Sample records for subshell fluorescence yields

  1. L i ( i=1,2,3) subshell X-ray production cross-sections and fluorescence yields for Ir, Pt, Pb and Bi

    NASA Astrophysics Data System (ADS)

    Singh, P.; Sharma, M.; Shahi, J. S.; Mehta, D.; Singh, N.

    2003-09-01

    The L i ( i=1,2,3) subshell X-ray production (XRP) cross-sections were measured for 77Ir, 78Pt, 82Pb and 83Bi following direct ionization in the L i ( i=1,2,3) subshells by the 59.54 keV γ-rays and the L 3 subshell by the Br/Rb/Sr/Y K X-rays. The photon sources consisting of an 241Am source in (i) the direct excitation mode and (ii) the secondary excitation mode together with the KBr/RbNO 3/SrCO 3 /Y secondary exciter and an Si(Li) detector were used. The L i ( i=1,2,3) subshell fluorescence yields ( ωi) for these elements were deduced using the measured XRP cross-sections and the L i subshell photoionization cross-sections based on the Hartree-Fock-Slater model. The measured ω1 values are found to be higher upto 50% than those based on the relativistic Dirac-Hartree-Slater (RDHS) calculations, while the ω2 and ω3 values exhibit good agreement. The predicted jump in the RDHS based ω1 values from 77Ir to 78Pt due to onset of intense L 1-L 3M 4 CK transition is not observed.

  2. L x-ray production cross sections in Th and U at 17.8, 25.8 and 46.9 keV photon energies

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Puri, Sanjiv; Shahi, J. S.; Garg, M. L.; Mehta, D.; Singh, Nirmal

    2001-02-01

    The L x-ray production (XRP) differential cross sections in Th and U have been measured at the 17.8 keV incident photon energy (E_L3

  3. L i ( i = 1-3) subshell X-ray production cross sections and fluorescence yields for some elements with 56 ⩽ Z ⩽ 68 at 22.6 keV

    NASA Astrophysics Data System (ADS)

    Chauhan, Yogeshwar; Tiwari, M. K.; Puri, Sanjiv

    2008-01-01

    The L k ( k = l, α, β 1,4, β 3,6, β 2,15,9,10,7, γ 1,5 and γ 2,3,4) X-ray production (XRP) cross sections have been measured for six elements with 56 ⩽ Z ⩽ 68 at 22.6 keV incident photon energy using the EDXRF spectrometer. The incident photon intensity, detector efficiency and geometrical factors have been determined from the K X-ray yields emitted from elemental targets with 22 ⩽ Z ⩽ 42 in the same geometrical setup and from knowledge of the K XRP cross sections. The L 1 and L 2 subshell fluorescence yields have been deduced from the present measured L k XRP cross sections using the relativistic Hartree-Fock-Slater (HFS) model based photoionization cross sections. The present deduced ω1 (exp) values have been found to be, on an average, higher by 15% and 20% than those based on the Dirac-Hartree-Slater (DHS) model and the semi-empirical values compiled by Krause, respectively, for elements with 60 ⩽ Z ⩽ 68.

  4. M ξ, M αβ, M γ and M m X-ray production cross-sections for elements with 71⩽ z⩽92 at 5.96 keV photon energy

    NASA Astrophysics Data System (ADS)

    Sharma, Manju; Sharma, Veena; Kumar, Sanjeev; Puri, S.; Singh, Nirmal

    2006-11-01

    The M ξ, M αβ, M γ and M m X-ray production (XRP) cross-sections have been measured for the elements with 71⩽ Z⩽92 at 5.96 keV incident photon energy satisfying EM1< Einc< EL3, where EM1(L3) is the M 1(L 3) subshell binding energy. These XRP cross-sections have been calculated using photoionization cross-sections based on the relativistic Dirac-Hartree-Slater (RDHS) model with three sets of X-ray emission rates, fluorescence, Coster-Kronig and super Coster-Kronig yields based on (i) the non-relativistic Hartree-Slater (NRHS) potential model, (ii) the RDHS model and (iii) the relativistic Dirac-Fock (RDF) model. For the third set, the M i ( i=1-5) subshell fluorescence yields have been calculated using the RDF model-based X-ray emission rates and total widths reevaluated to incorporate the RDF model-based radiative widths. The measured cross-sections have been compared with the calculated values to check the applicability of the physical parameters based on different models.

  5. Following electron impact excitation of single (N, O, F, Ne, Na, Mg, Al, Si) atom L subshells ionization cross section calculations by using Lotz's equation

    NASA Astrophysics Data System (ADS)

    Aydinol, Mahmut

    2017-02-01

    L shell and L subshells ionization cross sections σL and σLi (i = 1, 2, 3) following electron impact on (N,O, F, Ne, Na, Mg, Al, Si) atoms calculated. By using Lotz' equation for nonrelativistic cases in Matlab σL and σLi cross section values obtained for ten electron impact(Eo) values in the range of ELi

  6. M sub-shell X-ray fluorescence cross-section measurements for six elements in the range Z = 78-92 at tuned synchrotron photon energies 5, 7 and 9 keV.

    NASA Astrophysics Data System (ADS)

    Bansal, Himani; Tiwari, M. K.; Mittal, Raj

    2018-01-01

    M sub-shell X-ray fluorescence cross-sections of elements Pt, Au, Hg, Pb, Th and U have been measured with linearly polarized photon beams from Indus-II synchrotron source at Raja Ramanna Centre for Advanced Technology (RRCAT), India at tuned 5, 7 and 9 keV energies less than the L3 edge energy of elements. Measurements at present energies and elements are not available in literature. Therefore, measured cross-sections for Mξ, Mδ, Mα, Mβ, Mγ, Mm1 and Mm2 group of X-rays were compared with calculated theoretical values based upon Non Relativistic Hartree-Slater (NRHS) and relativistic Dirac-Fork (DF) and Dirac-Hartree-Slater (DHS) models. The measured cross-sections along with our earlier quoted measurements at 8 and 10 keV by Kaur et al. [Nucl. Instrum. Meth. B, 2014; 320: 37] are found in good agreement with DF and DHS values around 20% deviations and are highly deviated from NRHS values. Most of the spots of observed high deviations in measured and theoretical cross-sections are found to coincide with the presence of crisscrosses/sharp variations in contributing physical parameters photo-ionization cross-sections σMi's and Coster-Kronig yields fij's with Zs.

  7. Experimental Verification of the Individual Energy Dependencies of the Partial L-Shell Photoionization Cross Sections of Pd and Mo

    NASA Astrophysics Data System (ADS)

    Hönicke, Philipp; Kolbe, Michael; Müller, Matthias; Mantler, Michael; Krämer, Markus; Beckhoff, Burkhard

    2014-10-01

    An experimental method for the verification of the individually different energy dependencies of L1-, L2-, and L3- subshell photoionization cross sections is described. The results obtained for Pd and Mo are well in line with theory regarding both energy dependency and absolute values, and confirm the theoretically calculated cross sections by Scofield from the early 1970 s and, partially, more recent data by Trzhaskovskaya, Nefedov, and Yarzhemsky. The data also demonstrate the questionability of quantitative x-ray spectroscopical results based on the widely used fixed jump ratio approximated cross sections with energy independent ratios. The experiments are carried out by employing the radiometrically calibrated instrumentation of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II in Berlin; the obtained fluorescent intensities are thereby calibrated at an absolute level in reference to the International System of Units. Experimentally determined fixed fluorescence line ratios for each subshell are used for a reliable deconvolution of overlapping fluorescence lines. The relevant fundamental parameters of Mo and Pd are also determined experimentally in order to calculate the subshell photoionization cross sections independently of any database.

  8. X-ray fluorescence cross sections for K and L x rays of the elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, M.O.; Nestor, C.W. Jr.; Sparks, C.J. Jr.

    1978-06-01

    X-ray fluorescence cross sections are calculated for the major x rays of the K series 5 less than or equal to Z less than or equal to 101, and the three L series 12 less than or equal to Z less than or equal to 101 in the energy range 1 to 200 keV. This calculation uses Scofield's theoretical partical photoionization cross sections, Krause's evaluation of fluorescence and Coster-Kronig yields, and Scofield's theoretical radiative rates. Values are presented in table and graph format, and an estimate of their accuracy is made. The following x rays are considered: K..cap alpha../sub 1/,more » K..cap alpha../sub 1/,/sub 2/, K..beta../sub 1/, K..beta../sub 1/,/sub 3/, L..cap alpha../sub 1/, L..cap alpha../sub 1/,/sub 2/, L..beta../sub 1/, L..beta../sub 2/,/sub 15/, L..beta../sub 3/, Ll, L..gamma../sub 1/, L..gamma../sub 4/, and L/sub 1/ ..-->.. L/sub 2/,/sub 3/. For use in x-ray fluorescence analysis, K..cap alpha.. and L..cap alpha.. fluorescence cross sections are presented at specific energies: TiK identical with 4.55 keV, CrK identical with 5.46 keV, CoK identical with 7.00 keV, CuK identical with 8.13 keV, MoK..cap alpha.. identical with 17.44 keV, AgK identical with 22.5 keV, DyK identical with 47.0 keV, and /sup 241/Am identical with 59.54 keV. Supplementary material includes fluorescence and Coster--Kronig yields, fractional radiative rates, fractional fluorescence yields, total L-shell fluorescence cross sections, fluorescence and Coster-Kronig yields in condensed matter, effective fluorescence yields, average L-shell fluorescence yield, L-subshell photoionization cross section ratios, and conversion factors from barns per atom to square centimeters per gram.« less

  9. Measurement of L subshell photoionisation cross sections of Th and U at 22.6, 25.8, 29.2 and 32.9 kev

    NASA Astrophysics Data System (ADS)

    Santra, S.; Mitra, D.; Sarkar, M.; Bhattacharya, D.

    2007-10-01

    Bremsstrahlung from an X-ray tube was used to excite secondary targets of Ag, Sn, I and Ba to get nearly monochromatic excitation energies of 22.6, 25.8, 29.2 and 32.9 keV, respectively. Th and U were used as targets. The L X-ray fluorescence cross sections of different lines from the targets have been measured. Of the several methods to obtain L subshell photoionisation cross sections from these fluorescence data, the merits and demerits of four common methods have been explained and the method with least uncertainty was suggested as the best one for such analysis. Following this method, with intensities of the resolved Lγ lines, three L subshell photoionisation cross sections have been obtained using six different sets of atomic parameters. The variation of these cross sections with different atomic parameters has been discussed. For σ1, all the derived values are within 30% of one other while for σ2 and σ3, they are within 12%. Measured cross sections have been compared with the data of others and with the theoretical values of Scofield. Finally, the intensity ratios of different L lines have also been compared with available data and the theoretical values. Within experimental errors, our data are in good agreement with the data of others and with the theoretical predictions.

  10. Effect of wave function on the proton induced L XRP cross sections for 62Sm and 74W

    NASA Astrophysics Data System (ADS)

    Shehla, Kaur, Rajnish; Kumar, Anil; Puri, Sanjiv

    2015-08-01

    The Lk(k= 1, α, β, γ) X-ray production cross sections have been calculated for 74W and 62Sm at different incident proton energies ranging 1-5 MeV using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell X-ray emission rates based on the Dirac-Fork (DF) model, the fluorescence and Coster Kronig yields based on the Dirac- Hartree-Slater (DHS) model and two sets the proton ionization cross sections based on the DHS model and the ECPSSR in order to assess the influence of the wave function on the XRP cross sections. The calculated cross sections have been compared with the measured cross sections reported in the recent compilation to check the reliability of the calculated values.

  11. Effect of wave function on the proton induced L XRP cross sections for {sub 62}Sm and {sub 74}W

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shehla,; Kaur, Rajnish; Kumar, Anil

    The L{sub k}(k= 1, α, β, γ) X-ray production cross sections have been calculated for {sub 74}W and {sub 62}Sm at different incident proton energies ranging 1-5 MeV using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell X-ray emission rates based on the Dirac-Fork (DF) model, the fluorescence and Coster Kronig yields based on the Dirac- Hartree-Slater (DHS) model and two sets the proton ionization cross sections based on the DHS model and the ECPSSR in order to assess the influence of the wave function on the XRP cross sections. The calculated cross sections have been compared withmore » the measured cross sections reported in the recent compilation to check the reliability of the calculated values.« less

  12. Theoretical X-ray production cross sections at incident photon energies across Li (i=1-3) absorption edges of Br

    NASA Astrophysics Data System (ADS)

    Puri, Sanjiv

    2015-08-01

    The X-ray production (XRP) cross sections, σLk (k = l, η, α, β6, β1, β3, β4, β9,10, γ1,5, γ2,3) have been evaluated at incident photon energies across the Li(i=1-3) absorption edge energies of 35Br using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.

  13. Study of Kα2 /Kα1 RYIED in closed and open shell Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Chaves, P. C.; Tribolet, A. D.; Reis, M. A.

    2016-01-01

    Relative Yield Ion Energy Dependence (RYIED) was observed, named and reported as phenomenological evidence in 2005 (Reis et al., 2005). Since then, it was observed in transitions to the same subshell, and plausible explanations for the physics behind the phenomena have been proposed. In this work we present experimental evidence of the RYIED effect on the most inner transition possible in two Rare Earth Elements (REE), namely variations in the intensity ratio of Kα2 /Kα1 X-rays from Tm and Yb irradiated under different conditions. These REE are particularly interesting to start with since Yb has an electronic configuration where all the subshells are completely filled, whilst Tm misses one electron in the 4f subshell. Ultrapure oxides of each element were irradiated using proton beams having energies in the range of 0.9-3.6 MeV, in steps of 100 keV. Spectra were collected using the CdTe detector of the HRHE-PIXE set-up of C2TN and analysed using the DT2 code. Finally, the vanishing of the effect upon charging up of the target has been observed and will be discussed.

  14. Theoretical X-ray production cross sections at incident photon energies across L{sub i} (i=1-3) absorption edges of Br

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puri, Sanjiv

    The X-ray production (XRP) cross sections, σ{sub Lk} (k = l, η, α, β{sub 6}, β{sub 1}, β{sub 3}, β{sub 4}, β{sub 9,10}, γ{sub 1,5}, γ{sub 2,3}) have been evaluated at incident photon energies across the L{sub i}(i=1-3) absorption edge energies of {sub 35}Br using theoretical data sets of different physical parameters, namely, the L{sub i}(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, inmore » order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.« less

  15. L -subshell ionization of Ce, Nd, and Lu by 4-10-MeV C ions

    NASA Astrophysics Data System (ADS)

    Lapicki, G.; Mandal, A. C.; Santra, S.; Mitra, D.; Sarkar, M.; Bhattacharya, D.; Sen, P.; Sarkadi, L.; Trautmann, D.

    2005-08-01

    Ll,Lα,Lβ,Lγ,Lγ1+5,Lγ2+3,Lγ4+4' x-ray production cross sections of Ce58 , Nd60 and Lu71 induced by 4-, 6-, 8-, and 10-MeV carbon ions were measured. For Lu, Lγ2+3 is separated from Lγ2+3+6 after revision of the technique of Datz so that Lγ1+5 was used instead of Lγ1 , the Lγ4+4'/Lγ1+5 ratio was corrected for multiple ionization, and uncertainties in Lγ4+4' were incorporated in the fitting process. L -subshell ionization cross sections were extracted as a weighted average from two combinations of these cross sections, {Lα,Lγ1+5,Lγ2+3} and {Lα,Lγ1+5,Lγ} . It is shown that, to within a few percent, the first of these two combinations results in the identical cross sections as this weighted average. Within 10%, permutations of different sets of single-hole atomic parameters yielded the same ionization cross sections. These cross sections are typically within 15% and at most 35% of the cross sections obtained with atomic parameters that were altered in two different ways for multiple ionization. Extracted subshell and total L -shell ionization cross sections as well as Ce and Nd data of Braziewicz are compared with the ECPSSR theory of Brandt and Lapicki that accounts for the energy-loss (E), Coulomb-deflection (C), perturbed-stationary-state (PSS) and relativistic (R) effects. These measurements are also compared with the ECPSSR theory after its corrections—in a separated and united atom (USA) treatment, and for the intrashell (IS) transitions with the factors of Sarkadi and Mukoyama normalized to match L -shell cross section with the sum of L -subshell cross sections—as well as with the similarly improved semiclassical approximation of Trautmann. For Ce and Nd, the agreement of the extracted ionization cross sections with these theories is poor for L1 and good for L2 , L3 , and total L shell ionization. For the L2 subshell, this agreement is better for Ce and Nd than for Lu. The ECPSSR theory corrected for the USA and IS effects is surprisingly good for the L1 -subshell ionization of Lu, while at 4MeV a similarly corrected semiclassical approximation is in excellent agreement with L2 and L3 data but overestimates the L1 measurement by almost a factor of 2.

  16. Recombination of open-f-shell tungsten ions

    NASA Astrophysics Data System (ADS)

    Krantz, C.; Badnell, N. R.; Müller, A.; Schippers, S.; Wolf, A.

    2017-03-01

    We review experimental and theoretical efforts aimed at a detailed understanding of the recombination of electrons with highly charged tungsten ions characterised by an open 4f sub-shell. Highly charged tungsten occurs as a plasma contaminant in ITER-like tokamak experiments, where it acts as an unwanted cooling agent. Modelling of the charge state populations in a plasma requires reliable thermal rate coefficients for charge-changing electron collisions. The electron recombination of medium-charged tungsten species with open 4f sub-shells is especially challenging to compute reliably. Storage-ring experiments have been conducted that yielded recombination rate coefficients at high energy resolution and well-understood systematics. Significant deviations compared to simplified, but prevalent, computational models have been found. A new class of ab initio numerical calculations has been developed that provides reliable predictions of the total plasma recombination rate coefficients for these ions.

  17. Photoionization of atomic barium subshells in the 4 d threshold region using the relativistic multiconfiguration Tamm-Dancoff approximation

    NASA Astrophysics Data System (ADS)

    Ganesan, Aarthi; Deshmukh, P. C.; Manson, S. T.

    2017-03-01

    Photoionization cross sections and photoelectron angular distribution asymmetry parameters are calculated for the 4 d10, 5 s2, 5 p6 , and 6 s2 subshells of atomic barium as a test of the relativistic multiconfiguration Tamm-Dancoff (RMCTD) method. The shape resonance present in the near-threshold region of the 4 d subshell is studied in detail in the 4 d photoionization along with the 5 s , 5 p , and 6 s subshells in the region of the 4 d thresholds, as the 4 d shape resonance strongly influences these subshells in its vicinity. The results are compared with available experiment and other many-body theoretical results in an effort to assess the capabilities of the RMCTD methodology. The electron correlations addressed in the RMCTD method give relatively good agreement with the experimental data, indicating that the important many-body correlations are included correctly.

  18. X-ray relative intensities at incident photon energies across the L{sub i} (i=1–3) absorption edges of elements with 35≤Z≤92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puri, Sanjiv, E-mail: sanjivpurichd@yahoo.com

    The intensity ratios, I{sub Lk}/I{sub Lα1} (k=l,η,α{sub 2},β{sub 1},β{sub 2,15},β{sub 3},β{sub 4},β{sub 5,7},β{sub 6},β{sub 9,10},γ{sub 1,5},γ{sub 6,8},γ{sub 2,3},γ{sub 4}) and I{sub Lj}/I{sub Lα} (j=β,γ), have been evaluated at incident photon energies across the L{sub i} (i=1–3) absorption edge energies of all the elements with 35≤Z≤92. Use is made of what are currently considered to be more reliable theoretical data sets of different physical parameters, namely, the L{sub i} (i=1–3) sub-shell photoionization cross sections based on the relativistic Hartree–Fock–Slater (RHFS) model, the X-ray emission rates based on the Dirac–Fock model, and the fluorescence and Coster–Kronig yields based on the Dirac–Hartree–Slater model.more » In addition, the Lα{sub 1} X-ray production cross sections for different elements at various incident photon energies have been tabulated so as to facilitate the evaluation of production cross sections for different resolved L X-ray components from the tabulated intensity ratios. Further, to assist evaluation of the prominent (L{sub i}−S{sub j}) (S{sub j}=M{sub j}, N{sub j} and i=1–3, j=1–7) resonant Raman scattered (RRS) peak energies for an element at a given incident photon energy (below the L{sub i} sub-shell absorption edge), the neutral-atom electron binding energies based on the relaxed orbital RHFS calculations are also listed so as to enable identification of the RRS peaks, which can overlap with the fluorescent X-ray lines. -- Highlights: •The L X-ray relative intensities and Lα{sub 1} XRP cross sections are evaluated using physical parameters based on the IPA models. •Comparison of the intensity ratios evaluated using the DHS and DF models based photoionization cross sections is presented. •Importance of many body effects including electron exchange effects is highlighted.« less

  19. QED effects on individual atomic orbital energies

    NASA Astrophysics Data System (ADS)

    Kozioł, Karol; Aucar, Gustavo A.

    2018-04-01

    Several issues, concerning QED corrections, that are important in precise atomic calculations are presented. The leading QED corrections, self-energy and vacuum polarization, to the orbital energy for selected atoms with 30 ≤ Z ≤ 118 have been calculated. The sum of QED and Breit contributions to the orbital energy is analyzed. It has been found that for ns subshells the Breit and QED contributions are of comparative size, but for np and nd subshells the Breit contribution takes a major part of the QED+Breit sum. It has also, been found that the Breit to leading QED contributions ratio for ns subshells is almost independent of Z. The Z-dependence of QED and Breit+QED contributions per subshell is shown. The fitting coefficients may be used to estimate QED effects on inner molecular orbitals. We present results of our calculations for QED contributions to orbital energy of valence ns-subshell for group 1 and 11 atoms and discuss about the reliability of these numbers by comparing them with experimental first ionization potential data.

  20. Local suppression of collectivity in the N=80 isotones at the Z=58 subshell closure

    NASA Astrophysics Data System (ADS)

    Bauer, C.; Rainovski, G.; Pietralla, N.; Bianco, D.; Blazhev, A.; Bloch, T.; Bönig, S.; Damyanova, A.; Danchev, M.; Gladnishki, K. A.; Kröll, T.; Leske, J.; Lo Iudice, N.; Möller, T.; Moschner, K.; Pakarinen, J.; Reiter, P.; Scheck, M.; Seidlitz, M.; Siebeck, B.; Stahl, C.; Stegmann, R.; Stora, T.; Stoyanov, Ch.; Tarpanov, D.; Vermeulen, M. J.; Voulot, D.; Warr, N.; Wenander, F.; Werner, V.; De Witte, H.

    2013-08-01

    Background: Recent data on N=80 isotones have suggested that the proton π(1g7/2) subshell closure at Z=58 has an impact on the properties of low-lying collective states.Purpose: Knowledge of the B(E2;21+→01+) value of 140Nd is needed in order to test this conjecture.Method: The unstable, neutron-rich nucleus 140Nd was investigated via projectile Coulomb excitation at the REX-ISOLDE facility with the MINIBALL spectrometer.Results: The B(E2) value of 33(2) W.u. expands the N=80 systematics beyond the Z=58 subshell closure.Conclusions: The measurement demonstrates that the reduced collectivity of 138Ce is a local effect possibly due to the Z=58 subshell closure and requests refined theoretical calculations. The latter predict a smoothly increasing trend.

  1. Disorders of metal metabolism

    PubMed Central

    Ferreira, Carlos R.; Gahl, William A.

    2017-01-01

    Trace elements are chemical elements needed in minute amounts for normal physiology. Some of the physiologically relevant trace elements include iodine, copper, iron, manganese, zinc, selenium, cobalt and molybdenum. Of these, some are metals, and in particular, transition metals. The different electron shells of an atom carry different energy levels, with those closest to the nucleus being lowest in energy. The number of electrons in the outermost shell determines the reactivity of such an atom. The electron shells are divided in sub-shells, and in particular the third shell has s, p and d sub-shells. Transition metals are strictly defined as elements whose atom has an incomplete d sub-shell. This incomplete d sub-shell makes them prone to chemical reactions, particularly redox reactions. Transition metals of biologic importance include copper, iron, manganese, cobalt and molybdenum. Zinc is not a transition metal, since it has a complete d sub-shell. Selenium, on the other hand, is strictly speaking a nonmetal, although given its chemical properties between those of metals and nonmetals, it is sometimes considered a metalloid. In this review, we summarize the current knowledge on the inborn errors of metal and metalloid metabolism. PMID:29354481

  2. Inner-shell photoionization and core-hole decay of Xe and XeF2.

    PubMed

    Southworth, Stephen H; Wehlitz, Ralf; Picón, Antonio; Lehmann, C Stefan; Cheng, Lan; Stanton, John F

    2015-06-14

    Photoionization cross sections and partial ion yields of Xe and XeF2 from Xe 3d(5/2), Xe 3d(3/2), and F 1s subshells in the 660-740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF2 cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionization show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F(+) and F(2+) ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe(+) and F(+) ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.

  3. Inner-shell photoionization and core-hole decay of Xe and XeF 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southworth, Stephen H.; Wehlitz, Ralf; Picón, Antonio

    2015-06-14

    Photoionization cross sections and partial ion yields of Xe and XeF2 from Xe 3d5/2, Xe 3d3/2, and F 1s subshells in the 660–740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF2 cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionization show that the charge-statemore » distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F+ and F2+ ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe+ and F+ ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.« less

  4. Dielectronic recombination of the 4p and 4d open sub-shell tungsten ions

    NASA Astrophysics Data System (ADS)

    Li, M. J.; Fu, Y. B.; Zhang, G. D.; Zhang, Y. Z.; Dong, C. Z.; Koike, F.

    2014-04-01

    Dielectronic recombination rate coefficients are given theoretically for several highly charged tungsten ions. As 4p open sub-shell ions, Ga-, Ge-, As-, Br-, Kr-like ions are considered. Rb-like ion is further considered as a 4d open sub-shell ion. Theoretical calculations are carried out using a relativistic atomic code FAC. The effect of configuration interaction is taking into account. Inner-shell electron excitations play a significant role for the dielectronic recombination process. Simple analytical formulae are given for the total rate coefficients by fitting to the presently obtained numerical results.

  5. Strong Inter-channel Effects in Dipole Photoionization of d-subshells of Xe, Cs, and Ba Atoms

    NASA Astrophysics Data System (ADS)

    Manson, S.; Amusia, M.; Baltenkov, A.; Chernysheva, L.; Felfli, Z.; Msezane, A.

    2003-05-01

    In the framework of a specially modified Random Phase Approximation with Exchange approach (SPRPAE) developed for half-filled atomic subshells the dipole angular anisotropy parameters β(ω) for the 3d-photoionization of Xe, Cs and Ba atoms have been calculated. The main point of this approach is that we consider the 3d electrons of these atoms as belonging to two semi-filled atomic levels that contain two different sorts of electrons, namely that six electrons form the 3d_5/2 subshell (called "up"), while the other four electrons form the 3d_3/2 subshell (called "down"). This permits to apply straightforwardly the RPAE for these semi-filled subshells. We show that the interaction between "up" and "down" electrons results in a qualitative alteration of the frequency (ω) dependence of β_5/2(ω) and β_3/2(ω) that define the photoelectron angular distribution from the 3d_5/2 and 3d_3/2 levels. In all these atoms the effect of 3d_3/2 upon 3d_5/2 leads to the creation of an additional maximum near the photoionization thresholds, while the effect for 3d_3/2 is rather weak. Work supported by CRDF (No ZP1- 2449-TA-02), ISTC grant 1358 and NSF

  6. The P-factor and atomic mass systematics: Application to medium mass nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenner, D.S.; Haustein, P.E.; Casten, R.F.

    1988-01-01

    The P formalism was applied to atomic mass systematics for medium and heavy nuclei. The P-factor linearizes the structure-dependent part of the nuclear mass in those regions which are free from subshell effects indicating that the attractive quadrupole p-n force plays an important role in determining the binding of valence nucleons. Where marked non-linearities occur, the P-factor provides a means for recognizing subshell closures and/or other structural features not embodied in the simple assumptions of abrupt shell or subshell changes. These are thought to be regions where the monopole part of the p-n interaction is highly orbit dependent and altersmore » the underlying single-particle structure as a function of A, N or Z. Finally, in those regions where the systematics are smooth and subshells are absent, the P-factor provides a means for predicting masses of some nuclei far-from-stability by interpolation rather than by extrapolation. 5 figs.« less

  7. Inner-shell photoionization and core-hole decay of Xe and XeF{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southworth, Stephen H.; Picón, Antonio; Lehmann, C. Stefan

    2015-06-14

    Photoionization cross sections and partial ion yields of Xe and XeF{sub 2} from Xe 3d{sub 5/2}, Xe 3d{sub 3/2}, and F 1s subshells in the 660–740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF{sub 2} cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionizationmore » show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F{sup +} and F{sup 2+} ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe{sup +} and F{sup +} ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.« less

  8. Periodicity and Some Graphical Insights on the Tendency toward Empty, Half-full, and Full Subshells.

    ERIC Educational Resources Information Center

    Rich, Ronald L.; Suter, Robert W.

    1988-01-01

    Investigates ground state electron configurations for some common elements using graphical methods. Bases observed tendencies on following ideas: "occupancy of differing shells, occupancy of differing subshells within a given shell, double occupancy vs. single occupancy of an orbital, and quantum-mechanical exchange." (ML)

  9. Following electron impact excitations of Rn, Ra, Th, U and Pu single atom L sub-shells ionization cross section calculations by using Lotz’s equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayinol, M., E-mail: aydinolm@dicle.edu.tr; Aydeniz, D., E-mail: daydeniz@hotmail.com

    L shell ionization cross section and L{sub i} subshells ionization cross sections of Rn, Ra, Th, U, Pu atoms calculated. For each of atoms, ten different electron impact energy values (E{sub o}) are used. Calculations carried out by using Lotz equation in Matlab. First, calculations done for non-relativistic case by using non-relativistic Lotz equation then repeated with relativistic Lotz equation. σ{sub L} total and σ{sub Li}(i = 1,2,3) subshells ionisation cross section values obtained for E{sub o} values in the energy range of E{sub Li}

  10. Inner-shell/subshell photoionization cross section measurements using a gamma excited variable energy X-ray source

    NASA Astrophysics Data System (ADS)

    Sood, B. S.; Allawadhi, K. L.; Arora, S. K.

    1982-02-01

    The method developed for the determination of K/L shell photoionization cross sections in various elements, 39 ≤ Z ≤ 92, in the characteristic X-ray energy region using a gamma excited variable energy X-ray source has been used for the measurement of L III subshell photoionization cross sections in Pb, Th and U. The measurements are made at the K X-ray energies of Rb, Nb and Mo, since these are able to excite selectively the L III subshells of Pb, Th and U, respectively. The results, when compared with theoretical calculations of Scofield, are found to agree within the uncertainties of determination.

  11. Earth, air, fire and water: A targetry quartet

    NASA Astrophysics Data System (ADS)

    Valdovinos, Hector F.; Graves, Stephen; Ellison, Paul; Barnhart, Todd; Nickles, Robert J.

