, Peter; Dannenberg, Julia; Prior, Mira; Warkocki, Zbigniew; Schmitzová, Jana; Karaduman, Ramazan; Gregor, Ingo; Enderlein, Jörg; Fabrizio, Patrizia; Lührmann, Reinhard
2013-01-01
Step 2 catalysis of pre-mRNA splicing entails the excision of the intron and ligation of the 5′ and 3′ exons. The tasks of the splicing factors Prp16, Slu7, Prp18, and Prp22 in the formation of the step 2 active site of the spliceosome and in exon ligation, and the timing of their recruitment, remain poorly understood. Using a purified yeast in vitro splicing system, we show that only the DEAH-box ATPase Prp16 is required for formation of a functional step 2 active site and for exon ligation. Efficient docking of the 3′ splice site (3′SS) to the active site requires only Slu7/Prp18 but not Prp22. Spliceosome remodeling by Prp16 appears to be subtle as only the step 1 factor Cwc25 is dissociated prior to step 2 catalysis, with its release dependent on docking of the 3′SS to the active site and Prp16 action. We show by fluorescence cross-correlation spectroscopy that Slu7/Prp18 and Prp16 bind early to distinct, low-affinity binding sites on the step-1-activated B* spliceosome, which are subsequently converted into high-affinity sites. Our results shed new light on the factor requirements for step 2 catalysis and the dynamics of step 1 and 2 factors during the catalytic steps of splicing. PMID:23685439
Nanostructuring of sapphire using time-modulated nanosecond laser pulses
NASA Astrophysics Data System (ADS)
Lorenz, P.; Zagoranskiy, I.; Ehrhardt, M.; Bayer, L.; Zimmer, K.
2017-02-01
The nanostructuring of dielectric surfaces using laser radiation is still a challenge. The IPSM-LIFE (laser-induced front side etching using in-situ pre-structured metal layer) method allows the easy, large area and fast laser nanostructuring of dielectrics. At IPSM-LIFE a metal covered dielectric is irradiated where the structuring is assisted by a self-organized molten metal layer deformation process. The IPSM-LIFE can be divided into two steps: STEP 1: The irradiation of thin metal layers on dielectric surfaces results in a melting and nanostructuring process of the metal layer and partially of the dielectric surface. STEP 2: A subsequent high laser fluence treatment of the metal nanostructures result in a structuring of the dielectric surface. At this study a sapphire substrate Al2O3(1-102) was covered with a 10 nm thin molybdenum layer and irradiated by an infrared laser with an adjustable time-dependent pulse form with a time resolution of 1 ns (wavelength λ = 1064 nm, pulse duration Δtp = 1 - 600 ns, Gaussian beam profile). The laser treatment allows the fabrication of different surface structures into the sapphire surface due to a pattern transfer process. The resultant structures were investigated by scanning electron microscopy (SEM). The process was simulated and the simulation results were compared with experimental results.
Bezodis, Ian N; Kerwin, David G; Cooper, Stephen-Mark; Salo, Aki I T
2017-11-15
To understand how training periodization influences sprint performance and key step characteristics over an extended training period in an elite sprint training group. Four sprinters were studied during five months of training. Step velocities, step lengths and step frequencies were measured from video of the maximum velocity phase of training sprints. Bootstrapped mean values were calculated for each athlete for each session and 139 within-athlete, between-session comparisons were made with a repeated measures ANOVA. As training progressed, a link in the changes in velocity and step frequency was maintained. There were 71 between-session comparisons with a change in step velocity yielding at least a large effect size (>1.2), of which 73% had a correspondingly large change in step frequency in the same direction. Within-athlete mean session step length remained relatively constant throughout. Reductions in step velocity and frequency occurred during training phases of high volume lifting and running, with subsequent increases in step velocity and frequency happening during phases of low volume lifting and high intensity sprint work. The importance of step frequency over step length to the changes in performance within a training year was clearly evident for the sprinters studied. Understanding the magnitudes and timings of these changes in relation to the training program is important for coaches and athletes. The underpinning neuro-muscular mechanisms require further investigation, but are likely explained by an increase in force producing capability followed by an increase in the ability to produce that force rapidly.
Scanning sequences after Gibbs sampling to find multiple occurrences of functional elements
Tharakaraman, Kannan; Mariño-Ramírez, Leonardo; Sheetlin, Sergey L; Landsman, David; Spouge, John L
2006-01-01
Background Many DNA regulatory elements occur as multiple instances within a target promoter. Gibbs sampling programs for finding DNA regulatory elements de novo can be prohibitively slow in locating all instances of such an element in a sequence set. Results We describe an improvement to the A-GLAM computer program, which predicts regulatory elements within DNA sequences with Gibbs sampling. The improvement adds an optional "scanning step" after Gibbs sampling. Gibbs sampling produces a position specific scoring matrix (PSSM). The new scanning step resembles an iterative PSI-BLAST search based on the PSSM. First, it assigns an "individual score" to each subsequence of appropriate length within the input sequences using the initial PSSM. Second, it computes an E-value from each individual score, to assess the agreement between the corresponding subsequence and the PSSM. Third, it permits subsequences with E-values falling below a threshold to contribute to the underlying PSSM, which is then updated using the Bayesian calculus. A-GLAM iterates its scanning step to convergence, at which point no new subsequences contribute to the PSSM. After convergence, A-GLAM reports predicted regulatory elements within each sequence in order of increasing E-values, so users have a statistical evaluation of the predicted elements in a convenient presentation. Thus, although the Gibbs sampling step in A-GLAM finds at most one regulatory element per input sequence, the scanning step can now rapidly locate further instances of the element in each sequence. Conclusion Datasets from experiments determining the binding sites of transcription factors were used to evaluate the improvement to A-GLAM. Typically, the datasets included several sequences containing multiple instances of a regulatory motif. The improvements to A-GLAM permitted it to predict the multiple instances. PMID:16961919
Ehrensberger, Mark T; Gilbert, Jeremy L
2010-05-01
The measurement of electrochemical impedance is a valuable tool to assess the electrochemical environment that exists at the surface of metallic biomaterials. This article describes the development and validation of a new technique, potential step impedance analysis (PSIA), to assess the electrochemical impedance of materials whose interface with solution can be modeled as a simplified Randles circuit that is modified with a constant phase element. PSIA is based upon applying a step change in voltage to a working electrode and analyzing the subsequent current transient response in a combined time and frequency domain technique. The solution resistance, polarization resistance, and interfacial capacitance are found directly in the time domain. The experimental current transient is numerically transformed to the frequency domain to determine the constant phase exponent, alpha. This combined time and frequency approach was tested using current transients generated from computer simulations, from resistor-capacitor breadboard circuits, and from commercially pure titanium samples immersed in phosphate buffered saline and polarized at -800 mV or +1000 mV versus Ag/AgCl. It was shown that PSIA calculates equivalent admittance and impedance behavior over this range of potentials when compared to standard electrochemical impedance spectroscopy. This current transient approach characterizes the frequency response of the system without the need for expensive frequency response analyzers or software. Copyright 2009 Wiley Periodicals, Inc.
Spatial Data Integration Using Ontology-Based Approach
NASA Astrophysics Data System (ADS)
Hasani, S.; Sadeghi-Niaraki, A.; Jelokhani-Niaraki, M.
2015-12-01
In today's world, the necessity for spatial data for various organizations is becoming so crucial that many of these organizations have begun to produce spatial data for that purpose. In some circumstances, the need to obtain real time integrated data requires sustainable mechanism to process real-time integration. Case in point, the disater management situations that requires obtaining real time data from various sources of information. One of the problematic challenges in the mentioned situation is the high degree of heterogeneity between different organizations data. To solve this issue, we introduce an ontology-based method to provide sharing and integration capabilities for the existing databases. In addition to resolving semantic heterogeneity, better access to information is also provided by our proposed method. Our approach is consisted of three steps, the first step is identification of the object in a relational database, then the semantic relationships between them are modelled and subsequently, the ontology of each database is created. In a second step, the relative ontology will be inserted into the database and the relationship of each class of ontology will be inserted into the new created column in database tables. Last step is consisted of a platform based on service-oriented architecture, which allows integration of data. This is done by using the concept of ontology mapping. The proposed approach, in addition to being fast and low cost, makes the process of data integration easy and the data remains unchanged and thus takes advantage of the legacy application provided.
Zeger, Scott L.; Kolars, Joseph C.
2008-01-01
Background Little is known about the associations of previous standardized examination scores with scores on subsequent standardized examinations used to assess medical knowledge in internal medicine residencies. Objective To examine associations of previous standardized test scores on subsequent standardized test scores. Design Retrospective cohort study. Participants One hundred ninety-five internal medicine residents. Methods Bivariate associations of United States Medical Licensing Examination (USMLE) Steps and Internal Medicine In-Training Examination (IM-ITE) scores were determined. Random effects analysis adjusting for repeated administrations of the IM-ITE and other variables known or hypothesized to affect IM-ITE score allowed for discrimination of associations of individual USMLE Step scores on IM-ITE scores. Results In bivariate associations, USMLE scores explained 17% to 27% of the variance in IME-ITE scores, and previous IM-ITE scores explained 66% of the variance in subsequent IM-ITE scores. Regression coefficients (95% CI) for adjusted associations of each USMLE Step with IM-ITE scores were USMLE-1 0.19 (0.12, 0.27), USMLE-2 0.23 (0.17, 0.30), and USMLE-3 0.19 (0.09, 0.29). Conclusions No single USMLE Step is more strongly associated with IM-ITE scores than the others. Because previous IM-ITE scores are strongly associated with subsequent IM-ITE scores, appropriate modeling, such as random effects methods, should be used to account for previous IM-ITE administrations in studies for which IM-ITE score is an outcome. PMID:18612735
McDonald, Furman S; Zeger, Scott L; Kolars, Joseph C
2008-07-01
Little is known about the associations of previous standardized examination scores with scores on subsequent standardized examinations used to assess medical knowledge in internal medicine residencies. To examine associations of previous standardized test scores on subsequent standardized test scores. Retrospective cohort study. One hundred ninety-five internal medicine residents. Bivariate associations of United States Medical Licensing Examination (USMLE) Steps and Internal Medicine In-Training Examination (IM-ITE) scores were determined. Random effects analysis adjusting for repeated administrations of the IM-ITE and other variables known or hypothesized to affect IM-ITE score allowed for discrimination of associations of individual USMLE Step scores on IM-ITE scores. In bivariate associations, USMLE scores explained 17% to 27% of the variance in IME-ITE scores, and previous IM-ITE scores explained 66% of the variance in subsequent IM-ITE scores. Regression coefficients (95% CI) for adjusted associations of each USMLE Step with IM-ITE scores were USMLE-1 0.19 (0.12, 0.27), USMLE-2 0.23 (0.17, 0.30), and USMLE-3 0.19 (0.09, 0.29). No single USMLE Step is more strongly associated with IM-ITE scores than the others. Because previous IM-ITE scores are strongly associated with subsequent IM-ITE scores, appropriate modeling, such as random effects methods, should be used to account for previous IM-ITE administrations in studies for which IM-ITE score is an outcome.
Coherent diffractive imaging of time-evolving samples with improved temporal resolution
Ulvestad, A.; Tripathi, A.; Hruszkewycz, S. O.; ...
2016-05-19
Bragg coherent x-ray diffractive imaging is a powerful technique for investigating dynamic nanoscale processes in nanoparticles immersed in reactive, realistic environments. Its temporal resolution is limited, however, by the oversampling requirements of three-dimensional phase retrieval. Here, we show that incorporating the entire measurement time series, which is typically a continuous physical process, into phase retrieval allows the oversampling requirement at each time step to be reduced, leading to a subsequent improvement in the temporal resolution by a factor of 2-20 times. The increased time resolution will allow imaging of faster dynamics and of radiation-dose-sensitive samples. Furthermore, this approach, which wemore » call "chrono CDI," may find use in improving the time resolution in other imaging techniques.« less
Einterz, E M; Younge, O; Hadi, C
2018-06-01
To determine, subsequent to the expansion of a county health department's refugee screening process from a one-step to a two-step process, the change in early loss to follow-up and time to initiation of treatment of new refugees with latent tuberculosis infection (LTBI). Quasi-experimental, quantitative. Review of patient medical records. Among 384 refugees who met the case definition of LTBI without prior tuberculosis (TB) classification, the number of cases lost to early follow-up fell from 12.5% to 0% after expansion to a two-step screening process. The average interval between in-country arrival and initiation of LTBI treatment was shortened by 41.4%. The addition of a second step to the refugee screening process was correlated with significant improvements in the county's success in tracking and treating cases of LTBI in refugees. Given the disproportionate importance of foreign-born cases of LTBI to the incidence of TB disease in low-incidence countries, these improvements could have a substantial impact on overall TB control, and the process described could serve as a model for other local health department refugee screening programs. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Hsieh, Hong-Po; Ko, Fan-Hua; Sung, Kung-Bin
2018-04-20
An iterative curve fitting method has been applied in both simulation [J. Biomed. Opt.17, 107003 (2012)JBOPFO1083-366810.1117/1.JBO.17.10.107003] and phantom [J. Biomed. Opt.19, 077002 (2014)JBOPFO1083-366810.1117/1.JBO.19.7.077002] studies to accurately extract optical properties and the top layer thickness of a two-layered superficial tissue model from diffuse reflectance spectroscopy (DRS) data. This paper describes a hybrid two-step parameter estimation procedure to address two main issues of the previous method, including (1) high computational intensity and (2) converging to local minima. The parameter estimation procedure contained a novel initial estimation step to obtain an initial guess, which was used by a subsequent iterative fitting step to optimize the parameter estimation. A lookup table was used in both steps to quickly obtain reflectance spectra and reduce computational intensity. On simulated DRS data, the proposed parameter estimation procedure achieved high estimation accuracy and a 95% reduction of computational time compared to previous studies. Furthermore, the proposed initial estimation step led to better convergence of the following fitting step. Strategies used in the proposed procedure could benefit both the modeling and experimental data processing of not only DRS but also related approaches such as near-infrared spectroscopy.
Zhu, Chengzhou; Fu, Shaofang; Song, Junhua; ...
2017-02-06
In this study, self-assembled M–N-doped carbon nanotube aerogels with single-atom catalyst feature are for the first time reported through one-step hydrothermal route and subsequent facile annealing treatment. By taking advantage of the porous nanostructures, 1D nanotubes as well as single-atom catalyst feature, the resultant Fe–N-doped carbon nanotube aerogels exhibit excellent oxygen reduction reaction electrocatalytic performance even better than commercial Pt/C in alkaline solution.
Robust extrema features for time-series data analysis.
Vemulapalli, Pramod K; Monga, Vishal; Brennan, Sean N
2013-06-01
The extraction of robust features for comparing and analyzing time series is a fundamentally important problem. Research efforts in this area encompass dimensionality reduction using popular signal analysis tools such as the discrete Fourier and wavelet transforms, various distance metrics, and the extraction of interest points from time series. Recently, extrema features for analysis of time-series data have assumed increasing significance because of their natural robustness under a variety of practical distortions, their economy of representation, and their computational benefits. Invariably, the process of encoding extrema features is preceded by filtering of the time series with an intuitively motivated filter (e.g., for smoothing), and subsequent thresholding to identify robust extrema. We define the properties of robustness, uniqueness, and cardinality as a means to identify the design choices available in each step of the feature generation process. Unlike existing methods, which utilize filters "inspired" from either domain knowledge or intuition, we explicitly optimize the filter based on training time series to optimize robustness of the extracted extrema features. We demonstrate further that the underlying filter optimization problem reduces to an eigenvalue problem and has a tractable solution. An encoding technique that enhances control over cardinality and uniqueness is also presented. Experimental results obtained for the problem of time series subsequence matching establish the merits of the proposed algorithm.
Water Quality Exchange Web Template User Guide
This is a step by step guide to using the WQX Web Monitoring Data Entry Template for Physical/Chemical data to prepare your data for import into the WQX Web tool, and subsequent transfer to the STORET Data Warehouse.
Insufficient sleep predicts clinical burnout.
Söderström, Marie; Jeding, Kerstin; Ekstedt, Mirjam; Perski, Aleksander; Akerstedt, Torbjörn
2012-04-01
The present prospective study aimed to identify risk factors for subsequent clinical burnout. Three hundred eighty-eight working individuals completed a baseline questionnaire regarding work stress, sleep, mood, health, and so forth. During a 2-year period, 15 subjects (7 women and 8 men) of the total sample were identified as "burnout cases," as they were assessed and referred to treatment for clinical burnout. Questionnaire data from the baseline measurement were used as independent variables in a series of logistic regression analyses to predict clinical burnout. The results identified "too little sleep (< 6 h)" as the main risk factor for burnout development, with adjustment for "work demands," "thoughts of work during leisure time," and "sleep quality." The first two factors were significant predictors in earlier steps of the multivariate regression. The results indicate that insufficient sleep, preoccupation with thoughts of work during leisure time, and high work demands are risk factors for subsequent burnout. The results suggest a chain of causation. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Teston, Eliott; Maldiney, Thomas; Marangon, Iris; Volatron, Jeanne; Lalatonne, Yoann; Motte, Laurence; Boisson-Vidal, Catherine; Autret, Gwennhael; Clément, Olivier; Scherman, Daniel; Gazeau, Florence; Richard, Cyrille
2018-04-01
Once injected into a living organism, cells diffuse or migrate around the initial injection point and become impossible to be visualized and tracked in vivo. The present work concerns the development of a new technique for therapeutic cell labeling and subsequent in vivo visualization and magnetic retention. It is hypothesized and subsequently demonstrated that nanohybrids made of persistent luminescence nanoparticles and ultrasmall superparamagnetic iron oxide nanoparticles incorporated into a silica matrix can be used as an effective nanoplatform to label therapeutic cells in a nontoxic way in order to dynamically track them in real-time in vitro and in living mice. As a proof-of-concept, it is shown that once injected, these labeled cells can be visualized and attracted in vivo using a magnet. This first step suggests that these nanohybrids represent efficient multifunctional nanoprobes for further imaging guided cell therapies development. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kostanyan, Artak E; Erastov, Andrey A
2015-08-07
In the steady state (SS) multiple dual mode (MDM) counter-current chromatography (CCC), at the beginning of the first step of every cycle the sample dissolved in one of the phases is continuously fed into a CCC device over a constant time, not exceeding the run time of the first step. After a certain number of cycles, the steady state regime is achieved, where concentrations vary over time during each cycle, however, the concentration profiles of solutes eluted with both phases remain constant in all subsequent cycles. The objective of this work was to develop analytical expressions to describe the SS MDM CCC separation processes, which can be helpful to simulate and design these processes and select a suitable compromise between the productivity and the selectivity in the preparative and production CCC separations. Experiments carried out using model mixtures of compounds from the GUESSmix with solvent system hexane/ethyl acetate/methanol/water demonstrated a reasonable agreement between the predictions of the theory and the experimental results. Copyright © 2015 Elsevier B.V. All rights reserved.
Simplified jet-A kinetic mechanism for combustor application
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman
1993-01-01
Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. For hydrocarbon oxidation, detailed mechanisms are only available for the simplest types of hydrocarbons such as methane, ethane, acetylene, and propane. These detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic (CFD) models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. To simulate these conditions a very sophisticated computer model is required, which requires large computer memory capacity and long run times. Therefore, gas turbine combustion modeling has frequently been simplified by using global reaction mechanisms, which can predict only the quantities of interest: heat release rates, flame temperature, and emissions. Jet fuels are wide-boiling-range hydrocarbons with ranges extending through those of gasoline and kerosene. These fuels are chemically complex, often containing more than 300 components. Jet fuel typically can be characterized as containing 70 vol pct paraffin compounds and 25 vol pct aromatic compounds. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented here. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.
NASA Astrophysics Data System (ADS)
Shi, Y.; Gosselink, D.; Gharavi, K.; Baugh, J.; Wasilewski, Z. R.
2017-11-01
The optimization of metamorphic buffers for InSb/AlInSb QWs grown on GaAs (0 0 1) substrates is presented. With increasing surface offcut angle towards [ 1 1 bar 0 ] direction, the interaction of spiral growth around threading dislocations (TDs) with the offcut-induced atomic steps leads to a gradual change in the morphology of the AlSb buffer from one dominated by hillocks to that exhibiting near-parallel steps, and finally to a surface with increasing number of localized depressions. With the growth conditions used, the smoothest AlSb surface morphology was obtained for the offcut angles range of 0.8-1.3°. On substrates with 0° offcut, subsequent 3 repeats of Al0.24In0.76 Sb/Al0.12In0.88 Sb interlayers reduces the TD density of AlSb buffer by a factor of 10, while 70 times reduction in the surface density of TD-related hillocks is observed. The remaining hillocks have rectangular footprint and small facet angles with respect to GaAs (0 0 1) surface: 0.4° towards [ 1 1 bar 0 ] direction and 0.7° towards [1 1 0] direction. Their triangular-shaped sidewalls with regularly spaced atomic steps show occasional extra step insertion sites, characteristic of TD outcrops. Many of the observed sidewalls are dislocation free and offer atomically smooth areas of up to 1 μm2, already suitable for high-quality InSb growth and subsequent top-down fabrication of InSb nanowires. It is proposed that the sidewalls of the remaining hillocks offer local vicinal surfaces with atomic step density optimal for suppression of TD-induced spiral growth, thus providing the important information on the exact substrate offcut needed to achieve large hillock-free and atomically smooth areas on AlInSb metamorphic buffers.
Gold Nanorod-based Photo-PCR System for One-Step, Rapid Detection of Bacteria
Kim, Jinjoo; Kim, Hansol; Park, Ji Ho; Jon, Sangyong
2017-01-01
The polymerase chain reaction (PCR) has been an essential tool for diagnosis of infectious diseases, but conventional PCR still has some limitations with respect to applications to point-of-care (POC) diagnostic systems that require rapid detection and miniaturization. Here we report a light-based PCR method, termed as photo-PCR, which enables rapid detection of bacteria in a single step. In the photo-PCR system, poly(enthylene glycol)-modified gold nanorods (PEG-GNRs), used as a heat generator, are added into the PCR mixture, which is subsequently periodically irradiated with a 808-nm laser to create thermal cycling. Photo-PCR was able to significantly reduce overall thermal cycling time by integrating bacterial cell lysis and DNA amplification into a single step. Furthermore, when combined with KAPA2G fast polymerase and cooling system, the entire process of bacterial genomic DNA extraction and amplification was further shortened, highlighting the potential of photo-PCR for use in a portable, POC diagnostic system. PMID:29071186
Klotz, Dino; Grave, Daniel A; Dotan, Hen; Rothschild, Avner
2018-03-15
Photoelectrochemical impedance spectroscopy (PEIS) is a useful tool for the characterization of photoelectrodes for solar water splitting. However, the analysis of PEIS spectra often involves a priori assumptions that might bias the results. This work puts forward an empirical method that analyzes the distribution of relaxation times (DRT), obtained directly from the measured PEIS spectra of a model hematite photoanode. By following how the DRT evolves as a function of control parameters such as the applied potential and composition of the electrolyte solution, we obtain unbiased insights into the underlying mechanisms that shape the photocurrent. In a subsequent step, we fit the data to a process-oriented equivalent circuit model (ECM) whose makeup is derived from the DRT analysis in the first step. This yields consistent quantitative trends of the dominant polarization processes observed. Our observations reveal a common step for the photo-oxidation reactions of water and H 2 O 2 in alkaline solution.
Chen, Hui-Ya; Wing, Alan M; Pratt, David
2006-04-01
Stepping in time with a metronome has been reported to improve pathological gait. Although there have been many studies of finger tapping synchronisation tasks with a metronome, the specific details of the influences of metronome timing on walking remain unknown. As a preliminary to studying pathological control of gait timing, we designed an experiment with four synchronisation tasks, unilateral heel tapping in sitting, bilateral heel tapping in sitting, bilateral heel tapping in standing, and stepping on the spot, in order to examine the influence of biomechanical constraints on metronome timing. These four conditions allow study of the effects of bilateral co-ordination and maintenance of balance on timing. Eight neurologically normal participants made heel tapping and stepping responses in synchrony with a metronome producing 500 ms interpulse intervals. In each trial comprising 40 intervals, one interval, selected at random between intervals 15 and 30, was lengthened or shortened, which resulted in a shift in phase of all subsequent metronome pulses. Performance measures were the speed of compensation for the phase shift, in terms of the temporal difference between the response and the metronome pulse, i.e. asynchrony, and the standard deviation of the asynchronies and interresponse intervals of steady state synchronisation. The speed of compensation decreased with increase in the demands of maintaining balance. The standard deviation varied across conditions but was not related to the compensation speed. The implications of these findings for metronome assisted gait are discussed in terms of a first-order linear correction account of synchronisation.
Controlling superconductivity in La 2-xSr xCuO 4+δ by ozone and vacuum annealing
Leng, Xiang; Bozovic, Ivan
2014-11-21
In this study we performed a series of ozone and vacuum annealing experiments on epitaxial La 2-xSr xCuO 4+δ thin films. The transition temperature after each annealing step has been measured by the mutual inductance technique. The relationship between the effective doping and the vacuum annealing time has been studied. Short-time ozone annealing at 470 °C oxidizes an underdoped film all the way to the overdoped regime. The subsequent vacuum annealing at 350 °C to 380 °C slowly brings the sample across the optimal doping point back to the undoped, non-superconducting state. Several ozone and vacuum annealing cycles have beenmore » done on the same sample and the effects were found to be repeatable and reversible Vacuum annealing of ozone-loaded LSCO films is a very controllable process, allowing one to tune the doping level of LSCO in small steps across the superconducting dome, which can be used for fundamental physics studies.« less
Controlling superconductivity in La 2-xSr xCuO 4+δ by ozone and vacuum annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Xiang; Bozovic, Ivan
In this study we performed a series of ozone and vacuum annealing experiments on epitaxial La 2-xSr xCuO 4+δ thin films. The transition temperature after each annealing step has been measured by the mutual inductance technique. The relationship between the effective doping and the vacuum annealing time has been studied. Short-time ozone annealing at 470 °C oxidizes an underdoped film all the way to the overdoped regime. The subsequent vacuum annealing at 350 °C to 380 °C slowly brings the sample across the optimal doping point back to the undoped, non-superconducting state. Several ozone and vacuum annealing cycles have beenmore » done on the same sample and the effects were found to be repeatable and reversible Vacuum annealing of ozone-loaded LSCO films is a very controllable process, allowing one to tune the doping level of LSCO in small steps across the superconducting dome, which can be used for fundamental physics studies.« less
Two-step rocket engine bipropellant valve concept
NASA Technical Reports Server (NTRS)
Capps, J. E.; Ferguson, R. E.; Pohl, H. O.
1969-01-01
Initiating combustion of altitude control rocket engines in a precombustion chamber of ductile material reduces high pressure surges generated by hypergolic propellants. Two-step bipropellant valve concepts control initial propellant flow into precombustion chamber and subsequent full flow into main chamber.
Girard, Olivier; Brocherie, Franck; Morin, Jean-Benoit; Millet, Grégoire P.
2015-01-01
To improve our understanding of the limiting factors during repeated sprinting, we manipulated hypoxia severity during an initial set and examined the effects on performance and associated neuro-mechanical alterations during a subsequent set performed in normoxia. On separate days, 13 active males performed eight 5-s sprints (recovery = 25 s) on an instrumented treadmill in either normoxia near sea-level (SL; FiO2 = 20.9%), moderate (MH; FiO2 = 16.8%) or severe normobaric hypoxia (SH; FiO2 = 13.3%) followed, 6 min later, by four 5-s sprints (recovery = 25 s) in normoxia. Throughout the first set, along with distance covered [larger sprint decrement score in SH (−8.2%) compared to SL (−5.3%) and MH (−7.2%); P < 0.05], changes in contact time, step frequency and root mean square activity (surface electromyography) of the quadriceps (Rectus femoris muscle) in SH exceeded those in SL and MH (P < 0.05). During first sprint of the subsequent normoxic set, the distance covered (99.6, 96.4, and 98.3% of sprint 1 in SL, MH, and SH, respectively), the main kinetic (mean vertical, horizontal, and resultant forces) and kinematic (contact time and step frequency) variables as well as surface electromyogram of quadriceps and plantar flexor muscles were fully recovered, with no significant difference between conditions. Despite differing hypoxic severity levels during sprints 1–8, performance and neuro-mechanical patterns did not differ during the four sprints of the second set performed in normoxia. In summary, under the circumstances of this study (participant background, exercise-to-rest ratio, hypoxia exposure), sprint mechanical performance and neural alterations were largely influenced by the hypoxia severity in an initial set of repeated sprints. However, hypoxia had no residual effect during a subsequent set performed in normoxia. Hence, the recovery of performance and associated neuro-mechanical alterations was complete after resting for 6 min near sea level, with a similar fatigue pattern across conditions during subsequent repeated sprints in normoxia. PMID:26441679
Girard, Olivier; Brocherie, Franck; Morin, Jean-Benoit; Millet, Grégoire P
2015-01-01
To improve our understanding of the limiting factors during repeated sprinting, we manipulated hypoxia severity during an initial set and examined the effects on performance and associated neuro-mechanical alterations during a subsequent set performed in normoxia. On separate days, 13 active males performed eight 5-s sprints (recovery = 25 s) on an instrumented treadmill in either normoxia near sea-level (SL; FiO2 = 20.9%), moderate (MH; FiO2 = 16.8%) or severe normobaric hypoxia (SH; FiO2 = 13.3%) followed, 6 min later, by four 5-s sprints (recovery = 25 s) in normoxia. Throughout the first set, along with distance covered [larger sprint decrement score in SH (-8.2%) compared to SL (-5.3%) and MH (-7.2%); P < 0.05], changes in contact time, step frequency and root mean square activity (surface electromyography) of the quadriceps (Rectus femoris muscle) in SH exceeded those in SL and MH (P < 0.05). During first sprint of the subsequent normoxic set, the distance covered (99.6, 96.4, and 98.3% of sprint 1 in SL, MH, and SH, respectively), the main kinetic (mean vertical, horizontal, and resultant forces) and kinematic (contact time and step frequency) variables as well as surface electromyogram of quadriceps and plantar flexor muscles were fully recovered, with no significant difference between conditions. Despite differing hypoxic severity levels during sprints 1-8, performance and neuro-mechanical patterns did not differ during the four sprints of the second set performed in normoxia. In summary, under the circumstances of this study (participant background, exercise-to-rest ratio, hypoxia exposure), sprint mechanical performance and neural alterations were largely influenced by the hypoxia severity in an initial set of repeated sprints. However, hypoxia had no residual effect during a subsequent set performed in normoxia. Hence, the recovery of performance and associated neuro-mechanical alterations was complete after resting for 6 min near sea level, with a similar fatigue pattern across conditions during subsequent repeated sprints in normoxia.
Morphologic evolution and optical properties of nanostructured gold based on mesoporous silica
NASA Astrophysics Data System (ADS)
Kan, Caixia; Cai, Weiping; Li, Cuncheng; Fu, Ganhua; Zhang, Lide
2004-11-01
In this paper, we report the morphologic evolution and optical properties of nanostructured gold dispersed in monolithic mesoporous silica induced by soaking the silica into a HAuCl4 aqueous solution and subsequent treatments. It has been shown that the morphology of nanostructured Au depends on the subsequent treatments after soaking. If the HAuCl4-soaked mesoporous silica was dried at <100°C for enough time (>10h) and annealed at <300°C without any special reduction treatment, Au nanowires/silica assembly can be formed. Corresponding optical-absorption spectra exhibit a broad absorption band around 1000nm. Subsequent step annealing from 300°C to 800°C results in a blueshift of the absorption band down to the visible region, accompanied by a decrease of the bandwidth. The corresponding morphology of the nanostructured Au evolves from the wire, rodlike to a spherical shape. This means that we can control the optical properties of this assembly in a large region by such a simple way. Further experiments reveal that the pore walls of silica have significant reduction effect on AuCl4- ions at a low temperature (<100°C). The interconnected channels in the silica host and drying at <100°C for enough time after soaking are crucial to form such Au nanowire/silica assembly and hence to show tunable optical properties by subsequent step annealing. Not a single one of these conditions can be dispensed with. Otherwise, direct annealing the soaked monolithic silica at a high temperature (>300°C) or treating the soaked porous silica powders only leads to nearly spherical Au nanoparticles highly dispersed in silica, accompanying a normal surface plasmon resonance of Au around 540nm. It has been confirmed that the surface-mediated reducing groups (≡Si -OH) on the silica pore wall are responsible for the low-temperature reduction of Au3+ ions. The formation of the Au nanowires is attributed to the low nucleation rate, unidirectional diffusion of Au atoms along the pore channels and size confinement of pore channels.
Analyzing angular distributions for two-step dissociation mechanisms in velocity map imaging.
Straus, Daniel B; Butler, Lynne M; Alligood, Bridget W; Butler, Laurie J
2013-08-15
Increasingly, velocity map imaging is becoming the method of choice to study photoinduced molecular dissociation processes. This paper introduces an algorithm to analyze the measured net speed, P(vnet), and angular, β(vnet), distributions of the products from a two-step dissociation mechanism, where the first step but not the second is induced by absorption of linearly polarized laser light. Typically, this might be the photodissociation of a C-X bond (X = halogen or other atom) to produce an atom and a momentum-matched radical that has enough internal energy to subsequently dissociate (without the absorption of an additional photon). It is this second step, the dissociation of the unstable radicals, that one wishes to study, but the measured net velocity of the final products is the vector sum of the velocity imparted to the radical in the primary photodissociation (which is determined by taking data on the momentum-matched atomic cophotofragment) and the additional velocity vector imparted in the subsequent dissociation of the unstable radical. The algorithm allows one to determine, from the forward-convolution fitting of the net velocity distribution, the distribution of velocity vectors imparted in the second step of the mechanism. One can thus deduce the secondary velocity distribution, characterized by a speed distribution P(v1,2°) and an angular distribution I(θ2°), where θ2° is the angle between the dissociating radical's velocity vector and the additional velocity vector imparted to the product detected from the subsequent dissociation of the radical.
Developing Codebooks as a New Tool to Analyze Students' ePortfolios
ERIC Educational Resources Information Center
Impedovo, Maria Antonietta; Ritella, Giuseppe; Ligorio, Maria Beatrice
2013-01-01
This paper describes a three-step method for the construction of codebooks meant for analyzing ePortfolio content. The first step produces a prototype based on qualitative analysis of very different ePortfolios from the same course. During the second step, the initial version of the codebook is tested on a larger sample and subsequently revised.…
A numerically efficient damping model for acoustic resonances in microfluidic cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, P., E-mail: hahnp@ethz.ch; Dual, J.
Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results aremore » fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.« less
Real-Time Occlusion Handling in Augmented Reality Based on an Object Tracking Approach
Tian, Yuan; Guan, Tao; Wang, Cheng
2010-01-01
To produce a realistic augmentation in Augmented Reality, the correct relative positions of real objects and virtual objects are very important. In this paper, we propose a novel real-time occlusion handling method based on an object tracking approach. Our method is divided into three steps: selection of the occluding object, object tracking and occlusion handling. The user selects the occluding object using an interactive segmentation method. The contour of the selected object is then tracked in the subsequent frames in real-time. In the occlusion handling step, all the pixels on the tracked object are redrawn on the unprocessed augmented image to produce a new synthesized image in which the relative position between the real and virtual object is correct. The proposed method has several advantages. First, it is robust and stable, since it remains effective when the camera is moved through large changes of viewing angles and volumes or when the object and the background have similar colors. Second, it is fast, since the real object can be tracked in real-time. Last, a smoothing technique provides seamless merging between the augmented and virtual object. Several experiments are provided to validate the performance of the proposed method. PMID:22319278
A two-step electrodialysis method for DNA purification from polluted metallic environmental samples.
Rodríguez-Mejía, José Luis; Martínez-Anaya, Claudia; Folch-Mallol, Jorge Luis; Dantán-González, Edgar
2008-08-01
Extracting DNA from samples of polluted environments using standard methods often results in low yields of poor-quality material unsuited to subsequent manipulation and analysis by molecular biological techniques. Here, we report a novel two-step electrodialysis-based method for the extraction of DNA from environmental samples. This technique permits the rapid and efficient isolation of high-quality DNA based on its acidic nature, and without the requirement for phenol-chloroform-isoamyl alcohol cleanup and ethanol precipitation steps. Subsequent PCR, endonuclease restriction, and cloning reactions were successfully performed utilizing DNA obtained by electrodialysis, whereas some or all of these techniques failed using DNA extracted with two alternative methods. We also show that his technique is applicable to purify DNA from a range of polluted and nonpolluted samples.
Zhang, Ze-Wei; Wang, Hui; Qin, Qing-Hua
2015-01-01
A meshless numerical scheme combining the operator splitting method (OSM), the radial basis function (RBF) interpolation, and the method of fundamental solutions (MFS) is developed for solving transient nonlinear bioheat problems in two-dimensional (2D) skin tissues. In the numerical scheme, the nonlinearity caused by linear and exponential relationships of temperature-dependent blood perfusion rate (TDBPR) is taken into consideration. In the analysis, the OSM is used first to separate the Laplacian operator and the nonlinear source term, and then the second-order time-stepping schemes are employed for approximating two splitting operators to convert the original governing equation into a linear nonhomogeneous Helmholtz-type governing equation (NHGE) at each time step. Subsequently, the RBF interpolation and the MFS involving the fundamental solution of the Laplace equation are respectively employed to obtain approximated particular and homogeneous solutions of the nonhomogeneous Helmholtz-type governing equation. Finally, the full fields consisting of the particular and homogeneous solutions are enforced to fit the NHGE at interpolation points and the boundary conditions at boundary collocations for determining unknowns at each time step. The proposed method is verified by comparison of other methods. Furthermore, the sensitivity of the coefficients in the cases of a linear and an exponential relationship of TDBPR is investigated to reveal their bioheat effect on the skin tissue. PMID:25603180
Zhang, Ze-Wei; Wang, Hui; Qin, Qing-Hua
2015-01-16
A meshless numerical scheme combining the operator splitting method (OSM), the radial basis function (RBF) interpolation, and the method of fundamental solutions (MFS) is developed for solving transient nonlinear bioheat problems in two-dimensional (2D) skin tissues. In the numerical scheme, the nonlinearity caused by linear and exponential relationships of temperature-dependent blood perfusion rate (TDBPR) is taken into consideration. In the analysis, the OSM is used first to separate the Laplacian operator and the nonlinear source term, and then the second-order time-stepping schemes are employed for approximating two splitting operators to convert the original governing equation into a linear nonhomogeneous Helmholtz-type governing equation (NHGE) at each time step. Subsequently, the RBF interpolation and the MFS involving the fundamental solution of the Laplace equation are respectively employed to obtain approximated particular and homogeneous solutions of the nonhomogeneous Helmholtz-type governing equation. Finally, the full fields consisting of the particular and homogeneous solutions are enforced to fit the NHGE at interpolation points and the boundary conditions at boundary collocations for determining unknowns at each time step. The proposed method is verified by comparison of other methods. Furthermore, the sensitivity of the coefficients in the cases of a linear and an exponential relationship of TDBPR is investigated to reveal their bioheat effect on the skin tissue.
NASA Astrophysics Data System (ADS)
Thiemann, Edward M. B.
Lightning detection and geolocation networks have found widespread use by the utility, air traffic control and forestry industries as a means of locating strikes and predicting imminent recurrence. Accurate lightning geolocation requires detecting VLF radio emissions at multiple sites using a distributed sensor network with typical baselines exceeding 150 km, along with precision time of arrival estimation to triangulate the origin of a strike. The trend has been towards increasing network accuracy without increasing sensor density by incorporating precision GPS synchronized clocks and faster front-end signal processing. Because lightning radio waveforms evolve as they propagate over a finitely conducting earth, and that measurements for a given strike may have disparate propagation path lengths, accurate models are required to determine waveform fiducials for precise strike location. The transition between the leader phase and return stroke phase may offer such a fiducial and warrants quantitative modeling to improve strike location accuracy. The VLF spectrum of the ubiquitous downward negative lightning strike is able to be modeled by the transfer of several Coulombs of negative charge from cloud to ground in a two-step process. The lightning stepped leader ionizes a plasma channel downward from the cloud at a velocity of approximately 0.05c, leaving a column of charge in its path. Upon connection with a streamer, the subsequent return stroke initiates at or near ground level and travels upward at an average but variable velocity of 0.3c. The return stroke neutralizes any negative charge along its path. Subsequent dart leader and return strokes often travel smoothly down the heated channel left by a preceding stroke, lacking the halting motion of the preceding initial stepped leader and initial return stroke. Existing lightning models often neglect the leader current and rely on approximations when solving for the return stroke. In this thesis, I present an analytic solution to Maxwell's Equations for the lightning leader followed by a novel return stroke model. I model the leader as a downward propagating boxcar function of uniform charge density and constant velocity, and the subsequent return stroke is modeled as an upward propagating boxcar with a time dependent velocity. Charge conservation is applied to ensure self-consistency of the driving current and charge sources, and physical observations are used to support model development. The resulting transient electric and magnetic fields are presented at various distances and delay times and compared with measured waveforms and previously published models.
Guo, Zhiyong; Khattar, Mithun; Schroder, Paul M; Miyahara, Yoshihiro; Wang, Guohua; He, Xiaoshung; Chen, Wenhao; Stepkowski, Stanislaw M
2013-04-01
The molecular mechanism of the extrathymic generation of adaptive, or inducible, CD4(+)Foxp3(+) regulatory T cells (iTregs) remains incompletely defined. We show that exposure of splenic CD4(+)CD25(+)Foxp3(-) cells to IL-2, but not other common γ-chain cytokines, resulted in Stat5 phosphorylation and induced Foxp3 expression in ∼10% of the cells. Thus, IL-2/Stat5 signaling may be critical for Foxp3 induction in peripheral CD4(+)CD25(+)Foxp3(-) iTreg precursors. In this study, to further define the role of IL-2 in the formation of iTreg precursors as well as their subsequent Foxp3 expression, we designed a two-step iTreg differentiation model. During the initial "conditioning" step, CD4(+)CD25(-)Foxp3(-) naive T cells were activated by TCR stimulation. Inhibition of IL-2 signaling via Jak3-Stat5 was required during this step to generate CD4(+)CD25(+)Foxp3(-) cells containing iTreg precursors. During the subsequent Foxp3-induction step driven by cytokines, IL-2 was the most potent cytokine to induce Foxp3 expression in these iTreg precursors. This two-step method generated a large number of iTregs with relatively stable expression of Foxp3, which were able to prevent CD4(+)CD45RB(high) cell-mediated colitis in Rag1(-/-) mice. In consideration of this information, whereas initial inhibition of IL-2 signaling upon T cell priming generates iTreg precursors, subsequent activation of IL-2 signaling in these precursors induces the expression of Foxp3. These findings advance the understanding of iTreg differentiation and may facilitate the therapeutic use of iTregs in immune disorders.
A process for the preparation of cysteine from cystine
Chang, Shih-Ger; Liu, David K.; Griffiths, Elizabeth A.; Littlejohn, David
1989-01-01
The present invention in one aspect relates to a process for the simultaneous removal of NO.sub.x and SO.sub.2 from a fluid stream comprising mixtures thereof and in another aspect relates to the separation, use and/or regeneration of various chemicals contaminated or spent in the process and which includes the steps of: (A) contacting the fluid stream at a temperature of between about 105.degree. and 180.degree. C. with a liquid aqueous slurry or solution comprising an effective amount of an iron chelate of an amino acid moiety having at least one --SH group; (B) separating the fluid stream from the particulates formed in step (A) comprising the chelate of the amino acid moiety and fly ash; (C) washing and separating the particulates of step (B) with an aqeous solution having a pH value of between about 5 to 8; (D) subsequently washing and separating the particulates of step (C) with a strongly acidic aqueous solution having a pH value of between about 1 to 3; (E) washing and separating the particulates of step (D) with an basic aqueous solution having a pH value of between about 9 to 12; (F) optionally adding additional amino acid moiety, iron (II) and alkali to the aqueous liquid from step (D) to produce an aqueous solution or slurry similar to that in step (A) having a pH value of between about 4 to 12; and (G) recycling the aqueous slurry of step (F) to the contacting zone of step (A). Steps (D) and (E) can be carried out in the reverse sequence, however the preferred order is (D) and then (E). In a preferred embodiment the present invention provides an improved process for the preparation (regeneration) of cysteine from cystine, which includes reacting an aqueous solution of cystine at a pH of between about 9 to 13 with a reducing agent selected from hydrogen sulfide or alkali metal sulfides, sulfur dioxide, an alkali metal sulfite or mixtures thereof for a time and at a temperature effective to cleave and reduce the cystine to cysteine with subsequent recovery of the cysteine. In another preferred embodiment the present invention provides a process for the removal of NO.sub.x, SO.sub.2 and particulates from a fluid stream which includes the steps of (A) injecting into a reaction zone an aqueous solution itself comprising (i) an amino acid moiety selected from those described above; (ii) iron (II) ion; and (iii) an alkali, wherein the aqueous solution has a pH of between about 4 and 11; followed by solids separation and washing as is described in steps (B), (C), (D) and (E) above. The overall process is useful to reduce acid rain components from combustion gas sources.
Schulze, H Georg; Turner, Robin F B
2015-06-01
High-throughput information extraction from large numbers of Raman spectra is becoming an increasingly taxing problem due to the proliferation of new applications enabled using advances in instrumentation. Fortunately, in many of these applications, the entire process can be automated, yielding reproducibly good results with significant time and cost savings. Information extraction consists of two stages, preprocessing and analysis. We focus here on the preprocessing stage, which typically involves several steps, such as calibration, background subtraction, baseline flattening, artifact removal, smoothing, and so on, before the resulting spectra can be further analyzed. Because the results of some of these steps can affect the performance of subsequent ones, attention must be given to the sequencing of steps, the compatibility of these sequences, and the propensity of each step to generate spectral distortions. We outline here important considerations to effect full automation of Raman spectral preprocessing: what is considered full automation; putative general principles to effect full automation; the proper sequencing of processing and analysis steps; conflicts and circularities arising from sequencing; and the need for, and approaches to, preprocessing quality control. These considerations are discussed and illustrated with biological and biomedical examples reflecting both successful and faulty preprocessing.
Step-by-step management of refractory gastresophageal reflux disease.
Hershcovici, T; Fass, R
2013-01-01
Up to a third of the patients who receive proton pump inhibitor (PPI) once daily will demonstrate lack or partial response to treatment. There are various mechanisms that contribute to PPI failure and they include residual acid reflux, weakly acidic and weakly alkaline reflux, esophageal hypersensitivity, and psychological comorbidity, among others. Some of these underlying mechanisms may coincide in the same patient. Evaluation for proper compliance and adequate dosing time of PPIs should be the first management step before ordering invasive diagnostic tests. Doubling the PPI dose or switching to another PPI is the second step of management. Upper endoscopy and pH testing appear to have limited diagnostic value in patients who failed PPI treatment. In contrast, esophageal impedance with pH testing (multichannel intraluminal impedance MII-pH) on therapy appears to provide the most insightful information about the subsequent management of these patients (step 3). In step 4, treatment should be tailored to the specific underlying mechanism of patient's PPI failure. For those who demonstrate weakly acidic or weakly alkaline reflux as the underlying cause of their residual symptoms, transient lower esophageal sphincter relaxation reducers, endoscopic treatment, antireflux surgery and pain modulators should be considered. In those with functional heartburn, pain modulators are the cornerstone of therapy. © 2012 Copyright the Authors. Journal compilation © 2012, Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.
Selective catalytic two-step process for ethylene glycol from carbon monoxide
Dong, Kaiwu; Elangovan, Saravanakumar; Sang, Rui; Spannenberg, Anke; Jackstell, Ralf; Junge, Kathrin; Li, Yuehui; Beller, Matthias
2016-01-01
Upgrading C1 chemicals (for example, CO, CO/H2, MeOH and CO2) with C–C bond formation is essential for the synthesis of bulk chemicals. In general, these industrially important processes (for example, Fischer Tropsch) proceed at drastic reaction conditions (>250 °C; high pressure) and suffer from low selectivity, which makes high capital investment necessary and requires additional purifications. Here, a different strategy for the preparation of ethylene glycol (EG) via initial oxidative coupling and subsequent reduction is presented. Separating coupling and reduction steps allows for a completely selective formation of EG (99%) from CO. This two-step catalytic procedure makes use of a Pd-catalysed oxycarbonylation of amines to oxamides at room temperature (RT) and subsequent Ru- or Fe-catalysed hydrogenation to EG. Notably, in the first step the required amines can be efficiently reused. The presented stepwise oxamide-mediated coupling provides the basis for a new strategy for selective upgrading of C1 chemicals. PMID:27377550
Wang, Fen; Yu, Junxia; Xiong, Wanli; Xu, Yuanlai; Chi, Ru-An
2018-01-01
For selective leaching and highly effective recovery of heavy metals from a metallurgical sludge, a two-step leaching method was designed based on the distribution analysis of the chemical fractions of the loaded heavy metal. Hydrochloric acid (HCl) was used as a leaching agent in the first step to leach the relatively labile heavy metals and then ethylenediamine tetraacetic acid (EDTA) was applied to leach the residual metals according to their different fractional distribution. Using the two-step leaching method, 82.89% of Cd, 55.73% of Zn, 10.85% of Cu, and 0.25% of Pb were leached in the first step by 0.7 M HCl at a contact time of 240 min, and the leaching efficiencies for Cd, Zn, Cu, and Pb were elevated up to 99.76, 91.41, 71.85, and 94.06%, by subsequent treatment with 0.2 M EDTA at 480 min, respectively. Furthermore, HCl leaching induced fractional redistribution, which might increase the mobility of the remaining metals and then facilitate the following metal removal by EDTA. The facilitation was further confirmed by the comparison to the one-step leaching method with single HCl or single EDTA, respectively. These results suggested that the designed two-step leaching method by HCl and EDTA could be used for selective leaching and effective recovery of heavy metals from the metallurgical sludge or heavy metal-contaminated solid media.
Efficient Encoding and Rendering of Time-Varying Volume Data
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Smith, Diann; Shih, Ming-Yun; Shen, Han-Wei
1998-01-01
Visualization of time-varying volumetric data sets, which may be obtained from numerical simulations or sensing instruments, provides scientists insights into the detailed dynamics of the phenomenon under study. This paper describes a coherent solution based on quantization, coupled with octree and difference encoding for visualizing time-varying volumetric data. Quantization is used to attain voxel-level compression and may have a significant influence on the performance of the subsequent encoding and visualization steps. Octree encoding is used for spatial domain compression, and difference encoding for temporal domain compression. In essence, neighboring voxels may be fused into macro voxels if they have similar values, and subtrees at consecutive time steps may be merged if they are identical. The software rendering process is tailored according to the tree structures and the volume visualization process. With the tree representation, selective rendering may be performed very efficiently. Additionally, the I/O costs are reduced. With these combined savings, a higher level of user interactivity is achieved. We have studied a variety of time-varying volume datasets, performed encoding based on data statistics, and optimized the rendering calculations wherever possible. Preliminary tests on workstations have shown in many cases tremendous reduction by as high as 90% in both storage space and inter-frame delay.
Power, Jonathan D; Plitt, Mark; Kundu, Prantik; Bandettini, Peter A; Martin, Alex
2017-01-01
Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10-50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion).
Plitt, Mark; Kundu, Prantik; Bandettini, Peter A.; Martin, Alex
2017-01-01
Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10–50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion). PMID:28880888
Fabrication of highly efficient ZnO nanoscintillators
NASA Astrophysics Data System (ADS)
Procházková, Lenka; Gbur, Tomáš; Čuba, Václav; Jarý, Vítězslav; Nikl, Martin
2015-09-01
Photo-induced synthesis of high-efficiency ultrafast nanoparticle scintillators of ZnO was demonstrated. Controlled doping with Ga(III) and La(III) ions together with the optimized method of ZnO synthesis and subsequent two-step annealing in air and under reducing atmosphere allow to achieve very high intensity of UV exciton luminescence, up to 750% of BGO intensity magnitude. Fabricated nanoparticles feature extremely short sub-nanosecond photoluminescence decay times. Temperature dependence of the photoluminescence spectrum within 8-340 K range was investigated and shows the absence of visible defect-related emission within all temperature intervals.
On the pattern of black hole information release
NASA Astrophysics Data System (ADS)
Park, I. Y.; James, F.
2014-03-01
We propose a step towards a resolution to black hole information paradox by analyzing scattering amplitudes of a complex scalar field around a Schwarzschild black hole. The scattering cross-section reveals much information on the incoming state but exhibits flux loss at the same time. The flux loss should be temporary, and indicate mass growth of the black hole. The black hole should Hawking-radiate subsequently, thereby, compensating for the flux loss. By examining the purity issue, we comment on the possibility that information bleaching may be the key to the paradox.
Stephan, Christian; Hamacher, Michael; Blüggel, Martin; Körting, Gerhard; Chamrad, Daniel; Scheer, Christian; Marcus, Katrin; Reidegeld, Kai A; Lohaus, Christiane; Schäfer, Heike; Martens, Lennart; Jones, Philip; Müller, Michael; Auyeung, Kevin; Taylor, Chris; Binz, Pierre-Alain; Thiele, Herbert; Parkinson, David; Meyer, Helmut E; Apweiler, Rolf
2005-09-01
The Bioinformatics Committee of the HUPO Brain Proteome Project (HUPO BPP) meets regularly to execute the post-lab analyses of the data produced in the HUPO BPP pilot studies. On July 7, 2005 the members came together for the 5th time at the European Bioinformatics Institute (EBI) in Hinxton, UK, hosted by Rolf Apweiler. As a main result, the parameter set of the semi-automated data re-analysis of MS/MS spectra has been elaborated and the subsequent work steps have been defined.
Melendez, Johan H.; Santaus, Tonya M.; Brinsley, Gregory; Kiang, Daniel; Mali, Buddha; Hardick, Justin; Gaydos, Charlotte A.; Geddes, Chris D.
2016-01-01
Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by the detection of the genomic target often involving PCR-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (GC) DNA. Our approach is based on the use of highly-focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the present study, we show that highly focused microwaves at 2.45 GHz, using 12.3 mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification in less than 10 minutes total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward towards the development of a point-of-care (POC) platform for detection of gonorrhea infections. PMID:27325503
Helbig, Matthias; Helbig, Silke; Kahla-Witzsch, Heike A; May, Angelika
2009-01-01
Background Public health systems are confronted with constantly rising costs. Furthermore, diagnostic as well as treatment services become more and more specialized. These are the reasons for an interdisciplinary project on the one hand aiming at simplification of planning and scheduling patient appointments, on the other hand at fulfilling all requirements of efficiency and treatment quality. Methods As to understanding procedure and problem solving activities, the responsible project group strictly proceeded with four methodical steps: actual state analysis, analysis of causes, correcting measures, and examination of effectiveness. Various methods of quality management, as for instance opinion polls, data collections, and several procedures of problem identification as well as of solution proposals were applied. All activities were realized according to the requirements of the clinic's ISO 9001:2000 certified quality management system. The development of this project is described step by step from planning phase to inauguration into the daily routine of the clinic and subsequent control of effectiveness. Results Five significant problem fields could be identified. After an analysis of causes the major remedial measures were: installation of a patient telephone hotline, standardization of appointment arrangements for all patients, modification of the appointments book considering the reason for coming in planning defined working periods for certain symptoms and treatments, improvement of telephonic counselling, and transition to flexible time planning by daily updates of the appointments book. After implementation of these changes into the clinic's routine success could be demonstrated by significantly reduced waiting times and resulting increased patient satisfaction. Conclusion Systematic scrutiny of the existing organizational structures of the outpatients' department of our clinic by means of actual state analysis and analysis of causes revealed the necessity of improvement. According to rules of quality management correcting measures and subsequent examination of effectiveness were performed. These changes resulted in higher satisfaction of patients, referring colleagues and clinic staff the like. Additionally the clinic is able to cope with an increasing demand for appointments in outpatients' departments, and the clinic's human resources are employed more effectively. PMID:19183496
Winward, Marcia L; Lipner, Rebecca S; Johnston, Mary M; Cuddy, Monica M; Clauser, Brian E
2013-05-01
This study extends available evidence about the relationship between scores on the Step 2 Clinical Skills (CS) component of the United States Medical Licensing Examination and subsequent performance in residency. It focuses on the relationship between Step 2 CS communication and interpersonal skills scores and communication skills ratings that residency directors assign to residents in their first postgraduate year of internal medicine training. It represents the first large-scale evaluation of the extent to which Step 2 CS communication and interpersonal skills scores can be extrapolated to examinee performance in supervised practice. Hierarchical linear modeling techniques were used to examine the relationships among examinee characteristics, residency program characteristics, and residency-director-provided ratings. The sample comprised 6,306 examinees from 238 internal medicine residency programs who completed Step 2 CS for the first time in 2005 and received ratings during their first year of internal medicine residency training. Although the relationship is modest, Step 2 CS communication and interpersonal skills scores predict communication skills ratings for first-year internal medicine residents after accounting for other factors. The results of this study make a reasonable case that Step 2 CS communication and interpersonal skills scores provide useful information for predicting the level of communication skill that examinees will display in their first year of internal medicine residency training. This finding demonstrates some level of extrapolation from the testing context to behavior in supervised practice, thus providing validity-related evidence for using Step 2 CS communication and interpersonal skills scores in high-stakes decisions.
Postural synergies associated with a stepping task.
Mercer, V S; Sahrmann, S A
1999-12-01
Synergistic relationships among multiple muscle components are thought to exist to simplify control of posture and movement. The purpose of this study was to examine the extent to which children, young adults, and older adults exhibit consistent sequences of postural muscle activation when lifting the right foot onto a step from a standing position. Twenty subjects without known impairments of the neuromuscular system (10 male, 10 female) in each of 3 age groups--children (8-12 years), young adults (25-35 years), and older adults (65-73 years)--participated. A pressure switch taped to the subject's right foot was used to determine movement onset and offset. Latencies of muscle activation were determined using surface electromyography. A preferred postural synergy was defined as the sequence of postural muscle activation observed during the majority of trials for each subject. Mean movement times did not differ among age groups. Although the left tibialis anterior (TA) muscle was the first of the postural muscles activated in 93% of the trials, subjects displayed considerable variability in the subsequent order of postural muscle activation. Across subjects, a total of 14 different preferred postural synergies were observed. Age groups did not differ in the number of different synergies. Early TA activation may reflect biomechanical constraints of the stepping task, producing forward displacement of the center of mass over the changing base of support. The fact that subjects of all ages were quite variable in the specific sequences of muscles activated subsequent to the TA suggests that, for this type of task, therapists should not focus their interventions on facilitating execution of particular synergy patterns.
Surface Modified Particles By Multi-Step Addition And Process For The Preparation Thereof
Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew
2006-01-17
The present invention relates to a new class of surface modified particles and to a multi-step surface modification process for the preparation of the same. The multi-step surface functionalization process involves two or more reactions to produce particles that are compatible with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through organic linking groups.
Effect of cooling step on starch digestibility and other properties of parboiled rice.
USDA-ARS?s Scientific Manuscript database
Retrogradation and the formation of amylose-lipid complex have been reported to contribute to reduced digestibility of starch in parboiled rice. This study looked at the prospect of including a low-temperature holding step in the parboiling process to enhance retrogradation, and subsequently reduce ...