    2017-05-01

    Cyclotron targets have made steady progress in terms of current capabilities, automated handling and application to isotopically-enriched material. These advances have followed a distinct trajectory at the University of Wisconsin, with the emphasis on maximizing the yield of the desired radionuclide within the strict constraints of heat transfer of beam power and the ultimate recycling of precious target stock. This approach leads to four target families, each employed in the production of the positron-emitting transition metals of the 3d- and 4d-subshells, with importance now arising as targeted molecular imaging agents.

  12. K and L X-ray production cross sections and intensity ratios of rare-earth elements for proton impact in the energy range 20-25 MeV

    NASA Astrophysics Data System (ADS)

    Hajivaliei, M.; Puri, Sanjiv; Garg, M. L.; Mehta, D.; Kumar, A.; Chamoli, S. K.; Avasthi, D. K.; Mandal, A.; Nandi, T. K.; Singh, K. P.; Singh, Nirmal; Govil, I. M.

    2000-02-01

    The Kα1, Kα2, Kβ1, Kβ2, and the Lℓ, Lα, Lβ and Lγ X-ray production (XRP) cross sections and the relative intensity ratios for seven rare-earth elements with 60⩽Z⩽70 have been measured for 20, 22 and 25 MeV proton impact. The experimental data on the L-shell XRP cross sections for high energy proton impact have been reported for the first time. The measured XRP cross sections for all the K-lines and the relative intensity ratios Kα1/Kα, Kα2/Kα, Kβ1/Kα, Kβ2/Kα and Kβ/Kα are in good agreement with the theoretical ones calculated using ECPSSR ionisation cross sections for all the elements investigated at the three beam energies. The Lℓ, Lα, Lβ, and Lγ XRP cross sections measured at the three proton energies are found to be in general higher than the theoretical values calculated using the ECPSSR ionisation cross sections and the RDHS model-based Li sub-shell fluorescence and Coster-Kronig (CK) yields. The measured relative intensity ratios Lβ/Lα, and Lγ/Lα exhibit good agreement with the theoretical ones for all the elements under investigation, whereas the Lℓ/Lα ratios are found to deviate from the theoretical ones.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydinol, M., E-mail: aydinolm@dicle.edu.tr; Aydeniz, D., E-mail: daydeniz@hotmail.com

    L shell ionization cross section and {sub Li} subshells ionization cross sections of Os, Pt, Hg, Pb, Po atoms calculated. For each atom, ten different electron impacty energy values E{sub oi} used. Calculations carried out by using nonrelativistic Lotz equation in Matlab. Ionization cross section values obtained for Eoi values in the energy range of E{sub Li} ≤E{sub oi}≤4E{sub Li} for each atom. Starting allmost from E{sub oi} = E{sub Li} (i = 1,2,3) values of the each subshell ionization threshold energy, ionization cross section are increasing rapidly with E{sub oi}. For a fixed E{sub oi} = 3. E{sub Li}more » values, while Z increases from Z = 76 to Z = 84, ionization cross section are decrease. These results help to understand some results which obtained from other electron-sigle atom impact studies on σ{sub Li} subshells.« less

  14. Photoionization and electron-impact ionization of Ar5+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.C.; Lu, M.; Esteves, D.

    2007-02-27

    Absolute cross sections for photoionization andelectron-impact Photionization of Ar5+ have been measuredusing twodifferent interacting-beams setups. The spectra consist of measurementsof the yield of products dueto single ionization as a function ofelectron or photon energy. In addition, absolute photoionization andelectron-impact ionization cross sections were measured to normalize themeasured Ar6+ product-ion yield spectra. In the energy range from 90 to111 eV, both electron-impact ionization and photoionization of Ar5+aredominated by indirect 3s subshell excitation-autoionization. In theenergy range from 270 to 285 eV, resonances due to 2p-3dexcitation-autoionization are prominent in the photoionization spectrum.In the range from 225 to 335 eV, an enhancement due tomore » 2p-nl (n>2>excitations are evident in the electron-impactionization cross section.The electron and photon impact data show some features due to excitationof the same intermediate autoionizing states.« less

  15. Angle-resolved Wigner time delay in atomic photoionization: The 4 d subshell of free and confined Xe

    NASA Astrophysics Data System (ADS)

    Mandal, A.; Deshmukh, P. C.; Kheifets, A. S.; Dolmatov, V. K.; Manson, S. T.

    2017-11-01

    The angular dependence of photoemission time delay for the inner n d3 /2 and n d5 /2 subshells of free and confined Xe is studied in the dipole relativistic random phase approximation. A finite spherical annular well potential is used to model the confinement due to fullerene C60 cage. Near cancellations in a variety of the dipole amplitudes, Cooper-like minima, are found. The effects of confinement on the angular dependence, primarily confinement resonances, are demonstrated and detailed.

  16. Evolution of Structure in Nuclei: Meditation by Sub-Shell Modifications and Relation to Binding Energies

    NASA Astrophysics Data System (ADS)

    Casten, R. F.; Cakirli, R. B.

    2009-03-01

    Understanding the development of configuration mixing, coherence, collectivity, and deformation in nuclei is one of the crucial challenges in nuclear structure physics, and one which has become all the more important with the advent of next generation facilities for the study of exotic nuclei. We will discuss recent work on phase/shape transitional behavior in nuclei, and the role of changes in sub-shell structure in mediating such transitional regions. We will also discuss a newly found, much deeper, link between nuclear structure and nuclear binding energies.

  17. Shell structures in aluminum nanocontacts at elevated temperatures

    PubMed Central

    2012-01-01

    Aluminum nanocontact conductance histograms are studied experimentally from room temperature up to near the bulk melting point. The dominant stable configurations for this metal show a very early crossover from shell structures at low wire diameters to ionic subshell structures at larger diameters. At these larger radii, the favorable structures are temperature-independent and consistent with those expected for ionic subshell (faceted) formations in face-centered cubic geometries. When approaching the bulk melting temperature, these local stability structures become less pronounced as shown by the vanishing conductance histogram peak structure. PMID:22325572

  18. Coupled tensorial forms of the second-order effective Hamiltonian for open-subshell atoms in jj-coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jursenas, Rytis, E-mail: Rytis.Jursenas@tfai.vu.l; Merkelis, Gintaras

    2011-01-15

    General expressions for the second-order effective atomic Hamiltonian are derived for open-subshell atoms in jj-coupling. The expansion terms are presented as N-body (N=0,1,2,3) effective operators given in the second quantization representation in coupled tensorial form. Two alternative coupled tensorial forms for each expansion term have been developed. To reduce the number of expressions of the effective Hamiltonian, the reduced matrix elements of antisymmetric two-particle wavefunctions are involved in the consideration. The general expressions presented allow the determination of the spin-angular part of expansion terms when studying correlation effects dealing with a number of problems in atomic structure calculations.

  19. Cross section measurements of radiative KL2,3 RRS in 24Cr and L3M4,5 RRS in 59Pr for Mn Kα1,2 X-rays

    NASA Astrophysics Data System (ADS)

    Sharma, Veena; Upmanyu, Arun; Singh, Ranjit; Singh, Gurjot; Sharma, Hitesh; Kumar, Sanjeev; Mehta, D.

    2017-06-01

    The KL2,3 and L3M4,5 radiative resonant Raman scattering (RRS) cross sections have been measured for the quasimonochromatic Mn Kα1,2 X-rays (5.895 keV) in 24Cr (K-shell level width (ΓK) =1.08 eV) and 59 Pr (L3-subshell level width (ΓL3) =3.60 eV), respectively, using targets in metallic and various chemical forms. The incident Mn Kα1,2 X-ray energy is lower than the K-shell binding energy of 24Cr and L3-subshell binding energy of 59Pr by 94 ΓK (Cr) and 94 ΓL3 (Pr), respectively. The experimental measurements were performed with a low energy Ge detector (LEGe) and a radioactive 55Fe annular source in conjunction with 24Cr absorber. The measured cross section values for the 24Cr and 59 Pr elements in their various oxidation states are found to be same within experimental errors. The measurements were further extended to investigate alignment of the intermediate L3-subshell (J =3/2) virtual vacancy states in 59Pr through angular distribution measurements for RRS photon emission, which is found to be isotropic within experimental errors.

  20. Fluorescence Quantum Yield Measurements of Fluorescent Proteins: A Laboratory Experiment for a Biochemistry or Molecular Biophysics Laboratory Course

    ERIC Educational Resources Information Center

    Wall, Kathryn P.; Dillon, Rebecca; Knowles, Michelle K.

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts…

  1. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    PubMed

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum. © 2014 The International Union of Biochemistry and Molecular Biology.

  2. Calculation of K-shell fluorescence yields for low-Z elements

    NASA Astrophysics Data System (ADS)

    Nekkab, M.; Kahoul, A.; Deghfel, B.; Aylikci, N. Küp; Aylikçi, V.

    2015-03-01

    The analytical methods based on X-ray fluorescence are advantageous for practical applications in a variety of fields including atomic physics, X-ray fluorescence surface chemical analysis and medical research and so the accurate fluorescence yields (ωK) are required for these applications. In this contribution we report a new parameters for calculation of K-shell fluorescence yields (ωK) of elements in the range of 11≤Z≤30. The experimental data are interpolated by using the famous analytical function (ωk/(1 -ωk)) 1 /q (were q=3, 3.5 and 4) vs Z to deduce the empirical K-shell fluorescence yields. A comparison is made between the results of the procedures followed here and those theoretical and other semi-empirical fluorescence yield values. Reasonable agreement was typically obtained between our result and other works.

  3. Evolution of the N = 40 neutron subshell in 20 ≤ Z ≤ 30 nuclei within the dispersive optical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bespalova, O. V., E-mail: besp@sinp.msu.ru; Ermakova, T. A.; Klimochkina, A. A.

    2016-07-15

    The evolution of single-particle neutron spectra in the N = 40 isotones {sup 60}Ca, {sup 62}Ti, {sup 64}Cr, {sup 66}Fe, {sup 68}Ni, and {sup 70}Zn is calculated on the basis of the mean-field model featuring a dispersive optical potential. The results of these calculations agree with the idea that the degree of collectivity becomes higher in the {sup 64}Сr nucleus and that the coupling of single-particle motion to this collectivity becomes stronger, as well as with available experimental data, which are indicative of the closure of the N = 40 subshell in {sup 68}Ni and of the trend toward thismore » closure in {sup 60}Ca.« less

  4. MCNP6.1 simulations for low-energy atomic relaxation: Code-to-code comparison with GATEv7.2, PENELOPE2014, and EGSnrc

    NASA Astrophysics Data System (ADS)

    Jung, Seongmoon; Sung, Wonmo; Lee, Jaegi; Ye, Sung-Joon

    2018-01-01

    Emerging radiological applications of gold nanoparticles demand low-energy electron/photon transport calculations including details of an atomic relaxation process. Recently, MCNP® version 6.1 (MCNP6.1) has been released with extended cross-sections for low-energy electron/photon, subshell photoelectric cross-sections, and more detailed atomic relaxation data than the previous versions. With this new feature, the atomic relaxation process of MCNP6.1 has not been fully tested yet with its new physics library (eprdata12) that is based on the Evaluated Atomic Data Library (EADL). In this study, MCNP6.1 was compared with GATEv7.2, PENELOPE2014, and EGSnrc that have been often used to simulate low-energy atomic relaxation processes. The simulations were performed to acquire both photon and electron spectra produced by interactions of 15 keV electrons or photons with a 10-nm-thick gold nano-slab. The photon-induced fluorescence X-rays from MCNP6.1 fairly agreed with those from GATEv7.2 and PENELOPE2014, while the electron-induced fluorescence X-rays of the four codes showed more or less discrepancies. A coincidence was observed in the photon-induced Auger electrons simulated by MCNP6.1 and GATEv7.2. A recent release of MCNP6.1 with eprdata12 can be used to simulate the photon-induced atomic relaxation.

  5. Studies on Cation-induced Thylakoid Membrane Stacking, Fluorescence Yield, and Photochemical Efficiency 1

    PubMed Central

    Jennings, Robert Charles; Forti, Giorgio; Gerola, Paolo Domenico; Garlaschi, Flavio Massimo

    1978-01-01

    Trypsin digestion of photosynthetic membranes isolated from spinach (Spinacia oleracea L.) leaves eliminates the cation stimulation of chlorophyll fluorescence. High concentrations of cations protect the fluorescence yield against trypsin digestion, and the cation specificity for this protection closely resembles that required for the stimulation of fluorescence by cations. Trypsin digestion reverses cation-induced thylakoid stacking, and the time course of this effect seems to parallel that of the reversal of cation fluorescence. High concentrations of cations protect thylakoid stacking and cation-stimulated fluorescence alike. The cation stimulation of photosytem II photochemistry remains intact after trypsinization has reversed both cation-induced thylakoid stacking and fluorescence yield. It is concluded that cation-stimulated fluorescence yield, and not the cation stimulation of photosystem II photochemistry, is associated with thylakoid membrane stacking. ImagesFig. 2Fig. 3 PMID:16660630

  6. Effects of Bleaching by Nitrogen Deficiency on the Quantum Yield of Photosystem II in Synechocystis sp. PCC 6803 Revealed by Chl Fluorescence Measurements.

    PubMed

    Ogawa, Takako; Sonoike, Kintake

    2016-03-01

    Estimation of photosynthesis by Chl fluorescence measurement of cyanobacteria is always problematic due to the interference from respiratory electron transfer and from phycocyanin fluorescence. The interference from respiratory electron transfer could be avoided by the use of DCMU or background illumination by blue light, which oxidizes the plastoquinone pool that tends to be reduced by respiration. On the other hand, the precise estimation of photosynthesis in cells with a different phycobilisome content by Chl fluorescence measurement is difficult. By subtracting the basal fluorescence due to the phycobilisome and PSI, it becomes possible to estimate the precise maximum quantum yield of PSII in cyanobacteria. Estimated basal fluorescence accounted for 60% of the minimum fluorescence, resulting in a large difference between the 'apparent' yield and 'true' yield under high phycocyanin conditions. The calculated value of the 'true' maximum quantum yield of PSII was around 0.8, which was similar to the value observed in land plants. The results suggest that the cause of the apparent low yield reported in cyanobacteria is mainly ascribed to the interference from phycocyanin fluorescence. We also found that the 'true' maximum quantum yield of PSII decreased under nitrogen-deficient conditions, suggesting the impairment of the PSII reaction center, while the 'apparent' maximum quantum yield showed a marginal change under the same conditions. Due to the high contribution of phycocyanin fluorescence in cyanobacteria, it is essential to eliminate the influence of the change in phycocyanin content on Chl fluorescence measurement and to evaluate the 'true' photosynthetic condition. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Fluorescence quantum yield of carbon dioxide for quantitative UV laser-induced fluorescence in high-pressure flames

    NASA Astrophysics Data System (ADS)

    Lee, T.; Bessler, W. G.; Yoo, J.; Schulz, C.; Jeffries, J. B.; Hanson, R. K.

    2008-11-01

    The fluorescence quantum yield for ultraviolet laser-induced fluorescence of CO2 is determined for selected excitation wavelengths in the range 215-250 nm. Wavelength-resolved laser-induced fluorescence (LIF) spectra of CO2, NO, and O2 are measured in the burned gases of a laminar CH4/air flame ( φ=0.9 and 1.1) at 20 bar with additional NO seeded into the flow. The fluorescence spectra are fit to determine the relative contribution of the three species to infer an estimate of fluorescence quantum yield for CO2 that ranges from 2-8×10-6 depending on temperature and excitation wavelength with an estimated uncertainty of ±0.5×10-6. The CO2 fluorescence signal increases linearly with gas pressure for flames with constant CO2 mole fraction for the 10 to 60 bar range, indicating that collisional quenching is not an important contributor to the CO2 fluorescence quantum yield. Spectral simulation calculations are used to choose two wavelengths for excitation of CO2, 239.34 and 242.14 nm, which minimize interference from LIF of NO and O2. Quantitative LIF images of CO2 are demonstrated using these two excitation wavelengths and the measured fluorescence quantum yield.

  8. Probing the N = 14 subshell closure: g factor of the 26Mg (21+) state

    NASA Astrophysics Data System (ADS)

    McCormick, B. P.; Stuchbery, A. E.; Kibédi, T.; Lane, G. J.; Reed, M. W.; Eriksen, T. K.; Hota, S. S.; Lee, B. Q.; Palalani, N.

    2018-04-01

    The first-excited state g factor of 26Mg has been measured relative to the g factor of the 24Mg (21+) state using the high-velocity transient-field technique, giving g = + 0.86 ± 0.10. This new measurement is in strong disagreement with the currently adopted value, but in agreement with the sd-shell model using the USDB interaction. The newly measured g factor, along with E (21+) and B (E 2) systematics, signal the closure of the νd5/2 subshell at N = 14. The possibility that precise g-factor measurements may indicate the onset of neutron pf admixtures in first-excited state even-even magnesium isotopes below 32Mg is discussed and the importance of precise excited-state g-factor measurements on sd shell nuclei with N ≠ Z to test shell-model wavefunctions is noted.

  9. EUV spectroscopy of highly charged high Z ions in the Large Helical Device plasmas

    NASA Astrophysics Data System (ADS)

    Suzuki, C.; Koike, F.; Murakami, I.; Tamura, N.; Sudo, S.; Sakaue, H. A.; Nakamura, N.; Morita, S.; Goto, M.; Kato, D.; Nakano, T.; Higashiguchi, T.; Harte, C. S.; OʼSullivan, G.

    2014-11-01

    We present recent results on the extreme ultraviolet (EUV) spectroscopy of highly charged high Z ions in plasmas produced in the Large Helical Device (LHD) at the National Institute for Fusion Science. Tungsten, bismuth and lanthanide elements have recently been studied in the LHD in terms of their importance in fusion research and EUV light source development. In relatively low temperature plasmas, quasicontinuum emissions from open 4d or 4f subshell ions are predominant in the EUV region, while the spectra tend to be dominated by discrete lines from open 4s or 4p subshell ions in higher temperature plasmas. Comparative analyses using theoretical calculations and charge-separated spectra observed in an electron beam ion trap have been performed to achieve better agreement with the spectra measured in the LHD. As a result, databases on Z dependence of EUV spectra in plasmas have been widely extended.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekkab, M., E-mail: mohammed-nekkab@yahoo.com; LESIMS laboratory, Physics Department, Faculty of Sciences, University of Setif 1, 19000 Setif; Kahoul, A.

    The analytical methods based on X-ray fluorescence are advantageous for practical applications in a variety of fields including atomic physics, X-ray fluorescence surface chemical analysis and medical research and so the accurate fluorescence yields (ω{sub K}) are required for these applications. In this contribution we report a new parameters for calculation of K-shell fluorescence yields (ω{sub K}) of elements in the range of 11≤Z≤30. The experimental data are interpolated by using the famous analytical function (ω{sub k}/(1−ω{sub k})){sup 1/q} (were q=3, 3.5 and 4) vs Z to deduce the empirical K-shell fluorescence yields. A comparison is made between the resultsmore » of the procedures followed here and those theoretical and other semi-empirical fluorescence yield values. Reasonable agreement was typically obtained between our result and other works.« less

  11. Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence.

    PubMed

    Diamond, Kevin R; Farrell, Thomas J; Patterson, Michael S

    2003-12-21

    Steady-state diffusion theory models of fluorescence in tissue have been investigated for recovering fluorophore concentrations and fluorescence quantum yield. Spatially resolved fluorescence, excitation and emission reflectance Carlo simulations, and measured using a multi-fibre probe on tissue-simulating phantoms containing either aluminium phthalocyanine tetrasulfonate (AlPcS4), Photofrin meso-tetra-(4-sulfonatophenyl)-porphine dihydrochloride The accuracy of the fluorophore concentration and fluorescence quantum yield recovered by three different models of spatially resolved fluorescence were compared. The models were based on: (a) weighted difference of the excitation and emission reflectance, (b) fluorescence due to a point excitation source or (c) fluorescence due to a pencil beam excitation source. When literature values for the fluorescence quantum yield were used for each of the fluorophores, the fluorophore absorption coefficient (and hence concentration) at the excitation wavelength (mu(a,x,f)) was recovered with a root-mean-square accuracy of 11.4% using the point source model of fluorescence and 8.0% using the more complicated pencil beam excitation model. The accuracy was calculated over a broad range of optical properties and fluorophore concentrations. The weighted difference of reflectance model performed poorly, with a root-mean-square error in concentration of about 50%. Monte Carlo simulations suggest that there are some situations where the weighted difference of reflectance is as accurate as the other two models, although this was not confirmed experimentally. Estimates of the fluorescence quantum yield in multiple scattering media were also made by determining mu(a,x,f) independently from the fitted absorption spectrum and applying the various diffusion theory models. The fluorescence quantum yields for AlPcS4 and TPPS4 were calculated to be 0.59 +/- 0.03 and 0.121 +/- 0.001 respectively using the point source model, and 0.63 +/- 0.03 and 0.129 +/- 0.002 using the pencil beam excitation model. These results are consistent with published values.

  12. Photoswitchable Fluorescent Diarylethene Derivatives with Thiophene 1,1-Dioxide Groups: Effect of Alkyl Substituents at the Reactive Carbons

    PubMed Central

    Sumi, Takaki; Irie, Masahiro

    2017-01-01

    Photoswitching and fluorescent properties of sulfone derivatives of 1,2-bis(2-alkyl-4-methyl-5-phenyl-3-thienyl)perfluorocyclopentene, 1–5, having methyl, ethyl, n-propyl, i-propyl, and i-butyl substituents at the reactive carbons (2- and 2′-positions) of the thiophene 1,1-dioxide rings were studied. Diarylethenes 1–5 underwent isomerization reactions between open-ring and closed-ring forms upon alternate irradiation with ultraviolet (UV) and visible light and showed fluorescence in the closed-ring forms. The alkyl substitution at the reactive carbons affects the fluorescent property of the closed-ring isomers. The closed-ring isomers 2b–5b with ethyl, n-propyl, i-propyl, and i-butyl substituents show higher fluorescence quantum yields than 1b with methyl substituents. In polar solvents, the fluorescence quantum yield of 1b markedly decreases, while 2b–5b maintain the relatively high fluorescence quantum yields. Although the cycloreversion quantum yields of the derivatives with methyl, ethyl, n-propyl, and i-propyl substituents are quite low and in the order of 10−5, introduction of i-butyl substituents was found to increase the yield up to the order of 10−3. These results indicate that appropriate alkyl substitution at the reactive carbons is indispensable for properly controlling the photoswitching and fluorescent properties of the photoswitchable fluorescent diarylethenes, which are potentially applicable to super-resolution fluorescence microscopies. PMID:28869489

  13. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement.

    PubMed

    Wei, Zhangwen; Gu, Zhi-Yuan; Arvapally, Ravi K; Chen, Ying-Pin; McDougald, Roy N; Ivy, Joshua F; Yakovenko, Andrey A; Feng, Dawei; Omary, Mohammad A; Zhou, Hong-Cai

    2014-06-11

    We demonstrate that rigidifying the structure of fluorescent linkers by structurally constraining them in metal-organic frameworks (MOFs) to control their conformation effectively tunes the fluorescence energy and enhances the quantum yield. Thus, a new tetraphenylethylene-based zirconium MOF exhibits a deep-blue fluorescent emission at 470 nm with a unity quantum yield (99.9 ± 0.5%) under Ar, representing ca. 3600 cm(-1) blue shift and doubled radiative decay efficiency vs the linker precursor. An anomalous increase in the fluorescence lifetime and relative intensity takes place upon heating the solid MOF from cryogenic to ambient temperatures. The origin of these unusual photoluminescence properties is attributed to twisted linker conformation, intramolecular hindrance, and framework rigidity.

  14. Updated database for K-shell fluorescence yields

    NASA Astrophysics Data System (ADS)

    Akdemir, Fatma; Araz, Aslı; Akman, Ferdi; Kaçal, Mustafa Recep; Durak, Rıdvan

    2017-04-01

    This study presents a summary of experimental data of K-shell fluorescence yields (ωK) published in the period of time between 2010 to february-2017. The fluorescence yields (ωK) of elements in the range 23≤Z≤60 taken directly from different sources were reviewed and presented in a table form. Finally, the experimental and empirical values in the literature have been reported and commented.

  15. High yield fabrication of fluorescent nanodiamonds

    PubMed Central

    Boudou, Jean-Paul; Curmi, Patrick; Jelezko, Fedor; Wrachtrup, Joerg; Aubert, Pascal; Sennour, Mohamed; Balasubramanian, Gopalakrischnan; Reuter, Rolf; Thorel, Alain; Gaffet, Eric

    2009-01-01

    A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties. PMID:19451687

  16. Average M shell fluorescence yields for elements with 70≤Z≤92

    NASA Astrophysics Data System (ADS)

    Kahoul, A.; Deghfel, B.; Aylikci, V.; Aylikci, N. K.; Nekkab, M.

    2015-03-01

    The theoretical, experimental and analytical methods for the calculation of average M-shell fluorescence yield (ω¯M ) of different elements are very important because of the large number of their applications in various areas of physical chemistry and medical research. In this paper, the bulk of the average M-shell fluorescence yield measurements reported in the literature, covering the period 1955 to 2005 are interpolated by using an analytical function to deduce the empirical average M-shell fluorescence yield in the atomic range of 70≤Z≤92. The results were compared with the theoretical and fitted values reported by other authors. Reasonable agreement was typically obtained between our result and other works.

  17. Measurements of mass attenuation coefficients and determination of photoionization cross sections at energies across the Li (i=1-3) edges of 66Dy

    NASA Astrophysics Data System (ADS)

    Kaur, Rajnish; Kumar, Anil; Osan, Janos; Czyzycki, M.; Karydas, A. G.; Puri, Sanjiv

    2017-07-01

    The absolute values of the mass attenuation coefficients have been measured at sixty two photon energies across the Li (i=1-3) sub-shell absorption edges of 66Dy covering the region 7.6-14.0 keV in order to investigate the influence of near-edge processes on the attenuation coefficients. The present measured attenuation coefficients are found to be higher by up to 10% than the theoretical values evaluated from the computer code XCOM (Berger et al., 2010) and the self-consistent Dirac-Hartree-Slater (DHS) model based values tabulated by Chantler (1995) over the energy region 7.6-14.0 keV, except at energies in vicinity (few eV) of the Li (i=1-3) sub-shell absorption edge energies where the measured values are significantly higher (up to 37%) than both the sets of theoretical values. Further, the Li (i=1-3) sub-shell photoionization cross sections, (σLiP)exp, deduced from the present measured mass attenuation coefficients are compared with the non-relativistic Hartree-Fock-Slater (HFS) model based values tabulated by Scofield (1973) and those evaluated from the theoretical total photoionization attenuation coefficients tabulated by Chantler (1995). The deduced (σLiP)exp(i=1-3) values are found to be in better agreement with those evaluated from the tabulations given by Chantler (1995) than the values given by Scofield (1973) over the energy region 7.8 - 14.0 keV included in this study. However, at photon energies up to few eV above the Li edges, the deduced (σLiP)exp(i=1-3) values are found to be significantly higher (up to 32%) than both the sets of theoretical values.

  18. Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana.

    PubMed

    Fisahn, Joachim; Klingelé, Emile; Barlow, Peter

    2015-01-01

    The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII).

  19. Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana

    PubMed Central

    Fisahn, Joachim; Klingelé, Emile; Barlow, Peter

    2015-01-01

    The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII). PMID:26376108

  20. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM)more » spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.« less

  1. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols.

    PubMed

    Lee, Hyun Ji Julie; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A

    2013-06-04

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines, and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of water-soluble SOA generated from two monoterpenes, limonene and α-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ∼100 ppb ammonia in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (∼0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for λexcitation = 420 ± 50 nm and λemission = 475 ± 38 nm. The window of the strongest fluorescence shifted to λexcitation = 320 ± 25 nm and λemission = 425 ± 38 nm for the α-pinene-derived SOA. Both regions overlap with the EEM spectra of some of the fluorophores found in primary biological aerosols. Despite the low quantum yield, the aged SOA particles may have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  2. Average M shell fluorescence yields for elements with 70≤Z≤92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahoul, A., E-mail: ka-abdelhalim@yahoo.fr; LPMRN laboratory, Department of Materials Science, Faculty of Sciences and Technology, Mohamed El Bachir El Ibrahimi University, Bordj-Bou-Arreridj 34030; Deghfel, B.

    2015-03-30

    The theoretical, experimental and analytical methods for the calculation of average M-shell fluorescence yield (ω{sup ¯}{sub M}) of different elements are very important because of the large number of their applications in various areas of physical chemistry and medical research. In this paper, the bulk of the average M-shell fluorescence yield measurements reported in the literature, covering the period 1955 to 2005 are interpolated by using an analytical function to deduce the empirical average M-shell fluorescence yield in the atomic range of 70≤Z≤92. The results were compared with the theoretical and fitted values reported by other authors. Reasonable agreement wasmore » typically obtained between our result and other works.« less

  3. Photoionization of Atoms and Molecules using a Configuration-Average Distorted-Wave Method

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.; Balance, C. P.; Loch, S. D.; Ludlow, J. A.

    2011-05-01

    A configuration-average distorted-wave method is applied to calculate the photoionization cross section for the outer subshells of the C atom and the C2 diatomic molecule. Comparisions are made with previous R-matrix and Hartree- Fock distorted-wave calculations.

  4. Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes.

    PubMed

    Tran, D T; Ong, H J; Hagen, G; Morris, T D; Aoi, N; Suzuki, T; Kanada-En'yo, Y; Geng, L S; Terashima, S; Tanihata, I; Nguyen, T T; Ayyad, Y; Chan, P Y; Fukuda, M; Geissel, H; Harakeh, M N; Hashimoto, T; Hoang, T H; Ideguchi, E; Inoue, A; Jansen, G R; Kanungo, R; Kawabata, T; Khiem, L H; Lin, W P; Matsuta, K; Mihara, M; Momota, S; Nagae, D; Nguyen, N D; Nishimura, D; Otsuka, T; Ozawa, A; Ren, P P; Sakaguchi, H; Scheidenberger, C; Tanaka, J; Takechi, M; Wada, R; Yamamoto, T

    2018-04-23

    The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerprint is the existence of the so-called magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin-orbit (SO) coupling force in 1949 helped in explaining the magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number six in 13-20 C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on 14,15 C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon-nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics.

  5. Atmospheric Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K.; Sokolsky, P.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric fluorescence from these showers. Accurate knowledge of the conversion from atmospheric fluorescence to energy loss by ionizing particles in the atmosphere is key to this technique. In this paper we discuss a small balloon-borne instrument to make the first in situ measurements versus altitude of the atmospheric fluorescence yield. The instrument can also be used in the lab to investigate the dependence of the fluorescence yield in air on temperature, pressure and the concentrations of other gases that present in the atmosphere. The results can be used to explore environmental effects on and improve the accuracy of cosmic ray energy measurements for existing ground-based experiments and future space-based experiments.

  6. Hydroxyl Radical Fluorescence and Quantum Yield Following Lyman-α Photoexcitation of Water Vapor in a Room Temperature Cell and Cooled in a Supersonic Expansion.

    PubMed

    Young, Justin W; Booth, Ryan S; Vogelhuber, Kristen M; Stearns, Jaime A; Annesley, Christopher J

    2018-06-28

    Photoexcitation of water by Lyman-α (121.6 nm) induces a dissociation reaction that produces OH(A 2 Σ + ) + H. Despite this reaction being part of numerous studies, a combined understanding of the product and fluorescence yields is still lacking. Here, the rotational and vibrational distributions of OH(A) are determined from dispersed fluorescence following photoexcitation of both room-temperature and jet-cooled water vapor, for the first time in the same experiment. This work compares new data of state-resolved fluorescence with literature molecular branching ratios and brings previous studies into agreement through careful consideration of OH(A) fluorescent and predissociation lifetimes and confirms a fluorescent quantum yield of 8%. Comparison of the room-temperature and jet-cooled OH(A) populations indicate the temperature of H 2 O prior to excitation has subtle effects on the OH(A) population distribution, such as altering the rotational distribution in the ν' = 0 population and affecting the population in the ν' = 1 state. These results indicate jet-cooled water vapor may have a 1% higher fluorescence quantum yield compared to room-temperature water vapor.

  7. Geometric Electron Models.

    ERIC Educational Resources Information Center

    Nika, G. Gerald; Parameswaran, R.

    1997-01-01

    Describes a visual approach for explaining the filling of electrons in the shells, subshells, and orbitals of the chemical elements. Enables students to apply the principles of atomic electron configuration while using manipulatives to model the building up of electron configurations as the atomic numbers of elements increase on the periodic…

  8. [Effects of plastic film mulching and rain harvesting modes on chlorophyll fluorescence characteristics, yield and water use efficiency of dryland maize].

    PubMed

    Li, Shang-Zhong; Fan, Ting-Lu; Wang, Yong; Zhao, Gang; Wang, Lei; Tang, Xiao-Ming; Dang, Yi; Zhao, Hui

    2014-02-01

    The differences on chlorophyll fluorescence parameters, yield and water use efficiency of dryland maize were compared among full plastic film mulching on double ridges and planting in catchment furrows (FFDRF), half plastic film mulching on double ridges and planting in catchment furrows (HFDRF), plastic film mulching on ridge and planting in film-side (FS), and flat planting with no plastic film mulching (NM) under field conditions in dry highland of Loess Plateau in 2007-2012. The results showed that fluorescence yield (Fo), the maximum fluorescence yield (Fm), light-adapted fluorescence yield when PS II reaction centers were totally open (F), light-adapted fluorescence yield when PS II reaction centers closed (Fm'), the maximal photochemical efficiency of PS II (Fv/Fm), the actual photochemical efficiency of PS II in the light (Phi PS II), the relative electron transport rate (ETR), photochemical quenching (qP) and non-photochemical quenching (qN) in maize leaves of FFDRF were higher than that of control (NM), and the value of 1-qP was lower than that of control, at 13:00, chlorophyll fluorescence parameters values of FFDRF was significantly higher than control, which were increased by 5.3%, 56.8%, 10.7%, 36.3%, 23.6%, 56.7%, 64.4%, 45.5%, 23.6% and -55.6%, respectively, compared with the control. Yield and water use efficiency of FFDRF were the highest in every year no matter dry year, normal year, humid year and hail disaster year. Average yield and water use efficiency of FFDRF were 12,650 kg x hm(-2) and 40.4 kg x mm(-1) x hm(-2) during 2007-2012, increased by 57.8% and 61.6% compared with the control, respectively, and also significantly higher compared with HFDRF and PS. Therefore, it was concluded that FFDRF had significantly increased the efficiency of light energy conversion and improved the production capacity of dryland maize.

  9. Photochemical studies of a fluorescent chlorophyll catabolite--source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen.

    PubMed

    Jockusch, Steffen; Turro, Nicholas J; Banala, Srinivas; Kräutler, Bernhard

    2014-02-01

    Fluorescent chlorophyll catabolites (FCCs) are fleeting intermediates of chlorophyll breakdown, which is seen as an enzyme controlled detoxification process of the chlorophylls in plants. However, some plants accumulate large amounts of persistent FCCs, such as in senescent leaves and in peels of yellow bananas. The photophysical properties of such a persistent FCC (Me-sFCC) were investigated in detail. FCCs absorb in the near UV spectral region and show blue fluorescence (max at 437 nm). The Me-sFCC fluorescence had a quantum yield of 0.21 (lifetime 1.6 ns). Photoexcited Me-sFCC intersystem crosses into the triplet state (quantum yield 0.6) and generates efficiently singlet oxygen (quantum yield 0.59). The efficient generation of singlet oxygen makes fluorescent chlorophyll catabolites phototoxic, but might also be useful as a (stress) signal and for defense of the plant tissue against infection by pathogens.

  10. Unusually high fluorescence quantum yield of a homopolyfluorenylazomethine--towards a universal fluorophore.

    PubMed

    Mallet, Charlotte; Bolduc, Andréanne; Bishop, Sophie; Gautier, Yohan; Skene, W G

    2014-11-28

    The absolute fluorescence quantum yield (Φfl) of a polyfluorenyl azomethine homopolymer was measured as a function of solvent polarity. The solvent induced and temperature dependent fluorescence of the homopolymer were also investigated and they were compared to the corresponding monomer and copolymer. The Φfl of the homopolymer was consistent (45-70%), regardless of solvent polarity with Stokes shifts up to 7460 cm(-1) in ethanol. In contrast, the Φfl of its corresponding monomer decreased from 60% in ethanol to 1% in toluene, whereas a Φfl < 5% for its analogous copolymer was measured. Moderate fluorescence yields (Φfl ≈ 25%) were also possible in thin film when co-depositing the homopolymer with PMMA. Cryofluorescence was used to probe the excited state deactivation modes. Deactivation by internal conversion was found to compete with fluorescence. The fluorescence deactivation pathways of the homopolymer and its corresponding monomer could be suppressed at 77 K, resulting in fluorescence turn-on. Both fluorophores were found to detect nitroaromatics.

  11. What Comes after Stable Octet? Stable Sub-Shell!

    ERIC Educational Resources Information Center

    Tan, Kim Chwee Daniel; Taber, Keith S.

    2005-01-01

    Previous research has shown that students' existing conceptions are critical to subsequent learning because there is interaction between the new knowledge that the students encounter and their existing knowledge from previous lessons. Taber (1999a) found A-level students in the UK had difficulty in understanding the principles determining the…

  12. Connecting active to passive fluorescence with photosynthesis: a method for evaluating remote sensing measurements of Chl fluorescence.

    PubMed

    Magney, Troy S; Frankenberg, Christian; Fisher, Joshua B; Sun, Ying; North, Gretchen B; Davis, Thomas S; Kornfeld, Ari; Siebke, Katharina

    2017-09-01

    Recent advances in the retrieval of Chl fluorescence from space using passive methods (solar-induced Chl fluorescence, SIF) promise improved mapping of plant photosynthesis globally. However, unresolved issues related to the spatial, spectral, and temporal dynamics of vegetation fluorescence complicate our ability to interpret SIF measurements. We developed an instrument to measure leaf-level gas exchange simultaneously with pulse-amplitude modulation (PAM) and spectrally resolved fluorescence over the same field of view - allowing us to investigate the relationships between active and passive fluorescence with photosynthesis. Strongly correlated, slope-dependent relationships were observed between measured spectra across all wavelengths (F λ , 670-850 nm) and PAM fluorescence parameters under a range of actinic light intensities (steady-state fluorescence yields, F t ) and saturation pulses (maximal fluorescence yields, F m ). Our results suggest that this method can accurately reproduce the full Chl emission spectra - capturing the spectral dynamics associated with changes in the yields of fluorescence, photochemical (ΦPSII), and nonphotochemical quenching (NPQ). We discuss how this method may establish a link between photosynthetic capacity and the mechanistic drivers of wavelength-specific fluorescence emission during changes in environmental conditions (light, temperature, humidity). Our emphasis is on future research directions linking spectral fluorescence to photosynthesis, ΦPSII, and NPQ. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Improved Charge-Transfer Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Meador, Michael

    2005-01-01

    Improved charge-transfer fluorescent dyes have been developed for use as molecular probes. These dyes are based on benzofuran nuclei with attached phenyl groups substituted with, variously, electron donors, electron acceptors, or combinations of donors and acceptors. Optionally, these dyes could be incorporated as parts of polymer backbones or as pendant groups or attached to certain surfaces via self-assembly-based methods. These dyes exhibit high fluorescence quantum yields -- ranging from 0.2 to 0.98, depending upon solvents and chemical structures. The wavelengths, quantum yields, intensities, and lifetimes of the fluorescence emitted by these dyes vary with (and, hence, can be used as indicators of) the polarities of solvents in which they are dissolved: In solvents of increasing polarity, fluorescence spectra shift to longer wavelengths, fluorescence quantum yields decrease, and fluorescence lifetimes increase. The wavelengths, quantum yields, intensities, and lifetimes are also expected to be sensitive to viscosities and/or glass-transition temperatures. Some chemical species -- especially amines, amino acids, and metal ions -- quench the fluorescence of these dyes, with consequent reductions in intensities, quantum yields, and lifetimes. As a result, the dyes can be used to detect these species. Another useful characteristic of these dyes is a capability for both two-photon and one-photon absorption. Typically, these dyes absorb single photons in the ultraviolet region of the spectrum (wavelengths < 400 nm) and emit photons in the long-wavelength ultraviolet, visible, and, when dissolved in some solvents, near-infrared regions. In addition, these dyes can be excited by two-photon absorption at near-infrared wavelengths (600 to 800 nm) to produce fluorescence spectra identical to those obtained in response to excitation by single photons at half the corresponding wavelengths (300 to 400 nm). While many prior fluorescent dyes exhibit high quantum yields, solvent-polarity- dependent fluorescence behavior, susceptibility to quenching by certain chemical species, and/or two-photon fluorescence, none of them has the combination of all of these attributes. Because the present dyes do have all of these attributes, they have potential utility as molecular probes in a variety of applications. Examples include (1) monitoring curing and deterioration of polymers; (2) monitoring protein expression; (3) high-throughput screening of drugs; (4) monitoring such chemical species as glucose, amines, amino acids, and metal ions; and (5) photodynamic therapy of cancers and other diseases.

  14. New evidence for primordial action site of Fluazifop-P-butyl on Acanthospermum hispidum seedlings: From the effects on chlorophyll fluorescence characteristics and histological observation.

    PubMed

    Shang, Yuhong; Yang, Congjun; Liu, Zhihang; Song, Jiqing; Li, Pingliang; Li, Lingxu; Zhou, Fei; Xin, Hua; Wan, Fanghao; Matsumoto, Hiroshi; Luo, Xiaoyong

    2017-10-01

    Acanthospermum hispidum DC, an Asteraceae weed species, was very susceptible to fluazifop-P-butyl, but tolerant to other aryloxyphenoxypropionate herbicides, such as haloxyfop-P-methyl. However, other Asteraceae weeds including Bidens pilosa were all tolerant to fluazifop-P-butyl. Membrane lipid peroxidation by increasing the levels of reactive oxygen species (ROS) was proposed as an action mechanism of fluazifop-P-butyl in A. hispidum. To further clarify the primordial action site of fluazifop-P-butyl in this species, the effects on chlorophyll fluorescence characteristics and cytohistology of apical meristems were studied. Chlorophyll fluorescence characteristics (CFC) in sensitive A. hispidum seedlings were markedly affected by 10μM fluazifop-P-butyl, with the dark fluorescence yield (Fo), maximal fluorescence yield (Fm), maximal PS II quantum yield (Fv/Fm), effective photosystem II (PS II) quantum yield [Y(II)], and quantum yield of regulated energy dissipation [Y(NPQ)] declining, quantum yield of nonregulated energy dissipation [Y(NO)] rising, but these measures were not affected in Bidens pilosa. The effects of fluazifop-P-butyl on chlorophyll fluorescence properties were observed on the growing point before the mature leaves by about 4-6h. Haloxyfop-P-methyl, a control herbicide, had no effects on CFC of either A. hispidum or B. pilosa. In addition, damage to apical meristem cells of A. hispidum was observed at 6 HAT prior to changes in chlorophyll fluorescence parameters suggesting that the primary action site of fluazifop-P-butyl in this species is in the apical meristem and the effects on CFC may be the results of secondary action. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. [Fluorescence spectra and quantum yield of TiO2 nanocrystals synthesized by alcohothermal method].

    PubMed

    Song, Cui-Hong; Li, Yan-Ting; Li, Jing; Wei, Yong-Ju; Hu, Yu-Zhu; Wei, Yu

    2008-01-01

    Fluorescence spectra and fluorescence quantum yield of TiO2 nanocrystals were studied. Using tetra n-butyl titanate as a starting material, a facile alcohothermal technique was used to synthesize TiO2 nanocrystals. As can be seen from the transmittance electron microscopy (TEM) image, TiO2 nanocrystals with a relatively uniform particle size distribution of < 10 nm are present in the transparent sol. The transparent sol presents a strong stable fluorescence emission with a maximum at 450 nm, which is greatly dependent on the size quantization effects, defect energy level and the surface state of TiO2 nanocrystals. The quantum yield (gamma) of TiO2 was determined by the relative comparison procedure, using freshly prepared analytical purity quinine sulfate in 0.05 mol x L(-1) H2SO4 as a relative quantum yield standard. The emission quantum yield of TiO2 nanocrystals prepared in alcoholic media was calculated to be about 0.20 at wavelengths ranging from 330 to 370 nm, which was much higher than the values reported in previous works. So, it is supposed that nano-TiO2 will be applied as a potential quantum dots fluorescence probe in biological analysis.

  16. Imaging a photodynamic therapy photosensitizer in vivo with a time-gated fluorescence tomography system

    NASA Astrophysics Data System (ADS)

    Mo, Weirong; Rohrbach, Daniel; Sunar, Ulas

    2012-07-01

    We report the tomographic imaging of a photodynamic therapy (PDT) photosensitizer, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) in vivo with time-domain fluorescence diffuse optical tomography (TD-FDOT). Simultaneous reconstruction of fluorescence yield and lifetime of HPPH was performed before and after PDT. The methodology was validated in phantom experiments, and depth-resolved in vivo imaging was achieved through simultaneous three-dimensional (3-D) mappings of fluorescence yield and lifetime contrasts. The tomographic images of a human head-and-neck xenograft in a mouse confirmed the preferential uptake and retention of HPPH by the tumor 24-h post-injection. HPPH-mediated PDT induced significant changes in fluorescence yield and lifetime. This pilot study demonstrates that TD-FDOT may be a good imaging modality for assessing photosensitizer distributions in deep tissue during PDT monitoring.

  17. Quantitative photoabsorption and fluorescence spectroscopy of benzene, naphthalene, and some derivatives at 106-295 nm

    NASA Technical Reports Server (NTRS)

    Suto, Masako; Wang, Xiuyan; Shan, Jun; Lee, L. C.

    1992-01-01

    Photoabsorption and fluorescence cross sections of benzene, (o-, m-, p-) xylenes, naphthalene, 1-methylnaphthalene, and 2-ethylnaphthalene in the gas phase are measured at 106-295 nm using synchrotron radiation as a light source. Fluorescences are observed from the photoexcitation of benzene and xylenes at 230-280 nm and from naphthalene and its derivatives at 190-295 nm. The absolute fluorescence cross section is determined by calibration with respect to the emission intensity of the NO(A-X) system, for which the fluorescence quantum yield is equal to 1. To cross-check the current calibration method, the quantum yield of the SO2(C-X) system at 220-230 nm was measured since it is about equal to 1. The current quantum-yield data are compared with previously published values measured by different methods.

  18. Estimation of quantum yields of weak fluorescence from eosin Y dimers formed in aqueous solutions.

    PubMed

    Enoki, Masami; Katoh, Ryuzi

    2018-05-17

    We studied the weak fluorescence from the dimer of eosin Y (EY) in aqueous solutions. We used a newly developed ultrathin optical cell with a thickness ranging from of the order of microns to several hundreds of microns to successfully measure the fluorescence spectra of highly concentrated aqueous solutions of EY without artifacts caused by the reabsorption of fluorescence. The spectra we obtained were similar to the fluorescence spectrum of the EY monomer; almost no fluorescence was observed from the EY dimer. By a careful comparison of the spectra of solutions at low and high concentrations of EY, we succeeded in extracting the fluorescence spectrum of the EY dimer. The fluorescence quantum yield of the EY dimer was estimated to be 0.005.

  19. [Flag leaf photosynthetic characteristics, change in chlorophyll fluorescence parameters, and their relationships with yield of winter wheat sowed in spring].

    PubMed

    Xu, Lan; Gao, Zhi-qang; An, Wei; Li, Yan-liang; Jiao, Xiong-fei; Wang, Chuang-yun

    2016-01-01

    With five good winter wheat cultivars selected from the middle and lower reaches of Yangtze River and Southwest China as test materials, a field experiment in Xinding basin area of Shanxi Province was conducted to study the photosynthetic characteristics, chlorophyll content, and chlorophyll fluorescence parameters of flag leaf at different sowing dates, as well as the correlations between these indices and yield for two years (2013-2014). The results showed that the difference in most fluorescence parameters except chlorophyll content among cultivars was significant. The correlations between these fluorescence parameters and yield were significant. The variation coefficient of chlorophyll (Chl) content was low (0.12-0.17), and that of performance index based on absorption (PIabs) was high (0.32-0.39), with the partial correlation coefficients of them with grain yield from 2013 to 2014 ranged in 0.70-0.81. Under the early sowing condition, the grain yield positively correlated with PIabs at flowering and filling stages and chlorophyll content at grain filling stage, but negatively correlated with the relative variable fluorescence at I point (Vi) at grain filling stage. About 81.1%-82.8% of grain yield were determined by the variations of PIabs, Chl, and Vi. Wheat cultivars had various performances in the treatments with different sowing dates and a consistent trend was observed in the two experimental years. Among these 5 cultivars, Yangmai 13 was suitable for early sowing, with the flag leaf photosynthetic rate (Pn), Chl, most fluorescence parame-ters, and grain yield showed obviously high levels. In conclusion, under early sowing condition chlorophyll content at grain filling stages, PIabs at flowering and filling stages, and Pn were important indices for selecting wheat cultivars with high photosynthetic efficiency.

  20. Synthesis and spectroscopic properties of some new difluoroboron bis-β-diketonate derivatives.

    PubMed

    Pi, Yan; Wang, Dun-Jia; Liu, Hua; Hu, Yan-Jun; Wei, Xian-Hong; Zheng, Jing

    2014-10-15

    Six new bis-β-diketones (RCOCH2CO-C7H7N-COCH2COR) were synthesized from 3,5-diacetyl-2,6-dimethylpyridine via Claisen condensation with the corresponding esters, and then reacted with boron trifluoride etherate to afford difluoroboron bis-β-diketonate derivatives. Their spectroscopic properties were investigated by UV-vis, FTIR, (1)H NMR and fluorescence spectroscopic techniques. It was found that these boron complexes exhibited violet or blue fluorescence emission at 422-445nm and possessed high extinction coefficients. The results indicate that the extending π-conjugation can increase the fluorescence intensity and quantum yield for these boron complexes. Especially, the compound 2b displayed the stronger fluorescence intensity and the highest fluorescence quantum yield (Φu=0.94) in these boron compounds. However, compounds 2c and 2d had the lower fluorescence intensity and quantum yield as a result of the heavy atom effect of the chlorine atom in the molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Synthesis and spectroscopic properties of some new difluoroboron bis-β-diketonate derivatives

    NASA Astrophysics Data System (ADS)

    Pi, Yan; Wang, Dun-Jia; Liu, Hua; Hu, Yan-Jun; Wei, Xian-Hong; Zheng, Jing

    2014-10-01

    Six new bis-β-diketones (RCOCH2CO-C7H7N-COCH2COR) were synthesized from 3,5-diacetyl-2,6-dimethylpyridine via Claisen condensation with the corresponding esters, and then reacted with boron trifluoride etherate to afford difluoroboron bis-β-diketonate derivatives. Their spectroscopic properties were investigated by UV-vis, FTIR, 1H NMR and fluorescence spectroscopic techniques. It was found that these boron complexes exhibited violet or blue fluorescence emission at 422-445 nm and possessed high extinction coefficients. The results indicate that the extending π-conjugation can increase the fluorescence intensity and quantum yield for these boron complexes. Especially, the compound 2b displayed the stronger fluorescence intensity and the highest fluorescence quantum yield (Φu = 0.94) in these boron compounds. However, compounds 2c and 2d had the lower fluorescence intensity and quantum yield as a result of the heavy atom effect of the chlorine atom in the molecules.

  2. Erratum: Retraction Note to: "Selective Excitation, Coherent Control, and Attosecond Spectrochronography of Electron Subshells in Atomic Systems"

    NASA Astrophysics Data System (ADS)

    Meshchankin, D. V.; Voronin, A. A.; Serebryannikov, E. E.; Zheltikov, A. M.

    2018-03-01

    The paper was retracted on behalf of the authors in order to expand the list of authors and only publish conclusions commonly accepted by all of the authors. All of the authors have been informed of the retraction of the article and agree with it.

  3. The Periodic Pyramid

    ERIC Educational Resources Information Center

    Hennigan, Jennifer N.; Grubbs, W. Tandy

    2013-01-01

    The chemical elements present in the modern periodic table are arranged in terms of atomic numbers and chemical periodicity. Periodicity arises from quantum mechanical limitations on how many electrons can occupy various shells and subshells of an atom. The shell model of the atom predicts that a maximum of 2, 8, 18, and 32 electrons can occupy…

  4. Ionization cross sections of the Au L subshells by electron impact from the L3 threshold to 100 keV

    NASA Astrophysics Data System (ADS)

    Barros, Suelen F.; Vanin, Vito R.; Maidana, Nora L.; Martins, Marcos N.; García-Alvarez, Juan A.; Santos, Osvaldo C. B.; Rodrigues, Cleber L.; Koskinas, Marina F.; Fernández-Varea, José M.

    2018-01-01

    We measured the cross sections for Au Lα, Lβ, Lγ, Lℓ and Lη x-ray production by the impact of electrons with energies from the L3 threshold to 100 keV using a thin Au film whose mass thickness was determined by Rutherford Backscattering Spectrometry. The x-ray spectra were acquired with a Si drift detector, which allowed to separate the components of the Lγ multiplet lines. The measured Lα, Lβ, {{L}}{γ }1, L{γ }{2,3,6}, {{L}}{γ }{4,4\\prime }, {{L}}{γ }5, {{L}}{\\ell } and Lη x-ray production cross sections were then employed to derive Au L1, L2 and L3 subshell ionization cross sections with relative uncertainties of 8%, 7% and 7%, respectively; these figures include the uncertainties in the atomic relaxation parameters. The correction for the increase in electron path length inside the Au film was estimated by means of Monte Carlo simulations. The experimental ionization cross sections are about 10% above the state-of-the-art distorted-wave calculations.

  5. Electron correlations in L-subshell photoionization of intermediate-Z elements (47<=Z<=51)

    NASA Astrophysics Data System (ADS)

    Jitschin, W.; Stötzel, R.

    1998-08-01

    The x-ray mass attenuation of 48Cd, 49In, 50Sn, and 51Sb in the energy regime of the L-subshell edges has been measured. For a comparison of the data of neighboring elements, these were scaled to 47Ag. The scaled data were compared with theoretical calculations of photoionization cross sections by Scofield, which use the common single electron approach. The comparison reveals minor but significant deviations between measurement and calculation: The measured cross sections are smaller than the prediction in the regime between the L3 and L2 edges, they have a flatter slope in the regime between the L2 and L1 edges, and they exhibit a decrease just above the L3 and L2 edges. All observed deviations can be explained as electron correlation effects originating from a polarization of the whole electron cloud by the ionizing radiation, since they are qualitatively reproduced by comparative calculations of the ionization process either omitting (independent particle approach) or including (in the linear response approximation) the electron correlations. However, the comparative calculations quantitatively overestimate the electron correlation effects.

  6. The influence of the Tbeta level upon fluorescence and laser properties of aromatic compounds.

    PubMed

    Nijegorodov, N; Winkoun, D P; Nkoma, J S

    2004-07-01

    The fluorescence and laser properties of seven specially chosen aromatic compounds are studied at 293 degrees C. The quantum yield of fluorescence, gamma, decay times, tauf, of the deaerated and non-deaerated solutions are measured. The oscillator strength, fe, fluorescence rate constants, kf, natural lifetimes, tauT0, and intersystem crossing rate constants, kST, are calculated. Some laser parameters are calculated or measured experimentally. It is found that the position of the Tbeta level plays an important role in the fluorescence and laser properties of aromatic compounds. If the Tbeta level is situated below the Sp level, it decreases the quantum yield of fluorescence and the decay time and increases the threshold of laser action. If, due to some structural changes of a molecule, the Tbeta level is situated higher than the Sp level, then the quantum yield of fluorescence and the decay times are increasing and the threshold of laser action is decreasing. Such influence of the position of the Tbeta level upon fluorescence and laser properties of aromatic compound is explained by the fact that the Sp level mixes with the Tbeta level more readily than with other taupipi* levels.

  7. High quantum yield of the Egyptian blue family of infrared phosphors (MCuSi4O10, M = Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Berdahl, Paul; Boocock, Simon K.; Chan, George C.-Y.; Chen, Sharon S.; Levinson, Ronnen M.; Zalich, Michael A.

    2018-05-01

    The alkaline earth copper tetra-silicates, blue pigments, are interesting infrared phosphors. The Ca, Sr, and Ba variants fluoresce in the near-infrared (NIR) at 909, 914, and 948 nm, respectively, with spectral widths on the order of 120 nm. The highest quantum yield ϕ reported thus far is ca. 10%. We use temperature measurements in sunlight to determine this parameter. The yield depends on the pigment loading (mass per unit area) ω with values approaching 100% as ω → 0 for the Ca and Sr variants. Although maximum quantum yield occurs near ω = 0, maximum fluorescence occurs near ω = 70 g m-2, at which ϕ = 0.7. The better samples show fluorescence decay times in the range of 130 to 160 μs. The absorbing impurity CuO is often present. Good phosphor performance requires long fluorescence decay times and very low levels of parasitic absorption. The strong fluorescence enhances prospects for energy applications such as cooling of sunlit surfaces (to reduce air conditioning requirements) and luminescent solar concentrators.

  8. Temporal variability in chlorophyll fluorescence of back-reef corals in Ofu, American Samoa

    USGS Publications Warehouse

    Piniak, G.A.; Brown, E.K.

    2009-01-01

    Change in the yield of chlorophyll a fluorescence is a common indicator of thermal stress in corals. The present study reports temporal variability in quantum yield measurements for 10 coral species in Ofu, American Samoa - a place known to experience elevated and variable seawater temperatures. In winter, the zooxanthellae generally had higher dark-adapted maximum quantum yield (F v/Fm), higher light- adapted effective quantum yield (??F/F'm), and lower relative electron transport rates (rETR) than in the summer. Temporal changes appeared unrelated to the expected bleaching sensitivity of corals. All species surveyed, with the exception of Montipora grisea, demonstrated significant temporal changes in the three fluorescence parameters. Fluorescence responses were influenced by the microhabitat - temporal differences in fluorescence parameters were usually observed in the habitat with a more variable temperature regime (pool 300), while differences in Fv/Fm between species were observed only in the more environmentally stable habitat (pool 400). Such species-specific responses and microhabitat variability should be considered when attempting to determine whether observed in situ changes are normal seasonal changes or early signs of bleaching. ?? 2009 Marine Biological Laboratory.

  9. Use of a Novel Rover-mounted Fluorescence Imager and Fluorescent Probes to Detect Biological Material in the Atacama Desert in Daylight

    NASA Technical Reports Server (NTRS)

    Weinstein, S.; Pane, D.; Warren-Rhodes, K.; Cockell, C.; Ernst, L. A.; Minkley, E.; Fisher, G.; Emani, S.; Wettergreen, D. S.; Wagner, M.

    2005-01-01

    We have developed an imaging system, the Fluorescence Imager (FI), for detecting fluorescence signals from sparse microorganisms and biofilms during autonomous rover exploration. The fluorescence signals arise both from naturally occurring chromophores, such as chlorophyll of cyanobacteria and lichens, and from fluorescent probes applied to soil and rocks. Daylight imaging has been accomplished by a novel use of a high-powered flashlamp synchronized to a CCD camera. The fluorescent probes are cell permanent stains that have extremely low intrinsic fluorescence (quantum yields less than 0.01) and a large fluorescence enhancement (quantum yields greater than 0.4) when bound to the target. Each probe specifically targets either carbohydrates, proteins, nucleic acids or membrane lipids, the four classes of macromolecules found in terrestrial life. The intent of the probes is to interrogate the environment for surface and endolithic life forms.

  10. The small contribution of molecular Bremsstrahlung radiation to the air-fluorescence yield of cosmic ray shower particles

    NASA Astrophysics Data System (ADS)

    Al Samarai, Imen; Deligny, Olivier; Rosado, Jaime

    2016-10-01

    A small contribution of molecular Bremsstrahlung radiation to the air-fluorescence yield in the UV range is estimated based on an approach previously developed in the framework of the radio-detection of showers in the gigahertz frequency range. First, this approach is shown to provide an estimate of the main contribution of the fluorescence yield due to the de-excitation of the C 3Πu electronic level of nitrogen molecules to the B 3Πg one amounting to Y[ 337 ] =(6.05 ± 1.50) MeV-1 at 800 hPa pressure and 293 K temperature conditions, which compares well to previous dedicated works and to experimental results. Then, under the same pressure and temperature conditions, the fluorescence yield induced by molecular Bremsstrahlung radiation is found to be Y[330-400]MBR = 0.10 MeV-1 in the wavelength range of interest for the air-fluorescence detectors used to detect extensive air showers induced in the atmosphere by ultra-high energy cosmic rays. This means that out of ≃175 photons with wavelength between 330 and 400 nm detected by fluorescence detectors, one of them has been produced by molecular Bremsstrahlung radiation. Although small, this contribution is not negligible in regards to the total budget of systematic uncertainties when considering the absolute energy scale of fluorescence detectors.