Lim, Heeseon; Kwon, Hyuksang; Kim, Sang Kyu; Kim, Jeong Won
2017-10-05
Light absorption in organic molecules on an inorganic substrate and subsequent electron transfer to the substrate create so-called hybrid charge transfer exciton (HCTE). The relaxation process of the HCTE states largely determines charge separation efficiency or optoelectronic device performance. Here, the study on energy and time-dispersive behavior of photoelectrons at the hybrid interface of copper phthalocyanine (CuPc)/p-GaAs(001) upon light excitation of GaAs reveals a clear pathway for HCTE relaxation and delayed triplet-state formation. According to the ground-state energy level alignment at the interface, CuPc/p-GaAs(001) shows initially fast hole injection from GaAs to CuPc. Thus, the electrons in GaAs and holes in CuPc form an unusual HCTE state manifold. Subsequent electron transfer from GaAs to CuPc generates the formation of the triplet state in CuPc with a few picoseconds delay. Such two-step charge transfer causes delayed triplet-state formation without singlet excitation and subsequent intersystem crossing within the CuPc molecules.
Preparation of lead-zirconium-titanium film and powder by electrodeposition
Bhattacharya, Raghu N.; Ginley, David S.
1995-01-01
A process for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications.
Preparation of lead-zirconium-titanium film and powder by electrodeposition
Bhattacharya, R.N.; Ginley, D.S.
1995-10-31
A process is disclosed for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications. 4 figs.
Salloum, Alison; Scheeringa, Michael S.; Cohen, Judith A.; Storch, Eric A.
2014-01-01
Background In order to develop Stepped Care Trauma-Focused Cognitive Behavioral Therapy (TF-CBT), a definition of early response/non-response is needed to guide decisions about the need for subsequent treatment. Objective The purpose of this article is to (1) establish criterion for defining an early indicator of response/nonresponse to the first step within Stepped Care TF-CBT, and (2) to explore the preliminary clinical utility of the early response/non-response criterion. Method Data from two studies were used: (1) treatment outcome data from a clinical trial in which 17 young children (ages 3 to 6 years) received therapist-directed CBT for children with PTSS were examined to empirically establish the number of posttraumatic stress symptoms to define early treatment response/non-response; and (2) three case examples with young children in Stepped Care TF-CBT were used to explore the utility of the treatment response criterion. Results For defining the responder status criterion, an algorithm of either 3 or fewer PTSS on a clinician-rated measure or being below the clinical cutoff score on a parent-rated measure of childhood PTSS, and being rated as improved, much improved or free of symptoms functioned well for determining whether or not to step up to more intensive treatment. Case examples demonstrated how the criterion were used to guide subsequent treatment, and that responder status criterion after Step One may or may not be aligned with parent preference. Conclusion Although further investigation is needed, the responder status criterion for young children used after Step One of Stepped Care TF-CBT appears promising. PMID:25663796
NASA Astrophysics Data System (ADS)
Suresh Babu, Arun Vishnu; Ramesh, Kiran; Gopalarathnam, Ashok
2017-11-01
In previous research, Ramesh et al. (JFM,2014) developed a low-order discrete vortex method for modeling unsteady airfoil flows with intermittent leading edge vortex (LEV) shedding using a leading edge suction parameter (LESP). LEV shedding is initiated using discrete vortices (DVs) whenever the Leading Edge Suction Parameter (LESP) exceeds a critical value. In subsequent research, the method was successfully employed by Ramesh et al. (JFS, 2015) to predict aeroelastic limit-cycle oscillations in airfoil flows dominated by intermittent LEV shedding. When applied to flows that require large number of time steps, the computational cost increases due to the increasing vortex count. In this research, we apply an amalgamation strategy to actively control the DV count, and thereby reduce simulation time. A pair each of LEVs and TEVs are amalgamated at every time step. The ideal pairs for amalgamation are identified based on the requirement that the flowfield in the vicinity of the airfoil is least affected (Spalart, 1988). Instead of placing the amalgamated vortex at the centroid, we place it at an optimal location to ensure that the leading-edge suction and the airfoil bound circulation are conserved. Results of the initial study are promising.
Detecting and Locating Seismic Events Without Phase Picks or Velocity Models
NASA Astrophysics Data System (ADS)
Arrowsmith, S.; Young, C. J.; Ballard, S.; Slinkard, M.
2015-12-01
The standard paradigm for seismic event monitoring is to scan waveforms from a network of stations and identify the arrival time of various seismic phases. A signal association algorithm then groups the picks to form events, which are subsequently located by minimizing residuals between measured travel times and travel times predicted by an Earth model. Many of these steps are prone to significant errors which can lead to erroneous arrival associations and event locations. Here, we revisit a concept for event detection that does not require phase picks or travel time curves and fuses detection, association and location into a single algorithm. Our pickless event detector exploits existing catalog and waveform data to build an empirical stack of the full regional seismic wavefield, which is subsequently used to detect and locate events at a network level using correlation techniques. Because the technique uses more of the information content of the original waveforms, the concept is particularly powerful for detecting weak events that would be missed by conventional methods. We apply our detector to seismic data from the University of Utah Seismograph Stations network and compare our results with the earthquake catalog published by the University of Utah. We demonstrate that the pickless detector can detect and locate significant numbers of events previously missed by standard data processing techniques.
Bonduelle, Colin V; Lau, Woon M; Gillies, Elizabeth R
2011-05-01
The functionalization of surfaces with poly(ethylene oxide) (PEO) is an effective means of imparting resistance to the adsorption of proteins and the attachment and growth of cells, properties that are critical for many biomedical applications. In this work, a new hyperthermal hydrogen induced cross-linking (HHIC) method was explored as a simple one-step approach for attaching PEO to surfaces through the selective cleavage of C-H bonds and subsequent cross-linking of the resulting carbon radicals. In order to study the effects of the process on the polymer, PEO-coated silicon wafers were prepared and the effects of different treatment times were investigated. Subsequently, using an optimized treatment time and a modified butyl polymer with increased affinity for PEO, the technique was applied to butyl rubber surfaces. All of the treated surfaces exhibited significantly reduced protein adsorption and cell growth relative to control surfaces and compared favorably with surfaces that were functionalized with PEO using conventional chemical methods. Thus HHIC is a simple and effective means of attaching PEO to non-functional polymer surfaces.
Automatic and efficient methods applied to the binarization of a subway map
NASA Astrophysics Data System (ADS)
Durand, Philippe; Ghorbanzadeh, Dariush; Jaupi, Luan
2015-12-01
The purpose of this paper is the study of efficient methods for image binarization. The objective of the work is the metro maps binarization. the goal is to binarize, avoiding noise to disturb the reading of subway stations. Different methods have been tested. By this way, a method given by Otsu gives particularly interesting results. The difficulty of the binarization is the choice of this threshold in order to reconstruct. Image sticky as possible to reality. Vectorization is a step subsequent to that of the binarization. It is to retrieve the coordinates points containing information and to store them in the two matrices X and Y. Subsequently, these matrices can be exported to a file format 'CSV' (Comma Separated Value) enabling us to deal with them in a variety of software including Excel. The algorithm uses quite a time calculation in Matlab because it is composed of two "for" loops nested. But the "for" loops are poorly supported by Matlab, especially in each other. This therefore penalizes the computation time, but seems the only method to do this.
Pre-polishing on a CNC platform with bound abrasive contour tools
NASA Astrophysics Data System (ADS)
Schoeffer, Adrienne E.
2003-05-01
Deterministic micorgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-51.tm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an OptiproTM CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.
Prepolishing on a CNC platform with bound abrasive contour tools
NASA Astrophysics Data System (ADS)
Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.
2003-05-01
Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.
NASA Astrophysics Data System (ADS)
Petruš, Ondrej; Oriňak, Andrej; Oriňaková, Renáta; Orságová Králová, Zuzana; Múdra, Erika; Kupková, Miriam; Kovaľ, Karol
2017-11-01
Two types of metallised nanocavities (single and hybrid) were fabricated by colloid lithography followed by electrochemical deposition of Ni and subsequently Ag layers. Introductory Ni deposition step iniciates more homogenous decoration of nanocavities with Ag nanoparticles. Silver nanocavity decoration has been so performed with lower nucleation rate and with Ag nanoparticles homogeinity increase. By this, two step Ni and Ag deposition trough polystyrene nanospheres (100, 300, 500, 700, 900 nm), the various Ag surfaces were obtained. Ni layer formation in the first step of deposition enabled more precise controlling of Ag film deposition and thus final Ag surface morphology. Prepared substrates were tested as active surfaces in SERS application. The best SERS signal enhancement was observed at 500 nm Ag nanocavities with normalised thickness Ni layer ∼0.5. Enhancement factor has been established at value 1.078 × 1010; time stability was determined within 13 weeks; charge distribution at nanocavity Ag surfaces as well as reflection spectra were calculated by FDTD method. Newly prepared nanocavity surface can be applied in SERS analysis, predominantly.
A method for real-time generation of augmented reality work instructions via expert movements
NASA Astrophysics Data System (ADS)
Bhattacharya, Bhaskar; Winer, Eliot
2015-03-01
Augmented Reality (AR) offers tremendous potential for a wide range of fields including entertainment, medicine, and engineering. AR allows digital models to be integrated with a real scene (typically viewed through a video camera) to provide useful information in a variety of contexts. The difficulty in authoring and modifying scenes is one of the biggest obstacles to widespread adoption of AR. 3D models must be created, textured, oriented and positioned to create the complex overlays viewed by a user. This often requires using multiple software packages in addition to performing model format conversions. In this paper, a new authoring tool is presented which uses a novel method to capture product assembly steps performed by a user with a depth+RGB camera. Through a combination of computer vision and imaging process techniques, each individual step is decomposed into objects and actions. The objects are matched to those in a predetermined geometry library and the actions turned into animated assembly steps. The subsequent instruction set is then generated with minimal user input. A proof of concept is presented to establish the method's viability.
Automated Classification of Asteroids into Families at Work
NASA Astrophysics Data System (ADS)
Knežević, Zoran; Milani, Andrea; Cellino, Alberto; Novaković, Bojan; Spoto, Federica; Paolicchi, Paolo
2014-07-01
We have recently proposed a new approach to the asteroid family classification by combining the classical HCM method with an automated procedure to add newly discovered members to existing families. This approach is specifically intended to cope with ever increasing asteroid data sets, and consists of several steps to segment the problem and handle the very large amount of data in an efficient and accurate manner. We briefly present all these steps and show the results from three subsequent updates making use of only the automated step of attributing the newly numbered asteroids to the known families. We describe the changes of the individual families membership, as well as the evolution of the classification due to the newly added intersections between the families, resolved candidate family mergers, and emergence of the new candidates for the mergers. We thus demonstrate how by the new approach the asteroid family classification becomes stable in general terms (converging towards a permanent list of confirmed families), and in the same time evolving in details (to account for the newly discovered asteroids) at each update.
Belevich, Nikolai P; Bertsova, Yulia V; Verkhovskaya, Marina L; Baykov, Alexander A; Bogachev, Alexander V
2016-02-01
Bacterial Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) uses a unique set of prosthetic redox groups-two covalently bound FMN residues, a [2Fe-2S] cluster, FAD, riboflavin and a Cys4[Fe] center-to catalyze electron transfer from NADH to ubiquinone in a reaction coupled with Na(+) translocation across the membrane. Here we used an ultra-fast microfluidic stopped-flow instrument to determine rate constants and the difference spectra for the six consecutive reaction steps of Vibrio harveyi Na(+)-NQR reduction by NADH. The instrument, with a dead time of 0.25 ms and optical path length of 1 cm allowed collection of visible spectra in 50-μs intervals. By comparing the spectra of reaction steps with the spectra of known redox transitions of individual enzyme cofactors, we were able to identify the chemical nature of most intermediates and the sequence of electron transfer events. A previously unknown spectral transition was detected and assigned to the Cys4[Fe] center reduction. Electron transfer from the [2Fe-2S] cluster to the Cys4[Fe] center and all subsequent steps were markedly accelerated when Na(+) concentration was increased from 20 μM to 25 mM, suggesting coupling of the former step with tight Na(+) binding to or occlusion by the enzyme. An alternating access mechanism was proposed to explain electron transfer between subunits NqrF and NqrC. According to the proposed mechanism, the Cys4[Fe] center is alternatively exposed to either side of the membrane, allowing the [2Fe-2S] cluster of NqrF and the FMN residue of NqrC to alternatively approach the Cys4[Fe] center from different sides of the membrane. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argueello, J.G.; Dohrmann, C.R.; Carne, T.G.
The combined analysis/test effort described in this paper compares predictions with measured data from a step-relaxation test in the absence of significant wind-driven aerodynamic loading. The process described here is intended to illustrate a method for validation of time domain codes for structural analysis of wind turbine structures. Preliminary analyses were performed to investigate the transient dynamic response that the rotating Sandia 34 m Vertical Axis Wind Turbine (VAWT) would undergo when one of the two blades was excited by step-relaxation. The calculations served two purposes. The first was for pretest planning to evaluate the relative importance of the variousmore » forces that would be acting on the structure during the test and to determine if the applied force in the step-relaxation would be sufficient to produce an excitation that was distinguishable from that produced by the aerodynamic loads. The second was to provide predictions that could subsequently be compared to the data from the test. The test was carried out specifically to help in the validation of the time-domain structural dynamics code, VAWT-SDS, which predicts the dynamic response of VAWTs subject to transient events. Post-test comparisons with the data were performed and showed a qualitative agreement between pretest predictions and measured response. However, they also showed that there was significantly more damping in the measurements than included in the predictions. Efforts to resolve this difference, including post-test analyses, were undertaken and are reported herein. The overall effort described in this paper represents a major step in the process of arriving at a validated structural dynamics code.« less
Continuum Damage Mechanics Used to Predict the Creep Life of Monolithic Ceramics
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Jadaan, Osama M.
1998-01-01
Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated temperature applications. High-temperature and long-duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. An analytical methodology in the form of the integrated design program-Ceramics Analysis and Reliability Evaluation of Structures/Creep (CARES/Creep) has been developed by the NASA Lewis Research Center to predict the life of ceramic structural components subjected to creep rupture conditions. This program utilizes commercially available finite element packages and takes into account the transient state of stress and creep strain distributions (stress relaxation as well as the asymmetric response to tension and compression). The creep life of a component is discretized into short time steps, during which the stress distribution is assumed constant. Then, the damage is calculated for each time step on the basis of a modified Monkman-Grant (MMG) creep rupture criterion. The cumulative damage is subsequently calculated as time elapses in a manner similar to Miner's rule for cyclic fatigue loading. Failure is assumed to occur when the normalized cumulative damage at any point in the component reaches unity. The corresponding time is the creep rupture life for that component.
One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX
Nitsche, Andreas; Kurth, Andreas; Dunkhorst, Anna; Pänke, Oliver; Sielaff, Hendrik; Junge, Wolfgang; Muth, Doreen; Scheller, Frieder; Stöcklein, Walter; Dahmen, Claudia; Pauli, Georg; Kage, Andreas
2007-01-01
Background As a new class of therapeutic and diagnostic reagents, more than fifteen years ago RNA and DNA aptamers were identified as binding molecules to numerous small compounds, proteins and rarely even to complete pathogen particles. Most aptamers were isolated from complex libraries of synthetic nucleic acids by a process termed SELEX based on several selection and amplification steps. Here we report the application of a new one-step selection method (MonoLEX) to acquire high-affinity DNA aptamers binding Vaccinia virus used as a model organism for complex target structures. Results The selection against complete Vaccinia virus particles resulted in a 64-base DNA aptamer specifically binding to orthopoxviruses as validated by dot blot analysis, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy and real-time PCR, following an aptamer blotting assay. The same oligonucleotide showed the ability to inhibit in vitro infection of Vaccinia virus and other orthopoxviruses in a concentration-dependent manner. Conclusion The MonoLEX method is a straightforward procedure as demonstrated here for the identification of a high-affinity DNA aptamer binding Vaccinia virus. MonoLEX comprises a single affinity chromatography step, followed by subsequent physical segmentation of the affinity resin and a single final PCR amplification step of bound aptamers. Therefore, this procedure improves the selection of high affinity aptamers by reducing the competition between aptamers of different affinities during the PCR step, indicating an advantage for the single-round MonoLEX method. PMID:17697378
Ilha, Jocemar; Centenaro, Lígia A; Broetto Cunha, Núbia; de Souza, Daniela F; Jaeger, Mariane; do Nascimento, Patrícia S; Kolling, Janaína; Ben, Juliana; Marcuzzo, Simone; Wyse, Angela T S; Gottfried, Carmem; Achaval, Matilde
2011-06-01
Several studies have shown that treadmill training improves neurological outcomes and promotes plasticity in lumbar spinal cord of spinal animals. The morphological and biochemical mechanisms underlying these phenomena remain unclear. The purpose of this study was to provide evidence of activity-dependent plasticity in spinal cord segment (L5) below a complete spinal cord transection (SCT) at T8-9 in rats in which the lower spinal cord segments have been fully separated from supraspinal control and that subsequently underwent treadmill step training. Five days after SCT, spinal animals started a step-training program on a treadmill with partial body weight support and manual step help. Hindlimb movements were evaluated over time and scored on the basis of the open-field BBB scale and were significantly improved at post-injury weeks 8 and 10 in trained spinal animals. Treadmill training also showed normalization of withdrawal reflex in trained spinal animals, which was significantly different from the untrained animals at post-injury weeks 8 and 10. Additionally, compared to controls, spinal rats had alpha motoneuronal soma size atrophy and reduced synaptophysin protein expression and Na(+), K(+)-ATPase activity in lumbar spinal cord. Step-trained rats had motoneuronal soma size, synaptophysin expression and Na(+), K(+)-ATPase activity similar to control animals. These findings suggest that treadmill step training can promote activity-dependent neural plasticity in lumbar spinal cord, which may lead to neurological improvements without supraspinal descending control after complete spinal cord injury.
Two-Step Oxidation of Refractory Gold Concentrates with Different Microbial Communities.
Wang, Guo-Hua; Xie, Jian-Ping; Li, Shou-Peng; Guo, Yu-Jie; Pan, Ying; Wu, Haiyan; Liu, Xin-Xing
2016-11-28
Bio-oxidation is an effective technology for treatment of refractory gold concentrates. However, the unsatisfactory oxidation rate and long residence time, which cause a lower cyanide leaching rate and gold recovery, are key factors that restrict the application of traditional bio-oxidation technology. In this study, the oxidation rate of refractory gold concentrates and the adaption of microorganisms were analyzed to evaluate a newly developed two-step pretreatment process, which includes a high temperature chemical oxidation step and a subsequent bio-oxidation step. The oxidation rate and recovery rate of gold were improved significantly after the two-step process. The results showed that the highest oxidation rate of sulfide sulfur could reach to 99.01 % with an extreme thermophile microbial community when the pulp density was 5%. Accordingly, the recovery rate of gold was elevated to 92.51%. Meanwhile, the results revealed that moderate thermophiles performed better than acidophilic mesophiles and extreme thermophiles, whose oxidation rates declined drastically when the pulp density was increased to 10% and 15%. The oxidation rates of sulfide sulfur with moderate thermophiles were 93.94% and 65.73% when the pulp density was increased to 10% and 15%, respectively. All these results indicated that the two-step pretreatment increased the oxidation rate of refractory gold concentrates and is a potential technology to pretreat the refractory sample. Meanwhile, owing to the sensitivity of the microbial community under different pulp density levels, the optimization of microbial community in bio-oxidation is necessary in industry.
NASA Astrophysics Data System (ADS)
Rath, Asawari D.; Kundu, S.; Ray, A. K.
2018-02-01
Laser induced photoionization of atoms shows significant dependence on the choice of polarizations of lasers. In multi-step, multi-photon excitation and subsequent ionization of atoms different polarization combinations of the exciting lasers lead to distinctly different ion yields. This fact is exploited in this work to determine total angular momenta of odd-parity energy levels of U I lying at ∼ 4 eV from its ground level using resonance ionization laser polarization spectroscopy in time of flight mass spectrometer. These levels are populated by two-step resonant excitation using two pulsed dye lasers with preset polarizations of choice followed by nonresonant ionization by third laser. The dependence of ionization yield on specific polarizations of the first two lasers is studied experimentally for each level under consideration. This dependence when compared to simulations makes possible unambiguous assignment of J angular momenta to these levels.
NASA Astrophysics Data System (ADS)
Mustafa, Mohammad Razif Bin; Dhahi, Th S.; Ehfaed, Nuri. A. K. H.; Adam, Tijjani; Hashim, U.; Azizah, N.; Mohammed, Mohammed; Noriman, N. Z.
2017-09-01
The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.
Setting a research question, aim and objective.
Doody, Owen; Bailey, Maria E
2016-03-01
To describe the development of a research question, aim and objective. The first steps of any study are developing the research question, aim and objective. Subsequent steps develop from these and they govern the researchers' choice of population, setting, data to be collected and time period for the study. Clear, succinctly posed research questions, aims and objectives are essential if studies are to be successful. Researchers developing their research questions, aims and objectives generally experience difficulties. They are often overwhelmed trying to convert what they see as a relevant issue from practice into research. This necessitates engaging with the relevant published literature and knowledgeable people. This paper identifies the issues to be considered when developing a research question, aim and objective. Understanding these considerations will enable researchers to effectively present their research question, aim and objective. To conduct successful studies, researchers should develop clear research questions, aims and objectives.
Huang, Kai; Demadrille, Renaud; Silly, Mathieu G; Sirotti, Fausto; Reiss, Peter; Renault, Olivier
2010-08-24
High-energy resolution photoelectron spectroscopy (DeltaE < 200 meV) is used to investigate the internal structure of semiconductor quantum dots containing low Z-contrast elements. In InP/ZnS core/shell nanocrystals synthesized using a single-step procedure (core and shell precursors added at the same time), a homogeneously alloyed InPZnS core structure is evidenced by quantitative analysis of their In3d(5/2) spectra recorded at variable excitation energy. When using a two-step method (core InP nanocrystal synthesis followed by subsequent ZnS shell growth), XPS analysis reveals a graded core/shell interface. We demonstrate the existence of In-S and S(x)-In-P(1-x) bonding states in both types of InP/ZnS nanocrystals, which allows a refined view on the underlying reaction mechanisms.
A new algorithm for automatic Outlier Detection in GPS Time Series
NASA Astrophysics Data System (ADS)
Cannavo', Flavio; Mattia, Mario; Rossi, Massimo; Palano, Mimmo; Bruno, Valentina
2010-05-01
Nowadays continuous GPS time series are considered a crucial product of GPS permanent networks, useful in many geo-science fields, such as active tectonics, seismology, crustal deformation and volcano monitoring (Altamimi et al. 2002, Elósegui et al. 2006, Aloisi et al. 2009). Although the GPS data elaboration software has increased in reliability, the time series are still affected by different kind of noise, from the intrinsic noise (e.g. thropospheric delay) to the un-modeled noise (e.g. cycle slips, satellite faults, parameters changing). Typically GPS Time Series present characteristic noise that is a linear combination of white noise and correlated colored noise, and this characteristic is fractal in the sense that is evident for every considered time scale or sampling rate. The un-modeled noise sources result in spikes, outliers and steps. These kind of errors can appreciably influence the estimation of velocities of the monitored sites. The outlier detection in generic time series is a widely treated problem in literature (Wei, 2005), while is not fully developed for the specific kind of GPS series. We propose a robust automatic procedure for cleaning the GPS time series from the outliers and, especially for long daily series, steps due to strong seismic or volcanic events or merely instrumentation changing such as antenna and receiver upgrades. The procedure is basically divided in two steps: a first step for the colored noise reduction and a second step for outlier detection through adaptive series segmentation. Both algorithms present novel ideas and are nearly unsupervised. In particular, we propose an algorithm to estimate an autoregressive model for colored noise in GPS time series in order to subtract the effect of non Gaussian noise on the series. This step is useful for the subsequent step (i.e. adaptive segmentation) which requires the hypothesis of Gaussian noise. The proposed algorithms are tested in a benchmark case study and the results confirm that the algorithms are effective and reasonable. Bibliography - Aloisi M., A. Bonaccorso, F. Cannavò, S. Gambino, M. Mattia, G. Puglisi, E. Boschi, A new dyke intrusion style for the Mount Etna May 2008 eruption modelled through continuous tilt and GPS data, Terra Nova, Volume 21 Issue 4 , Pages 316 - 321, doi: 10.1111/j.1365-3121.2009.00889.x (August 2009) - Altamimi Z., Sillard P., Boucher C., ITRF2000: A new release of the International Terrestrial Reference frame for earth science applications, J Geophys Res-Solid Earth, 107 (B10): art. no.-2214, (Oct 2002) - Elósegui, P., J. L. Davis, D. Oberlander, R. Baena, and G. Ekström , Accuracy of high-rate GPS for seismology, Geophys. Res. Lett., 33, L11308, doi:10.1029/2006GL026065 (2006) - Wei W. S., Time Series Analysis: Univariate and Multivariate Methods, Addison Wesley (2 edition), ISBN-10: 0321322169 (July, 2005)
Loibl, S. F.; Harpaz, Z.; Zitterbart, R.
2016-01-01
The total chemical synthesis of proteins is a tedious and time-consuming endeavour. The typical steps involve solid phase synthesis of peptide thioesters and cysteinyl peptides, native chemical ligation (NCL) in solution, desulfurization or removal of ligation auxiliaries in the case of extended NCL as well as many intermediary and final HPLC purification steps. With an aim to facilitate and improve the throughput of protein synthesis we developed the first method for the rapid chemical total on-resin synthesis of proteins that proceeds without a single HPLC-purification step. The method relies on the combination of three orthogonal protein tags that allow sequential immobilization (via the N-terminal and C-terminal ends), extended native chemical ligation and release reactions. The peptide fragments to be ligated are prepared by conventional solid phase synthesis and used as crude materials in the subsequent steps. An N-terminal His6 unit permits selective immobilization of the full length peptide thioester onto Ni-NTA agarose beads. The C-terminal peptide fragment carries a C-terminal peptide hydrazide and an N-terminal 2-mercapto-2-phenyl-ethyl ligation auxiliary, which serves as a reactivity tag for the full length peptide. As a result, only full length peptides, not truncation products, react in the subsequent on-bead extended NCL. After auxiliary removal the ligation product is liberated into solution upon treatment with mild acid, and is concomitantly captured by an aldehyde-modified resin. This step allows the removal of the most frequently observed by-product in NCL chemistry, i.e. the hydrolysed peptide thioester (which does not contain a C-terminal peptide hydrazide). Finally, the target protein is released with diluted hydrazine or acid. We applied the method in the synthesis of 46 to 126 amino acid long MUC1 proteins comprising 2–6 copies of a 20mer tandem repeat sequence. Only three days were required for the parallel synthesis of 9 MUC1 proteins which were obtained in 8–33% overall yield with 90–98% purity despite the omission of HPLC purification. PMID:28451120
Cycle time and cost reduction in large-size optics production
NASA Astrophysics Data System (ADS)
Hallock, Bob; Shorey, Aric; Courtney, Tom
2005-09-01
Optical fabrication process steps have remained largely unchanged for decades. Raw glass blanks have been rough-machined, generated to near net shape, loose abrasive or fine bound diamond ground and then polished. This set of processes is sequential and each subsequent operation removes the damage and micro cracking induced by the prior operational step. One of the long-lead aspects of this process has been the glass polishing. Primarily, this has been driven by the need to remove relatively large volumes of glass material compared to the polishing removal rate to ensure complete damage removal. The secondary time driver has been poor convergence to final figure and the corresponding polish-metrology cycles. The overall cycle time and resultant cost due to labor, equipment utilization and shop efficiency is increased, often significantly, when the optical prescription is aspheric. In addition to the long polishing cycle times, the duration of the polishing time is often very difficult to predict given that current polishing processes are not deterministic processes. This paper will describe a novel approach to large optics finishing, relying on several innovative technologies to be presented and illustrated through a variety of examples. The cycle time reductions enabled by this approach promises to result in significant cost and lead-time reductions for large size optics. In addition, corresponding increases in throughput will provide for less capital expenditure per square meter of optic produced. This process, comparative cycles time estimates and preliminary results will be discussed.
Lightning electromagnetic radiation field spectra in the interval from 0. 2 to 20 MHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willett, J.C.; Bailey, J.C.; Leteinturier, C.
1990-11-20
Average energy spectral densities are presented for the fast transitions in most of the components that produce large radiation field impulses from cloud-to-ground lightning; first and subsequent return strokes; stepped, dart-stepped, and 'chaotic' leaders; and 'characteristic' cloud pulses. A disagreement in the previous literature about the spectral energy radiated by return strokes at high frequencies is noted and explained. The authors show that the spectral amplitudes are not seriously distorted by propagation over less than 35 km of seawater, although as much as 45 km of such propagation does appear to produce significant attenuation above about 10 MHz. First andmore » subsequent return strokes produce identical spectra between 0.2 and 20 MHz. The spectra of stepped and dart-stepped leader steps are nearly identical and are very similar to that of characteristic pulses. The spectra of leader steps also match return stroke spectra above 2-3 MHz after the former are increased by about 7 dB. The shapes of individual spectra do not depend on their amplitude, so the shapes of the average spectra are probably not distorted by the trigger thresholds used in the data acquisition. Return strokes are the strongest sources of radiation from cloud-to-ground lightning in the 0.2- to 20-MHz frequency range, although certain intracloud processes are stronger radiators above 8 MHz.« less
Single-cell transcriptome conservation in cryopreserved cells and tissues.
Guillaumet-Adkins, Amy; Rodríguez-Esteban, Gustavo; Mereu, Elisabetta; Mendez-Lago, Maria; Jaitin, Diego A; Villanueva, Alberto; Vidal, August; Martinez-Marti, Alex; Felip, Enriqueta; Vivancos, Ana; Keren-Shaul, Hadas; Heath, Simon; Gut, Marta; Amit, Ido; Gut, Ivo; Heyn, Holger
2017-03-01
A variety of single-cell RNA preparation procedures have been described. So far, protocols require fresh material, which hinders complex study designs. We describe a sample preservation method that maintains transcripts in viable single cells, allowing one to disconnect time and place of sampling from subsequent processing steps. We sequence single-cell transcriptomes from >1000 fresh and cryopreserved cells using 3'-end and full-length RNA preparation methods. Our results confirm that the conservation process did not alter transcriptional profiles. This substantially broadens the scope of applications in single-cell transcriptomics and could lead to a paradigm shift in future study designs.
The Impact of Participating in a Peer Assessment Activity on Subsequent Academic Performance
ERIC Educational Resources Information Center
Jhangiani, Rajiv S.
2016-01-01
The present study investigates the impact of participation in a peer assessment activity on subsequent academic performance. Students in two sections of an introductory psychology course completed a practice quiz 1 week prior to each of three course exams. Students in the experimental group participated in a five-step double-blind peer assessment…
NASA Astrophysics Data System (ADS)
Sadeghpour-Motlagh, M.; Mokhtari-Zonouzi, K.; Aghajani, H.; Kakroudi, M. Ghassemi
2014-06-01
In this work, two-step anodizing of commercial aluminum foil in acid oxalic solution was applied for producing alumina film. Then the anodic alumina film was etched in sodium hydroxide (NaOH) solution resulting dense and aligned alumina nanowires. This procedure leads to splitting of alumina nanotubes. Subsequently nanowires are produced. The effects of NaOH solution concentration (0.2-1 mol/L) and etching time (60-300 s) at constant temperature on characteristic of nanotubes and produced nanowires were investigated using scanning electron microscopy. The results show that an increase in NaOH solution concentration increases the rate of nanowires production and in turn the manipulation process will be more specific.
Silicon-carbon bond inversions driven by 60-keV electrons in graphene.
Susi, Toma; Kotakoski, Jani; Kepaptsoglou, Demie; Mangler, Clemens; Lovejoy, Tracy C; Krivanek, Ondrej L; Zan, Recep; Bangert, Ursel; Ayala, Paola; Meyer, Jannik C; Ramasse, Quentin
2014-09-12
We demonstrate that 60-keV electron irradiation drives the diffusion of threefold-coordinated Si dopants in graphene by one lattice site at a time. First principles simulations reveal that each step is caused by an electron impact on a C atom next to the dopant. Although the atomic motion happens below our experimental time resolution, stochastic analysis of 38 such lattice jumps reveals a probability for their occurrence in a good agreement with the simulations. Conversions from three- to fourfold coordinated dopant structures and the subsequent reverse process are significantly less likely than the direct bond inversion. Our results thus provide a model of nondestructive and atomically precise structural modification and detection for two-dimensional materials.
A linear stability analysis for nonlinear, grey, thermal radiative transfer problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollaber, Allan B., E-mail: wollaber@lanl.go; Larsen, Edward W., E-mail: edlarsen@umich.ed
2011-02-20
We present a new linear stability analysis of three time discretizations and Monte Carlo interpretations of the nonlinear, grey thermal radiative transfer (TRT) equations: the widely used 'Implicit Monte Carlo' (IMC) equations, the Carter Forest (CF) equations, and the Ahrens-Larsen or 'Semi-Analog Monte Carlo' (SMC) equations. Using a spatial Fourier analysis of the 1-D Implicit Monte Carlo (IMC) equations that are linearized about an equilibrium solution, we show that the IMC equations are unconditionally stable (undamped perturbations do not exist) if {alpha}, the IMC time-discretization parameter, satisfies 0.5 < {alpha} {<=} 1. This is consistent with conventional wisdom. However, wemore » also show that for sufficiently large time steps, unphysical damped oscillations can exist that correspond to the lowest-frequency Fourier modes. After numerically confirming this result, we develop a method to assess the stability of any time discretization of the 0-D, nonlinear, grey, thermal radiative transfer problem. Subsequent analyses of the CF and SMC methods then demonstrate that the CF method is unconditionally stable and monotonic, but the SMC method is conditionally stable and permits unphysical oscillatory solutions that can prevent it from reaching equilibrium. This stability theory provides new conditions on the time step to guarantee monotonicity of the IMC solution, although they are likely too conservative to be used in practice. Theoretical predictions are tested and confirmed with numerical experiments.« less
A linear stability analysis for nonlinear, grey, thermal radiative transfer problems
NASA Astrophysics Data System (ADS)
Wollaber, Allan B.; Larsen, Edward W.
2011-02-01
We present a new linear stability analysis of three time discretizations and Monte Carlo interpretations of the nonlinear, grey thermal radiative transfer (TRT) equations: the widely used “Implicit Monte Carlo” (IMC) equations, the Carter Forest (CF) equations, and the Ahrens-Larsen or “Semi-Analog Monte Carlo” (SMC) equations. Using a spatial Fourier analysis of the 1-D Implicit Monte Carlo (IMC) equations that are linearized about an equilibrium solution, we show that the IMC equations are unconditionally stable (undamped perturbations do not exist) if α, the IMC time-discretization parameter, satisfies 0.5 < α ⩽ 1. This is consistent with conventional wisdom. However, we also show that for sufficiently large time steps, unphysical damped oscillations can exist that correspond to the lowest-frequency Fourier modes. After numerically confirming this result, we develop a method to assess the stability of any time discretization of the 0-D, nonlinear, grey, thermal radiative transfer problem. Subsequent analyses of the CF and SMC methods then demonstrate that the CF method is unconditionally stable and monotonic, but the SMC method is conditionally stable and permits unphysical oscillatory solutions that can prevent it from reaching equilibrium. This stability theory provides new conditions on the time step to guarantee monotonicity of the IMC solution, although they are likely too conservative to be used in practice. Theoretical predictions are tested and confirmed with numerical experiments.
Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba
2013-01-01
A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.
Walther, Cornelia; Kellner, Martin; Berkemeyer, Matthias; Brocard, Cécile; Dürauer, Astrid
2017-10-21
Escherichia coli stores large amounts of highly pure product within inclusion bodies (IBs). To take advantage of this beneficial feature, after cell disintegration, the first step to optimal product recovery is efficient IB preparation. This step is also important in evaluating upstream optimization and process development, due to the potential impact of bioprocessing conditions on product quality and on the nanoscale properties of IBs. Proper IB preparation is often neglected, due to laboratory-scale methods requiring large amounts of materials and labor. Miniaturization and parallelization can accelerate analyses of individual processing steps and provide a deeper understanding of up- and downstream processing interdependencies. Consequently, reproducible, predictive microscale methods are in demand. In the present study, we complemented a recently established high-throughput cell disruption method with a microscale method for preparing purified IBs. This preparation provided results comparable to laboratory-scale IB processing, regarding impurity depletion, and product loss. Furthermore, with this method, we performed a "design of experiments" study to demonstrate the influence of fermentation conditions on the performance of subsequent downstream steps and product quality. We showed that this approach provided a 300-fold reduction in material consumption for each fermentation condition and a 24-fold reduction in processing time for 24 samples.
Barber, Larissa K; Cucalon, Maria S
2017-12-01
University students often have sleep issues that arise from poor sleep hygiene practices and technology use patterns. Yet, technology-related behaviors are often neglected in sleep hygiene education. This study examined whether the Sleep Treatment Education Program for Students-modified to include information regarding managing technology use (STEPS-TECH)-helps improve both subjective and objective sleep outcomes among university students. Results of an experimental study among 78 university students showed improvements in objective indicators of sleep quantity (total sleep time) and sleep quality (less awakenings) during the subsequent week for students in the STEPS-TECH intervention group compared to a control group. Exploratory analyses indicated that effects were driven by improvements in weekend days immediately following the intervention. There were also no intervention effects on subjective sleep quality or quantity outcomes. In terms of self-reported behavioral responses to educational content in the intervention, there were no group differences in sleep hygiene practices or technology use before bedtime. However, the intervention group reported less technology use during sleep periods than the control group. These preliminary findings suggest that STEPS-TECH may be a useful educational tool to help improve objective sleep and reduce technology use during sleep periods among university students. Copyright © 2017 John Wiley & Sons, Ltd.
The Polar Cusp Observed by Cluster Under Constant Imf-Bz Southward
NASA Astrophysics Data System (ADS)
Escoubet, C. P.; Berchem, J.; Pitout, F.; Trattner, K. J.; Richard, R. L.; Taylor, M. G.; Soucek, J.; Grison, B.; Laakso, H. E.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.; Daly, P. W.
2011-12-01
The Earth's magnetic field is influenced by the interplanetary magnetic field (IMF), specially at the magnetopause where both magnetic fields enter in direct contact and magnetic reconnection can be initiated. In the polar regions, the polar cusp that extends from the magnetopause down to the ionosphere is also directly influenced. The reconnection not only allow ions and electrons from the solar wind to enter the polar cusp but also give an impulse to the magnetic field lines threading the polar cusp through the reconnection electric field. A dispersion in energy of the ions is subsequently produced by the motion of field lines and the time-of-flight effect on down-going ions. If reconnection is continuous and operates at constant rate, the ion dispersion is smooth and continuous. On the other hand if the reconnection rate varies, we expect interruption in the dispersion forming energy steps or staircase. Similarly, multiple entries near the magnetopause could also produce steps at low or mid-altitude when a spacecraft is crossing subsequently the field lines originating from these multiple sources. Cluster with four spacecraft following each other in the mid-altitude cusp can be used to distinguish between these "temporal" and "spatial" effects. We will show two Cluster cusp crossings where the spacecraft were separated by a few minutes. The energy dispersions observed in the first crossing were the same during the few minutes that separated the spacecraft. In the second crossing, two ion dispersions were observed on the first spacecraft and only one of the following spacecraft, about 10 min later. The detailed analysis indicates that these steps result from spatial structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boggs, Paul T.; Althsuler, Alan; Larzelere, Alex R.
2005-08-01
The Design-through-Analysis Realization Team (DART) is chartered with reducing the time Sandia analysts require to complete the engineering analysis process. The DART system analysis team studied the engineering analysis processes employed by analysts in Centers 9100 and 8700 at Sandia to identify opportunities for reducing overall design-through-analysis process time. The team created and implemented a rigorous analysis methodology based on a generic process flow model parameterized by information obtained from analysts. They also collected data from analysis department managers to quantify the problem type and complexity distribution throughout Sandia's analyst community. They then used this information to develop a communitymore » model, which enables a simple characterization of processes that span the analyst community. The results indicate that equal opportunity for reducing analysis process time is available both by reducing the ''once-through'' time required to complete a process step and by reducing the probability of backward iteration. In addition, reducing the rework fraction (i.e., improving the engineering efficiency of subsequent iterations) offers approximately 40% to 80% of the benefit of reducing the ''once-through'' time or iteration probability, depending upon the process step being considered. Further, the results indicate that geometry manipulation and meshing is the largest portion of an analyst's effort, especially for structural problems, and offers significant opportunity for overall time reduction. Iteration loops initiated late in the process are more costly than others because they increase ''inner loop'' iterations. Identifying and correcting problems as early as possible in the process offers significant opportunity for time savings.« less
ERIC Educational Resources Information Center
Calik, Muammer
2008-01-01
The aim of the work presented here was to devise an activity associated with factors affecting boiling points. The intervention used a four-step constructivist-based teaching strategy, which was subsequently evaluated by a cohort of students. Data collection consisted of application of a purpose designed questionnaire consisting of four open-ended…
Tsunekawa, Ryuji; Hanaya, Kengo; Higashibayashi, Shuhei; Sugai, Takeshi
2018-04-26
Fisetin and 2',4',6'-trihydroxydihyrochalcone 4'-O-β-neohesperidoside were synthesized from commercially available quercetin and naringin in five steps. The key steps are site-selective deacetylation and subsequent deoxygenation. The target molecules were obtained in 37% and 23% yields from the starting materials, respectively.
Wei, Hui; Chen, Xiaowen; Shekiro, Joseph; ...
2018-01-20
High-temperature (150-170 degrees C) pretreatment of lignocellulosic biomass with mineral acids is well established for xylan breakdown. Fe 2+ is known to be a cocatalyst of this process although kinetics of its action remains unknown. The present work addresses the effect of ferrous ion concentration on sugar yield and degradation product formation from corn stover for the entire two-step treatment, including the subsequent enzymatic cellulose hydrolysis. The feedstock was impregnated with 0.5% acid and 0.75 mM iron cocatalyst, which was found to be optimal in preliminary experiments. The detailed kinetic data of acid pretreatment, with and without iron, was satisfactorilymore » modelled with a four-step linear sequence of first-order irreversible reactions accounting for the formation of xylooligomers, xylose and furfural as intermediates to provide the values of Arrhenius activation energy. Based on this kinetic modelling, Fe 2+ turned out to accelerate all four reactions, with a significant alteration of the last two steps, that is, xylose degradation. Consistent with this model, the greatest xylan conversion occurred at the highest severity tested under 170 ⁰C/30 min with 0.75 mM Fe 2+, with a total of 8% xylan remaining in the pretreated solids, whereas the operational conditions leading to the highest xylose monomer yield, 63%, were milder, 150 degrees C with 0.75 mM Fe 2+ for 20 min. Furthermore, the subsequent enzymatic hydrolysis with the prior addition of 0.75 mM of iron(II) increased the glucose production to 56.3% from 46.3% in the control (iron-free acid). The detailed analysis indicated that conducting the process at lower temperatures yet long residence times benefits the yield of sugars. The above kinetic modelling results of Fe 2+ accelerating all four reactions are in line with our previous mechanistic research showing that the pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose, resulting in enhanced sugar solubilization and digestibility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Hui; Chen, Xiaowen; Shekiro, Joseph
High-temperature (150-170 degrees C) pretreatment of lignocellulosic biomass with mineral acids is well established for xylan breakdown. Fe 2+ is known to be a cocatalyst of this process although kinetics of its action remains unknown. The present work addresses the effect of ferrous ion concentration on sugar yield and degradation product formation from corn stover for the entire two-step treatment, including the subsequent enzymatic cellulose hydrolysis. The feedstock was impregnated with 0.5% acid and 0.75 mM iron cocatalyst, which was found to be optimal in preliminary experiments. The detailed kinetic data of acid pretreatment, with and without iron, was satisfactorilymore » modelled with a four-step linear sequence of first-order irreversible reactions accounting for the formation of xylooligomers, xylose and furfural as intermediates to provide the values of Arrhenius activation energy. Based on this kinetic modelling, Fe 2+ turned out to accelerate all four reactions, with a significant alteration of the last two steps, that is, xylose degradation. Consistent with this model, the greatest xylan conversion occurred at the highest severity tested under 170 ⁰C/30 min with 0.75 mM Fe 2+, with a total of 8% xylan remaining in the pretreated solids, whereas the operational conditions leading to the highest xylose monomer yield, 63%, were milder, 150 degrees C with 0.75 mM Fe 2+ for 20 min. Furthermore, the subsequent enzymatic hydrolysis with the prior addition of 0.75 mM of iron(II) increased the glucose production to 56.3% from 46.3% in the control (iron-free acid). The detailed analysis indicated that conducting the process at lower temperatures yet long residence times benefits the yield of sugars. The above kinetic modelling results of Fe 2+ accelerating all four reactions are in line with our previous mechanistic research showing that the pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose, resulting in enhanced sugar solubilization and digestibility.« less
Melendez, Johan H; Santaus, Tonya M; Brinsley, Gregory; Kiang, Daniel; Mali, Buddha; Hardick, Justin; Gaydos, Charlotte A; Geddes, Chris D
2016-10-01
Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by detection of the genomic target often involving polymerase chain reaction (PCR)-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (gonorrhea, GC) DNA. Our approach is based on the use of highly focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the current study, we show that highly focused microwaves at 2.45 GHz, using 12.3-mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification, in less than 10 min total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward toward the development of a point-of-care (POC) platform for detection of gonorrhea infections. Copyright © 2016 Elsevier Inc. All rights reserved.
Rapid micro-scale proteolysis of proteins for MALDI-MS peptide mapping using immobilized trypsin
NASA Astrophysics Data System (ADS)
Gobom, Johan; Nordhoff, Eckhard; Ekman, Rolf; Roepstorff, Peter
1997-12-01
In this study we present a rapid method for tryptic digestion of proteins using micro-columns with enzyme immobilized on perfusion chromatography media. The performance of the method is exemplified with acyl-CoA-binding protein and reduced carbamidomethylated bovine serum albumin. The method proved to be significantly faster and yielded a better sequence coverage and an improved signal-to-noise ratio for the MALDI-MS peptide maps, compared to in-solution- and on-target digestion. Only a single sample transfer step is required, and therefore sample loss due to adsorption to surfaces is reduced, which is a critical issue when handling low picomole to femtomole amounts of proteins. An example is shown with on-column proteolytic digestion and subsequent elution of the digest into a reversed-phase micro-column. This is useful if the sample contains large amounts of salt or is too diluted for MALDI-MS analysis. Furthermore, by step-wise elution from the reversedphase column, a complex digest can be fractionated, which reduces signal suppression and facilitates data interpretation in the subsequent MS-analysis. The method also proved useful for consecutive digestions with enzymes of different cleavage specificity. This is exemplified with on-column tryptic digestion, followed by reversed-phase step-wise elution, and subsequent on-target V8 protease digestion.
Inhibition of human neutrophil elastase by α1-antitrypsin functionalized colloidal microcarriers.
Reibetanz, Uta; Schönberg, Maria; Rathmann, Sophie; Strehlow, Vincent; Göse, Martin; Leßig, Jacqueline
2012-07-24
Layer-by-layer (LbL)-coated microcarriers offer a good opportunity as transport systems for active agents into specific cells and tissues. The assembling of oppositely charged polyelectrolytes enables a modular construction of the carriers and therefore an optimized integration and application of drug molecules. Here, we report the multilayer incorporation and transport of α(1)-antitrypsin (AT) by colloidal microcarriers. AT is an anti-inflammatory agent and shows inhibitory effects toward its pro-inflammatory antagonist, human neutrophil elastase (HNE). The highly proteolytic enzyme HNE is released by polymorphonuclear leukocytes (PMNs) during inflammatory processes and can cause host tissue destruction and pain. The high potential of this study is based on a simultaneous intra- and extracellular application of AT-functionalized LbL carriers. Carrier application in PMNs results in significant HNE inhibition within 21 h. Microcarriers phagocytosed by PMNs were time dependently decomposed inside phagolysosomes, which enables the step-by-step release of AT. Here, AT inactivates HNE before being released, which avoids a further HNE concentration increase in the extracellular space and, subsequently, reduces the risk of further tissue destruction. Additionally, AT surface-functionalized microcarriers allow the inhibition of already released HNE in the extracellular space. Finally, this study demonstrates the successful application of LbL carriers for a concurrent extra- and intracellular HNE inhibition aiming the rebalancing of protease and antiprotease concentrations and the subsequent termination of chronic inflammations.
Preprocessing and Analysis of LC-MS-Based Proteomic Data
Tsai, Tsung-Heng; Wang, Minkun; Ressom, Habtom W.
2016-01-01
Liquid chromatography coupled with mass spectrometry (LC-MS) has been widely used for profiling protein expression levels. This chapter is focused on LC-MS data preprocessing, which is a crucial step in the analysis of LC-MS based proteomics. We provide a high-level overview, highlight associated challenges, and present a step-by-step example for analysis of data from LC-MS based untargeted proteomic study. Furthermore, key procedures and relevant issues with the subsequent analysis by multiple reaction monitoring (MRM) are discussed. PMID:26519169
Dwyer, Terence; Pezic, Angela; Sun, Cong; Cochrane, Jenny; Venn, Alison; Srikanth, Velandai; Jones, Graeme; Shook, Robin P; Shook, Robin; Sui, Xuemei; Ortaglia, Andrew; Blair, Steven; Ponsonby, Anne-Louise
2015-01-01
Self-reported physical activity has been inversely associated with mortality but the effect of objectively measured step activity on mortality has never been evaluated. The objective is to determine the prospective association of daily step activity on mortality among free-living adults. Cohort study of free-living adults residing in Tasmania, Australia between 2000 and 2005 who participated in one of three cohort studies (n = 2 576 total participants). Daily step activity by pedometer at baseline at a mean of 58.8 years of age, and for a subset, repeated monitoring was available 3.7 (SD 1.3) years later (n = 1 679). All-cause mortality (n = 219 deaths) was ascertained by record-linkage to the Australian National Death Index; 90% of participants were followed-up over ten years, until June 2011. Higher daily step count at baseline was linearly associated with lower all-cause mortality (adjusted hazard ratio AHR, 0.94; 95% CI, 0.90 to 0.98 per 1 000 steps; P = 0.004). Risk was altered little by removing deaths occurring in the first two years. Increasing baseline daily steps from sedentary to 10 000 steps a day was associated with a 46% (95% CI, 18% to 65%; P = 0.004) lower risk of mortality in the decade of follow-up. In addition, those who increased their daily steps over the monitoring period had a substantial reduction in mortality risk, after adjusting for baseline daily step count (AHR, 0.39; 95% CI, 0.22 to 0.72; P = 0.002), or other factors (AHR, 0.38; 95% CI, 0.21-0.70; P = 0.002). Higher daily step count was linearly associated with subsequent long term mortality among free living adults. These data are the first to quantify mortality reductions using an objective measure of physical activity in a free living population. They strongly underscore the importance of physical inactivity as a major public health problem.
Enarson, C; Cariaga-Lo, L
2001-11-01
The results of the United States Medical Licensing Examination Step 1 and 2 examinations are reported for students enrolled in a problem-based and traditional lecture-based curricula over a seven-year period at a single institution. There were no statistically significant differences in mean scores on either examination over the seven year period as a whole. There were statistically significant main effects noted by cohort year and curricular track for both the Step 1 and 2 examinations. These results support the general, long-term effectiveness of problem-based learning with respect to basic and clinical science knowledge acquisition. This paper reports the United States Medical Licensing Examination Step 1 and Step 2 results for students enrolled in a problem-based and traditional lecture-based learning curricula over the seven-year period (1992-98) in order to evaluate the adequacy of each curriculum in supporting students learning of the basic and clinical sciences. Six hundred and eighty-nine students who took the United States Medical Licensing Examination Step 1 and 540 students who took Step 2 for the first time over the seven-year period were included in the analyses. T-test analyses were utilized to compare students' Step 1 and Step 2 performance by curriculum groups. United States Medical Licensing Examination Step 1 scores over the seven-year period were 214 for Traditional Curriculum students and 208 for Parallel Curriculum students (t-value = 1.32, P=0.21). Mean Step 2 scores over the seven-year period were 208 for Traditional Curriculum students and 206 for Parallel Curriculum students (t-value=1.08, P=0.30). Statistically significant main effects were noted by cohort year and curricular track for both the Step 1 and Step 2 examinations. The totality of experience in both groups, although differing by curricular type, may be similar enough that the comparable scores are what should be expected. These results should be reassuring to curricular planners and faculty that problem-based learning can provide students with the knowledge needed for the subsequent phases of their medical education.
Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell
NASA Technical Reports Server (NTRS)
Attia, Alan I. (Inventor); Halpert, Gerald (Inventor); Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor)
1995-01-01
The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.
Cruz, Joana; Brooks, Dina; Marques, Alda
2014-11-01
This study aimed at investigating whether providing feedback on physical activity (PA) levels to patients with chronic obstructive pulmonary disease (COPD) is feasible and enhances daily PA during pulmonary rehabilitation (PR). Patients with COPD participated in a 12-week PR program. Daily PA was measured using activity monitors on weeks 1, 7, and 12, and feedback was given in the following weeks on the number of steps, time spent in sedentary, light, and moderate-to-vigorous intensity activities, and time spent standing, sitting, and lying. Compliance with PA monitoring was collected. Two focus groups were conducted to obtain patients' perspectives on the use of activity monitors and on the feedback given. Differences in PA data were also assessed. Sixteen patients (65.63 ± 10.57 years; forced expiratory volume in one second (FEV1) 70.31 ± 22.74% predicted) completed the study. From those, only eleven participants used the activity monitors during all monitoring days. Participants identified several problems regarding the use of activity monitors and monitoring duration. Daily steps (p = 0.026) and standing time (p = 0.030) were improved from week 1 to week 7; however, the former declined from week 7 to week 12. Findings suggest that using feedback to improve PA during PR is feasible and results in improved daily steps and standing time on week 7. The subsequent decline suggests that additional strategies may be needed to stimulate/maintain PA improvements. Further research with more robust designs is needed to investigate the impact of feedback on patients' daily PA. © The Author(s) 2014.
High-Speed Video Observations of a Natural Lightning Stepped Leader
NASA Astrophysics Data System (ADS)
Jordan, D. M.; Hill, J. D.; Uman, M. A.; Yoshida, S.; Kawasaki, Z.
2010-12-01
High-speed video images of one branch of a natural negative lightning stepped leader were obtained at a frame rate of 300 kfps (3.33 us exposure) on June 18th, 2010 at the International Center for Lightning Research and Testing (ICLRT) located on the Camp Blanding Army National Guard Base in north-central Florida. The images were acquired using a 20 mm Nikon lens mounted on a Photron SA1.1 high-speed camera. A total of 225 frames (about 0.75 ms) of the downward stepped leader were captured, followed by 45 frames of the leader channel re-illumination by the return stroke and subsequent decay following the ground attachment of the primary leader channel. Luminous characteristics of dart-stepped leader propagation in triggered lightning obtained by Biagi et al. [2009, 2010] and of long laboratory spark formation [e.g., Bazelyan and Raizer, 1998; Gallimberti et al., 2002] are evident in the frames of the natural lightning stepped leader. Space stems/leaders are imaged in twelve different frames at various distances in front of the descending leader tip, which branches into two distinct components 125 frames after the channel enters the field of view. In each case, the space stem/leader appears to connect to the leader tip above in the subsequent frame, forming a new step. Each connection is associated with significant isolated brightening of the channel at the connection point followed by typically three or four frames of upward propagating re-illumination of the existing leader channel. In total, at least 80 individual steps were imaged.
Shanahan, Erin; Irvine, Kathryn M.; Roberts, Dave; Litt, Andrea R.; Legg, Kristin; Daley, Rob; Chambers, Nina
2014-01-01
Whitebark pine (Pinus albicaulis) is a foundation and keystone species in upper subalpine environments of the northern Rocky Mountains that strongly influences the biodiversity and productivity of high-elevation ecosystems (Tomback et al. 2001, Ellison et al. 2005). Throughout its historic range, whitebark pine has decreased significantly as a major component of high-elevation forests. As a result, it is critical to understand the challenges to whitebark pine—not only at the tree and stand level, but also as these factors influence the distribution of whitebark pine across the Greater Yellowstone Ecosystem (GYE). In 2003, the National Park Service (NPS) Greater Yellowstone Inventory & Monitoring Network identified whitebark pine as one of twelve significant natural resource indicators or vital signs to monitor (Jean et al. 2005, Fancy et al. 2009) and initiated a long-term, collaborative monitoring program. Partners in this effort include the U.S. Geological Survey, U.S. Forest Service, and Montana State University with representatives from each comprising the Greater Yellowstone Whitebark Pine Monitoring Working Group. The objectives of the monitoring program are to assess trends in (1) the proportion of live, whitebark pine trees (>1.4-m tall) infected with white pine blister rust (blister rust); (2) to document blister rust infection severity by the occurrence and location of persisting and new infections; (3) to determine mortality of whitebark pine trees and describe potential factors contributing to the death of trees; and (4) to assess the multiple components of the recruitment of understory whitebark pine into the reproductive population. In this report we summarize the past eight years (2004-2011) of whitebark pine status and trend monitoring in the GYE. Our study area encompasses six national forests (NF), two national parks (NP), as well as state and private lands in portions of Wyoming, Montana, and Idaho; this area is collectively described as the GYE here and in other studies. The sampling design is a probabilistic, twostage cluster design with stands of whitebark pine as the primary units and 10x50 m belt transects as the secondary units. Primary sampling units (stands) were selected randomly from a sample frame of approximately 10,770 mapped pure and mixed whitebark pine stands ≥2.0 hectares in the GYE (Dixon 1997, Landenburger 2012). From 2004 through 2007 (monitoring transect establishment or initial time-step), we established 176 permanent belt transects (secondary sampling units=176) in 150 whitebark pine stands and permanently marked approximately 4,740 individual trees >1.4 m tall to monitor long-term changes in blister rust infection and survival rates. Between 2008 and 2011 (revisit time-step), these same 176 transects were surveyed and again all previously tagged trees were observed for changes in blister rust infection and survival status. Objective 1. Using a combined ratio estimator, we estimated the proportion of live trees infected in the GYE in the initial time-step (2004-2007) to be 0.22 (0.031 SE). Following the completion of all surveys in the revisit time-step (2008-2011), we estimated the proportion of live trees infected with white pine blister rust as 0.23 (0.028 SE; Table 2). We detected no significant change in the proportion of trees infected in the GYE between the two time-steps. Objective 2. We documented blister rust canker locations as occurring in the canopy or bole. We compared changes in canker position between the initial time-step (2004-2007) and the revisit time-step (2008-2011) in order to assess changes in infection severity. This analysis included the 3,795 trees tagged during the initial time-step that were located and documented as alive at the end of the revisit time-step. At the end of the revisit time-step, we found 1,217 trees infected with blister rust. This includes the 287 newly tagged trees in the revisit time step of which 14 had documented infections. Of these 1,217 trees, 780 trees were infected with blister rust in both time steps. Trees with only canopy cankers made up approximately 43% (519 trees) of the total number of trees infected with blister rust at the end of the revisit time-step, while trees with only bole cankers comprised 20% (252 trees), and those with both canopy and bole cankers included 37% (446 trees) of the infected sample. A bole infection is considered to be more consequential than a canopy canker, as it compromises not only the overall longevity of the tree, but its functional capacity for reproductive output as well (Kendall and Arno 1990, Campbell and Antos 2000, McDonald and Hoff 2001, Schwandt and Kegley 2004). In addition to infection location, we also documented infection transition between the canopy and bole. Of the 780 live trees that were infected with blister rust in both time-steps, approximately 31% (242) maintained canopy cankers and 36% (281) retained bole infections at the end of the revisit time-step. Infection transition from canopy to bole occurred in 30% (234) of the revisit time-step trees while 3% (23) transitioned from bole to canopy infections during this period. Objective 3. To determine whitebark pine mortality, we resurveyed all belt transects to reassess the life status of permanently tagged trees >1.4 m tall. We compared the total number of live tagged trees recorded during monitoring transect establishment to the total number of resurveyed dead tagged trees recorded during the revisit time-step and identified all potential mortality-influencing conditions (blister rust, mountain pine beetle, fire and other). By the end of the revisit time-step, we observed a total of 975 dead tagged whitebark pine trees; using a ratio estimator, this represents a loss of approximately 20% (SE=4.35%) of the original live tagged tree population (GYWPMWG 2012). Objective 4. To investigate the proportion of live, reproducing tagged trees, we divided the total number of positively identified cone-bearing trees by the total number of live trees in the tagged tree sample at the end of the revisit time-step. To approximate the average density of recruitment trees per stand, trees ≤1.4 m tall were summed by stand (within the 500 m² transect area) and divided by the total number of stands. Reproducing trees made up approximately 24% (996 trees) of the total live tagged population at the end of the revisit time-step. Differentiating between whitebark pine and limber pine seedlings or saplings is problematic given the absence of cones or cone scars. Therefore, understory summaries as presented in this report may include individuals of both species when they are sympatric in a stand. The average density of small trees ≤1.4 m tall was 53 understory trees per 500 m². Raw counts of these understory individuals ranged from 0-635 small trees per belt transect. In addition, a total of 287 trees were added to the tagged tree population by the end of 2011. These newly tagged trees were individuals that upon subsequent revisits had reached a height of >1.4 m tall and subsequently added to the sample. Throughout the past decade in the GYE, monitoring has helped document shifts in whitebark pine forests; whitebark pine stands have been impacted by insect, pathogen, wildland fire, and other disturbance events. Blister rust infection is ubiquitous throughout the ecosystem and infection proportions are variable across the region. And while we have documented mortality of whitebark pine, we have also recorded considerable recruitment. We provide this first step-trend report as a quantifiable baseline for understanding the state of whitebark pine in the GYE. Many aspects of whitebark pine health are highly variable across the range of its distribution in the GYE. Through sustained implementation of the monitoring program, we will continue efforts to document and quantify whitebark pine forest dynamics as they arise under periodic upsurges in insect, pathogen, fire episodes, and climatic events in the GYE. Since its inception, this monitoring program perseveres as one of the only sustained longterm efforts conducted in the GYE with a singular purpose to track the health and status of this prominent keystone species.