  11. Inkjet printed fluorescent nanorod layers exhibit superior optical performance over quantum dots

    NASA Astrophysics Data System (ADS)

    Halivni, Shira; Shemesh, Shay; Waiskopf, Nir; Vinetsky, Yelena; Magdassi, Shlomo; Banin, Uri

    2015-11-01

    Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays.Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06248a

  12. Fluorenyl benzothiadiazole and benzoselenadiazole near-IR fluorescent probes for two-photon fluorescence imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Belfield, Kevin D.; Yao, Sheng; Kim, Bosung; Yue, Xiling

    2016-03-01

    Imaging biological samples with two-photon fluorescence (2PF) microscopy has the unique advantage of resulting high contrast 3D resolution subcellular image that can reach up to several millimeters depth. 2PF probes that absorb and emit at near IR region need to be developed. Two-photon excitation (2PE) wavelengths are less concerned as 2PE uses wavelengths doubles the absorption wavelength of the probe, which means 2PE wavelengths for probes even with absorption at visible wavelength will fall into NIR region. Therefore, probes that fluoresce at near IR region with high quantum yields are needed. A series of dyes based on 5-thienyl-2, 1, 3-benzothiadiazole and 5-thienyl-2, 1, 3-benzoselenadiazole core were synthesized as near infrared two-photon fluorophores. Fluorescence maxima wavelengths as long as 714 nm and fluorescence quantum yields as high as 0.67 were achieved. The fluorescence quantum yields of the dyes were nearly constant, regardless of solvents polarity. These diazoles exhibited large Stokes shift (<114nm), high two-photon absorption cross sections (up to 2,800 GM), and high two-photon fluorescence figure of merit (FM , 1.04×10-2 GM). Cells incubated on a 3D scaffold with one of the new probes (encapsulated in Pluronic micelles) exhibited bright fluorescence, enabling 3D two-photon fluorescence imaging to a depth of 100 µm.

  13. Chlorophyll Fluorescence Analysis of Cyanobacterial Photosynthesis and Acclimation

    PubMed Central

    Campbell, Douglas; Hurry, Vaughan; Clarke, Adrian K.; Gustafsson, Petter; Öquist, Gunnar

    1998-01-01

    Cyanobacteria are ecologically important photosynthetic prokaryotes that also serve as popular model organisms for studies of photosynthesis and gene regulation. Both molecular and ecological studies of cyanobacteria benefit from real-time information on photosynthesis and acclimation. Monitoring in vivo chlorophyll fluorescence can provide noninvasive measures of photosynthetic physiology in a wide range of cyanobacteria and cyanolichens and requires only small samples. Cyanobacterial fluorescence patterns are distinct from those of plants, because of key structural and functional properties of cyanobacteria. These include significant fluorescence emission from the light-harvesting phycobiliproteins; large and rapid changes in fluorescence yield (state transitions) which depend on metabolic and environmental conditions; and flexible, overlapping respiratory and photosynthetic electron transport chains. The fluorescence parameters FV/FM, FV′/FM′,qp,qN, NPQ, and φPS II were originally developed to extract information from the fluorescence signals of higher plants. In this review, we consider how the special properties of cyanobacteria can be accommodated and used to extract biologically useful information from cyanobacterial in vivo chlorophyll fluorescence signals. We describe how the pattern of fluorescence yield versus light intensity can be used to predict the acclimated light level for a cyanobacterial population, giving information valuable for both laboratory and field studies of acclimation processes. The size of the change in fluorescence yield during dark-to-light transitions can provide information on respiration and the iron status of the cyanobacteria. Finally, fluorescence parameters can be used to estimate the electron transport rate at the acclimated growth light intensity. PMID:9729605

  14. Sample-averaged biexciton quantum yield measured by solution-phase photon correlation.

    PubMed

    Beyler, Andrew P; Bischof, Thomas S; Cui, Jian; Coropceanu, Igor; Harris, Daniel K; Bawendi, Moungi G

    2014-12-10

    The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS and InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals.

  15. Experimental assessment of fluorescence microscopy signal enhancement by stimulated emission

    NASA Astrophysics Data System (ADS)

    Dake, Fumihiro; Yazawa, Hiroki

    2017-10-01

    The quantity of photons generated during fluorescence microscopy is principally determined by the quantum yield of the fluorescence dyes and the optical power of the excitation beam. However, even though low quantum yields can produce poor images, it is challenging to tune this parameter, while increasing the power of the excitation beam often results in photodamage. Here, we propose the use of stimulated emission (SE) as a means of enhancing both the signal intensity and signal-to-noise ratio during confocal fluorescence microscopy. This work experimentally confirmed that both these factors can be enhanced by SE radiation, through generating a greater number of photons than are associated with the standard fluorescence signal. We also propose the concept of stimulated emission enhancing fluorescence (SEEF) microscopy, which employs both the SE and fluorescence signals, and demonstrate that the intensity of an SEEF signal is greater than those of the individual SE and fluorescence signals.

  16. Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: self-quenching by photoactive energy traps

    NASA Astrophysics Data System (ADS)

    Ezquerra Riega, Sergio D.; Rodríguez, Hernán B.; San Román, Enrique

    2017-03-01

    The effect of dye concentration on the fluorescence,ΦF, and singlet molecular oxygen,ΦΔ, quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nm thick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical properties of dyes in crowded constrained environments. Films were characterized by absorption and fluorescence spectroscopy, singlet molecular oxygen (1O2) production was quantified using a chemical monitor, and the triplet decay was determined by laser flash-photolysis. For the monomeric dilute dye, ΦF = 0.05 ± 0.01 and ΦΔ = 0.76 ± 0.14. The effect of humidity and the photostability of the dye were also investigated. Spectral changes in absorption and fluorescence in excess of 0.05 M and concentration self-quenching after 0.01 M are interpreted in the context of a quenching radius model. Calculations of energy migration and trapping rates were performed assuming random distribution of the dye. Best fits of fluorescence quantum yields with concentration are obtained in the whole concentration range with a quenching radius r Q = 1.5 nm, in the order of molecular dimensions. Agreement is obtained only if dimeric traps are considered photoactive, with an observed fluorescence quantum yield ratio ΦF,trap/ΦF,monomer ≈ 0.35. Fluorescent traps are capable of yielding triplet states and 1O2. Results show that the excited state generation efficiency, calculated as the product between the absorption factor and the fluorescence quantum yield, is maximized at around 0.15 M, a very high concentration for random dye distributions. Relevant information for the design of photoactive dyed coatings is provided.

  17. Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves: 1. Mono-frequency phase and modulation analysis reveals a conformational change of a PSII pigment complex during the IP thermal phase.

    PubMed

    Moise, Nicolae; Moya, Ismaël

    2004-06-28

    The relationship between the fluorescence lifetime (tau) and yield (Phi) obtained in phase and modulation fluorometry at 54 MHz during the chlorophyll fluorescence induction in dark-adapted leaves under low actinic light has been investigated. Three typical phases have been identified: (i) linear during the OI photochemical rise, (ii) convex curvature during the subsequent IP thermal rise, and (iii) linear during the PS slow decay. A similar relationship has been obtained in the fluorescence induction for the fluorescence yield measured at 685 nm plotted versus the fluorescence yield measured at 735 nm. A spectrally resolved analysis shows that the curvature of the tau-Phi relationship is not due to chlorophyll fluorescence reabsorption effects. Several other hypotheses are discussed and we conclude that the curvature of the tau-Phi relationship is due to a variable and transitory nonphotochemical quenching. We tentatively propose that this quenching results from a conformational change of a pigment-protein complex of Photosystem II core antenna during the IP phase and could explain both spectral and temporal transitory changes of the fluorescence. A variable blue shift of the 685 nm peak of the fluorescence spectrum during the IP phase has been observed, supporting this hypothesis.

  18. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.

    PubMed

    Sheaff, Chrystal N; Eastwood, Delyle; Wai, Chien M

    2007-01-01

    The detection of explosive material is at the forefront of current analytical problems. A detection method is desired that is not restricted to detecting only explosive materials, but is also capable of identifying the origin and type of explosive. It is essential that a detection method have the selectivity to distinguish among compounds in a mixture of explosives. The nitro compounds found in explosives have low fluorescent yields or are considered to be non-fluorescent; however, after reduction, the amino compounds exhibit relatively high fluorescence. We discuss how to increase selectivity of explosive detection using fluorescence; this includes synchronous luminescence and derivative spectroscopy with appropriate smoothing. By implementing synchronous luminescence and derivative spectroscopy, we were able to resolve the reduction products of one major TNT-based explosive compound, 2,4-diaminotoluene, and the reduction products of other minor TNT-based explosives in a mixture. We also report for the first time the quantum yields of these important compounds. Relative quantum yields are useful in establishing relative fluorescence intensities and are an important spectroscopic measurement of molecules. Our approach allows for rapid, sensitive, and selective detection with the discrimination necessary to distinguish among various explosives.

  19. Synthesis, quantitative structure-property relationship study of novel fluorescence active 2-pyrazolines and application.

    PubMed

    Girgis, Adel S; Basta, Altaf H; El-Saied, Houssni; Mohamed, Mohamed A; Bedair, Ahmad H; Salim, Ahmad S

    2018-03-01

    A variety of fluorescence-active fluorinated pyrazolines 13-33 was synthesized in good yields through cyclocondensation reaction of propenones 1-9 with aryl hydrazines 10-12 . Some of the synthesized compounds provided promising fluorescence properties with quantum yield ( Φ ) higher than that of quinine sulfate (standard reference). Quantitative structure-property relationship studies were undertaken supporting the exhibited fluorescence properties and estimating the parameters governing properties. Five synthesized fluorescence-active pyrazolines ( 13 , 15 , 18 , 19 and 23 ) with variable Φ were selected for treating two types of paper sheets (Fabriano and Bible paper). These investigated fluorescence compounds, especially compounds 19 and 23 , provide improvements in strength properties of paper sheets. Based on the observed performance they can be used as markers in security documents.

  20. Synthesis, quantitative structure–property relationship study of novel fluorescence active 2-pyrazolines and application

    PubMed Central

    Girgis, Adel S.; El-Saied, Houssni; Mohamed, Mohamed A.; Bedair, Ahmad H.; Salim, Ahmad S.

    2018-01-01

    A variety of fluorescence-active fluorinated pyrazolines 13–33 was synthesized in good yields through cyclocondensation reaction of propenones 1–9 with aryl hydrazines 10–12. Some of the synthesized compounds provided promising fluorescence properties with quantum yield (Φ) higher than that of quinine sulfate (standard reference). Quantitative structure–property relationship studies were undertaken supporting the exhibited fluorescence properties and estimating the parameters governing properties. Five synthesized fluorescence-active pyrazolines (13, 15, 18, 19 and 23) with variable Φ were selected for treating two types of paper sheets (Fabriano and Bible paper). These investigated fluorescence compounds, especially compounds 19 and 23, provide improvements in strength properties of paper sheets. Based on the observed performance they can be used as markers in security documents. PMID:29657796

  1. Synthesis, quantitative structure-property relationship study of novel fluorescence active 2-pyrazolines and application

    NASA Astrophysics Data System (ADS)

    Girgis, Adel S.; Basta, Altaf H.; El-Saied, Houssni; Mohamed, Mohamed A.; Bedair, Ahmad H.; Salim, Ahmad S.

    2018-03-01

    A variety of fluorescence-active fluorinated pyrazolines 13-33 was synthesized in good yields through cyclocondensation reaction of propenones 1-9 with aryl hydrazines 10-12. Some of the synthesized compounds provided promising fluorescence properties with quantum yield (Φ) higher than that of quinine sulfate (standard reference). Quantitative structure-property relationship studies were undertaken supporting the exhibited fluorescence properties and estimating the parameters governing properties. Five synthesized fluorescence-active pyrazolines (13, 15, 18, 19 and 23) with variable Φ were selected for treating two types of paper sheets (Fabriano and Bible paper). These investigated fluorescence compounds, especially compounds 19 and 23, provide improvements in strength properties of paper sheets. Based on the observed performance they can be used as markers in security documents.

  2. MRI-guided fluorescence tomography of the breast: a phantom study

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Pogue, Brian W.; Dehghani, Hamid; Paulsen, Keith D.

    2009-02-01

    Tissue phantoms simulating the human breast were used to demonstrate the imaging capabilities of an MRI-coupled fluorescence molecular tomography (FMT) imaging system. Specifically, phantoms with low tumor-to-normal drug contrast and complex internal structure were imaged with the MR-coupled FMT system. Images of indocyanine green (ICG) fluorescence yield were recovered using a diffusion model-based approach capable of estimating the distribution of fluorescence activity in a tissue volume from tissue-boundary measurements of transmitted light. Tissue structural information, which can be determined from standard T1 and T2 MR images, was used to guide the recovery of fluorescence activity. The study revealed that this spatial guidance is critical for recovering images of fluorescence yield in tissue with low tumor-to-normal drug contrast.

  3. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans.

    PubMed

    Falkowski, Paul G; Lin, Hanzhi; Gorbunov, Maxim Y

    2017-09-26

    Constraining photosynthetic energy conversion efficiency in nature is challenging. In principle, two yield measurements must be made simultaneously: photochemistry, fluorescence and/or thermal dissipation. We constructed two different, extremely sensitive and precise active fluorometers: one measures the quantum yield of photochemistry from changes in variable fluorescence, the other measures fluorescence lifetimes in the picosecond time domain. By deploying the pair of instruments on eight transoceanic cruises over six years, we obtained over 200 000 measurements of fluorescence yields and lifetimes from surface waters in five ocean basins. Our results revealed that the average quantum yield of photochemistry was approximately 0.35 while the average quantum yield of fluorescence was approximately 0.07. Thus, closure on the energy budget suggests that, on average, approximately 58% of the photons absorbed by phytoplankton in the world oceans are dissipated as heat. This extraordinary inefficiency is associated with the paucity of nutrients in the upper ocean, especially dissolved inorganic nitrogen and iron. Our results strongly suggest that, in nature, most of the time, most of the phytoplankton community operates at approximately half of its maximal photosynthetic energy conversion efficiency because nutrients limit the synthesis or function of essential components in the photosynthetic apparatus.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  4. Water relation, leaf gas exchange and chlorophyll a fluorescence imaging of soybean leaves infected with Colletotrichum truncatum.

    PubMed

    Dias, Carla Silva; Araujo, Leonardo; Alves Chaves, Joicy Aparecida; DaMatta, Fábio M; Rodrigues, Fabrício A

    2018-06-01

    Considering the potential of anthracnose to decrease soybean yield and the need to gain more information regarding its effect on soybean physiology, the present study performed an in-depth analysis of the photosynthetic performance of soybean leaflets challenged with Colletotrichum truncatum by combining chlorophyll a fluorescence images with gas-exchange measurements and photosynthetic pigment pools. There were no significant differences between non-inoculated and inoculated plants in leaf water potential, apparent hydraulic conductance, net CO 2 assimilation rate, stomatal conductance to water vapor and transpiration rate. For internal CO 2 concentration, significant difference between non-inoculated and inoculated plants occurred only at 36 h after inoculation. Reductions in the values of the chlorophyll a fluorescence parameters [initial fluorescence (F 0 ), maximal fluorescence (F m ), maximal photosystem II quantum yield (F v /F m ), quantum yield of regulated energy dissipation (Y(NPQ))] and increases in effective PS II quantum yield (Y(II)), quantum yield of non-regulated energy dissipation Y(NO) and photochemical quenching coefficient (q P ) were noticed on the necrotic vein tissue in contrast to the surrounding leaf tissue. It appears that the impact of the infection by C. truncatum on the photosynthetic performance of the leaflets was minimal considering the preference of the fungus to colonize the veins. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Bifunctional Diaminoterephthalate Fluorescent Dye as Probe for Cross-Linking Proteins.

    PubMed

    Wallisch, Melanie; Sulmann, Stefan; Koch, Karl-Wilhelm; Christoffers, Jens

    2017-05-11

    Diaminoterephthalates are fluorescent dyes and define scaffolds, which can be orthogonally functionalized at their two carboxylate residues with functional residues bearing task specific reactive groups. The synthesis of monofunctionalized dyes with thiol groups for surface binding, an azide for click chemistry, and a biotinoylated congener for streptavidin binding is reported. Two bifunctionalized dyes were prepared: One with an azide for click chemistry and a biotin for streptavidin binding, the other with a maleimide for reaction with thiol and a cyclooctyne moiety for ligation with copper-free click chemistry. In general, the compounds are red to orange, fluorescent materials with an absorption at about 450 nm and an emission at 560 nm with quantum yields between 2-41 %. Of particular interest is the maleimide-functionalized compound, which shows low fluorescence quantum yield (2 %) by itself. After addition of a thiol, the fluorescence is "turned on"; quantum yield 41 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Spectroscopy characterization and quantum yield determination of quantum dots

    NASA Astrophysics Data System (ADS)

    Contreras Ortiz, S. N.; Mejía Ospino, E.; Cabanzo, R.

    2016-02-01

    In this paper we show the characterization of two kinds of quantum dots: hydrophilic and hydrophobic, with core and core/shell respectively, using spectroscopy techniques such as UV-Vis, fluorescence and Raman. We determined the quantum yield in the quantum dots using the quinine sulphate as standard. This salt is commonly used because of its quantum yield (56%) and stability. For the CdTe excitation, we used a wavelength of 549nm and for the CdSe/ZnS excitation a wavelength of 527nm. The results show that CdSe/ZnS (49%) has better fluorescence, better quantum dots, and confirm the fluorescence result. The quantum dots have shown a good fluorescence performance, so this property will be used to replace dyes, with the advantage that quantum dots are less toxic than some dyes like the rhodamine. In addition, in this work we show different techniques to find the quantum dots emission: fluorescence spectrum, synchronous spectrum and Raman spectrum.

  7. Sample-Averaged Biexciton Quantum Yield Measured by Solution-Phase Photon Correlation

    DOE PAGES

    Beyler, Andrew P.; Bischof, Thomas S.; Cui, Jian; ...

    2014-11-19

    The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here in this study, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS andmore » InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals.« less

  8. Sample-Averaged Biexciton Quantum Yield Measured by Solution-Phase Photon Correlation

    PubMed Central

    Beyler, Andrew P.; Bischof, Thomas S.; Cui, Jian; Coropceanu, Igor; Harris, Daniel K.; Bawendi, Moungi G.

    2015-01-01

    The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS and InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals. PMID:25409496

  9. Push-pull aminobithiophenes--highly fluorescent stable fluorophores.

    PubMed

    Dong, Yanmei; Bolduc, Andréanne; McGregor, Nicholas; Skene, W G

    2011-04-01

    Stable 2-aminobithiophenes were prepared using the Gewald reaction. The resulting push-pull bithiophenes exhibited both unprecedented high fluorescence yields and stability in addition to demonstrating fluorescence on-off properties.

  10. Kinetics of bacterial fluorescence staining with 3,3'-diethylthiacyanine.

    PubMed

    Thomas, Marlon S; Nuñez, Vicente; Upadhyayula, Srigokul; Zielins, Elizabeth R; Bao, Duoduo; Vasquez, Jacob M; Bahmani, Baharak; Vullev, Valentine I

    2010-06-15

    For more than a century, colorimetric and fluorescence staining have been the foundation of a broad range of key bioanalytical techniques. The dynamics of such staining processes, however, still remains largely unexplored. We investigated the kinetics of fluorescence staining of two gram-negative and two gram-positive species with 3,3'-diethylthiacyanine (THIA) iodide. An increase in the THIA fluorescence quantum yield, induced by the bacterial dye uptake, was the principal reason for the observed emission enhancement. The fluorescence quantum yield of THIA depended on the media viscosity and not on the media polarity, which suggested that the microenvironment of the dye molecules taken up by the cells was restrictive. The kinetics of fluorescence staining did not manifest a statistically significant dependence neither on the dye concentration, nor on the cell count. In the presence of surfactant additives, however, the fluorescence-enhancement kinetic patterns manifested species specificity with statistically significant discernibility.

  11. Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves

    PubMed Central

    Tubuxin, Bayaer; Rahimzadeh-Bajgiran, Parinaz; Ginnan, Yusaku; Hosoi, Fumiki; Omasa, Kenji

    2015-01-01

    This paper illustrates the possibility of measuring chlorophyll (Chl) content and Chl fluorescence parameters by the solar-induced Chl fluorescence (SIF) method using the Fraunhofer line depth (FLD) principle, and compares the results with the standard measurement methods. A high-spectral resolution HR2000+ and an ordinary USB4000 spectrometer were used to measure leaf reflectance under solar and artificial light, respectively, to estimate Chl fluorescence. Using leaves of Capsicum annuum cv. ‘Sven’ (paprika), the relationships between the Chl content and the steady-state Chl fluorescence near oxygen absorption bands of O2B (686nm) and O2A (760nm), measured under artificial and solar light at different growing stages of leaves, were evaluated. The Chl fluorescence yields of ΦF 686nm/ΦF 760nm ratios obtained from both methods correlated well with the Chl content (steady-state solar light: R2 = 0.73; artificial light: R2 = 0.94). The SIF method was less accurate for Chl content estimation when Chl content was high. The steady-state solar-induced Chl fluorescence yield ratio correlated very well with the artificial-light-induced one (R2 = 0.84). A new methodology is then presented to estimate photochemical yield of photosystem II (ΦPSII) from the SIF measurements, which was verified against the standard Chl fluorescence measurement method (pulse-amplitude modulated method). The high coefficient of determination (R2 = 0.74) between the ΦPSII of the two methods shows that photosynthesis process parameters can be successfully estimated using the presented methodology. PMID:26071530

  12. The Broken Ring: Reduced Aromaticity in Lys-Trp Cations and High pH Tautomer Correlates with Lower Quantum Yield and Shorter Lifetimes

    PubMed Central

    2015-01-01

    Several nonradiative processes compete with tryptophan fluorescence emission. The difficulty in spectral interpretation lies in associating specific molecular environmental features with these processes and thereby utilizing the fluorescence spectral data to identify the local environment of tryptophan. Here, spectroscopic and molecular modeling study of Lys-Trp dipeptide charged species shows that backbone-ring interactions are undistinguished. Instead, quantum mechanical ground state isosurfaces reveal variations in indole π electron distribution and density that parallel charge (as a function of pK1, pK2, and pKR) on the backbone and residues. A pattern of aromaticity-associated quantum yield and fluorescence lifetime changes emerges. Where quantum yield is high, isosurfaces have a charge distribution similar to the highest occupied molecular orbital (HOMO) of indole, which is the dominant fluorescent ground state of the 1La transition dipole moment. Where quantum yield is low, isosurface charge distribution over the ring is uneven, diminished, and even found off ring. At pH 13, the indole amine is deprotonated, and Lys-Trp quantum yield is extremely low due to tautomer structure that concentrates charge on the indole amine; the isosurface charge distribution bears scant resemblance to the indole HOMO. Such greatly diminished fluorescence has been observed for proteins where the indole nitrogen is hydrogen bonded, lending credence to the association of aromaticity changes with diminished quantum yield in proteins as well. Thus tryptophan ground state isosurfaces are an indicator of indole aromaticity, signaling the partition of excitation energy between radiative and nonradiative processes. PMID:24882092

  13. The Origin of the s, p, d, f Orbital Labels

    ERIC Educational Resources Information Center

    Jensen, William B.

    2007-01-01

    The theory of s, p, d and f dealing with the line spectra of the alkali metals during the period 1881 based on analogies with the harmonic ratios of sound is described. Friedrich Hund followed Bohr's practice of labelling the various shells and subshells by replacing the secondary quantum number with the series notations (s, p, d, and f), which…

  14. Experimental evidence for subshell closure in {sup 8}He and indication of a resonant state in {sup 7}He below 1 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skaza, F.; Lapoux, V.; Keeley, N.

    2006-04-15

    The spectroscopy of the unstable {sup 8}He and unbound {sup 7}He nuclei is investigated via the p({sup 8}He, d) transfer reaction with a 15.7A MeV {sup 8}He beam from the SPIRAL facility. The emitted deuterons were detected by the telescope array MUST. The results are analyzed within the coupled-channels Born approximation framework, and a spectroscopic factor C{sup 2}S=4.4{+-}1.3 for neutron pickup to the {sup 7}He{sub g.s.} is deduced. This value is consistent with a full p3/2 subshell for {sup 8}He. Tentative evidence for the first excited state of {sup 7}He is found at E{sup *}=0.9{+-}0.5 MeV (width {gamma}=1.0{+-}0.9 MeV). Themore » second one is observed at a position compatible with previous measurements, E{sup *}=2.9{+-}0.1 MeV. Both are in agreement with previous separate measurements. The reproduction of the first excited state below 1 MeV would be a challenge for the most sophisticated nuclear theories.« less

  15. Origin of the magnetic transition at 100 K in ɛ-Fe2O3 nanoparticles studied by x-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    López-Sánchez, J.; Muñoz-Noval, A.; Castellano, C.; Serrano, A.; del Campo, A.; Cabero, M.; Varela, M.; Abuín, M.; de la Figuera, J.; Marco, J. F.; Castro, G. R.; Rodríguez de la Fuente, O.; Carmona, N.

    2017-12-01

    The current study unveils the structural origin of the magnetic transition of the ɛ-Fe2O3 polymorph from an incommensurate magnetic order to a collinear ferrimagnetic state at low temperature. The high crystallinity of the samples and the absence of other iron oxide polymorphs have allowed us to carry out temperature-dependent x-ray absorption fine structure spectroscopy experiments out. The deformation of the structure is followed by the Debye-Waller factor for each selected Fe-O and Fe-Fe sub-shell. For nanoparticle sizes between 7 and 15 nm, the structural distortions between the Fete and Fe-D1oc sites are localized in a temperature range before the magnetic transition starts. On the contrary, the inherent interaction between the other sub-shells (named Fe-O1,2 and Fe-Fe1) provokes cooperative magneto-structural changes in the same temperature range. This means that the Fete with Fe-D1oc polyhedron interaction seems to be uncoupled with temperature dealing with these nanoparticle sizes wherein the structural distortions are likely moderate due to surface effects.

  16. Static, dynamic and electronic properties of expanded fluid mercury in the metal-nonmetal transition range. An ab initio study.

    PubMed

    Calderín, L; González, L E; González, D J

    2011-09-21

    Fluid Hg undergoes a metal-nonmetal (M-NM) transition when expanded toward a density of around 9 g cm(-3). We have performed ab initio molecular dynamics simulations for several thermodynamic states around the M-NM transition range and the associated static, dynamic and electronic properties have been analyzed. The calculated static structure shows a good agreement with the available experimental data. It is found that the volume expansion decreases the number of nearest neighbors from 10 (near the triple point) to around 8 at the M-NM transition region. Moreover, these neighbors are arranged into two subshells and the decrease in the number of neighbors occurs in the inner subshell. The calculated dynamic structure factors agree fairly well with their experimental counterparts obtained by inelastic x-ray scattering experiments, which display inelastic side peaks. The derived dispersion relation exhibits some positive dispersion for all the states, although its value around the M-NM transition region is not as marked as suggested by the experiment. We have also calculated the electronic density of states, which shows the appearance of a gap at a density of around 8.3 g cm(-3).

  17. An individually coated near-infrared fluorescent protein as a safe and robust nanoprobe for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Xiang, Kun; Yang, Yi-Xin; Wang, Yan-Wen; Zhang, Xin; Cui, Yangdong; Wang, Haifang; Zhu, Qing-Qing; Fan, Liqiang; Liu, Yuanfang; Cao, Aoneng

    2013-10-01

    A prerequisite for in vivo fluorescence imaging is the safety of fluorescent probes. Among all fluorescent probes, fluorescent proteins (FPs) might be the safest ones, which have been widely used in biological sciences at the gene level. But FPs have not been used in vivo in the purified form yet due to the instability of proteins. Here, we individually coat near-infrared (NIR) FPs (NIRFPs) with a silica nanoshell, resulting in NIRFP@silica, one of the safest and brightest NIR fluorescent nanoprobes with a quantum yield of 0.33 for in vivo imaging. The silica shell not only protects NIRFPs from denaturation and metabolic digestion, but also enhances the quantum yield and photostability of the coated NIRFPs. When injected via the tail vein, NIRFP@silica NPs can distribute all over the mouse body, and then can be efficiently eliminated through urine in 24 h, demonstrating its potential applications as a safe and robust NIR fluorescence probe for whole body imaging.A prerequisite for in vivo fluorescence imaging is the safety of fluorescent probes. Among all fluorescent probes, fluorescent proteins (FPs) might be the safest ones, which have been widely used in biological sciences at the gene level. But FPs have not been used in vivo in the purified form yet due to the instability of proteins. Here, we individually coat near-infrared (NIR) FPs (NIRFPs) with a silica nanoshell, resulting in NIRFP@silica, one of the safest and brightest NIR fluorescent nanoprobes with a quantum yield of 0.33 for in vivo imaging. The silica shell not only protects NIRFPs from denaturation and metabolic digestion, but also enhances the quantum yield and photostability of the coated NIRFPs. When injected via the tail vein, NIRFP@silica NPs can distribute all over the mouse body, and then can be efficiently eliminated through urine in 24 h, demonstrating its potential applications as a safe and robust NIR fluorescence probe for whole body imaging. Electronic supplementary information (ESI) available: A chromatogram of APTS-NIRFP, a TEM image of 40 nm NIRFP@silica, dispersion stability of NIRFP@silica, more whole body fluorescent images, serum biochemical parameters, and optical images of HE stained organ slices. See DOI: 10.1039/c3nr02508j

  18. Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment.

    PubMed

    Li, Wen-Tao; Jin, Jing; Li, Qiang; Wu, Chen-Fei; Lu, Hai; Zhou, Qing; Li, Ai-Min

    2016-04-15

    Online monitoring dissolved organic matter (DOM) is urgent for water treatment management. In this study, high performance size exclusion chromatography with multi-UV absorbance and multi-emission fluorescence scans were applied to spectrally characterize samples from 16 drinking water sources across Yangzi River and Huai River Watersheds. The UV absorbance indices at 254 nm and 280 nm referred to the same DOM components and concentration, and the 280 nm UV light could excite both protein-like and humic-like fluorescence. Hence a novel UV fluorescence sensor was developed out using only one UV280 light-emitting diode (LED) as light source. For all samples, enhanced coagulation was mainly effective for large molecular weight biopolymers; while anion exchange further substantially removed humic substances. During chlorination tests, UVA280 and UVA254 showed similar correlations with yields of disinfection byproducts (DBPs); the humic-like fluorescence obtained from LED sensors correlated well with both trihalomethanes and haloacetic acids yields, while the correlation between protein-like fluorescence and trihalomethanes was relatively poor. Anion exchange exhibited more reduction of DBPs yields as well as UV absorbance and fluorescence signals than enhanced coagulation. The results suggest that the LED UV fluorescence sensors are very promising for online monitoring DOM and predicting DBPs formation potential during water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Two-Photon/Laser-Induced Fluorescence (TP/LIF) sensor

    NASA Technical Reports Server (NTRS)

    Bradshaw, John D.

    1994-01-01

    The Two-Photon/Laser-Induced Fluorescence (TP/LIF) technique is based on the stepwise excitation of the OH transitions, X(exp 2)II, v(exp '') = 0 yields X(exp 2)II, v(exp '') = 1 (lambda = 2.9 microns) and X(exp 2)II v(exp '') = 1 yields A(exp2)Sigma, v' = 0 (lambda = 345 nm) with background free fluorescence monitoring of the A(exp 2)Sigma, v' = 0 yields X(exp 2)II, v(exp '') = 0 transition near 309 nm. This technique has awaited the advent of a suitable mid-infrared (2.9 microns) laser source. Turnable mid-IR lasers now exist that are capable of meeting the specifications required of a high sensitivity TP/LIF OH sensor.