Solving the chemical master equation using sliding windows
2010-01-01
Background The chemical master equation (CME) is a system of ordinary differential equations that describes the evolution of a network of chemical reactions as a stochastic process. Its solution yields the probability density vector of the system at each point in time. Solving the CME numerically is in many cases computationally expensive or even infeasible as the number of reachable states can be very large or infinite. We introduce the sliding window method, which computes an approximate solution of the CME by performing a sequence of local analysis steps. In each step, only a manageable subset of states is considered, representing a "window" into the state space. In subsequent steps, the window follows the direction in which the probability mass moves, until the time period of interest has elapsed. We construct the window based on a deterministic approximation of the future behavior of the system by estimating upper and lower bounds on the populations of the chemical species. Results In order to show the effectiveness of our approach, we apply it to several examples previously described in the literature. The experimental results show that the proposed method speeds up the analysis considerably, compared to a global analysis, while still providing high accuracy. Conclusions The sliding window method is a novel approach to address the performance problems of numerical algorithms for the solution of the chemical master equation. The method efficiently approximates the probability distributions at the time points of interest for a variety of chemically reacting systems, including systems for which no upper bound on the population sizes of the chemical species is known a priori. PMID:20377904
ERIC Educational Resources Information Center
Deal, Gerald A.; Montgomery, James A.
This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…
ERIC Educational Resources Information Center
Schwing, Carl M.
This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…
ERIC Educational Resources Information Center
Schwing, Carl M.
This guide describes standard operating job procedures for the digestion process of wastewater treatment facilities. This process is for reducing the volume of sludge to be treated in subsequent units and to reduce the volatile content of sludge. The guide gives step-by-step instructions for pre-startup, startup, continuous operating, shutdown,…
ERIC Educational Resources Information Center
Murph, Debra; McCormick, Sandra
1985-01-01
A 12-step procedure was used in teaching five minimally literate, male juvenile offenders to read and interpret prototypes of road signs displaying words, and a 5-step procedure for interpreting a sign without words. All students' correct responses in reading and interpreting signs increased and were maintained during subsequent post-checks.…
ERIC Educational Resources Information Center
Salloum, Alison; Scheeringa, Michael S.; Cohen, Judith A.; Storch, Eric A.
2015-01-01
Background: In order to develop Stepped Care trauma-focused cognitive behavioral therapy (TF-CBT), a definition of early response/non-response is needed to guide decisions about the need for subsequent treatment. Objective: The purpose of this article is to (1) establish criterion for defining an early indicator of response/non-response to the…
Eini C. Lowell; Dennis R. Becker; Robert Rummer; Debra Larson; Linda Wadleigh
2008-01-01
This research provides an important step in the conceptualization and development of an integrated wildfire fuels reduction system from silvicultural prescription, through stem selection, harvesting, in-woods processing, transport, and market selection. Decisions made at each functional step are informed by knowledge about subsequent functions. Data on the resource...
Eini C. Lowell; Dennis R. Becker; Robert Rummer; Debra Larson; Linda Wadleigh
2008-01-01
This research provides an important step in the conceptualization and development of an integrated wildfire fuels reduction system from silvicultural prescription, through stem selection, harvesting, in-woods processing, transport, and market selection. Decisions made at each functional step are informed by knowledge about subsequent functions. Data on the resource...
Graham, David F; Carty, Christopher P; Lloyd, David G; Barrett, Rod S
2017-01-01
The purpose of this study was to determine the muscular contributions to the acceleration of the whole body centre of mass (COM) of older compared to younger adults that were able to recover from forward loss of balance with a single step. Forward loss of balance was achieved by releasing participants (14 older adults and 6 younger adults) from a static whole-body forward lean angle of approximately 18 degrees. 10 older adults and 6 younger adults were able to recover with a single step and included in subsequent analysis. A scalable anatomical model consisting of 36 degrees-of-freedom was used to compute kinematics and joint moments from motion capture and force plate data. Forces for 92 muscle actuators were computed using Static Optimisation and Induced Acceleration Analysis was used to compute individual muscle contributions to the three-dimensional acceleration of the whole body COM. There were no significant differences between older and younger adults in step length, step time, 3D COM accelerations or muscle contributions to 3D COM accelerations. The stance and stepping leg Gastrocnemius and Soleus muscles were primarily responsible for the vertical acceleration experienced by the COM. The Gastrocnemius and Soleus from the stance side leg together with bilateral Hamstrings accelerated the COM forwards throughout balance recovery while the Vasti and Soleus of the stepping side leg provided the majority of braking accelerations following foot contact. The Hip Abductor muscles provided the greatest contribution to medial-lateral accelerations of the COM. Deficits in the neuromuscular control of the Gastrocnemius, Soleus, Vasti and Hip Abductors in particular could adversely influence balance recovery and may be important targets in interventions to improve balance recovery performance.
Graham, David F.; Carty, Christopher P.; Lloyd, David G.
2017-01-01
The purpose of this study was to determine the muscular contributions to the acceleration of the whole body centre of mass (COM) of older compared to younger adults that were able to recover from forward loss of balance with a single step. Forward loss of balance was achieved by releasing participants (14 older adults and 6 younger adults) from a static whole-body forward lean angle of approximately 18 degrees. 10 older adults and 6 younger adults were able to recover with a single step and included in subsequent analysis. A scalable anatomical model consisting of 36 degrees-of-freedom was used to compute kinematics and joint moments from motion capture and force plate data. Forces for 92 muscle actuators were computed using Static Optimisation and Induced Acceleration Analysis was used to compute individual muscle contributions to the three-dimensional acceleration of the whole body COM. There were no significant differences between older and younger adults in step length, step time, 3D COM accelerations or muscle contributions to 3D COM accelerations. The stance and stepping leg Gastrocnemius and Soleus muscles were primarily responsible for the vertical acceleration experienced by the COM. The Gastrocnemius and Soleus from the stance side leg together with bilateral Hamstrings accelerated the COM forwards throughout balance recovery while the Vasti and Soleus of the stepping side leg provided the majority of braking accelerations following foot contact. The Hip Abductor muscles provided the greatest contribution to medial-lateral accelerations of the COM. Deficits in the neuromuscular control of the Gastrocnemius, Soleus, Vasti and Hip Abductors in particular could adversely influence balance recovery and may be important targets in interventions to improve balance recovery performance. PMID:29069097
Bourbousson, Jérôme; Fortes-Bourbousson, Marina
2017-06-01
Based on a diagnosis action research design, the present study assessed the fluctuations of the team experience of togetherness. Reported experiences of 12 basketball team members playing in the under-18 years old national championship were studied during a four-month training and competitive period. Time series analysis (Auto-Regressive Integrated Moving Average procedures) served to describe temporal properties of the way in which the fluctuations of task-cohesion and shared understanding were step-by-step experienced over time, respectively. Correlations, running-correlations and cross-lagged correlations were used to describe the temporal links that governed the relationships between both phenomena. The results indicated that the task-cohesion dimensions differed mainly for shared understanding dynamics in that their time fluctuations were not embedded in external events, and that the variations in shared understanding tend to precede 'individual attractions to the task' variations with seven team practical sessions. This study argues for further investigation of how 'togetherness' is experienced alternatively as a feeling of cohesion or shared understanding. Practitioner Summary: The present action research study investigated the experience that the team members have to share information during practice, and the subsequent benefices on team cohesion. Results call for specific interventions that make team members accept the fluctuating nature of team phenomena, to help them maintaining their daily efforts.
Vail, III, William B.
1993-01-01
Methods of operation of an apparatus having at least two pairs of voltage measurement electrodes vertically disposed in a cased well to measure the resistivity of adjacent geological formations from inside the cased well. During stationary measurements with the apparatus at a fixed vertical depth within the cased well, the invention herein discloses methods of operation which include a measurement step and subsequent first and second compensation steps respectively resulting in improved accuracy of measurement. First and second order errors of measurement are identified, and the measurement step and two compensation steps provide methods to substantially eliminate their influence on the results. A multiple frequency apparatus adapted to movement within the well is described which simultaneously provide the measurement and two compensation steps.
Probabilistic In Situ Stress Estimation and Forecasting using Sequential Data Assimilation
NASA Astrophysics Data System (ADS)
Fichtner, A.; van Dinther, Y.; Kuensch, H. R.
2017-12-01
Our physical understanding and forecasting ability of earthquakes, and other solid Earth dynamic processes, is significantly hampered by limited indications on the evolving state of stress and strength on faults. Integrating observations and physics-based numerical modeling to quantitatively estimate this evolution of a fault's state is crucial. However, systematic attempts are limited and tenuous, especially in light of the scarcity and uncertainty of natural data and the difficulty of modelling the physics governing earthquakes. We adopt the statistical framework of sequential data assimilation - extensively developed for weather forecasting - to efficiently integrate observations and prior knowledge in a forward model, while acknowledging errors in both. To prove this concept we perform a perfect model test in a simplified subduction zone setup, where we assimilate synthetic noised data on velocities and stresses from a single location. Using an Ensemble Kalman Filter, these data and their errors are assimilated to update 150 ensemble members from a Partial Differential Equation-driven seismic cycle model. Probabilistic estimates of fault stress and dynamic strength evolution capture the truth exceptionally well. This is possible, because the sampled error covariance matrix contains prior information from the physics that relates velocities, stresses and pressure at the surface to those at the fault. During the analysis step, stress and strength distributions are thus reconstructed such that fault coupling can be updated to either inhibit or trigger events. In the subsequent forecast step the physical equations are solved to propagate the updated states forward in time and thus provide probabilistic information on the occurrence of the next event. At subsequent assimilation steps, the system's forecasting ability turns out to be significantly better than that of a periodic recurrence model (requiring an alarm 17% vs. 68% of the time). This thus provides distinct added value with respect to using observations or numerical models separately. Although several challenges for applications to a natural setting remain, these first results indicate the large potential of data assimilation techniques for probabilistic seismic hazard assessment and other challenges in dynamic solid earth systems.
NASA Astrophysics Data System (ADS)
Yang, Zhang; Renping, Zhang; Weihua, Han; Jian, Liu; Xiang, Yang; Ying, Wang; Chian Chiu, Li; Fuhua, Yang
2009-11-01
A two-step exposure method to effectively reduce the proximity effect in fabricating nanometer-spaced nanopillars is presented. In this method, nanopillar patterns on poly-methylmethacrylate (PMMA) were partly cross-linked in the first-step exposure. After development, PMMA between nanopillar patterns was removed, and hence the proximity effect would not take place there in the subsequent exposure. In the second-step exposure, PMMA masks were completely cross-linked to achieve good resistance in inductively coupled plasma etching. Accurate pattern transfer of rows of nanopillars with spacing down to 40 nm was realized on a silicon-on-insulator substrate.
Morgan, Paul S; Sherar, Lauren B; Kingsnorth, Andrew P; Magistro, Daniele; Esliger, Dale W
2017-01-01
Background The recent surge in commercially available wearable technology has allowed real-time self-monitoring of behavior (eg, physical activity) and physiology (eg, glucose levels). However, there is limited neuroimaging work (ie, functional magnetic resonance imaging [fMRI]) to identify how people’s brains respond to receiving this personalized health feedback and how this impacts subsequent behavior. Objective Identify regions of the brain activated and examine associations between activation and behavior. Methods This was a pilot study to assess physical activity, sedentary time, and glucose levels over 14 days in 33 adults (aged 30 to 60 years). Extracted accelerometry, inclinometry, and interstitial glucose data informed the construction of personalized feedback messages (eg, average number of steps per day). These messages were subsequently presented visually to participants during fMRI. Participant physical activity levels and sedentary time were assessed again for 8 days following exposure to this personalized feedback. Results Independent tests identified significant activations within the prefrontal cortex in response to glucose feedback compared with behavioral feedback (P<.001). Reductions in mean sedentary time (589.0 vs 560.0 minutes per day, P=.014) were observed. Activation in the subgyral area had a moderate correlation with minutes of moderate-to-vigorous physical activity (r=0.392, P=.043). Conclusion Presenting personalized glucose feedback resulted in significantly more brain activation when compared with behavior. Participants reduced time spent sedentary at follow-up. Research on deploying behavioral and physiological feedback warrants further investigation. PMID:29117928
9 Cr-- 1 Mo steel material for high temperature application
Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher
2012-11-27
One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.
Kang, ChulHee; Hayes, Robert; Sanchez, Emiliano J.; Webb, Brian N.; Li, Qunrui; Hooper, Travis; Nissen, Mark S.; Xun, Luying
2012-01-01
Summary FurX is a tetrameric Zn-dependent alcohol dehydrogenase (ADH) from Cupriavidus necator JMP134. The enzyme rapidly reduces furfural with NADH as the reducing power. For the first time among characterized ADHs, the high-resolution structures of all reaction steps were obtained in a time-resolved manner, thereby illustrating the complete catalytic events of NADH-dependent reduction of furfural and the dynamic Zn2+ coordination among Glu66, water, substrate and product. In the fully closed conformation of the NADH complex, the catalytic turnover proved faster than observed for the partially closed conformation due to an effective proton transfer network. The domain motion triggered by NAD(H) association/dissociation appeared to facilitate dynamic interchanges in Zn2+ coordination with substrate and product molecules, ultimately increasing the enzymatic turnover rate. NAD+ dissociation appeared to be a slow process, involving multiple steps in concert with a domain opening and reconfiguration of Glu66. This agrees with the report that the cofactor is not dissociated from FurX during ethanol-dependent reduction of furfural, in which ethanol reduces NAD+ to NADH that is subsequently used for furfural reduction. PMID:22081946
A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4.
Väisänen, E; Lahtinen, A; Eis-Hübinger, A M; Lappalainen, M; Hedman, K; Söderlund-Venermo, M
2014-01-01
Human parvovirus 4 (PARV4) of the family Parvoviridae was discovered in a plasma sample of a patient with an undiagnosed acute infection in 2005. Currently, three PARV4 genotypes have been identified, however, with an unknown clinical significance. Interestingly, these genotypes seem to differ in epidemiology. In Northern Europe, USA and Asia, genotypes 1 and 2 have been found to occur mainly in persons with a history of injecting drug use or other parenteral exposure. In contrast, genotype 3 appears to be endemic in sub-Saharan Africa, where it infects children and adults without such risk behaviour. In this study, a novel straightforward and cost-efficient molecular assay for both quantitation and genotyping of PARV4 DNA was developed. The two-step method first applies a single-probe pan-PARV4 qPCR for screening and quantitation of this relatively rare virus, and subsequently, only the positive samples undergo a real-time PCR-based multi-probe genotyping. The new qPCR-GT method is highly sensitive and specific regardless of the genotype, and thus being suitable for studying the clinical impact and occurrence of the different PARV4 genotypes. Copyright © 2013 Elsevier B.V. All rights reserved.
How to unlock the benefits of MRP (materiel requirements planning) II and Just-in-Time.
Jacobi, M A
1994-05-01
Manufacturing companies need to use the best and most applicable parts of MRP II and JIT to run their businesses effectively. MRP II provides the methodology to plan and control the total resources of the company and focuses on the processes that add value to their customers' products. It is the cornerstone of total quality management, as it reduces the variability and costly activities in the communication and subsequent execution of the required steps from customer order to shipment. JIT focuses on simplifying the total business operation and execution of business processes. MRP II and JIT are the foundations for successful manufacturing businesses.
The interaction of F4 fimbriae with porcine enterocytes as analysed by surface plasmon resonance.
Verdonck, Frank; Cox, Eric; Vancaeneghem, Sabine; Goddeeris, Bruno M
2004-07-01
Fimbriae often play a prominent role in anchoring bacterial cells to host tissue and mediate the first step in pathogenesis. As a consequence, there is a continuous development of new strategies to block the binding of fimbriae to their specific receptor on host cells. The present study demonstrates the specific interaction of F4 (K88) fimbriae and porcine enterocytes using a real-time biomolecular interaction analysis system (BIAcore 3000), based on the principles of surface plasmon resonance (SPR). This method offers new opportunities to screen therapeutics for prevention of adhesion and subsequent disease without receptor purification.
Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew
2005-05-03
A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carbon—carbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.
A Case Study of Magnetotail Conditions at Substorm and Pseudosubstorm Onsets
NASA Astrophysics Data System (ADS)
Miyashita, Y.; Angelopoulos, V.; Fukui, K.; Machida, S.
2017-12-01
While a substorm involves initial brightening and growth of wave-like structure of the auroral onset arc and the subsequent auroral poleward expansion, a pseudosubstorm (pseudobreakup) involves only the first two steps of auroral development and subsides without progressing to poleward expansion. To understand what makes this difference, we studied magnetotail conditions at a pseudosubstorm onset and the subsequent substorm onset, using multipoint Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft data. In the present event, near-Earth magnetic reconnection possibly occurred before initial brightening for both pseudosubstorm and substorm. In the near-Earth magnetotail at X -10 Re, the ion beta, ion pressure, and radial pressure gradient were smaller and magnetic field lines were less stretched at pseudosubstorm initial brightening than at substorm initial brightening. Dipolarization did not occur for the pseudosubstorm, whereas it began just before poleward expansion for the substorm. These observations suggest that conditions of the near-Earth magnetotail possibly affect whether the initial action develops into a full-fledged substorm.
NASA Astrophysics Data System (ADS)
Georgakopoulos, A.; Politopoulos, K.; Georgiou, E.
2018-03-01
A new dynamic-system approach to the problem of radiative transfer inside scattering and absorbing media is presented, directly based on first-hand physical principles. This method, the Dynamic Radiative Transfer System (DRTS), employs a dynamical system formality using a global sparse matrix, which characterizes the physical, optical and geometrical properties of the material-volume of interest. The new system state is generated by the above time-independent matrix, using simple matrix-vector multiplication for each subsequent time step. DRTS is capable of calculating accurately the time evolution of photon propagation in media of complex structure and shape. The flexibility of DRTS allows the integration of time-dependent sources, boundary conditions, different media and several optical phenomena like reflection and refraction in a unified and consistent way. Various examples of DRTS simulation results are presented for ultra-fast light pulse 3-D propagation, demonstrating greatly reduced computational cost and resource requirements compared to other methods.
Girard, Olivier; Brocherie, Franck; Morin, Jean-Benoit; Millet, Grégoire P
2017-01-01
To examine mechanical alterations during interval-training treadmill runs in high-level team-sport players. Within-participants repeated measures. Twenty high-level male field-hockey players performed six 30-s runs at 5.53±0.19ms -1 corresponding to 115% of their velocity associated with maximal oxygen uptake (vVO 2max ) with 30-s passive recovery on an instrumented treadmill. Continuous measurement of running kinetics/kinematics and spring-mass characteristics were performed and values were subsequently averaged over 20s (8th-28ths) for comparison. Contact time (+1.1±4.3%; p=0.044), aerial time (+4.1±5.3%; p=0.001), step length (+2.4±2.2%; p<0.001) along with mean loading rates (+7.1±10.6%; p=0.026) increased from the first to the last interval, whereas step frequency (-2.3±2.1%; p<0.001) decreased. Both centre of mass vertical displacement (+3.0±6.0%; p<0.001) and leg compression (+2.8±9.7%; p=0.036), but not peak vertical forces (0.0±4.1%; p=0.761), increased with fatigue. Vertical stiffness decreased (-2.8±6.9%; p=0.012), whereas leg stiffness did not change across intervals (p=0.149). During interval-training treadmill runs, high-level team-sport players modified their mechanical behaviour towards lower vertical stiffness while preserving a constant leg stiffness. Maintenance of running velocity induced longer step lengths and decreased step frequencies that were also accompanied by increased impact loading rates. These mechanical alterations occurred early during the set. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Leach, Susan J; Magill, Richard A; Maring, Joyce R
2017-01-01
A spinal cord injury (SCI) frequently results in impaired balance, endurance, and strength with subsequent limitations in functional mobility and community participation. The purpose of this case report was to implement a training program for an individual with a chronic incomplete SCI using a novel divided-attention stepping accuracy task (DASAT) to determine if improvements could be made in impairments, activities, and participation. The client was a 51-year-old male with a motor incomplete C4 SCI sustained 4 years prior. He presented with decreased quality of life (QOL) and functional independence, and deficits in balance, endurance, and strength consistent with central cord syndrome. The client completed the DASAT intervention 3 times per week for 6 weeks. Each session incorporated 96 multi-directional steps to randomly-assigned targets in response to 3-step verbal commands. QOL, measured using the SF-36, was generally enhanced but fluctuated. Community mobility progressed from close supervision to independence. Significant improvement was achieved in all balance scores: Berg Balance Scale by 9 points [Minimal Detectable Change (MDC) = 4.9 in elderly]; Functional Reach Test by 7.62 cm (MDC = 5.16 in C5/C6 SCI); and Timed Up-and-Go by 0.53 s (MDC not established). Endurance increased on the 6-Minute Walk Test, with the client achieving an additional 47 m (MDC = 45.8 m). Lower extremity isokinetic peak torque strength measures were mostly unchanged. Six minutes of DASAT training per session provided an efficient, low-cost intervention utilizing multiple trials of variable practice, and resulted in better performance in activities, balance, and endurance in this client.
Selective thermal transformation of old computer printed circuit boards to Cu-Sn based alloy.
Shokri, Ali; Pahlevani, Farshid; Cole, Ivan; Sahajwalla, Veena
2017-09-01
This study investigates, verifies and determines the optimal parameters for the selective thermal transformation of problematic electronic waste (e-waste) to produce value-added copper-tin (Cu-Sn) based alloys; thereby demonstrating a novel new pathway for the cost-effective recovery of resources from one of the world's fastest growing and most challenging waste streams. Using outdated computer printed circuit boards (PCBs), a ubiquitous component of e-waste, we investigated transformations across a range of temperatures and time frames. Results indicate a two-step heat treatment process, using a low temperature step followed by a high temperature step, can be used to produce and separate off, first, a lead (Pb) based alloy and, subsequently, a Cu-Sn based alloy. We also found a single-step heat treatment process at a moderate temperature of 900 °C can be used to directly transform old PCBs to produce a Cu-Sn based alloy, while capturing the Pb and antimony (Sb) as alloying elements to prevent the emission of these low melting point elements. These results demonstrate old computer PCBs, large volumes of which are already within global waste stockpiles, can be considered a potential source of value-added metal alloys, opening up a new opportunity for utilizing e-waste to produce metal alloys in local micro-factories. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microwave reflectometer ionization sensor
NASA Technical Reports Server (NTRS)
Seals, Joseph; Fordham, Jeffrey A.; Pauley, Robert G.; Simonutti, Mario D.
1993-01-01
The development of the Microwave Reflectometer Ionization Sensor (MRIS) Instrument for use on the Aeroassist Flight Experiment (AFE) spacecraft is described. The instrument contract was terminated, due to cancellation of the AFE program, subsequent to testing of an engineering development model. The MRIS, a four-frequency reflectometer, was designed for the detection and location of critical electron density levels in spacecraft reentry plasmas. The instrument would sample the relative magnitude and phase of reflected signals at discrete frequency steps across 4 GHz bandwidths centered at four frequencies: 20, 44, 95, and 140 GHz. The sampled data would be stored for later processing to calculate the distance from the spacecraft surface to the critical electron densities versus time. Four stepped PM CW transmitter receivers were located behind the thermal protection system of the spacecraft with horn antennas radiating and receiving through an insulating tile. Techniques were developed to deal with interference, including multiple reflections and resonance effects, resulting from the antenna configuration and operating environment.
Data reduction of isotope-resolved LC-MS spectra.
Du, Peicheng; Sudha, Rajagopalan; Prystowsky, Michael B; Angeletti, Ruth Hogue
2007-06-01
Data reduction of liquid chromatography-mass spectrometry (LC-MS) spectra can be a challenge due to the inherent complexity of biological samples, noise and non-flat baseline. We present a new algorithm, LCMS-2D, for reliable data reduction of LC-MS proteomics data. LCMS-2D can reliably reduce LC-MS spectra with multiple scans to a list of elution peaks, and subsequently to a list of peptide masses. It is capable of noise removal, and deconvoluting peaks that overlap in m/z, in retention time, or both, by using a novel iterative peak-picking step, a 'rescue' step, and a modified variable selection method. LCMS-2D performs well with three sets of annotated LC-MS spectra, yielding results that are better than those from PepList, msInspect and the vendor software BioAnalyst. The software LCMS-2D is available under the GNU general public license from http://www.bioc.aecom.yu.edu/labs/angellab/as a standalone C program running on LINUX.
[Application of virtual instrumentation technique in toxicological studies].
Moczko, Jerzy A
2005-01-01
Research investigations require frequently direct connection of measuring equipment to the computer. Virtual instrumentation technique considerably facilitates programming of sophisticated acquisition-and-analysis procedures. In standard approach these two steps are performed subsequently with separate software tools. The acquired data are transfered with export / import procedures of particular program to the another one which executes next step of analysis. The described procedure is cumbersome, time consuming and may be potential source of the errors. In 1987 National Instruments Corporation introduced LabVIEW language based on the concept of graphical programming. Contrary to conventional textual languages it allows the researcher to concentrate on the resolved problem and omit all syntactical rules. Programs developed in LabVIEW are called as virtual instruments (VI) and are portable among different computer platforms as PCs, Macintoshes, Sun SPARCstations, Concurrent PowerMAX stations, HP PA/RISK workstations. This flexibility warrants that the programs prepared for one particular platform would be also appropriate to another one. In presented paper basic principles of connection of research equipment to computer systems were described.
Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci
Noordermeer, Daan; Leleu, Marion; Schorderet, Patrick; Joye, Elisabeth; Chabaud, Fabienne; Duboule, Denis
2014-01-01
Hox genes are essential regulators of embryonic development. Their step-wise transcriptional activation follows their genomic topology and the various states of activation are subsequently memorized into domains of progressively overlapping gene products. We have analyzed the 3D chromatin organization of Hox clusters during their early activation in vivo, using high-resolution circular chromosome conformation capture. Initially, Hox clusters are organized as single chromatin compartments containing all genes and bivalent chromatin marks. Transcriptional activation is associated with a dynamic bi-modal 3D organization, whereby the genes switch autonomously from an inactive to an active compartment. These local 3D dynamics occur within a framework of constitutive interactions within the surrounding Topological Associated Domains, indicating that this regulation process is mostly cluster intrinsic. The step-wise progression in time is fixed at various body levels and thus can account for the chromatin architectures previously described at a later stage for different anterior to posterior levels. DOI: http://dx.doi.org/10.7554/eLife.02557.001 PMID:24843030
Dimitrakis, Dimitrios A; Syrigou, Maria; Lorentzou, Souzana; Kostoglou, Margaritis; Konstandopoulos, Athanasios G
2017-10-11
This study aims at developing a kinetic model that can adequately describe solar thermochemical water and carbon dioxide splitting with nickel ferrite powder as the active redox material. The kinetic parameters of water splitting of a previous study are revised to include transition times and new kinetic parameters for carbon dioxide splitting are developed. The computational results show a satisfactory agreement with experimental data and continuous multicycle operation under varying operating conditions is simulated. Different test cases are explored in order to improve the product yield. At first a parametric analysis is conducted, investigating the appropriate duration of the oxidation and the thermal reduction step that maximizes the hydrogen yield. Subsequently, a non-isothermal oxidation step is simulated and proven as an interesting option for increasing the hydrogen production. The kinetic model is adapted to simulate the production yields in structured solar reactor components, i.e. extruded monolithic structures, as well.
Potential effect of ultrasound on carbohydrates.
Bera, Smritilekha; Mondal, Dhananjoy; Martin, Jacob T; Singh, Man
2015-06-17
The use of ultrasound has emerged as one of the most useful alternative energy sources for the synthesis of carbohydrate-derived biologically and pharmaceutically potential compounds. Spectacular advances have been made in the field of sonication-assisted organic reactions, which are known for producing superior yields, enhanced reactivity of the reactant, improved stereoselectivity, and shortened reaction times. Orthogonal protection-deprotection reactions and/or modification and manipulation of functional groups in carbohydrates are common synthetic steps in carbohydrate chemistry. These reaction steps can be driven by the ultrasonic energy generated by acoustic cavitation via the formation and subsequent collapse of ultrasound-induced bubbles. The ultrasound-assisted synthesis of differently functionalised monosaccharides is useful in a wide variety of applications of carbohydrate chemistry such as the glycosylation of oligosaccharides, one pot domino reactions, thioglycoside syntheses, azidoglycoside syntheses, 1,3-dipolar cycloaddition reactions, and syntheses of natural products. This review article covers ultrasound-mediated reactions on carbohydrates that have been described in the literature since 2000. Copyright © 2015 Elsevier Ltd. All rights reserved.
Eijsvogel, Michiel M; Wiegersma, Sytske; Randerath, Winfried; Verbraecken, Johan; Wegter-Hilbers, Esther; van der Palen, Job
2016-04-15
To develop and evaluate a screening questionnaire and a two-step screening strategy for obstructive sleep apnea syndrome (OSAS) in healthy workers. This is a cross-sectional study of 1,861 employees comprising healthy blue- and white-collar workers in two representative plants in the Netherlands from a worldwide consumer electronic company who were approached to participate. Employees were invited to complete various sleep questionnaires, and undergo separate single nasal flow recording and home polysomnography on two separate nights. Of the 1,861 employees, 249 provided informed consent and all nasal flow and polysomnography data were available from 176 (70.7%). OSAS was diagnosed in 65 (36.9%). A combination of age, absence of insomnia, witnessed breathing stops, and three-way scoring of the Berlin and STOPBANG questionnaires best predicted OSAS. Factor analysis identified a six-factor structure of the resulting new questionnaire: snoring, snoring severity, tiredness, witnessed apneas, sleep quality, and daytime well-being. Subsequently, some questions were removed, and the remaining questions were used to construct a new questionnaire. A scoring algorithm, computing individual probabilities of OSAS as high, intermediate, or low risk, was developed. Subsequently, the intermediate risk group was split into low and high probability for OSAS, based on nasal flow recording. This two-step approach showed a sensitivity of 63.1%, and a specificity of 90.1%. Specificity is important for low prevalence populations. A two-step screening strategy with a new questionnaire and subsequent nasal flow recording is a promising way to screen for OSAS in a healthy worker population. Development and validation of a screening instrument for obstructive sleep apnea syndrome in healthy workers. Netherlands Trial Register (www.trailregister.nl), number: NTR2675. © 2016 American Academy of Sleep Medicine.
Development of a Robust Identifier for NPPs Transients Combining ARIMA Model and EBP Algorithm
NASA Astrophysics Data System (ADS)
Moshkbar-Bakhshayesh, Khalil; Ghofrani, Mohammad B.
2014-08-01
This study introduces a novel identification method for recognition of nuclear power plants (NPPs) transients by combining the autoregressive integrated moving-average (ARIMA) model and the neural network with error backpropagation (EBP) learning algorithm. The proposed method consists of three steps. First, an EBP based identifier is adopted to distinguish the plant normal states from the faulty ones. In the second step, ARIMA models use integrated (I) process to convert non-stationary data of the selected variables into stationary ones. Subsequently, ARIMA processes, including autoregressive (AR), moving-average (MA), or autoregressive moving-average (ARMA) are used to forecast time series of the selected plant variables. In the third step, for identification the type of transients, the forecasted time series are fed to the modular identifier which has been developed using the latest advances of EBP learning algorithm. Bushehr nuclear power plant (BNPP) transients are probed to analyze the ability of the proposed identifier. Recognition of transient is based on similarity of its statistical properties to the reference one, rather than the values of input patterns. More robustness against noisy data and improvement balance between memorization and generalization are salient advantages of the proposed identifier. Reduction of false identification, sole dependency of identification on the sign of each output signal, selection of the plant variables for transients training independent of each other, and extendibility for identification of more transients without unfavorable effects are other merits of the proposed identifier.
Lu, Xing; Zhao, Guoqun; Zhou, Jixue; Zhang, Cunsheng; Yu, Junquan
2018-04-29
In this paper, a new type of low-cost Mg-3.36Zn-1.06Sn-0.33Mn-0.27Ca (wt %) alloy ingot with a diameter of 130 mm and a length of 4800 mm was fabricated by semicontinuous casting. The microstructure and mechanical properties at different areas of the ingot were investigated. The microstructure and mechanical properties of the alloy under different one-step and two-step homogenization conditions were studied. For the as-cast alloy, the average grain size and the second phase size decrease from the center to the surface of the ingot, while the area fraction of the second phase increases gradually. At one-half of the radius of the ingot, the alloy presents the optimum comprehensive mechanical properties along the axial direction, which is attributed to the combined effect of relatively small grain size, low second-phase fraction, and uniform microstructure. For the as-homogenized alloy, the optimum two-step homogenization process parameters were determined as 340 °C × 10 h + 520 °C × 16 h. After the optimum homogenization, the proper size and morphology of CaMgSn phase are conducive to improve the microstructure uniformity and the mechanical properties of the alloy. Besides, the yield strength of the alloy is reduced by 20.7% and the elongation is increased by 56.3%, which is more favorable for the subsequent hot deformation processing.
Gallium arsenide processing for gate array logic
NASA Technical Reports Server (NTRS)
Cole, Eric D.
1989-01-01
The development of a reliable and reproducible GaAs process was initiated for applications in gate array logic. Gallium Arsenide is an extremely important material for high speed electronic applications in both digital and analog circuits since its electron mobility is 3 to 5 times that of silicon, this allows for faster switching times for devices fabricated with it. Unfortunately GaAs is an extremely difficult material to process with respect to silicon and since it includes the arsenic component GaAs can be quite dangerous (toxic) especially during some heating steps. The first stage of the research was directed at developing a simple process to produce GaAs MESFETs. The MESFET (MEtal Semiconductor Field Effect Transistor) is the most useful, practical and simple active device which can be fabricated in GaAs. It utilizes an ohmic source and drain contact separated by a Schottky gate. The gate width is typically a few microns. Several process steps were required to produce a good working device including ion implantation, photolithography, thermal annealing, and metal deposition. A process was designed to reduce the total number of steps to a minimum so as to reduce possible errors. The first run produced no good devices. The problem occurred during an aluminum etch step while defining the gate contacts. It was found that the chemical etchant attacked the GaAs causing trenching and subsequent severing of the active gate region from the rest of the device. Thus all devices appeared as open circuits. This problem is being corrected and since it was the last step in the process correction should be successful. The second planned stage involves the circuit assembly of the discrete MESFETs into logic gates for test and analysis. Finally the third stage is to incorporate the designed process with the tested circuit in a layout that would produce the gate array as a GaAs integrated circuit.
Predictors of 12-Step Attendance and Participation for Individuals With Stimulant Use Disorders.
Hatch-Maillette, Mary; Wells, Elizabeth A; Doyle, Suzanne R; Brigham, Gregory S; Daley, Dennis; DiCenzo, Jessica; Donovan, Dennis; Garrett, Sharon; Horigian, Viviana E; Jenkins, Lindsay; Killeen, Therese; Owens, Mandy; Perl, Harold I
2016-09-01
Few studies have examined the effectiveness of 12-step peer recovery support programs with drug use disorders, especially stimulant use, and it is difficult to know how outcomes related to 12-step attendance and participation generalize to individuals with non-alcohol substance use disorders (SUDs). A clinical trial of 12-step facilitation (N=471) focusing on individuals with cocaine or methamphetamine use disorders allowed examination of four questions: Q1) To what extent do treatment-seeking stimulant users use 12-step programs and, which ones? Q2) Do factors previously found to predict 12-step participation among those with alcohol use disorders also predict participation among stimulant users? Q3) What specific baseline "12-step readiness" factors predict subsequent 12-step participation and attendance? And Q4) Does stimulant drug of choice differentially predict 12-step participation and attendance? The four outcomes variables, attendance, speaking, duties at 12-step meetings, and other peer recovery support activities, were not related to baseline demographic or substance problem history or severity. Drug of choice was associated with differential days of Alcoholics Anonymous (AA) and Narcotics Anonymous (NA) attendance among those who reported attending, and cocaine users reported more days of attending AA or NA at 1-, 3- and 6-month follow-ups than did methamphetamine users. Pre-randomization measures of perceived benefit of 12-step groups predicted 12-step attendance at 3- and 6-month follow-ups. Pre-randomization 12-step attendance significantly predicted number of other self-help activities at end-of-treatment, 3- and 6-month follow-ups. Pre-randomization perceived benefit and problem severity both predicted number of self-help activities at end-of-treatment and 3-month follow-up. Pre-randomization perceived barriers to 12-step groups were negatively associated with self-help activities at end-of-treatment and 3-month follow-up. Whether or not one participated in any duties was predicted at all time points by pre-randomization involvement in self-help activities. The primary finding of this study is one of continuity: prior attendance and active involvement with 12-step programs were the main signs pointing to future involvement. Limitations and recommendations are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Predictors of 12-Step Attendance and Participation for Individuals with Stimulant Use Disorders
Hatch-Maillette, Mary; Wells, Elizabeth A.; Doyle, Suzanne R.; Brigham, Gregory S.; Daley, Dennis; DiCenzo, Jessica; Donovan, Dennis; Garrett, Sharon; Horigian, Viviana E.; Jenkins, Lindsay; Killeen, Therese; Owens, Mandy; Perl, Harold I.
2017-01-01
Objective Few studies have examined the effectiveness of 12-step peer recovery support programs with drug use disorders, especially stimulant use, and it is difficult to know how outcomes related to 12-step attendance and participation generalize to individuals with non-alcohol substance use disorders (SUDs). Method A clinical trial of 12-step facilitation (N=471) focusing on individuals with cocaine or methamphetamine use disorders allowed examination of four questions: Q1) To what extent do treatment-seeking stimulant users use 12-step programs and, which ones? Q2) Do factors previously found to predict 12-step participation among those with alcohol use disorders also predict participation among stimulant users? Q3) What specific baseline “12-step readiness” factors predict subsequent 12-step participation and attendance? And Q4) Does stimulant drug of choice differentially predict 12-step participation and attendance? Results The four outcomes variables, Attendance, Speaking, Duties at 12-step meetings, and other peer recovery support Activities, were not related to baseline demographic or substance problem history or severity. Drug of choice was associated with differential days of Alcoholics Anonymous (AA) and Narcotics Anonymous (NA) attendance among those who reported attending, and cocaine users reported more days of attending AA or NA at 1-, 3- and 6-month follow-ups than did methamphetamine users. Pre-randomization measures of Perceived Benefit of 12-step groups predicted 12-step Attendance at 3- and 6-month follow-ups. Pre-randomization 12-step Attendance significantly predicted number of other Self-Help Activities at end-of-treatment, 3- and 6-month follow-ups. Pre-randomization Perceived Benefit and problem severity both predicted number of Self-Help Activities at end-of-treatment and 3-month follow-up. Pre-randomization Perceived Barriers to 12-step groups were negatively associated with Self-Help Activities at end-of-treatment and 3-month follow-up. Whether or not one participated in any Duties was predicted at all time points by pre-randomization involvement in Self-Help Activities. Conclusions The primary finding of this study is one of continuity: prior attendance and active involvement with 12-step programs were the main signs pointing to future involvement. Limitations and Recommendations are discussed. PMID:27431050
Dong, Ting; Zahn, Christopher; Saguil, Aaron; Swygert, Kimberly A; Yoon, Michelle; Servey, Jessica; Durning, Steven
2017-01-01
Construct: We investigated the extent of the associations between medical students' clinical competency measured by performance in Objective Structured Clinical Examinations (OSCE) during Obstetrics/Gynecology and Family Medicine clerkships and later performance in both undergraduate and graduate medical education. There is a relative dearth of studies on the correlations between undergraduate OSCE scores and future exam performance within either undergraduate or graduate medical education and almost none on linking these simulated encounters to eventual patient care. Of the research studies that do correlate clerkship OSCE scores with future performance, these often have a small sample size and/or include only 1 clerkship. Students in USU graduating classes of 2007 through 2011 participated in the study. We investigated correlations between clerkship OSCE grades with United States Medical Licensing Examination Step 2 Clinical Knowledge, Clinical Skills, and Step 3 Exams scores as well as Postgraduate Year 1 program director's evaluation scores on Medical Expertise and Professionalism. We also conducted contingency table analysis to examine the associations between poor performance on clerkship OSCEs with failing Step 3 and receiving poor program director ratings. The correlation coefficients were weak between the clerkship OSCE grades and the outcomes. The strongest correlations existed between the clerkship OSCE grades and the Step 2 CS Integrated Clinical Encounter component score, Step 2 Clinical Skills, and Step 3 scores. Contingency table associations between poor performances on both clerkships OSCEs and poor Postgraduate Year 1 Program Director ratings were significant. The results of this study provide additional but limited validity evidence for the use of OSCEs during clinical clerkships given their associations with subsequent performance measures.
Pantanowitz, Liron; Labranche, Wayne; Lareau, William
2010-05-26
Clinical laboratory outreach business is changing as more physician practices adopt an electronic medical record (EMR). Physician connectivity with the laboratory information system (LIS) is consequently becoming more important. However, there are no reports available to assist the informatician with establishing and maintaining outreach LIS-EMR connectivity. A four-stage scheme is presented that was successfully employed to establish unidirectional and bidirectional interfaces with multiple physician EMRs. This approach involves planning (step 1), followed by interface building (step 2) with subsequent testing (step 3), and finally ongoing maintenance (step 4). The role of organized project management, software as a service (SAAS), and alternate solutions for outreach connectivity are discussed.
Pantanowitz, Liron; LaBranche, Wayne; Lareau, William
2010-01-01
Clinical laboratory outreach business is changing as more physician practices adopt an electronic medical record (EMR). Physician connectivity with the laboratory information system (LIS) is consequently becoming more important. However, there are no reports available to assist the informatician with establishing and maintaining outreach LIS–EMR connectivity. A four-stage scheme is presented that was successfully employed to establish unidirectional and bidirectional interfaces with multiple physician EMRs. This approach involves planning (step 1), followed by interface building (step 2) with subsequent testing (step 3), and finally ongoing maintenance (step 4). The role of organized project management, software as a service (SAAS), and alternate solutions for outreach connectivity are discussed. PMID:20805958
Role of metal oxides in the thermal degradation of poly(vinyl chloride)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, M.C.; Viswanath, S.G.
Thermal degradation of poly(vinyl chloride) has been studied in the presence of metal oxides by a thermogravimetric method. It follows a two-step mechanism. In the first step chlorine free radical is formed as in the case of pure PVC, and in the second step chlorine free radical replaces oxygen from metal oxide to form metal chloride and oxygen free radical. Subsequently, the oxygen free radical abstracts hydrogen from PVC. Formation of metal chloride is the rate-controlling step. The metal chlorides formed during the thermal degradation either volatilize or decompose simultaneously to lower metallic chlorides depending on the boiling point ormore » the volatilization temperature.« less
Activation of catalysts for synthesizing methanol from synthesis gas
Blum, David B.; Gelbein, Abraham P.
1985-01-01
A method for activating a methanol synthesis catalyst is disclosed. In this method, the catalyst is slurried in an inert liquid and is activated by a reducing gas stream. The activation step occurs in-situ. That is, it is conducted in the same reactor as is the subsequent step of synthesizing methanol from a methanol gas stream catalyzed by the activated catalyst still dispersed in a slurry.
NASA Astrophysics Data System (ADS)
Pohle, Ina; Niebisch, Michael; Zha, Tingting; Schümberg, Sabine; Müller, Hannes; Maurer, Thomas; Hinz, Christoph
2017-04-01
Rainfall variability within a storm is of major importance for fast hydrological processes, e.g. surface runoff, erosion and solute dissipation from surface soils. To investigate and simulate the impacts of within-storm variabilities on these processes, long time series of rainfall with high resolution are required. Yet, observed precipitation records of hourly or higher resolution are in most cases available only for a small number of stations and only for a few years. To obtain long time series of alternating rainfall events and interstorm periods while conserving the statistics of observed rainfall events, the Poisson model can be used. Multiplicative microcanonical random cascades have been widely applied to disaggregate rainfall time series from coarse to fine temporal resolution. We present a new coupling approach of the Poisson rectangular pulse model and the multiplicative microcanonical random cascade model that preserves the characteristics of rainfall events as well as inter-storm periods. In the first step, a Poisson rectangular pulse model is applied to generate discrete rainfall events (duration and mean intensity) and inter-storm periods (duration). The rainfall events are subsequently disaggregated to high-resolution time series (user-specified, e.g. 10 min resolution) by a multiplicative microcanonical random cascade model. One of the challenges of coupling these models is to parameterize the cascade model for the event durations generated by the Poisson model. In fact, the cascade model is best suited to downscale rainfall data with constant time step such as daily precipitation data. Without starting from a fixed time step duration (e.g. daily), the disaggregation of events requires some modifications of the multiplicative microcanonical random cascade model proposed by Olsson (1998): Firstly, the parameterization of the cascade model for events of different durations requires continuous functions for the probabilities of the multiplicative weights, which we implemented through sigmoid functions. Secondly, the branching of the first and last box is constrained to preserve the rainfall event durations generated by the Poisson rectangular pulse model. The event-based continuous time step rainfall generator has been developed and tested using 10 min and hourly rainfall data of four stations in North-Eastern Germany. The model performs well in comparison to observed rainfall in terms of event durations and mean event intensities as well as wet spell and dry spell durations. It is currently being tested using data from other stations across Germany and in different climate zones. Furthermore, the rainfall event generator is being applied in modelling approaches aimed at understanding the impact of rainfall variability on hydrological processes. Reference Olsson, J.: Evaluation of a scaling cascade model for temporal rainfall disaggregation, Hydrology and Earth System Sciences, 2, 19.30
An evaluation of children's metered-dose inhaler technique for asthma medications.
Burkhart, Patricia V; Rayens, Mary Kay; Bowman, Roxanne K
2005-03-01
Regardless of the medication delivery system, health care providers need to teach accurate medication administration techniques to their patients, educate them about the particular nuances of the prescribed delivery system (eg, proper storage), and reinforce these issues at each health encounter. A single instruction session is not sufficient to maintain appropriate inhaler techniques for patients who require continued use. Providing written steps for the administration technique is helpful so that the patient can refer to them later when using the medication. The National Heart, Lung, and Blood Institute's "Practical Guide for the Diagnosis and Management of Asthma" recommends that practitioners follow these steps for effective inhaler technique training when first prescribing an inhaler: 1. Teach patients the steps and give written instruction handouts. 2. Demonstrate how to use the inhaler step-by-step. 3. Ask patients to demonstrate how to use the inhaler. Let the patient refer to the handout on the first training. Then use the handout asa checklist to assess the patient's future technique. 4. Provide feedback to patients about what they did right and what they need to improve. Have patients demonstrate their technique again, if necessary. The last two steps should be performed (ie, demonstration and providing feedback on what patients did right and what they need to improve) at every subsequent visit. If the patient makes multiple errors, it is advisable to focus on improving one or two key steps at a time. With improvements in drug delivery come challenges, necessitating that practitioners stay current with new medication administration techniques. Teaching and reinforcing accurate technique at each health care encounter are critical to help ensure medication efficacy for patients with asthma. Since one fifth of children in the study performed incorrect medication technique even after education, checklists of steps for the correct use of inhalation devices, such as those provided in this article, should be given to patients for home use and for use by clinicians to evaluate patient technique at each health encounter.
Controlled epitaxial graphene growth within removable amorphous carbon corrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, James; Hu, Yike; Hankinson, John
2014-07-14
We address the question of control of the silicon carbide (SiC) steps and terraces under epitaxial graphene on SiC and demonstrate amorphous carbon (aC) corrals as an ideal method to pin SiC surface steps. aC is compatible with graphene growth, structurally stable at high temperatures, and can be removed after graphene growth. For this, aC is first evaporated and patterned on SiC, then annealed in the graphene growth furnace. There at temperatures above 1200 °C, mobile SiC steps accumulate at the aC corral that provide effective step flow barriers. Aligned step free regions are thereby formed for subsequent graphene growth atmore » temperatures above 1330 °C. Atomic force microscopy imaging supports the formation of step-free terraces on SiC with the step morphology aligned to the aC corrals. Raman spectroscopy indicates the presence of good graphene sheets on the step-free terraces.« less
29 CFR 1952.372 - Completion of developmental steps and certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Manual and Industrial Hygiene Field Operations Manual. The State has adopted subsequent Federal changes... intent to utilize and adopt the March 30, 1984 Federal Industrial Hygiene Technical Manual. These...
Survey Methods to Optimize Response Rate in the National Dental Practice-Based Research Network.
Funkhouser, Ellen; Vellala, Kavya; Baltuck, Camille; Cacciato, Rita; Durand, Emily; McEdward, Deborah; Sowell, Ellen; Theisen, Sarah E; Gilbert, Gregg H
2017-09-01
Surveys of health professionals typically have low response rates, and these rates have been decreasing in the recent years. We report on the methods used in a successful survey of dentist members of the National Dental Practice-Based Research Network. The objectives were to quantify the (1) increase in response rate associated with successive survey methods, (2) time to completion with each successive step, (3) contribution from the final method and personal contact, and (4) differences in response rate and mode of response by practice/practitioner characteristics. Dentist members of the network were mailed an invitation describing the study. Subsequently, up to six recruitment steps were followed: initial e-mail, two e-mail reminders at 2-week intervals, a third e-mail reminder with postal mailing a paper questionnaire, a second postal mailing of paper questionnaire, and staff follow-up. Of the 1,876 invited, 160 were deemed ineligible and 1,488 (87% of 1,716 eligible) completed the survey. Completion by step: initial e-mail, 35%; second e-mail, 15%; third e-mail, 7%; fourth e-mail/first paper, 11%; second paper, 15%; and staff follow-up, 16%. Overall, 76% completed the survey online and 24% on paper. Completion rates increased in absolute numbers and proportionally with later methods of recruitment. Participation rates varied little by practice/practitioner characteristics. Completion on paper was more likely by older dentists. Multiple methods of recruitment resulted in a high participation rate: Each step and method produced incremental increases with the final step producing the largest increase.
Prober, Charles G; Kolars, Joseph C; First, Lewis R; Melnick, Donald E
2016-01-01
The three-step United States Medical Licensing Examination (USMLE) was developed by the National Board of Medical Examiners and the Federation of State Medical Boards to provide medical licensing authorities a uniform evaluation system on which to base licensure. The test results appear to be a good measure of content knowledge and a reasonable predictor of performance on subsequent in-training and certification exams. Nonetheless, it is disconcerting that the test preoccupies so much of students' attention with attendant substantial costs (in time and money) and mental and emotional anguish. There is an increasingly pervasive practice of using the USMLE score, especially the Step 1 component, to screen applicants for residency. This is despite the fact that the test was not designed to be a primary determinant of the likelihood of success in residency. Further, relying on Step 1 scores to filter large numbers of applications has unintended consequences for students and undergraduate medical education curricula. There are many other factors likely to be equally or more predictable of performance during residency. The authors strongly recommend a move away from using test scores alone in the applicant screening process and toward a more holistic evaluation of the skills, attributes, and behaviors sought in future health care providers. They urge more rigorous study of the characteristics of students that predict success in residency, better assessment tools for competencies beyond those assessed by Step 1 that are relevant to success, and nationally comparable measures from those assessments that are easy to interpret and apply.
Introduction to Remote Sensing Image Registration
NASA Technical Reports Server (NTRS)
Le Moigne, Jacqueline
2017-01-01
For many applications, accurate and fast image registration of large amounts of multi-source data is the first necessary step before subsequent processing and integration. Image registration is defined by several steps and each step can be approached by various methods which all present diverse advantages and drawbacks depending on the type of data, the type of applications, the a prior information known about the data and the type of accuracy that is required. This paper will first present a general overview of remote sensing image registration and then will go over a few specific methods and their applications
Reservoir rehabilitations: Seeking the Fountain of Youth
Pegg, Mark A.; Pope, Kevin L.; Powell, L.A.; Turek, Kelly C.; Spurgeon, Jonathan J.; Stewart, Nathaniel T.; Hogberg, Nick P.; Porath, Mark T.
2017-01-01
Aging of reservoirs alters the functions, and associated services, of these systems through time. The goal of habitat rehabilitation is often to alter the trajectory of the aging process such that the duration of the desired state is prolonged. There are two important characteristics in alteration of the trajectory—the amplitude relative to current state and the subsequent rate of change, or aging—that ultimately determine the duration of extension for the desired state. Rehabilitation processes largely fall into three main categories: fish community manipulation, water quality manipulation, and physical habitat manipulation. We can slow aging of reservoirs through carefully implemented management actions, perhaps even turning back the hands of time, but we cannot stop aging. We call for new, innovative perspectives that incorporate an understanding of aging processes in all steps of rehabilitation of reservoirs, especially in planning and assessing.
Novel embryo selection techniques to increase embryo implantation in IVF attempts.
Sigalos, George Α; Triantafyllidou, Olga; Vlahos, Nikos F
2016-11-01
The final success of an IVF attempt depends on several steps and decisions taken during the ovarian stimulation, the oocyte retrieval, the embryo culture and the embryo transfer. The final selection of the embryos most likely to implant is the final step in this process and the responsibility of the lab. Apart from strict morphologic criteria that historically have been used in embryo selection, additional information on genetic, metabolomic and morphokinetic characteristics of the embryo is recently combined to morphology to select the embryo most likely to produce a pregnancy. In this manuscript, we review the most recent information on the current methods used for embryo selection presenting the predictive capability of each one. A literature search was performed on Pubmed, Medline and Cochrane Database of Systematic Reviews for published studies using appropriate key words and phrases with no limits placed on time. It seems that the combination of morphologic criteria in conjunction to embryo kinetics as documented by time-lapse technology provides the most reliable information on embryo quality. Blastocyst biopsy with subsequent comprehensive chromosome analysis allows the selection of the euploid embryos with the higher implantation potential. Embryo time-lapse imaging and blastocyst biopsy combined to comprehensive chromosome analysis are the most promising technologies to increase pregnancy rates and reduce the possibility of multiple pregnancies. However, further studies will demonstrate the capability of routinely using these technologies to significantly improve IVF outcomes.
Waters, Christopher L.; Janupala, Rajiv R.; Mallinson, Richard G.; ...
2017-05-25
Thermal conversion technologies may be the most efficient means of production of transportation fuels from lignocellulosic biomass. In order to increase the viability and improve the carbon emissions profile of pyrolysis biofuels, improvements must be made to the required catalytic upgrading to increase both hydrogen utilization efficiency and final liquid carbon yields. However, no current single catalytic valorization strategy can be optimized to convert the complex mixture of compounds produced upon fast pyrolysis of biomass. Staged thermal fractionation, which entails a series of sequentially increasing temperature steps to decompose biomass, has been proposed as a simple means to create vapormore » product streams of enhanced purity as compared to fast pyrolysis. In this work, we use analytical pyrolysis to investigate the effects of time and temperature on a thermal step designed to segregate the lignin and cellulose pyrolysis products of a biomass which has been pre-torrefied to remove hemicellulose. At process conditions of 380 °C and 180 s isothermal hold time, a stream containing less than 20% phenolics (carbon basis) was produced, and upon subsequent fast pyrolysis of the residual solid a stream of 81.5% levoglucosan (carbon basis) was produced. The thermal segregation comes at the expense of vapor product carbon yield, but the improvement in catalytic performance may offset these losses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waters, Christopher L.; Janupala, Rajiv R.; Mallinson, Richard G.