  20. Laser-induced fluorescence measurement of the oil film thickness in an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Ostroski, Greg M.; Ghandhi, Jaal B.

    1997-11-01

    The use of a fluorescent dopant molecule to enhance the natural fluorescence of motor oils, and allow quantitative determination of temperature and film thickens in internal combustion engines has been investigated. Measurement of the fluorescence as a function of temperature were made with neat Mobil 1, and solutions of the dopant BTBP in mineral oil and Mobil 1. The fluorescence yield of neat Mobil 1 was found to vary by 30 percent over the temperature range explored, but the spectral characteristics, as measured with bandpass filters, were unaffected by temperature. The BTBP fluorescence was found to increase significantly with temperature, and it was found the narrower regions in the spectrum increased proportionally more than the fluorescence collected over the entire spectrum, allowing a determination of temperature to be made which can then be used to correct for the change in fluorescence yield. Solutions in Mobil 1 showed a smaller increase than that observed in mineral oil.

  1. KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel

    NASA Technical Reports Server (NTRS)

    Quagliaroli, T. M.; Laufer, G.; Hollo, S. D.; Krauss, R. H.; Whitehurst, R. B., III; Mcdaniel, J. C., Jr.

    1992-01-01

    Planar fluorescence images of OH in a continuous-flow, electrical-resistively heated, high enthalpy, hydrogen-air combustion tunnel, induced by a tunable KrF laser, were recorded. These images were compared to previously recorded fluorescence images induced by a doubled-dye laser under similar conditions. Images induced by the doubled-dye laser system demonstrated a severe distortion caused by absorption and fluorescence trapping. By contrast, images of the fluorescence induced by the tunable KrF laser retained the symmetry properties of the flow. Based on signal-to-noise ratio measurements the yield of the fluorescence induced by the doubled-dye laser is larger than the fluorescence yield induced by the KrF laser. The measurements in the present facility of OH fluorescence induced by the KrF laser were limited by the photon-statistical noise. Based 2 on this result, doubled-dye laser systems are recommended for OH imaging in small and OH lean (less than 10 exp 15/cu cm) facilities. KrF lasers should be selected otherwise.

  2. Formation of hemoglobin photoproduct is responsible for two-photon and single photon-excited fluorescence of red blood cells

    NASA Astrophysics Data System (ADS)

    Shirshin, Evgeny A.; Yakimov, Boris P.; Rodionov, Sergey A.; Omelyanenko, Nikolai P.; Priezzhev, Alexander V.; Fadeev, Victor V.; Lademann, Juergen; Darvin, Maxim E.

    2018-07-01

    Two-photon excited fluorescence of red blood cells (RBC) has been reported to be applicable for their assessment in vitro and in vivo. The corresponding fluorescence emission was ascribed to hemoglobin (Hb), however, as Hb is essentially non-fluorescent at single-photon excitation, the mechanism of two-photon excited fluorescence of RBC remains debatable. Here we show that a fluorescent photoproduct, characterized by an ultrafast decay of excitation, is formed after irradiation of Hb with femtosecond laser pulses with ca. 8 · 10‑5 quantum yield, and that it is also fluorescent at single-photon excitation. The formation of a similar photoproduct was also shown for Hb continuous wave irradiation with blue light with ca. 10‑5 formation quantum yield. The kinetics of the Hb photoproduct formation and its spectral properties were investigated. The obtained results clarify the processes responsible for RBC fluorescence observed in two-photon microscopy experiments.

  3. Poem: A Fast Monte Carlo Code for the Calculation of X-Ray Transition Zone Dose and Current

    DTIC Science & Technology

    1975-01-15

    stored on the photon interaction data tape. Following the photoelectric ionization the atom will relax emitting either a fluorescent photon or an Auger 50...shell fluorescence yield CL have been obtained from the Storm and Israel1 9 and 25 Bambynek, et al. compilations, with preference given to the...Bambynek compilation, and stored on the photon inter- action data tape. The mean M fluorescence yield wM is approximated by zero. The total electron source

  4. Viscosity and medium effects on the fluorescence and photochemical behaviour of some aryl chalcones

    NASA Astrophysics Data System (ADS)

    Ebeid, El-Zeiny M.; Abdel-Kader, Mahmood H.; Issa, Raafat M.; El-Daly, Samy A.

    1988-05-01

    The emission, excitation and absorption spectra toghether with the fluorescence and photochemical quantum yields of some chalcone derivatives have been studied in organic solvents and micellar and microemulsion media. Both 4-[2-(2-pyridyl)ethenyl] ( I) and 4-[2-(4-pyridyl)ethenyl ( II) chalcones show large positive solvatochromic effects. The fluorescence quantum yields increase substantially as the medium viscosity increases with a subsequent decrease in the photochemical quatum yield. Compounds I and II undergo excited-state molecular aggregation in concentrated solutions giving excimer-like emission that coincides with emission from crystalline samples. The enthalpies of photoassociation have been estimated. The chalcone derivative I acts as an efficient quencher of the fluorescence of the laser dye 1,4-bis (β-pyridyl-2-vinyl)benzene via a long-range mechanism. The excited-state lifetimes of both I and II are short and at 20°C their τ values are less than 800 ps.

  5. Fluorescence enhancement by Au nanostructures: nanoshells and nanorods.

    PubMed

    Bardhan, Rizia; Grady, Nathaniel K; Cole, Joseph R; Joshi, Amit; Halas, Naomi J

    2009-03-24

    Metallic nanoparticles influence the quantum yield and lifetime of adjacent fluorophores in a manner dependent on the properties of the nanostructure. Here we directly compare the fluorescence enhancement of the near-infrared fluorophore IR800 by Au nanoshells (NSs) and Au nanorods (NRs), where human serum albumin (HSA) serves as a spacer layer between the nanoparticle and the fluorophore. Our measurements reveal that the quantum yield of IR800 is enhanced from approximately 7% as an isolated fluorophore to 86% in a NSs-HSA-IR800 complex and 74% in a NRs-HSA-IR800 complex. This dramatic increase in fluorescence shows tremendous potential for contrast enhancement in fluorescence-based bioimaging.

  6. Investigation of transient dynamics of capillary assisted particle assembly yield

    NASA Astrophysics Data System (ADS)

    Virganavičius, D.; Juodėnas, M.; Tamulevičius, T.; Schift, H.; Tamulevičius, S.

    2017-06-01

    In this paper, the transient behavior of the particle assembly yield dynamics when switching from low yield to high yield deposition at different velocity and thermal regimes is investigated. Capillary force assisted particle assembly (CAPA) using colloidal suspension of green fluorescent 270 nm diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield transitions. Closely packed 300 nm diameter circular pits ordered in hexagonal arrangement with 300 nm pitch, and 2 × 2 mm2 square pits with 2 μm spacing were used. 2-D regular structures of the deposited particles were investigated by means of optical fluorescence and scanning electron microscopy. The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified by approximation of the yield profile with a logistic function.

  7. Relationship between the Fluorescence Lifetime of Chlorophyll 'a' and Primary Productivity within the Mississippi River Plume and Adjacent Shelf Region

    NASA Technical Reports Server (NTRS)

    Hall, Callie; Miller, Richard L.; Fernandez, Salvador M.; McKee, Brent A.

    2000-01-01

    In situ measurements of chlorophyll fluorescence intensity have been widely used to estimate phytoplankton biomass. However, because the fluorescence quantum yield of chlorophyll a in vivo can be highly variable, measurements of chlorophyll fluorescence intensity cannot be directly correlated with phytoplankton biomass and do not provide information on the physiological state of the phytoplankton under study. Conversely, lifetime-based measurements of chlorophyll fluorescence provide a framework in which photosynthetic rates of phytoplankton can be analyzed according to phytoplankton physiology. Along with the measurement of primary production and ambient nutrient concentrations within the Mississippi River plume in the northern Gulf of Mexico, phytoplankton fluorescence lifetimes were measured using a Fluorescence Lifetime Phytoplankton Analyzer (developed under a NASA Small Business Innovative Research contract to Ciencia, Inc.). Variability of fluorescence lifetimes within the plume can be used as a background from which to interpret variations in the maximum quantum yield of photochemistry. The extent to which nutrient and effluent loading in this dynamic coastal area affect the photosynthetic performance of phytoplankton will be presented as a function of phytoplankton fluorescence lifetimes.

  8. Before In Vivo Imaging: Evaluation of Fluorescent Probes Using Fluorescence Microscopy, Multiplate Reader, and Cytotoxicity Assays.

    PubMed

    Zhang, Shaojuan

    2016-01-01

    Fluorescent probes are widely utilized for noninvasive fluorescence imaging. Continuing efforts have been made in developing novel fluorescent probes with improved fluorescence quantum yield, enhanced target-specificity, and lower cytotoxicity. Before such probes are administrated into a living system, it is essential to evaluate the subcellular uptake, targeting specificity, and cytotoxicity in vitro. In this chapter, we briefly outline common methods used to evaluate fluorescent probes using fluorescence microscopy, multiplate reader, and cytotoxicity assay.

  9. The energy structure and decay channels of the 4p6-shell excited states in Sr

    NASA Astrophysics Data System (ADS)

    Kupliauskienė, A.; Kerevičius, G.; Borovik, V.; Shafranyosh, I.; Borovik, A.

    2017-11-01

    The ejected-electron spectra arising from the decay of the 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } autoionizing states in Sr atoms have been studied precisely at the incident-electron energies close to excitation and ionization thresholds of the 4{{{p}}}6 subshell. The excitation behaviors for 58 lines observed between 12 and 21 eV ejected-electron kinetic energy have been investigated. Also, the ab initio calculations of excitation energies, autoionization probabilities and electron-impact excitation cross sections of the states 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } (nl = 4d, 5s, 5p; {n}{\\prime }{l}{\\prime } = 4d, 5s, 5p; {n}{\\prime\\prime }{l}{\\prime\\prime } = 5s, 6s, 7s, 8s, 9s, 5p, 6p, 5d, 6d, 7d, 8d, 4f, 5g) have been performed by employing the large-scale configuration-interaction method in the basis of the solutions of Dirac-Fock-Slater equations. The obtained experimental and theoretical data have been used for the accurate identification of the 60 lines in ejected-electron spectra and the 68 lines observed earlier in photoabsorption spectra. The excitation and decay processes for 105 classified states in the 4p55s{}2{nl}, 4p54d{}2{nl} and 4p55s{{nln}}{\\prime }{l}{\\prime } configurations have been considered in detail. In particular, most of the states lying below the ionization threshold of the 4p6 subshell at 26.92 eV possess up to four decay channels with formation of Sr+ in 5s{}1/2, 4d{}3/{2,5/2} and 5p{}1/{2,3/2} states. Two-step autoionization and two-electron Auger transitions with formation of Sr2+ in the 4p6 {}1{{{S}}}0 ground state are the main decay paths for high-lying autoionizing states. The excitation threshold of the 4{{{p}}}6 subshell in Sr has been established at 20.98 ± 0.05 eV.

  10. Some fluorescence properties of dimethylaminochalcone and its novel cyclic analogues

    NASA Astrophysics Data System (ADS)

    Tomečková, Vladimíra; Poškrobová, Martina; Štefanišinová, Miroslava; Perjési, Pál

    2009-12-01

    This paper demonstrates the basic character (polarity, solubility, colour, absorption and fluorescence quantum yield) of synthetic dimethylaminochalcone ( 1) and its cyclic analogues measured in toluene, chloroform, dimethylsulfoxide and ethanol, which have been studied by absorption and fluorescence spectroscopy. The biologically active dye 4'-dimethylaminochalcone ( 1b) and its less flexible analogues 4-dimethylaminoindanone ( 2b), -tetralone ( 3b), and -benzosuberone ( 4b) are lipophilic molecules that displayed the best solubility in toluene and chloroform. The highest fluorescence and quantum yields of compounds 1 and 2 have been obtained in DMSO and chloroform. Quenching effect of fluorescence compounds ( 1- 4) has been studied in the mixture of the most polar organic solvents DMSO and water. In the presence of water, fluorescence of compound 1 has been quenched the best from all studied chalcones and emission maxima of molecules 1- 4 have been shifted to the longer wavelengths. Quenching effect of fluorescence by water was in order 1 > 2 > 3 > 4.

  11. The effect of annulation of benzene rings on the photophysics and electronic structure of tetraazachlorin molecules

    NASA Astrophysics Data System (ADS)

    Pershukevich, P. P.; Volkovich, D. I.; Gladkov, L. L.; Dudkin, S. V.; Kuzmitsky, V. A.; Makarova, E. A.; Solovyev, K. N.

    2017-10-01

    The photophysics and electronic structure of tribenzotetraazachlorins (H2, Zn, and Mg), which are novel analogues of phtalocyanines, have been studied experimentally and theoretically. At 293 K, the electronic absorption, fluorescence, and fluorescence excitation spectra are recorded and the fluorescence quantum yield and lifetime, as well as the quantum yield of singlet oxygen generation, are measured; at 77 K, the fluorescence, fluorescence excitation, and fluorescence polarization spectra are recorded and the fluorescence lifetime values are measured. The dependences of the absorption spectra and photophysical parameters on the structure variation are analyzed in detail. Quantum-chemical calculations of the electronic structure and absorption spectra of tribenzotetraazachlorins (H2, Mg) are performed using the INDO/Sm method (modified INDO/S method) based on molecular-geometry optimization by the DFT PBE/TZVP method. The results of quantum-chemical calculations of the electronic absorption spectra are in very good agreement with the experimental data for the transitions to two lower electronic states.

  12. Solvatochromic fluorescence characteristics of cinnamoyl pyrone derivatives

    NASA Astrophysics Data System (ADS)

    Benosmane, Nadjib; Boutemeur, Baya; Hamdi, Safouane M.; Hamdi, Maamar; Silva, Artur S. M.

    2017-12-01

    The solvatochromic fluorescence behavior of cinnamoyl pyrone derivatives has been studied in several polar and non-polar solvents. The fluorescence spectra of these compounds exhibit red shift from its absorption spectra and present an excellent correlation with solvent polarity. Cinnamoyl pyrones show a significant spectral shift in fluorescence emission as a function of water composition in binary aqueous solutions mixture. This change is due to the specific intermolecular hydrogen bonding of cinnamoyl pyrones with a molecules of water, due to the deactivation of the lowest excited singlet state of these compounds. The relative quantum yields are calculated. It is found that the quantum yields of the cinnamoyl pyrones vary with the change in the solvent polarity indicating the dependency of fluorescence properties on the solvent nature. It has been observed that the addition of water and pH medium can affect the fluorescence properties of cinnamoyl pyrones in ethanol. This study exhibited that due to the solvent sensitive emission, cinnamoyl pyrone derivatives are a good compound to be used as fluorescence probes.

  13. Self-absorption Effects on Alpha-Induced Atmospheric Nitrogen Fluorescence Yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachelor, Paula P.; Jordan, David V.; Harper, Warren W.

    2009-12-01

    Nitrogen fluorescence induced by alpha, beta and gamma radiation can be used to detect the presence of radioactive contamination in the environment. Successful measurement of fluorescence yield involves a number of factors, including: known fluorescence signal rate during the measurement; the effective alpha spectrum of the radioactive sources used in the measurement; optical attenuation length of the fluorescence signal in air during the measurement; the absolute throughput of the instrumentation; calibration of the instrumentation; and radiation transport modeling of the "effective" array exposure rate given the spectrum of the alpha particles. Field testing of optical instrumentation was conducted to measuremore » the nitrogen fluorescence yield from the alpha radiation generated from americium-241 (241Am) decay. The 241Am test sources were prepared by direct evaporation of ~1 mCi in nitric acid solution, and some solids were visible on the surface of the sources. A laboratory study was conducted with lower activities of 241Am to determine whether the presence of solids on the surface of the sources prepared both by direct evaporation and by electrodeposition onto stainless steel disks produced sufficient self-absorption to cause a decrease in expected fluorescence. Alpha spectroscopy was used to determine the apparent activity of the sources versus the known activity deposited on the surface. Results from the self-absorption laboratory studies were used to correct the activity values in the model and calculate the nitrogen fluorescence generated by the 241Am during the field experiments.« less

  14. Enhanced Fluorescence Properties of Carbon Dots in Polymer Films

    PubMed Central

    Liu, Yamin; Wang, Ping; Shiral Fernando, K. A.; LeCroy, Gregory E.; Maimaiti, Halidan; Harruff-Miller, Barbara A.; Lewis, William K.; Bunker, Christopher E.; Hou, Zhi-Ling; Sun, Ya-Ping

    2016-01-01

    Carbon dots of small carbon nanoparticles surface-functionalized with 2,2′-(ethylenedioxy)bis(ethylamine) (EDA) were synthesized, and the as-synthesized sample was separated on an aqueous gel column to obtain fractions of the EDA-carbon dots with different fluorescence quantum yields. As already discussed in the literature, the variations in fluorescence performance among the fractions were attributed to the different levels and/or effectiveness of the surface functionalization-passivation in the carbon dots. These fractions, as well as carbon nanoparticles without any deliberate surface functionalization, were dispersed into poly(vinyl alcohol) (PVA) for composite films. In the PVA film matrix, the carbon dots and nanoparticles exhibited much enhanced fluorescence emissions in comparison with their corresponding aqueous solutions. The increased fluorescence quantum yields in the films were determined quantitatively by using a specifically designed and constructed film sample holder in the emission spectrometer. The observed fluorescence decays of the EDA-carbon dots in film and in solution were essentially the same, suggesting that the significant enhancement in fluorescence quantum yields from solution to film is static in nature. Mechanistic implications of the results, including a rationalization in terms of the compression effect on the surface passivation layer (similar to a soft corona) in carbon dots when embedded in the more restrictive film environment resulting in more favorable radiative recombinations of the carbon particle surface-trapped electrons and holes, and also potential technological applications of the brightly fluorescent composite films are highlighted and discussed. PMID:28133537

  15. A generalized model on the effects of nanoparticles on fluorophore fluorescence in solution

    USDA-ARS?s Scientific Manuscript database

    Nanoparticles (NP) can modify fluorophore fluorescence in solution through multiple pathways that include fluorescence inner filter effect (IFE), dynamic and static quenching, surface enhancement, and fluorophore quantum yield variation associated with structural and conformational modifications ind...

  16. Measuring partial fluorescence yield using filtered detectors.

    PubMed

    Boyko, T D; Green, R J; Moewes, A; Regier, T Z

    2014-07-01

    Typically, X-ray absorption near-edge structure measurements aim to probe the linear attenuation coefficient. These measurements are often carried out using partial fluorescence yield techniques that rely on detectors having photon energy discrimination improving the sensitivity and the signal-to-background ratio of the measured spectra. However, measuring the partial fluorescence yield in the soft X-ray regime with reasonable efficiency requires solid-state detectors, which have limitations due to the inherent dead-time while measuring. Alternatively, many of the available detectors that are not energy dispersive do not suffer from photon count rate limitations. A filter placed in front of one of these detectors will make the energy-dependent efficiency non-linear, thereby changing the responsivity of the detector. It is shown that using an array of filtered X-ray detectors is a viable method for measuring soft X-ray partial fluorescence yield spectra without dead-time. The feasibility of this technique is further demonstrated using α-Fe2O3 as an example and it is shown that this detector technology could vastly improve the photon collection efficiency at synchrotrons and that these detectors will allow experiments to be completed with a much lower photon flux reducing X-ray-induced damage.

  17. Detection and evaluation of normal and malignant cells using laser-induced fluorescence spectroscopy.

    PubMed

    Khosroshahi, Mohamad E; Rahmani, Mahya

    2012-01-01

    The aim of this research is to study the normalized fluorescence spectra (intensity variations and area under the fluorescence signal), relative quantum yield, extinction coefficient and intracellular properties of normal and malignant human bone cells. Using Laser-Induced Fluorescence Spectroscopy (LIFS) upon excitation of 405 nm, the comparison of emission spectra of bone cells revealed that fluorescence intensity and the area under the spectra of malignant bone cells was less than that of normal. In addition, the area ratio and shape factor were changed. We obtained two emission bands in spectra of normal cells centered at about 486 and 575 nm and for malignant cells about 482 and 586 nm respectively, which are most likely attributed to NADH and riboflavins. Using fluorescein sodium emission spectrum, the relative quantum yield of bone cells is numerically determined.

  18. Hyper-mobility of water around actin filaments revealed using pulse-field gradient spin-echo {sup 1}H NMR and fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wazawa, Tetsuichi; CREST, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012; Sagawa, Takashi

    2011-01-28

    Research highlights: {yields} Translationally hyper-mobile water has been detected around actin filaments. {yields} Translationally hyper-mobile water is formed upon polymerization of actin. {yields} Low water viscosity was found around F-actin using fluorescence anisotropy. {yields} Formation of hyper-mobile water may explain endothermic actin polymerization. -- Abstract: This paper reports that water molecules around F-actin, a polymerized form of actin, are more mobile than those around G-actin or in bulk water. A measurement using pulse-field gradient spin-echo {sup 1}H NMR showed that the self-diffusion coefficient of water in aqueous F-actin solution increased with actin concentration by {approx}5%, whereas that in G-actin solutionmore » was close to that of pure water. This indicates that an F-actin/water interaction is responsible for the high self-diffusion of water. The local viscosity around actin was also investigated by fluorescence measurements of Cy3, a fluorescent dye, conjugated to Cys 374 of actin. The steady-state fluorescence anisotropy of Cy3 attached to F-actin was 0.270, which was lower than that for G-actin, 0.334. Taking into account the fluorescence lifetimes of the Cy3 bound to actin, their rotational correlation times were estimated to be 3.8 and 9.1 ns for F- and G-actin, respectively. This indicates that Cy3 bound to F-actin rotates more freely than that bound to G-actin, and therefore the local water viscosity is lower around F-actin than around G-actin.« less

  19. New anthracene derivatives as triplet acceptors for efficient green-to-blue low-power upconversion.

    PubMed

    Liang, Zuo-Qin; Sun, Bin; Ye, Chang-Qing; Wang, Xiao-Mei; Tao, Xu-Tang; Wang, Qin-Hua; Ding, Ping; Wang, Bao; Wang, Jing-Jing

    2013-10-21

    Three new anthracene derivatives [2-chloro-9,10-dip-tolylanthracene (DTACl), 9,10-dip-tolylanthracene-2-carbonitrile (DTACN), and 9,10-di(naphthalen-1-yl)anthracene-2-carbonitrile (DNACN)] were synthesized as triplet acceptors for low-power upconversion. Their linear absorption, single-photon-excited fluorescence, and upconversion fluorescence properties were studied. The acceptors exhibit high fluorescence yields in DMF. Selective excitation of the sensitizer Pd(II)octaethylporphyrin (PdOEP) in solution containing DTACl, DTACN, or DNA-CN at 532 nm with an ultralow excitation power density of 0.5 W cm(-2) results in anti-Stokes blue emission. The maximum upconversion quantum yield (Φ(UC) =17.4%) was obtained for the couple PdOEP/DTACl. In addition, the efficiency of the triplet-triplet energy transfer process was quantitatively studied by quenching experiments. Experimental results revealed that a highly effective acceptor for upconversion should combine high fluorescence quantum yields with efficient quenching of the sensitizer triplet. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Choosing Between Yeast and Bacterial Expression Systems: Yield Dependent

    NASA Technical Reports Server (NTRS)

    Miller, Rebecca S.; Malone, Christine C.; Moore, Blake P.; Burk, Melissa; Crawford, Lisa; Karr, Laurel J.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Green fluorescent protein (GFP) is a naturally occurring fluorescent protein isolated from the jellyfish Aequorea victoria. The intrinsic fluorescence of the protein is due to a chromophore located in the center of the molecule. Its usefulness has been established as a marker for gene expression and localization of gene products. GFP has recently been utilized as a model protein for crystallization studies at NASA/MSFC, both in earth-based and in microgravity experiments. Because large quantities of purified protein were needed, the cDNA of GFP was cloned into the Pichia pastoris pPICZ(alpha) C strain, with very little protein secreted into the media. Microscopic analysis prior to harvest showed gigantic green fluorescent yeast, but upon harvesting most protein was degraded. Trial fermentations of GFP cloned into pPICZ A for intracellular expression provided unsatisfactory yield. GFP cloned into E, coli was overexpressed at greater than 150 mg/liter, with purification yields at greater than 100mg/liter.

  1. Theoretical and experimental determination of L -shell decay rates, line widths, and fluorescence yields in Ge

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Sampaio, J. M.; Madeira, T. I.; Parente, F.; Indelicato, P.; Marques, J. P.; Santos, J. P.; Hoszowska, J.; Dousse, J.-Cl.; Loperetti, L.; Zeeshan, F.; Müller, M.; Unterumsberger, R.; Beckhoff, B.

    2015-08-01

    Fluorescence yields (FYs) for the Ge L shell were determined by a theoretical and two experimental groups within the framework of the International Initiative on X-Ray Fundamental Parameters Collaboration. Calculations were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental value of the L3FY ωL 3 was determined at the Physikalisch-Technische Bundesanstalt undulator beamline of the synchrotron radiation facility BESSY II in Berlin, Germany, and the L α1 ,2 and L β1 line widths were measured at the Swiss Light Source, Paul Scherrer Institute, Switzerland, using monochromatized synchrotron radiation and a von Hamos x-ray crystal spectrometer. The measured fluorescence yields and line widths are compared to the corresponding calculated values.

  2. Photophysics and catalysis of porphyrinoids

    NASA Astrophysics Data System (ADS)

    Aggarwal, Amit

    Organic nanoparticles (ONP) of metalloporphyrins can be versatile catalysts for the selective oxidation of alkenes and other hydrocarbons. Herein, we report the catalytic activity of ONP of 5,10,15,20-tetrakis-[4-(1'H,1'H,2'H,2'H-heptadecafluorodecane-1-thiol)-2,3,5,6-tetrafluorophenyl] porphyrinato iron(III), Fe(III)TPPF84, and 5,10,15,20-tetakis-(2,3,4,5,6-pentafluorophenyl) porphyrinato manganese(III), Mn(III)TPPF20, for cyclohexene oxidation using molecular oxygen as an oxidant in water under ambient conditions. Sequential dipping of indium-tin-oxide electrodes into solutions of tetra cationic porphyrins and tetra anionic polyoxometalates results in the controlled formation of nm thick films. The potential applications of these robust films on electrodes range from catalysts to sensors. This chapter focuses on the electrochemistry of the multilayered films where it is found that the oxidation and reduction potentials of each species remain largely the same as found in solution. Photophysical properties of Porphyrinoids bearing four rigid hydrogen bonding motifs on the meso positions, self-assembled into a cofacial cage with four complementary bis(decyl)melamine units in dry solvents are presented here. Self-assembly was investigated by NMR spectroscopy, dynamic light scattering, and atomic force microscopy. The phototphysical properties of the cage formation involve the measurement of their absorption and emission spectra and the fluorescence life time in dry THF. The hydrocarbon chains on the bis(decyl)melamine mediate the formation of nanofilms on surfaces as the solvent slowly evaporates. A systematic study of the photophysical properties of a series of porphyrinoids is presented. The role of the location of a heavy atom in shunting the excited state from the singlet to the triplet manifolds is compared for three cases. It is well known that Pt(II) metalloporphyrins do not fluoresce. For meso pyridyl porphyrins, the fluorescence quantum yield decreases as the number of coordinatively attached Pt(II) complexes increase from 0-4, but the tetracoordinated species retains about 30% of the fluorescence. Covalently attaching a heavy metal complex e.g. Pt(II) complex to the macrocycle by an organometalic bond at the peripheral meso position causes greater than a 20-fold decrease in fluorescence quantum yield and may enhance some internal conversion to the ground state. For comparison, the fluorescence quantum yield decreases somewhat as the number of pyridyl groups on the meso positions increase 0-4. We also evaluate the photophysical properties of a series of porphyrins with nitro groups on the beta pyrrole position and on the meso phenyl group, which also quenches the fluorescence. These studies bear on the use of metal ions to enhance the photophysical properties of these dyes as photodynamic therapeutics and for supramolecular systems, while the nitrated macrocycles have potential application in non linear optics. The photophysical properties of non-hydrolysable tetra- thioglycosylated conjugates of chlorin (CGlc4), isobacteriochlorin (IGlc4) and bacteriochlorin (BGlc4) and core F20 platforms are reported here. These studies involve the measurement of absorption and emission spectra, fluorescence quantum yield, singlet oxygen quantum yield, and singlet state life time in three different solvents: phosphate buffer saline (PBS), ethanol, and ethylacetate. Compared to the porphyrin in PBS, CGlc4 has a markedly greater absorbance of red light near 650 nm and a 6-fold increase in fluorescence quantum yield; whereas IGlc4 has broad Q bands and a 12-fold increase in fluorescence quantum yield. Since IGlc4 CGlc4 very slowly bleach, these properties may enable their use as fluorescent tags to track biological processes. BGlc4 has a similar fluorescence quantum yield to PGlc4, (<10%), but the lowest energy absorption/emission peaks of BGlc4 are considerably red shifted to near 730 nm with a nearly 50-fold greater absorbance, which may allow this conjugate to be an effective PDT agent. (Abstract shortened by UMI.)

  3. Detection of a complex translocation using fluorescent in situ hybridization (FISH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, B.A.; Abuelo, D.N.; Mark, H.F.

    1994-09-01

    The use of fluorescent in situ hybridization (FISH) allowed the detection of a complex 3-way translocation in a patient with multiple congenital malformations and mental retardation. The patient was a 10-year-old girl with mental retardation, seizures, repaired cleft palate, esotropia, epicanthal folds, broad nasal bridge, upward slanting palpebral fissures, single transverse palmar crease, brachydactyly, hypoplastic nails, ectrodactyly between the third and fourth right toes, and hypoplasia of the left third toe. Chromosome analysis performed at birth was reported as normal. We performed high resolution banding analysis which revealed an apparently balanced translocation between chromosomes 2 and 9. However, because ofmore » her multiple abnormalities, further studies were ordered. Fluorescent in situ hybridization (FISH) using chromosome painting probes revealed a karyotype of 46,XX,t(2;8;9) (2pter{yields}q31::8q21.2{yields}8qter; 8pter{yields}q21.2::2q31{yields}q34::9q34{yields}qter; 9pter{yields}q34::2q34{yields}qter). The 3-way translocation appears to be de novo, as neither parent is a translocation carrier. This case illustrates the importance of using FISH to further investigate cases of apparently balanced translocations in the presence of phenotypic abnormalities and/or mental retardation.« less

  4. EXAFS Study of Halato-Telechelic Polymers End-Capped With Group IVb Metal Carboxylates at Room and Low Temperatures

    NASA Astrophysics Data System (ADS)

    Vlaic, G.; Navarra, G.; Regnard, J.-R.; Williams, C. E.; Jérôme, R.

    1995-05-01

    The EXAFS analysis at 300, 70 and 5 K has shown that the thermal disorder is very low in a carboxylato telechelic polybutadiene neutralized with an increasing excess of Zr isopropoxide. Two types of Zr-O bonds in the first shell account for the experimental data. The Zr-O distances and number of oxygen neighbours in the two subshells are found to be independent of temperature in the investigated range. The proportion of Zr in the samples has no effect on the total number of oxygen atoms around Zr, in contrast to their relative distribution in the two subshells. The number of Zr atoms increases in the second shell with the total amount of this metal. Upon increasing degree of neutralization from 200 to 600%, the static disorder increases together with a strong reduction of the dynamic part of the Debye-Waller (DW) factor. At a high degree of neutralization (> 400%), the DW factor for the Zr-Zr bond is largely independent of temperature. These observations agree with formation of Zr polynuclear microdomains, the size and rigidity of which increase with the Zr content, in good agreement with the profound changes previously reported in the viscoelastic properties of these materials.

  5. H-, He-like recombination spectra - II. l-changing collisions for He Rydberg states

    NASA Astrophysics Data System (ADS)

    Guzmán, F.; Badnell, N. R.; Williams, R. J. R.; van Hoof, P. A. M.; Chatzikos, M.; Ferland, G. J.

    2017-01-01

    Cosmological models can be constrained by determining primordial abundances. Accurate predictions of the He I spectrum are needed to determine the primordial helium abundance to a precision of <1 per cent in order to constrain big bang nucleosynthesis models. Theoretical line emissivities at least this accurate are needed if this precision is to be achieved. In the first paper of this series, which focused on H I, we showed that differences in l-changing collisional rate coefficients predicted by three different theories can translate into 10 per cent changes in predictions for H I spectra. Here, we consider the more complicated case of He atoms, where low-l subshells are not energy degenerate. A criterion for deciding when the energy separation between l subshells is small enough to apply energy-degenerate collisional theories is given. Moreover, for certain conditions, the Bethe approximation originally proposed by Pengelly & Seaton is not sufficiently accurate. We introduce a simple modification of this theory which leads to rate coefficients which agree well with those obtained from pure quantal calculations using the approach of Vrinceanu et al. We show that the l-changing rate coefficients from the different theoretical approaches lead to differences of ˜10 per cent in He I emissivities in simulations of H II regions using spectral code CLOUDY.

  6. Photophysical Characterization of Enhanced 6-Methylisoxanthopterin Fluorescence in Duplex DNA.

    PubMed

    Moreno, Andrew; Knee, J L; Mukerji, Ishita

    2016-12-08

    The structure and dynamic motions of bases in DNA duplexes and other constructs are important for understanding mechanisms of selectivity and recognition of DNA-binding proteins. The fluorescent guanine analogue, 6-methylisoxanthopterin 6-MI, is well suited to this purpose as it exhibits an unexpected 3- to 4-fold increase in relative quantum yield upon duplex formation when incorporated into the following sequences: ATFAA, AAFTA, or ATFTA (where F represents 6-MI). To better understand some of the factors leading to the 6-MI fluorescence increase upon duplex formation, we characterized the effect of local sequence and structural perturbations on 6-MI photophysics through temperature melts, quantum yield measurements, fluorescence quenching assays, and fluorescence lifetime measurements. By examining 21 sequences we have determined that the duplex-enhanced fluorescence (DEF) depends on the composition of bases adjacent to 6-MI and the presence of adenines at locations n ± 2 from the probe. Investigation of duplex stability and local solvent accessibility measurements support a model in which the DEF arises from a constrained geometry of 6-MI in the duplex, which remains H-bonded to cytosine, stacked with adjacent bases and inaccessible to quenchers. Perturbation of DNA structure through the introduction of an unpaired base 3' to 6-MI or a mismatched basepair increases 6-MI dynamic motion leading to fluorescence quenching and a reduction in quantum yield. Molecular dynamics simulations suggest the enhanced fluorescence results from a greater degree of twist at the X-F step relative to the quenched duplexes examined. These results point to a model where adenine residues located at n ± 2 from 6-MI induce a structural geometry with greater twist in the duplex that hinders local motion reducing dynamic quenching and producing an increase in 6-MI fluorescence.

  7. The impact of fluorescent dyes on the performances of polystyrene-based plastic scintillators

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Deng, Cheng; Jiang, Huimin; Zheng, Zhanlong; Gong, Rui; Bi, Yutie; Zhang, Lin; Lin, Runxiong

    2016-11-01

    To investigate the influence of both the first luminescent additive and the wavelength-shifter on the performance of plastic scintillator, a series of polystyrene-based scintillator had been prepared by thermal polymerization. Three first luminescent additives (PPO, p-TP and b-PBD) and four wavelength-shifters (POPOP, Bis-MSB, Me-MSB and DPA) were added to the scintillators respectively. The comparison results showed that PPO and POPOP were the most adequate fluorescent dyes for the polystyrene-based plastic scintillator. Moreover, with the increase of the concentration of PPO and POPOP, the fluorescence intensity and light yield were increased firstly and then decreased. The plastic scintillator containing 2% PPO and 0.02% POPOP had the highest fluorescence intensity and light yield.

  8. Fluorescent nanodiamonds embedded in biocompatible translucent shells.

    PubMed

    Rehor, Ivan; Slegerova, Jitka; Kucka, Jan; Proks, Vladimir; Petrakova, Vladimira; Adam, Marie-Pierre; Treussart, François; Turner, Stuart; Bals, Sara; Sacha, Pavel; Ledvina, Miroslav; Wen, Amy M; Steinmetz, Nicole F; Cigler, Petr

    2014-03-26

    High pressure high temperature (HPHT) nanodiamonds (NDs) represent extremely promising materials for construction of fluorescent nanoprobes and nanosensors. However, some properties of bare NDs limit their direct use in these applications: they precipitate in biological solutions, only a limited set of bio-orthogonal conjugation techniques is available and the accessible material is greatly polydisperse in shape. In this work, we encapsulate bright 30-nm fluorescent nanodiamonds (FNDs) in 10-20-nm thick translucent (i.e., not altering FND fluorescence) silica shells, yielding monodisperse near-spherical particles of mean diameter 66 nm. High yield modification of the shells with PEG chains stabilizes the particles in ionic solutions, making them applicable in biological environments. We further modify the opposite ends of PEG chains with fluorescent dyes or vectoring peptide using click chemistry. High conversion of this bio-orthogonal coupling yielded circa 2000 dye or peptide molecules on a single FND. We demonstrate the superior properties of these particles by in vitro interaction with human prostate cancer cells: while bare nanodiamonds strongly aggregate in the buffer and adsorb onto the cell membrane, the shell encapsulated NDs do not adsorb nonspecifically and they penetrate inside the cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fluorescent Nanodiamonds Embedded in Biocompatible Translucent Shells

    PubMed Central

    Rehor, Ivan; Slegerova, Jitka; Kucka, Jan; Proks, Vladimir; Petrakova, Vladimira; Adam, Marie-Pierre; Treussart, François; Turner, Stuart; Bals, Sara; Sacha, Pavel; Ledvina, Miroslav; Wen, Amy M.; Steinmetz, Nicole F.; Cigler, Petr

    2016-01-01

    High pressure high temperature (HPHT) nanodiamonds (NDs) represent extremely promising materials for construction of fluorescent nanoprobes and nanosensors. However, some properties of bare NDs limit their direct use in these applications: they precipitate in biological solutions, only a limited set of bio-orthogonal conjugation techniques is available and the accessible material is greatly polydisperse in shape. In this work, we encapsulate bright 30-nm fluorescent nanodiamonds (FNDs) in 10–20-nm thick translucent (i.e., not altering FND fluorescence) silica shells, yielding monodisperse near-spherical particles of mean diameter 66 nm. High yield modification of the shells with PEG chains stabilizes the particles in ionic solutions, making them applicable in biological environments. We further modify the opposite ends of PEG chains with fluorescent dyes or vectoring peptide using click chemistry. High conversion of this bio-orthogonal coupling yielded circa 2000 dye or peptide molecules on a single FND. We demonstrate the superior properties of these particles by in vitro interaction with human prostate cancer cells: while bare nanodiamonds strongly aggregate in the buffer and adsorb onto the cell membrane, the shell encapsulated NDs do not adsorb nonspecifically and they penetrate inside the cells. PMID:24500945

  10. Absolute quantum yield measurement of powder samples.

    PubMed

    Moreno, Luis A

    2012-05-12

    Measurement of fluorescence quantum yield has become an important tool in the search for new solutions in the development, evaluation, quality control and research of illumination, AV equipment, organic EL material, films, filters and fluorescent probes for bio-industry. Quantum yield is calculated as the ratio of the number of photons absorbed, to the number of photons emitted by a material. The higher the quantum yield, the better the efficiency of the fluorescent material. For the measurements featured in this video, we will use the Hitachi F-7000 fluorescence spectrophotometer equipped with the Quantum Yield measuring accessory and Report Generator program. All the information provided applies to this system. Measurement of quantum yield in powder samples is performed following these steps: 1. Generation of instrument correction factors for the excitation and emission monochromators. This is an important requirement for the correct measurement of quantum yield. It has been performed in advance for the full measurement range of the instrument and will not be shown in this video due to time limitations. 2. Measurement of integrating sphere correction factors. The purpose of this step is to take into consideration reflectivity characteristics of the integrating sphere used for the measurements. 3. Reference and Sample measurement using direct excitation and indirect excitation. 4. Quantum Yield calculation using Direct and Indirect excitation. Direct excitation is when the sample is facing directly the excitation beam, which would be the normal measurement setup. However, because we use an integrating sphere, a portion of the emitted photons resulting from the sample fluorescence are reflected by the integrating sphere and will re-excite the sample, so we need to take into consideration indirect excitation. This is accomplished by measuring the sample placed in the port facing the emission monochromator, calculating indirect quantum yield and correcting the direct quantum yield calculation. 5. Corrected quantum yield calculation. 6. Chromaticity coordinates calculation using Report Generator program. The Hitachi F-7000 Quantum Yield Measurement System offer advantages for this application, as follows: High sensitivity (S/N ratio 800 or better RMS). Signal is the Raman band of water measured under the following conditions: Ex wavelength 350 nm, band pass Ex and Em 5 nm, response 2 sec), noise is measured at the maximum of the Raman peak. High sensitivity allows measurement of samples even with low quantum yield. Using this system we have measured quantum yields as low as 0.1 for a sample of salicylic acid and as high as 0.8 for a sample of magnesium tungstate. Highly accurate measurement with a dynamic range of 6 orders of magnitude allows for measurements of both sharp scattering peaks with high intensity, as well as broad fluorescence peaks of low intensity under the same conditions. High measuring throughput and reduced light exposure to the sample, due to a high scanning speed of up to 60,000 nm/minute and automatic shutter function. Measurement of quantum yield over a wide wavelength range from 240 to 800 nm. Accurate quantum yield measurements are the result of collecting instrument spectral response and integrating sphere correction factors before measuring the sample. Large selection of calculated parameters provided by dedicated and easy to use software. During this video we will measure sodium salicylate in powder form which is known to have a quantum yield value of 0.4 to 0.5.

  11. Influence of the alloying effect on nickel K-shell fluorescence yield in Ni Si alloys

    NASA Astrophysics Data System (ADS)

    Kalayci, Y.; Agus, Y.; Ozgur, S.; Efe, N.; Zararsiz, A.; Arikan, P.; Mutlu, R. H.

    2005-02-01

    Alloying effects on the K-shell fluorescence yield ωK of nickel in Ni-Si binary alloy system have been studied by energy dispersive X-ray fluorescence. It is found that ωK increases from pure Ni to Ni 2Si and then decreases from Ni 2Si to NiSi. These results are discussed in terms of d-occupation number on the Ni site and it is concluded that electronic configuration as a result of p-d hybridization explain qualitatively the observed variation of ωK in Ni-Si alloys.

  12. Absorption and emission behaviour of trans- p-coumaric acid in aqueous solutions and some organic solvents

    NASA Astrophysics Data System (ADS)

    Putschögl, M.; Zirak, P.; Penzkofer, A.

    2008-01-01

    The absorption and fluorescence behaviour of trans- p-coumaric acid ( trans-4-hydroxycinnamic acid) is investigated in buffered aqueous solution over a wide range from pH 1 to pH 12, in un-buffered water, and in some organic solvents. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are measured. p-Coumaric acid exists in different ionic forms in aqueous solution depending on the pH. There is an equilibrium between the neutral form ( p-CAH 2) and the single anionic form ( p-CAH -) at low pH (p Kna ≈ 4.9), and between the single anionic and the double anionic form ( p-CA 2-) at high pH (p Kaa ≈ 9.35). In the organic solvents studied trans- p-coumaric acid is dissolved in its neutral form. The fluorescence quantum yield of trans- p-coumaric acid in aqueous solution is ϕF ≈ 1.4 × 10 -4 for the neutral and the single anionic form, while it is ϕF ≈ 1.3 × 10 -3 for the double anionic form. For trans- p-coumaric acid in organic solvents fluorescence quantum yields in the range from 4.8 × 10 -5 (acetonitrile) to 1.5 × 10 -4 (glycerol) were measured. The fluorescence spectra are 7700-10,000 cm -1 Stokes shifted in aqueous solution, and 5400-8200 cm -1 Stokes shifted in the studied organic solvents. Decay paths responsible for the low fluorescence quantum yields are discussed (photo-isomerisation and internal conversion for p-CA 2-, solvent-assisted intra-molecular charge-transfer or ππ ∗ to nπ ∗ transfer and internal conversion for p-CAH 2 and p-CAH -). The solvent dependence of the first ππ ∗ electronic transition frequency and of the fluorescence Stokes shift of p-CAH 2 is discussed in terms of polar solute-solvent interaction effects. Thereby the ground-state and excite-state molecular dipole moments are extracted.

  13. Amine-Reactive Fluorene Probes: Synthesis, Optical Characterization, Bioconjugation, and Two-Photon Fluorescence Imaging

    PubMed Central

    2008-01-01

    With the increasing demand for confocal and two-photon fluorescence imaging, the availability of reactive probes that possess high two-photon absorptivity, high fluorescence quantum yield, and high photostability is of paramount importance. To address the demand for better-performing probes, we prepared two-photon absorbing amine-reactive fluorenyl-based probes 2-(9,9-bis(2-(2-methoxyethoxy)ethyl)-2-isothiocyanato-9H-fluoren-7-yl)benzothiazole (1) and 2-(4-(2-(9,9-bis(2-(2-ethoxyethoxy)ethyl)-2-isothiocyanato-9H-fluoren-7-yl)vinyl)phenyl)benzothiazole (2), incorporating the isothiocyanate as a reactive linker. Probe design was augmented by integrating high optical nonlinearities, increased hydrophilicity, and coupling with reactive functional groups for specific targeting of biomolecules, assuring a better impact on two-photon fluorescence microscopy (2PFM) imaging. The isothiocyanate (NCS) derivatives were conjugated with cyclic peptide RGDfK and Reelin protein. The study of the chemical and photophysical properties of the new labeling reagents, as well as the conjugates, is described. The conjugates displayed high chemical stability and photostability. The NCS derivatives had low fluorescence quantum yields, while their bioconjugates exhibited high fluorescence quantum yields, essentially “lighting up” after conjugation. Conventional and 2PFM imaging and fluorescence lifetime imaging (FLIM) of HeLa, NT2, and H1299 cells, incubated with two-photon absorbing amine-reactive probe (1), RGDfK-dye conjugate (7), and Reelin-dye conjugate (6), was demonstrated. PMID:19090700

  14. Primary production estimates from recordings of solar-stimulated fluorescence in the equatorial Pacific at 150 deg W

    NASA Technical Reports Server (NTRS)

    Stegmann, P. M.; Lewis, M. R.; Davis, C. O.; Cullen, J. J.

    1992-01-01

    Biological, optical, and hydrographical data were collected on the WEC88 cruise along 150 deg W and during a 6-day time-series station on the equator during February/March 1988. This area was characterized by a subsurface chlorophyll maximum (SCM), located at 50-70 m depth at the equator and descending down to 120-125 m at the north and south end of the transect. Highest primary production rates were near-surface and confined to the equatorial region and stations between 7 deg and 11 deg N. To determine the relationship between solar-stimulated fluorescence (centered at 683 nm wavelength) and primary production, a production-fluorescence model based on phytoplankton physiology and marine optics is described. Results of model calculations predict that there is a linear relation between production and fluorescence. A comparison between morning and midday measurements of the production-fluorescence relation showed that there was some difference between the two, whereas evening measurements, on the other hand, were distinctly different from the morning/midday ones. This seems to suggest that diurnal variations contribute significantly to variability in the quantum yield of photochemical processes. The ratio of the quantum yield of photosynthesis to the quantum yield of fluorescence ranged between 0.24 and 0.44 molC/Ein for all stations. The highest value for this ratio occurred at the equatorial stations, indicating that latitudinal variability could have an effect on the production-fluorescence relation.

  15. An improved cyan fluorescent protein variant useful for FRET.

    PubMed

    Rizzo, Mark A; Springer, Gerald H; Granada, Butch; Piston, David W

    2004-04-01

    Many genetically encoded biosensors use Förster resonance energy transfer (FRET) between fluorescent proteins to report biochemical phenomena in living cells. Most commonly, the enhanced cyan fluorescent protein (ECFP) is used as the donor fluorophore, coupled with one of several yellow fluorescent protein (YFP) variants as the acceptor. ECFP is used despite several spectroscopic disadvantages, namely a low quantum yield, a low extinction coefficient and a fluorescence lifetime that is best fit by a double exponential. To improve the characteristics of ECFP for FRET measurements, we used a site-directed mutagenesis approach to overcome these disadvantages. The resulting variant, which we named Cerulean (ECFP/S72A/Y145A/H148D), has a greatly improved quantum yield, a higher extinction coefficient and a fluorescence lifetime that is best fit by a single exponential. Cerulean is 2.5-fold brighter than ECFP and replacement of ECFP with Cerulean substantially improves the signal-to-noise ratio of a FRET-based sensor for glucokinase activation.

  16. Characterization of wave phenomena in the relaxation of flash-induced chlorophyll fluorescence yield in cyanobacteria.

    PubMed

    Deák, Zsuzsanna; Sass, László; Kiss, Eva; Vass, Imre

    2014-09-01

    Fluorescence yield relaxation following a light pulse was studied in various cyanobacteria under aerobic and microaerobic conditions. In Synechocystis PCC 6803 fluorescence yield decays in a monotonous fashion under aerobic conditions. However, under microaerobic conditions the decay exhibits a wave feature showing a dip at 30-50 ms after the flash followed by a transient rise, reaching maximum at ~1s, before decaying back to the initial level. The wave phenomenon can also be observed under aerobic conditions in cells preilluminated with continuous light. Illumination preconditions cells for the wave phenomenon transiently: for few seconds in Synechocystis PCC 6803, but up to one hour in Thermosynechocystis elongatus BP-1. The wave is eliminated by inhibition of plastoquinone binding either to the QB site of Photosystem-II or the Qo site of cytochrome b6f complex by 3-(3',4'-dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, respectively. The wave is also absent in mutants, which lack either Photosystem-I or the NAD(P)H-quinone oxidoreductase (NDH-1) complex. Monitoring the redox state of the plastoquinone pool revealed that the dip of the fluorescence wave corresponds to transient oxidation, whereas the following rise to re-reduction of the plastoquinone pool. It is concluded that the unusual wave feature of fluorescence yield relaxation reflects transient oxidation of highly reduced plastoquinone pool by Photosystem-I followed by its re-reduction from stromal components via the NDH-1 complex, which is transmitted back to the fluorescence yield modulator primary quinone electron acceptor via charge equilibria. Potential applications of the wave phenomenon in studying photosynthetic and respiratory electron transport are discussed. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Impact of Mono-Fluorination on the Photophysics of the Flavin Chromophore.

    PubMed

    Reiffers, Anna; Torres Ziegenbein, Christian; Engelhardt, Alyn; Kühnemuth, Ralf; Gilch, Peter; Czekelius, Constantin

    2018-03-31

    Three mono-fluorinated derivatives of the flavin core system 10-methyl-isoalloxazine (MIA) were synthesized. Aqueous solutions of these compounds were characterized by steady-state and time-resolved spectroscopy. The positions for the fluorination (6, 7 and 8) were motivated by the nodal structure of the frontier orbitals of MIA. In comparison with MIA, the fluorination results in bathochromic (6F- and 7F-MIA) and hypsochromic (8F-MIA) shifts of the adiabatic excitation energy of the lowest allowed transition. Shifts of up to ~500 cm -1 were observed. These spectroscopic shifts go along with changes in fluorescence quantum yields and lifetimes. In addition, triplet yields are affected. For 7F-MIA, a 50% increase in the fluorescence quantum yield as well as a 50% decrease in triplet yield is observed rendering the compound interesting for fluorescence applications. The measured effects are discussed in terms of qualitative perturbation theory. © 2018 The American Society of Photobiology.

  18. Synthesis and fluorescence properties of some difluoroboron β-diketonate complexes and composite containing PMMA

    NASA Astrophysics Data System (ADS)

    Xing, Dongye; Hou, Yanjun; Niu, Haijun

    2018-03-01

    A series of difluoroboron β-diketonate complexes, containing the indon-β-diketonate ligand carrying methyl or methoxyl substituents was synthesized. The crystal structures of the complexes were confirmed by single crystal X-ray diffraction studies. The fluorescence properties of compounds were studied in solution state, solid state and on PMMA polymer matrix. The photophysical data of compounds 2a-2d exhibited strong fluorescence and photostability under the ultraviolet light (Hg lamp). The complex 2b showed higher fluorescence intensity in solution state as compared to other complexes of the series. The complexes 2c and 2d showed higher fluorescence intensity in the solid state, which are ascribed to the stronger π-π interactions between ligands in the solid state. The introduction of methoxyl or methyl groups on the benzene rings enhanced the absorption intensity, emission intensity, quantum yields and fluorescence lifetimes due to their electron-donating nature. Furthermore, the complex 2b was doped into the PMMA to produce hybrid materials, where the PMMA matrix acted as sensitizer for the central boron ion to enhance the fluorescence emission intensity and quantum yields.

  19. FRET-based glucose monitoring for bioprocessing

    NASA Astrophysics Data System (ADS)

    Bartolome, Amelita; Smalls-Mantey, Lauren; Lin, Debora; Rao, Govind; Tolosa, Leah

    2006-02-01

    The glucose-mediated conformational changes in the glucose binding protein (GBP) have been exploited in the development of fluorescence based glucose sensors. The fluorescence response is generated by a polarity sensitive dye attached to a specific site. Such fluorescent sensors respond to submicromolar glucose at diffusion-controlled rates mimicking the wild type. However, such sensors have been limited to in vitro glucose sensing because of the preliminary dye-labeling step. In the study described here, the dye-labeling step is omitted by genetically encoding the GBP with two green fluorescent mutants namely, the green fluorescent protein (GFP) and the yellow fluorescent protein (YFP) in the N- and C-terminal ends, respectively. These two GFP mutants comprise a fluorescence resonance energy transfer (FRET) donor and acceptor pair. Thus, when glucose binds with GBP, the conformational changes affect the FRET efficiency yielding a dose-dependent response. A potential application for this FRET-based glucose biosensor is online glucose sensing in bioprocessing and cell culture. This was demonstrated by the measurement of glucose consumption in yeast fermentation. Further development of this system should yield in vivo measurement of glucose in bioprocesses.

  20. An insight into non-emissive excited states in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjian; Willard, Adam P.; Ono, Robert J.; Bielawski, Christopher W.; Rossky, Peter J.; vanden Bout, David A.

    2015-09-01

    Conjugated polymers in the solid state usually exhibit low fluorescence quantum yields, which limit their applications in many areas such as light-emitting diodes. Despite considerable research efforts, the underlying mechanism still remains controversial and elusive. Here, the nature and properties of excited states in the archetypal polythiophene are investigated via aggregates suspended in solvents with different dielectric constants (ε). In relatively polar solvents (ε>~ 3), the aggregates exhibit a low fluorescence quantum yield (QY) of 2-5%, similar to bulk films, however, in relatively nonpolar solvents (ε<~ 3) they demonstrate much higher fluorescence QY up to 20-30%. A series of mixed quantum-classical atomistic simulations illustrate that dielectric induced stabilization of nonradiative charge-transfer (CT) type states can lead to similar drastic reduction in fluorescence QY as seen experimentally. Fluorescence lifetime measurement reveals that the CT-type states exist as a competitive channel of the formation of emissive exciton-type states.

  1. Comparisons of Photosynthetic Responses of Xanthium strumarium and Helianthus annuus to Chronic and Acute Water Stress in Sun and Shade 1

    PubMed Central

    Ben, Gui-Ying; Osmond, C. Barry; Sharkey, Thomas D.

    1987-01-01

    We have examined the effects of mild, chronic water stress and acute water stress on two water stress sensitive plants, Xanthium strumarium and Helianthus annuus. Using a combination of the leaf disc O2 electrode to measure the light responses of photosynthesis and 77 K fluorescence to monitor damage to the primary photochemistry, we have found the following: (a) The CO2 saturated rate of photosynthesis at high light is the most water stress sensitive parameter measured. (b) The apparent quantum yield (moles O2 per mole photons) was slightly, if at all, affected by mild water stress (>−1.5 megapascals). (c) Severe water stress (<−1.5 megapascals) reduced the quantum yield of photosynthesis regardless of whether the stress was applied in sun or shade. The light independent reduction of quantum yield was not associated with a reduction in 77 K fluorescence (Fv/Fm) indicating that the quantum yield reduction was not the result of damage to primary photochemistry. (d) The diel fluctuation in 77 K fluorescence seen in sun-exposed control leaves was greatly exaggerated in water stressed leaves because of enhanced decline in 77 K fluorescence in the morning. The rate of recovery was similar in both control and water stressed leaves. Shaded leaves showed no change in 77 K fluorescence regardless of whether water stress was imposed or not. (e) The water stress sensitive plants used in these experiments did not recover from acute water stress severe enough to reduce the quantum yield or chronic water stress which lasted long enough that light dependent damage to primary photochemistry occurred. PMID:16665465

  2. Comparisons of Photosynthetic Responses of Xanthium strumarium and Helianthus annuus to Chronic and Acute Water Stress in Sun and Shade.

    PubMed

    Ben, G Y; Osmond, C B; Sharkey, T D

    1987-06-01

    We have examined the effects of mild, chronic water stress and acute water stress on two water stress sensitive plants, Xanthium strumarium and Helianthus annuus. Using a combination of the leaf disc O(2) electrode to measure the light responses of photosynthesis and 77 K fluorescence to monitor damage to the primary photochemistry, we have found the following: (a) The CO(2) saturated rate of photosynthesis at high light is the most water stress sensitive parameter measured. (b) The apparent quantum yield (moles O(2) per mole photons) was slightly, if at all, affected by mild water stress (>-1.5 megapascals). (c) Severe water stress (<-1.5 megapascals) reduced the quantum yield of photosynthesis regardless of whether the stress was applied in sun or shade. The light independent reduction of quantum yield was not associated with a reduction in 77 K fluorescence (F(v)/F(m)) indicating that the quantum yield reduction was not the result of damage to primary photochemistry. (d) The diel fluctuation in 77 K fluorescence seen in sun-exposed control leaves was greatly exaggerated in water stressed leaves because of enhanced decline in 77 K fluorescence in the morning. The rate of recovery was similar in both control and water stressed leaves. Shaded leaves showed no change in 77 K fluorescence regardless of whether water stress was imposed or not. (e) The water stress sensitive plants used in these experiments did not recover from acute water stress severe enough to reduce the quantum yield or chronic water stress which lasted long enough that light dependent damage to primary photochemistry occurred.

  3. A fluorimetric study of the thorium-morin system

    USGS Publications Warehouse

    Milkey, R.G.; Fletcher, M.H.

    1957-01-01

    Thorium reacts with morin to yield a yellow complex that fluoresces when irradiated with ultraviolet light. The effect on the fluorescence of such variables as concentration of acid, alcohol, thorium, morin, and complex; time, temperature and wave length of exciting light are studied to determine experimental conditions yielding maximum fluorescence. The effects of Zr+4, Al+3, Fe+3, Ca+2 and La+3 are discussed. The fundamental relationships between light absorption and fluorescence are expressed in a general equation that applies to a three-component system when the fluorescence is measured in a transmission-type fluorimeter. This general equation is used to obtain an expression for the fluorescence of the thoriummorin system. Equations, derived from experimental data, relate both the fraction of thorium reacted to form complex and the fraction of unquenched fluorescence to the concentration of uncombined morin. These functions, when combined with the general equation, give an expression whichrelates the total net fluorescence to the amount of uncombined morin in the solution. This last equation can be used to determine the one region for the concentration of uncombined morin that gives maximum sensitivity for the system. Calculated standard curves are in good agreement with experimental curves.

  4. A fluorimetric study of the thorium-morin system

    USGS Publications Warehouse

    Milkey, Robert G.; Fletcher, Mary H.

    1956-01-01

    Thorium reacts with morin to yield a yellow complex that fluoresces when irradiated with ultraviolet light. The effect on the fluorescence of such variable as concentration of acid, alcohol, thorium, morin, and complex; time, temperature, and wavelength of exciting light are studied to determine experimental conditions yielding maximum fluorescence. The effects of Zr4+, Al3+, Fe3+, Ca2+, and La3+ are discussed. The fundamental relationships between light absorption and fluorescence are expressed in a general equation which applied to a three-component system when the fluorescence is measured in a transmission-type fluorimeter. This general equation is used to obtain an expression for the fluorescence of the thorium-morin system. Equations, derived from experimental data, related both the fraction of thorium reacted to form complex and the fraction of unquenched fluorescence to the concentration of uncombined morin. These functions, when combined with the general equation, give an expression which relates the total net fluorescence to the amount of uncombined morin in the solution. This last equation can be used to determine the one region for the concentration of uncombined morin that gives maximum sensitivity for the system. Calculated standard curves are in excellent agreement with experimental curves.

  5. Terbium-Aspartic Acid Nanocrystals with Chirality-Dependent Tunable Fluorescent Properties.

    PubMed

    Ma, Baojin; Wu, Yu; Zhang, Shan; Wang, Shicai; Qiu, Jichuan; Zhao, Lili; Guo, Daidong; Duan, Jiazhi; Sang, Yuanhua; Li, Linlin; Jiang, Huaidong; Liu, Hong

    2017-02-28

    Terbium-aspartic acid (Tb-Asp) nanocrystals with chirality-dependent tunable fluorescent properties can be synthesized through a facile synthesis method through the coordination between Tb and Asp. Asp with different chirality (dextrorotation/d and levogyration/l) changes the stability of the coordination center following fluorescent absorption/emission ability differences. Compared with l-Asp, d-Asp can coordinate Tb to form a more stable center, following the higher quantum yield and longer fluorescence life. Fluorescence intensity of Tb-Asp linearly increases with increase ratio of d-Asp in the mixed chirality Tb-Asp system, and the fluorescent properties of Tb-Asp nanocrystals can be tuned by adjusting the chirality ratio. Tb-Asp nanocrystals possess many advantage, such as high biocompatibility, without any color in visible light irradiation, monodispersion with very small size, and long fluorescent life. Those characteristics will give them great potential in many application fields, such as low-cost antifake markers and advertisements using inkjet printers or for molds when dispersed in polydimethylsiloxane. In addition, europium can also be used to synthesize Eu-Asp nanoparticles. Importantly, the facile, low-cost, high-yield, mass-productive "green" process provides enormous advantages for synthesis and application of fluorescent nanocrystals, which will have great impact in nanomaterial technology.