Thermal conversion technologies may be the most efficient means of production of transportation fuels from lignocellulosic biomass. In order to increase the viability and improve the carbon emissions profile of pyrolysis biofuels, improvements must be made to the required catalytic upgrading to increase both hydrogen utilization efficiency and final liquid carbon yields. However, no current single catalytic valorization strategy can be optimized to convert the complex mixture of compounds produced upon fast pyrolysis of biomass. Staged thermal fractionation, which entails a series of sequentially increasing temperature steps to decompose biomass, has been proposed as a simple means to create vapormore » product streams of enhanced purity as compared to fast pyrolysis. In this work, we use analytical pyrolysis to investigate the effects of time and temperature on a thermal step designed to segregate the lignin and cellulose pyrolysis products of a biomass which has been pre-torrefied to remove hemicellulose. At process conditions of 380 °C and 180 s isothermal hold time, a stream containing less than 20% phenolics (carbon basis) was produced, and upon subsequent fast pyrolysis of the residual solid a stream of 81.5% levoglucosan (carbon basis) was produced. The thermal segregation comes at the expense of vapor product carbon yield, but the improvement in catalytic performance may offset these losses.« less
Lock, Nina; Bremholm, Martin; Christensen, Mogens; Almer, Jonathan; Chen, Yu-Sheng; Iversen, Bo B
2009-12-14
Boehmite (AlOOH) nanoparticles have been synthesized in subcritical (300 bar, 350 degrees C) and supercritical (300 bar, 400 degrees C) water. The formation and growth of AlOOH nanoparticles were studied in situ by small- and wide-angle X-ray scattering (SAXS and WAXS) using 80 keV synchrotron radiation. The SAXS/WAXS data were measured simultaneously with a time resolution greater than 10 s and revealed the initial nucleation of amorphous particles takes place within 10 s with subsequent crystallization after 30 s. No diffraction signals were observed from Al(OH)(3) within the time resolution of the experiment, which shows that the dehydration step of the reaction is fast and the hydrolysis step rate-determining. The sizes of the crystalline particles were determined as a function of time. The overall size evolution patterns are similar in sub- and supercritical water, but the growth is faster and the final particle size larger under supercritical conditions. After approximately 5 min, the rate of particle growth decreases in both sub- and supercritical water. Heating of the boehmite nanoparticle suspension allowed an in situ X-ray investigation of the phase transformation of boehmite to aluminium oxide. Under the wet conditions used in this work, the transition starts at 530 degrees C and gives a two-phase product of hydrated and non-hydrated aluminium oxide.
Nicolini, M.H.; Penry, D.L.
2000-01-01
In Potamocorbula amurensis time for development to the straight-hinge larval stage is 48 hr at 15??C. Potamocorbula amurensis settles at a shell length of approximately 135 ??m 17 to 19 days after fertilization. Our observations of timing of larval devdlopment in P. amurensis support the hypothesis of earlier workers that its route of initial introduction to San Francisco Bay was as veliger larvae transported in ballast water by trans-Pacific cargo ships. The length of the larval period of P. amurensis relative to water mass residence times in San Francisco Bay suggests that it is sufficient to allow substantial dispersal from North Bay to South Bay populations in concordance with previous observations that genetic differentiation among populations of P. amurensis in San Francisco Bay is low. Potamocorbula amurensis is markedly euryhaline at all stages of development. Spawning and fertilization can occur at salinities from 5 to 25 psu, and eggs and sperms can each tolerance at least a 10-psu step increase or decrease in salinity. Embryos that are 2 hr old can tolerate the same range of salinities from (10 to 30 psu), and by the time they are 24 hr old they can tolerate the same range of salinities (2 to 30 psu) that adult clams can. The ability of P. amurensis larvae to tolerate substantial step changes in salinity suggests a strong potential to survive incomplete oceanic exchanges of ballast water and subsequent discharge into receiving waters across a broad range of salinities.
Waldman, Alexander B
2010-08-01
Orthodontic temporary anchorage devices provide a novel alternative to orthognathic surgery for the treatment of severe anterior open-bite malocclusions. These implantable devices provide skeletal anchorage for maxillary molar intrusion, allowing for mandibular autorotation and subsequent open-bite closure. This case demonstrates step-by-step treatment of a 41-year-old woman with a severe open-bite malocclusion. Detailed orthodontic mechanics are described at every stage of treatment.
Manufacturing Enhancement through Reduction of Cycle Time using Different Lean Techniques
NASA Astrophysics Data System (ADS)
Suganthini Rekha, R.; Periyasamy, P.; Nallusamy, S.
2017-08-01
In recent manufacturing system the most important parameters in production line are work in process, TAKT time and line balancing. In this article lean tools and techniques were implemented to reduce the cycle time. The aim is to enhance the productivity of the water pump pipe by identifying the bottleneck stations and non value added activities. From the initial time study the bottleneck processes were identified and then necessary expanding processes were also identified for the bottleneck process. Subsequently the improvement actions have been established and implemented using different lean tools like value stream mapping, 5S and line balancing. The current state value stream mapping was developed to describe the existing status and to identify various problem areas. 5S was used to implement the steps to reduce the process cycle time and unnecessary movements of man and material. The improvement activities were implemented with required suggested and the future state value stream mapping was developed. From the results it was concluded that the total cycle time was reduced about 290.41 seconds and the customer demand has been increased about 760 units.
NASA Astrophysics Data System (ADS)
Ito, Masami; Kari, Lila; Kincaid, Zachary; Seki, Shinnosuke
The duplication and repeat-deletion operations are the basis of a formal language theoretic model of errors that can occur during DNA replication. During DNA replication, subsequences of a strand of DNA may be copied several times (resulting in duplications) or skipped (resulting in repeat-deletions). As formal language operations, iterated duplication and repeat-deletion of words and languages have been well studied in the literature. However, little is known about single-step duplications and repeat-deletions. In this paper, we investigate several properties of these operations, including closure properties of language families in the Chomsky hierarchy and equations involving these operations. We also make progress toward a characterization of regular languages that are generated by duplicating a regular language.
Effect of microgravity on several visual functions during STS shuttle missions
NASA Technical Reports Server (NTRS)
Oneal, Melvin R.; Task, H. Lee; Genco, Louis V.
1992-01-01
Changes in the acuity of astronaut vision during flight are discussed. Parameters such as critical flicker vision, stereopsis to 10 seconds of arc, visual acuity in small steps to 20/7.7, cyclophoria, lateral and vertical phoria and retinal rivalry were tested using a visual function tester. Twenty-three Space Transportation System (STS) astronauts participated in the experiments. Their vision was assessed twice before launch and after landing, and three to four times while on-orbit and landing. No significant differences during space flight were observed for any of the visual parameters tested. In some cases, slight changes in acuity and stereopsis were observed with a subsequent return to normal vision after flight.
Phase holograms in polymethyl methacrylate
NASA Technical Reports Server (NTRS)
Maker, P. D.; Muller, R. E.
1992-01-01
A procedure is described for the fabrication of complex computer-generated phase holograms in polymethyl methacrylate (PMMA) by means of partial-exposure e-beam lithography and subsequent carefully controlled partial development. Following the development, the pattern appears (rendered in relief) in the PMMA, which then acts as the phase-delay medium. The devices fabricated were designed with 16 equal phase steps per retardation cycle, were up to 3 mm square, and consisted of up to 10 millions of 0.3-2.0-micron square pixels. Data files were up to 60 Mb-long, and the exposure times ranged to several hours. A Fresnel phase lens was fabricated with a diffraction-limited optical performance of 83-percent efficiency.
The Predictive Value of Ultrasound Learning Curves Across Simulated and Clinical Settings.
Madsen, Mette E; Nørgaard, Lone N; Tabor, Ann; Konge, Lars; Ringsted, Charlotte; Tolsgaard, Martin G
2017-01-01
The aim of the study was to explore whether learning curves on a virtual-reality (VR) sonographic simulator can be used to predict subsequent learning curves on a physical mannequin and learning curves during clinical training. Twenty midwives completed a simulation-based training program in transvaginal sonography. The training was conducted on a VR simulator as well as on a physical mannequin. A subgroup of 6 participants underwent subsequent clinical training. During each of the 3 steps, the participants' performance was assessed using instruments with established validity evidence, and they advanced to the next level only after attaining predefined levels of performance. The number of repetitions and time needed to achieve predefined performance levels were recorded along with the performance scores in each setting. Finally, the outcomes were correlated across settings. A good correlation was found between time needed to achieve predefined performance levels on the VR simulator and the physical mannequin (Pearson correlation coefficient .78; P < .001). Performance scores on the VR simulator correlated well to the clinical performance scores (Pearson correlation coefficient .81; P = .049). No significant correlations were found between numbers of attempts needed to reach proficiency across the 3 different settings. A post hoc analysis found that the 50% fastest trainees at reaching proficiency during simulation-based training received higher clinical performance scores compared to trainees with scores placing them among the 50% slowest (P = .025). Performances during simulation-based sonography training may predict performance in related tasks and subsequent clinical learning curves. © 2016 by the American Institute of Ultrasound in Medicine.
NASA Astrophysics Data System (ADS)
Most, S.; Jia, N.; Bijeljic, B.; Nowak, W.
2016-12-01
Pre-asymptotic characteristics are almost ubiquitous when analyzing solute transport processes in porous media. These pre-asymptotic aspects are caused by spatial coherence in the velocity field and by its heterogeneity. For the Lagrangian perspective of particle displacements, the causes of pre-asymptotic, non-Fickian transport are skewed velocity distribution, statistical dependencies between subsequent increments of particle positions (memory) and dependence between the x, y and z-components of particle increments. Valid simulation frameworks should account for these factors. We propose a particle tracking random walk (PTRW) simulation technique that can use empirical pore-space velocity distributions as input, enforces memory between subsequent random walk steps, and considers cross dependence. Thus, it is able to simulate pre-asymptotic non-Fickian transport phenomena. Our PTRW framework contains an advection/dispersion term plus a diffusion term. The advection/dispersion term produces time-series of particle increments from the velocity CDFs. These time series are equipped with memory by enforcing that the CDF values of subsequent velocities change only slightly. The latter is achieved through a random walk on the axis of CDF values between 0 and 1. The virtual diffusion coefficient for that random walk is our only fitting parameter. Cross-dependence can be enforced by constraining the random walk to certain combinations of CDF values between the three velocity components in x, y and z. We will show that this modelling framework is capable of simulating non-Fickian transport by comparison with a pore-scale transport simulation and we analyze the approach to asymptotic behavior.
Insight into nuclear body formation of phytochromes through stochastic modelling and experiment.
Grima, Ramon; Sonntag, Sebastian; Venezia, Filippo; Kircher, Stefan; Smith, Robert W; Fleck, Christian
2018-05-01
Spatial relocalization of proteins is crucial for the correct functioning of living cells. An interesting example of spatial ordering is the light-induced clustering of plant photoreceptor proteins. Upon irradiation by white or red light, the red light-active phytochrome, phytochrome B, enters the nucleus and accumulates in large nuclear bodies. The underlying physical process of nuclear body formation remains unclear, but phytochrome B is thought to coagulate via a simple protein-protein binding process. We measure, for the first time, the distribution of the number of phytochrome B-containing nuclear bodies as well as their volume distribution. We show that the experimental data cannot be explained by a stochastic model of nuclear body formation via simple protein-protein binding processes using physically meaningful parameter values. Rather modelling suggests that the data is consistent with a two step process: a fast nucleation step leading to macroparticles followed by a subsequent slow step in which the macroparticles bind to form the nuclear body. An alternative explanation for the observed nuclear body distribution is that the phytochromes bind to a so far unknown molecular structure. We believe it is likely this result holds more generally for other nuclear body-forming plant photoreceptors and proteins. Creative Commons Attribution license.
Three-step management of pneumothorax: time for a re-think on initial management†
Kaneda, Hiroyuki; Nakano, Takahito; Taniguchi, Yohei; Saito, Tomohito; Konobu, Toshifumi; Saito, Yukihito
2013-01-01
Pneumothorax is a common disease worldwide, but surprisingly, its initial management remains controversial. There are some published guidelines for the management of spontaneous pneumothorax. However, they differ in some respects, particularly in initial management. In published trials, the objective of treatment has not been clarified and it is not possible to compare the treatment strategies between different trials because of inappropriate evaluations of the air leak. Therefore, there is a need to outline the optimal management strategy for pneumothorax. In this report, we systematically review published randomized controlled trials of the different treatments of primary spontaneous pneumothorax, point out controversial issues and finally propose a three-step strategy for the management of pneumothorax. There are three important characteristics of pneumothorax: potentially lethal respiratory dysfunction; air leak, which is the obvious cause of the disease; frequent recurrence. These three characteristics correspond to the three steps. The central idea of the strategy is that the lung should not be expanded rapidly, unless absolutely necessary. The primary objective of both simple aspiration and chest drainage should be the recovery of acute respiratory dysfunction or the avoidance of respiratory dysfunction and subsequent complications. We believe that this management strategy is simple and clinically relevant and not dependent on the classification of pneumothorax. PMID:23117233
Process for forming transparent aerogel insulating arrays
Tewari, Param H.; Hunt, Arlon J.
1986-01-01
An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO.sub.2, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO.sub.2, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40.degree. C. instead of at about 270.degree. C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementry particles or cosmic rays.
Direct-Write Laser Grayscale Lithography for Multilayer Lead Zirconate Titanate Thin Films.
Benoit, Robert R; Jordan, Delaney M; Smith, Gabriel L; Polcawich, Ronald G; Bedair, Sarah S; Potrepka, Daniel M
2018-05-01
Direct-write laser grayscale lithography has been used to facilitate a single-step patterning technique for multilayer lead zirconate titanate (PZT) thin films. A 2.55- -thick photoresist was patterned with a direct-write laser. The intensity of the laser was varied to create both tiered and sloped structures that are subsequently transferred into multilayer PZT(52/48) stacks using a single Ar ion-mill etch. Traditional processing requires a separate photolithography step and an ion mill etch for each layer of the substrate, which can be costly and time consuming. The novel process allows access to buried electrode layers in the multilayer stack in a single photolithography step. The grayscale process was demonstrated on three 150-mm diameter Si substrates configured with a 0.5- -thick SiO 2 elastic layer, a base electrode of Pt/TiO 2 , and a stack of four PZT(52/48) thin films of either 0.25- thickness per layer or 0.50- thickness per layer, and using either Pt or IrO 2 electrodes above and below each layer. Stacked capacitor structures were patterned and results will be reported on the ferroelectric and electromechanical properties using various wiring configurations and compared to comparable single layer PZT configurations.
Two-step crystal growth mechanism during crystallization of an undercooled Ni50Al50 alloy
NASA Astrophysics Data System (ADS)
An, Simin; Li, Jiahao; Li, Yang; Li, Shunning; Wang, Qi; Liu, Baixin
2016-08-01
Crystallization processes are always accompanied by the emergence of multiple intermediate states, of which the structures and transition dynamics are far from clarity, since it is difficult to experimentally observe the microscopic pathway. To insight the structural evolution and the crystallization dynamics, we perform large-scale molecular dynamics simulations to investigate the time-dependent crystallization behavior of the NiAl intermetallic upon rapid solidification. The simulation results reveal that the crystallization process occurs via a two-step growth mechanism, involving the formation of initial non-equilibrium long range order (NLRO) regions and of the subsequent equilibrium long range order (ELRO) regions. The formation of the NLRO regions makes the grains rather inhomogeneous, while the rearrangement of the NLRO regions into the ELRO regions makes the grains more ordered and compact. This two-step growth mechanism is actually controlled by the evolution of the coordination polyhedra, which are characterized predominantly by the transformation from five-fold symmetry to four-fold and six-fold symmetry. From liquids to NLRO and further to ELRO, the five-fold symmetry of these polyhedra gradually fades, and finally vanishes when B2 structure is distributed throughout the grain bulk. The energy decrease along the pathway further implies the reliability of the proposed crystallization processes.
SWEET sugar transporters for phloem transport and pathogen nutrition.
Chen, Li-Qing
2014-03-01
Many intercellular solute transport processes require an apoplasmic step, that is, efflux from one cell and subsequent uptake by an adjacent cell. Cellular uptake transporters have been identified for many solutes, including sucrose; however, efflux transporters have remained elusive for a long time. Cellular efflux of sugars plays essential roles in many processes, such as sugar efflux as the first step in phloem loading, sugar efflux for nectar secretion, and sugar efflux for supplying symbionts such as mycorrhiza, and maternal efflux for filial tissue development. Furthermore, sugar efflux systems can be hijacked by pathogens for access to nutrition from hosts. Mutations that block recruitment of the efflux mechanism by the pathogen thus cause pathogen resistance. Until recently, little was known regarding the underlying mechanism of sugar efflux. The identification of sugar efflux carriers, SWEETs (Sugars Will Eventually be Exported Transporters), has shed light on cellular sugar efflux. SWEETs appear to function as uniporters, facilitating diffusion of sugars across cell membranes. Indeed, SWEETs probably mediate sucrose efflux from putative phloem parenchyma into the phloem apoplasm, a key step proceeding phloem loading. Engineering of SWEET mutants using transcriptional activator-like effector nuclease (TALEN)-based genomic editing allowed the engineering of pathogen resistance. The widespread expression of the SWEET family promises to provide insights into many other cellular efflux mechanisms.
NASA Astrophysics Data System (ADS)
Chen, Ying-Chih; Huang, Chun-Yuan; Yu, Hsin-Chieh; Su, Yan-Kuin
2012-08-01
The nonvolatile memory thin film transistors (TFTs) using a core/shell CdSe/ZnS quantum dot (QD)-poly(methyl methacrylate) (PMMA) composite layer as the floating gate have been demonstrated, with the device configuration of n+-Si gate/SiO2 insulator/QD-PMMA composite layer/pentacene channel/Au source-drain being proposed. To achieve the QD-PMMA composite layer, a two-step spin coating technique was used to successively deposit QD-PMMA composite and PMMA on the insulator. After the processes, the variation of crystal quality and surface morphology of the subsequent pentacene films characterized by x-ray diffraction spectra and atomic force microscopy was correlated to the two-step spin coating. The crystalline size of pentacene was improved from 147.9 to 165.2 Å, while the degree of structural disorder was decreased from 4.5% to 3.1% after the adoption of this technique. In pentacene-based TFTs, the improvement of the performance was also significant, besides the appearances of strong memory characteristics. The memory behaviors were attributed to the charge storage/discharge effect in QD-PMMA composite layer. Under the programming and erasing operations, programmable memory devices with the memory window (Δ Vth) = 23 V and long retention time were obtained.
Process for forming transparent aerogel insulating arrays
Tewari, P.H.; Hunt, A.J.
1985-09-04
An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO/sub 2/, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO/sub 2/, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40/sup 0/C instead of at about 270/sup 0/C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementary particles or cosmic rays.
Clark, Stephen J; Smallwood, Sébastien A; Lee, Heather J; Krueger, Felix; Reik, Wolf; Kelsey, Gavin
2017-03-01
DNA methylation (DNAme) is an important epigenetic mark in diverse species. Our current understanding of DNAme is based on measurements from bulk cell samples, which obscures intercellular differences and prevents analyses of rare cell types. Thus, the ability to measure DNAme in single cells has the potential to make important contributions to the understanding of several key biological processes, such as embryonic development, disease progression and aging. We have recently reported a method for generating genome-wide DNAme maps from single cells, using single-cell bisulfite sequencing (scBS-seq), allowing the quantitative measurement of DNAme at up to 50% of CpG dinucleotides throughout the mouse genome. Here we present a detailed protocol for scBS-seq that includes our most recent developments to optimize recovery of CpGs, mapping efficiency and success rate; reduce hands-on time; and increase sample throughput with the option of using an automated liquid handler. We provide step-by-step instructions for each stage of the method, comprising cell lysis and bisulfite (BS) conversion, preamplification and adaptor tagging, library amplification, sequencing and, lastly, alignment and methylation calling. An individual with relevant molecular biology expertise can complete library preparation within 3 d. Subsequent computational steps require 1-3 d for someone with bioinformatics expertise.
Klafke, G B; Borsuk, S; Gonçales, R A; Arruda, F V S; Carneiro, V A; Teixeira, E H; Coelho da Silva, A L; Cavada, B S; Dellagostin, O A; Pinto, L S
2013-11-01
The aim of the present work was to study the in vitro effect of native and recombinant Bauhinia variegata var. variegata lectins in inhibiting early adhesion of Streptococcus mutans, Streptococcus sanguis and Streptococcus sobrinus to experimentally acquired pellicle. Native lectin from B. variegata (BVL) was purified by affinity chromatography of extract of seeds. The recombinant lectin (rBVL-I) was expressed in E. coli strain BL21 (DE3) from a genomic clone encoding the mature B. variegata lectin gene using the vector pAE-bvlI. Recombinant protein deposited in inclusion bodies was solubilized and subsequently purified by affinity chromatography. The rBVL-I was compared to BVL for agglutination of erythrocytes and initial adherence of oral bacteria on a saliva-coated surface. The results revealed that rBVL-I acts similarly to BVL for agglutination of erythrocytes. Both lectins showed adhesion inhibition effect on Step. sanguis, Step. mutans and Step. sobrinus. We report, for the first time, the inhibition of early adhesion of oral bacteria by a recombinant lectin. Our results support the proposed biotechnological application of lectins in a strategy to reduce development of dental caries by inhibiting the initial adhesion and biofilm formation. © 2013 The Society for Applied Microbiology.
Instructional versus schedule control of humans' choices in situations of diminishing returns
Hackenberg, Timothy D.; Joker, Veronica R.
1994-01-01
Four adult humans chose repeatedly between a fixed-time schedule (of points later exchangeable for money) and a progressive-time schedule that began at 0 s and increased by a fixed number of seconds with each point delivered by that schedule. Each point delivered by the fixed-time schedule reset the requirements of the progressive-time schedule to its minimum value. Subjects were provided with instructions that specified a particular sequence of choices. Under the initial conditions, the instructions accurately specified the optimal choice sequence. Thus, control by instructions and optimal control by the programmed contingencies both supported the same performance. To distinguish the effects of instructions from schedule sensitivity, the correspondence between the instructed and optimal choice patterns was gradually altered across conditions by varying the step size of the progressive-time schedule while maintaining the same instructions. Step size was manipulated, typically in 1-s units, first in an ascending and then in a descending sequence of conditions. Instructions quickly established control in all 4 subjects but, by narrowing the range of choice patterns, they reduced subsequent sensitivity to schedule changes. Instructional control was maintained across the ascending sequence of progressive-time values for each subject, but eventually diminished, giving way to more schedule-appropriate patterns. The transition from instruction-appropriate to schedule-appropriate behavior was characterized by an increase in the variability of choice patterns and local increases in point density. On the descending sequence of progressive-time values, behavior appeared to be schedule sensitive, sometimes even optimally sensitive, but it did not always change systematically with the contingencies, suggesting the involvement of other factors. PMID:16812747
Maintenance of lateral stability during standing and walking in the cat.
Karayannidou, A; Zelenin, P V; Orlovsky, G N; Sirota, M G; Beloozerova, I N; Deliagina, T G
2009-01-01
During free behaviors animals often experience lateral forces, such as collisions with obstacles or interactions with other animals. We studied postural reactions to lateral pulses of force (pushes) in the cat during standing and walking. During standing, a push applied to the hip region caused a lateral deviation of the caudal trunk, followed by a return to the initial position. The corrective hindlimb electromyographic (EMG) pattern included an initial wave of excitation in most extensors of the hindlimb contralateral to push and inhibition of those in the ipsilateral limb. In cats walking on a treadmill with only hindlimbs, application of force also caused lateral deviation of the caudal trunk, with subsequent return to the initial position. The type of corrective movement depended on the pulse timing relative to the step cycle. If the force was applied at the end of the stance phase of one of the limbs or during its swing phase, a lateral component appeared in the swing trajectory of this limb. The corrective step was directed either inward (when the corrective limb was ipsilateral to force application) or outward (when it was contralateral). The EMG pattern in the corrective limb was characterized by considerable modification of the hip abductor and adductor activity in the perturbed step. Thus the basic mechanisms for balance control in these two forms of behavior are different. They perform a redistribution of muscle activity between symmetrical limbs (in standing) and a reconfiguration of the base of support during a corrective lateral step (in walking).
Fast automatic delineation of cardiac volume of interest in MSCT images
NASA Astrophysics Data System (ADS)
Lorenz, Cristian; Lessick, Jonathan; Lavi, Guy; Bulow, Thomas; Renisch, Steffen
2004-05-01
Computed Tomography Angiography (CTA) is an emerging modality for assessing cardiac anatomy. The delineation of the cardiac volume of interest (VOI) is a pre-processing step for subsequent visualization or image processing. It serves the suppression of anatomic structures being not in the primary focus of the cardiac application, such as sternum, ribs, spinal column, descending aorta and pulmonary vasculature. These structures obliterate standard visualizations such as direct volume renderings or maximum intensity projections. In addition, outcome and performance of post-processing steps such as ventricle suppression, coronary artery segmentation or the detection of short and long axes of the heart can be improved. The structures being part of the cardiac VOI (coronary arteries and veins, myocardium, ventricles and atria) differ tremendously in appearance. In addition, there is no clear image feature associated with the contour (or better cut-surface) distinguishing between cardiac VOI and surrounding tissue making the automatic delineation of the cardiac VOI a difficult task. The presented approach locates in a first step chest wall and descending aorta in all image slices giving a rough estimate of the location of the heart. In a second step, a Fourier based active contour approach delineates slice-wise the border of the cardiac VOI. The algorithm has been evaluated on 41 multi-slice CT data-sets including cases with coronary stents and venous and arterial bypasses. The typical processing time amounts to 5-10s on a 1GHz P3 PC.
Stepped-frequency GPR for utility line detection using polarization-dependent scattering
NASA Astrophysics Data System (ADS)
Jensen, Ole K.; Gregersen, Ole G.
2000-04-01
A GPR for detection of buried cables and pipes is developed by Ekko Dane Production in cooperation with Aalborg University. The appearance is a 'lawn mower' model including antennas, electronics and on-line data processing. A successful result is obtained by combining dedicated hardware and signal processing. The inherent signal to clutter ratio is bad, but making measurements at many polarization angles and subsequent signal processing improves the ratio. A simple model of the polarization dependence of the scattering from the target is used. The method is improved by combining the polarization filtering with averaging over small horizontal displacements. A stepped frequency measurement system is used. The method often implies long measurement times, but this problem is overcome by development of fast RF-electronics. Standard signal processors are used for real-time data processing. Several antenna array configurations are tested and optimized for low coupling between transmitter and receiver and for a short impulse response. A large number of tests have been made for different targets, e.g. metal cables and plastic pipes filled with air or water. Tests have been made under realistic ground conditions, including sand, wet clay, pavements and grass covered soil. The results show reliable detection even when the conditions are difficult.
Jarvik, Jeffrey G.; Comstock, Bryan A.; James, Kathryn T.; Avins, Andrew L.; Bresnahan, Brian W.; Deyo, Richard A.; Luetmer, Patrick H.; Friedly, Janna L.; Meier, Eric N.; Cherkin, Daniel C.; Gold, Laura S.; Rundell, Sean D.; Halabi, Safwan S.; Kallmes, David F.; Tan, Katherine W.; Turner, Judith A.; Kessler, Larry G.; Lavallee, Danielle C.; Stephens, Kari A.; Heagerty, Patrick J.
2015-01-01
Background Diagnostic imaging is often the first step in evaluating patients with back pain and likely functions as a “gateway” to a subsequent cascade of interventions. However, lumbar spine imaging frequently reveals incidental findings among normal, pain-free individuals suggesting that treatment of these “abnormalities” may not be warranted. Our prior work suggested that inserting the prevalence of imaging findings in patients without back pain into spine imaging reports may reduce subsequent interventions. We are now conducting a pragmatic cluster randomized clinical trial to test the hypothesis that inserting this prevalence data into lumbar spine imaging reports for studies ordered by primary care providers will reduce subsequent spine-related interventions. Methods/Design We are using a stepped wedge design that sequentially randomizes 100 primary care clinics at four health systems to receive either standard lumbar spine imaging reports, or reports containing prevalence data for common imaging findings in patients without back pain. We capture all outcomes passively through the electronic medical record. Our primary outcome is spine-related intervention intensity based on Relative Value Units (RVUs) during the following year. Secondary outcomes include subsequent prescriptions for opioid analgesics and cross-sectional lumbar spine re-imaging. Discussion If our study shows that adding prevalence data to spine imaging reports decreases subsequent back-related RVUs, this intervention could be easily generalized and applied to other kinds of testing, as well as other conditions where incidental findings may be common. Our study also serves as a model for cluster randomized trials that are minimal risk and highly pragmatic. PMID:26493088
Chapman, G J; Hollands, M A
2006-11-01
There is increasing evidence that gaze stabilization with respect to footfall targets plays a crucial role in the control of visually guided stepping and that there are significant changes to gaze behaviour as we age. However, past research has not measured if age-related changes in gaze behaviour are associated with changes to stepping performance. This paper aims to identify differences in gaze behaviour between young (n=8) adults, older adults determined to be at a low-risk of falling (low-risk, n=4) and older adults prone to falling (high-risk, n=4) performing an adaptive locomotor task and attempts to relate observed differences in gaze behaviour to decline in stepping performance. Participants walked at a self-selected pace along a 9m pathway stepping into two footfall target locations en route. Gaze behaviour and lower limb kinematics were recorded using an ASL 500 gaze tracker interfaced with a Vicon motion analysis system. Results showed that older adults looked significantly sooner to targets, and fixated the targets for longer, than younger adults. There were also significant differences in these measures between high and low-risk older adults. On average, high-risk older adults looked away from targets significantly sooner and demonstrated less accurate and more variable foot placements than younger adults and low-risk older adults. These findings suggest that, as we age, we need more time to plan precise stepping movements and clearly demonstrate that there are differences between low-risk and high-risk older adults in both where and when they look at future stepping targets and the precision with which they subsequently step. We propose that high-risk older adults may prioritize the planning of future actions over the accurate execution of ongoing movements and that adoption of this strategy may contribute to an increased likelihood of falls. Copyright 2005 Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, A; Jiang, S; Timmerman, R
Purpose: To demonstrate the feasibility of using CBCT in a real-time image guided radiation therapy (IGRT) for single fraction heterotopic ossification (HO) in patients after hip replacement. In this real-time procedure, all steps, from simulation, imaging, planning to treatment delivery, are performed at the treatment unit in one appointment time slot. This work promotes real-time treatment to create a paradigm shift in the single fraction radiation therapy. Methods: An integrated real-time IGRT for HO was developed and tested for radiation treatment of heterotopic ossification for patient after hip replacement. After CBCT images are acquired at the linac, and sent tomore » the treatment planning system, the physician determines the field and/or draws a block. Subsequently, a simple 2D AP/PA plan with prescription of 700 cGy is created on-the-fly for physician to review. Once the physician approves the plan, the patient is treated on the same simulation position. This real-time treatment requires the team of attending physician, physicist, therapists, and dosimetrist to work in harmony to achieve all the steps in a timely manner. Results: Ten patients have been treated with this real-time treatment, having the same beams arrangement treatment plan and prescription as our clinically regular CT-based 2D plans. The average time for these procedures are 52.9 ±10.7 minutes from the time patient entered the treatment room until s/he exited, and 37.7 ±8.6 minutes from starting CBCT until last beam delivered. Conclusion: The real-time IGRT for HO treatment has been tested and implemented to be a clinically accepted procedure. This one-time appointment greatly enhances the waiting time, especially when patients in high level of pain, and provides a convenient approach for the whole clinical staff. Other disease sites will be also tested with this new technology.« less
Preiss, David; Thomas, Laine E; Wojdyla, Daniel M; Haffner, Steven M; Gill, Jason M R; Yates, Thomas; Davies, Melanie J; Holman, Rury R; McMurray, John J; Califf, Robert M; Kraus, William E
2015-08-14
While bidirectional relationships exist between body weight and physical activity, direction of causality remains uncertain and previous studies have been limited by self-reported activity or weight and small sample size. We investigated the prospective relationships between weight and physical activity. Observational analysis of data from the Nateglinide And Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) study, a double-blinded randomised clinical trial of nateglinide and valsartan, respectively. Multinational study of 9306 participants. Participants with biochemically confirmed impaired glucose tolerance had annual measurements of both weight and step count using research grade pedometers, worn for 7 days consecutively. Along with randomisation to valsartan or placebo plus nateglinide or placebo, participants took part in a lifestyle modification programme. Longitudinal regression using weight as response value and physical activity as predictor value was conducted, adjusted for baseline covariates. Analysis was then repeated with physical activity as response value and weight as predictor value. Only participants with a response value preceded by at least three annual response values were included. Adequate data were available for 2811 (30%) of NAVIGATOR participants. Previous weight (χ(2)=16.8; p<0.0001), but not change in weight (χ(2)=0.1; p=0.71) was inversely associated with subsequent step count, indicating lower subsequent levels of physical activity in heavier individuals. Change in step count (χ(2)=5.9; p=0.02) but not previous step count (χ(2)=0.9; p=0.34) was inversely associated with subsequent weight. However, in the context of trajectories already established for weight (χ(2) for previous weight measurements 747.3; p<0.0001) and physical activity (χ(2) for previous step count 432.6; p<0.0001), these effects were of limited clinical importance. While a prospective bidirectional relationship was observed between weight and physical activity, the magnitude of any effect was very small in the context of natural trajectories already established for these variables. NCT00097786. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
The determination of the pulse pile-up reject (PUR) counting for X and gamma ray spectrometry
NASA Astrophysics Data System (ADS)
Karabıdak, S. M.; Kaya, S.
2017-02-01
The collection the charged particles produced by the incident radiation on a detector requires a time interval. If this time interval is not sufficiently short compared with the peaking time of the amplifier, a loss in the recovered signal amplitude occurs. Another major constraint on the throughput of modern x or gamma-ray spectrometers is the time required for the subsequent the pulse processing by the electronics. Two above-mentioned limitations are cause of counting losses resulting from the dead time and the pile-up. The pulse pile-up is a common problem in x and gamma ray radiation detection systems. The pulses pile-up in spectroscopic analysis can cause significant errors. Therefore, inhibition of these pulses is a vital step. A way to reduce errors due to the pulse pile-up is a pile-up inspection circuitry (PUR). Such a circuit rejects some of the pulse pile-up. Therefore, this circuit leads to counting losses. Determination of these counting losses is an important problem. In this work, a new method is suggested for the determination of the pulse pile-up reject.
Omniview motionless camera orientation system
NASA Technical Reports Server (NTRS)
Martin, H. Lee (Inventor); Kuban, Daniel P. (Inventor); Zimmermann, Steven D. (Inventor); Busko, Nicholas (Inventor)
2010-01-01
An apparatus and method is provided for converting digital images for use in an imaging system. The apparatus includes a data memory which stores digital data representing an image having a circular or spherical field of view such as an image captured by a fish-eye lens, a control input for receiving a signal for selecting a portion of the image, and a converter responsive to the control input for converting digital data corresponding to the selected portion into digital data representing a planar image for subsequent display. Various methods include the steps of storing digital data representing an image having a circular or spherical field of view, selecting a portion of the image, and converting the stored digital data corresponding to the selected portion into digital data representing a planar image for subsequent display. In various embodiments, the data converter and data conversion step may use an orthogonal set of transformation algorithms.
DNA stable-isotope probing (DNA-SIP).
Dunford, Eric A; Neufeld, Josh D
2010-08-02
DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.
NASA Astrophysics Data System (ADS)
Omar, M. A.; Parvataneni, R.; Zhou, Y.
2010-09-01
Proposed manuscript describes the implementation of a two step processing procedure, composed of the self-referencing and the Principle Component Thermography (PCT). The combined approach enables the processing of thermograms from transient (flash), steady (halogen) and selective (induction) thermal perturbations. Firstly, the research discusses the three basic processing schemes typically applied for thermography; namely mathematical transformation based processing, curve-fitting processing, and direct contrast based calculations. Proposed algorithm utilizes the self-referencing scheme to create a sub-sequence that contains the maximum contrast information and also compute the anomalies' depth values. While, the Principle Component Thermography operates on the sub-sequence frames by re-arranging its data content (pixel values) spatially and temporally then it highlights the data variance. The PCT is mainly used as a mathematical mean to enhance the defects' contrast thus enabling its shape and size retrieval. The results show that the proposed combined scheme is effective in processing multiple size defects in sandwich steel structure in real-time (<30 Hz) and with full spatial coverage, without the need for a priori defect-free area.
Transparent Lu 2 O 3 :Eu ceramics by sinter and HIP optimization
NASA Astrophysics Data System (ADS)
Seeley, Z. M.; Kuntz, J. D.; Cherepy, N. J.; Payne, S. A.
2011-09-01
Evolution of porosity and microstructure was observed during densification of lutetium oxide ceramics doped with europium (Lu 2O 3:Eu) fabricated via vacuum sintering and hot isostatic pressing (HIP'ing). Nano-scale starting powder was uniaxially pressed and sintered under high vacuum at temperatures between 1575 and 1850 °C to obtain densities ranging between 94% and 99%, respectively. Sintered compacts were then subjected to 200 MPa argon gas at 1850 °C to reach full density. Vacuum sintering above 1650 °C led to rapid grain growth prior to densification, rendering the pores immobile. Sintering between 1600 and 1650 °C resulted in closed porosity yet a fine grain size to allow the pores to remain mobile during the subsequent HIP'ing step, resulting in a fully-dense highly transparent ceramic without the need for subsequent air anneal. Light yield performance was measured and Lu 2O 3:Eu showed ˜4 times higher light yield than commercially used scintillating glass indicating that this material has the potential to improve the performance of high energy radiography devices.
Wang, Chong; Sha, Yinlin
2010-04-01
We used a de novo designed, beta-hairpin forming T1 peptide as a model to investigate the kinetics of peptide fibrogenesis by a combination of light scattering (LS), circular dichroism (CD), fluorescence, and atomic force microscopy (AFM). The results demonstrate that the T1 fibrogenesis undergoes a consecutive stepwise process, with a high degree of cooperation, presenting sigmoidal time-courses of the peptide aggregation, the subsequent conformational conversion of the backbone, and the peptide sidechains' rearrangement. We suggest that the conformational conversion was initiated after the peptide aggregates reach a dimensional size threshold, which could be a key step in the formation of beta-structural nuclei that catalyze the subsequent reactions. Furthermore, besides triggering the peptide aggregation, the interactions between the peptide sidechains predominately facilitate the regular alignment of the peptide molecules and the formation of a well-defined suprastructure. This work provides an insight of the hierarchical self-assembly of beta-hairpin forming peptides. It is helpful for designing beta-structural peptides for self-assembly into nanowires, which would have potential applications in the construction of nano-materials.
Plasmon mode excitation and photoluminescence enhancement on silver nanoring
NASA Astrophysics Data System (ADS)
Kuchmizhak, Aleksandr A.; Gurbatov, Stanislav O.; Kulchin, Yuri N.; Vitrik, Oleg B.
2015-12-01
We demonstrate a simple and high-performance laser-assisted technique for silver nanoring fabrication, which includes the ablation of the Ag film by focused nanosecond pulses and subsequent reactive ion polishing. The nanoring diameter and thickness can be controlled by optimizing both the pulse energy and the metal film thickness at laser ablation step, while the subsequent reactive ion polishing provides the ability to fabricate the nanoring with desirable height. Scattering patterns of s-polarized collimated laser beam obliquely illuminating the nanoring demonstrate the focal spot inside the nanoring shifted from its center at a distance of ~0.57Rring. Five-fold enhancement of the photoluminescence signal from the Rhodamine 6G organic dye near the Ag nanoring was demonstrated. This enhancement was attributed to the increase of the electromagnetic field amplitude near the nanoring surface arising from excitation of the multipole plasmon modes traveling along the nanoring. This assumption was confirmed by dark-field back-scattering spectrum of the nanoring measured under white-light illumination, as well as by supporting finite-difference time-domain simulations.
NASA Astrophysics Data System (ADS)
Petersen, D.; Beasley, W. H.
2012-12-01
We present high-speed video, taken at 75,000 frames per second, of an anomalous lightning flash that involved two distinct return strokes from different branches of the same branched negative stepped leader system. During the initial return stroke the leader system was incompletely drained, resulting in the continued development of a large side branch. The upper portions of this side branch exhibited a pulse of luminosity during the initial return stroke, but the luminosity did not extend down the branch. The lower portion of the branch continued to develop downward as a negative stepped leader, but at a much slower velocity. Continued stepping activity was observed in this branch as it continued downward at a significantly reduced velocity, finally attaching to the earth 1.8 milliseconds after the main return stroke. The ensuing return stroke was characterized by a slower vertical velocity and weaker luminous pulse. Based on this observation, we coin the term "orphaned branch" to describe a branch of a leader system that is not drained during a return stroke. While our case involves a branch that eventually connected to the ground and produced a return stroke, we also consider the possibility that such branches may also simply cease to progress and effectively deposit large amounts of space charge near their extremities. Such space charge would have a strong influence on subsequent breakdown activity in their vicinity, such as shielding subsequent descending negative stepped leaders or triggering upward positive leaders from earth's surface.
Gulmans, J; Vollenbroek-Hutten, M M R; Van Gemert-Pijnen, J E W C; Van Harten, W H
2007-10-01
Owing to the involvement of multiple professionals from various institutions, integrated care settings are prone to suboptimal patient care communication. To assure continuity, communication gaps should be identified for targeted improvement initiatives. However, available assessment methods are often one-sided evaluations not appropriate for integrated care settings. We developed an evaluation approach that takes into account the multiple communication links and evaluation perspectives inherent to these settings. In this study, we describe this approach, using the integrated care setting of Cerebral Palsy as illustration. The approach follows a three-step mixed design in which the results of each step are used to mark out the subsequent step's focus. The first step patient questionnaire aims to identify quality gaps experienced by patients, comparing their expectancies and experiences with respect to patient-professional and inter-professional communication. Resulting gaps form the input of in-depth interviews with a subset of patients to evaluate underlying factors of ineffective communication. Resulting factors form the input of the final step's focus group meetings with professionals to corroborate and complete the findings. By combining methods, the presented approach aims to minimize limitations inherent to the application of single methods. The comprehensiveness of the approach enables its applicability in various integrated care settings. Its sequential design allows for in-depth evaluation of relevant quality gaps. Further research is needed to evaluate the approach's feasibility in practice. In our subsequent study, we present the results of the approach in the integrated care setting of children with Cerebral Palsy in three Dutch care regions.
Characteristics of lightning leader propagation and ground attachment
NASA Astrophysics Data System (ADS)
Jiang, Rubin; Qie, Xiushu; Wang, Zhichao; Zhang, Hongbo; Lu, Gaopeng; Sun, Zhuling; Liu, Mingyuan; Li, Xun
2015-12-01
The grounding process and the associated leader behavior were analyzed by using high-speed video record and time-correlated electric field change for 37 natural negative cloud-to-ground flashes. Weak luminous grounded channel was recognized below the downward leader tip in the frame preceding the return stroke, which is inferred as upward connecting leader considering the physical process of lightning attachment, though not directly confirmed by sequential frames. For stepped leader-first return strokes, the upward connecting leaders tend to be induced by those downward leader branches with brighter luminosity and lower channel tip above ground, and they may accomplish the attachment with great possibility. The upward connecting leaders for 2 out of 61 leader-subsequent stroke sequences were captured in the frame prior to the return stroke, exhibiting relatively long channel lengths of 340 m and 105 m, respectively. The inducing downward subsequent leaders were of the chaotic type characterized by irregular electric field pulse train with duration of 0.2-0.3 ms. The transient drop of the high potential difference between stepped leader system and ground when the attachment occurred would macroscopically terminate the propagation of those ungrounded branches while would not effectively prevent the development of the existing space stem systems in the low-conductivity streamer zone apart from the leader tip. When the ungrounded branches are of poor connection with the main stroke channel, their further propagation toward ground would be feasible. These two factors may contribute to the occurrence of multiple grounding within the same leader-return stroke sequence.
Method of Simulating Flow-Through Area of a Pressure Regulator
NASA Technical Reports Server (NTRS)
Hass, Neal E. (Inventor); Schallhorn, Paul A. (Inventor)
2011-01-01
The flow-through area of a pressure regulator positioned in a branch of a simulated fluid flow network is generated. A target pressure is defined downstream of the pressure regulator. A projected flow-through area is generated as a non-linear function of (i) target pressure, (ii) flow-through area of the pressure regulator for a current time step and a previous time step, and (iii) pressure at the downstream location for the current time step and previous time step. A simulated flow-through area for the next time step is generated as a sum of (i) flow-through area for the current time step, and (ii) a difference between the projected flow-through area and the flow-through area for the current time step multiplied by a user-defined rate control parameter. These steps are repeated for a sequence of time steps until the pressure at the downstream location is approximately equal to the target pressure.
Possible biomechanical origins of the long-range correlations in stride intervals of walking
NASA Astrophysics Data System (ADS)
Gates, Deanna H.; Su, Jimmy L.; Dingwell, Jonathan B.
2007-07-01
When humans walk, the time duration of each stride varies from one stride to the next. These temporal fluctuations exhibit long-range correlations. It has been suggested that these correlations stem from higher nervous system centers in the brain that control gait cycle timing. Existing proposed models of this phenomenon have focused on neurophysiological mechanisms that might give rise to these long-range correlations, and generally ignored potential alternative mechanical explanations. We hypothesized that a simple mechanical system could also generate similar long-range correlations in stride times. We modified a very simple passive dynamic model of bipedal walking to incorporate forward propulsion through an impulsive force applied to the trailing leg at each push-off. Push-off forces were varied from step to step by incorporating both “sensory” and “motor” noise terms that were regulated by a simple proportional feedback controller. We generated 400 simulations of walking, with different combinations of sensory noise, motor noise, and feedback gain. The stride time data from each simulation were analyzed using detrended fluctuation analysis to compute a scaling exponent, α. This exponent quantified how each stride interval was correlated with previous and subsequent stride intervals over different time scales. For different variations of the noise terms and feedback gain, we obtained short-range correlations (α<0.5), uncorrelated time series (α=0.5), long-range correlations (0.5<α<1.0), or Brownian motion (α>1.0). Our results indicate that a simple biomechanical model of walking can generate long-range correlations and thus perhaps these correlations are not a complex result of higher level neuronal control, as has been previously suggested.
A Review of Subsequence Time Series Clustering
Teh, Ying Wah
2014-01-01
Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies. PMID:25140332
A review of subsequence time series clustering.
Zolhavarieh, Seyedjamal; Aghabozorgi, Saeed; Teh, Ying Wah
2014-01-01
Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies.
Production of activated carbon from TCR char
NASA Astrophysics Data System (ADS)
Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas
2016-04-01
The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a systematically investigation was started. For this a muffle furnace with a maximum temperature up to 1300 ° C is used. Furthermore the gaseous atmosphere can be controlled. So it is possible to carry out the trials with the absence of oxygen by purging with nitrogen, carbon oxide and/ or steam for example. With the addition of steam the number of mesopores is increased. These pores are responsible for the adsorption performance in liquid phases. The trials for the TCR® chars made from beech wood (reference) and digestate are currently carried out. Additionally the reduction of the ash content of the char by using hydrochloric and acetic acid is investigated, too. These leaching tests are carried out in a lab scale test rig at an operating temperature of 60 ° C and a residence time up to 4 hours. The main objective is to adapt the TCR® process with regard to an optimized activated carbon production from biogenic residues to obtain an economic sustainable concept.
GPU-Acceleration of Sequence Homology Searches with Database Subsequence Clustering.
Suzuki, Shuji; Kakuta, Masanori; Ishida, Takashi; Akiyama, Yutaka
2016-01-01
Sequence homology searches are used in various fields and require large amounts of computation time, especially for metagenomic analysis, owing to the large number of queries and the database size. To accelerate computing analyses, graphics processing units (GPUs) are widely used as a low-cost, high-performance computing platform. Therefore, we mapped the time-consuming steps involved in GHOSTZ, which is a state-of-the-art homology search algorithm for protein sequences, onto a GPU and implemented it as GHOSTZ-GPU. In addition, we optimized memory access for GPU calculations and for communication between the CPU and GPU. As per results of the evaluation test involving metagenomic data, GHOSTZ-GPU with 12 CPU threads and 1 GPU was approximately 3.0- to 4.1-fold faster than GHOSTZ with 12 CPU threads. Moreover, GHOSTZ-GPU with 12 CPU threads and 3 GPUs was approximately 5.8- to 7.7-fold faster than GHOSTZ with 12 CPU threads.
A Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting.
Ben Taieb, Souhaib; Atiya, Amir F
2016-01-01
Multistep-ahead forecasts can either be produced recursively by iterating a one-step-ahead time series model or directly by estimating a separate model for each forecast horizon. In addition, there are other strategies; some of them combine aspects of both aforementioned concepts. In this paper, we present a comprehensive investigation into the bias and variance behavior of multistep-ahead forecasting strategies. We provide a detailed review of the different multistep-ahead strategies. Subsequently, we perform a theoretical study that derives the bias and variance for a number of forecasting strategies. Finally, we conduct a Monte Carlo experimental study that compares and evaluates the bias and variance performance of the different strategies. From the theoretical and the simulation studies, we analyze the effect of different factors, such as the forecast horizon and the time series length, on the bias and variance components, and on the different multistep-ahead strategies. Several lessons are learned, and recommendations are given concerning the advantages, disadvantages, and best conditions of use of each strategy.
Integral blow moulding for cycle time reduction of CFR-TP aluminium contour joint processing
NASA Astrophysics Data System (ADS)
Barfuss, Daniel; Würfel, Veit; Grützner, Raik; Gude, Maik; Müller, Roland
2018-05-01
Integral blow moulding (IBM) as a joining technology of carbon fibre reinforced thermoplastic (CFR-TP) hollow profiles with metallic load introduction elements enables significant cycle time reduction by shortening of the process chain. As the composite part is joined to the metallic part during its consolidation process subsequent joining steps are omitted. In combination with a multi-scale structured load introduction element its form closure function enables to pass very high loads and is capable to achieve high degrees of material utilization. This paper first shows the process set-up utilizing thermoplastic tape braided preforms and two-staged press and internal hydro formed load introduction elements. Second focuses on heating technologies and process optimization. Aiming at cycle time reduction convection and induction heating in regard to the resulting product quality is inspected by photo micrographs and computer tomographic scans. Concluding remarks give final recommendations for the process design in regard to the structural design.
Beemelmanns, Christine; Reissig, Hans-Ulrich
2015-06-01
This comprehensive report accounts the development of a highly diastereoselective samarium diiodide-induced cascade reaction of substituted indolyl ketones. The complexity-generating transformation with SmI2 allows the diastereoselective generation of three stereogenic centers including one quaternary center in one step. The obtained tetra- or pentacyclic dihydroindole derivatives are structural motifs of many monoterpene indole alkaloids, and their subsequent transformations gave way to one of the shortest approaches towards strychnine (14 % overall yield in ten steps, or 10 % overall yield in eight steps). During the course of this report we discuss the influence of substituents on the cyclization step, plausible mechanistic scenarios for the SmI2 -induced cascade reaction, diastereoselective reductive amination, and regioselective dehydratization protocols towards the pentacyclic core structure of strychnos alkaloids. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal quenching effect of an infrared deep level in Mg-doped p-type GaN films
NASA Astrophysics Data System (ADS)
Kim, Keunjoo; Chung, Sang Jo
2002-03-01
The thermal quenching of an infrared deep level of 1.2-1.5 eV has been investigated on Mg-doped p-type GaN films, using one- and two-step annealing processes and photocurrent measurements. The deep level appeared in the one-step annealing process at a relatively high temperature of 900 °C, but disappeared in the two-step annealing process with a low-temperature step and a subsequent high-temperature step. The persistent photocurrent was residual in the sample including the deep level, while it was terminated in the sample without the deep level. This indicates that the deep level is a neutral hole center located above a quasi-Fermi level, estimated with an energy of EpF=0.1-0.15 eV above the valence band at a hole carrier concentration of 2.0-2.5×1017/cm3.
Uteng, Marianne; Hauge, Håvard Hildeng; Brondz, Ilia; Nissen-Meyer, Jon; Fimland, Gunnar
2002-01-01
A rapid and simple two-step procedure suitable for both small- and large-scale purification of pediocin-like bacteriocins and other cationic peptides has been developed. In the first step, the bacterial culture was applied directly on a cation-exchange column (1-ml cation exchanger per 100-ml cell culture). Bacteria and anionic compounds passed through the column, and cationic bacteriocins were subsequently eluted with 1 M NaCl. In the second step, the bacteriocin fraction was applied on a low-pressure, reverse-phase column and the bacteriocins were detected as major optical density peaks upon elution with propanol. More than 80% of the activity that was initially in the culture supernatant was recovered in both purification steps, and the final bacteriocin preparation was more than 90% pure as judged by analytical reverse-phase chromatography and capillary electrophoresis. PMID:11823243
White, Jim F; Grisshammer, Reinhard
2010-09-07
Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram quantities of functional receptor protein. First, histidine-tagged receptors are enriched by immobilized metal affinity chromatography using Ni-NTA resin. Second, remaining contaminants in the Ni-NTA column eluate are removed by use of a subsequent neurotensin column yielding pure NTS1. Whilst the neurotensin column eluate contained functional receptor protein, we observed in the neurotensin column flow-through misfolded NTS1. To investigate the origin of the misfolded receptors, we estimated the amount of functional and misfolded NTS1 at each purification step by radio-ligand binding, densitometry of Coomassie stained SDS-gels, and protein content determination. First, we observed that correctly folded NTS1 suffers damage by exposure to detergent and various buffer compositions as seen by the loss of [(3)H]neurotensin binding over time. Second, exposure to the neurotensin affinity resin generated additional misfolded receptor protein. Our data point towards two ways by which misfolded NTS1 may be generated: Damage by exposure to buffer components and by close contact of the receptor to the neurotensin affinity resin. Because NTS1 in detergent solution is stabilized by neurotensin, we speculate that the occurrence of aggregated receptor after contact with the neurotensin resin is the consequence of perturbations in the detergent belt surrounding the NTS1 transmembrane core. Both effects reduce the yield of functional receptor protein.
Kim, Ha Neui; Kim, Yu Ri; Hong, Jin Woo; Bae, Dong Won; Park, Se Jin; Shin, Hwa Kyoung; Choi, Byung Tae
2014-01-01
We identified a novel neuroprotective compound, 1-methoxyoctadecan-1-ol, from Uncaria sinensis (Oliv.) Havil and investigated its effects and mechanisms in primary cortical neurons and in a photothrombotic ischemic model. In primary rat cortical neurons against glutamate-induced neurotoxicity, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced neuronal death in a dose-dependent manner. In addition, treatment with 1-methoxyoctadecan-1-ol resulted in decreased neuronal apoptotic death, as assessed by nuclear morphological approaches. To clarify the neuroprotective mechanism of 1-methoxyoctadecan-1-ol, we explored the downstream signaling pathways of N-methyl-D-aspartate receptor (NMDAR) with calpain activation. Treatment with glutamate leads to early activation of NMDAR, which in turn leads to calpain-mediated cleavage of striatal-enriched protein tyrosine phosphatase (STEP) and subsequent activation of p38 mitogen activated protein kinase (MAPK). However, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly attenuated activation of GluN2B-NMDAR and a decrease in calpain-mediated STEP cleavage, leading to subsequent attenuation of p38 MAPK activation. We confirmed the critical role of p38 MAPK in neuroprotective effects of 1-methoxyoctadecan-1-ol using specific inhibitor SB203580. In the photothrombotic ischemic injury in mice, treatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced infarct volume, edema size, and improved neurological function. 1-methoxyoctadecan-1-ol effectively prevents cerebral ischemic damage through down-regulation of calpain-mediated STEP cleavage and activation of p38 MAPK. These results suggest that 1-methoxyoctadecan-1-ol showed neuroprotective effects through down-regulation of calpain-mediated STEP cleavage with activation of GluN2B-NMDAR, and subsequent alleviation of p38 MAPK activation. In addition, 1-methoxyoctadecan-1-ol might be a useful therapeutic agent for brain disorder such as ischemic stroke. PMID:24416390
A comparison between atmospheric/humidity and vacuum cyanoacrylate fuming of latent fingermarks.
Farrugia, Kevin J; Fraser, Joanna; Friel, Lauren; Adams, Duncan; Attard-Montalto, Nicola; Deacon, Paul
2015-12-01
A number of pseudo-operational trials were set up to compare the atmospheric/humidity and vacuum cyanoacrylate fuming processes on plastic carrier bags. The fuming processes were compared using two-step cyanoacrylate fuming with basic yellow 40 (BY40) staining and a one-step fluorescent cyanoacrylate fuming, Lumicyano 4%. Preliminary work using planted fingermarks and split depletions were performed to identify the optimum vacuum fuming conditions. The first pseudo-operational trial compared the different fuming conditions (atmospheric/humidity vs. vacuum) for the two-step process where an additional 50% more marks were detected with the atmospheric/humidity process. None of the marks by the vacuum process could be observed visually; however, a significant number of marks were detected by fluorescence after BY40 staining. The second trial repeated the same work in trial 1 using the one-step cyanoacrylate process, Lumicyano at a concentration of 4%. Trial 2 provided comparable results to trial 1 and all the items were then re-treated with Lumicyano 4% at atmospheric/humidity conditions before dyeing with BY40 to provide the sequences of process A (Lumicyano 4% atmospheric-Lumicyano 4% atmospheric-BY40) and process B (Lumicyano 4% vacuum-Lumicyano 4% atmospheric-BY40). The number of marks (visual and fluorescent) was counted after each treatment with a substantial increase in the number of detected marks in the second and third treatments of the process. The increased detection rate after the double Lumicyano process was unexpected and may have important implications. Trial 3 was performed to investigate whether the amount of cyanoacrylate and/or fuming time had an impact on the results observed in trial 2 whereas trial 4 assessed if the double process using conventional cyanoacrylate, rather than Lumicyano 4%, provided an increased detection rate. Trials 3 and 4 confirmed that doubling the amount of Lumicyano 4% cyanoacrylate and fuming time produced a lower detection rate than the double process with Lumicyano 4%. Furthermore, the double process with conventional cyanoacrylate did not provide any benefit. Scanning electron microscopy was also performed to investigate the morphology of the cyanoacrylate polymer under different conditions. The atmospheric/humidity process appears to be superior to the vacuum process for both the two-step and one-step cyanoacrylate fuming, although the two-step process performed better in comparison to the one-step process under vacuum conditions. Nonetheless, the use of vacuum cyanoacrylate fuming may have certain operational advantages and its use does not adversely affect subsequent cyanoacrylate fuming with atmospheric/humidity conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Harik, Polina; Cuddy, Monica M; O'Donovan, Seosaimhin; Murray, Constance T; Swanson, David B; Clauser, Brian E
2009-10-01
The 2000 Institute of Medicine report on patient safety brought renewed attention to the issue of preventable medical errors, and subsequently specialty boards and the National Board of Medical Examiners were encouraged to play a role in setting expectations around safety education. This paper examines potentially dangerous actions taken by examinees during the portion of the United States Medical Licensing Examination Step 3 that is particularly well suited to evaluating lapses in physician decision making, the Computer-based Case Simulation (CCS). Descriptive statistics and a general linear modeling approach were used to analyze dangerous actions ordered by 25,283 examinees that completed CCS for the first time between November 2006 and January 2008. More than 20% of examinees ordered at least one dangerous action with the potential to cause significant patient harm. The propensity to order dangerous actions may vary across clinical cases. The CCS format may provide a means of collecting important information about patient-care situations in which examinees may be more likely to commit dangerous actions and the propensity of examinees to order dangerous tests and treatments.
Liu, Kang; Zheng, Yuanhui; Lu, Xun; Thai, Thibaut; Lee, Nanju Alice; Bach, Udo; Gooding, J Justin
2015-05-05
The conjugation of gold nanorods (AuNRs) with polyethylene glycol (PEG) is one of the most effective ways to reduce their cytotoxicity arising from the cetyltrimethylammonium bromide (CTAB) and silver ions used in their synthesis. However, typical PEGylation occurs only at the tips of the AuNRs, producing partially modified AuNRs. To address this issue, we have developed a novel, facile, one-step surface functionalization method that involves the use of Tween 20 to stabilize AuNRs, bis(p-sulfonatophenyl)phenylphosphine (BSPP) to activate the AuNR surface for the subsequent PEGylation, and NaCl to etch silver from the AuNRs. This method allows for the complete removal of the surface-bound CTAB and the most active surface silver from the AuNRs. The produced AuNRs showed far lower toxicity than other methods to PEGylate AuNRs, with no apparent toxicity when their concentration is lower than 5 μg/mL. Even at a high concentration of 80 μg/mL, their cell viability is still four times higher than that of the tip-modified AuNRs.
A systematic reactor design approach for the synthesis of active pharmaceutical ingredients.
Emenike, Victor N; Schenkendorf, René; Krewer, Ulrike
2018-05-01
Today's highly competitive pharmaceutical industry is in dire need of an accelerated transition from the drug development phase to the drug production phase. At the heart of this transition are chemical reactors that facilitate the synthesis of active pharmaceutical ingredients (APIs) and whose design can affect subsequent processing steps. Inspired by this challenge, we present a model-based approach for systematic reactor design. The proposed concept is based on the elementary process functions (EPF) methodology to select an optimal reactor configuration from existing state-of-the-art reactor types or can possibly lead to the design of novel reactors. As a conceptual study, this work summarizes the essential steps in adapting the EPF approach to optimal reactor design problems in the field of API syntheses. Practically, the nucleophilic aromatic substitution of 2,4-difluoronitrobenzene was analyzed as a case study of pharmaceutical relevance. Here, a small-scale tubular coil reactor with controlled heating was identified as the optimal set-up reducing the residence time by 33% in comparison to literature values. Copyright © 2017 Elsevier B.V. All rights reserved.
Michelin, Michele; Ruiz, Héctor A; Polizeli, Maria de Lourdes T M; Teixeira, José A
2018-01-01
This work presents an integrated and multi-step approach for the recovery and/or application of the lignocellulosic fractions from corncob in the production of high value added compounds as xylo-oligosaccharides, enzymes, fermentable sugars, and lignin in terms of biorefinery concept. For that, liquid hot water followed by enzymatic hydrolysis were used. Liquid hot water was performed using different residence times (10-50min) and holding temperature (180-200°C), corresponding to severities (log(R 0 )) of 3.36-4.64. The most severe conditions showed higher xylo-oligosaccharides extraction (maximum of 93%) into the hydrolysates and higher recovery of cellulose on pretreated solids (maximum of 65%). Subsequently, hydrolysates and solids were used in the production of xylanases and cellulases, respectively, as well as, pretreated solids were also subjected to enzymatic hydrolysis for the recovery of lignin and fermentable sugars from cellulose. Maximum glucose yield (100%) was achieved for solids pretreated at log(R 0 ) of 4.42 and 5% solid loading. Copyright © 2017 Elsevier Ltd. All rights reserved.
Plantar soft tissue thickness during ground contact in walking
NASA Technical Reports Server (NTRS)
Cavanagh, P. R.
1999-01-01
A technique is introduced for the measurement of plantar soft tissue thickness during barefoot walking. Subjects stepped into an adjustable Plexiglas frame which ensured that the required bony landmarks were appropriately positioned relative to a linear ultrasound probe connected to a conventional 7.5 MHz ultrasound scanner. Clear images of the metatarsal condyles or other foot bones were obtained throughout ground contact. Subsequent analysis of the video taped images using a motion analysis system allowed the tissue displacement to be calculated as a function of time. The tissue underneath the second metatarsal head was shown to undergo an average maximum compression of 45.7% during the late stages of ground contact during first step gait in a group of five normal subjects with a mean unloaded tissue thickness of 15.2 mm. The technique has a number of applications, including use in the validation of deformation predicted by finite element models of the soft tissue of the foot, and the study of alterations in the cushioning properties of the heel by devices which constrain the displacement of the heel pad.
Portable and Error-Free DNA-Based Data Storage.
Yazdi, S M Hossein Tabatabaei; Gabrys, Ryan; Milenkovic, Olgica
2017-07-10
DNA-based data storage is an emerging nonvolatile memory technology of potentially unprecedented density, durability, and replication efficiency. The basic system implementation steps include synthesizing DNA strings that contain user information and subsequently retrieving them via high-throughput sequencing technologies. Existing architectures enable reading and writing but do not offer random-access and error-free data recovery from low-cost, portable devices, which is crucial for making the storage technology competitive with classical recorders. Here we show for the first time that a portable, random-access platform may be implemented in practice using nanopore sequencers. The novelty of our approach is to design an integrated processing pipeline that encodes data to avoid costly synthesis and sequencing errors, enables random access through addressing, and leverages efficient portable sequencing via new iterative alignment and deletion error-correcting codes. Our work represents the only known random access DNA-based data storage system that uses error-prone nanopore sequencers, while still producing error-free readouts with the highest reported information rate/density. As such, it represents a crucial step towards practical employment of DNA molecules as storage media.
Gamiz-Hernandez, Ana P; Kaila, Ville R I
2016-01-28
The Photoactive Yellow Protein (PYP) is a light-driven photoreceptor, responsible for the phototaxis of halophilic bacteria. Recently, a new short-lived intermediate (pR0) was characterized in the PYP photocycle using combined time-resolved X-ray crystallography and density functional theory calculations. The pR0 species was identified as a highly contorted cis-intermediate, which is stabilized by hydrogen bonds with protein residues. Here we show by hybrid quantum mechanics/classical mechanics (QM/MM) molecular dynamics simulations, and first-principles calculations of optical properties, that the optical shifts in the early steps of the PYP photocycle originate from the conversion of light energy into molecular strain, stored in the pR0 state, and its relaxation in subsequent reaction steps. Our calculations quantitatively reproduce experimental data, which enables us to identify molecular origins of the optical shifts. Our combined approach suggests that the short-lived pR0 intermediate stores ∼1/3 of the photon energy as molecular strain, thus providing the thermodynamic driving force for later conformational changes in the protein.
NASA Astrophysics Data System (ADS)
Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.
2015-03-01
High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.
Sawhney, Simon; Marks, Angharad; Fluck, Nick; Levin, Adeera; McLernon, David; Prescott, Gordon; Black, Corri
2017-08-01
The extent to which renal progression after acute kidney injury (AKI) arises from an initial step drop in kidney function (incomplete recovery), or from a long-term trajectory of subsequent decline, is unclear. This makes it challenging to plan or time post-discharge follow-up. This study of 14651 hospital survivors in 2003 (1966 with AKI, 12685 no AKI) separates incomplete recovery from subsequent renal decline by using the post-discharge estimated glomerular filtration rate (eGFR) rather than the pre-admission as a new reference point for determining subsequent renal outcomes. Outcomes were sustained 30% renal decline and de novo CKD stage 4, followed from 2003-2013. Death was a competing risk. Overall, death was more common than subsequent renal decline (37.5% vs 11.3%) and CKD stage 4 (4.5%). Overall, 25.7% of AKI patients had non-recovery. Subsequent renal decline was greater after AKI (vs no AKI) (14.8% vs 10.8%). Renal decline after AKI (vs no AKI) was greatest among those with higher post-discharge eGFRs with multivariable hazard ratios of 2.29 (1.88-2.78); 1.50 (1.13-2.00); 0.94 (0.68-1.32) and 0.95 (0.64-1.41) at eGFRs of 60 or more; 45-59; 30-44 and under 30, respectively. The excess risk after AKI persisted over ten years of study, irrespective of AKI severity, or post-episode proteinuria. Thus, even if post-discharge kidney function returns to normal, hospital admission with AKI is associated with increased renal progression that persists for up to ten years. Follow-up plans should avoid false reassurance when eGFR after AKI returns to normal. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Santos, Hugo M; Reboiro-Jato, Miguel; Glez-Peña, Daniel; Nunes-Miranda, J D; Fdez-Riverola, Florentino; Carvallo, R; Capelo, J L
2010-09-15
The decision peptide-driven tool implements a software application for assisting the user in a protocol for accurate protein quantification based on the following steps: (1) protein separation through gel electrophoresis; (2) in-gel protein digestion; (3) direct and inverse (18)O-labeling and (4) matrix assisted laser desorption ionization time of flight mass spectrometry, MALDI analysis. The DPD software compares the MALDI results of the direct and inverse (18)O-labeling experiments and quickly identifies those peptides with paralleled loses in different sets of a typical proteomic workflow. Those peptides are used for subsequent accurate protein quantification. The interpretation of the MALDI data from direct and inverse labeling experiments is time-consuming requiring a significant amount of time to do all comparisons manually. The DPD software shortens and simplifies the searching of the peptides that must be used for quantification from a week to just some minutes. To do so, it takes as input several MALDI spectra and aids the researcher in an automatic mode (i) to compare data from direct and inverse (18)O-labeling experiments, calculating the corresponding ratios to determine those peptides with paralleled losses throughout different sets of experiments; and (ii) allow to use those peptides as internal standards for subsequent accurate protein quantification using (18)O-labeling. In this work the DPD software is presented and explained with the quantification of protein carbonic anhydrase. Copyright (c) 2010 Elsevier B.V. All rights reserved.
The influence of Brazilian plant extracts on Streptococcus mutans biofilm.
Barnabé, Michele; Saraceni, Cíntia Helena Coury; Dutra-Correa, Maristela; Suffredini, Ivana Barbosa
2014-01-01
Nineteen plant extracts obtained from plants from the Brazilian Amazon showed activity against planktonic Streptococcus mutans, an important bacterium involved in the first steps of biofilm formation and the subsequent initiation of several oral diseases. Our goal was to verify whether plant extracts that showed activity against planktonic S. mutans could prevent the organization of or even disrupt a single-species biofilm made by the same bacteria. Plant extracts were tested on a single-bacteria biofilm prepared using the Zürich method. Each plant extract was tested at a concentration 5 times higher than its minimum inhibitory concentration (MIC). Discs of hydroxyapatite were submersed overnight in brain-heart infusion broth enriched with saccharose 5%, which provided sufficient time for biofilm formation. The discs were then submersed in extract solutions for one minute, three times per day, for two subsequent days. The discs were then washed with saline three times, at ten seconds each, after each treatment. Supports were allowed to remain in the enriched medium for one additional night. At the end of the process, the bacteria were removed from the discs by vortexing and were counted. Only two of 19 plant extracts showed activity in the present assay: EB1779, obtained from Dioscorea altissima, and EB1673, obtained from Annona hypoglauca. Although the antibacterial activity of the plant extracts was first observed against planktonic S. mutans, influence over biofilm formation was not necessarily observed in the biofilm model. The present results motivate us to find new natural products to be used in dentistry.
The influence of Brazilian plant extracts on Streptococcus mutans biofilm
BARNABÉ, Michele; SARACENI, Cíntia Helena Coury; DUTRA-CORREA, Maristela; SUFFREDINI, Ivana Barbosa
2014-01-01
Nineteen plant extracts obtained from plants from the Brazilian Amazon showed activity against planktonic Streptococcus mutans, an important bacterium involved in the first steps of biofilm formation and the subsequent initiation of several oral diseases. Objective Our goal was to verify whether plant extracts that showed activity against planktonic S. mutans could prevent the organization of or even disrupt a single-species biofilm made by the same bacteria. Material and Methods Plant extracts were tested on a single-bacteria biofilm prepared using the Zürich method. Each plant extract was tested at a concentration 5 times higher than its minimum inhibitory concentration (MIC). Discs of hydroxyapatite were submersed overnight in brain-heart infusion broth enriched with saccharose 5%, which provided sufficient time for biofilm formation. The discs were then submersed in extract solutions for one minute, three times per day, for two subsequent days. The discs were then washed with saline three times, at ten seconds each, after each treatment. Supports were allowed to remain in the enriched medium for one additional night. At the end of the process, the bacteria were removed from the discs by vortexing and were counted. Results Only two of 19 plant extracts showed activity in the present assay: EB1779, obtained from Dioscorea altissima, and EB1673, obtained from Annona hypoglauca. Although the antibacterial activity of the plant extracts was first observed against planktonic S. mutans, influence over biofilm formation was not necessarily observed in the biofilm model. The present results motivate us to find new natural products to be used in dentistry. PMID:25466471
The Process of Seeking Psychotherapy and Its Impact on Therapy Expectations and Experiences.
Elliott, Katherine P; Westmacott, Robin; Hunsley, John; Rumstein-McKean, Orly; Best, Marlene
2015-01-01
Seeking psychotherapy can be conceptualized as having three stages: deciding that therapy might help, deciding to seek therapy and contacting a therapist. The present study examined the duration and difficulty of clients' decisions to seek psychotherapy and whether these experiences were predictive of expected difficulty and commitment to the therapy process. One-hundred and fifty-five adults seeking individual psychological services from a university training clinic were assessed before intake; 107 of these participants also completed measures between the third and fourth therapy sessions and at post-therapy. Deciding that therapy might help was reported to be the most difficult step and took the longest, with each subsequent step becoming easier and briefer. At each step, the more difficult the decision, the more time participants took to make it. Higher distress was associated with more difficulty in deciding that therapy might help and deciding to seek therapy. Duration and difficulty of decisions to seek therapy were positively correlated with expectations of difficulty in therapy as measured prior to treatment and following the third session but were not associated with participants' commitment to therapy. The implications of these results for clinicians and mental health services are discussed. The most difficult and time-consuming step for those who seek mental health services is recognizing that their distressing experiences are connected to mental health; clinicians may aid this challenge by providing information on the nature of mental disorders and common symptoms of emotional distress on websites or through other means (e.g., physicians' waiting rooms and advertising campaigns). The next most difficult and time-consuming step for those who seek mental health services is deciding that psychotherapy may help; by providing easily accessible information (e.g., on websites) about what psychotherapy entails, including clinicians' expectations of clients and the benefits/challenges of therapy, potential clients may be able to progress through this step more rapidly and with less difficulty. Clients' expectations of the value of psychotherapy and their commitment to engage in therapy do not appear to be affected by how long it took, or how difficult it was, to obtain psychotherapy. Factors such as forming a strong therapeutic alliance and providing support and guidance during the initial sessions of therapy may be more important in helping potential clients commit to therapy than what they experienced in their efforts to receive psychotherapy. Copyright © 2014 John Wiley & Sons, Ltd.
Methods, systems and devices for detecting and locating ferromagnetic objects
Roybal, Lyle Gene [Idaho Falls, ID; Kotter, Dale Kent [Shelley, ID; Rohrbaugh, David Thomas [Idaho Falls, ID; Spencer, David Frazer [Idaho Falls, ID
2010-01-26
Methods for detecting and locating ferromagnetic objects in a security screening system. One method includes a step of acquiring magnetic data that includes magnetic field gradients detected during a period of time. Another step includes representing the magnetic data as a function of the period of time. Another step includes converting the magnetic data to being represented as a function of frequency. Another method includes a step of sensing a magnetic field for a period of time. Another step includes detecting a gradient within the magnetic field during the period of time. Another step includes identifying a peak value of the gradient detected during the period of time. Another step includes identifying a portion of time within the period of time that represents when the peak value occurs. Another step includes configuring the portion of time over the period of time to represent a ratio.
Pilotte, Nils; Baumer, Ben; Grant, Jessica; Asbjornsdottir, Kristjana; Schaer, Fabian; Hu, Yan; Aroian, Raffi; Walson, Judd; Williams, Steven A.
2018-01-01
Background Proper collection and storage of fecal samples is necessary to guarantee the subsequent reliability of DNA-based soil-transmitted helminth diagnostic procedures. Previous research has examined various methods to preserve fecal samples for subsequent microscopic analysis or for subsequent determination of overall DNA yields obtained following DNA extraction. However, only limited research has focused on the preservation of soil-transmitted helminth DNA in stool samples stored at ambient temperature or maintained in a cold chain for extended periods of time. Methodology Quantitative real-time PCR was used in this study as a measure of the effectiveness of seven commercially available products to preserve hookworm DNA over time and at different temperatures. Results were compared against “no preservative” controls and the “gold standard” of rapidly freezing samples at -20°C. The preservation methods were compared at both 4°C and at simulated tropical ambient temperature (32°C) over a period of 60 days. Evaluation of the effectiveness of each preservative was based on quantitative real-time PCR detection of target hookworm DNA. Conclusions At 4°C there were no significant differences in DNA amplification efficiency (as measured by Cq values) regardless of the preservation method utilized over the 60-day period. At 32°C, preservation with FTA cards, potassium dichromate, and a silica bead two-step desiccation process proved most advantageous for minimizing Cq value increases, while RNA later, 95% ethanol and Paxgene also demonstrate some protective effect. These results suggest that fecal samples spiked with known concentrations of hookworm-derived egg material can remain at 4°C for 60 days in the absence of preservative, without significant degradation of the DNA target. Likewise, a variety of preservation methods can provide a measure of protection in the absence of a cold chain. As a result, other factors, such as preservative toxicity, inhibitor resistance, preservative cost, shipping requirements, sample infectivity, and labor costs should be considered when deciding upon an appropriate method for the storage of fecal specimens for subsequent PCR analysis. Balancing logistical factors and the need to preserve the target DNA, we believe that under most circumstances 95% ethanol provides the most pragmatic choice for preserving stool samples in the field. PMID:29346412
Resonance-assisted decay of nondispersive wave packets.
Wimberger, Sandro; Schlagheck, Peter; Eltschka, Christopher; Buchleitner, Andreas
2006-07-28
We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance-assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.
Rock sampling. [method for controlling particle size distribution
NASA Technical Reports Server (NTRS)
Blum, P. (Inventor)
1971-01-01
A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.
Coal liquefaction with subsequent bottoms pyrolysis
Walchuk, George P.
1978-01-01
In a coal liquefaction process wherein heavy bottoms produced in a liquefaction zone are upgraded by coking or a similar pyrolysis step, pyrolysis liquids boiling in excess of about 1000.degree. F. are further reacted with molecular hydrogen in a reaction zone external of the liquefaction zone, the resulting effluent is fractionated to produce one or more distillate fractions and a bottoms fraction, a portion of this bottoms fraction is recycled to the reaction zone, and the remaining portion of the bottoms fraction is recycled to the pyrolysis step.
GRAPHITE PRODUCTION UTILIZING URANYL NITRATE HEXAHYDRATE CATALYST
Sheinberg, H.; Armstrong, J.R.; Schell, D.H.
1964-03-10
ABS>The graphitizing of a mixture composed of furfuryl alcohol binder and uranyl nitrate hexahydrate hardener and the subsequent curing, baking, and graphitizing with pressure being initially applied prior to curing are described. The pressure step may be carried out by extrusion, methyl cellulose being added to the mixture before the completion of extrusion. Uranium oxide may be added to the graphitizable mixture prior to the heating and pressure steps. The graphitizable mixture may consist of discrete layers of different compositions. (AEC)
[Implementation of a rational standard of hygiene for preparation of operating rooms].
Bauer, M; Scheithauer, S; Moerer, O; Pütz, H; Sliwa, B; Schmidt, C E; Russo, S G; Waeschle, R M
2015-10-01
The assurance of high standards of care is a major requirement in German hospitals while cost reduction and efficient use of resources are mandatory. These requirements are particularly evident in the high-risk and cost-intensive operating theatre field with multiple process steps. The cleaning of operating rooms (OR) between surgical procedures is of major relevance for patient safety and requires time and human resources. The hygiene procedure plan for OR cleaning between operations at the university hospital in Göttingen was revised and optimized according to the plan-do-check-act principle due to not clearly defined specifications of responsibilities, use of resources, prolonged process times and increased staff engagement. The current status was evaluated in 2012 as part of the first step "plan". The subsequent step "do" included an expert symposium with external consultants, interdisciplinary consensus conferences with an actualization of the former hygiene procedure plan and the implementation process. All staff members involved were integrated into this management change process. The penetration rate of the training and information measures as well as the acceptance and compliance with the new hygiene procedure plan were reviewed within step "check". The rates of positive swabs and air sampling as well as of postoperative wound infections were analyzed for quality control and no evidence for a reduced effectiveness of the new hygiene plan was found. After the successful implementation of these measures the next improvement cycle ("act") was performed in 2014 which led to a simplification of the hygiene plan by reduction of the number of defined cleaning and disinfection programs for preparation of the OR. The reorganization measures described led to a comprehensive commitment of the hygiene procedure plan by distinct specifications for responsibilities, for the course of action and for the use of resources. Furthermore, a simplification of the plan, a rational staff assignment and reduced process times were accomplished. Finally, potential conflicts due to an insufficient evidence-based knowledge of personnel was reduced. This present project description can be used by other hospitals as a guideline for similar changes in management processes.
NASA Technical Reports Server (NTRS)
Sciamma-O'Brien, Ella; Salama, Farid
2013-01-01
Titan's atmosphere, composed mainly of N2 and CH4, is the siege of a complex chemistry induced by solar UV radiation and electron bombardment from Saturn's magnetosphere. This organic chemistry occurs at temperatures lower than 200 K and leads to the production of heavy molecules and subsequently solid aerosols that form the orange haze surrounding Titan. The Titan Haze Simulation (THS) experiment has been developed on the COSMIC simulation chamber at NASA Ames in order to study the different steps of Titan's atmospheric chemistry at low temperature and to provide laboratory data in support for Cassini data analysis. The chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas mixture is adiabatically cooled to Titan-like temperature (approx. 150 K) before inducing the chemistry by plasma discharge. Different gas mixtures containing N2, CH4, and the first products of the N2,-CH4 chemistry (C2H2, C2H4, C6H6...) but also heavier molecules such as PAHs or nitrogen containing PAHs can be injected. Both the gas phase and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed. Here we present the results of recent gas phase and solid phase studies that highlight the chemical growth evolution when injecting heavier hydrocarbon trace elements in the initial N2-CH4 mixture. Due to the short residence time of the gas in the plasma discharge, only the first steps of the chemistry have time to occur in a N2-CH4 discharge. However by adding acetylene and benzene to the initial N2-CH4 mixture, we can study the intermediate steps of Titan's atmospheric chemistry as well as specific chemical pathways. These results show the uniqueness of the THS experiment to help understand the first and intermediate steps of Titan fs atmospheric chemistry as well as specific chemical pathways leading to Titan fs haze formation.
Kinahan, David J; Kearney, Sinéad M; Dimov, Nikolay; Glynn, Macdara T; Ducrée, Jens
2014-07-07
The centrifugal "lab-on-a-disc" concept has proven to have great potential for process integration of bioanalytical assays, in particular where ease-of-use, ruggedness, portability, fast turn-around time and cost efficiency are of paramount importance. Yet, as all liquids residing on the disc are exposed to the same centrifugal field, an inherent challenge of these systems remains the automation of multi-step, multi-liquid sample processing and subsequent detection. In order to orchestrate the underlying bioanalytical protocols, an ample palette of rotationally and externally actuated valving schemes has been developed. While excelling with the level of flow control, externally actuated valves require interaction with peripheral instrumentation, thus compromising the conceptual simplicity of the centrifugal platform. In turn, for rotationally controlled schemes, such as common capillary burst valves, typical manufacturing tolerances tend to limit the number of consecutive laboratory unit operations (LUOs) that can be automated on a single disc. In this paper, a major advancement on recently established dissolvable film (DF) valving is presented; for the very first time, a liquid handling sequence can be controlled in response to completion of preceding liquid transfer event, i.e. completely independent of external stimulus or changes in speed of disc rotation. The basic, event-triggered valve configuration is further adapted to leverage conditional, large-scale process integration. First, we demonstrate a fluidic network on a disc encompassing 10 discrete valving steps including logical relationships such as an AND-conditional as well as serial and parallel flow control. Then we present a disc which is capable of implementing common laboratory unit operations such as metering and selective routing of flows. Finally, as a pilot study, these functions are integrated on a single disc to automate a common, multi-step lab protocol for the extraction of total RNA from mammalian cell homogenate.
NASA Astrophysics Data System (ADS)
Guillevic, Myriam; Pascale, Céline; Mutter, Daniel; Wettstein, Sascha; Niederhauser, Bernhard
2017-04-01
In the framework of METAS' AtmoChem-ECV project, new facilities are currently being developed to generate reference gas mixtures for water vapour at concentrations measured in the high troposphere and polar regions, in the range 1-20 µmol/mol (ppm). The generation method is dynamic (the mixture is produced continuously over time) and SI-traceable (i.e. the amount of substance fraction in mole per mole is traceable to the definition of SI-units). The generation process is composed of three successive steps. The first step is to purify the matrix gas, nitrogen or synthetic air. Second, this matrix gas is spiked with the pure substance using a permeation technique: a permeation device contains a few grams of pure water in liquid form and loses it linearly over time by permeation through a membrane. In a third step, to reach the desired concentration, the first, high concentration mixture exiting the permeation chamber is then diluted with a chosen flow of matrix gas with one or two subsequent dilution steps. All flows are piloted by mass flow controllers. All parts in contact with the gas mixture are passivated using coated surfaces, to reduce adsorption/desorption processes as much as possible. The mixture can eventually be directly used to calibrate an analyser. The standard mixture produced by METAS' dynamic setup was injected into a chilled mirror from MBW Calibration AG, the designated institute for absolute humidity calibration in Switzerland. The used chilled mirror, model 373LX, is able to measure frost point and sample pressure and therefore calculate the water vapour concentration. This intercomparison of the two systems was performed in the range 4-18 ppm water vapour in synthetic air, at two different pressure levels, 1013.25 hPa and 2000 hPa. We present here METAS' dynamic setup, its uncertainty budget and the first results of the intercomparison with MBW's chilled mirror.
COS FUV Recovery after Anomalous Shutdown
NASA Astrophysics Data System (ADS)
Wheeler, Thomas
2012-10-01
This proposal consists of the steps for turning on and ramping up the COS FUV high voltage in a conservative manner after a HV anomalous shutdown by executing a "reduced set" of visits from Cycle 19 Proposal 12810. The nature of the shutdown, i.e., over-light, HV current transient {"crackle"}, ion feedback {induced by a high energy particle}, or field emission {possibly caused by dust or other particulate on the QE grid or other close-by structure or hardware}, and the value of the commanded HV at the time of the shutdown will determine what visits are executed. Because of gain sag, commanded HV settings updates may be required. First, prior to execution of this proposal or selected visits from this proposal, all preliminary steps should be exercised to gather the necessary diagnostic data, e.g., science data evaluation {if a science exposure was in progress and the science data is available}, memory dumps {DCE, EXEC RAM, and possibly the CS BUFFER}, engineering telemetry, or other information that might provide insight as to the nature of the shutdown and estimated count rate. The complete step-by-step procedure is detailed in the Observing Description, but in summary, the following is done:Day 01 activities, visits 01-07, contain both QE grid off and on HV ramping to HVLow {100/100} with diagnostics {DCE dumps} and darks to exclude QE grid involvement in the shutdown. Subsequent to day 01, all HV ramping will be with the QE grid on with the same diagnostics and exposures. All days end with the setting of COS event flag 3 to prevent any FUV HV commanding.Time is allotted for cognizant detector and COS instrument scientist and engineers to examine data dumps, science exposures, and engineering telemetry. If all is well, the go-ahead will be given to clear flag 3 for the next day's visits.This proposal is modeled after the Cycle 19 Proposal 12718.
COS FUV Recovery after Anomalous Shutdown
NASA Astrophysics Data System (ADS)
Wheeler, Thomas
2013-10-01
This proposal consists of the steps for turning on and ramping up the COS FUV high voltage in a safe and conservative manner after a HV anomalous shutdown by executing a "reduced set" of visits from Cycle 19 Proposal 12810. The nature of the shutdown, i.e., over-light, HV current transient {"crackle"}, ion feedback {induced by a high energy particle}, or field emission {possibly caused by dust or other particulate on the QE grid or other close-by structure or hardware}, and the value of the commanded HV at the time of the shutdown will determine what visits are executed. Because of gain sag, commanded HV settings updates may be required. First, prior to execution of this proposal or selected visits from this proposal, all preliminary steps should be exercised to gather the necessary diagnostic data, e.g., science data evaluation {if a science exposure was in progress and the science data is available}, memory dumps {DCE, EXEC RAM, and possibly the CS BUFFER}, engineering telemetry, or other information that might provide insight as to the nature of the shutdown and estimated count rate. The complete step-by-step procedure is detailed in the Observing Description, but in summary, the following is done:Day 01 activities, visits 01-07, contain both QE grid off and on HV ramping to HVLow {100/100} with diagnostics {DCE dumps} and darks to exclude QE grid involvement in the shutdown. Subsequent to day 01, all HV ramping will be with the QE grid on with the same diagnostics and exposures. All days end with the setting of COS event flag 3 to prevent any FUV HV commanding.Time is allotted for cognizant detector and COS instrument scientist and engineers to examine data dumps, science exposures, and engineering telemetry. If all is well, the go-ahead will be given to clear flag 3 for the next day's visits.This proposal is modeled after the Cycle 20 Proposal 13129.
NASA Astrophysics Data System (ADS)
Liu, Yongliang; Chen, Yud-Ren; Nou, Xiangwu; Chao, Kaunglin
2007-09-01
Rapid and routine identification of foodborne bacteria are considerably important, because of bio- / agro- terrorism threats, public health concerns, and economic loss. Conventional, PCR, and immunoassay methods for the detection of bacteria are generally time-consuming, chemical reagent necessary and multi-step procedures. Fast microbial detection requires minimal sample preparation, permits the routine analysis of large numbers of samples with negligible reagent costs, and is easy to operate. Therefore, we have developed silver colloidal nanoparticle based surface-enhanced Raman scattering (SERS) spectroscopy as a potential tool for the rapid and routine detection of E. coli and L. monocytogenes. This study presents the further results of our examination on S. typhimonium, one of the most commonly outbreak bacteria, for the characteristic bands and subsequent identification.
Freeman, C C
1985-01-01
A new approach to the isolation of light filth from the 3 commercial forms of sage was studied collaboratively. It incorporates a simple isopropanol defatting, followed by saturation of the product with brine by alternately heating and cooling, and subsequent trapping of filth from tap water with olive oil. This method circumvents the use of hazardous, expensive solvents and more time-consuming pretreatment procedures. Overall recoveries were 92.1% for rodent hair and 78.7% for insect fragments on clean, easy-to-read papers. An additional blending step was necessary to obtain satisfactory recovery of rodent hair fragments from whole sage. The method has been adopted official first action for light filth in rubbed and ground sage only.
NASA Technical Reports Server (NTRS)
Tuttle, M. E.; Brinson, H. F.
1986-01-01
The impact of flight error in measured viscoelastic parameters on subsequent long-term viscoelastic predictions is numerically evaluated using the Schapery nonlinear viscoelastic model. Of the seven Schapery parameters, the results indicated that long-term predictions were most sensitive to errors in the power law parameter n. Although errors in the other parameters were significant as well, errors in n dominated all other factors at long times. The process of selecting an appropriate short-term test cycle so as to insure an accurate long-term prediction was considered, and a short-term test cycle was selected using material properties typical for T300/5208 graphite-epoxy at 149 C. The process of selection is described, and its individual steps are itemized.
Mössbauer and X-ray study of biodegradation of 57Fe3 O 4 magnetic nanoparticles in rat brain
NASA Astrophysics Data System (ADS)
Gabbasov, R. R.; Cherepanov, V. M.; Chuev, M. A.; Lomov, A. A.; Mischenko, I. N.; Nikitin, M. P.; Polikarpov, M. A.; Panchenko, V. Y.
2016-12-01
Biodegradation of a 57Fe3 O 4 - based dextran - stabilized ferrofluid in the ventricular cavities of the rat brain was studied by X-ray diffraction and Mössbauer spectroscopy. A two-step process of biodegradation, consisting of fast disintegration of the initial composite magnetic beads into separate superparamagnetic nanoparticles and subsequent slow dissolution of the nanoparticles has been found. Joint fitting of the couples of Mössbauer spectra measured at different temperatures in the formalism of multi-level relaxation model with one set of fitting parameters, allowed us to measure concentration of exogenous iron in the rat brain as a function of time after the injection of nanoparticles.
A novel biochemical platform for fuels and chemicals production from cellulosic biomass
USDA-ARS?s Scientific Manuscript database
The conventional biochemical platform for biofuels production featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and c...
Gauss-Seidel Iterative Method as a Real-Time Pile-Up Solver of Scintillation Pulses
NASA Astrophysics Data System (ADS)
Novak, Roman; Vencelj, Matja¿
2009-12-01
The pile-up rejection in nuclear spectroscopy has been confronted recently by several pile-up correction schemes that compensate for distortions of the signal and subsequent energy spectra artifacts as the counting rate increases. We study here a real-time capability of the event-by-event correction method, which at the core translates to solving many sets of linear equations. Tight time limits and constrained front-end electronics resources make well-known direct solvers inappropriate. We propose a novel approach based on the Gauss-Seidel iterative method, which turns out to be a stable and cost-efficient solution to improve spectroscopic resolution in the front-end electronics. We show the method convergence properties for a class of matrices that emerge in calorimetric processing of scintillation detector signals and demonstrate the ability of the method to support the relevant resolutions. The sole iteration-based error component can be brought below the sliding window induced errors in a reasonable number of iteration steps, thus allowing real-time operation. An area-efficient hardware implementation is proposed that fully utilizes the method's inherent parallelism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wynne, Adam S.
2011-05-05
In many application domains in science and engineering, data produced by sensors, instruments and networks is naturally processed by software applications structured as a pipeline . Pipelines comprise a sequence of software components that progressively process discrete units of data to produce a desired outcome. For example, in a Web crawler that is extracting semantics from text on Web sites, the first stage in the pipeline might be to remove all HTML tags to leave only the raw text of the document. The second step may parse the raw text to break it down into its constituent grammatical parts, suchmore » as nouns, verbs and so on. Subsequent steps may look for names of people or places, interesting events or times so documents can be sequenced on a time line. Each of these steps can be written as a specialized program that works in isolation with other steps in the pipeline. In many applications, simple linear software pipelines are sufficient. However, more complex applications require topologies that contain forks and joins, creating pipelines comprising branches where parallel execution is desirable. It is also increasingly common for pipelines to process very large files or high volume data streams which impose end-to-end performance constraints. Additionally, processes in a pipeline may have specific execution requirements and hence need to be distributed as services across a heterogeneous computing and data management infrastructure. From a software engineering perspective, these more complex pipelines become problematic to implement. While simple linear pipelines can be built using minimal infrastructure such as scripting languages, complex topologies and large, high volume data processing requires suitable abstractions, run-time infrastructures and development tools to construct pipelines with the desired qualities-of-service and flexibility to evolve to handle new requirements. The above summarizes the reasons we created the MeDICi Integration Framework (MIF) that is designed for creating high-performance, scalable and modifiable software pipelines. MIF exploits a low friction, robust, open source middleware platform and extends it with component and service-based programmatic interfaces that make implementing complex pipelines simple. The MIF run-time automatically handles queues between pipeline elements in order to handle request bursts, and automatically executes multiple instances of pipeline elements to increase pipeline throughput. Distributed pipeline elements are supported using a range of configurable communications protocols, and the MIF interfaces provide efficient mechanisms for moving data directly between two distributed pipeline elements.« less
Okubo, Yoshiro; Menant, Jasmine; Udyavar, Manasa; Brodie, Matthew A; Barry, Benjamin K; Lord, Stephen R; L Sturnieks, Daina
2017-05-01
Although step training improves the ability of quick stepping, some home-based step training systems train limited stepping directions and may cause harm by reducing stepping performance in untrained directions. This study examines the possible transfer effects of step training on stepping performance in untrained directions in older people. Fifty four older adults were randomized into: forward step training (FT); lateral plus forward step training (FLT); or no training (NT) groups. FT and FLT participants undertook a 15-min training session involving 200 step repetitions. Prior to and post training, choice stepping reaction time and stepping kinematics in untrained, diagonal and lateral directions were assessed. Significant interactions of group and time (pre/post-assessment) were evident for the first step after training indicating negative (delayed response time) and positive (faster peak stepping speed) transfer effects in the diagonal direction in the FT group. However, when the second to the fifth steps after training were included in the analysis, there were no significant interactions of group and time for measures in the diagonal stepping direction. Step training only in the forward direction improved stepping speed but may acutely slow response times in the untrained diagonal direction. However, this acute effect appears to dissipate after a few repeated step trials. Step training in both forward and lateral directions appears to induce no negative transfer effects in diagonal stepping. These findings suggest home-based step training systems present low risk of harm through negative transfer effects in untrained stepping directions. ANZCTR 369066. Copyright © 2017 Elsevier B.V. All rights reserved.
Mufarrij, Patrick W; Rajamahanty, Srinivas; Krane, L Spencer; Hemal, Ashok K
2012-09-01
An integral component of many urologic reconstructive surgical procedures is the positioning of a Double-J stent to span the anastomosis. Some surgeons prefer to place a retrograde stent during cystoscopy, either during or after the reconstruction. In this communication, we describe our straightforward and effective approach of performing this critical step intracorporeally using robotic assistance in a variety of upper tract urologic reconstructive procedures. We examined our Institutional Review Board-approved database of robotic surgeries to identify reconstructive operations that included the intracorporeal placement of a Double-J stent since 2008. Our step-by-step method for stent placement during various robotic urologic reconstructions is detailed, including procedures involving the proximal, mid, and distal ureter. With the aid of a bedside assistant-surgeon, we delineate how the console surgeon is able to perform this step of the procedure completely intracorporeally, without the need for repositioning or cystoscopy. Since the inception of our robotic surgical program in 2008, we have used these robotic stent placement techniques in 150 patients. The average time of robotic intracorporeal stent placement across the anastomosis was 3.5 minutes. Three patients did experience proximal stent migration, as documented on postoperative radiographs, but all were treated with conservative measures, because their anastomosis was not affected and severe symptoms did not develop. No patient needed stent replacement, and each stent was subsequently removed ureteroscopically without sequelae. Our robotic intracorporeal Double-J stent placement approach is simple and effective, avoids the need for cystoscopy and fluoroscopy, and can be used in any type of upper urinary tract urologic reconstruction.
Cooper, Samuel J; Niania, Mathew; Hoffmann, Franca; Kilner, John A
2017-05-17
A novel two-step Isotopic Exchange (IE) technique has been developed to investigate the influence of oxygen containing components of ambient air (such as H 2 O and CO 2 ) on the effective surface exchange coefficient (k*) of a common mixed ionic electronic conductor material. The two step 'back-exchange' technique was used to introduce a tracer diffusion profile, which was subsequently measured using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The isotopic fraction of oxygen in a dense sample as a function of distance from the surface, before and after the second exchange step, could then be used to determine the surface exchange coefficient in each atmosphere. A new analytical solution was found to the diffusion equation in a semi-infinite domain with a variable surface exchange boundary, for the special case where D* and k* are constant for all exchange steps. This solution validated the results of a numerical, Crank-Nicolson type finite-difference simulation, which was used to extract the parameters from the experimental data. When modelling electrodes, D* and k* are important input parameters, which significantly impact performance. In this study La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ (LSCF6428) was investigated and it was found that the rate of exchange was increased by around 250% in ambient air compared to high purity oxygen at the same pO 2 . The three experiments performed in this study were used to validate the back-exchange approach and show its utility.
Gajendragadkar, Chinmay N; Gogate, Parag R
2016-09-01
The current review focuses on the analysis of different aspects related to intensified recovery of possible valuable products from cheese whey using ultrasound. Ultrasound can be used for process intensification in processing steps such as pre-treatment, ultrafiltration, spray drying and crystallization. The combination of low-frequency, high intensity ultrasound with the pre-heat treatment minimizes the thickening or gelling of protein containing whey solutions. These characteristics of whey after the ultrasound assisted pretreatment helps in improving the efficacy of ultrafiltration used for separation and also helps in preventing the blockage of orifice of spray dryer atomizing device. Further, the heat stability of whey proteins is increased. In the subsequent processing step, use of ultrasound assisted atomization helps to reduce the treatment times as well as yield better quality whey protein concentrate (WPC) powder. After the removal of proteins from the whey, lactose is a major constituent remaining in the solution which can be efficiently recovered by sonocrystallization based on the use of anti-solvent as ethanol. The scale-up parameters to be considered during designing the process for large scale applications are also discussed along with analysis of various reactor designs. Overall, it appears that use of ultrasound can give significant process intensification benefits that can be harnessed even at commercial scale applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Compartmentalized partnered replication for the directed evolution of genetic parts and circuits.
Abil, Zhanar; Ellefson, Jared W; Gollihar, Jimmy D; Watkins, Ella; Ellington, Andrew D
2017-12-01
Compartmentalized partnered replication (CPR) is an emulsion-based directed evolution method based on a robust and modular phenotype-genotype linkage. In contrast to other in vivo directed evolution approaches, CPR largely mitigates host fitness effects due to a relatively short expression time of the gene of interest. CPR is based on gene circuits in which the selection of a 'partner' function from a library leads to the production of a thermostable polymerase. After library preparation, bacteria produce partner proteins that can potentially lead to enhancement of transcription, translation, gene regulation, and other aspects of cellular metabolism that reinforce thermostable polymerase production. Individual cells are then trapped in water-in-oil emulsion droplets in the presence of primers and dNTPs, followed by the recovery of the partner genes via emulsion PCR. In this step, droplets with cells expressing partner proteins that promote polymerase production will produce higher copy numbers of the improved partner gene. The resulting partner genes can subsequently be recloned for the next round of selection. Here, we present a step-by-step guideline for the procedure by providing examples of (i) selection of T7 RNA polymerases that recognize orthogonal promoters and (ii) selection of tRNA for enhanced amber codon suppression. A single round of CPR should take ∼3-5 d, whereas a whole directed evolution can be performed in 3-10 rounds, depending on selection efficiency.
Interrupted time series regression for the evaluation of public health interventions: a tutorial.
Bernal, James Lopez; Cummins, Steven; Gasparrini, Antonio
2017-02-01
Interrupted time series (ITS) analysis is a valuable study design for evaluating the effectiveness of population-level health interventions that have been implemented at a clearly defined point in time. It is increasingly being used to evaluate the effectiveness of interventions ranging from clinical therapy to national public health legislation. Whereas the design shares many properties of regression-based approaches in other epidemiological studies, there are a range of unique features of time series data that require additional methodological considerations. In this tutorial we use a worked example to demonstrate a robust approach to ITS analysis using segmented regression. We begin by describing the design and considering when ITS is an appropriate design choice. We then discuss the essential, yet often omitted, step of proposing the impact model a priori. Subsequently, we demonstrate the approach to statistical analysis including the main segmented regression model. Finally we describe the main methodological issues associated with ITS analysis: over-dispersion of time series data, autocorrelation, adjusting for seasonal trends and controlling for time-varying confounders, and we also outline some of the more complex design adaptations that can be used to strengthen the basic ITS design.
Interrupted time series regression for the evaluation of public health interventions: a tutorial
Bernal, James Lopez; Cummins, Steven; Gasparrini, Antonio
2017-01-01
Abstract Interrupted time series (ITS) analysis is a valuable study design for evaluating the effectiveness of population-level health interventions that have been implemented at a clearly defined point in time. It is increasingly being used to evaluate the effectiveness of interventions ranging from clinical therapy to national public health legislation. Whereas the design shares many properties of regression-based approaches in other epidemiological studies, there are a range of unique features of time series data that require additional methodological considerations. In this tutorial we use a worked example to demonstrate a robust approach to ITS analysis using segmented regression. We begin by describing the design and considering when ITS is an appropriate design choice. We then discuss the essential, yet often omitted, step of proposing the impact model a priori. Subsequently, we demonstrate the approach to statistical analysis including the main segmented regression model. Finally we describe the main methodological issues associated with ITS analysis: over-dispersion of time series data, autocorrelation, adjusting for seasonal trends and controlling for time-varying confounders, and we also outline some of the more complex design adaptations that can be used to strengthen the basic ITS design. PMID:27283160
Apolzan, John W; Bray, George A; Hamilton, Marc T; Zderic, Theodore W; Han, Hongmei; Champagne, Catherine M; Shepard, Desti; Martin, Corby K
2014-01-01
To evaluate the effects of overeating (140% of energy requirements) a high-fat low-energy density diet (HF/LED, 1.05 kcal/g), high-fat high-energy density diet (HF/HED, 1.60 kcal/g), and high-carbohydrate (HC) LED (1.05 kcal/g) for 2-days on subsequent 4-day energy intake (EI), activity levels, appetite, and mood. Using a randomized cross-over design, energy expenditure and EI were standardized during overeating. In 20 adults with a mean ± SD BMI of 30.7 ± 4.6 kg/m(2) , EI was not suppressed until the second day after overeating and accounted for ∼30% of the excess EI. Reductions in EI did not differ among the three diets or across days. Overeating had no effect on subsequent energy expenditure but steps/day decreased after the HC/LED and HF/HED. Sleep time was increased after the HF/HED compared to both LEDs. After overeating a HF/HED vs. HF/LED, carbohydrate cravings, hunger, prospective food consumption, and sadness increased and satisfaction, relaxation, and tranquility decreased. Diet type, time, or their interaction had no impact on compensation over 4 days. No adaptive thermogenesis was observed. The HF/HED vs. HF/LED had detrimental effects on food cravings, appetite, and mood. These results suggest short-term overeating is associated with incomplete compensation. Copyright © 2013 The Obesity Society.
Apolzan, John W.; Bray, George A.; Hamilton, Marc T.; Zderic, Theodore W.; Han, Hongmei; Champagne, Catherine M.; Shepard, Desti; Martin, Corby K.
2013-01-01
Objective To evaluate the effects of overeating (140% of energy requirements) a high-fat low-energy density diet (HF/LED, 1.05kcal/g), high-fat high-energy density diet (HF/HED, 1.60kcal/g), and high-carbohydrate (HC) LED (1.05kcal/g) for 2-days on subsequent 4-day energy intake (EI), activity levels, appetite, and mood. Design and Methods Using a randomized cross-over design, energy expenditure and EI were standardized during overeating. Results In 20 adults with a mean±SD BMI of 30.7±4.6kg/m2, EI was not suppressed until the second day after overeating and accounted for ~30% of the excess EI. Reductions in EI did not differ among the 3 diets or across days. Overeating had no effect on subsequent energy expenditure but steps/day decreased after the HC/LED and HF/HED. Sleep time was increased after the HF/HED compared to both LEDs. After overeating a HF/HED vs. HF/LED, carbohydrate cravings, hunger, prospective food consumption, and sadness increased and satisfaction, relaxation, and tranquility decreased. Conclusions Diet type, time, or their interaction had no impact on compensation over 4 days. No adaptive thermogenesis was observed. The HF/HED vs. HF/LED had detrimental effects on food cravings, appetite, and mood. These results suggest short-term overeating is associated with incomplete compensation. PMID:23913807
NASA Astrophysics Data System (ADS)
Wang, Jinting; Lu, Liqiao; Zhu, Fei
2018-01-01
Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery.
Xue, Xiaoming; Zhou, Jianzhong
2017-01-01
To make further improvement in the diagnosis accuracy and efficiency, a mixed-domain state features data based hybrid fault diagnosis approach, which systematically blends both the statistical analysis approach and the artificial intelligence technology, is proposed in this work for rolling element bearings. For simplifying the fault diagnosis problems, the execution of the proposed method is divided into three steps, i.e., fault preliminary detection, fault type recognition and fault degree identification. In the first step, a preliminary judgment about the health status of the equipment can be evaluated by the statistical analysis method based on the permutation entropy theory. If fault exists, the following two processes based on the artificial intelligence approach are performed to further recognize the fault type and then identify the fault degree. For the two subsequent steps, mixed-domain state features containing time-domain, frequency-domain and multi-scale features are extracted to represent the fault peculiarity under different working conditions. As a powerful time-frequency analysis method, the fast EEMD method was employed to obtain multi-scale features. Furthermore, due to the information redundancy and the submergence of original feature space, a novel manifold learning method (modified LGPCA) is introduced to realize the low-dimensional representations for high-dimensional feature space. Finally, two cases with 12 working conditions respectively have been employed to evaluate the performance of the proposed method, where vibration signals were measured from an experimental bench of rolling element bearing. The analysis results showed the effectiveness and the superiority of the proposed method of which the diagnosis thought is more suitable for practical application. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Kloß, Sandra; Lorenz, Björn; Dees, Stefan; Labugger, Ines; Rösch, Petra; Popp, Jürgen
2015-11-01
Lower respiratory tract infections are the fourth leading cause of death worldwide. Here, a timely identification of the causing pathogens is crucial to the success of the treatment. Raman spectroscopy allows for quick identification of bacterial cells without the need for time-consuming cultivation steps, which is the current gold standard to detect pathogens. However, before Raman spectroscopy can be used to identify pathogens, they have to be isolated from the sample matrix, i.e., sputum in case of lower respiratory tract infections. In this study, we report an isolation protocol for single bacterial cells from sputum samples for Raman spectroscopic identification. Prior to the isolation, a liquefaction step using the proteolytic enzyme mixture Pronase E is required in order to deal with the high viscosity of sputum. The extraction of the bacteria was subsequently performed via different filtration and centrifugation steps, whereby isolation ratios between 46 and 57 % were achieved for sputa spiked with 6·10(7) to 6·10(4) CFU/mL of Staphylococcus aureus. The compatibility of such a liquefaction and isolation procedure towards a Raman spectroscopic classification was shown for five different model species, namely S. aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. A classification of single-cell Raman spectra of these five species with an accuracy of 98.5 % could be achieved on the basis of a principal component analysis (PCA) followed by a linear discriminant analysis (LDA). These classification results could be validated with an independent test dataset, where 97.4 % of all spectra were identified correctly. Graphical Abstract Development of an isolation protocol of bacterial cells out of sputum samples followed by Raman spectroscopic measurement and species identification using chemometrical models.
21 CFR 680.1 - Allergenic Products.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Mold manufacturers shall maintain written standard operating procedures, developed by a qualified... representative species of mold subject to the standard operating procedures. The tests shall be performed at each manufacturing step during and subsequent to harvest, as specified in the standard operating procedures. Before...
21 CFR 680.1 - Allergenic Products.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Mold manufacturers shall maintain written standard operating procedures, developed by a qualified... representative species of mold subject to the standard operating procedures. The tests shall be performed at each manufacturing step during and subsequent to harvest, as specified in the standard operating procedures. Before...
21 CFR 680.1 - Allergenic Products.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Mold manufacturers shall maintain written standard operating procedures, developed by a qualified... representative species of mold subject to the standard operating procedures. The tests shall be performed at each manufacturing step during and subsequent to harvest, as specified in the standard operating procedures. Before...
21 CFR 680.1 - Allergenic Products.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Mold manufacturers shall maintain written standard operating procedures, developed by a qualified... representative species of mold subject to the standard operating procedures. The tests shall be performed at each manufacturing step during and subsequent to harvest, as specified in the standard operating procedures. Before...
Quality management in health care: a 20-year journey.
Ruiz, Ulises
2004-01-01
In this article, the total quality programme in the Spanish healthcare system (1986-1992) and the subsequent quality improvement steps that have led to definition and implementation of such an integrated framework, seeking a quality management system and patient safety, are discussed.
Pillay, Julian D; Kolbe-Alexander, Tracy L; Proper, Karin I; van Mechelen, Willem; Lambert, Estelle V
2014-03-01
Brisk walking is recommended as a form of health-enhancing physical activity. This study determines the steps/minute rate corresponding to self-paced brisk walking (SPBW); a predicted steps/minute rate for moderate physical activity (MPA) and a comparison of the 2 findings. A convenience sample (N = 58: 34 men, 24 women, 31.7 ± 7.7 yrs), wearing pedometers and a heart rate (HR) monitor, performed SPBW for 10 minutes and 5 indoor sessions, regulated by a metronome (ranging from 60-120 steps/minute). Using steps/minute and HR data of the trials, a steps/minute rate for MPA was predicted. Adjustments were subsequently made for aerobic fitness (using maximal oxygen uptake (VO2max) estimates), age, and sex as possible contributors to stepping rate differences. Average steps/minute rate for SPBW was 118 ± 9 (116 ± 9; 121 ± 8 for men/women, respectively; P = .022); predicted steps/minute rate for MPA was 122 ± 37 (127 ± 36; 116 ± 39 for men/women, respectively; P < .99) and was similar to steps/minute rate of SPBW (P = .452), even after adjusting for age, sex, and aerobic fitness. Steps/minute rates of SPBW correlates closely with targeted HR for MPA, independent of aerobic fitness; predicted steps/minute rate for MPA relates closely to steps/minute rates of SPBW. Findings support current PA messages that use the term brisk walking as a reference for MPA.
Tsuo, Y. Simon; Deb, Satyen K.
1990-01-01
Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.
Dong, Hongjuan; Marchetti-Deschmann, Martina; Allmaier, Günter
2014-01-01
Traditionally characterization of microbial proteins is performed by a complex sequence of steps with the final step to be either Edman sequencing or mass spectrometry, which generally takes several weeks or months to be complete. In this work, we proposed a strategy for the characterization of tryptic peptides derived from Giberella zeae (anamorph: Fusarium graminearum) proteins in parallel to intact cell mass spectrometry (ICMS) in which no complicated and time-consuming steps were needed. Experimentally, after a simple washing treatment of the spores, the aliquots of the intact G. zeae macro conidia spores solution, were deposited two times onto one MALDI (matrix-assisted laser desorption ionization) mass spectrometry (MS) target (two spots). One spot was used for ICMS and the second spot was subject to a brief on-target digestion with bead-immobilized or non-immobilized trypsin. Subsequently, one spot was analyzed immediately by MALDI MS in the linear mode (ICMS) whereas the second spot containing the digested material was investigated by MALDI MS in the reflectron mode ("peptide mass fingerprint") followed by protonated peptide selection for MS/MS (post source decay (PSD) fragment ion) analysis. Based on the formed fragment ions of selected tryptic peptides a complete or partial amino acid sequence was generated by manual de novo sequencing. These sequence data were used for homology search for protein identification. Finally four different peptides of varying abundances have been identified successfully allowing the verification that our desorbed/ionized surface compounds were indeed derived from proteins. The presence of three different proteins could be found unambiguously. Interestingly, one of these proteins is belonging to the ribosomal superfamily which indicates that not only surface-associated proteins were digested. This strategy minimized the amount of time and labor required for obtaining deeper information on spore preparations within the nowadays widely used ICMS approach. Copyright © 2013 Elsevier Ltd. All rights reserved.
Machine learning of atmospheric chemistry. Applications to a global chemistry transport model.
NASA Astrophysics Data System (ADS)
Evans, M. J.; Keller, C. A.
2017-12-01
Atmospheric chemistry is central to many environmental issues such as air pollution, climate change, and stratospheric ozone loss. Chemistry Transport Models (CTM) are a central tool for understanding these issues, whether for research or for forecasting. These models split the atmosphere in a large number of grid-boxes and consider the emission of compounds into these boxes and their subsequent transport, deposition, and chemical processing. The chemistry is represented through a series of simultaneous ordinary differential equations, one for each compound. Given the difference in life-times between the chemical compounds (mili-seconds for O(1D) to years for CH4) these equations are numerically stiff and solving them consists of a significant fraction of the computational burden of a CTM.We have investigated a machine learning approach to solving the differential equations instead of solving them numerically. From an annual simulation of the GEOS-Chem model we have produced a training dataset consisting of the concentration of compounds before and after the differential equations are solved, together with some key physical parameters for every grid-box and time-step. From this dataset we have trained a machine learning algorithm (random regression forest) to be able to predict the concentration of the compounds after the integration step based on the concentrations and physical state at the beginning of the time step. We have then included this algorithm back into the GEOS-Chem model, bypassing the need to integrate the chemistry.This machine learning approach shows many of the characteristics of the full simulation and has the potential to be substantially faster. There are a wide range of application for such an approach - generating boundary conditions, for use in air quality forecasts, chemical data assimilation systems, centennial scale climate simulations etc. We discuss our approches' speed and accuracy, and highlight some potential future directions for improving this approach.
Simplified energy-balance model for pragmatic multi-dimensional device simulation
NASA Astrophysics Data System (ADS)
Chang, Duckhyun; Fossum, Jerry G.
1997-11-01
To pragmatically account for non-local carrier heating and hot-carrier effects such as velocity overshoot and impact ionization in multi-dimensional numerical device simulation, a new simplified energy-balance (SEB) model is developed and implemented in FLOODS[16] as a pragmatic option. In the SEB model, the energy-relaxation length is estimated from a pre-process drift-diffusion simulation using the carrier-velocity distribution predicted throughout the device domain, and is used without change in a subsequent simpler hydrodynamic (SHD) simulation. The new SEB model was verified by comparison of two-dimensional SHD and full HD DC simulations of a submicron MOSFET. The SHD simulations yield detailed distributions of carrier temperature, carrier velocity, and impact-ionization rate, which agree well with the full HD simulation results obtained with FLOODS. The most noteworthy feature of the new SEB/SHD model is its computational efficiency, which results from reduced Newton iteration counts caused by the enhanced linearity. Relative to full HD, SHD simulation times can be shorter by as much as an order of magnitude since larger voltage steps for DC sweeps and larger time steps for transient simulations can be used. The improved computational efficiency can enable pragmatic three-dimensional SHD device simulation as well, for which the SEB implementation would be straightforward as it is in FLOODS or any robust HD simulator.
Antibodies and Selection of Monoclonal Antibodies.
Hanack, Katja; Messerschmidt, Katrin; Listek, Martin
Monoclonal antibodies are universal binding molecules with a high specificity for their target and are indispensable tools in research, diagnostics and therapy. The biotechnological generation of monoclonal antibodies was enabled by the hybridoma technology published in 1975 by Köhler and Milstein. Today monoclonal antibodies are used in a variety of applications as flow cytometry, magnetic cell sorting, immunoassays or therapeutic approaches. First step of the generation process is the immunization of the organism with appropriate antigen. After a positive immune response the spleen cells are isolated and fused with myeloma cells in order to generate stable, long-living antibody-producing cell lines - hybridoma cells. In the subsequent identification step the culture supernatants of all hybridoma cells are screened weekly for the production of the antibody of interest. Hybridoma cells producing the antibody of interest are cloned by limited dilution till a monoclonal hybridoma is found. This is a very time-consuming and laborious process and therefore different selection strategies were developed since 1975 in order to facilitate the generation of monoclonal antibodies. Apart from common automation of pipetting processes and ELISA testing there are some promising approaches to select the right monoclonal antibody very early in the process to reduce time and effort of the generation. In this chapter different selection strategies for antibody-producing hybridoma cells are presented and analysed regarding to their benefits compared to conventional limited dilution technology.
Frames of reference in action plan recall: influence of hand and handedness.
Seegelke, Christian; Hughes, Charmayne M L; Wunsch, Kathrin; van der Wel, Robrecht; Weigelt, Matthias
2015-10-01
Evidence suggests that people are more likely to recall features of previous plans and use them for subsequent movements, rather than generating action plans from scratch for each movement. The information used for plan recall during object manipulation tasks is stored in extrinsic (object-centered) rather than intrinsic (body-centered) coordinates. The present study examined whether action plan recall processes are influenced by manual asymmetries. Right-handed (Experiment 1) and left-handed (Experiment 2) participants grasped a plunger from a home position using either the dominant or the non-dominant hand and placed it at one of the three target positions located at varying heights (home-to-target moves). Subsequently, they stepped sideways down from a podium (step-down podium), onto a podium (step-up podium), or without any podium present (no podium), before returning the plunger to the home platform using the same hand (target-back-to-home moves). The data show that, regardless of hand and handedness, participants grasped the plunger at similar heights during the home-to-target and target-back-to-home moves, even if they had to adopt quite different arm postures to do so. Thus, these findings indicate that the information used for plan recall processes in sequential object manipulation tasks is stored in extrinsic coordinates and in an effector-independent manner.