  6. Synthesis, spectral behaviour and photophysics of donor-acceptor kind of chalcones: Excited state intramolecular charge transfer and fluorescence quenching studies

    NASA Astrophysics Data System (ADS)

    Pannipara, Mehboobali; Asiri, Abdullah M.; Alamry, Khalid A.; Arshad, Muhammad N.; El-Daly, Samy A.

    2015-02-01

    The spectral and photophysical properties of two chalcones containing electron donating and accepting groups with intramolecular charge transfer characteristics were synthesized and characterized by 1H NMR, 13C NMR and X-ray crystallography. Both compounds show very strong solvent polarity dependent changes in their photophysical characteristics, namely, remarkable red shift in the emission spectra with increasing solvent polarity, large change in Stokes shift, significant reduction in the fluorescence quantum yield; indicating that the fluorescence states of these compounds are of intramolecular charge transfer (ICT) character. The solvent effect on the photophysical parameters such as singlet absorption, molar absorptivity, oscillator strength, dipole moment, fluorescence spectra, and fluorescence quantum yield of both compounds have been investigated comprehensively. For both dyes, Lippert-Mataga and Reichardt's correlations were used to estimate the difference between the excited and ground state dipole moments (Δμ). The interactions of dyes with colloidal silver nanoparticles (Ag NPs) were also studied in ethanol using steady state fluorescence quenching measurements. The fluorescence quenching data reveal that dynamic quenching and energy transfer play a major role in the fluorescence quenching of dyes by Ag NPs.

  7. Spectroscopic Analysis of Red Fluorescent Proteins and Development of a Microfluidic Cell Sorter for the Generation of Improved Variants

    NASA Astrophysics Data System (ADS)

    Lubbeck, Jennifer L.

    The discovery of the green fluorescent protein (GFP) launched the development of a wide variety of fluorescent protein (FP) mutants whose spectral and photophysical diversity revolutionized in vivo imaging. The excitation and emission spectra of red fluorescent proteins (RFPs), in particular, have been ideally tuned to a window optically favorable for in vivo work. However, their quantum yields, photostabilities and fluorescence intermittency properties require improvement if they are to be broadly employed for low-copy or single-molecule measurements. Attempts to engineer improved RFPs often result in optimization of one photophysical property at the expense of others. We developed a microfluidic-based cytometer for screening HeLa cell-based genetic RFP-libraries simultaneously on the basis of fluorescence lifetime (a proxy for quantum yield), photostability, and brightness. Ten 532 nm excitation beams interrogate each cell in flow. The first is electro-optically modulated (30 MHz) to enable lifetime measurement with phase fluorimetry. The remaining beams act as a pulse sequence for isolating the irreversible photobleaching time constant. Optical-force switching is employed to sort cells based on any combination of the photophysical parameters. Screening with this instrument enables identification of regions of the structure that synergistically affect quantum yield and photostability and the sorting capability provides a new tool for accelerating the development of next generation RFPs.

  8. Solvent induced fluorescence enhancement of graphene oxide studied by ultrafast spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Litao; Chen, Jinquan; He, Xiaoxiao; Yu, Xiantong; Yan, Shujun; Zhang, Sanjun; Pan, Haifeng; Xu, Jianhua

    2018-05-01

    Femtosecond transient absorption (TA) spectroscopy combined with picosecond time resolved fluorescence (TRF) were used to reveal the fluorescence kinetics of graphene oxide (GO) in water, ethanol and water-ethanol mixtures. Size-independent fluorescence of GO were observed in water, and pH-dependent fluorescence spectra could be fitted well by a triple emission relaxation with peaks around 440 nm, 500 nm, and 590 nm respectively. The results indicate that polycyclic aromatic hydrocarbons (PAHs) linked by oxygen-containing functional groups dominate GO's fluorescence emission. GO's fluorescence quantum yield was measured to be 2.8% in ethanol but 1.2% in water. The three decay components fluorescence decay, as well as the transient absorption dynamics with an offset, confirmed this solvent induced fluorescence enhancement. GO's Raman spectral signals showed that GO in ethanol has a smaller average size of PAHs than that of GO in water. Therefore, besides other enhancement effects reported in literatures, we proposed that solvents could also change the size of PAHs, resulting in a photoluminescence enhancement. Our experimental data demonstrates that GO's quantum yield could be up to 2.8% in water and 8.4% in ethanol and this observation may help ones to improve GO's photoluminescence efficiency as well as its applications in solution.

  9. PHYTOPLANKTON NUTRIENT STATUS AND VARIABLE FLUORESCENCE MEASUREMENTS IN A GULF COAST ESTUARY

    EPA Science Inventory

    Changes in variable fluorescence parameters such as the maximum quantum yield of fluorescence (a.k.a. photosynthetic efficiency and Fv/Fm) have been related to nutrient status in single-species cultures. To test if changes in Fv/Fm of mixed natural assemblages were related to nut...

  10. Effects of two sediment types on the fluorescence yield of two Hawaiian scleractinian corals

    USGS Publications Warehouse

    Piniak, G.A.

    2007-01-01

    This study used non-invasive pulse-amplitude modulated (PAM) fluorometry to measure the maximum fluorescence yield (Fv/Fm) of two Hawaiian scleractinian coral species exposed to short-term sedimentation stress. Beach sand or harbor mud was applied to coral fragments in a flow-through aquarium system for 0-45 h, and changes in Fv/Fm were measured as a function of sediment type and length of exposure. Corals were monitored for up to 90 h to document recovery after sediment removal. Sediment deposition significantly decreased Fv/Fm in both species and was a function of sediment type and time. Corals that received sediment for 30 h or more had the greatest reduction in yield and exhibited little recovery over the course of the experiment. Harbor mud caused a greater reduction in Porites lobata yield than beach sand, whereas both sediment types had equally deleterious effects on Montipora capitata. Colony morphology and sediment type were important factors in determining yield reduction-P. lobata minimized damage from coarse sand grains by passive sediment rejection or accumulation in depressions in the skeleton, and fluorescence yield decreased most in corals exposed to sticky harbor mud or in colonies with flattened morphologies. Species-specific differences could not be tested due to differences in colony morphology and surface area. ?? 2007.

  11. Phytoplankton natural fluorescence variability in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Westberry, T. K.; Siegel, D. A.

    2003-03-01

    Phytoplankton fluorescence has been used historically as a means of assessing phytoplankton biomass, rates of primary production (PP) and physiological status in laboratory, in situ, and satellite based investigations. Assumptions about the quantum yield of phytoplankton fluorescence, φf, are often overlooked and can become problematic when fluorescence based methods are applied. A time series of φf observations from the northwestern Sargasso Sea is presented with the goal of understanding the controls on fluorescence and its applicability for assessing upper ocean biological processes. Accurate estimates of φf require accounting for Raman scattering and the conversion of planar to scalar irradiance. Variability in φf occurs on both seasonal and episodic time scales. Seasonal variations show maxima in the surface layer during summer months while lower, more uniform values are found throughout the winter when deep mixing occurs. Large episodic variations in φf are observed throughout the record which dwarf seasonal changes. Predictions of depth-dependent and depth-integrated PP rates using φf and natural fluorescence fluxes are only marginally successful ( r2˜50%), although comparable with results from global bio-optical models for the Sargasso Sea. Improvements in PP predictions are hindered by weak statistical relationships with other parameters. φf is largely decoupled from the quantum yield of carbon assimilation, φc, indicating that an inverse relationship between fluorescence and photosynthesis does not exist. Consequently, variability in the quantum yield of thermal de-excitation, φh, is found to be of similar magnitude as φf on the timescales observed. These observations show that assumptions about photochemical energy flow through the phytoplankton community must be made carefully and that the fluorescence-photosynthesis relationship is not straightforward.

  12. Resonant Scanning with Large Field of View Reduces Photobleaching and Enhances Fluorescence Yield in STED Microscopy.

    PubMed

    Wu, Yong; Wu, Xundong; Lu, Rong; Zhang, Jin; Toro, Ligia; Stefani, Enrico

    2015-10-01

    Photobleaching is a major limitation of superresolution Stimulated Depletion Emission (STED) microscopy. Fast scanning has long been considered an effective means to reduce photobleaching in fluorescence microscopy, but a careful quantitative study of this issue is missing. In this paper, we show that the photobleaching rate in STED microscopy can be slowed down and the fluorescence yield be enhanced by scanning with high speed, enabled by using large field of view in a custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching and fluorescence yield is more remarkable at higher levels of depletion laser irradiance, and virtually disappears in conventional confocal microscopy. With ≥6 GW∙cm(-2) depletion irradiance, we were able to extend the fluorophore survival time of Atto 647N and Abberior STAR 635P by ~80% with 8-fold wider field of view. We confirm that STED Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data agree with a theoretical model. Our results encourage further increasing the linear scanning speed for photobleaching reduction in STED microscopy.

  13. Dual-detector X-ray fluorescence imaging of ancient artifacts with surface relief

    PubMed Central

    Smilgies, Detlef-M.; Powers, Judson A.; Bilderback, Donald H.; Thorne, Robert E.

    2012-01-01

    Interpretation of X-ray fluorescence images of archeological artifacts is complicated by the presence of surface relief and roughness. Using two symmetrically arranged fluorescence detectors in a back-reflection geometry, the proper X-ray fluorescence yield can be distinguished from intensity variations caused by surface topography. This technique has been applied to the study of Roman inscriptions on marble. PMID:22713888

  14. Synthesis of Substituted 2,3,5,6-tetraarylbenzo(1,2-b:5,4-b')difurans

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Mahmoud; Auping, Judith V.; Meador, Michael A.

    1995-01-01

    A series of substituted 2,3,5,6-tetraarylbenzo(l,2-b:5,4-b')difurans 1 was synthesized. This synthesis is based upon the photocyclization of 2,5-dibenzoylresorcinol dibenzyl ethers to the corresponding tetrahydrobenzo(1,2-b:5,4-b')difurans. Treatment of the photoproducts with methanesulfonyl chloride in pyridine afforded 1 in overall yields ranging from 30-72%. A number of these compounds have high fluorescence quantum yields (of phi(sub f) = 0.76-0.90), and their fluorescence spectra exhibit large solvatochromic shifts. These compounds may be suitable for use as fluorescent probes.

  15. A flash photolysis-resonance fluorescence study of the formation of O(D-1) in the photolysis of water and reaction of O(D-1) with H2, Ar and He

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Payne, W. A.; Klemm, R. B.

    1974-01-01

    The relative importance of two primary processes in the photolyis of water: (1) H2O + h (nu) yields H + OH, and (2) H2O + h (nu) yields H2 + OD-1 were determined in a direct manner by time resolved detection (via resonance fluorescence) of H and O formed in processes 1 and 2 respectively. The initially formed OD-1 was deactivated to ground state OP-3 prior to detection via resonance fluorescence. The relative quantum yields for processes 1 and 2 are 0.89 and 0.11 for the wavelength interval 105 to 145nm and = to or greater than 0.99, and = to or less than 0.01 for the wavelength interval 145 to 185nm. Rate constants at 300 K for the reactions OD-1 + H2, + Ar, and + He are presented.

  16. Mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K fluorescence yield and Kβ/Kα relative X-ray emission rate for Ti, V, Fe, Co, Ni, Cu and Zn measured with a tunable monochromatic X-ray source

    NASA Astrophysics Data System (ADS)

    Ménesguen, Y.; Lépy, M.-C.

    2010-08-01

    This work presents new measurements of mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K-absorption jump-ratios, Kα and Kβ fluorescence yields for Ti, V, Fe, Co, Ni, Cu and Zn. We use the experimental facility SOLEX, a tunable monochromatic X-ray source combined with an energy-dispersive high-purity germanium detector. The results are compared with theoretical values as well as with other experimental data and show a relatively good agreement. However, the derived K-jump-ratios appear larger than those widely used in the XCOM database. The Kα and Kβ fluorescence yields and the corresponding relative emission rates Kβ/Kα are also derived, which was made possible by the use of energy-dispersive detectors with good spectral resolution.

  17. Directed molecular evolution to design advanced red fluorescent proteins.

    PubMed

    Subach, Fedor V; Piatkevich, Kiryl D; Verkhusha, Vladislav V

    2011-11-29

    Fluorescent proteins have become indispensable imaging tools for biomedical research. Continuing progress in fluorescence imaging, however, requires probes with additional colors and properties optimized for emerging techniques. Here we summarize strategies for development of red-shifted fluorescent proteins. We discuss possibilities for knowledge-based rational design based on the photochemistry of fluorescent proteins and the position of the chromophore in protein structure. We consider advances in library design by mutagenesis, protein expression systems and instrumentation for high-throughput screening that should yield improved fluorescent proteins for advanced imaging applications.

  18. 2-(Benzothiazol-2-yl)-phenyl-β-d-galactopyranoside derivatives as fluorescent pigment dyeing substrates and their application for the assay of β-d-galactosidase activities.

    PubMed

    Otsubo, Tadamune; Minami, Akira; Fujii, Haruna; Taguchi, Risa; Takahashi, Tadanobu; Suzuki, Takashi; Teraoka, Fumiteru; Ikeda, Kiyoshi

    2013-04-01

    2-(Benzothiazol-2-yl)-phenyl-β-d-galactopyranoside derivatives were synthesized as novel artificial fluorescent pigment dyeing substrates for β-d-galactosidase. The substrates, which exhibited non-fluorescence or weak fluorescence in solution phase, were smoothly hydrolyzed by β-d-galactosidase from Aspergillus oryzae and yielded a water-insoluble strong fluorescent pigment. The difference of fluorescent intensity exhibited a linear relationship with the amount of enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Study on the fluorescence characteristics of carbon dots

    NASA Astrophysics Data System (ADS)

    Mao, Xiao-Jiao; Zheng, Hu-Zhi; Long, Yi-Juan; Du, Juan; Hao, Jian-Yu; Wang, Ling-Ling; Zhou, Dong-Bo

    2010-02-01

    Herein, we prepared water-soluble fluorescent carbon dots with diameter about 1.5 nm from cheap commercial lampblack. These fluorescent carbon nanoparticles are stable toward photobleaching and stable in water for more than half a year without fluorescence decrease. In order to improve its fluorescence properties, we passivated these nanoparticles with bisamino-terminated polyethylene glycol (PEG 1500N). Therefore, both fluorescence quantum yield and lifetime increased after this progress. In addition, the passivated carbon dots were more inert to solvent than the bare one and showed different responses to pH change.

  20. Probing structure and dynamics of DNA with 2-aminopurine: effects of local environment on fluorescence.

    PubMed

    Rachofsky, E L; Osman, R; Ross, J B

    2001-01-30

    2-Aminopurine (2AP) is an analogue of adenine that has been utilized widely as a fluorescence probe of protein-induced local conformational changes in DNA. Within a DNA strand, this fluorophore demonstrates characteristic decreases in quantum yield and emission decay lifetime that vary sensitively with base sequence, temperature, and helix conformation but that are accompanied by only small changes in emission wavelength. However, the molecular interactions that give rise to these spectroscopic changes have not been established. To develop a molecular model for interpreting the fluorescence measurements, we have investigated the effects of environmental polarity, hydrogen bonding, and the purine and pyrimidine bases of DNA on the emission energy, quantum yield, and intensity decay kinetics of 2AP in simple model systems. The effects of environmental polarity were examined in a series of solvents of varying dielectric constant, and hydrogen bonding was investigated in binary mixtures of water with 1,4-dioxane or N,N-dimethylformamide (DMF). The effects of the purine and pyrimidine bases were studied by titrating 2AP deoxyriboside (d2AP) with the nucleosides adenosine (rA), cytidine (rC), guanosine (rG), and deoxythymidine (dT), and the nucleoside triphosphates ATP and GTP in neutral aqueous solution. The nucleosides and NTPs each quench the fluorescence of d2AP by a combination of static (affecting only the quantum yield) and dynamic (affecting both the quantum yield and the lifetime, proportionately) mechanisms. The peak wavelength and shape of the emission spectrum are not altered by either of these effects. The static quenching is saturable and has half-maximal effect at approximately 20 mM nucleoside or NTP, consistent with an aromatic stacking interaction. The rate constant for dynamic quenching is near the diffusion limit for collisional interaction (k(q) approximately 2 x 10(9) M(-1) s(-1)). Neither of these effects varies significantly between the various nucleosides and NTPs studied. In contrast, hydrogen bonding with water was observed to have a negligible effect on the emission wavelength, fluorescence quantum yield, or lifetime of 2AP in either dioxane or DMF. In nonpolar solvents, the fluorescence lifetime and quantum yield decrease dramatically, accompanied by significant shifts in the emission spectrum to shorter wavelengths. However, these effects of polarity do not coincide with the observed emission wavelength-independent quenching of 2AP fluorescence in DNA. Therefore, we conclude that the fluorescence quenching of 2AP in DNA arises from base stacking and collisions with neighboring bases only but is insensitive to base-pairing or other hydrogen bonding interactions. These results implicate both structural and dynamic properties of DNA in quenching of 2AP and constitute a simple model within which the fluorescence changes induced by protein-DNA binding or other perturbations may be interpreted.

  1. Limitations of fluorescence spectroscopy to characterize organic matter in engineered systems

    NASA Astrophysics Data System (ADS)

    Korak, J.

    2017-12-01

    Fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in engineered systems, such as drinking water, municipal wastewater and industrial water treatment. While fluorescence data collected in water treatment applications has led to the development of strong empirical relationships between fluorescence responses and process performance, the use of fluorescence to infer changes in the underlying organic matter chemistry is often oversimplified and applied out of context. Fluorescence only measures a small fraction of DOM as fluorescence quantum yields are less than 5% for many DOM sources. Relying on fluorescence as a surrogate for DOM presence, character or reactivity may not be appropriate for systems where small molecular weight, hydrophilic constituents unlikely to fluoresce are important. In addition, some methods rely on interpreting fluorescence signals at different excitation wavelengths as a surrogate for operationally-defined humic- and fulvic-acids in lieu of traditional XAD fractionation techniques, but these approaches cannot be supported by other lines of evidence considering natural abundance and fluorescence quantum yields of these fractions. These approaches also conflict with parallel factor analysis (PARAFAC), a statistical approach that routinely identifies fluorescence components with dual excitation behavior. Lastly, methods developed for natural systems are often applied out of context to engineered systems. Fluorescence signals characteristic of phenols or indoles are often interpreted as indicators for biological activity in natural systems due to fluorescent amino acids and peptides, but this interpretation is may not be appropriate in engineering applications where non-biological sources of phenolic functional groups may be present. This presentation explores common fluorescence interpretation approaches, discusses the limitations and provides recommendations related to engineered systems.

  2. Synthesis of di-functional ligand and fluorescently labeling SiO2 microspheres

    NASA Astrophysics Data System (ADS)

    Chen, Kexu; Kang, Ming; Liu, Min; Shen, Simin; Sun, Rong

    2018-05-01

    In order to complete the fluorescent labeling of SiO2 microspheres, a kind of di-functional ligand was synthesized and purified, which could not only coordinate rare earth ions but also react with the active groups to bond host materials with an alkoxysilane groups. Fourier transform infrared spectroscopy (FT-IR), 1H NMR spectra, MS spectra, field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and luminescence spectrophotometer were used to study the structure of di-functional ligand and properties of fluorescent coupling agent and fluorescent labeled SiO2 microspheres. The optimal experiment conditions were acquired as follows: molar ratio as 1: 4 (MDBM: MICPTES), reaction time at 6 h and reaction temperature as 65 °C (yield up to 40%) through the orthogonal experiment and purification process. The results indicated that fluorescent coupling agent presented red photoluminesence of Eu3+ ions at 610 nm, and the absolute quantum yield was 11%. On the other hand, the hydrolysis of the coupling agent reacted on the surface of SiO2 microspheres and presented fluorescent labeling homogeneously.

  3. Can time-dependent density functional theory predict intersystem crossing in organic chromophores? A case study on benzo(bis)-X-diazole based donor-acceptor-donor type molecules.

    PubMed

    Tam, Teck Lip Dexter; Lin, Ting Ting; Chua, Ming Hui

    2017-06-21

    Here we utilized new diagnostic tools in time-dependent density functional theory to explain the trend of intersystem crossing in benzo(bis)-X-diazole based donor-acceptor-donor type molecules. These molecules display a wide range of fluorescence quantum yields and triplet yields, making them excellent candidates for testing the validity of these diagnostic tools. We believe that these tools are cost-effective and can be applied to structurally similar organic chromophores to predict/explain the trends of intersystem crossing, and thus fluorescence quantum yields and triplet yields without the use of complex and expensive multireference configuration interaction or multireference pertubation theory methods.

  4. Fluorescence kinetics of emission from a small finite volume of a biological system

    NASA Astrophysics Data System (ADS)

    Dagen, A. J.; Alfano, R. R.; Zilinskas, B. A.; Swenberg, C. E.

    1985-07-01

    The fluorescence decay, apparent quantum yield and transmission from chromophores constrained to a microscopic volume using a single picosecond laser excitation were measured as a function of incident intensity. The β subunit of phycoeryhthrin aggregate isolated from the photosynthetic antenna system of Nostoc sp. was selected since it contains only four chromophores in a volume of less than 5.6×10 4 Å 3. The non-exponential fluorescence decay profiles were intensity independent for the intensity range studied (5 × 10 13 - 2 × 10 15 photon cm -2 per pulse). The apparent decrease in the relative fluorescence quantum yield and increase of the relative transmission with increasing excitation intensity is attributed to the combined effects of ground state depletion and upper excited state absorption. Evidence suggests that exciton annihilation is absent within isolated β subunits.

  5. Spectroscopic studies, fluorescence quenching by molecular oxygen and amplified spontaneous emission of 1,4-bis [2-(2-pyridyl) vinyl] benzene (P2VB) diolefinic laser dye

    NASA Astrophysics Data System (ADS)

    El-Daly, Samy A.; Ebeid, E. M.

    2014-04-01

    The UV-visible electronic absorption spectra, molar absorptivity, fluorescence spectra, fluorescence quantum yield and excited state lifetime of 1,4-bis [2-(2-pyridyl) vinyl] benzene P2VB were measured in different solvents. The fluorescence quenching of P2VB by molecular oxygen was also studied using lifetime measurements. A 2 × 10-4 mol dm-3 solution of P2VB in dimethyl formamide (DMF) gave amplified spontaneous emission (ASE) in blue spectral region with emission maximum at 420 nm upon pumping by 337.1 nitrogen laser pulse. The photochemical quantum yields (ϕc) of trans-cis photoisomerization of P2VB were calculated in different organic solvents. The photoreactivity of P2VB are also studied PMMA matrix.

  6. Masked red-emitting carbopyronine dyes with photosensitive 2-diazo-1-indanone caging group.

    PubMed

    Kolmakov, Kirill; Wurm, Christian; Sednev, Maksim V; Bossi, Mariano L; Belov, Vladimir N; Hell, Stefan W

    2012-03-01

    Caged near-IR emitting fluorescent dyes are in high demand in optical microscopy but up to now were unavailable. We discovered that the combination of a carbopyronine dye core and a photosensitive 2-diazo-1-indanone residue leads to masked near-IR emitting fluorescent dyes. Illumination of these caged dyes with either UV or visible light (λ < 420 nm) efficiently generates fluorescent compounds with absorption and emission at 635 nm and 660 nm, respectively. A high-yielding synthetic route with attractive possibilities for further dye design is described in detail. Good photostability, high contrast, and a large fluorescence quantum yield after uncaging are the most important features of the new compounds for non-invasive imaging in high-resolution optical microscopy. For use in immunolabelling the caged dyes were decorated with a (hydrophilic) linker and an (activated) carboxyl group.

  7. Triazatruxene: A Rigid Central Donor Unit for a D-A3 Thermally Activated Delayed Fluorescence Material Exhibiting Sub-Microsecond Reverse Intersystem Crossing and Unity Quantum Yield via Multiple Singlet-Triplet State Pairs.

    PubMed

    Dos Santos, Paloma L; Ward, Jonathan S; Congrave, Daniel G; Batsanov, Andrei S; Eng, Julien; Stacey, Jessica E; Penfold, Thomas J; Monkman, Andrew P; Bryce, Martin R

    2018-06-01

    By inverting the common structural motif of thermally activated delayed fluorescence materials to a rigid donor core and multiple peripheral acceptors, reverse intersystem crossing (rISC) rates are demonstrated in an organic material that enables utilization of triplet excited states at faster rates than Ir-based phosphorescent materials. A combination of the inverted structure and multiple donor-acceptor interactions yields up to 30 vibronically coupled singlet and triplet states within 0.2 eV that are involved in rISC. This gives a significant enhancement to the rISC rate, leading to delayed fluorescence decay times as low as 103.9 ns. This new material also has an emission quantum yield ≈1 and a very small singlet-triplet gap. This work shows that it is possible to achieve both high photoluminescence quantum yield and fast rISC in the same molecule. Green organic light-emitting diode devices with external quantum efficiency >30% are demonstrated at 76 cd m -2 .

  8. New fluorescent labels with tunable hydrophilicity for the rational design of bright optical probes for molecular imaging.

    PubMed

    Pauli, Jutta; Licha, Kai; Berkemeyer, Janis; Grabolle, Markus; Spieles, Monika; Wegner, Nicole; Welker, Pia; Resch-Genger, Ute

    2013-07-17

    The rational design of bright optical probes and dye-biomolecule conjugates in the NIR-region requires fluorescent labels that retain their high fluorescence quantum yields when bound to a recognition unit or upon interaction with a target. Because hydrophilicity-controlled dye aggregation in conjunction with homo-FRET presents one of the major fluorescence deactivation pathways in dye-protein conjugates, fluorescent labels are required that enable higher labeling degrees with minimum dye aggregation. Aiming at a better understanding of the factors governing dye-dye interactions, we systematically studied the signal-relevant spectroscopic properties, hydrophilicity, and aggregation behavior of the novel xS-IDCC series of symmetric pentamethines equipped with two, four, and six sulfonic acid groups and selected conjugates of these dyes with IgG and the antibody cetuximab (ctx) directed against the cancer-related epidermal growth factor (EGF) receptor in comparison to the gold standard Cy5.5. With 6S-IDCC, which displays a molar absorption coefficient of 190 000 M(-1) cm(-1) and a fluorescence quantum yield (Φf) of 0.18 in aqueous media like PBS and nearly no aggregation, we could identify a fluorophore with a similarly good performance as Cy5.5. Bioconjugation of 6S-IDCC and Cy5.5 yielded highly emissive targeted probes with comparable Φf values of 0.29 for a dye-to-protein (D/P) ratio <1 and a reduced number of protein-bound dye aggregates in the case of 6S-IDCC. Binding studies of the ctx conjugates of both dyes performed by fluorescence microscopy and FACS revealed that the binding strength between the targeted probes and the EGF receptor at the cell membrane is independent of D/P ratio. These results underline the importance of an application-specific tuning of dye hydrophilicity for the design of bright fluorescent reporters and efficient optical probes. Moreover, we could demonstrate the potential of fluorescence spectroscopy to predict the size of fluorescence signals resulting for other fluorescence techniques such as FACS.

  9. Photophysical properties of fluorescently-labeled peptoids.

    PubMed

    Rudat, Birgit; Birtalan, Esther; Vollrath, Sidonie B L; Fritz, Daniel; Kölmel, Dominik K; Nieger, Martin; Schepers, Ute; Müllen, Klaus; Eisler, Hans-Jürgen; Lemmer, Uli; Bräse, Stefan

    2011-09-01

    Fluorescently-labeled biomolecules are often utilized in biochemical or cellular experiments without further detailed spectroscopical characterization. This report is intended to narrow this gap and therefore presents the photophysical investigation of a library of 17 fluorescently-labeled molecules, namely peptoid transporters. First, one peptoid structure is labeled with seven different fluorophores and the spectroscopical properties are examined. Absorption and fluorescence maxima are almost identical for free dyes and conjugated dyes, suggesting free choice of a spectrally suitable fluorophore for different applications. Otherwise, extinction coefficients and quantum yields, and therefore the brightness of all seven dyes are strongly influenced. For the fluorophores, e.g. rhodamine B, the extent of this influence depends on the peptoid itself. This is shown by comparing different structures in the second part of this report. Especially the side chain functionalities influence the brightness. And finally, peptoids having two identical fluorescent labels are presented, which show decreased quantum yields. Possible reasons for the observed photophysical properties are discussed. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  10. Synthesis and spectral characterization of environmentally responsive fluorescent deoxycytidine analogs

    PubMed Central

    Elmehriki, Adam AH; Suchý, Mojmír; Chicas, Kirby J; Wojciechowski, Filip; Hudson, Robert HE

    2014-01-01

    Herein, we describe the synthesis and spectroscopic properties of five novel pyrrolodeoxycytidine analogs, and the related 5-(1-pyrenylethynyl)-2’-deoxycytidine analog; as well as fluorescence characterization of 5-(p-methoxyphenylethynyl)-2’-deoxyuridine. Within this series of compounds, rigidification of the structure from 6-phenylpyrrolodeoxycytidine to 5,6-benzopyrroldeoxycytidine made remarkable improvement of the fluorescence quantum yield (Φ ~1, EtOH) and substantially increased the Stokes shift. Exchange of the phenyl group of 6-phenylpyrrolodeoxycytidine for other heterocycles (benzofuryl or indolyl) produced an increase in the extinction coefficient at the excitation wavelength while preserving high quantum yields. The steady-state fluorescence response to the environment was determined by sensitivity of Stokes shift to solvent polarity. The effect of solvent polarity on fluorescence emission intensity was concurrently examined and showed that 5,6-benzopyrrolodeoxycytidine is highly sensitive to the presence of water. On the other hand, the previously synthesized 5-(p-methoxyphenylethynyl)-2’-deoxyuridine was found to be sensitive to solvent viscosity indicating molecular rotor behavior. PMID:25483932

  11. Substructure of the inner core of the Earth.

    PubMed Central

    Herndon, J M

    1996-01-01

    The rationale is disclosed for a substructure within the Earth's inner core, consisting of an actinide subcore at the center of the Earth, surrounded by a subshell composed of the products of nuclear fission and radioactive decay. Estimates are made as to possible densities, physical dimensions, and chemical compositions. The feasibility for self-sustaining nuclear fission within the subcore is demonstrated, and implications bearing on the structure and geodynamic activity of the inner core are discussed. PMID:11607625

  12. BSA Au clusters as a probe for enhanced fluorescence detection using multipulse excitation scheme.

    PubMed

    Raut, Sangram L; Rich, Ryan; Fudala, Rafal; Kokate, R; Kimball, J D; Borejdo, Julian; Vishwanatha, Jamboor K; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2014-01-01

    Although BSA Au clusters fluoresce in red region (λmax: 650 nm), they are of limited use due to low fluorescence quantum yield (~6%). Here we report an enhanced fluorescence imaging application of fluorescent bio-nano probe BSA Au clusters using multipulse excitation scheme. Multipulse excitation takes advantage of long fluorescence lifetime (> 1 µs) of BSA Au clusters and enhances its fluorescence intensity 15 times over short lived cellular auto-fluorescence. Moreover we have also shown that by using time gated detection strategy signal (fluorescence of BSA Au clusters) to noise (auto-fluorescence) ratio can be increased by 30 fold. Thereby with multipulse excitation long lifetime probes can be used to develop biochemical assays and perform optical imaging with zero background.