Hydrophobic Shielding Drives Catalysis of Hydride Transfer in a Family of F420H2-Dependent Enzymes.
Mohamed, A Elaaf; Condic-Jurkic, Karmen; Ahmed, F Hafna; Yuan, Peng; O'Mara, Megan L; Jackson, Colin J; Coote, Michelle L
2016-12-13
A family of flavin/deazaflavin-dependent oxidoreductases (FDORs) from mycobacteria has been recently characterized and found to play a variety of catalytic roles, including the activation of prodrugs such as the candidate anti-tuberculosis drug pretomanid (PA-824). However, our understanding of the catalytic mechanism used by these enzymes is relatively limited. To address this, we have used a combination of quantum mechanics and molecular dynamics calculations to study the catalytic mechanism of the activation of pretomanid by the deazaflavin-dependent nitroreductase (Ddn) from Mycobacterium tuberculosis. The preferred pathway involves an initial hydride transfer step from the deprotonated cofactor (i.e., F 420 H - ), with subsequent protonation, before a series of spontaneous intramolecular reactions to form the final reactive nitrogen species. The most likely proton source is a hydroxonium ion within the solvent accessible active site. Intriguingly, catalysis of the rate-determining hydride transfer step is aided by three tyrosine residues that form a hydrophobic barrier around the active site that, upon reaction, is then disrupted to allow increased water accessibility to facilitate the subsequent proton transfer step. The catalytic mechanism we propose is consistent with previous experimental observations of the Ddn enzyme and will inform the design of improved prodrugs in the future.
Graci, Valentina; Rabuffetti, Marco; Frigo, Carlo; Ferrarin, Maurizio
2017-02-01
The importance of peripheral visual information during stair climbing and how peripheral visual information is weighted as a function of step number during step climbing is unclear. Previous authors postulated that the knowledge of predictable characteristics of the steps may decrease reliance on foveal vision and transfer the online visual guidance of stair climbing to peripheral vision. Hence the aim of this study was to investigate if and how the occlusion of the lower peripheral visual field influenced stair climbing and if peripheral visual information was weighted differently between steps. Ten young adult male participants ascended a 5-step staircase under 2 visual conditions: full vision (FV) and lower visual occlusion (LO). Kinematic data (100Hz) were collected. The effect of Vision and Step condition on vertical forefoot clearance was examined with a Repeated Measures 2-way ANOVA. Tukey's HSD test was used for post-hoc comparisons. A significant interaction Vision x Step and main effect of Step were found (p<=0.04): vertical forefoot clearance was greater in LO compared to FV condition only on the 1st and the 2nd steps (p<0.013) and on the last step compared to the other steps (p<0.01). These findings suggest that online peripheral visual information is more relevant when negotiating the first two steps, rather than the end of a staircase and that the steps subsequent the first few ones may require different information likely based on proprioception or working memory of the step height. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ficchì, Andrea; Perrin, Charles; Andréassian, Vazken
2016-07-01
Hydro-climatic data at short time steps are considered essential to model the rainfall-runoff relationship, especially for short-duration hydrological events, typically flash floods. Also, using fine time step information may be beneficial when using or analysing model outputs at larger aggregated time scales. However, the actual gain in prediction efficiency using short time-step data is not well understood or quantified. In this paper, we investigate the extent to which the performance of hydrological modelling is improved by short time-step data, using a large set of 240 French catchments, for which 2400 flood events were selected. Six-minute rain gauge data were available and the GR4 rainfall-runoff model was run with precipitation inputs at eight different time steps ranging from 6 min to 1 day. Then model outputs were aggregated at seven different reference time scales ranging from sub-hourly to daily for a comparative evaluation of simulations at different target time steps. Three classes of model performance behaviour were found for the 240 test catchments: (i) significant improvement of performance with shorter time steps; (ii) performance insensitivity to the modelling time step; (iii) performance degradation as the time step becomes shorter. The differences between these groups were analysed based on a number of catchment and event characteristics. A statistical test highlighted the most influential explanatory variables for model performance evolution at different time steps, including flow auto-correlation, flood and storm duration, flood hydrograph peakedness, rainfall-runoff lag time and precipitation temporal variability.
Development and validation of a remote home safety protocol.
Romero, Sergio; Lee, Mi Jung; Simic, Ivana; Levy, Charles; Sanford, Jon
2018-02-01
Environmental assessments and subsequent modifications conducted by healthcare professionals can enhance home safety and promote independent living. However, travel time, expense and the availability of qualified professionals can limit the broad application of this intervention. Remote technology has the potential to increase access to home safety evaluations. This study describes the development and validation of a remote home safety protocol that can be used by a caregiver of an elderly person to video-record their home environment for later viewing and evaluation by a trained professional. The protocol was developed based on literature reviews and evaluations from clinical and content experts. Cognitive interviews were conducted with a group of six caregivers to validate the protocol. The final protocol included step-by-step directions to record indoor and outdoor areas of the home. The validation process resulted in modifications related to safety, clarity of the protocol, readability, visual appearance, technical descriptions and usability. Our final protocol includes detailed instructions that a caregiver should be able to follow to record a home environment for subsequent evaluation by a home safety professional. Implications for Rehabilitation The results of this study have several implications for rehabilitation practice The remote home safety evaluation protocol can potentially improve access to rehabilitation services for clients in remote areas and prevent unnecessary delays for needed care. Using our protocol, a patient's caregiver can partner with therapists to quickly and efficiently evaluate a patient's home before they are released from the hospital. Caregiver narration, which reflects a caregiver's own perspective, is critical to evaluating home safety. In-home safety evaluations, currently not available to all who need them due to access barriers, can enhance a patient's independence and provide a safer home environment.
Horner, C; Barr, B; Hall, D; Hodgson, G; Parnell, P; Tompkins, D
2012-01-01
Objectives To determine the prevalence and health outcomes of meticillin-resistant Staphylococcus aureus (MRSA) colonisation in elderly care home residents. To measure the effectiveness of improving infection prevention knowledge and practice on MRSA prevalence. Setting Care homes for elderly residents in Leeds, UK. Participants Residents able to give informed consent. Design A controlled intervention study, using a stepped wedge design, comprising 65 homes divided into three groups. Baseline MRSA prevalence was determined by screening the nares of residents (n=2492). An intervention based upon staff education and training on hand hygiene was delivered at three different times according to group number. Scores for three assessment methods, an audit of hand hygiene facilities, staff hand hygiene observations and an educational questionnaire, were collected before and after the intervention. After each group of homes received the intervention, all participants were screened for MRSA nasal colonisation. In total, four surveys took place between November 2006 and February 2009. Results MRSA prevalence was 20%, 19%, 22% and 21% in each survey, respectively. There was a significant improvement in scores for all three assessment methods post-intervention (p≤0.001). The intervention was associated with a small but significant increase in MRSA prevalence (p=0.023). MRSA colonisation was associated with previous and subsequent MRSA infection but was not significantly associated with subsequent hospitalisation or mortality. Conclusions The intervention did not result in a decrease in the prevalence of MRSA colonisation in care home residents. Additional measures will be required to reduce endemic MRSA colonisation in care homes. PMID:22240647
Waight, Clinton C; Cain, Rebecca
2014-10-01
Bortezomib treatment requires four visits to a chemotherapy unit in each 21-day cycle. Analysis of the Day 1 full blood count could allow clinicians to predict the risk of Grade 4 thrombocytopenia, thus negating the need to review the full blood count prior to each dose. The freedom to administer bortezomib without reviewing full blood count results on each treatment day could minimise appointment times and be a step toward home administration. A prospective study of treatment authorisation following a full toxicity assessment and full blood count results from the previous treatment day was undertaken. The full blood count results from 27 patients, receiving 381 doses revealed 12 treatment episodes where bortezomib was administered in the presence of Grade 4 thrombocytopenia. One instance of bleeding and two episodes of neutropenic sepsis were detected during toxicity assessments and treatment was not administered. Only one instance of Grade 4 thrombocytopenia was reported on any other treatment day when the Day 1 platelet count was greater than 75 × 10(9) units/l. From this data, Day 1 full blood count parameters were derived, which minimise the risk of Grade 4 haematological toxicity on subsequent treatment days, allowing clinicians to identify suitable patients for administration of bortezomib prior to reviewing full blood count results. When platelet counts on Day 1 are greater than 75 × 10(9) units/l and neutrophil counts are greater than 1.0 × 10(9) units/l, the administration of bortezomib can be authorised without the need for review of the full blood count on subsequent days of that cycle. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Two-step iron(0)-mediated N-demethylation of N-methyl alkaloids.
Kok, Gaik B; Pye, Cory C; Singer, Robert D; Scammells, Peter J
2010-07-16
A mild and simple two-step Fe(0)-mediated N-demethylation of a number of tertiary N-methyl alkaloids is described. The tertiary N-methylamine is first oxidized to the corresponding N-oxide, which is isolated as the hydrochloride salt. Subsequent treatment of the N-oxide hydrochloride with iron powder readily provides the N-demethylated amine. Representative substrates include a number of opiate and tropane alkaloids. Key intermediates in the synthesis of semisynthetic 14-hydroxy pharmaceutical opiates such as oxycodone and oxymorphone are also readily N-demethylated using this method.
Rapid prototyping of carbon-based chemiresistive gas sensors on paper
Mirica, Katherine A.; Azzarelli, Joseph M.; Weis, Jonathan G.; Schnorr, Jan M.; Swager, Timothy M.
2013-01-01
Chemically functionalized carbon nanotubes (CNTs) are promising materials for sensing of gases and volatile organic compounds. However, the poor solubility of carbon nanotubes hinders their chemical functionalization and the subsequent integration of these materials into devices. This manuscript describes a solvent-free procedure for rapid prototyping of selective chemiresistors from CNTs and graphite on the surface of paper. This procedure enables fabrication of functional gas sensors from commercially available starting materials in less than 15 min. The first step of this procedure involves the generation of solid composites of CNTs or graphite with small molecule selectors—designed to interact with specific classes of gaseous analytes—by solvent-free mechanical mixing in a ball mill and subsequent compression. The second step involves deposition of chemiresistive sensors by mechanical abrasion of these solid composites onto the surface of paper. Parallel fabrication of multiple chemiresistors from diverse composites rapidly generates cross-reactive arrays capable of sensing and differentiating gases and volatile organic compounds at part-per-million and part-per-thousand concentrations. PMID:23942132
Heterogeneous nucleation of pits via step pinning during Si(100) homoepitaxy
NASA Astrophysics Data System (ADS)
Yitamben, E. N.; Butera, R. E.; Swartzentruber, B. S.; Simonson, R. J.; Misra, S.; Carroll, M. S.; Bussmann, E.
2017-11-01
Using scanning tunneling microscopy (STM), we investigate oxide-induced growth pits in Si thin films deposited by molecular beam epitaxy. In the transition temperature range from 2D adatom islanding to step-flow growth, systematic controlled air leaks into the growth chamber induce pits in the growth surface. We show that pits are also correlated with oxygen-contaminated flux from Si sublimation sources. From a thermodynamic standpoint, multilayer growth pits are unexpected in relaxed homoepitaxial growth, whereas oxidation is a known cause for step pinning, roughening, and faceting on elemental surfaces, both with and without growth flux. Not surprisingly, pits are thermodynamically metastable and heal by annealing to recover a smooth periodic step arrangement. STM reveals new details about the pits’ atomistic origins and growth dynamics. We give a model for heterogeneous nucleation of pits by preferential adsorption of Å-sized oxide nuclei at intrinsic growth antiphase boundaries, and subsequent step pinning and bunching around the nuclei.
High temperature superconductor step-edge Josephson junctions using Ti-Ca-Ba-Cu-O
Ginley, David S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.; Martens, Jon S.; Plut, Thomas A.; Tigges, Chris P.; Vawter, Gregory A.; Zipperian, Thomas E.
1994-10-25
A process for formulating non-hysteretic and hysteretic Josephson junctions using HTS materials which results in junctions having the ability to operate at high temperatures while maintaining high uniformity and quality. The non-hysteretic Josephson junction is formed by step-etching a LaAlO.sub.3 crystal substrate and then depositing a thin film of TlCaBaCuO on the substrate, covering the step, and forming a grain boundary at the step and a subsequent Josephson junction. Once the non-hysteretic junction is formed the next step to form the hysteretic Josephson junction is to add capacitance to the system. In the current embodiment, this is accomplished by adding a thin dielectric layer, LaA1O.sub.3, followed by a cap layer of a normal metal where the cap layer is formed by first depositing a thin layer of titanium (Ti) followed by a layer of gold (Au). The dielectric layer and the normal metal cap are patterned to the desired geometry.
Heterogeneous nucleation of pits via step pinning during Si(100) homoepitaxy
Yitamben, Esmeralda; Butera, Robert E.; Swartzentruber, Brian S.; ...
2017-10-16
Using scanning tunneling microscopy (STM), we investigate oxide-induced growth pits in Si thin films deposited by molecular beam epitaxy. In the transition temperature range from 2D adatom islanding to step-flow growth, systematic controlled air leaks into the growth chamber induce pits in the growth surface. We show that pits are also correlated with oxygen-contaminated flux from Si sublimation sources. From a thermodynamic standpoint, multilayer growth pits are unexpected in relaxed homoepitaxial growth, whereas oxidation is a known cause for step-pinning, roughening, and faceting on elemental surfaces, both with and without growth flux. Not surprisingly, pits are thermodynamically metastable and healmore » by annealing to recover a smooth periodic step arrangement. STM reveals new details about the pits' atomistic origins and growth dynamics. Here, we give a model for heterogeneous nucleation of pits by preferential adsorption of Å-sized oxide nuclei at intrinsic growth antiphase boundaries, and subsequent step pinning and bunching around the nuclei.« less
Oudin, Madeleine Julie; Doherty, Patrick; Lalli, Giovanna
2013-01-01
The subventricular zone (SVZ) is one of the main neurogenic niches in the postnatal brain. Here, neural progenitors proliferate and give rise to neuroblasts able to move along the rostral migratory stream (RMS) towards the olfactory bulb (OB). This long-distance migration is required for the subsequent maturation of newborn neurons in the OB, but the molecular mechanisms regulating this process are still unclear. Investigating the signaling pathways controlling neuroblast motility may not only help understand a fundamental step in neurogenesis, but also have therapeutic regenerative potential, given the ability of these neuroblasts to target brain sites affected by injury, stroke, or degeneration. In this manuscript we describe a detailed protocol for in vivo postnatal electroporation and subsequent time-lapse imaging of neuroblast migration in the mouse RMS. Postnatal electroporation can efficiently transfect SVZ progenitor cells, which in turn generate neuroblasts migrating along the RMS. Using confocal spinning disk time-lapse microscopy on acute brain slice cultures, neuroblast migration can be monitored in an environment closely resembling the in vivo condition. Moreover, neuroblast motility can be tracked and quantitatively analyzed. As an example, we describe how to use in vivo postnatal electroporation of a GFP-expressing plasmid to label and visualize neuroblasts migrating along the RMS. Electroporation of shRNA or CRE recombinase-expressing plasmids in conditional knockout mice employing the LoxP system can also be used to target genes of interest. Pharmacological manipulation of acute brain slice cultures can be performed to investigate the role of different signaling molecules in neuroblast migration. By coupling in vivo electroporation with time-lapse imaging, we hope to understand the molecular mechanisms controlling neuroblast motility and contribute to the development of novel approaches to promote brain repair. PMID:24326479
The Relaxation of Vicinal (001) with ZigZag [110] Steps
NASA Astrophysics Data System (ADS)
Hawkins, Micah; Hamouda, Ajmi Bh; González-Cabrera, Diego Luis; Einstein, Theodore L.
2012-02-01
This talk presents a kinetic Monte Carlo study of the relaxation dynamics of [110] steps on a vicinal (001) simple cubic surface. This system is interesting because [110] steps have different elementary excitation energetics and favor step diffusion more than close-packed [100] steps. In this talk we show how this leads to relaxation dynamics showing greater fluctuations on a shorter time scale for [110] steps as well as 2-bond breaking processes being rate determining in contrast to 3-bond breaking processes for [100] steps. The existence of a steady state is shown via the convergence of terrace width distributions at times much longer than the relaxation time. In this time regime excellent fits to the modified generalized Wigner distribution (as well as to the Berry-Robnik model when steps can overlap) were obtained. Also, step-position correlation function data show diffusion-limited increase for small distances along the step as well as greater average step displacement for zigzag steps compared to straight steps for somewhat longer distances along the step. Work supported by NSF-MRSEC Grant DMR 05-20471 as well as a DOE-CMCSN Grant.
NASA Astrophysics Data System (ADS)
Cox, Christopher
Low-order numerical methods are widespread in academic solvers and ubiquitous in industrial solvers due to their robustness and usability. High-order methods are less robust and more complicated to implement; however, they exhibit low numerical dissipation and have the potential to improve the accuracy of flow simulations at a lower computational cost when compared to low-order methods. This motivates our development of a high-order compact method using Huynh's flux reconstruction scheme for solving unsteady incompressible flow on unstructured grids. We use Chorin's classic artificial compressibility formulation with dual time stepping to solve unsteady flow problems. In 2D, an implicit non-linear lower-upper symmetric Gauss-Seidel scheme with backward Euler discretization is used to efficiently march the solution in pseudo time, while a second-order backward Euler discretization is used to march in physical time. We verify and validate implementation of the high-order method coupled with our implicit time stepping scheme using both steady and unsteady incompressible flow problems. The current implicit time stepping scheme is proven effective in satisfying the divergence-free constraint on the velocity field in the artificial compressibility formulation. The high-order solver is extended to 3D and parallelized using MPI. Due to its simplicity, time marching for 3D problems is done explicitly. The feasibility of using the current implicit time stepping scheme for large scale three-dimensional problems with high-order polynomial basis still remains to be seen. We directly use the aforementioned numerical solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180-degree curved artery model. One of the most physiologically relevant forces within the cardiovascular system is the wall shear stress. This force is important because atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. The aim of this research as it relates to cardiovascular fluid dynamics is to predict the spatial and temporal evolution of vortical structures generated by secondary flows, as well as to assess the correlation between multiple vortex pairs and wall shear stress. We use a physiologically (pulsatile) relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter being motivated by the fact that flow upstream of a curved artery may not have sufficient straight entrance length to become fully developed. Under the two pulsatile inflow conditions, we characterize the morphology and evolution of various vortex pairs and their subsequent effect on relevant haemodynamic wall shear stress metrics.
Efficient and robust photo-ionization loading of beryllium ions
NASA Astrophysics Data System (ADS)
Wolf, Sebastian; Studer, Dominik; Wendt, Klaus; Schmidt-Kaler, Ferdinand
2018-02-01
We demonstrate the efficient generation of Be^+ ions with a 60 ns and 150 nJ laser pulse near 235 nm for two-step photo-ionization, proven by subsequent counting of the number of ions loaded into a linear Paul trap. The bandwidth and power of the laser pulse are chosen in such a way that a first, resonant step fully saturates the entire velocity distribution of beryllium atoms effusing from a thermal oven. The second excitation step is driven by the same light field causing efficient non-resonant ionization. Our ion-loading scheme has a similar efficiency as compared to former pathways using two-photon continuous wave laser excitation, but with an order of magnitude lower than average UV light power.
Monte-Carlo simulation of a stochastic differential equation
NASA Astrophysics Data System (ADS)
Arif, ULLAH; Majid, KHAN; M, KAMRAN; R, KHAN; Zhengmao, SHENG
2017-12-01
For solving higher dimensional diffusion equations with an inhomogeneous diffusion coefficient, Monte Carlo (MC) techniques are considered to be more effective than other algorithms, such as finite element method or finite difference method. The inhomogeneity of diffusion coefficient strongly limits the use of different numerical techniques. For better convergence, methods with higher orders have been kept forward to allow MC codes with large step size. The main focus of this work is to look for operators that can produce converging results for large step sizes. As a first step, our comparative analysis has been applied to a general stochastic problem. Subsequently, our formulization is applied to the problem of pitch angle scattering resulting from Coulomb collisions of charge particles in the toroidal devices.
Consistency of internal fluxes in a hydrological model running at multiple time steps
NASA Astrophysics Data System (ADS)
Ficchi, Andrea; Perrin, Charles; Andréassian, Vazken
2016-04-01
Improving hydrological models remains a difficult task and many ways can be explored, among which one can find the improvement of spatial representation, the search for more robust parametrization, the better formulation of some processes or the modification of model structures by trial-and-error procedure. Several past works indicate that model parameters and structure can be dependent on the modelling time step, and there is thus some rationale in investigating how a model behaves across various modelling time steps, to find solutions for improvements. Here we analyse the impact of data time step on the consistency of the internal fluxes of a rainfall-runoff model run at various time steps, by using a large data set of 240 catchments. To this end, fine time step hydro-climatic information at sub-hourly resolution is used as input of a parsimonious rainfall-runoff model (GR) that is run at eight different model time steps (from 6 minutes to one day). The initial structure of the tested model (i.e. the baseline) corresponds to the daily model GR4J (Perrin et al., 2003), adapted to be run at variable sub-daily time steps. The modelled fluxes considered are interception, actual evapotranspiration and intercatchment groundwater flows. Observations of these fluxes are not available, but the comparison of modelled fluxes at multiple time steps gives additional information for model identification. The joint analysis of flow simulation performance and consistency of internal fluxes at different time steps provides guidance to the identification of the model components that should be improved. Our analysis indicates that the baseline model structure is to be modified at sub-daily time steps to warrant the consistency and realism of the modelled fluxes. For the baseline model improvement, particular attention is devoted to the interception model component, whose output flux showed the strongest sensitivity to modelling time step. The dependency of the optimal model complexity on time step is also analysed. References: Perrin, C., Michel, C., Andréassian, V., 2003. Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1-4): 275-289. DOI:10.1016/S0022-1694(03)00225-7
NASA Astrophysics Data System (ADS)
Yuste, S. B.; Abad, E.; Baumgaertner, A.
2016-07-01
We address the problem of diffusion on a comb whose teeth display varying lengths. Specifically, the length ℓ of each tooth is drawn from a probability distribution displaying power law behavior at large ℓ ,P (ℓ ) ˜ℓ-(1 +α ) (α >0 ). To start with, we focus on the computation of the anomalous diffusion coefficient for the subdiffusive motion along the backbone. This quantity is subsequently used as an input to compute concentration recovery curves mimicking fluorescence recovery after photobleaching experiments in comblike geometries such as spiny dendrites. Our method is based on the mean-field description provided by the well-tested continuous time random-walk approach for the random-comb model, and the obtained analytical result for the diffusion coefficient is confirmed by numerical simulations of a random walk with finite steps in time and space along the backbone and the teeth. We subsequently incorporate retardation effects arising from binding-unbinding kinetics into our model and obtain a scaling law characterizing the corresponding change in the diffusion coefficient. Finally, we show that recovery curves obtained with the help of the analytical expression for the anomalous diffusion coefficient cannot be fitted perfectly by a model based on scaled Brownian motion, i.e., a standard diffusion equation with a time-dependent diffusion coefficient. However, differences between the exact curves and such fits are small, thereby providing justification for the practical use of models relying on scaled Brownian motion as a fitting procedure for recovery curves arising from particle diffusion in comblike systems.
Switchable Chiral Selection of Aspartic Acids by Dynamic States of Brushite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Wenge; Pan, Haihua; Zhang, Zhisen
Here, we show the chiral recognition and separation of aspartic acid (Asp) enantiomers by achiral brushite due to the asymmetries of their dynamical steps in its nonequilibrium states. Growing brushite has a higher adsorption affinity to d-Asp, while l-Asp is predominant on the dissolving brushite surface. Microstructural characterization reveals that chiral selection is mainly attributed to brushite [101] steps, which exhibit two different configurations during crystal growth and dissolution, respectively, with each preferring a distinct enantiomer due to this asymmetry. Because these transition step configurations have different stabilities, they subsequently result in asymmetric adsorption. Furthermore, by varying free energy barriersmore » through solution thermodynamic driving force (i.e., supersaturation), the dominant nonequilibrium intermediate states can be switched and chiral selection regulated. This finding highlights that the dynamic steps can be vital for chiral selection, which may provide a potential pathway for chirality generation through the dynamic nature.« less
Switchable Chiral Selection of Aspartic Acids by Dynamic States of Brushite
Jiang, Wenge; Pan, Haihua; Zhang, Zhisen; ...
2017-06-15
Here, we show the chiral recognition and separation of aspartic acid (Asp) enantiomers by achiral brushite due to the asymmetries of their dynamical steps in its nonequilibrium states. Growing brushite has a higher adsorption affinity to d-Asp, while l-Asp is predominant on the dissolving brushite surface. Microstructural characterization reveals that chiral selection is mainly attributed to brushite [101] steps, which exhibit two different configurations during crystal growth and dissolution, respectively, with each preferring a distinct enantiomer due to this asymmetry. Because these transition step configurations have different stabilities, they subsequently result in asymmetric adsorption. Furthermore, by varying free energy barriersmore » through solution thermodynamic driving force (i.e., supersaturation), the dominant nonequilibrium intermediate states can be switched and chiral selection regulated. This finding highlights that the dynamic steps can be vital for chiral selection, which may provide a potential pathway for chirality generation through the dynamic nature.« less
Barajaz, Michelle; Turner, Teri
2016-01-01
Although our country faces a looming shortage of doctors, constraints of space, funding, and patient volume in many existing residency programs limit training opportunities for medical graduates. New residency programs need to be created for the expansion of graduate medical education training positions. Partnerships between existing academic institutions and community hospitals with a need for physicians can be a very successful means toward this end. Baylor College of Medicine and The Children's Hospital of San Antonio were affiliated in 2012, and subsequently, we developed and received accreditation for a new categorical pediatric residency program at that site in 2014. We share below a step-by-step guide through the process that includes building of the infrastructure, educational development, accreditation, marketing, and recruitment. It is our hope that the description of this process will help others to spur growth in graduate medical training positions. PMID:27507541
Methods for the continuous production of plastic scintillator materials
Bross, Alan; Pla-Dalmau, Anna; Mellott, Kerry
1999-10-19
Methods for producing plastic scintillating material employing either two major steps (tumble-mix) or a single major step (inline-coloring or inline-doping). Using the two step method, the polymer pellets are mixed with silicone oil, and the mixture is then tumble mixed with the dopants necessary to yield the proper response from the scintillator material. The mixture is then placed in a compounder and compounded in an inert gas atmosphere. The resultant scintillator material is then extruded and pelletized or formed. When only a single step is employed, the polymer pellets and dopants are metered into an inline-coloring extruding system. The mixture is then processed under a inert gas atmosphere, usually argon or nitrogen, to form plastic scintillator material in the form of either scintillator pellets, for subsequent processing, or as material in the direct formation of the final scintillator shape or form.
Few-body modes of binary formation in core collapse
NASA Astrophysics Data System (ADS)
Tanikawa, Ataru; Heggie, Douglas C.; Hut, Piet; Makino, Junichiro
2013-11-01
At the moment of deepest core collapse, a star cluster core contains less than ten stars. This small number makes the traditional treatment of hard binary formation, assuming a homogeneous background density, suspect. In a previous paper, we have found that indeed the conventional wisdom of binary formation, based on three-body encounters, is incorrect. Here we refine that insight, by further dissecting the subsequent steps leading to hard binary formation. For this purpose, we add some analysis tools in order to make the study less subjective. We find that the conventional treatment does remain valid for direct three-body scattering, but fails for resonant three-body scattering. Especially democratic resonance scattering, which forms an important part of the analytical theory of three-body binary formation, takes too much space and time to be approximated as being isolated, in the context of a cluster core around core collapse. We conclude that, while three-body encounters can be analytically approximated as isolated, subsequent strong perturbations typically occur whenever those encounters give rise to democratic resonances. We present analytical estimates postdicting our numerical results. If we only had been a bit more clever, we could have predicted this qualitative behaviour.
Cotham, Victoria C; Shaw, Jared B; Brodbelt, Jennifer S
2015-09-15
Fast online chemical derivatization of peptides with an aromatic label for enhanced 193 nm ultraviolet photodissociation (UVPD) is demonstrated using a dual electrospray reactor implemented on the front-end of a linear ion trap (LIT) mass spectrometer. The reactor facilitates the intersection of protonated peptides with a second population of chromogenic 4-formyl-1,3-benzenedisulfonic acid (FBDSA) anions to promote real-time formation of ion/ion complexes at atmospheric pressure. Subsequent collisional activation of the ion/ion intermediate results in Schiff base formation generated via reaction between a primary amine in the peptide cation and the aldehyde moiety of the FBDSA anion. Utilizing 193 nm UVPD as the subsequent activation step in the MS(3) workflow results in acquisition of greater primary sequence information relative to conventional collision induced dissociation (CID). Furthermore, Schiff-base-modified peptides exhibit on average a 20% increase in UVPD efficiency compared to their unmodified counterparts. Due to the efficiency of covalent labeling achieved with the dual spray reactor, we demonstrate that this strategy can be integrated into a high-throughput LC-MS(n) workflow for rapid derivatization of peptide mixtures.
2006-01-01
There is accumulating evidence that animations aid learning of dynamic concepts in cell biology. However, existing animation packages are expensive and difficult to learn, and the subsequent production of even short animations can take weeks to months. Here I outline the principles and sequence of steps for producing high-quality PowerPoint animations in less than a day that are suitable for teaching in high school through college/university. After developing the animation it can be easily converted to any appropriate movie file format using Camtasia Studio for Internet or classroom presentations. Thus anyone who can use PowerPoint has the potential to make animations. Students who viewed the approximately 3-min PowerPoint/Camtasia Studio animation “Calcium and the Dual Signalling Pathway” over 15 min scored significantly higher marks on a subsequent quiz than those who had viewed still graphics with text for an equivalent time. In addition, results from student evaluations provided some data validating the use of such animations in cell biology teaching with some interesting caveats. Information is also provided on how such animations can be modified or updated easily or shared with others who can modify them to fit their own needs. PMID:17012217
NASA Astrophysics Data System (ADS)
Park, Se Min; Koo, Yang Mo; Shim, Byoung Yul; Lee, Dong Nyung
2017-01-01
In Fe-3%Si-0.3%C steel sheet, a relatively strong <100>//ND texture can evolve in the surface layer through the α→γ→α phase transformation in relatively low vacuum (4 Pa) for an annealing time of 10 min and at a cooling rate of 20 K/s. Oxidation of the steel sheet surface prevents the evolution of the <100>//ND texture. However, vacuum-annealing under a vacuum pressure of 1.3×10-3 Pa causes decarburization of the steel sheet, which suppresses oxidation of the steel sheet surface, and subsequent annealing in wet hydrogen of 363 K in dew points causes a columnar grain structure with the <100>//ND texture. After the two-step-annealing (the vacuum annealing under a vacuum pressure of 1.3×10-3 Pa and subsequent decarburizing annealing in wet hydrogen of 363 K in dew points), the decarburized steel sheet exhibits good soft magnetic properties in NO with 3%Si, W15/50 (core loss at 1.5T and 50 Hz) = 2.47 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.71 T.
Elasto-Capillary Folding Using Stop-Programmable Hinges Fabricated by 3D Micro-Machining
Legrain, Antoine; Berenschot, Erwin J. W.; Tas, Niels R.; Abelmann, Leon
2015-01-01
We show elasto-capillary folding of silicon nitride objects with accurate folding angles between flaps of (70.6 ± 0.1)° and demonstrate the feasibility of such accurate micro-assembly with a final folding angle of 90°. The folding angle is defined by stop-programmable hinges that are fabricated starting from silicon molds employing accurate three-dimensional corner lithography. This nano-patterning method exploits the conformal deposition and the subsequent timed isotropic etching of a thin film in a 3D shaped silicon template. The technique leaves a residue of the thin film in sharp concave corners which can be used as an inversion mask in subsequent steps. Hinges designed to stop the folding at 70.6° were fabricated batchwise by machining the V-grooves obtained by KOH etching in (110) silicon wafers; 90° stop-programmable hinges were obtained starting from silicon molds obtained by dry etching on (100) wafers. The presented technique has potential to achieve any folding angle and opens a new route towards creating structures with increased complexity, which will ultimately lead to a novel method for device fabrication. PMID:25992886
Ground penetrating radar for asparagus detection
NASA Astrophysics Data System (ADS)
Seyfried, Daniel; Schoebel, Joerg
2016-03-01
Ground penetrating radar is a promising technique for detection of buried objects. Recently, radar has more and more been identified to provide benefits for a plurality of applications, where it can increase efficiency of operation. One of these fields is the industrial automatic harvesting process of asparagus, which is performed so far by cutting the soil ridge at a certain height including all the asparagus spears and subsequently sieving the latter out of the soil. However, the height where the soil is cut is a critical parameter, since a wrong value leads to either damage of the roots of the asparagus plants or to a reduced crop yield as a consequence of too much biomass remaining in the soil. In this paper we present a new approach which utilizes ground penetrating radar for non-invasive sensing in order to obtain information on the optimal height for cutting the soil. Hence, asparagus spears of maximal length can be obtained, while keeping the roots at the same time undamaged. We describe our radar system as well as the subsequent digital signal processing steps utilized for extracting the information required from the recorded radar data, which then can be fed into some harvesting unit for setting up the optimal cutting height.
NASA Astrophysics Data System (ADS)
Lee, Ji-Seok; Song, Ki-Won
2015-11-01
The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum systems in complicated step-shear flow fields. Using a strain-controlled rheometer (ARES), step-shear flow behaviors of a concentrated xanthan gum model solution have been experimentally investigated in interrupted shear flow fields with a various combination of different shear rates, shearing times and rest times, and step-incremental and step-reductional shear flow fields with various shearing times. The main findings obtained from this study are summarized as follows. (i) In interrupted shear flow fields, the shear stress is sharply increased until reaching the maximum stress at an initial stage of shearing times, and then a stress decay towards a steady state is observed as the shearing time is increased in both start-up shear flow fields. The shear stress is suddenly decreased immediately after the imposed shear rate is stopped, and then slowly decayed during the period of a rest time. (ii) As an increase in rest time, the difference in the maximum stress values between the two start-up shear flow fields is decreased whereas the shearing time exerts a slight influence on this behavior. (iii) In step-incremental shear flow fields, after passing through the maximum stress, structural destruction causes a stress decay behavior towards a steady state as an increase in shearing time in each step shear flow region. The time needed to reach the maximum stress value is shortened as an increase in step-increased shear rate. (iv) In step-reductional shear flow fields, after passing through the minimum stress, structural recovery induces a stress growth behavior towards an equilibrium state as an increase in shearing time in each step shear flow region. The time needed to reach the minimum stress value is lengthened as a decrease in step-decreased shear rate.
Extraction of Data from a Hospital Information System to Perform Process Mining.
Neira, Ricardo Alfredo Quintano; de Vries, Gert-Jan; Caffarel, Jennifer; Stretton, Erin
2017-01-01
The aim of this work is to share our experience in relevant data extraction from a hospital information system in preparation for a research study using process mining techniques. The steps performed were: research definition, mapping the normative processes, identification of tables and fields names of the database, and extraction of data. We then offer lessons learned during data extraction phase. Any errors made in the extraction phase will propagate and have implications on subsequent analyses. Thus, it is essential to take the time needed and devote sufficient attention to detail to perform all activities with the goal of ensuring high quality of the extracted data. We hope this work will be informative for other researchers to plan and execute extraction of data for process mining research studies.
Local Structure Fixation in the Composite Manufacturing Chain
NASA Astrophysics Data System (ADS)
Girdauskaite, Lina; Krzywinski, Sybille; Rödel, Hartmut; Wildasin-Werner, Andrea; Böhme, Ralf; Jansen, Irene
2010-12-01
Compared to metal materials, textile reinforced composites show interesting features, but also higher production costs because of low automation rate in the manufacturing chain at this time. Their applicability is also limited due to quality problems, which restrict the production of complex shaped dry textile preforms. New technologies, design concepts, and cost-effective manufacturing methods are needed in order to establish further fields of application. This paper deals with possible ways to improve the textile deformation process by locally applying a fixative to the structure parallel to the cut. This hinders unwanted deformation in the textile stock during the subsequent stacking and formation steps. It is found that suitable thermoplastic binders, applied in the appropriate manner do not restrict formation of the textile and have no negative influence on the mechanical properties of the composite.
Implicit approximate-factorization schemes for the low-frequency transonic equation
NASA Technical Reports Server (NTRS)
Ballhaus, W. F.; Steger, J. L.
1975-01-01
Two- and three-level implicit finite-difference algorithms for the low-frequency transonic small disturbance-equation are constructed using approximate factorization techniques. The schemes are unconditionally stable for the model linear problem. For nonlinear mixed flows, the schemes maintain stability by the use of conservatively switched difference operators for which stability is maintained only if shock propagation is restricted to be less than one spatial grid point per time step. The shock-capturing properties of the schemes were studied for various shock motions that might be encountered in problems of engineering interest. Computed results for a model airfoil problem that produces a flow field similar to that about a helicopter rotor in forward flight show the development of a shock wave and its subsequent propagation upstream off the front of the airfoil.
A characterization NMR of secondary metabolites from lichen Parmotrema praesorediosum
NASA Astrophysics Data System (ADS)
Azman, Anis Asmi; Khalid, Rozida; Bakar, Muntaz Abu
2018-04-01
The research study was carried out to extract, isolate and characterize the secondary metabolites of lichen Parmotrema praesorediosum. Most of the lichen samples were obtained from betel nut trees and needle flowers which were collected from 17 different places around UKM Bangi campus. Each lichen sample was dried before being grinded and extracted in methanol for nine days. This process was repeated three times at room temperature. Subsequently, the resulting residues were filtered to obtain the crude extracts and further analysed using Thin Layer Chromatography (TLC) and Vacuum Column Chromatography (VLC). In order to derive the pure compounds, the isolation step was proceeded using Radial Chromatography (RC). These isolated compounds were determined by Nuclear Magnetic Resonances (NMR) and identified as methyl haematomatte (1), methyl chlorohaematomatte (2) and methyl β-orsellinate (3).
Attentional Routes to Conscious Perception
Chica, Ana B.; Bartolomeo, Paolo
2012-01-01
The relationships between spatial attention and conscious perception are currently the object of intense debate. Recent evidence of double dissociations between attention and consciousness cast doubt on the time-honored concept of attention as a gateway to consciousness. Here we review evidence from behavioral, neurophysiologic, neuropsychological, and neuroimaging experiments, showing that distinct sorts of spatial attention can have different effects on visual conscious perception. While endogenous, or top-down attention, has weak influence on subsequent conscious perception of near-threshold stimuli, exogenous, or bottom-up forms of spatial attention appear instead to be a necessary, although not sufficient, step in the development of reportable visual experiences. Fronto-parietal networks important for spatial attention, with peculiar inter-hemispheric differences, constitute plausible neural substrates for the interactions between exogenous spatial attention and conscious perception. PMID:22279440
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stannett, V.T.
1989-01-04
Hexachlorophosphazene was irradiated in bulk and in solution after various methods of purification. When rigorously dried and purified, good yields of polymer were obtained. Poor reproducibility was found in the bulk but reasonably good results were obtained in decalin solution. The best yields and highest molecular weights were obtained after the addition of small amounts of the bulky electron acceptor pyromellitic dianhydride. Hexachlorocyclotriphosphazene was purified by recrystallization for various times from dried heptane. The trimer was then further purified by repeated sublimation steps under high vacuum. Finally the trimer was dried in the melt over rigorously baked out barium oxide.more » The monomer was then transferred to ampules or the NMR tubes for radiation and subsequent determination of the polymer content.« less
A new time-frequency method for identification and classification of ball bearing faults
NASA Astrophysics Data System (ADS)
Attoui, Issam; Fergani, Nadir; Boutasseta, Nadir; Oudjani, Brahim; Deliou, Adel
2017-06-01
In order to fault diagnosis of ball bearing that is one of the most critical components of rotating machinery, this paper presents a time-frequency procedure incorporating a new feature extraction step that combines the classical wavelet packet decomposition energy distribution technique and a new feature extraction technique based on the selection of the most impulsive frequency bands. In the proposed procedure, firstly, as a pre-processing step, the most impulsive frequency bands are selected at different bearing conditions using a combination between Fast-Fourier-Transform FFT and Short-Frequency Energy SFE algorithms. Secondly, once the most impulsive frequency bands are selected, the measured machinery vibration signals are decomposed into different frequency sub-bands by using discrete Wavelet Packet Decomposition WPD technique to maximize the detection of their frequency contents and subsequently the most useful sub-bands are represented in the time-frequency domain by using Short Time Fourier transform STFT algorithm for knowing exactly what the frequency components presented in those frequency sub-bands are. Once the proposed feature vector is obtained, three feature dimensionality reduction techniques are employed using Linear Discriminant Analysis LDA, a feedback wrapper method and Locality Sensitive Discriminant Analysis LSDA. Lastly, the Adaptive Neuro-Fuzzy Inference System ANFIS algorithm is used for instantaneous identification and classification of bearing faults. In order to evaluate the performances of the proposed method, different testing data set to the trained ANFIS model by using different conditions of healthy and faulty bearings under various load levels, fault severities and rotating speed. The conclusion resulting from this paper is highlighted by experimental results which prove that the proposed method can serve as an intelligent bearing fault diagnosis system.
Bismuth-based oxide semiconductors: Mild synthesis and practical applications
NASA Astrophysics Data System (ADS)
Timmaji, Hari Krishna
In this dissertation study, bismuth based oxide semiconductors were prepared using 'mild' synthesis techniques---electrodeposition and solution combustion synthesis. Potential environmental remediation and solar energy applications of the prepared oxides were evaluated. Bismuth vanadate (BiVO4) was prepared by electrodeposition and solution combustion synthesis. A two step electrosynthesis strategy was developed and demonstrated for the first time. In the first step, a Bi film was first electrodeposited on a Pt substrate from an acidic BiCl3 medium. Then, this film was anodically stripped in a medium containing hydrolyzed vanadium precursor, to generate Bi3+, and subsequent BiVO4 formation by in situ precipitation. The photoelectrochemical data were consistent with the in situ formation of n-type semiconductor films. In the solution combustion synthesis procedure, BiVO4 powders were prepared using bismuth nitrate pentahydrate as the bismuth precursor and either vanadium chloride or vanadium oxysulfate as the vanadium precursor. Urea, glycine, or citric acid was used as the fuel. The effect of the vanadium precursor on the photocatalytic activity of combustion synthesized BiVO 4 was evaluated in this study. Methyl orange was used as a probe to test the photocatalytic attributes of the combustion synthesized (CS) samples, and benchmarked against a commercial bismuth vanadate sample. The CS samples showed superior activity to the commercial benchmark sample, and samples derived from vanadium chloride were superior to vanadium oxysulfate counterparts. The photoelectrochemical properties of the various CS samples were also studied and these samples were shown to be useful both for environmental photocatalytic remediation and water photooxidation applications. Silver bismuth tungstate (AgBiW2O8) nanoparticles were prepared for the first time by solution combustion synthesis by using silver nitrate, bismuth nitrate, sodium tungstate as precursors for Ag, Bi, and W respectively and urea as the fuel. The photocatalytic activity of these nanoparticles was superior to a sample prepared by solid-state synthesis. The combustion-synthesized particles were subsequently modified with Pt catalyst islands using a photodeposition technique and then used for the photo-generation of syngas (CO + H2). Formic acid was used in these experiments for in situ generation of CO2 and its subsequent reduction to CO. In the absence of Pt modification, H2 was not obtained. These results were compared with those obtained with acetic acid in place of formic acid, and finally the mechanistic pathways for syngas and methane photogeneration are presented.
Production of polyol oils from soybean oil through bioprocess
USDA-ARS?s Scientific Manuscript database
Soy-polyol oils (oxygenated acylglycerols) are important starting materials for the manufacture of polymers such as polyurethane. Currently, they are produced by a two-step chemical process involving epoxidation and then the subsequent opening of the oxirane ring. The objective of this study is to d...
NASA Astrophysics Data System (ADS)
Furr-Holden, D.
2017-12-01
Flint, MI has experienced a recent, man-made public health crisis. The Flint Water Crisis, caused by a switch in the municipal water supply and subsequent violation of engineering and regulatory standards to ensure water quality lead to a large portion of the city being exposed to excess metals (including lead), bacteria and other water-borne pathogens. The data used to initially rebut the existence of the crisis were ecologically flawed as they included large numbers of people who were not on the Flint water supply. Policy-makers, municipal officials, the medical community, and public health professionals were at odds over the existence of a problem and the lack of data only fueled the debate. Pediatricians, lead by Dr. Mona Hannah-Attisha, began testing children in the Hurley Children's Medical Center for blood-lead levels and observed a 2-fold increase in elevated blood lead levels in Flint children compared to children in the area not on the Flint municipal water supply, where no increases in elevated lead were observed. Subsequent geospatial analyses revealed spatial clustering of cases based on where children live, go to school and play. These data represented the first step in data driven decision making leading to the subsequent switch of the municipal water supply and launch of subsequent advocacy efforts to remediate the effect of the Water Crisis. Since that time, a multi-disciplinary team of scientists including engineers, bench scientists, physicians and public health researchers have mounted evidence to promote complete replacement of the city's aging water infrastructure, developed a data registry to track cases and coordinate care and services for affected residents, and implemented a community engagement model that puts residents and community stakeholders at the heart of the planning and implementation efforts. The presentation will include data used at various stages to mount a public health response to the Flint Water Crisis and establish the link between data-driven decisions and subsequent policies to mediate long term consequences.
An adaptive time-stepping strategy for solving the phase field crystal model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhengru, E-mail: zrzhang@bnu.edu.cn; Ma, Yuan, E-mail: yuner1022@gmail.com; Qiao, Zhonghua, E-mail: zqiao@polyu.edu.hk
2013-09-15
In this work, we will propose an adaptive time step method for simulating the dynamics of the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long time to reach steady state, and then large time-stepping method is necessary. Unconditionally energy stable schemes are used to solve the PFC model. The time steps are adaptively determined based on the time derivative of the corresponding energy. It is found that the use of the proposed time step adaptivity cannot only resolve the steady state solution, but also the dynamical development of the solution efficiently and accurately. Themore » numerical experiments demonstrate that the CPU time is significantly saved for long time simulations.« less
Shifting the Curve: Fostering Academic Success in a Diverse Student Body
Herbert-Carter, Janice; Smith, Marjorie; Klement, Brenda; Knight, Brandi Brandon; Anachebe, Ngozi F.
2018-01-01
Problem Diversity in the health care workforce is key to achieving health equity. Although U.S. medical schools have worked to increase the matriculation and academic success of underrepresented minority (URM) students (African Americans, Latinos, others), they have had only limited success. Lower standardized test scores, including on the Medical College Admission Test (MCAT), have been a barrier to matriculation for many URM applicants. Lower subsequent standardized exam scores, including on the United States Medical Licensing Exam Step 1, also have been an impediment to students’ progress, with mean scores for URM students lagging behind those for others. Approach Faculty at the Morehouse School of Medicine developed and implemented interventions to enhance the academic success of their URM students (about 75% are African American, and 5% are from other URM groups). To assess the outcomes of this work, the authors analyzed the MCAT scores and subsequent Step 1 scores of students in the graduating classes of 2009–2014. They also reviewed course evaluations, Graduation Questionnaires, and student and faculty interviews and focus groups. Outcomes Students’ Step 1 scores exceeded those expected based on their MCAT scores. This success was due to three key elements: (1) milieu and mentoring, (2) structure and content of the curriculum, and (3) monitoring. Next Steps A series of mixed-method studies are planned to better discern the core elements of faculty–student relationships that are key to students’ success. Lower test scores are not a fixed attribute; with the elements described, success is attainable for all students. PMID:28678099
NASA Astrophysics Data System (ADS)
Cardenas, Nelson; Kyrish, Matthew; Taylor, Daniel; Fraelich, Margaret; Lechuga, Oscar; Claytor, Richard; Claytor, Nelson
2015-03-01
Electro-Chemical Polishing is routinely used in the anodizing industry to achieve specular surface finishes of various metals products prior to anodizing. Electro-Chemical polishing functions by leveling the microscopic peaks and valleys of the substrate, thereby increasing specularity and reducing light scattering. The rate of attack is dependent of the physical characteristics (height, depth, and width) of the microscopic structures that constitute the surface finish. To prepare the sample, mechanical polishing such as buffing or grinding is typically required before etching. This type of mechanical polishing produces random microscopic structures at varying depths and widths, thus the electropolishing parameters are determined in an ad hoc basis. Alternatively, single point diamond turning offers excellent repeatability and highly specific control of substrate polishing parameters. While polishing, the diamond tool leaves behind an associated tool mark, which is related to the diamond tool geometry and machining parameters. Machine parameters such as tool cutting depth, speed and step over can be changed in situ, thus providing control of the spatial frequency of the microscopic structures characteristic of the surface topography of the substrate. By combining single point diamond turning with subsequent electro-chemical etching, ultra smooth polishing of both rotationally symmetric and free form mirrors and molds is possible. Additionally, machining parameters can be set to optimize post polishing for increased surface quality and reduced processing times. In this work, we present a study of substrate surface finish based on diamond turning tool mark spatial frequency with subsequent electro-chemical polishing.
Bonnici, Timothy; Gerry, Stephen; Wong, David; Knight, Julia; Watkinson, Peter
2016-02-09
An Early Warning Score is a clinical risk score based upon vital signs intended to aid recognition of patients in need of urgent medical attention. The use of an escalation of care policy based upon an Early Warning Score is mandated as the standard of practice in British hospitals. Electronic systems for recording vital sign observations and Early Warning Score calculation offer theoretical benefits over paper-based systems. However, the evidence for their clinical benefit is limited. Previous studies have shown inconsistent results. The majority have employed a "before and after" study design, which may be strongly confounded by simultaneously occurring events. This study aims to examine how the implementation of an electronic early warning score system, System for Notification and Documentation (SEND), affects the recognition of clinical deterioration occurring in hospitalised adult patients. This study is a non-randomised stepped wedge evaluation carried out across the four hospitals of the Oxford University Hospitals NHS Trust, comparing charting on paper and charting using SEND. We assume that more frequent monitoring of acutely ill patients is associated with better recognition of patient deterioration. The primary outcome measure is the time between a patient's first observations set with an Early Warning Score above the alerting threshold and their subsequent set of observations. Secondary outcome measures are in-hospital mortality, cardiac arrest and Intensive Care admission rates, hospital length of stay and system usability measured using the System Usability Scale. We will also measure Intensive Care length of stay, Intensive Care mortality, Acute Physiology and Chronic Health Evaluation (APACHE) II acute physiology score on admission, to examine whether the introduction of SEND has any effect on Intensive Care-related outcomes. The development of this protocol has been informed by guidance from the Agency for Healthcare Research and Quality (AHRQ) Health Information Technology Evaluation Toolkit and Delone and McLeans's Model of Information System Success. Our chosen trial design, a stepped wedge study, is well suited to the study of a phased roll out. The choice of primary endpoint is challenging. We have selected the time from the first triggering observation set to the subsequent observation set. This has the benefit of being easy to measure on both paper and electronic charting and having a straightforward interpretation. We have collected qualitative measures of system quality via a user questionnaire and organisational descriptors to help readers understand the context in which SEND has been implemented.
Kim, Yoon-Jung; Kang, Young; Park, Hye-Yeon; Lee, Jae-Ran; Yu, Dae-Yeul; Murata, Takuya; Gondo, Yoichi; Hwang, Jung Hwan; Kim, Yong-Hoon; Lee, Chul-Ho; Rhee, Myungchull; Han, Pyung-Lim; Chung, Bong-Hyun; Lee, Hyun-Jun; Kim, Kyoung-Shim
2016-01-01
Striatal-enriched protein tyrosine phosphatase (STEP) is abundantly expressed in the striatum, which strongly expresses dopamine and opioid receptors and mediates the effects of many drugs of abuse. However, little is known about the role of STEP in opioid receptor function. In the present study, we generated STEP-targeted mice carrying a nonsense mutation (C230X) in the kinase interaction domain of STEP by screening the N-ethyl-N-nitrosourea (ENU)-driven mutant mouse genomic DNA library and subsequent in vitro fertilization. It was confirmed that the C230X nonsense mutation completely abolished functional STEP protein expression in the brain. STEPC230X−/− mice showed attenuated acute morphine-induced psychomotor activity and withdrawal symptoms, whereas morphine-induced analgesia, tolerance and reward behaviors were unaffected. STEPC230X−/− mice displayed reduced hyperlocomotion in response to intrastriatal injection of the μ-opioid receptor agonist DAMGO, but the behavioral responses to δ- and κ-opioid receptor agonists remained intact. These results suggest that STEP has a key role in the regulation of psychomotor action and physical dependency to morphine. These data suggest that STEP inhibition may be a critical target for the treatment of withdrawal symptoms associated with morphine. PMID:26915673
Use of proteomics for validation of the isolation process of clotting factor IX from human plasma.
Clifton, James; Huang, Feilei; Gaso-Sokac, Dajana; Brilliant, Kate; Hixson, Douglas; Josic, Djuro
2010-01-03
The use of proteomic techniques in the monitoring of different production steps of plasma-derived clotting factor IX (pd F IX) was demonstrated. The first step, solid-phase extraction with a weak anion-exchange resin, fractionates the bulk of human serum albumin (HSA), immunoglobulin G, and other non-binding proteins from F IX. The proteins that strongly bind to the anion-exchange resin are eluted by higher salt concentrations. In the second step, anion-exchange chromatography, residual HSA, some proteases and other contaminating proteins are separated. In the last chromatographic step, affinity chromatography with immobilized heparin, the majority of the residual impurities are removed. However, some contaminating proteins still remain in the eluate from the affinity column. The next step in the production process, virus filtration, is also an efficient step for the removal of residual impurities, mainly high molecular weight proteins, such as vitronectin and inter-alpha inhibitor proteins. In each production step, the active component, pd F IX and contaminating proteins are monitored by biochemical and immunochemical methods and by LC-MS/MS and their removal documented. Our methodology is very helpful for further process optimization, rapid identification of target proteins with relatively low abundance, and for the design of subsequent steps for their removal or purification.
NASA Astrophysics Data System (ADS)
Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.
2009-09-01
The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.
3D geometric split-merge segmentation of brain MRI datasets.
Marras, Ioannis; Nikolaidis, Nikolaos; Pitas, Ioannis
2014-05-01
In this paper, a novel method for MRI volume segmentation based on region adaptive splitting and merging is proposed. The method, called Adaptive Geometric Split Merge (AGSM) segmentation, aims at finding complex geometrical shapes that consist of homogeneous geometrical 3D regions. In each volume splitting step, several splitting strategies are examined and the most appropriate is activated. A way to find the maximal homogeneity axis of the volume is also introduced. Along this axis, the volume splitting technique divides the entire volume in a number of large homogeneous 3D regions, while at the same time, it defines more clearly small homogeneous regions within the volume in such a way that they have greater probabilities of survival at the subsequent merging step. Region merging criteria are proposed to this end. The presented segmentation method has been applied to brain MRI medical datasets to provide segmentation results when each voxel is composed of one tissue type (hard segmentation). The volume splitting procedure does not require training data, while it demonstrates improved segmentation performance in noisy brain MRI datasets, when compared to the state of the art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bao, Jianqiang; Wu, Qiuxia; Song, Rui; Jie, Zhang; Zheng, Huili; Xu, Chen; Yan, Wei
2010-01-01
We identified Ran-binding protein 17 (RANBP17) as one of the interacting partners of sperm maturation 1 (SPEM1) using yeast 2-hybrid screening and immunoprecipitation assays. Expression profiling analyses suggested that RANBP17 was preferentially expressed in the testis. Immunofluorescent confocal microscopy revealed a dynamic localization pattern of RANBP17 during spermatogenesis. In primary spermatocytes RANBP17 was mainly localized to the XY body. In the subsequent spermiogenesis, RANBP17 was first observed in the nuclei of round spermatids (steps1–7) and then confined to the manchette of elongating spermatids (steps 8–14) together with its interacting partner SPEM1. In the Spem1-null testes, levels of RANBP17 were significantly elevated. As a member of a large protein family involved in the nucleocytoplasmic transport, RANBP17 may have a role in sex chromosome inactivation during the meiotic phase of spermatogenesis, and also in the intramanchette transport during spermiogenesis. Interactions between RANBP17 and SPEM1, for the first time, point to a potential function of SPEM1 in the RANBP17-mediated nucleocytoplasmic transport. PMID:21184802
Machado, Francisco R S; Trevisol, Thalles C; Boschetto, Daiane L; Burkert, Janaína F M; Ferreira, Sandra R S; Oliveira, J Vladimir; Burkert, Carlos André V
2016-01-20
In this work, the effectiveness of different enzymatic techniques for cell wall disruption of Haematococcus pluvialis for the extraction of carotenoids and subsequent encapsulation of extracts in the co-polymer poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) using the Solution Enhanced Dispersion by Supercritical fluids (SEDS) technique was investigated. Glucanex(®) performed best compared with Lyticase(®) and Driselase(®). The conditions for enzymatic lysis using this enzyme preparation were established as a pH of 4.5, a temperature of 55 °C, an initial activity of β-1,3-glucanase of 0.6 U mL(-1) and a reaction time of 30 min. Enzymatic lysis assisted by ultrasound without biomass freezing was shown to be a promising and simple one-step technique for cell wall disruption, reaching 83.90% extractability. In the co-precipitation experiments, the highest encapsulation efficiency (51.21%) was obtained when using a higher biomass to dichloromethane ratio (10 mg mL(-1)) at the carotenoid extraction step and a lower pressure of precipitation (80 bar). In these conditions, spherical particles in the micrometer range (0.228 μm) were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.
Incrementally developing a cultural and regulatory infrastructure for reusable launch vehicles
NASA Astrophysics Data System (ADS)
Simberg, Rand
1998-01-01
At this point in time, technology is perhaps the least significant barrier to the development of high-flight-rate, reusable launchers, necessary for low-cost space access. Much more daunting are the issues of regulatory regimes, needed markets, and public/investor perception of their feasibility. The approach currently the focus of the government (X-33) assumes that the necessary conditions will be in place to support a new reusable launch vehicle in the Shuttle class at the end of the X-33 development. For a number of reasons (market size, lack of confidence in the technology, regulations designed for expendable vehicles, difficulties in capital formation) such an approach may prove too rapid a leap for success. More incremental steps, both experimental and operational, could be a higher-probability path to achieving the goal of cheap access through reusables. Such incrementalism, via intermediate vehicles (possibly multi-stage) exploiting suborbital and smaller-payload markets, could provide the gradual acclimatization of the public, regulatory and investment communities to reusable launchers, and build the confidence necessary to go on to subsequent steps to provide truly cheap access, while providing lower-cost access much sooner.
Kinetic phase evolution of spinel cobalt oxide during lithiation
Li, Jing; He, Kai; Meng, Qingping; ...
2016-09-15
Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less
Kinetic phase evolution of spinel cobalt oxide during lithiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jing; He, Kai; Meng, Qingping
Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less
Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing
NASA Astrophysics Data System (ADS)
Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; Dees, Dennis W.
2016-08-01
Successful deployment of electric vehicles requires maturity of the manufacturing process to reduce the cost of the lithium ion battery (LIB) pack. Drying the coated cathode layer and subsequent recovery of the solvent for recycle is a vital step in the lithium ion battery manufacturing plant and offers significant potential for cost reduction. A spreadsheet model of the drying and recovery of the solvent, is used to study the energy demand of this step and its contribution towards the cost of the battery pack. The base case scenario indicates that the drying and recovery process imposes an energy demand of ∼10 kWh per kg of the solvent n-methyl pyrrolidone (NMP), and is almost 45 times the heat needed to vaporize the NMP. For a plant producing 100 K battery packs per year for 10 kWh plug-in hybrid vehicles (PHEV), the energy demand is ∼5900 kW and the process contributes 107 or 3.4% to the cost of the battery pack. The cost of drying and recovery is equivalent to 1.12 per kg of NMP recovered, saving 2.08 per kg in replacement purchase.
Ng, Michelle Y T; Tan, Wen Siang; Abdullah, Norhafizah; Ling, Tau Chuan; Tey, Beng Ti
2006-10-01
Heat precipitation procedure has been regularly incorporated as a selective purification step in various thermostable proteins expressed in different hosts. This method is efficient in precipitation of most of the host proteins and also deactivates various host proteases that can be harmful to the desired gene products. In this study, introduction of heat treatment procedure in the purification of hepatitis B core antigen (HBcAg) produced in Escherichia coli has been investigated. Thermal treatment of the cell homogenate at 60 degrees C for 30 min prior to subsequent clarification steps has resulted in 1.4 times and 18% higher in purity and recovery yield, respectively, compared to the non-heat-treated cell homogenate. In direct capture of HBcAg by using anion-exchangers from unclarified feedstock, pre-conditioning the feedstock by heat treatment at 60 degrees C for 45 min has increased the recovery yield of HBcAg by 2.9-fold and 42% in purity compared to that treated for 10 min. Enzyme-linked immunosorbent assay (ELISA) analysis showed that the antigenicity of the core particles was not affected by the heat treatment process.
Pan, Siqi; Zelger, Monika; Jungbauer, Alois; Hahn, Rainer
2014-09-20
An integrated continuous tubular reactor system was developed for processing an autoprotease expressed as inclusion bodies. The inclusion bodies were suspended and fed into the tubular reactor system for continuous dissolving, refolding and precipitation. During refolding, the dissolved autoprotease cleaves itself, separating the fusion tag from the target peptide. Subsequently, the cleaved fusion tag and any uncleaved autoprotease were precipitated out in the precipitation step. The processed exiting solution results in the purified soluble target peptide. Refolding and precipitation yields performed in the tubular reactor were similar to batch reactor and process was stable for at least 20 h. The authenticity of purified peptide was also verified by mass spectroscopy. Productivity (in mg/l/h and mg/h) calculated in the tubular process was twice and 1.5 times of the batch process, respectively. Although it is more complex to setup a tubular than a batch reactor, it offers faster mixing, higher productivity and better integration to other bioprocessing steps. With increasing interest of integrated continuous biomanufacturing, the use of tubular reactors in industrial settings offers clear advantages. Copyright © 2014 Elsevier B.V. All rights reserved.
Laboratory Formation of Fullerenes from PAHs: Top-down Interstellar Chemistry
NASA Astrophysics Data System (ADS)
Zhen, Junfeng; Castellanos, Pablo; Paardekooper, Daniel M.; Linnartz, Harold; Tielens, Alexander G. G. M.
2014-12-01
Interstellar molecules are thought to build up in the shielded environment of molecular clouds or in the envelope of evolved stars. This follows many sequential reaction steps of atoms and simple molecules in the gas phase and/or on (icy) grain surfaces. However, these chemical routes are highly inefficient for larger species in the tenuous environment of space as many steps are involved and, indeed, models fail to explain the observed high abundances. This is definitely the case for the C60 fullerene, recently identified as one of the most complex molecules in the interstellar medium. Observations have shown that, in some photodissociation regions, its abundance increases close to strong UV-sources. In this Letter we report laboratory findings in which C60 formation can be explained by characterizing the photochemical evolution of large polycyclic aromatic hydrocarbons (PAHs). Sequential H losses lead to fully dehydrogenated PAHs and subsequent losses of C2 units convert graphene into cages. Our results present for the first time experimental evidence that PAHs in excess of 60 C-atoms efficiently photo-isomerize to buckminsterfullerene, C60. These laboratory studies also attest to the importance of top-down synthesis routes for chemical complexity in space.
Nutt, John G.; Horak, Fay B.
2011-01-01
Background. This study asked whether older adults were more likely than younger adults to err in the initial direction of their anticipatory postural adjustment (APA) prior to a step (indicating a motor program error), whether initial motor program errors accounted for reaction time differences for step initiation, and whether initial motor program errors were linked to inhibitory failure. Methods. In a stepping task with choice reaction time and simple reaction time conditions, we measured forces under the feet to quantify APA onset and step latency and we used body kinematics to quantify forward movement of center of mass and length of first step. Results. Trials with APA errors were almost three times as common for older adults as for younger adults, and they were nine times more likely in choice reaction time trials than in simple reaction time trials. In trials with APA errors, step latency was delayed, correlation between APA onset and step latency was diminished, and forward motion of the center of mass prior to the step was increased. Participants with more APA errors tended to have worse Stroop interference scores, regardless of age. Conclusions. The results support the hypothesis that findings of slow choice reaction time step initiation in older adults are attributable to inclusion of trials with incorrect initial motor preparation and that these errors are caused by deficits in response inhibition. By extension, the results also suggest that mixing of trials with correct and incorrect initial motor preparation might explain apparent choice reaction time slowing with age in upper limb tasks. PMID:21498431
Molecular dynamics based enhanced sampling of collective variables with very large time steps.
Chen, Pei-Yang; Tuckerman, Mark E
2018-01-14
Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.
Molecular dynamics based enhanced sampling of collective variables with very large time steps
NASA Astrophysics Data System (ADS)
Chen, Pei-Yang; Tuckerman, Mark E.
2018-01-01
Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.
DIALIGN P: fast pair-wise and multiple sequence alignment using parallel processors.
Schmollinger, Martin; Nieselt, Kay; Kaufmann, Michael; Morgenstern, Burkhard
2004-09-09
Parallel computing is frequently used to speed up computationally expensive tasks in Bioinformatics. Herein, a parallel version of the multi-alignment program DIALIGN is introduced. We propose two ways of dividing the program into independent sub-routines that can be run on different processors: (a) pair-wise sequence alignments that are used as a first step to multiple alignment account for most of the CPU time in DIALIGN. Since alignments of different sequence pairs are completely independent of each other, they can be distributed to multiple processors without any effect on the resulting output alignments. (b) For alignments of large genomic sequences, we use a heuristics by splitting up sequences into sub-sequences based on a previously introduced anchored alignment procedure. For our test sequences, this combined approach reduces the program running time of DIALIGN by up to 97%. By distributing sub-routines to multiple processors, the running time of DIALIGN can be crucially improved. With these improvements, it is possible to apply the program in large-scale genomics and proteomics projects that were previously beyond its scope.
3D Hybrid Simulations of Interactions of High-Velocity Plasmoids with Obstacles
NASA Astrophysics Data System (ADS)
Omelchenko, Y. A.; Weber, T. E.; Smith, R. J.
2015-11-01
Interactions of fast plasma streams and objects with magnetic obstacles (dipoles, mirrors, etc) lie at the core of many space and laboratory plasma phenomena ranging from magnetoshells and solar wind interactions with planetary magnetospheres to compact fusion plasmas (spheromaks and FRCs) to astrophysics-in-lab experiments. Properly modeling ion kinetic, finite-Larmor radius and Hall effects is essential for describing large-scale plasma dynamics, turbulence and heating in complex magnetic field geometries. Using an asynchronous parallel hybrid code, HYPERS, we conduct 3D hybrid (particle-in-cell ion, fluid electron) simulations of such interactions under realistic conditions that include magnetic flux coils, ion-ion collisions and the Chodura resistivity. HYPERS does not step simulation variables synchronously in time but instead performs time integration by executing asynchronous discrete events: updates of particles and fields carried out as frequently as dictated by local physical time scales. Simulations are compared with data from the MSX experiment which studies the physics of magnetized collisionless shocks through the acceleration and subsequent stagnation of FRC plasmoids against a strong magnetic mirror and flux-conserving boundary.
Melzer, Itshak; Goldring, Melissa; Melzer, Yehudit; Green, Elad; Tzedek, Irit
2010-12-01
If balance is lost, quick step execution can prevent falls. Research has shown that speed of voluntary stepping was able to predict future falls in old adults. The aim of the study was to investigate voluntary stepping behavior, as well as to compare timing and leg push-off force-time relation parameters of involved and uninvolved legs in stroke survivors during single- and dual-task conditions. We also aimed to compare timing and leg push-off force-time relation parameters between stroke survivors and healthy individuals in both task conditions. Ten stroke survivors performed a voluntary step execution test with their involved and uninvolved legs under two conditions: while focusing only on the stepping task and while a separate attention-demanding task was performed simultaneously. Temporal parameters related to the step time were measured including the duration of the step initiation phase, the preparatory phase, the swing phase, and the total step time. In addition, force-time parameters representing the push-off power during stepping were calculated from ground reaction data and compared with 10 healthy controls. The involved legs of stroke survivors had a significantly slower stepping time than uninvolved legs due to increased swing phase duration during both single- and dual-task conditions. For dual compared to single task, the stepping time increased significantly due to a significant increase in the duration of step initiation. In general, the force time parameters were significantly different in both legs of stroke survivors as compared to healthy controls, with no significant effect of dual compared with single-task conditions in both groups. The inability of stroke survivors to swing the involved leg quickly may be the most significant factor contributing to the large number of falls to the paretic side. The results suggest that stroke survivors were unable to rapidly produce muscle force in fast actions. This may be the mechanism of delayed execution of a fast step when balance is lost, thus increasing the likelihood of falls in stroke survivors. Copyright © 2010 Elsevier Ltd. All rights reserved.
Conversion of 2,3-butanediol to 2-butanol, olefins and fuels
Lilga, Michael A.; Lee, Guo-Shuh; Lee, Suh-Jane
2016-12-13
Embodiments of an integrated method for step-wise conversion of 2,3-butanediol to 2-butanol, and optionally to hydrocarbons, are disclosed. The method includes providing an acidic catalyst, exposing a composition comprising aqueous 2,3-butanediol to the acidic catalyst to produce an intermediate composition comprising methyl ethyl ketone, providing a hydrogenation catalyst that is spatially separated from the acidic catalyst, and subsequently exposing the intermediate composition to the hydrogenation catalyst to produce a composition comprising 2-butanol. The method may further include subsequently exposing the composition comprising 2-butanol to a deoxygenation catalyst, and deoxygenating the 2-butanol to form hydrocarbons. In some embodiments, the hydrocarbons comprise olefins, such as butenes, and the method may further include subsequently exposing the hydrocarbons to a hydrogenation catalyst to form saturated hydrocarbons.
NASA Astrophysics Data System (ADS)
Kawamura, M.; Umeda, K.; Ohi, T.; Ishimaru, T.; Niizato, T.; Yasue, K.; Makino, H.
2007-12-01
We have developed a formal evaluation method to assess the potential impact of natural phenomena (earthquakes and faulting; volcanism; uplift, subsidence, denudation and sedimentation; climatic and sea-level changes) on a High Level Radioactive Waste (HLW) Disposal System. In 2000, we had developed perturbation scenarios in a generic and conservative sense and illustrated the potential impact on a HLW disposal system. As results of the development of perturbation scenarios, two points were highlighted for consideration in subsequent work: improvement of the scenarios from the viewpoints of reality, transparency, traceability and consistency and avoiding extreme conservatism. Subsequently, we have thus developed a new procedure for describing such perturbation scenarios based on further studies of the characteristics of these natural perturbation phenomena in Japan. The approach to describing the perturbation scenario is effectively developed in five steps: Step 1: Description of potential process of phenomena and their impacts on the geological environment. Step 2: Characterization of potential changes of geological environment in terms of T-H-M-C (Thermal - Hydrological - Mechanical - Chemical) processes. The focus is on specific T-H-M-C parameters that influence geological barrier performance, utilizing the input from Step 1. Step 3: Classification of potential influences, based on similarity of T-H-M-C perturbations. This leads to development of perturbation scenarios to serve as a basis for consequence analysis. Step 4: Establishing models and parameters for performance assessment. Step 5: Calculation and assessment. This study focuses on identifying key T-H-M-C process associated with perturbations at Step 2. This framework has two advantages. First one is assuring maintenance of traceability during the scenario construction processes, facilitating the production and structuring of suitable records. The second is providing effective elicitation and organization of information from a wide range of investigations of earth sciences within a performance assessment context. In this framework, scenario development work proceeds in a stepwise manner, to ensure clear identification of the impact of processes associated with these phenomena on a HLW disposal system. Output is organized to create credible scenarios with required transparency, consistency, traceability and adequate conservatism. In this presentation, the potential impact of natural phenomena in the viewpoint of performance assessment for HLW disposal will be discussed and modeled using the approach.
Investigation of a novel approach to scoring Giemsa-stained malaria-infected thin blood films.
Proudfoot, Owen; Drew, Nathan; Scholzen, Anja; Xiang, Sue; Plebanski, Magdalena
2008-04-21
Daily assessment of the percentage of erythrocytes that are infected ('percent-parasitaemia') across a time-course is a necessary step in many experimental studies of malaria, but represents a time-consuming and unpopular task among researchers. The most common method is extensive microscopic examination of Giemsa-stained thin blood-films. This study explored a method for the assessment of percent-parasitaemia that does not require extended periods of microscopy and results in a descriptive and permanent record of parasitaemia data that is highly amenable to subsequent 'data-mining'. Digital photography was utilized in conjunction with a basic purpose-written computer programme to test the viability of the concept. Partial automation of the determination of percent parasitaemia was then explored, resulting in the successful customization of commercially available broad-spectrum image analysis software towards this aim. Lastly, automated discrimination between infected and uninfected RBCs based on analysis of digital parameters of individual cell images was explored in an effort to completely automate the calculation of an accurate percent-parasitaemia.
Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul
2016-01-01
The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388
Three-dimensional bioprinting of thick vascularized tissues
NASA Astrophysics Data System (ADS)
Kolesky, David B.; Homan, Kimberly A.; Skylar-Scott, Mark A.; Lewis, Jennifer A.
2016-03-01
The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.
Geng, Xiaohua; Podlaha, Elizabeth J
2016-12-14
A new methodology is reported to shape template-assisted electrodeposition of Fe-rich, Fe-Ni-Co nanowires to have a thin nanowire segment using a coupled displacement reaction with a more noble elemental ion, Cu(II), and at the same time dealloying predominantly Fe from Fe-Ni-Co by the reduction of protons (H + ), followed by a subsequent etching step. The displacement/dealloyed layer was sandwiched between two trilayers of Fe-Ni-Co to facilitate the characterization of the reaction front, or penetration length. The penetration length region was found to be a function of the ratio of proton and Cu(II) concentration, and a ratio of 0.5 was found to provide the largest penetration rate, and hence the larger thinned length of the nanowire. Altering the etching time affected the diameter of the thinned region. This methodology presents a new way to thin nanowire segments connected to larger nanowire sections and also introduces a way to study the propagation of a reaction front into a nanowire.
Opinion formation on adaptive networks with intensive average degree
NASA Astrophysics Data System (ADS)
Schmittmann, B.; Mukhopadhyay, Abhishek
2010-12-01
We study the evolution of binary opinions on a simple adaptive network of N nodes. At each time step, a randomly selected node updates its state (“opinion”) according to the majority opinion of the nodes that it is linked to; subsequently, all links are reassigned with probability p˜ (q˜) if they connect nodes with equal (opposite) opinions. In contrast to earlier work, we ensure that the average connectivity (“degree”) of each node is independent of the system size (“intensive”), by choosing p˜ and q˜ to be of O(1/N) . Using simulations and analytic arguments, we determine the final steady states and the relaxation into these states for different system sizes. We find two absorbing states, characterized by perfect consensus, and one metastable state, characterized by a population split evenly between the two opinions. The relaxation time of this state grows exponentially with the number of nodes, N . A second metastable state, found in the earlier studies, is no longer observed.
Pohlscheidt, Michael; Charaniya, Salim; Kulenovic, Fikret; Corrales, Mahalia; Shiratori, Masaru; Bourret, Justin; Meier, Steven; Fallon, Eric; Kiss, Robert
2014-04-01
The production of therapeutic proteins by mammalian cell culture is complex and sets high requirements for process, facility, and equipment design, as well as rigorous regulatory and quality standards. One particular point of concern and significant risk to supply chain is the susceptibility to contamination such as bacteria, fungi, mycoplasma, and viruses. Several technologies have been developed to create barriers for these agents to enter the process, e.g. filtration, UV inactivation, and temperature inactivation. However, if not implemented during development of the manufacturing process, these types of process changes can have significant impact on process performance if not managed appropriately. This article describes the implementation of the high-temperature short-time (HTST) treatment of cell culture media as an additional safety barrier against adventitious agents during the transfer of a large-scale commercial cell culture manufacturing process. The necessary steps and experiments, as well as subsequent results during qualification runs and routine manufacturing, are shown.
Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP).
Giakoumakis, Nickolaos Nikiforos; Rapsomaniki, Maria Anna; Lygerou, Zoi
2017-01-01
Fluorescence recovery after photobleaching (FRAP) is a cutting-edge live-cell functional imaging technique that enables the exploration of protein dynamics in individual cells and thus permits the elucidation of protein mobility, function, and interactions at a single-cell level. During a typical FRAP experiment, fluorescent molecules in a defined region of interest within the cell are bleached by a short and powerful laser pulse, while the recovery of the fluorescence in the region is monitored over time by time-lapse microscopy. FRAP experimental setup and image acquisition involve a number of steps that need to be carefully executed to avoid technical artifacts. Equally important is the subsequent computational analysis of FRAP raw data, to derive quantitative information on protein diffusion and binding parameters. Here we present an integrated in vivo and in silico protocol for the analysis of protein kinetics using FRAP. We focus on the most commonly encountered challenges and technical or computational pitfalls and their troubleshooting so that valid and robust insight into protein dynamics within living cells is gained.
GPU-Acceleration of Sequence Homology Searches with Database Subsequence Clustering
Suzuki, Shuji; Kakuta, Masanori; Ishida, Takashi; Akiyama, Yutaka
2016-01-01
Sequence homology searches are used in various fields and require large amounts of computation time, especially for metagenomic analysis, owing to the large number of queries and the database size. To accelerate computing analyses, graphics processing units (GPUs) are widely used as a low-cost, high-performance computing platform. Therefore, we mapped the time-consuming steps involved in GHOSTZ, which is a state-of-the-art homology search algorithm for protein sequences, onto a GPU and implemented it as GHOSTZ-GPU. In addition, we optimized memory access for GPU calculations and for communication between the CPU and GPU. As per results of the evaluation test involving metagenomic data, GHOSTZ-GPU with 12 CPU threads and 1 GPU was approximately 3.0- to 4.1-fold faster than GHOSTZ with 12 CPU threads. Moreover, GHOSTZ-GPU with 12 CPU threads and 3 GPUs was approximately 5.8- to 7.7-fold faster than GHOSTZ with 12 CPU threads. PMID:27482905
Ice nucleation active particles are efficiently removed by precipitating clouds.
Stopelli, Emiliano; Conen, Franz; Morris, Cindy E; Herrmann, Erik; Bukowiecki, Nicolas; Alewell, Christine
2015-11-10
Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ(18)O to derive the fraction of water vapour lost from precipitating clouds and correlated it with the abundance of INPs in freshly fallen snow. Results show that the number of INPs active at temperatures ≥ -10 °C (INPs-10) halves for every 10% of vapour lost through precipitation. Particles of similar size (>0.5 μm) halve in number for only every 20% of vapour lost, suggesting effective microphysical processing of INPs during precipitation. We show that INPs active at moderate supercooling are rapidly depleted by precipitating clouds, limiting their impact on subsequent rainfall development in time and space.
A prototype software methodology for the rapid evaluation of biomanufacturing process options.
Chhatre, Sunil; Francis, Richard; O'Donovan, Kieran; Titchener-Hooker, Nigel J; Newcombe, Anthony R; Keshavarz-Moore, Eli
2007-10-01
A three-layered simulation methodology is described that rapidly evaluates biomanufacturing process options. In each layer, inferior options are screened out, while more promising candidates are evaluated further in the subsequent, more refined layer, which uses more rigorous models that require more data from time-consuming experimentation. Screening ensures laboratory studies are focused only on options showing the greatest potential. To simplify the screening, outputs of production level, cost and time are combined into a single value using multi-attribute-decision-making techniques. The methodology was illustrated by evaluating alternatives to an FDA (U.S. Food and Drug Administration)-approved process manufacturing rattlesnake antivenom. Currently, antivenom antibodies are recovered from ovine serum by precipitation/centrifugation and proteolyzed before chromatographic purification. Alternatives included increasing the feed volume, replacing centrifugation with microfiltration and replacing precipitation/centrifugation with a Protein G column. The best alternative used a higher feed volume and a Protein G step. By rapidly evaluating the attractiveness of options, the methodology facilitates efficient and cost-effective process development.
Lai, Yungchieh; Rutigliano, Michael N; Veser, Götz
2015-09-29
We report a straightforward and transferrable synthesis strategy to encapsulate metal oxide nanoparticles (NPs) in mesoporous ZSM-5 via the encapsulation of NPs into silica followed by conversion of the NP@silica precursor to NP@ZSM-5. The systematic bottom-up approach allows for straightforward, precise control of both the metal weight loading and size of the embedded NP and yields uniform NP@ZSM-5 microspheres composed of stacked ZSM-5 nanorods with substantial mesoporosity. Key to the synthesis is the timed release of the embedded NPs during dissolution of the silica matrix in the hydrothermal conversion step, which finely balances the rate of NP release with the rate of SiO2 dissolution and the subsequent nucleation of aluminosilicate. The synthesis approach is demonstrated for Zn, Fe, and Ni oxide encapsulation in ZSM-5 but can be expected to be broadly transferrable for the encapsulation of metal and metal oxide nanoparticles into other zeolite structures.
Mohsenzadeh, Yalda; Qin, Sheng; Cichy, Radoslaw M; Pantazis, Dimitrios
2018-06-21
Human visual recognition activates a dense network of overlapping feedforward and recurrent neuronal processes, making it hard to disentangle processing in the feedforward from the feedback direction. Here, we used ultra-rapid serial visual presentation to suppress sustained activity that blurs the boundaries of processing steps, enabling us to resolve two distinct stages of processing with MEG multivariate pattern classification. The first processing stage was the rapid activation cascade of the bottom-up sweep, which terminated early as visual stimuli were presented at progressively faster rates. The second stage was the emergence of categorical information with peak latency that shifted later in time with progressively faster stimulus presentations, indexing time-consuming recurrent processing. Using MEG-fMRI fusion with representational similarity, we localized recurrent signals in early visual cortex. Together, our findings segregated an initial bottom-up sweep from subsequent feedback processing, and revealed the neural signature of increased recurrent processing demands for challenging viewing conditions. © 2018, Mohsenzadeh et al.
USDA-ARS?s Scientific Manuscript database
Eicosanoids mediate cellular immune responses in insects, including phagocytosis of invading microbes. Phagocytosis entails two major steps, the internalization of microbes and the subsequent killing of them via formation of reactive oxygen species (ROS). Here, we posed the hypothesis that eicosanoi...
Fact Sheet: FY2017 National Defense Authorization Act (NDAA) DOD Reform Proposals
2016-05-25
this critical organizational framework, while still preserving its spirit and intent. For example, we can see in some areas how the pendulum between...or where subsequent world events suggest nudging the pendulum further, as in taking more steps to strengthen the capability of the Chairman and the
Method of fabricating a monolithic solid oxide fuel cell
Minh, N.Q.; Horne, C.R.
1994-03-01
In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.
Method of fabricating a monolithic solid oxide fuel cell
Minh, Nguyen Q.; Horne, Craig R.
1994-01-01
In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.
Working with Evaluation Stakeholders: A Rationale, Step-Wise Approach and Toolkit
ERIC Educational Resources Information Center
Bryson, John M.; Patton, Michael Quinn; Bowman, Ruth A.
2011-01-01
In the broad field of evaluation, the importance of stakeholders is often acknowledged and different categories of stakeholders are identified. Far less frequent is careful attention to analysis of stakeholders' interests, needs, concerns, power, priorities, and perspectives and subsequent application of that knowledge to the design of…
USDA-ARS?s Scientific Manuscript database
Intestinal infection with Eimeria, the etiologic agent of avian coccidiosis, stimulates protective immunity to subsequent colonization by the homologous parasite, whilst cross-protection against heterologous species is poor. As a first step toward the development of a broad specificity Eimeria vacci...
Infant Attachment and Separation: The Foundations for Social/Emotional Growth.
ERIC Educational Resources Information Center
Orion, Judi
2002-01-01
Traces encounters between mother and child that occur around nursing and feeding, which result in a powerful attachment. Identifies approaching solid foods and subsequent weaning as the place where detachment begins. Discusses locomotion as another way incremental steps toward independence are reached: crawling, walking, and pulling up with hands…
Rep. McGovern, James P. [D-MA-2
2014-07-11
Senate - 07/28/2014 Received in the Senate and referred to the Committee on Foreign Relations. (All Actions) Tracker: This bill has the status Agreed to in HouseHere are the steps for Status of Legislation:
Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route
Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...
Proposed best modeling practices for assessing the effects of ecosystem restoration on fish
Rose, Kenneth A; Sable, Shaye; DeAngelis, Donald L.; Yurek, Simeon; Trexler, Joel C.; Graf, William L.; Reed, Denise J.
2015-01-01
Large-scale aquatic ecosystem restoration is increasing and is often controversial because of the economic costs involved, with the focus of the controversies gravitating to the modeling of fish responses. We present a scheme for best practices in selecting, implementing, interpreting, and reporting of fish modeling designed to assess the effects of restoration actions on fish populations and aquatic food webs. Previous best practice schemes that tended to be more general are summarized, and they form the foundation for our scheme that is specifically tailored for fish and restoration. We then present a 31-step scheme, with supporting text and narrative for each step, which goes from understanding how the results will be used through post-auditing to ensure the approach is used effectively in subsequent applications. We also describe 13 concepts that need to be considered in parallel to these best practice steps. Examples of these concepts include: life cycles and strategies; variability and uncertainty; nonequilibrium theory; biological, temporal, and spatial scaling; explicit versus implicit representation of processes; and model validation. These concepts are often not considered or not explicitly stated and casual treatment of them leads to mis-communication and mis-understandings, which in turn, often underlie the resulting controversies. We illustrate a subset of these steps, and their associated concepts, using the three case studies of Glen Canyon Dam on the Colorado River, the wetlands of coastal Louisiana, and the Everglades. Use of our proposed scheme will require investment of additional time and effort (and dollars) to be done effectively. We argue that such an investment is well worth it and will more than pay back in the long run in effective and efficient restoration actions and likely avoided controversies and legal proceedings.
Severns, Paul M.
2015-01-01
Consumer-grade GPS units are a staple of modern field ecology, but the relatively large error radii reported by manufacturers (up to 10 m) ostensibly precludes their utility in measuring fine-scale movement of small animals such as insects. Here we demonstrate that for data collected at fine spatio-temporal scales, these devices can produce exceptionally accurate data on step-length and movement patterns of small animals. With an understanding of the properties of GPS error and how it arises, it is possible, using a simple field protocol, to use consumer grade GPS units to collect step-length data for the movement of small animals that introduces a median error as small as 11 cm. These small error rates were measured in controlled observations of real butterfly movement. Similar conclusions were reached using a ground-truth test track prepared with a field tape and compass and subsequently measured 20 times using the same methodology as the butterfly tracking. Median error in the ground-truth track was slightly higher than the field data, mostly between 20 and 30 cm, but even for the smallest ground-truth step (70 cm), this is still a signal-to-noise ratio of 3:1, and for steps of 3 m or more, the ratio is greater than 10:1. Such small errors relative to the movements being measured make these inexpensive units useful for measuring insect and other small animal movements on small to intermediate scales with budgets orders of magnitude lower than survey-grade units used in past studies. As an additional advantage, these units are simpler to operate, and insect or other small animal trackways can be collected more quickly than either survey-grade units or more traditional ruler/gird approaches. PMID:26312190
Dynamic Circuitry for Updating Spatial Representations: III. From Neurons to Behavior
Berman, Rebecca A.; Heiser, Laura M.; Dunn, Catherine A.; Saunders, Richard C.; Colby, Carol L.
2008-01-01
Each time the eyes move, the visual system must adjust internal representations to account for the accompanying shift in the retinal image. In the lateral intraparietal cortex (LIP), neurons update the spatial representations of salient stimuli when the eyes move. In previous experiments, we found that split-brain monkeys were impaired on double-step saccade sequences that required updating across visual hemifields, as compared to within hemifield (Berman et al. 2005; Heiser et al. 2005). Here we describe a subsequent experiment to characterize the relationship between behavioral performance and neural activity in LIP in the split-brain monkey. We recorded from single LIP neurons while split-brain and intact monkeys performed two conditions of the double-step saccade task: one required across-hemifield updating and the other within-hemifield updating. We found that, despite extensive experience with the task, the split-brain monkeys were significantly more accurate for within-hemifield as compared to across-hemifield sequences. In parallel, we found that population activity in LIP of the split-brain monkeys was significantly stronger for within-hemifield as compared to across-hemifield conditions of the double-step task. In contrast, in the normal monkey, both the average behavioral performance and population activity showed no bias toward the within-hemifield condition. Finally, we found that the difference between within-hemifield and across-hemifield performance in the split-brain monkeys was reflected at the level of single neuron activity in LIP. These findings indicate that remapping activity in area LIP is present in the split-brain monkey for the double-step task and co-varies with spatial behavior on within-hemifield compared to across-hemifield sequences. PMID:17493922
Breed, Greg A; Severns, Paul M
2015-01-01
Consumer-grade GPS units are a staple of modern field ecology, but the relatively large error radii reported by manufacturers (up to 10 m) ostensibly precludes their utility in measuring fine-scale movement of small animals such as insects. Here we demonstrate that for data collected at fine spatio-temporal scales, these devices can produce exceptionally accurate data on step-length and movement patterns of small animals. With an understanding of the properties of GPS error and how it arises, it is possible, using a simple field protocol, to use consumer grade GPS units to collect step-length data for the movement of small animals that introduces a median error as small as 11 cm. These small error rates were measured in controlled observations of real butterfly movement. Similar conclusions were reached using a ground-truth test track prepared with a field tape and compass and subsequently measured 20 times using the same methodology as the butterfly tracking. Median error in the ground-truth track was slightly higher than the field data, mostly between 20 and 30 cm, but even for the smallest ground-truth step (70 cm), this is still a signal-to-noise ratio of 3:1, and for steps of 3 m or more, the ratio is greater than 10:1. Such small errors relative to the movements being measured make these inexpensive units useful for measuring insect and other small animal movements on small to intermediate scales with budgets orders of magnitude lower than survey-grade units used in past studies. As an additional advantage, these units are simpler to operate, and insect or other small animal trackways can be collected more quickly than either survey-grade units or more traditional ruler/gird approaches.
Smink, Agnes J; van den Ende, Cornelia H M; Vliet Vlieland, Thea P M; Bijlsma, Johannes W J; Swierstra, Bart A; Kortland, Joke H; Voorn, Theo B; Teerenstra, Steven; Schers, Henk J; Dekker, Joost; Bierma-Zeinstra, Sita M A
2014-09-01
A stepped care strategy (SCS) to improve adequate healthcare use in patients with osteoarthritis was developed and implemented in a primary care region in the Netherlands. To assess the association between care that is in line with the SCS recommendations and health outcomes. Data were used from a 2-year observational study of 313 patients who had consulted their GP because of osteoarthritis. Care was considered 'SCS-consistent' if all advised modalities of the previous steps of the SCS were offered before more advanced modalities of subsequent steps. Pain and physical function were measured with the Western Ontario and McMaster Universities Osteoarthritis Index (range 0-100); active pain coping with the Pain Coping Inventory (range 10-40); and self-efficacy with the Dutch General Self-Efficacy Scale (range 12-48). Crude and adjusted associations between SCS-consistent care and outcomes were estimated with generalised estimating equations. No statistically significant differences were found in changes over a 2-year period in pain and physical function between patients who received SCS-inconsistent care (n = 163) and patients who received SCS-consistent care (n = 117). This was also the case after adjusting for possible confounders, that is, -4.3 (95% confidence interval [CI] = -10.3 to 1.7) and -1.9 (95% CI = -7.0 to 3.1), respectively. Furthermore, no differences were found in changes over time between groups in self-efficacy and pain coping. The results raised several important issues that need to be considered regarding the value of the SCS, such as the reasons that GPs provide SCS-inconsistent care, the long-term effects of the SCS, and the effects on costs and side effects. © British Journal of General Practice 2014.
Romana, C; Ciais, G; Fitoussi, F
2015-06-01
Treatment of severe radial club hand is difficult. Several authors have emphasized the importance of preliminary soft-tissue distraction before centralization. Treatment of severe radial club hand by articulated mini-rail allowing prior soft-tissue distraction improves results. Thirteen patients were treated sequentially, with an initial step of distraction and a second step of centralization. The first step consisted in fitting 2 mini-fixators, one in the concavity and the other in the convexity of the deformity. Four transfixing wires through the ulna and metacarpal bone connected the 2 fixators. After this preliminary distraction, the fixator was removed and a centralization wire was introduced percutaneously, with ulnar osteotomy if necessary. Sagittal and coronal correction was measured on the angle between forearm and hand. Mean age at treatment was 37.5 months (range, 9-120 months). Mean distraction time was 53.2 days (26-90 days). Ulnar osteotomy was required in 8 cases (61%). There were no major complications requiring interruption of distraction. Sagittal and coronal correction after centralization reduced mean residual forearm/hand angulation to<12°. Soft-tissue distraction in the concavity ahead of centralization is essential to good correction, avoiding extensive soft-tissue release and hyperpressure on the distal ulnar growth plate. There have been several studies of distraction; the present technique, associating 2 mini-fixators connected by threaded K-wires, provided sufficient distraction in the concavity of the deformity to allow satisfactory correction in all cases. Subsequent complications (breakage or displacement of the centralization wires) testify to the complexity of long-term management. The present study confirms the interest of a preliminary soft-tissue distraction step in treating severe radial club hand. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik
Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based onmore » the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided.« less
Tsuo, Y.S.; Deb, S.K.
1990-10-02
Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.
A comparison of meal replacements and medication in weight maintenance after weight loss.
LeCheminant, James D; Jacobsen, Dennis J; Hall, Matthew A; Donnelly, Joseph E
2005-10-01
To compare the use of meal replacements or medication during weight maintenance subsequent to weight loss using a very low-energy diet (VLED) in overweight or obese adults. Participants followed a liquid VLED of 2177 kJ for 12 weeks followed by 4 weeks of re-orientation to solid foods. Participants were randomized at week 16 to receive either meal replacements or Orlistat both combined with a structured meal plan containing an energy value calculated to maintain weight loss. Sixty-four women (age = 49.9 +/- 10 y, weight = 101.6 +/- 17.1 kg, height = 164.9 +/- 6.0 cm, BMI = 36.7 +/- 5.4 kg/m(2)) and 28 men (age = 53.7 +/- 9.6 y, weight = 121.8 +/- 16.0 kg, height = 178.7 +/- 5.6 cm, BMI = 37.8 +/- 4.9 kg/m(2)) completed a 1 year weight management program. Behavioral weight management clinics included topics on lifestyle, physical activity (PA), and nutrition. Participants met for 90 min weekly for 26 weeks, and then biweekly for the remaining 26 weeks. Minutes of PA, fruits and vegetables (FV), and pedometer steps were recorded on a daily basis and reported at each group meeting. Body weight was obtained at each group meeting. During VLED, the MR group decreased body weight by 22.8 +/- 6.1 kg and the Orlistat group decreased body weight by 22.3 +/- 6.1 kg. During weight maintenance, there was no significant group by time interaction for body weight, PA, FV consumption, or pedometer steps. At week 16, the meal replacement group had a body weight of 85.4 +/- 14.3 kg that increased to 88.1 +/- 16.5 kg at 52 weeks (p < 0.05). At week 16, the Orlistat group had a body weight of 85.7 +/- 17.9 kg that increased to 88.5 +/- 20.3 kg at 52 weeks (p < 0.05). Subsequent to weight loss from a VLED, meal replacements and Orlistat treatments were both effective in maintaining weight significantly below baseline levels over a 52 week period of time. Meal replacements may be a viable alternative strategy to medications for weight maintenance.
NASA Astrophysics Data System (ADS)
Khuong, Anne Chudolij
This work demonstrates the viability of the whispering gallery mode (WGM) photonic sensing method for use as a biosensor by demonstrating a surface immobilization strategy for histidine tagged biomolecules to the WGM sensor surface. The WGM resonator is a dielectric spherical microstructure that can sustain high-Q electromagnetic waves confined to the sphere by total internal reflection. Light circumnavigates the periphery of the WGM resonator and when the trapped light constructively superimposes onto itself on the round trip, a resonance condition is achieved. Because of minimal loss due to reflection, these modes can reach unusually high quality factors. When a change occurs in the evanescent field at the boundary of the resonator and surrounding environment, such as when a molecule binds to the resonator surface, a shift results in the resonance wavelength; this enables the WGM resonator to be used as a sensor. WGM optical biosensors offer a powerful alternative to conventional analytical techniques due to their high sensitivity, specificity and their ability to directly detect label-free events in real time. There has been considerable growth in this field over the last decade and potential applications to medical and biotechnological research are numerous; however, there are still obstacles limiting the widespread commercial use of these devices. The obstacle we address in this work relates to a general fundamental difficulty incorporating biomaterial into biosensors. We demonstrate a specific and controlled functionalization strategy intended for subsequent assimilation of biomolecules onto the WGM resonator surface. We have developed a general method which can be used to controllably immobilize recombinant proteins to WGM silica surfaces via their histidine tags. In the work presented herein we monitor by WGM, in real time, a two step functionalization strategy to incorporate an NTA-Ni2+ motif onto the surface of a WGM resonator. We estimated the equilibrium constant and surface the density for each of the two reaction steps. Our NTA-Ni2+ functionalized resonator can be used to immobilize histidine tagged biomolecules for subsequent interrogation of protein-protein or protein-ligand binding events and provides a general platform to immobilize biomolecules to WGM biosensors.
Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering.
O'Brien, Paul J; Elahipanah, Sina; Rogozhnikov, Dmitry; Yousaf, Muhammad N
2017-05-24
The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types. Moreover the transfection is efficient with high cell viability and does not require a postsorting step to separate transfected from nontransfected cells in the cell population. We also show for the first time a precision transfection strategy where a single cell type in a coculture is target transfected via bio-orthogonal click chemistry.
The general alcoholics anonymous tools of recovery: the adoption of 12-step practices and beliefs.
Greenfield, Brenna L; Tonigan, J Scott
2013-09-01
Working the 12 steps is widely prescribed for Alcoholics Anonymous (AA) members although the relative merits of different methods for measuring step work have received minimal attention and even less is known about how step work predicts later substance use. The current study (1) compared endorsements of step work on an face-valid or direct measure, the Alcoholics Anonymous Inventory (AAI), with an indirect measure of step work, the General Alcoholics Anonymous Tools of Recovery (GAATOR); (2) evaluated the underlying factor structure of the GAATOR and changes in step work over time; (3) examined changes in the endorsement of step work over time; and (4) investigated how, if at all, 12-step work predicted later substance use. New AA affiliates (N = 130) completed assessments at intake, 3, 6, and 9 months. Significantly more participants endorsed step work on the GAATOR than on the AAI for nine of the 12 steps. An exploratory factor analysis revealed a two-factor structure for the GAATOR comprising behavioral step work and spiritual step work. Behavioral step work did not change over time, but was predicted by having a sponsor, while Spiritual step work decreased over time and increases were predicted by attending 12-step meetings or treatment. Behavioral step work did not prospectively predict substance use. In contrast, spiritual step work predicted percent days abstinent. Behavioral step work and spiritual step work appear to be conceptually distinct components of step work that have distinct predictors and unique impacts on outcomes. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Bohre, Ashish; Saha, Basudeb; Abu-Omar, Mahdi M
2015-12-07
Design and synthesis of effective heterogeneous catalysts for the conversion of biomass intermediates into long chain hydrocarbon precursors and their subsequent deoxygenation to hydrocarbons is a viable strategy for upgrading lignocellulose into distillate range drop-in biofuels. Herein, we report a two-step process for upgrading 5-hydroxymethylfurfural (HMF) to C9 and C11 fuels with high yield and selectivity. The first step involves aldol condensation of HMF and acetone with a water tolerant solid base catalyst, zirconium carbonate (Zr(CO3 )x ), which gave 92 % C9 -aldol product with high selectivity at nearly 100 % HMF conversion. The as-synthesised Zr(CO3 )x was analysed by several analytical methods for elucidating its structural properties. Recyclability studies of Zr(CO3 )x revealed a negligible loss of its activity after five consecutive cycles over 120 h of operation. Isolated aldol product from the first step was hydrodeoxygenated with a bifunctional Pd/Zeolite-β catalyst in ethanol, which showed quantitative conversion of the aldol product to n-nonane and 1-ethoxynonane with 40 and 56 % selectivity, respectively. 1-Ethoxynonane, a low oxygenate diesel range fuel, which we report for the first time in this paper, is believed to form through etherification of the hydroxymethyl group of the aldol product with ethanol followed by opening of the furan ring and hydrodeoxygenation of the ether intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-step chlorination: A new approach to disinfection of a primary sewage effluent.
Li, Yu; Yang, Mengting; Zhang, Xiangru; Jiang, Jingyi; Liu, Jiaqi; Yau, Cie Fu; Graham, Nigel J D; Li, Xiaoyan
2017-01-01
Sewage disinfection aims at inactivating pathogenic microorganisms and preventing the transmission of waterborne diseases. Chlorination is extensively applied for disinfecting sewage effluents. The objective of achieving a disinfection goal and reducing disinfectant consumption and operational costs remains a challenge in sewage treatment. In this study, we have demonstrated that, for the same chlorine dosage, a two-step addition of chlorine (two-step chlorination) was significantly more efficient in disinfecting a primary sewage effluent than a one-step addition of chlorine (one-step chlorination), and shown how the two-step chlorination was optimized with respect to time interval and dosage ratio. Two-step chlorination of the sewage effluent attained its highest disinfection efficiency at a time interval of 19 s and a dosage ratio of 5:1. Compared to one-step chlorination, two-step chlorination enhanced the disinfection efficiency by up to 0.81- or even 1.02-log for two different chlorine doses and contact times. An empirical relationship involving disinfection efficiency, time interval and dosage ratio was obtained by best fitting. Mechanisms (including a higher overall Ct value, an intensive synergistic effect, and a shorter recovery time) were proposed for the higher disinfection efficiency of two-step chlorination in the sewage effluent disinfection. Annual chlorine consumption costs in one-step and two-step chlorination of the primary sewage effluent were estimated. Compared to one-step chlorination, two-step chlorination reduced the cost by up to 16.7%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sleep, John; Irving, Malcolm; Burton, Kevin
2005-03-15
The time course of isometric force development following photolytic release of ATP in the presence of Ca(2+) was characterized in single skinned fibres from rabbit psoas muscle. Pre-photolysis force was minimized using apyrase to remove contaminating ATP and ADP. After the initial force rise induced by ATP release, a rapid shortening ramp terminated by a step stretch to the original length was imposed, and the time course of the subsequent force redevelopment was again characterized. Force development after ATP release was accurately described by a lag phase followed by one or two exponential components. At 20 degrees C, the lag was 5.6 +/- 0.4 ms (s.e.m., n = 11), and the force rise was well fitted by a single exponential with rate constant 71 +/- 4 s(-1). Force redevelopment after shortening-restretch began from about half the plateau force level, and its single-exponential rate constant was 68 +/- 3 s(-1), very similar to that following ATP release. When fibres were activated by the addition of Ca(2+) in ATP-containing solution, force developed more slowly, and the rate constant for force redevelopment following shortening-restretch reached a maximum value of 38 +/- 4 s(-1) (n = 6) after about 6 s of activation. This lower value may be associated with progressive sarcomere disorder at elevated temperature. Force development following ATP release was much slower at 5 degrees C than at 20 degrees C. The rate constant of a single-exponential fit to the force rise was 4.3 +/- 0.4 s(-1) (n = 22), and this was again similar to that after shortening-restretch in the same activation at this temperature, 3.8 +/- 0.2 s(-1). We conclude that force development after ATP release and shortening-restretch are controlled by the same steps in the actin-myosin ATPase cycle. The present results and much previous work on mechanical-chemical coupling in muscle can be explained by a kinetic scheme in which force is generated by a rapid conformational change bracketed by two biochemical steps with similar rate constants -- ATP hydrolysis and the release of inorganic phosphate -- both of which combine to control the rate of force development.
Liu, Jinsong; Viverette, Todd; Virgin, Marlin; Anderson, Mitch; Paresh, Dalal
2005-01-01
The objective of this study was to evaluate the impact of freezing on the lyophilization of a concentrated formulation with a high fill depth. A model system consisting of a 15-mL fill of 15% (w/w) sulfobutylether 7-beta-cyclodextrin (SBECD) solution in a 30-mL vial was selected for this study. Various freezing methods including single-step freezing, two-step freezing with a super-cooling holding, annealing, vacuum-induced freezing, changing ice habit using tert-butyl-alcohol (TBA), ice nucleation with silver iodide (AgI), as well as combinations of some of the methods, were used in the lyophilization of this model system. This work demonstrated that the freezing process had a significant impact on primary drying rate and product quality of a concentrated formulation with a high fill depth. Annealing, vacuum-induced freezing, and addition of either TBA or an ice nucleating agent (AgI) to the formulation accelerated the subsequent ice sublimation process. Two-step freezing or addition of TBA improved the product quality by eliminating vertical heterogeneity within the cake. The combination of two-step freezing in conjunction with an annealing step was shown to be a method of choice for freezing in the lyophilization of a product with a high fill depth. In addition to being an effective method of freezing, it is most applicable for scaling up. An alternative approach is to add a certain amount of TBA to the formulation, if the TBA-formulation interaction or regulatory concerns can be demonstrated as not being an issue. An evaluation of vial size performed in this study showed that although utilizing large-diameter vials to reduce the fill depth can greatly shorten the cycle time of a single batch, it will substantially decrease the product throughput in a large-scale freeze-dryer.
Memory Effect Manifested by a Boson Peak in Metallic Glass.
Luo, P; Li, Y Z; Bai, H Y; Wen, P; Wang, W H
2016-04-29
We explore the correlation between a boson peak and structural relaxation in a typical metallic glass. Consistent with enthalpy recovery, a boson peak shows a memory effect in an aging-and-scan procedure. Single-step isothermal aging produces a monotonic decrease of enthalpy and boson peak intensity; for double-step isothermal aging, both enthalpy and boson peak intensity experience, coincidently, an incipient increase to a maximum and a subsequent decrease toward the equilibrium state. Our results indicate a direct link between slow structural relaxation and fast boson peak dynamics, which presents a profound understanding of the two dynamic behaviors in glass.
Methods and apparatus for managing corrosion in buildings
Chey, S Jay; Hamann, Hendrik F; Klein, Levente Ioan; Schappert, Michael Alan; Stepanchuk, Andriy
2015-02-03
Principles of the invention provide methods and apparatus for providing corrosion management in buildings. In one aspect, an exemplary method includes the step of receiving first data relating corrosion rate to a plurality of environmental conditions. This first data is subsequently utilized to determine a quantitative relationship between corrosion rate and the plurality of environmental conditions. In another step, second data indicative of one or more environmental conditions within a building is received. A corrosion rate in the building is then determined at least in part by applying the determined quantitative relationship to this second data.
XpressWare Installation User guide
NASA Astrophysics Data System (ADS)
Duffey, K. P.
XpressWare is a set of X terminal software, released by Tektronix Inc, that accommodates the X Window system on a range of host computers. The software comprises boot files (the X server image), configuration files, fonts, and font tools to support the X terminal. The files can be installed on one host or distributed across multiple hosts The purpose of this guide is to present the system or network administrator with a step-by-step account of how to install XpressWare, and how subsequently to configure the X terminals appropriately for the environment in which they operate.
Linear stability analysis of detonations via numerical computation and dynamic mode decomposition
NASA Astrophysics Data System (ADS)
Kabanov, Dmitry I.; Kasimov, Aslan R.
2018-03-01
We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.
NASA Technical Reports Server (NTRS)
Chao, W. C.
1982-01-01
With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.
A simplified focusing and astigmatism correction method for a scanning electron microscope
NASA Astrophysics Data System (ADS)
Lu, Yihua; Zhang, Xianmin; Li, Hai
2018-01-01
Defocus and astigmatism can lead to blurred images and poor resolution. This paper presents a simplified method for focusing and astigmatism correction of a scanning electron microscope (SEM). The method consists of two steps. In the first step, the fast Fourier transform (FFT) of the SEM image is performed and the FFT is subsequently processed with a threshold to achieve a suitable result. In the second step, the threshold FFT is used for ellipse fitting to determine the presence of defocus and astigmatism. The proposed method clearly provides the relationships between the defocus, the astigmatism and the direction of stretching of the FFT, and it can determine the astigmatism in a single image. Experimental studies are conducted to demonstrate the validity of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Byung-Jae; Hwang, Ya-Hsi; Ahn, Shihyun
The recovery effects of thermal annealing on dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors were investigated. After stress, reverse gate leakage current and sub-threshold swing increased and drain current on-off ratio decreased. However, these degradations were completely recovered after thermal annealing at 450 °C for 10 mins for devices stressed either once or twice. The trap densities, which were estimated by temperature-dependent drain-current sub-threshold swing measurements, increased after off-state step-stress and were reduced after subsequent thermal annealing. In addition, the small signal rf characteristics of stressed devices were completely recovered after thermal annealing.
Hybrid least squares multivariate spectral analysis methods
Haaland, David M.
2004-03-23
A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.
Hybrid least squares multivariate spectral analysis methods
Haaland, David M.
2002-01-01
A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.
NASA Astrophysics Data System (ADS)
Jia, Fujin; Guo, Yanqun; Che, Lijia; Liu, Zhiyong; Zeng, Zhigang; Cai, Chuanbing
2018-06-01
Although the two-step sequential deposition method provides an efficient route to fabricate high performance perovskite solar cells (PSSCs) with increasing reproducibility, the inefficient and incomplete conversion of PbI2 to perovskite is still quite a challenge. Following pioneering works, we found that the conversion process from PbI2 to perovskite mainly involves diffusion, infiltration, contact and reaction. In order to facilitate the conversion from PbI2 to perovskite, we demonstrate an effective method to regulate supersaturation level (the driving force to crystallization) of PbI2 by solventing-out crystallization combining with subsequent time-delay thermal annealing of PbI2 wet film. Enough voids and spaces in resulting porous PbI2 layer will be in favor of efficient diffusion, infiltration of CH3NH3I solution, and further enhance the contact and reaction between PbI2 and CH3NH3I in the whole film, leading to rapid, efficient and complete perovskite conversion with a conversion level of about 99.9%. Enhancement of light harvesting ranging from visible to near-IR region was achieved for the resultant high-quality perovskite. Upon this combined method, the fabricated mesostructured solar cells show tremendous power conversion efficiency (PCE) improvement from 3.2% to about 12.3% with less hysteresis owing to the simultaneous enhancement of short-circuit photocurrent density (J sc), open-circuit voltage (V oc) and fill factor (FF).
Liu, An-An; Li, Kang; Kanade, Takeo
2012-02-01
We propose a semi-Markov model trained in a max-margin learning framework for mitosis event segmentation in large-scale time-lapse phase contrast microscopy image sequences of stem cell populations. Our method consists of three steps. First, we apply a constrained optimization based microscopy image segmentation method that exploits phase contrast optics to extract candidate subsequences in the input image sequence that contains mitosis events. Then, we apply a max-margin hidden conditional random field (MM-HCRF) classifier learned from human-annotated mitotic and nonmitotic sequences to classify each candidate subsequence as a mitosis or not. Finally, a max-margin semi-Markov model (MM-SMM) trained on manually-segmented mitotic sequences is utilized to reinforce the mitosis classification results, and to further segment each mitosis into four predefined temporal stages. The proposed method outperforms the event-detection CRF model recently reported by Huh as well as several other competing methods in very challenging image sequences of multipolar-shaped C3H10T1/2 mesenchymal stem cells. For mitosis detection, an overall precision of 95.8% and a recall of 88.1% were achieved. For mitosis segmentation, the mean and standard deviation for the localization errors of the start and end points of all mitosis stages were well below 1 and 2 frames, respectively. In particular, an overall temporal location error of 0.73 ± 1.29 frames was achieved for locating daughter cell birth events.
A Two Time-scale response of the Southern Ocean to the Ozone Hole: Regional Responses and Mechanisms
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Seviour, W.; Waugh, D.; Pradal, M. A. S.
2016-12-01
The impact of changing ozone on the climate of the Southern Ocean is evaluated using an ensemble of coupled climate models. By imposing a step change from 1860 to 2000 conditions we are able to estimate response functions associated with this change. Two time scales are found, an initial cooling centered in the Southwest Pacific followed by cooling in the Pacific sector and then warming in both sectors. The physical processes that drive this response are different across time periods and locations, as is the sign of the response itself. Initial cooling in the Pacific sector is not just driven by the increased winds pushing cold water northward, but also by a decrease in surface salinity reducing wintertime mixing and increased ice and clouds reflecting more shortwave radiation back to space. The decrease in salinity is primarily driven by a southward shift of precipitation associated with a shifting storm track, coupled with decreased evaporation associated with colder surface temperatures. A subsurface increase in heat associated with this reduction in mixing then upwells along the Antarctic coast, producing a subsequent warming. Similar changes in convective activity occur in the Weddell Sea but are offset in time.
Fathers’ Leave and Fathers’ Involvement: Evidence from Four OECD Countries
Huerta, Maria C.; Adema, Willem; Baxter, Jennifer; Han, Wen-Jui; Lausten, Mette; Lee, RaeHyuck; Waldfogel, Jane
2016-01-01
In recent years, several OECD countries have taken steps to promote policies encouraging fathers to spend more time caring for young children, thereby promoting a more gender equal division of care work. Evidence, mainly for the United States and United Kingdom, has shown fathers taking some time off work around childbirth are more likely to be involved in childcare related activities than fathers who do not take time off. This paper conducts a first cross-national analysis on the association between fathers’ leave taking and fathers’ involvement when children are young. It uses birth cohort data of children born around 2000 from four OECD countries: Australia, Denmark, the United Kingdom and the United States. Results show that the majority of fathers take time off around childbirth independent of the leave policies in place. In all countries, except Denmark, important socio-economic differences between fathers who take leave and those who do not are observed. In addition, fathers who take leave, especially those taking two weeks or more, are more likely to carry out childcare related activities when children are young. This study adds to the evidence that suggests that parental leave for fathers is positively associated with subsequent paternal involvement. PMID:28479865
GOTHIC: Gravitational oct-tree code accelerated by hierarchical time step controlling
NASA Astrophysics Data System (ADS)
Miki, Yohei; Umemura, Masayuki
2017-04-01
The tree method is a widely implemented algorithm for collisionless N-body simulations in astrophysics well suited for GPU(s). Adopting hierarchical time stepping can accelerate N-body simulations; however, it is infrequently implemented and its potential remains untested in GPU implementations. We have developed a Gravitational Oct-Tree code accelerated by HIerarchical time step Controlling named GOTHIC, which adopts both the tree method and the hierarchical time step. The code adopts some adaptive optimizations by monitoring the execution time of each function on-the-fly and minimizes the time-to-solution by balancing the measured time of multiple functions. Results of performance measurements with realistic particle distribution performed on NVIDIA Tesla M2090, K20X, and GeForce GTX TITAN X, which are representative GPUs of the Fermi, Kepler, and Maxwell generation of GPUs, show that the hierarchical time step achieves a speedup by a factor of around 3-5 times compared to the shared time step. The measured elapsed time per step of GOTHIC is 0.30 s or 0.44 s on GTX TITAN X when the particle distribution represents the Andromeda galaxy or the NFW sphere, respectively, with 224 = 16,777,216 particles. The averaged performance of the code corresponds to 10-30% of the theoretical single precision peak performance of the GPU.
Wu, Shiaw-Lin; Hühmer, Andreas F R; Hao, Zhiqi; Karger, Barry L
2007-11-01
We have expanded our recent on-line LC-MS platform for large peptide analysis to combine collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced (CRCID) species derived from ETD to determine sites of phosphorylation and glycosylation modifications, as well as the sequence of large peptide fragments (i.e., 2000-10,000 Da) from complex proteins, such as beta-casein, epidermal growth factor receptor (EGFR), and tissue plasminogen activator (t-PA) at the low femtomol level. The incorporation of an additional CID activation step for a charge-reduced species, isolated from ETD fragment ions, improved ETD fragmentation when precursor ions with high m/z (approximately >1000) were automatically selected for fragmentation. Specifically, the identification of the exact phosphorylation sites was strengthened by the extensive coverage of the peptide sequence with a near-continuous product ion series. The identification of N-linked glycosylation sites in EGFR and an O-linked glycosylation site in t-PA were also improved through the enhanced identification of the peptide backbone sequence of the glycosylated precursors. The new strategy is a good starting survey scan to characterize enzymatic peptide mixtures over a broad range of masses using LC-MS with data-dependent acquisition, as the three activation steps can provide complementary information to each other. In general, large peptides can be extensively characterized by the ETD and CRCID steps, including sites of modification from the generated, near-continuous product ion series, supplemented by the CID-MS2 step. At the same time, small peptides (e.g.,
McCrorie, P Rw; Duncan, E; Granat, M H; Stansfield, B W
2012-11-01
Evidence suggests that behaviours such as standing are beneficial for our health. Unfortunately, little is known of the prevalence of this state, its importance in relation to time spent stepping or variation across seasons. The aim of this study was to quantify, in young adolescents, the prevalence and seasonal changes in time spent upright and not stepping (UNSt(time)) as well as time spent upright and stepping (USt(time)), and their contribution to overall upright time (U(time)). Thirty-three adolescents (12.2 ± 0.3 y) wore the activPAL activity monitor during four school days on two occasions: November/December (winter) and May/June (summer). UNSt(time) contributed 60% of daily U(time) at winter (Mean = 196 min) and 53% at summer (Mean = 171 min); a significant seasonal effect, p < 0.001. USt(time) was significantly greater in summer compared to winter (153 min versus 131 min, p < 0.001). The effects in UNSt(time) could be explained through significant seasonal differences during the school hours (09:00-16:00), whereas the effects in USt(time) could be explained through significant seasonal differences in the evening period (16:00-22:00). Adolescents spent a greater amount of time upright and not stepping than they did stepping, in both winter and summer. The observed seasonal effects for both UNSt(time) and USt(time) provide important information for behaviour change intervention programs.
Gupta, Nimisha; Tripathi, Abhay Mani; Saha, Sonali; Dhinsa, Kavita; Garg, Aarti
2015-07-01
Newer development of bonding agents have gained a better understanding of factors affecting adhesion of interface between composite and dentin surface to improve longevity of restorations. The present study evaluated the influence of salivary contamination on the tensile bond strength of different generation adhesive systems (two-step etch-and-rinse, two-step self-etch and one-step self-etch) during different bonding stages to dentin where isolation is not maintained. Superficial dentin surfaces of 90 extracted human molars were randomly divided into three study Groups (Group A: Two-step etch-and-rinse adhesive system; Group B: Two-step self-etch adhesive system and Group C: One-step self-etch adhesive system) according to the different generation of adhesives used. According to treatment conditions in different bonding steps, each Group was further divided into three Subgroups containing ten teeth in each. After adhesive application, resin composite blocks were built on dentin and light cured subsequently. The teeth were then stored in water for 24 hours before sending for testing of tensile bond strength by Universal Testing Machine. The collected data were then statistically analysed using one-way ANOVA and Tukey HSD test. One-step self-etch adhesive system revealed maximum mean tensile bond strength followed in descending order by Two-step self-etch adhesive system and Two-step etch-and-rinse adhesive system both in uncontaminated and saliva contaminated conditions respectively. Unlike One-step self-etch adhesive system, saliva contamination could reduce tensile bond strength of the two-step self-etch and two-step etch-and-rinse adhesive system. Furthermore, the step of bonding procedures and the type of adhesive seems to be effective on the bond strength of adhesives contaminated with saliva.
Influence of gait speed on stability: recovery from anterior slips and compensatory stepping.
Bhatt, T; Wening, J D; Pai, Y-C
2005-02-01
Falls precipitated by slipping are a major health concern, with the majority of all slip-related falls occurring during gait. Recent evidence shows that a faster and/or more anteriorly positioned center of mass (COM) is more stable against backward balance loss, and that compensatory stepping is the key to recovering stability upon balance loss. The purposes of this paper were to determine whether walking speed affected gait stability for backward balance loss at slip onset and touchdown of compensatory stepping, and whether compensatory stepping response resembled the regular gait pattern. Forty-seven young subjects were slipped unexpectedly either at a self-selected fast, natural or slow speed. Speed-related differences in stability at slip onset and touchdown of the subsequent compensatory step were analyzed using the COM position-velocity state. The results indicate that gait speed highly correlated with stability against backward balance loss at slip onset. The low COM velocity of the slow group was not sufficiently compensated for by a more anteriorly positioned COM associated with a shorter step length at slip onset. At touchdown of the compensatory step, the speed-related differences in stability diminished, due to the continued advantage of anterior COM positioning from a short compensatory step retained by the slow group, coupled with an increase in COM velocity. Compensatory step length and relative COM position altered as a function of gait speed, indicating the motor program for gait regulation may play a role in modulating the compensatory step.
Yang, Wen-Chieh; Hsu, Wei-Li; Wu, Ruey-Meei; Lin, Kwan-Hwa
2016-10-01
Turning difficulty is common in people with Parkinson disease (PD). The clock-turn strategy is a cognitive movement strategy to improve turning performance in people with PD despite its effects are unverified. Therefore, this study aimed to investigate the effects of the clock-turn strategy on the pattern of turning steps, turning performance, and freezing of gait during a narrow turning, and how these effects were influenced by concurrent performance of a cognitive task (dual task). Twenty-five people with PD were randomly assigned to the clock-turn or usual-turn group. Participants performed the Timed Up and Go test with and without concurrent cognitive task during the medication OFF period. The clock-turn group performed the Timed Up and Go test using the clock-turn strategy, whereas participants in the usual-turn group performed in their usual manner. Measurements were taken during the 180° turn of the Timed Up and Go test. The pattern of turning steps was evaluated by step time variability and step time asymmetry. Turning performance was evaluated by turning time and number of turning steps. The number and duration of freezing of gait were calculated by video review. The clock-turn group had lower step time variability and step time asymmetry than the usual-turn group. Furthermore, the clock-turn group turned faster with fewer freezing of gait episodes than the usual-turn group. Dual task increased the step time variability and step time asymmetry in both groups but did not affect turning performance and freezing severity. The clock-turn strategy reduces turning time and freezing of gait during turning, probably by lowering step time variability and asymmetry. Dual task compromises the effects of the clock-turn strategy, suggesting a competition for attentional resources.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A141).
Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB).
Işıldar, Arda; van de Vossenberg, Jack; Rene, Eldon R; van Hullebusch, Eric D; Lens, Piet N L
2016-11-01
An effective strategy for environmentally sound biological recovery of copper and gold from discarded printed circuit boards (PCB) in a two-step bioleaching process was experimented. In the first step, chemolithotrophic acidophilic Acidithiobacillus ferrivorans and Acidithiobacillus thiooxidans were used. In the second step, cyanide-producing heterotrophic Pseudomonas fluorescens and Pseudomonas putida were used. Results showed that at a 1% pulp density (10g/L PCB concentration), 98.4% of the copper was bioleached by a mixture of A. ferrivorans and A. thiooxidans at pH 1.0-1.6 and ambient temperature (23±2°C) in 7days. A pure culture of P. putida (strain WCS361) produced 21.5 (±1.5)mg/L cyanide with 10g/L glycine as the substrate. This gold complexing agent was used in the subsequent bioleaching step using the Cu-leached (by A. ferrivorans and A. thiooxidans) PCB material, 44.0% of the gold was mobilized in alkaline conditions at pH 7.3-8.6, and 30°C in 2days. This study provided a proof-of-concept of a two-step approach in metal bioleaching from PCB, by bacterially produced lixiviants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stange, Jonathan P; Kleiman, Evan M; Sylvia, Louisa G; Magalhães, Pedro Vieira da Silva; Berk, Michael; Nierenberg, Andrew A; Deckersbach, Thilo
2016-06-01
Little is known about specific mood symptoms that may confer risk for suicidal ideation (SI) among patients with bipolar disorder (BD). We evaluated prospectively whether particular symptoms of depression and mania precede the onset or worsening of SI, among adults with or without a history of a suicide attempt. We examined prospective data from a large (N = 2,741) cohort of patients participating in the Systematic Treatment Enhancement Program for BD (STEP-BD). We evaluated history of suicide attempts at baseline, and symptoms of depression and mania at baseline and follow-up visits. Hierarchical linear modeling tested whether specific mood symptoms predicted subsequent levels of SI, and whether the strength of the associations differed based on suicide attempt history, after accounting for the influence of other mood symptoms and current SI. Beyond overall current depression and mania symptom severity, baseline SI, and illness characteristics, several mood symptoms, including guilt, reduced self-esteem, psychomotor retardation and agitation, increases in appetite, and distractibility predicted more severe levels of subsequent SI. Problems with concentration, distraction, sleep loss and decreased need for sleep predicted subsequent SI more strongly among individuals with a suicide attempt history. Several specific mood symptoms may confer risk for the onset or worsening of SI among treatment-seeking patients with BD. Individuals with a previous suicide attempt may be at greater risk in part due to greater reactivity to certain mood symptoms in the form of SI. However, overall, effect sizes were small, suggesting the need to identify additional proximal predictors of SI. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Liu, Robin H.; Lodes, Mike; Fuji, H. Sho; Danley, David; McShea, Andrew
Microarray assays typically involve multistage sample processing and fluidic handling, which are generally labor-intensive and time-consuming. Automation of these processes would improve robustness, reduce run-to-run and operator-to-operator variation, and reduce costs. In this chapter, a fully integrated and self-contained microfluidic biochip device that has been developed to automate the fluidic handling steps for microarray-based gene expression or genotyping analysis is presented. The device consists of a semiconductor-based CustomArray® chip with 12,000 features and a microfluidic cartridge. The CustomArray was manufactured using a semiconductor-based in situ synthesis technology. The micro-fluidic cartridge consists of microfluidic pumps, mixers, valves, fluid channels, and reagent storage chambers. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated in the cartridge to provide pumping of liquid solutions. A micromixing technique based on gas bubbling generated by electrochemical micropumps was developed. Low-cost check valves were implemented in the cartridge to prevent cross-talk of the stored reagents. Gene expression study of the human leukemia cell line (K562) and genotyping detection and sequencing of influenza A subtypes have been demonstrated using this integrated biochip platform. For gene expression assays, the microfluidic CustomArray device detected sample RNAs with a concentration as low as 0.375 pM. Detection was quantitative over more than three orders of magnitude. Experiment also showed that chip-to-chip variability was low indicating that the integrated microfluidic devices eliminate manual fluidic handling steps that can be a significant source of variability in genomic analysis. The genotyping results showed that the device identified influenza A hemagglutinin and neuraminidase subtypes and sequenced portions of both genes, demonstrating the potential of integrated microfluidic and microarray technology for multiple virus detection. The device provides a cost-effective solution to eliminate labor-intensive and time-consuming fluidic handling steps and allows microarray-based DNA analysis in a rapid and automated fashion.
ASAP- ARTIFICIAL SATELLITE ANALYSIS PROGRAM
NASA Technical Reports Server (NTRS)
Kwok, J.
1994-01-01
The Artificial Satellite Analysis Program (ASAP) is a general orbit prediction program which incorporates sufficient orbit modeling accuracy for mission design, maneuver analysis, and mission planning. ASAP is suitable for studying planetary orbit missions with spacecraft trajectories of reconnaissance (flyby) and exploratory (mapping) nature. Sample data is included for a geosynchronous station drift cycle study, a Venus radar mapping strategy, a frozen orbit about Mars, and a repeat ground trace orbit. ASAP uses Cowell's method in the numerical integration of the equations of motion. The orbital mechanics calculation contains perturbations due to non-sphericity (up to a 40 X 40 field) of the planet, lunar and solar effects, and drag and solar radiation pressure. An 8th order Runge-Kutta integration scheme with variable step size control is used for efficient propagation. The input includes the classical osculating elements, orbital elements of the sun relative to the planet, reference time and dates, drag coefficient, gravitational constants, and planet radius, rotation rate, etc. The printed output contains Cartesian coordinates, velocity, equinoctial elements, and classical elements for each time step or event step. At each step, selected output is added to a plot file. The ASAP package includes a program for sorting this plot file. LOTUS 1-2-3 is used in the supplied examples to graph the results, but any graphics software package could be used to process the plot file. ASAP is not written to be mission-specific. Instead, it is intended to be used for most planetary orbiting missions. As a consequence, the user has to have some basic understanding of orbital mechanics to provide the correct input and interpret the subsequent output. ASAP is written in FORTRAN 77 for batch execution and has been implemented on an IBM PC compatible computer operating under MS-DOS. The ASAP package requires a math coprocessor and a minimum of 256K RAM. This program was last updated in 1988 with version 2.03. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.
Zhao, Chao; Ruan, Lingwei
2011-11-01
The bacteria involved in the biodegradation of Enteromorpha prolifera (EP) are largely unknown, especially in offshore mangrove environments. In order to obtain the bacterial EP-degrading communities, sediments from a typical mangrove forest were sampled on the roots of mangrove in Dongzhai Port (Haikou, China). The sediments were enriched with crude EP powders as the sole carbon source. The bacterial composition of the resulting mangrove-degrading micro-community (MDMC), named D2-1, was analysed. With methods of plate cultivation and polymerase chain reaction-denaturing gradient gel electrophoresis and 16S rRNA library analysis, 18 bacteria belonging to nine genera were detected from this community. Among these detected bacteria, five major bands closely related to Bacillus, Marinobacter, Paenibacillus, Photobacterium, and Zhouia were determined. A novel two-step pretreatment for EP was proposed to lower the severity requirement of biodegraded pretreatment time. It consisted of a mild physical or chemical step (ultrasonic or H(2)O(2)) and a subsequent biological treatment with community D2-1. The combined treatment led to significant increases in the EP degradation. After combined treatment, the net yields of total soluble sugars and reducing sugars increased. The combined pretreatment of H(2)O(2) (2%, 48 h) and MDMC (7 days) was more effective than the treatment of MDMC only for 15 days. It could remarkably shorten the residence time and reduce the losses of carbohydrates. © Springer-Verlag 2011
Lieb, Florian; Stark, Hans-Georg; Thielemann, Christiane
2017-06-01
Spike detection from extracellular recordings is a crucial preprocessing step when analyzing neuronal activity. The decision whether a specific part of the signal is a spike or not is important for any kind of other subsequent preprocessing steps, like spike sorting or burst detection in order to reduce the classification of erroneously identified spikes. Many spike detection algorithms have already been suggested, all working reasonably well whenever the signal-to-noise ratio is large enough. When the noise level is high, however, these algorithms have a poor performance. In this paper we present two new spike detection algorithms. The first is based on a stationary wavelet energy operator and the second is based on the time-frequency representation of spikes. Both algorithms are more reliable than all of the most commonly used methods. The performance of the algorithms is confirmed by using simulated data, resembling original data recorded from cortical neurons with multielectrode arrays. In order to demonstrate that the performance of the algorithms is not restricted to only one specific set of data, we also verify the performance using a simulated publicly available data set. We show that both proposed algorithms have the best performance under all tested methods, regardless of the signal-to-noise ratio in both data sets. This contribution will redound to the benefit of electrophysiological investigations of human cells. Especially the spatial and temporal analysis of neural network communications is improved by using the proposed spike detection algorithms.
NASA Technical Reports Server (NTRS)
Chien, Steve; Kandt, R. Kirk; Roden, Joseph; Burleigh, Scott; King, Todd; Joy, Steve
1992-01-01
Scientific data preparation is the process of extracting usable scientific data from raw instrument data. This task involves noise detection (and subsequent noise classification and flagging or removal), extracting data from compressed forms, and construction of derivative or aggregate data (e.g. spectral densities or running averages). A software system called PIPE provides intelligent assistance to users developing scientific data preparation plans using a programming language called Master Plumber. PIPE provides this assistance capability by using a process description to create a dependency model of the scientific data preparation plan. This dependency model can then be used to verify syntactic and semantic constraints on processing steps to perform limited plan validation. PIPE also provides capabilities for using this model to assist in debugging faulty data preparation plans. In this case, the process model is used to focus the developer's attention upon those processing steps and data elements that were used in computing the faulty output values. Finally, the dependency model of a plan can be used to perform plan optimization and runtime estimation. These capabilities allow scientists to spend less time developing data preparation procedures and more time on scientific analysis tasks. Because the scientific data processing modules (called fittings) evolve to match scientists' needs, issues regarding maintainability are of prime importance in PIPE. This paper describes the PIPE system and describes how issues in maintainability affected the knowledge representation used in PIPE to capture knowledge about the behavior of fittings.
NASA Astrophysics Data System (ADS)
Meier, Roland; Souček, Pavel; Walter, Olaf; Malmbeck, Rikard; Rodrigues, Alcide; Glatz, Jean-Paul; Fanghänel, Thomas
2018-01-01
Two steps of a pyrochemical route for the recovery of actinides from spent metallic nuclear fuel are being investigated at JRC-Karlsruhe. The first step consists in electrorefining the fuel in molten salt medium implying aluminium cathodes. The second step is a chlorination process for the separation of actinides (An) from An-Al alloys formed on the cathodes. The chlorination process, in turn, consists of three steps; the distillation of adhered salt (1), the chlorination of An-Al by HCl/Cl2 under formation of AlCl3 and An chlorides (2), and the subsequent sublimation of AlCl3 (3). In the present work UAl2, UAl3, NpAl2, and PuAl2 were chlorinated with HCl(g) in a temperature range between 300 and 400 °C forming UCl4, NpCl4 or PuCl3 as the major An containing phases, respectively. Thermodynamic calculations were carried out to support the experimental work. The results showed a high chlorination efficiency for all used starting materials and indicated that the sublimation step may not be necessary when using HCl(g).
High temperature superconductor step-edge Josephson junctions using Ti-Ca-Ba-Cu-O
Ginley, D.S.; Hietala, V.M.; Hohenwarter, G.K.G.; Martens, J.S.; Plut, T.A.; Tigges, C.P.; Vawter, G.A.; Zipperian, T.E.
1994-10-25
A process is disclosed for formulating non-hysteretic and hysteretic Josephson junctions using HTS materials which results in junctions having the ability to operate at high temperatures while maintaining high uniformity and quality. The non-hysteretic Josephson junction is formed by step-etching a LaAlO[sub 3] crystal substrate and then depositing a thin film of TlCaBaCuO on the substrate, covering the step, and forming a grain boundary at the step and a subsequent Josephson junction. Once the non-hysteretic junction is formed the next step to form the hysteretic Josephson junction is to add capacitance to the system. In the current embodiment, this is accomplished by adding a thin dielectric layer, LaA1O[sub 3], followed by a cap layer of a normal metal where the cap layer is formed by first depositing a thin layer of titanium (Ti) followed by a layer of gold (Au). The dielectric layer and the normal metal cap are patterned to the desired geometry. 8 figs.
Comparison of step-by-step kinematics in repeated 30m sprints in female soccer players.
van den Tillaar, Roland
2018-01-04
The aim of this study was to compare kinematics in repeated 30m sprints in female soccer players. Seventeen subjects performed seven 30m sprints every 30s in one session. Kinematics were measured with an infrared contact mat and laser gun, and running times with an electronic timing device. The main findings were that sprint times increased in the repeated sprint ability test. The main changes in kinematics during the repeated sprint ability test were increased contact time and decreased step frequency, while no change in step length was observed. The step velocity increased in almost each step until the 14, which occurred around 22m. After this, the velocity was stable until the last step, when it decreased. This increase in step velocity was mainly caused by the increased step length and decreased contact times. It was concluded that the fatigue induced in repeated 30m sprints in female soccer players resulted in decreased step frequency and increased contact time. Employing this approach in combination with a laser gun and infrared mat for 30m makes it very easy to analyse running kinematics in repeated sprints in training. This extra information gives the athlete, coach and sports scientist the opportunity to give more detailed feedback and help to target these changes in kinematics better to enhance repeated sprint performance.
Implicit time accurate simulation of unsteady flow
NASA Astrophysics Data System (ADS)
van Buuren, René; Kuerten, Hans; Geurts, Bernard J.
2001-03-01
Implicit time integration was studied in the context of unsteady shock-boundary layer interaction flow. With an explicit second-order Runge-Kutta scheme, a reference solution to compare with the implicit second-order Crank-Nicolson scheme was determined. The time step in the explicit scheme is restricted by both temporal accuracy as well as stability requirements, whereas in the A-stable implicit scheme, the time step has to obey temporal resolution requirements and numerical convergence conditions. The non-linear discrete equations for each time step are solved iteratively by adding a pseudo-time derivative. The quasi-Newton approach is adopted and the linear systems that arise are approximately solved with a symmetric block Gauss-Seidel solver. As a guiding principle for properly setting numerical time integration parameters that yield an efficient time accurate capturing of the solution, the global error caused by the temporal integration is compared with the error resulting from the spatial discretization. Focus is on the sensitivity of properties of the solution in relation to the time step. Numerical simulations show that the time step needed for acceptable accuracy can be considerably larger than the explicit stability time step; typical ratios range from 20 to 80. At large time steps, convergence problems that are closely related to a highly complex structure of the basins of attraction of the iterative method may occur. Copyright
The continuous assembly and transfer of nanoelements
NASA Astrophysics Data System (ADS)
Kumar, Arun
Patterned nanoelements on flexible polymeric substrates at micro/nano scale at high rate, low cost, and commercially viable route offer an opportunity for manufacturing devices with micro/nano scale features. These micro/nano scale now made with various nanoelement can enhance the device functionality in sensing and switching due to their improved conductivity and better mechanical properties. In this research the fundamental understanding of high rate assembly and transfer of nanoelements has been developed. To achieve this objective, three sub topics were made. In the first step, the use of electrophoresis for the controlled assembly of CNT's on interdigitated templates has been shown. The time scale of assembly reported is shorter than the previously reported assembly time (60 seconds). The mass deposited was also predicted using the Hamaker's law. It is also shown that pre-patterned CNT's could be transferred from the rigid templates onto flexible polymeric substrates using a thermoforming process. The time scale of transfer is less than one minute (50 seconds) and was found to be dependent on polymer chemistry. It was found that CNT's preferentially transfer from Au electrode to non-polar polymeric substrates (polyurethane and polyethylene terephalathate glycol) in the thermoforming process. In the second step, a novel process (Pulsed Electrophoresis) has been shown for the first time to assist the assembly of conducting polyaniline on gold nanowire interdigitated templates. This technique offers dynamic control over heat build-up, which has been a main drawback in the DC electrophoresis and AC dielectrophoresis as well as the main cause of nanowire template damage. The use of this technique allowed higher voltages to be applied, resulting in shorter assembly times (e.g., 17.4 seconds, assembly resolution of 100 nm). The pre-patterned templates with PANi deposition were subsequently used to transfer the nanoscale assembled PANi from the rigid templates to thermoplastic polyurethane using the thermoforming process. In the third step, a novel integration of high rate pulsed electrophoretic assembly with thermally assisted transfer in a roll-to-roll process has been shown. This technique allowed the whole assembly and transfer process to take place in only 30 seconds. Further, a processing window is developed to control the percent area coverage of PANi with the aid of the belt speed. Also shown is the effect of different types of polymer on the quality of transfer, and it concluded that the transfer is affected by the polymer chemistry.
NASA Technical Reports Server (NTRS)
Desideri, J. A.; Steger, J. L.; Tannehill, J. C.
1978-01-01
The iterative convergence properties of an approximate-factorization implicit finite-difference algorithm are analyzed both theoretically and numerically. Modifications to the base algorithm were made to remove the inconsistency in the original implementation of artificial dissipation. In this way, the steady-state solution became independent of the time-step, and much larger time-steps can be used stably. To accelerate the iterative convergence, large time-steps and a cyclic sequence of time-steps were used. For a model transonic flow problem governed by the Euler equations, convergence was achieved with 10 times fewer time-steps using the modified differencing scheme. A particular form of instability due to variable coefficients is also analyzed.
Melatonin: a universal time messenger.
Erren, Thomas C; Reiter, Russel J
2015-01-01
Temporal organization plays a key role in humans, and presumably all species on Earth. A core building block of the chronobiological architecture is the master clock, located in the suprachi asmatic nuclei [SCN], which organizes "when" things happen in sub-cellular biochemistry, cells, organs and organisms, including humans. Conceptually, time messenging should follow a 5 step-cascade. While abundant evidence suggests how steps 1 through 4 work, step 5 of "how is central time information transmitted througout the body?" awaits elucidation. Step 1: Light provides information on environmental (external) time; Step 2: Ocular interfaces between light and biological (internal) time are intrinsically photosensitive retinal ganglion cells [ipRGS] and rods and cones; Step 3: Via the retinohypothalamic tract external time information reaches the light-dependent master clock in the brain, viz the SCN; Step 4: The SCN translate environmental time information into biological time and distribute this information to numerous brain structures via a melanopsin-based network. Step 5: Melatonin, we propose, transmits, or is a messenger of, internal time information to all parts of the body to allow temporal organization which is orchestrated by the SCN. Key reasons why we expect melatonin to have such role include: First, melatonin, as the chemical expression of darkness, is centrally involved in time- and timing-related processes such as encoding clock and calendar information in the brain; Second, melatonin travels throughout the body without limits and is thus a ubiquitous molecule. The chemial conservation of melatonin in all tested species could make this molecule a candidate for a universal time messenger, possibly constituting a legacy of an all-embracing evolutionary history.
Comparison of step-by-step kinematics of resisted, assisted and unloaded 20-m sprint runs.
van den Tillaar, Roland; Gamble, Paul
2018-03-26
This investigation examined step-by-step kinematics of sprint running acceleration. Using a randomised counterbalanced approach, 37 female team handball players (age 17.8 ± 1.6 years, body mass 69.6 ± 9.1 kg, height 1.74 ± 0.06 m) performed resisted, assisted and unloaded 20-m sprints within a single session. 20-m sprint times and step velocity, as well as step length, step frequency, contact and flight times of each step were evaluated for each condition with a laser gun and an infrared mat. Almost all measured parameters were altered for each step under the resisted and assisted sprint conditions (η 2 ≥ 0.28). The exception was step frequency, which did not differ between assisted and normal sprints. Contact time, flight time and step frequency at almost each step were different between 'fast' vs. 'slow' sub-groups (η 2 ≥ 0.22). Nevertheless overall both groups responded similarly to the respective sprint conditions. No significant differences in step length were observed between groups for the respective condition. It is possible that continued exposure to assisted sprinting might allow the female team-sports players studied to adapt their coordination to the 'over-speed' condition and increase step frequency. It is notable that step-by-step kinematics in these sprints were easy to obtain using relatively inexpensive equipment with possibilities of direct feedback.
Biomechanical influences on balance recovery by stepping.
Hsiao, E T; Robinovitch, S N
1999-10-01
Stepping represents a common means for balance recovery after a perturbation to upright posture. Yet little is known regarding the biomechanical factors which determine whether a step succeeds in preventing a fall. In the present study, we developed a simple pendulum-spring model of balance recovery by stepping, and used this to assess how step length and step contact time influence the effort (leg contact force) and feasibility of balance recovery by stepping. We then compared model predictions of step characteristics which minimize leg contact force to experimentally observed values over a range of perturbation strengths. At all perturbation levels, experimentally observed step execution times were higher than optimal, and step lengths were smaller than optimal. However, the predicted increase in leg contact force associated with these deviations was substantial only for large perturbations. Furthermore, increases in the strength of the perturbation caused subjects to take larger, quicker steps, which reduced their predicted leg contact force. We interpret these data to reflect young subjects' desire to minimize recovery effort, subject to neuromuscular constraints on step execution time and step length. Finally, our model predicts that successful balance recovery by stepping is governed by a coupling between step length, step execution time, and leg strength, so that the feasibility of balance recovery decreases unless declines in one capacity are offset by enhancements in the others. This suggests that one's risk for falls may be affected more by small but diffuse neuromuscular impairments than by larger impairment in a single motor capacity.
Soot formation and burnout in flames
NASA Technical Reports Server (NTRS)
Prado, B.; Bittner, J. D.; Neoh, K.; Howard, J. B.
1980-01-01
The amount of soot formed when burning a benzene/hexane mixture in a turbulent combustor was examined. Soot concentration profiles in the same combustor for kerosene fuel are given. The chemistry of the formation of soot precursors, the nucleation, growth and subsequent burnout of soot particles, and the effect of mixing on the previous steps were considered.
A comparison of two methods of eluting insect DNA from Flinders Technology Associates Cards
USDA-ARS?s Scientific Manuscript database
Flinders Technology Associates (FTA) technology lyses cells and stabilizes DNA for room-temperature storage in a single step but it has been infrequently used with arthropods. One possible reason is the paucity of quick and inexpensive protocols to subsequently elute the DNA from the card matrix. Th...
USDA-ARS?s Scientific Manuscript database
Segmentation is the first step in image analysis to subdivide an image into meaningful regions. The segmentation result directly affects the subsequent image analysis. The objective of the research was to develop an automatic adjustable algorithm for segmentation of color images, using linear suppor...
A new hypervolume approach for assessing environmental risks
Denys Yemshanov; Frank H. Koch; Bo Lu; Ronald Fournier; Gericke Cook; Jean J. Turgeon
2017-01-01
Assessing risks of uncertain but potentially damaging events, such as environmental disturbances, disease outbreaks and pest invasions, is a key analytical step that informs subsequent decisions about how to respond to these events. We present a continuous risk measure that can be used to assess and prioritize environmental risks from uncertain data in a geographical...
Selective photooxidation of hydrocarbons in zeolites by oxygen
Frei, Heinz; Blatter, Fritz; Sun, Hai
1998-01-01
A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.
Cell-wall structural changes in wheat straw pretreated for bioethanol production
Jan B. Kristensen; G. Thygesen Lisbeth; Claus Felby; Henning Jorgensen; Thomas Elder
2008-01-01
Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw...
Electing officers of the House of Representatives.
Rep. McMorris Rodgers, Cathy [R-WA-5
2013-01-03
House - 01/03/2013 Subsequent to the adoption of the resolution, the Chair announced that, without objection, H. Res. 1 is amended by striking "Florida" in the second place it appears and inserting "Oregon". (All Actions) Tracker: This bill has the status Agreed to in HouseHere are the steps for Status of Legislation:
ERIC Educational Resources Information Center
Dance, Frank E. X.
The intent of a liberal education is to enhance the student's freedom, the faculty of intentional choice. The capacity of humans to step outside of themselves, which allows development of self-concept and subsequently self-esteem, is potentiated by the humans' unique sign, the symbol. Each of the liberal arts is concerned with the development and…
The General Alcoholics Anonymous Tools of Recovery: The Adoption of 12-Step Practices and Beliefs
Greenfield, Brenna L.; Tonigan, J. Scott
2013-01-01
Working the 12 steps is widely prescribed for Alcoholics Anonymous (AA) members although the relative merits of different methods for measuring step-work have received minimal attention and even less is known about how step-work predicts later substance use. The current study (1) compared endorsements of step-work on an face-valid or direct measure, the Alcoholics Anonymous Inventory (AAI), with an indirect measure of step-work, the General Alcoholics Anonymous Tools of Recovery (GAATOR), (2) evaluated the underlying factor structure of the GAATOR and changes in step-work over time, (3) examined changes in the endorsement of step-work over time, and (4) investigated how, if at all, 12-step-work predicted later substance use. New AA affiliates (N = 130) completed assessments at intake, 3, 6, and 9 months. Significantly more participants endorsed step-work on the GAATOR than on the AAI for nine of the 12 steps. An exploratory factor analysis revealed a two-factor structure for the GAATOR comprising Behavioral Step-Work and Spiritual Step-Work. Behavioral Step-Work did not change over time, but was predicted by having a sponsor, while Spiritual Step-Work decreased over time and increases were predicted by attending 12-step meetings or treatment. Behavioral Step-Work did not prospectively predict substance use. In contrast, Spiritual Step-Work predicted percent days abstinent, an effect that is consistent with recent work on the mediating effects of spiritual growth, AA, and increased abstinence. Behavioral and Spiritual Step-Work appear to be conceptually distinct components of step-work that have distinct predictors and unique impacts on outcomes. PMID:22867293
Yong, Keong; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo
2016-01-01
We report a one-step polymer-free approach to patterning graphene using a stencil mask and oxygen plasma reactive-ion etching, with a subsequent polymer-free direct transfer for flexible graphene devices. Our stencil mask is fabricated via a subtractive, laser cutting manufacturing technique, followed by lamination of stencil mask onto graphene grown on Cu foil for patterning. Subsequently, micro-sized graphene features of various shapes are patterned via reactive-ion etching. The integrity of our graphene after patterning is confirmed by Raman spectroscopy. We further demonstrate the rapid prototyping capability of a stretchable, crumpled graphene strain sensor and patterned graphene condensation channels for potential applications in sensing and heat transfer, respectively. We further demonstrate that the polymer-free approach for both patterning and transfer to flexible substrates allows the realization of cleaner graphene features as confirmed by water contact angle measurements. We believe that our new method promotes rapid, facile fabrication of cleaner graphene devices, and can be extended to other two dimensional materials in the future. PMID:27118249
NASA Astrophysics Data System (ADS)
Vishwakarma, Niraj K.; Singh, Ajay K.; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A. Giridhar; Kim, Dong-Pyo
2017-03-01
Simultaneous capture of carbon dioxide (CO2) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO2-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO2 in gas-liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas-liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81-97% yields under mild conditions. The platform would enable direct CO2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps.
Vishwakarma, Niraj K; Singh, Ajay K; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A Giridhar; Kim, Dong-Pyo
2017-03-06
Simultaneous capture of carbon dioxide (CO 2 ) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO 2 -based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO 2 in gas-liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas-liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO 2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81-97% yields under mild conditions. The platform would enable direct CO 2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps.
Vishwakarma, Niraj K.; Singh, Ajay K.; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A. Giridhar; Kim, Dong-Pyo
2017-01-01
Simultaneous capture of carbon dioxide (CO2) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO2-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO2 in gas–liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas–liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81–97% yields under mild conditions. The platform would enable direct CO2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps. PMID:28262667
Flat epithelial atypia of the breast.
Lerwill, Melinda F
2008-04-01
Flat epithelial atypia is a presumably neoplastic alteration of terminal duct-lobular units that is characterized by the replacement of the native luminal epithelium by ductal cells demonstrating low-grade cytologic atypia. The atypical cells maintain a "flat" pattern of growth without evidence of architectural atypicality. Morphologic, immunohistochemical, and molecular investigations support that flat epithelial atypia represents an early step in the evolution of low-grade ductal carcinomas. It is frequently seen in association with atypical ductal hyperplasia, low-grade ductal carcinoma in situ, invasive tubular carcinoma, and lobular neoplasia. The risk for subsequent breast carcinoma remains to be defined, but flat epithelial atypia likely represents a nonobligate precursor with an extended time course to progression. Certain benign alterations may superficially mimic its appearance; careful attention to cytologic and architectural characteristics can help one distinguish these unrelated entities from flat epithelial atypia.
Hydraulic droplet coarsening in open-channel capillaries
NASA Astrophysics Data System (ADS)
Warren, Patrick B.
2016-11-01
Over a range of liquid-solid contact angles, an open-channel capillary with curved or angled sides can show a maximum in the Laplace pressure as a function of the filling state. Examples include double-angle wedges, grooves scored into flat surfaces, steps on surfaces, and the groove between touching parallel cylinders. The liquid in such a channel exhibits a beading instability if the channel is filled beyond the Laplace pressure maximum. The subsequent droplet coarsening takes place by hydraulic transport through the connecting liquid columns that remain in the groove. A mean-field scaling argument predicts the characteristic droplet radius R ˜t1 /7 , as a function of time t . This is confirmed by one-dimensional simulations of the coarsening kinetics. Some remarks are also made on the spreading kinetics of an isolated drop deposited in such a channel.
Reaction mechanisms in the organometallic vapor phase epitaxial growth of GaAs
NASA Technical Reports Server (NTRS)
Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B.
1988-01-01
The decomposition mechanisms of AsH3, trimethylgallium (TMGa), and mixtures of the two have been studied in an atmospheric-pressure flow system with the use of D2 to label the reaction products which are analyzed in a time-of-flight mass spectrometer. AsH3 decomposes entirely heterogeneously to give H2. TMGa decomposes by a series of gas-phase steps, involving methyl radicals and D atoms to produce CH3D, CH4, C2H6, and HD. TMGa decomposition is accelerated by the presence of AsH3. When the two are mixed, as in the organometallic vapor phase epitaxial growth of GaAs, both compounds decompose in concert to produce only CH4. A likely model is that of a Lewis acid-base adduct that forms and subsequently eliminates CH4.
A mechanistic model of tau amyloid aggregation based on direct observation of oligomers
NASA Astrophysics Data System (ADS)
Shammas, Sarah L.; Garcia, Gonzalo A.; Kumar, Satish; Kjaergaard, Magnus; Horrocks, Mathew H.; Shivji, Nadia; Mandelkow, Eva; Knowles, Tuomas P. J.; Mandelkow, Eckhard; Klenerman, David
2015-04-01
Protein aggregation plays a key role in neurodegenerative disease, giving rise to small oligomers that may become cytotoxic to cells. The fundamental microscopic reactions taking place during aggregation, and their rate constants, have been difficult to determine due to lack of suitable methods to identify and follow the low concentration of oligomers over time. Here we use single-molecule fluorescence to study the aggregation of the repeat domain of tau (K18), and two mutant forms linked with familial frontotemporal dementia, the deletion mutant ΔK280 and the point mutant P301L. Our kinetic analysis reveals that aggregation proceeds via monomeric assembly into small oligomers, and a subsequent slow structural conversion step before fibril formation. Using this approach, we have been able to quantitatively determine how these mutations alter the aggregation energy landscape.
Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication
NASA Astrophysics Data System (ADS)
Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan
2015-08-01
Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.
Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.
Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan
2015-08-07
Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.
Direct observation of two-step crystallization in nanoparticle superlattice formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jungwon; Zheng, Haimei; Lee, Won Chul
2011-10-06
Direct imaging of nanoparticle solutions by liquid phase transmission electron microscopy has enabled unique in-situ studies of nanoparticle motion and growth. In the present work, we report on real-time formation of two-dimensional nanoparticle arrays in the very low diffusive limit, where nanoparticles are mainly driven by capillary forces and solvent fluctuations. We find that superlattice formation appears to be segregated into multiple regimes. Initially, the solvent front drags the nanoparticles, condensing them into an amorphous agglomerate. Subsequently, the nanoparticle crystallization into an array is driven by local fluctuations. Following the crystallization event, superlattice growth can also occur via the additionmore » of individual nanoparticles drawn from outlying regions by different solvent fronts. The dragging mechanism is consistent with simulations based on a coarse-grained lattice gas model at the same limit.« less
Reaction mechanisms in the organometallic vapor phase epitaxial growth of GaAs
NASA Astrophysics Data System (ADS)
Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B.
1988-02-01
The decomposition mechanisms of AsH3, trimethylgallium (TMGa), and mixtures of the two have been studied in an atmospheric-pressure flow system with the use of D2 to label the reaction products which are analyzed in a time-of-flight mass spectrometer. AsH3 decomposes entirely heterogeneously to give H2. TMGa decomposes by a series of gas-phase steps, involving methyl radicals and D atoms to produce CH3D, CH4, C2H6, and HD. TMGa decomposition is accelerated by the presence of AsH3. When the two are mixed, as in the organometallic vapor phase epitaxial growth of GaAs, both compounds decompose in concert to produce only CH4. A likely model is that of a Lewis acid-base adduct that forms and subsequently eliminates CH4.
NASA Astrophysics Data System (ADS)
Xin, Meiting; Li, Bing; Yan, Xiao; Chen, Lei; Wei, Xiang
2018-02-01
A robust coarse-to-fine registration method based on the backpropagation (BP) neural network and shift window technology is proposed in this study. Specifically, there are three steps: coarse alignment between the model data and measured data, data simplification based on the BP neural network and point reservation in the contour region of point clouds, and fine registration with the reweighted iterative closest point algorithm. In the process of rough alignment, the initial rotation matrix and the translation vector between the two datasets are obtained. After performing subsequent simplification operations, the number of points can be reduced greatly. Therefore, the time and space complexity of the accurate registration can be significantly reduced. The experimental results show that the proposed method improves the computational efficiency without loss of accuracy.
Efficient Resources Provisioning Based on Load Forecasting in Cloud
Hu, Rongdong; Jiang, Jingfei; Liu, Guangming; Wang, Lixin
2014-01-01
Cloud providers should ensure QoS while maximizing resources utilization. One optimal strategy is to timely allocate resources in a fine-grained mode according to application's actual resources demand. The necessary precondition of this strategy is obtaining future load information in advance. We propose a multi-step-ahead load forecasting method, KSwSVR, based on statistical learning theory which is suitable for the complex and dynamic characteristics of the cloud computing environment. It integrates an improved support vector regression algorithm and Kalman smoother. Public trace data taken from multitypes of resources were used to verify its prediction accuracy, stability, and adaptability, comparing with AR, BPNN, and standard SVR. Subsequently, based on the predicted results, a simple and efficient strategy is proposed for resource provisioning. CPU allocation experiment indicated it can effectively reduce resources consumption while meeting service level agreements requirements. PMID:24701160
DOT National Transportation Integrated Search
2012-06-01
The purpose of these step-by-step guidelines is to assist in planning, designing, and deploying a system that uses radio frequency identification (RFID) technology to measure the time needed for commercial vehicles to complete the northbound border c...
McKay, Virginia R; Hoffer, Lee D; Combs, Todd B; Margaret Dolcini, M
2018-06-05
Sustaining evidence-based interventions (EBIs) is an ongoing challenge for dissemination and implementation science in public health and social services. Characterizing the relationship among human resource capacity within an agency and subsequent population outcomes is an important step to improving our understanding of how EBIs are sustained. Although human resource capacity and population outcomes are theoretically related, examining them over time within real-world experiments is difficult. Simulation approaches, especially agent-based models, offer advantages that complement existing methods. We used an agent-based model to examine the relationships among human resources, EBI delivery, and population outcomes by simulating provision of an EBI through a hypothetical agency and its staff. We used data from existing studies examining a widely implemented HIV prevention intervention to inform simulation design, calibration, and validity. Once we developed a baseline model, we used the model as a simulated laboratory by systematically varying three human resource variables: the number of staff positions, the staff turnover rate, and timing in training. We tracked the subsequent influence on EBI delivery and the level of population risk over time to describe the overall and dynamic relationships among these variables. Higher overall levels of human resource capacity at an agency (more positions) led to more extensive EBI delivery over time and lowered population risk earlier in time. In simulations representing the typical human resource investments, substantial influences on population risk were visible after approximately 2 years and peaked around 4 years. Human resources, especially staff positions, have an important impact on EBI sustainability and ultimately population health. A minimum level of human resources based on the context (e.g., size of the initial population and characteristics of the EBI) is likely needed for an EBI to have a meaningful impact on population outcomes. Furthermore, this model demonstrates how ABMs may be leveraged to inform research design and assess the impact of EBI sustainability in practice.
Microtensile bond strength of eleven contemporary adhesives to enamel.
Inoue, Satoshi; Vargas, Marcos A; Abe, Yasuhiko; Yoshida, Yasuhiro; Lambrechts, Paul; Vanherle, Guido; Sano, Hidehiko; Van Meerbeek, Bart
2003-10-01
To compare the microtensile bond strength (microTBS) to enamel of 10 contemporary adhesives, including three one-step self-etch systems, four two-step self-etch systems and three two-step total-etch systems, with that of a conventional three-step total-etch adhesive. Resin composite (Z100, 3M) was bonded to flat, #600-grit wet-sanded enamel surfaces of 18 extracted human third molars using the adhesives strictly according to the respective manufacturer's instructions. After storage overnight in 37 degrees C water, the bonded specimens were sectioned into 2-4 thin slabs of approximately 1 mm thickness and 2.5 mm width. They were then trimmed into an hourglass shape with an interface area of approximately 1 mm2, and subsequently subjected to microTBS-testing with a cross-head speed of 1 mm/minute. The microTBS to enamel varied from 3.2 MPa for the experimental one-step self-etch adhesive PQ/Universal (self-etch) to 43.9 MPa for the two-step total-etch adhesive Scotchbond 1. When compared with the conventional three-step total-etch adhesive OptiBond FL, the bond strengths of most adhesives with simplified application procedures were not significantly different, except for two one-step self-etch adhesives, experimental PQ/Universal (self-etch) and One-up Bond F, that showed lower bond strengths. Specimen failures during sample preparation were recorded for the latter adhesives as well.
Sakurai, Ryota; Fujiwara, Yoshinori; Ishihara, Masami; Yasunaga, Masashi; Ogawa, Susumu; Suzuki, Hiroyuki; Imanaka, Kuniyasu
2017-07-01
Older adults tend to overestimate their step-over ability. However, it is unclear as to whether this is caused by inaccurate self-estimation of physical ability or inaccurate perception of height. We, therefore, measured both visual height perception ability and self-estimation of step-over ability among young and older adults. Forty-seven older and 16 young adults performed a height perception test (HPT) and a step-over test (SOT). Participants visually judged the height of vertical bars from distances of 7 and 1 m away in the HPT, then self-estimated and, subsequently, actually performed a step-over action in the SOT. The results showed no significant difference between young and older adults in visual height perception. In the SOT, young adults tended to underestimate their step-over ability, whereas older adults either overestimated their abilities or underestimated them to a lesser extent than did the young adults. Moreover, visual height perception was not correlated with the self-estimation of step-over ability in both young and older adults. These results suggest that the self-overestimation of step-over ability which appeared in some healthy older adults may not be caused by the nature of visual height perception, but by other factor(s), such as the likely age-related nature of self-estimation of physical ability, per se.
Guenther, H; Hoenicke, K; Biesterveld, S; Gerhard-Rieben, E; Lantz, I
2010-03-01
The occurrence of furan in some food products has already been known for a few decades, and it has been reconfirmed in more recent investigations that furan is present in a variety of foodstuffs. This list of products includes roasted coffee, which has been shown to generate furan as a result of the heat treatment at roasting which is applied to achieve the desired aroma and flavour profile of a roasted coffee. The objective of this study is to provide data to allow a better understanding of the available data of furan in coffee, the kinetics of furan generated during roasting, and to estimate the reduction of furan levels afterwards due to subsequent processing steps and consumer handling. Finally, the study is meant as a contribution to establish exposure data on the basis of scientific data at the stage of coffee consumption. This paper shows that the formation of furan during roasting is dependent on roasting conditions and is, therefore, directly linked to achieving targeted flavour profiles. Furthermore, it is demonstrated that modifications in process conditions potentially to reduce furan levels may have the opposite effect on other undesired reaction products of the roasting chemistry such as, for example, acrylamide. Due to the high volatility of furan, any subsequent processing step or consumer handling has an impact on the level of furan. As a guidance from this study and in consideration of the identified losses of each process and handling step on the basis of the trial conditions, it is estimated that only approximately 10% of the initially generated furan during roasting gets into the cup of coffee for consumption.
Fanfani, Francesco; Monterossi, Giorgia; Ghizzoni, Viola; Rossi, Esther D; Dinoi, Giorgia; Inzani, Frediano; Fagotti, Anna; Gueli Alletti, Salvatore; Scarpellini, Francesca; Nero, Camilla; Santoro, Angela; Scambia, Giovanni; Zannoni, Gian F
2018-01-01
The aim of the current study is to evaluate the detection rate of micro- and macro-metastases of the One-Step Nucleic Acid Amplification (OSNA) compared to frozen section examination and subsequent ultra-staging examination in early stage endometrial cancer (EC). From March 2016 to June 2016, data of 40 consecutive FIGO stage I EC patients were prospectively collected in an electronic database. The sentinel lymph node mapping was performed in all patients. All mapped nodes were removed and processed. Sentinel lymph nodes were sectioned and alternate sections were respectively examined by OSNA and by frozen section analysis. After frozen section, the residual tissue from each block was processed with step-level sections (each step at 200 micron) including H&E and IHC slides. Sentinel lymph nodes mapping was successful in 29 patients (72.5%). In the remaining 11 patients (27.5%), a systematic pelvic lymphadenectomy was performed. OSNA assay sensitivity and specificity were 87.5% and 100% respectively. Positive and negative predictive values were 100% and 99% respectively, with a diagnostic accuracy of 99%. As far as frozen section examination and subsequent ultra-staging analysis was concerned, we reported sensitivity and specificity of 50% and 94.4% respectively; positive and negative predictive values were 14.3% and 99%, respectively, with an accuracy of 93.6%. In one patient, despite negative OSNA and frozen section analysis of the sentinel node, a macro-metastasis in 1 non-sentinel node was found. The combination of OSNA procedure with the sentinel lymph node mapping could represent an efficient intra-operative tool for the selection of early-stage EC patients to be submitted to systematic lymphadenectomy.
Mass imbalances in EPANET water-quality simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Michael J.; Janke, Robert; Taxon, Thomas N.
EPANET is widely employed to simulate water quality in water distribution systems. However, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results, in general, only for small water-quality time steps; use of an adequately short time step may not be feasible. Overly long time steps can yield errors in concentrations and result in situations in which constituent mass is not conserved. Mass may not be conserved even when EPANET gives no errors or warnings. This paper explains how such imbalances can occur and provides examples of such cases; it also presents a preliminary event-driven approachmore » that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, to those obtained using the new approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations.« less
Liu, Liangming; Tian, Kunlun; Zhu, Yu; Ding, Xiaoli; Li, Tao
2013-08-01
Fluid resuscitation is the essential step for early treatment of traumatic hemorrhagic shock. However, its implementation is greatly limited before hospital or during evacuation. The authors investigated whether δ opioid receptor antagonist ICI 174,864 was suitable for the early treatment of traumatic hemorrhagic shock. With uncontrolled hemorrhagic-shock rats, the antishock effects of six dosages of ICI 174,864 (0.1, 0.3, 0.5, 1, 3, and 5 mg/kg) infused with or without a small volume of lactated Ringer's solution (LR) before bleeding controlled or bleeding cessation at different times were observed. ICI 174,864 (0.1-3 mg/kg) with or without 1/4 volume of LR infusion showed dose-dependent increase in the mean arterial blood pressure, and significantly prolonged the survival time and 8-h survival rate, as compared with ICI 174,864 plus 1/2 volume of LR infusion. The best effect was shown with 3 mg/kg of ICI 174,864. Bleeding cessation at 1, 2, or 3 h during infusion of ICI 174,864 (3 mg/kg) plus 1/4 volume of LR improved subsequent treatment (70% 24-h survival rate vs. 50 and 10% 24-h survival rate in hypotensive resuscitation and LR group, respectively). There was significant improvement in hemodynamic parameters, oxygen delivery, and tissue perfusion of hemorrhagic-shock rats with 3 mg/kg of ICI 174,864 plus 1/4 volume of LR infusion. δ Opioid receptor antagonist ICI 174,864 alone or with small volume of fluid infusion has good beneficial effect on uncontrolled hemorrhagic shock. Its early application can "buy" time for subsequent treatment of traumatic shock.
Gkana, E; Chorianopoulos, N; Grounta, A; Koutsoumanis, K; Nychas, G-J E
2017-04-01
The objective of the present study was to determine the factors affecting the transfer of foodborne pathogens from inoculated beef fillets to non-inoculated ones, through food processing surfaces. Three different levels of inoculation of beef fillets surface were prepared: a high one of approximately 10 7 CFU/cm 2 , a medium one of 10 5 CFU/cm 2 and a low one of 10 3 CFU/cm 2 , using mixed-strains of Listeria monocytogenes, or Salmonella enterica Typhimurium, or Escherichia coli O157:H7. The inoculated fillets were then placed on 3 different types of surfaces (stainless steel-SS, polyethylene-PE and wood-WD), for 1 or 15 min. Subsequently, these fillets were removed from the cutting boards and six sequential non-inoculated fillets were placed on the same surfaces for the same period of time. All non-inoculated fillets were contaminated with a progressive reduction trend of each pathogen's population level from the inoculated fillets to the sixth non-inoculated ones that got in contact with the surfaces, and regardless the initial inoculum, a reduction of approximately 2 log CFU/g between inoculated and 1st non-inoculated fillet was observed. S. Typhimurium was transferred at lower mean population (2.39 log CFU/g) to contaminated fillets than E. coli O157:H7 (2.93 log CFU/g), followed by L. monocytogenes (3.12 log CFU/g; P < 0.05). Wooden surfaces (2.77 log CFU/g) enhanced the transfer of bacteria to subsequent fillets compared to other materials (2.66 log CFU/g for SS and PE; P < 0.05). Cross-contamination between meat and surfaces is a multifactorial process strongly depended on the species, initial contamination level, kind of surface, contact time and the number of subsequent fillet, according to analysis of variance. Thus, quantifying the cross-contamination risk associated with various steps of meat processing and food establishments or households can provide a scientific basis for risk management of such products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bailey, Stephen J; Vanhatalo, Anni; Wilkerson, Daryl P; Dimenna, Fred J; Jones, Andrew M
2009-12-01
It has been suggested that a prior bout of high-intensity exercise has the potential to enhance performance during subsequent high-intensity exercise by accelerating the O(2) uptake (Vo(2)) on-response. However, the optimal combination of prior exercise intensity and subsequent recovery duration required to elicit this effect is presently unclear. Eight male participants, aged 18-24 yr, completed step cycle ergometer exercise tests to 80% of the difference between the preestablished gas exchange threshold and maximal Vo(2) (i.e., 80%Delta) after no prior exercise (control) and after six different combinations of prior exercise intensity and recovery duration: 40%Delta with 3 min (40-3-80), 9 min (40-9-80), and 20 min (40-20-80) of recovery and 70%Delta with 3 min (70-3-80), 9 min (70-9-80), and 20 min (70-20-80) of recovery. Overall Vo(2) kinetics were accelerated relative to control in all conditions except for 40-9-80 and 40-20-80 conditions as a consequence of a reduction in the Vo(2) slow component amplitude; the phase II time constant was not significantly altered with any prior exercise/recovery combination. Exercise tolerance at 80%Delta was improved by 15% and 30% above control in the 70-9-80 and 70-20-80 conditions, respectively, but was impaired by 16% in the 70-3-80 condition. Prior exercise at 40%Delta did not significantly influence exercise tolerance regardless of the recovery duration. These data demonstrate that prior high-intensity exercise ( approximately 70%Delta) can enhance the tolerance to subsequent high-intensity exercise provided that it is coupled with adequate recovery duration (>or=9 min). This combination presumably optimizes the balance between preserving the effects of prior exercise on Vo(2) kinetics and providing sufficient time for muscle homeostasis (e.g., muscle phosphocreatine and H(+) concentrations) to be restored.
Shen, Yang; Zhao, Jing; Yao, Peijun; Miao, Huamao; Niu, Lingling
2014-01-01
Purpose To investigate the effects of lenticule creation and subsequent corneal lenticule extraction on corneal deformation parameters during small incision lenticule extraction (SMILE) procedure. Materials and Methods In this prospective study, 18 eyes of 10 patients (27.90±7.11 years, −5.64±2.45 diopters) scheduled for SMILE procedure were enrolled. Changes in the corneal deformation parameters, including deformation amplitude (DA), applanation time(AT1 and AT2), applanation length(AL1 and AL2), corneal velocity(CV1 and CV2), peak distance(P.Dist.), radius and intraocular pressure values were measured preoperatively, immediately after lenticule creation and subsequent to corneal lenticule extraction in all eyes with the Corvis Scheimpflug Technology (Corvis ST, OCULUS, Wetzlar, Germany). Repeated measures analysis of variance (ANOVA) with bonferroni-adjusted post hoc comparisons was performed to investigate changes following each step of the procedure. Results All surgical procedures were uneventful. A significant difference was detected among the three time points (pre-operation, post-lenticule creation and post lenticule extraction) for AT1 (P<0.001), AT2 (P = 0.001), DA(P<0.001), and IOP(P = 0.002). Bonferroni-adjusted post hoc comparisons indicated that there was no significant change in AT1, AT2, DA, or IOP after lenticule creation (post hoc P>0.05), but there was a significant change in these parameters following subsequent corneal lenticule extraction (post hoc P<0.01), when compared to values obtained pre-operatively. The scheimpflug camera of the Corvis ST demonstrated the intralamellar small gas bubbles formed from the vaporisation of tissue after lenticule creation and a gray zone was observed between the cap and the residual stromal bed after lenticule extraction. Conclusions There is a significant change in corneal deformation parameters following SMILE procedure. The changes may be caused predominantly by stromal lenticule extraction, while lenticule creation with femtosecond laser may not have an obvious effect on corneal deformation properties. PMID:25121508
Shen, Yang; Zhao, Jing; Yao, Peijun; Miao, Huamao; Niu, Lingling; Wang, Xiaoying; Zhou, Xingtao
2014-01-01
To investigate the effects of lenticule creation and subsequent corneal lenticule extraction on corneal deformation parameters during small incision lenticule extraction (SMILE) procedure. In this prospective study, 18 eyes of 10 patients (27.90 ± 7.11 years, -5.64 ± 2.45 diopters) scheduled for SMILE procedure were enrolled. Changes in the corneal deformation parameters, including deformation amplitude (DA), applanation time(AT1 and AT2), applanation length(AL1 and AL2), corneal velocity(CV1 and CV2), peak distance(P.Dist.), radius and intraocular pressure values were measured preoperatively, immediately after lenticule creation and subsequent to corneal lenticule extraction in all eyes with the Corvis Scheimpflug Technology (Corvis ST, OCULUS, Wetzlar, Germany). Repeated measures analysis of variance (ANOVA) with bonferroni-adjusted post hoc comparisons was performed to investigate changes following each step of the procedure. All surgical procedures were uneventful. A significant difference was detected among the three time points (pre-operation, post-lenticule creation and post lenticule extraction) for AT1 (P<0.001), AT2 (P = 0.001), DA(P<0.001), and IOP(P = 0.002). Bonferroni-adjusted post hoc comparisons indicated that there was no significant change in AT1, AT2, DA, or IOP after lenticule creation (post hoc P>0.05), but there was a significant change in these parameters following subsequent corneal lenticule extraction (post hoc P<0.01), when compared to values obtained pre-operatively. The scheimpflug camera of the Corvis ST demonstrated the intralamellar small gas bubbles formed from the vaporisation of tissue after lenticule creation and a gray zone was observed between the cap and the residual stromal bed after lenticule extraction. There is a significant change in corneal deformation parameters following SMILE procedure. The changes may be caused predominantly by stromal lenticule extraction, while lenticule creation with femtosecond laser may not have an obvious effect on corneal deformation properties.
Endobronchial valves for bronchopleural fistula: pitfalls and principles.
Gaspard, Dany; Bartter, Thaddeus; Boujaoude, Ziad; Raja, Haroon; Arya, Rohan; Meena, Nikhil; Abouzgheib, Wissam
2017-01-01
Placement of endobronchial valves for bronchopleural fistula (BPF) is not always straightforward. A simple guide to the steps for an uncomplicated procedure does not encompass pitfalls that need to be understood and overcome to maximize the efficacy of this modality. The objective of this study was to discuss examples of difficult cases for which the placement of endobronchial valves was not straightforward and required alterations in the usual basic steps. Subsequently, we aimed to provide guiding principles for a successful procedure. Six illustrative cases were selected to demonstrate issues that can arise during endobronchial valve placement. In each case, a real or apparent lack of decrease in airflow through a BPF was diagnosed and addressed. We have used the selected problem cases to illustrate principles, with the goal of helping to increase the success rate for endobronchial valve placement in the treatment of BPF. This series demonstrates issues that complicate effective placement of endobronchial valves for BPF. These issues form the basis for troubleshooting steps that complement the basic procedural steps.
Macro-fingerprint analysis-through-separation of licorice based on FT-IR and 2DCOS-IR
NASA Astrophysics Data System (ADS)
Wang, Yang; Wang, Ping; Xu, Changhua; Yang, Yan; Li, Jin; Chen, Tao; Li, Zheng; Cui, Weili; Zhou, Qun; Sun, Suqin; Li, Huifen
2014-07-01
In this paper, a step-by-step analysis-through-separation method under the navigation of multi-step IR macro-fingerprint (FT-IR integrated with second derivative IR (SD-IR) and 2DCOS-IR) was developed for comprehensively characterizing the hierarchical chemical fingerprints of licorice from entirety to single active components. Subsequently, the chemical profile variation rules of three parts (flavonoids, saponins and saccharides) in the separation process were holistically revealed and the number of matching peaks and correlation coefficients with standards of pure compounds was increasing along the extracting directions. The findings were supported by UPLC results and a verification experiment of aqueous separation process. It has been demonstrated that the developed multi-step IR macro-fingerprint analysis-through-separation approach could be a rapid, effective and integrated method not only for objectively providing comprehensive chemical characterization of licorice and all its separated parts, but also for rapidly revealing the global enrichment trend of the active components in licorice separation process.