  13. Use of the fluorescence quantum yield for the determination of the number-average molecular weight of polymers of epicatechin with 4β→8 interflavin bonds

    Treesearch

    D. Cho; W.L. Mattice; L.J. Porter; Richard W. Hemingway

    1989-01-01

    Excitation at 280 nm produces a structureless emission band with a maximum at 321-324 nm for dilute solutions of catechin, epicatechin, and their oligomers in l,4-dioxane or water. The fluorescence quantum yield, Q, has been measured in these two solvents for five dimers, a trimer, a tetramer, a pentamer, a hexamer, and a polymer in which the monomer...

  14. Do the cations in clay and the polymer matrix affect quantum dot fluorescent properties?

    PubMed

    Wei, Wenjun; Liu, Cui; Liu, Jiyan; Liu, Xueqing; Zou, Linling; Cai, Shaojun; Shi, Hong; Cao, Yuan-Cheng

    2016-06-01

    This paper studied the effects of cations and polymer matrix on the fluorescent properties of quantum dots (QDs). The results indicated that temperature has a greater impact on fluorescence intensity than clay cations (mainly K(+) and Na(+) ). Combined fluorescence lifetime and steady-state spectrometer tests showed that QD lifetimes all decreased when the cation concentration was increased, but the quantum yields were steady at various cation concentrations of 0, 0.05, 0.5 and 1 M. Poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA) and diepoxy resin were used to study the effects of polymers on QD lifetime and quantum yield. The results showed that the lifetime for QDs 550 nm in PEO and PVA was 17.33 and 17.12 ns, respectively; for the epoxy resin, the lifetime was 0.74 ns, a sharp decrease from 24.47 ns. The quantum yield for QDs 550 nm changed from 34.22% to 7.45% and 7.81% in PEO and PVA, respectively; for the epoxy resin the quantum yield was 2.25%. QDs 580 nm and 620 nm showed the same results as QDs 550 nm. This study provides useful information on the design, synthesis and application of QDs-polymer luminescent materials. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-Derived Dissolved Organic Matter in an Epiphyte-Laden Oak-Cedar Forest

    NASA Astrophysics Data System (ADS)

    Van Stan, John T.; Wagner, Sasha; Guillemette, François; Whitetree, Ansley; Lewis, Julius; Silva, Leticia; Stubbins, Aron

    2017-11-01

    Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched in dissolved organic carbon (DOC) compared to rainfall, and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with fluorescent DOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g C m-2 yr-1) were similar to other yields from discrete down-gradient fluxes (litter leachates, soil leachates, and stream discharge) along the rainfall-to-discharge flow path.

  16. Spectroscopic and photochemical properties of open-chain carotenoids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, H. A.; Josue, J. S.; Bautista, J. A.

    2002-02-28

    The spectroscopic properties of open-chain, all-trans-C{sub 30} carotenoids having seven, eight and nine {pi}-electron conjugated carbon-carbon double bonds were studied using steady-state absorption, fluorescence, fluorescence excitation and time-resolved absorption spectroscopy. These diapocarotenes were purified by high performance liquid chromatography (HPLC) prior to the spectroscopic experiments. The fluorescence data show a systematic crossover from dominant S{sub 1} {yields} S{sub 0} (2{sup 1}Ag{yields} 1{sup 1}Ag) emission to dominant S{sub 2} {yields} S{sub 0} (1{sup 1}Bu {yields} 1{sup 1}Ag) with increasing extent of conjugation. The low temperatures facilitated the determination of the spectral origins of the S{sub 1} {yields} S{sub 0} (2{sup 1}Agmore » {yields} 1{sup 1}Ag) emissions, which were assigned by Gaussian deconvolution of the experimental line shapes. The lifetimes of the S{sub 1} states of the molecules were measured by transient absorption spectroscopy and were found to decrease as the conjugated chain length increases. The energy gap law for radiationless transitions is used to correlate the S{sub 1} energies with the dynamics. These molecules provide a systematic series for understanding the structural features that control the photochemical properties of open-chain, diapocarotenoids. The implications of these results on the roles of carotenoids in photosynthetic organisms are discussed.« less

  17. Photoconversion in orange and red fluorescent proteins

    PubMed Central

    Kremers, Gert-Jan; Hazelwood, Kristin L.; Murphy, Christopher S.; Davidson, Michael W.; Piston, David W.

    2009-01-01

    We report that photoconversion is fairly common among orange and red fluorescent proteins, as a screen of 12 variants yielded 8 that exhibit photoconversion. Specifically, three red fluorescent proteins can be switched into a green state, and two orange variants can be photoconverted to the far red. The orange highlighters are ideal for dual-probe highlighter applications, and they exhibit the most red-shifted excitation of all fluorescent protein described to date. PMID:19363494

  18. Direct Fluorescence Detection of Allele-Specific PCR Products Using Novel Energy-Transfer Labeled Primers.

    PubMed

    Winn-Deen

    1998-12-01

    Background: Currently analysis of point mutations can be done by allele-specific polymerase chain reaction (PCR) followed by gel analysis or by gene-specific PCR followed by hybridization with an allele-specific probe. Both of these mutation detection methods require post-PCR laboratory time and run the risk of contaminating subsequent experiments with the PCR product liberated during the detection step. The author has combined the PCR amplification and detection steps into a single procedure suitable for closed-tube analysis. Methods and Results: Allele-specific PCR primers were designed as Sunrise energy-transfer primers and contained a 3' terminal mismatch to distinguish between normal and mutant DNA. Cloned normal (W64) and mutant (R64) templates of the beta3-adrenergic receptor gene were tested to verify amplification specificity and yield. A no-target negative control was also run with each reaction. After PCR, each reaction was tested for fluorescence yield by measuring fluorescence on a spectrofluorimeter or fluorescent microtitreplate reader. The cloned controls and 24 patient samples were tested for the W64R mutation by two methods. The direct fluorescence results with the Sunrise allele-specific PCR method gave comparable genotypes to those obtained with the PCR/ restriction digest/gel electrophoresis control method. No PCR artifacts were observed in the negative controls or in the PCR reactions run with the mismatched target. Conclusions: The results of this pilot study indicate good PCR product and fluorescence yield from allele-specific energy-transfer labeled primers, and the capability of distinguishing between normal and mutant alleles based on fluorescence alone, without the need for restriction digestion, gel electrophoresis, or hybridization with an allele-specific probe.

  19. Interconversion of Anthozoa GFP-like fluorescent and non-fluorescent proteins by mutagenesis

    PubMed Central

    Bulina, Maria E; Chudakov, Dmitry M; Mudrik, Nikolay N; Lukyanov, Konstantin A

    2002-01-01

    Background Within the family of green fluorescent protein (GFP) homologs, one can mark two main groups, specifically, fluorescent proteins (FPs) and non-fluorescent or chromoproteins (CPs). Structural background of differences between FPs and CPs are poorly understood to date. Results Here, we applied site-directed and random mutagenesis in order to to transform CP into FP and vice versa. A purple chromoprotein asCP (asFP595) from Anemonia sulcata and a red fluorescent protein DsRed from Discosoma sp. were selected as representatives of CPs and FPs, respectively. For asCP, some substitutions at positions 148 and 165 (numbering in accordance to GFP) were found to dramatically increase quantum yield of red fluorescence. For DsRed, substitutions at positions 148, 165, 167, and 203 significantly decreased fluorescence intensity, so that the spectral characteristics of these mutants became more close to those of CPs. Finally, a practically non-fluorescent mutant DsRed-NF was generated. This mutant carried four amino acid substitutions, specifically, S148C, I165N, K167M, and S203A. DsRed-NF possessed a high extinction coefficient and an extremely low quantum yield (< 0.001). These spectral characteristics allow one to regard DsRed-NF as a true chromoprotein. Conclusions We located a novel point in asCP sequence (position 165) mutations at which can result in red fluorescence appearance. Probably, this finding could be applied onto other CPs to generate red and far-red fluorescent mutants. A possibility to transform an FP into CP was demonstrated. Key role of residues adjacent to chromophore's phenolic ring in fluorescent/non-fluorescent states determination was revealed. PMID:11972899

  20. Study on the fluorescence characteristics of carbon dots.

    PubMed

    Mao, Xiao-Jiao; Zheng, Hu-Zhi; Long, Yi-Juan; Du, Juan; Hao, Jian-Yu; Wang, Ling-Ling; Zhou, Dong-Bo

    2010-02-01

    Herein, we prepared water-soluble fluorescent carbon dots with diameter about 1.5 nm from cheap commercial lampblack. These fluorescent carbon nanoparticles are stable toward photobleaching and stable in water for more than half a year without fluorescence decrease. In order to improve its fluorescence properties, we passivated these nanoparticles with bisamino-terminated polyethylene glycol (PEG(1500 N)). Therefore, both fluorescence quantum yield and lifetime increased after this progress. In addition, the passivated carbon dots were more inert to solvent than the bare one and showed different responses to pH change. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  1. Analogues of uracil nucleosides with intrinsic fluorescence (NIF-analogues): synthesis and photophysical properties.

    PubMed

    Segal, Meirav; Fischer, Bilha

    2012-02-28

    Uridine cannot be utilized as fluorescent probe due to its extremely low quantum yield. For improving the uracil fluorescence characteristics we extended the natural chromophore at the C5 position by coupling substituted aromatic rings directly or via an alkenyl or alkynyl linker to create fluorophores. Extension of the uracil base was achieved by treating 5-I-uridine with the appropriate boronic acid under the Suzuki coupling conditions. Analogues containing an alkynyl linker were obtained from 5-I-uridine and the suitable boronic acid in a Sonogashira coupling reaction. The uracil fluorescent analogues proposed here were designed to satisfy the following requirements: a minimal chemical modification at a position not involved in base-pairing, resulting in relatively long absorption and emission wavelengths and high quantum yield. 5-((4-Methoxy-phenyl)-trans-vinyl)-2'-deoxy-uridine, 6b, was found to be a promising fluorescent probe. Probe 6b exhibits a quantum yield that is 3000-fold larger than that of the natural chromophore (Φ 0.12), maximum emission (478 nm) which is 170 nm red shifted as compared to uridine, and a Stokes shift of 143 nm. In addition, since probe 6b adopts the anti conformation and S sugar puckering favored by B-DNA, it makes a promising nucleoside analogue to be incorporated in an oligonucleotide probe for detection of genetic material.

  2. Frequency-domain photoacoustic and fluorescence microscopy: application on labeled and unlabeled cells

    NASA Astrophysics Data System (ADS)

    Langer, Gregor; Buchegger, Bianca; Jacak, Jaroslaw; Pfeffer, Karoline; Wohlfarth, Sven; Hannesschläger, Günther; Klar, Thomas A.; Berer, Thomas

    2018-02-01

    In this paper, multimodal optical-resolution frequency-domain photoacoustic and fluorescence scanning microscopy is presented on labeled and unlabeled cells. In many molecules, excited electrons relax radiatively and non-radiatively, leading to fluorescence and photoacoustic signals, respectively. Both signals can then be detected simultaneously. There also exist molecules, e.g. hemoglobin, which do not exhibit fluorescence, but provide photoacoustic signals solely. Other molecules, especially fluorescent dyes, preferentially exhibit fluorescence. The fluorescence quantum yield of a molecule and with it the strength of photoacoustic and fluorescence signals depends on the local environment, e.g. on the pH. Therefore, the local distribution of the simultaneously recorded photoacoustic and fluorescence signals may be used in order to obtain information about the local chemistry.

  3. Cultivating Fluorescent Flowers with Highly Luminescent Carbon Dots Fabricated by a Double Passivation Method.

    PubMed

    Han, Shuai; Chang, Tao; Zhao, Haiping; Du, Huanhuan; Liu, Shan; Wu, Baoshuang; Qin, Shenjun

    2017-07-07

    In this work, we present the fabrication of highly luminescent carbon dots (CDs) by a double passivation method with the assistance of Ca(OH)₂. In the reaction process, Ca 2+ protects the active functional groups from overconsumption during dehydration and carbonization, and the electron-withdrawing groups on the CD surface are converted to electron-donating groups by the hydroxyl ions. As a result, the fluorescence quantum yield of the CDs was found to increase with increasing Ca(OH)₂ content in the reaction process. A blue-shift optical spectrum of the CDs was also found with increasing Ca(OH)₂ content, which could be attributed to the increasing of the energy gaps for the CDs. The highly photoluminescent CDs obtained (quantum yield: 86%) were used to cultivate fluorescent carnations by a water culture method, while the results of fluorescence microscopy analysis indicated that the CDs had entered the plant tissue structure.

  4. Activation energy of light induced isomerization of resveratrol.

    PubMed

    Figueiras, Teresa Sofia; Neves-Petersen, Maria Teresa; Petersen, Steffen B

    2011-09-01

    Isomerization of trans-stilbenes is known to be induced by light. The two isomers have distinct absorption, fluorescence excitation and emission spectra. Resveratrol, 3,4',5-trihydroxystilbene, is a member of the stilbene family. The interest of the scientific community in resveratrol has increased over the last years due to its biomedical properties. Whereas there is a growing confidence that trans-resveratrol is non-toxic, very little is known about the pharmacology of cis-resveratrol. Of this very reason there is considerable interest in knowing the energetics of the trans-cis conversion. Cis-resveratrol is characterized by a large fluorescence quantum yield when compared to trans-resveratrol. In the present paper we report a detailed analysis of the spectral changes induced in trans-resveratrol upon 260 nm excitation for different time periods. Spectral changes have been monitored with UV-visible absorption and steady-state fluorescence spectroscopy at pH 4 at 20, 25, 30, 35, 40, 45 and 50 °C. Continuous 260 nm excitation induces a blue shift in the absorption and fluorescence excitation spectra of resveratrol and a 14 nm blue shift in its fluorescence emission. The photoisomerization yield is reported as a function of 260 nm excitation time. 330 min continuous excitation led to ~60% isomerization yield. The kinetics of trans-cis isomerization has been monitored following the increase in fluorescence quantum yield upon continuous 260 nm excitation of trans-resveratrol. The study was carried out at the above mentioned temperatures in order to obtain the Arrhenius activation energy of photoisomerization. Activation energy and pre-exponential factor were 3.7 ± 0.3 kcal.mol(-1) and 10.6 ± 1.6 s(-1), respectively. The activation energy is comparable with previously reported values for the photoisomerization of other stilbenes.

  5. ISICS2011, an updated version of ISICS: A program for calculation K-, L-, and M-shell cross sections from PWBA and ECPSSR theories using a personal computer

    NASA Astrophysics Data System (ADS)

    Cipolla, Sam J.

    2011-11-01

    In this new version of ISICS, called ISICS2011, a few omissions and incorrect entries in the built-in file of electron binding energies have been corrected; operational situations leading to un-physical behavior have been identified and flagged. New version program summaryProgram title: ISICS2011 Catalogue identifier: ADDS_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADDS_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6011 No. of bytes in distributed program, including test data, etc.: 130 587 Distribution format: tar.gz Programming language: C Computer: 80486 or higher-level PCs Operating system: WINDOWS XP and all earlier operating systems Classification: 16.7 Catalogue identifier of previous version: ADDS_v4_0 Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1716. Does the new version supersede the previous version?: Yes Nature of problem: Ionization and X-ray production cross section calculations for ion-atom collisions. Solution method: Numerical integration of form factor using a logarithmic transform and Gaussian quadrature, plus exact integration limits. Reasons for new version: General need for higher precision in output format for projectile energies; some built-in binding energies needed correcting; some anomalous results occur due to faulty read-in data or calculated parameters becoming un-physical; erroneous calculations could result for the L and M shells when restricted K-shell options are inadvertently chosen; to achieve general compatibility with ISICSoo, a companion C++ version that is portable to Linux and MacOS platforms, has been submitted for publication in the CPC Program Library approximately at the same time as this present new standalone version of ISICS [1]. Summary of revisions: The format field for projectile energies in the output has been expanded from two to four decimal places in order to distinguish between closely spaced energy values. There were a few entries in the executable binding energy file that needed correcting; K shell of Eu, M shells of Zn, M1 shell of Kr. The corrected values were also entered in the ENERGY.DAT file. In addition, an alternate data file of binding energies is included, called ENERGY_GW.DAT, which is more up-to-date [2]. Likewise, an alternate atomic parameters data file is now included, called FLOURE_JC.DAT, which is more up-to-date [3] fluorescence yields for the K and L shells and Coster-Kronig parameters for the L shell. Both data files can be read in using the -f usage option. To do this, the original energy file should be renamed and saved (e.g., ENERGY_BB.DAT) and the new file (ENERGY_GW.DAT ) should be duplicated as ENERGY.DAT to be read in using the -f option. Similarly for reading in an alternate FLOURE.DAT file. As with previous versions, the user can also simply input different values of any input quantity by invoking the "specify your own parameters" option from the main menu. You can also use this option to simply check the values of the built-in values of the parameters. If it still happens that a zero binding energy for a particular sub-shell is read in, the program will not completely abort, but will calculate results for the other sub-shells while setting the affected sub-shell output to zero. In calculating the Coulomb deflection factor, if the quantity inside the radical sign of the parameter z z=√{(1} becomes zero or negative, to prevent the program from aborting, the PWBA cross sections are still calculated while the ECPSSR cross sections are set to zero. This situation can happen for very low energy collisions, such as were noticed for helium ions on copper at energies of E⩽11.2 keV. It was observed during the engineering of ISICSoo [1] that erroneous calculations could result for the L- and M-shell cases when restricted K-shell R or HSR scaling options were inappropriately chosen. The program has now been fixed so that these inappropriate options are ignored for the L and M shells. In the previous versions, the usage for inputting a batch data file was incorrectly stated in the Users Manual as -Bxxx; the correct designation is -Fxxx, or alternatively, -Ixxx, as indicated on the usage screen in running the program. A revised Users Manual is also available. Restrictions: The consumed CPU time increases with the atomic shell (K, L, M), but execution is still very fast. Running time: This depends on which shell and the number of different energies to be used in the calculation. The running time is not significantly changed from the previous version.

  6. M shell X-ray production cross sections and fluorescence yields for the elements with 71 <= Z <= 92 using 5.96 keV photons

    NASA Astrophysics Data System (ADS)

    Puri, S.; Mehta, D.; Chand, B.; Singh, Nirmal; Mangal, P. C.; Trehan, P. N.

    1993-03-01

    Total M X-ray production (XRP) cross sections for ten elements in the atomic number region 71 ≤ Z ≤ 92 were measured at 5.96 keV incident photon energy. The average M shell fluorescence yields < overlineωM> have also been computed using the present measured cross section values and the theoretical M shell photoionisation cross sections. The results are compared with theoretical values.

  7. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission

    NASA Astrophysics Data System (ADS)

    Sun, Xiangcheng; Brückner, Christian; Lei, Yu

    2015-10-01

    Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications.Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications. Electronic supplementary information (ESI) available: Detailed experimental section, XRD, FTIR, explosive sensing and the applications results. See DOI: 10.1039/c5nr05549k

  8. Tomographic imaging of flourescence resonance energy transfer in highly light scattering media

    NASA Astrophysics Data System (ADS)

    Soloviev, Vadim Y.; McGinty, James; Tahir, Khadija B.; Laine, Romain; Stuckey, Daniel W.; Mohan, P. Surya; Hajnal, Joseph V.; Sardini, Alessandro; French, Paul M. W.; Arridge, Simon R.

    2010-02-01

    Three-dimensional localization of protein conformation changes in turbid media using Förster Resonance Energy Transfer (FRET) was investigated by tomographic fluorescence lifetime imaging (FLIM). FRET occurs when a donor fluorophore, initially in its electronic excited state, transfers energy to an acceptor fluorophore in close proximity through non-radiative dipole-dipole coupling. An acceptor effectively behaves as a quencher of the donor's fluorescence. The quenching process is accompanied by a reduction in the quantum yield and lifetime of the donor fluorophore. Therefore, FRET can be localized by imaging changes in the quantum yield and the fluorescence lifetime of the donor fluorophore. Extending FRET to diffuse optical tomography has potentially important applications such as in vivo studies in small animal. We show that FRET can be localized by reconstructing the quantum yield and lifetime distribution from time-resolved non-invasive boundary measurements of fluorescence and transmitted excitation radiation. Image reconstruction was obtained by an inverse scattering algorithm. Thus we report, to the best of our knowledge, the first tomographic FLIM-FRET imaging in turbid media. The approach is demonstrated by imaging a highly scattering cylindrical phantom concealing two thin wells containing cytosol preparations of HEK293 cells expressing TN-L15, a cytosolic genetically-encoded calcium FRET sensor. A 10mM calcium chloride solution was added to one of the wells to induce a protein conformation change upon binding to TN-L15, resulting in FRET and a corresponding decrease in the donor fluorescence lifetime. The resulting fluorescence lifetime distribution, the quantum efficiency, absorption and scattering coefficients were reconstructed.

  9. Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes

    PubMed Central

    Sun, Minjie; Sun, Bin; Liu, Yun; Shen, Qun-Dong; Jiang, Shaojun

    2016-01-01

    Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application. PMID:26931282

  10. Optimization via specific fluorescence brightness of a receptor-targeted probe for optical imaging and positron emission tomography of sentinel lymph nodes

    PubMed Central

    Qin, Zhengtao; Hall, David J.; Liss, Michael A.; Hoh, Carl K.; Kane, Christopher J.; Wallace, Anne M.

    2013-01-01

    Abstract. The optical properties of a receptor-targeted probe designed for dual-modality mapping of the sentinel lymph node (SLN) was optimized. Specific fluorescence brightness was used as the design criterion, which was defined as the fluorescence brightness per mole of the contrast agent. Adjusting the molar ratio of the coupling reactants, IRDye 800CW-NHS-ester and tilmanocept, enabled us to control the number of fluorescent molecules attached to each tilmanocept, which was quantified by H1 nuclear magnetic resonance spectroscopy. Quantum yields and molar absorptivities were measured for unconjugated IRDye 800CW and IRDye 800CW-tilmanocept (800CW-tilmanocept) preparations at 0.7, 1.5, 2.3, 2.9, and 3.8 dyes per tilmanocept. Specific fluorescence brightness was calculated by multiplication of the quantum yield by the molar absorptivity and the number of dyes per tilmanocept. It predicted that the preparation with 2.3 dyes per tilmanocept would exhibit the brightest signal, which was confirmed by fluorescence intensity measurements using three optical imaging systems. When radiolabeled with Ga68 and injected into the footpads of mice, the probe identified SLNs by both fluorescence and positron emission tomography (PET) while maintaining high percent extraction by the SLN. These studies demonstrated the feasibility of 800CW-tilmanocept for multimodal SLN mapping via fluorescence and PET–computed tomography imaging. PMID:23958947

  11. Photoionization of calcium

    NASA Astrophysics Data System (ADS)

    Deshmukh, Pranawa C.; Johnson, W. R.

    1983-01-01

    A study of the photoionization of calcium in the relativistic random-phase approximation is reported. Predictions of photoionization cross sections, angular distribution asymmetry parameters, and spin-polarization parameters for the 4s, 3p, and 3s subshells are made with emphasis on the energy region above the 3p32 threshold where multiconfigurational effects are not expected to be very important. Autoionization resonances below the 3s threshold and between the 3p32 and 3p12 thresholds are analyzed using the relativistic multichannel quantum-defect theory.

  12. Photochemical synthesis and photophysical properties of coumarins bearing extended polyaromatic rings studied by emission and transient absorption measurements.

    PubMed

    Yamaji, Minoru; Hakoda, Yuma; Okamoto, Hideki; Tani, Fumito

    2017-04-12

    We prepared a variety of coumarin derivatives having expanded π-electron systems along the direction crossing the C 3 -C 4 bond of the coumarin skeleton via a photochemical cyclization process and investigated their photophysical features as a function of the number (n) of the added benzene rings based on emission and transient absorption measurements. Upon increasing n, the fluorescence quantum yields of the π-extended coumarins increased. Expanding the π-electron system on the C 3 -C 4 bond of the coumarin skeleton was found to be efficient for increasing the fluorescence ability more than that on the C 7 -C 8 bond. Introducing the methoxy group at the 7-position was also efficient for enhancing the fluorescence quantum yield and rate of the expanded coumarins. The non-radiative process from the fluorescence state was not substantially influenced by the expanded π-electron system. The competitive process with the fluorescence was found to be intersystem crossing to the triplet state based on the observations of the triplet-triplet absorption. The effects of the expanded π-electron systems on the fluorescence ability were investigated with the aid of TD-DFT calculations.

  13. Synthesis and characterization of novel 2, 2'-bipyrimidine fluorescent derivative for protein binding

    PubMed Central

    2011-01-01

    Background Fluorescent dyes with biocompatible functional group and good fluorescence behavior are used as biosensor for monitoring different biological processes as well as detection of protein assay. All reported fluorophore used as sensors are having high selectivity and sensitivity but till there is more demand to synthesized new fluorophore which have improved fluorescence properties and good biocompatibility. Results Novel 4, 4'-(1, 1'-(5-(2-methoxyphenoxy)-[2, 2'-bipyrimidine]-4, 6-diyl)bis(1H-pyrazol-3, 1-diyl)) dianiline fluorescent dye was synthesized by multistep synthesis from 2-phenylacetonitrile, 2-chloropyrimidine and 2-methoxyphenol. This dye has absorption at 379 nm with intense single emission at 497 nm having fairly good quantum yield (0.375) and Stokes shift. The intermediates and dye were characterized by FT-IR, 1H NMR, 13C NMR and Mass spectral analysis. The pyrazole bipyrimidine based fluorescent dye possessing two amino groups suitable for binding with protein is reported. Its utility as a biocompatible conjugate was explained by conjugation with bovine serum albumin. The method is based on direct fluorescence detection of fluorophore-labelled protein before and after conjugation. Purified fluorescent conjugate was subsequently analyzed by fluorimetry. The analysis showed that the tested conjugation reaction yielded fluorescent conjugates of the dye through carbodiimide chemistry. Conclusion In summery synthesized fluorophore pyrazole-bipyrimidine has very good interaction towards protein bovine serum albumin and it acts as good candidate for protein assay. PMID:22067202

  14. Detection of Naja atra Cardiotoxin Using Adenosine-Based Molecular Beacon.

    PubMed

    Shi, Yi-Jun; Chen, Ying-Jung; Hu, Wan-Ping; Chang, Long-Sen

    2017-01-07

    This study presents an adenosine (A)-based molecular beacon (MB) for selective detection of Naja atra cardiotoxin (CTX) that functions by utilizing the competitive binding between CTX and the poly(A) stem of MB to coralyne. The 5'- and 3'-end of MB were labeled with a reporter fluorophore and a non-fluorescent quencher, respectively. Coralyne induced formation of the stem-loop MB structure through A₂-coralyne-A₂ coordination, causing fluorescence signal turn-off due to fluorescence resonance energy transfer between the fluorophore and quencher. CTX3 could bind to coralyne. Moreover, CTX3 alone induced the folding of MB structure and quenching of MB fluorescence. Unlike that of snake venom α-neurotoxins, the fluorescence signal of coralyne-MB complexes produced a bell-shaped concentration-dependent curve in the presence of CTX3 and CTX isotoxins; a turn-on fluorescence signal was noted when CTX concentration was ≤80 nM, while a turn-off fluorescence signal was noted with a further increase in toxin concentrations. The fluorescence signal of coralyne-MB complexes yielded a bell-shaped curve in response to varying concentrations of N. atra crude venom but not those of Bungarus multicinctus and Protobothrops mucrosquamatus venoms. Moreover, N. nigricollis venom also functioned as N. atra venom to yield a bell-shaped concentration-dependent curve of MB fluorescence signal, again supporting that the hairpin-shaped MB could detect crude venoms containing CTXs. Taken together, our data validate that a platform composed of coralyne-induced stem-loop MB structure selectively detects CTXs.

  15. Synthesis and characterization of citrate-based fluorescent small molecules and biodegradable polymers.

    PubMed

    Xie, Zhiwei; Kim, Jimin P; Cai, Qing; Zhang, Yi; Guo, Jinshan; Dhami, Ranjodh S; Li, Li; Kong, Bin; Su, Yixue; Schug, Kevin A; Yang, Jian

    2017-03-01

    Novel citric acid based photoluminescent dyes and biodegradable polymers are synthesized via a facile "one-pot" reaction. A comprehensive understanding of the fluorescence mechanisms of the resulting citric acid-based fluorophores is reported. Two distinct types of fluorophores are identified: a thiozolopyridine family with high quantum yield, long lifetime, and exceptional photostability, and a dioxopyridine family with relatively lower quantum yield, multiple lifetimes, and solvent-dependent band shifting behavior. Applications in molecular labeling and cell imaging were demonstrated. The above discoveries contribute to the field of fluorescence chemistry and have laid a solid foundation for further development of new fluorophores and materials that show promise in a diversity of fluorescence-based applications. Photoluminescent materials are pivotal for fluorescence based imaging, labeling and sensing applications. Understanding their fluorescence mechanism is challenging and imperative. We develop a new class of citric acid-derived fluorescent materials in forms of polymers and small molecular dyes by a one-step solvent free reaction. We discovered two different classes of citric acid-derived fluorophores. A two-ring thiozolopyridine structure demonstrates strong fluorescence and exceptional resistance to photo-bleaching. A one-ring dioxopyridine exhibits relative weak fluorescence but with intriguing excitation and solvent-dependent emission wavelength shifting. Our methodology of synthesizing citric acid-derived fluorophores and the understanding on their luminescence are instrumental to the design and production of a large number of new photoluminescent materials for biological and biomedical applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Determination of natural line widths of Kα X-ray lines for some elements in the atomic range 50≤Z≤65 at 59.5 keV

    NASA Astrophysics Data System (ADS)

    Kündeyi, Kadriye; Aylıkcı, Nuray Küp; Tıraşoǧlu, Engin; Kahoul, Abdelhalim; Aylıkcı, Volkan

    2017-02-01

    The semi-empirical determination of natural widths of Kα X-ray lines (Kα1 and Kα2) were performed for Sn, Sb, Te, I, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd and Tb. For the semi-empirical determination of the line widths, K shell fluorescence yields of elements were measured. The samples were excited by 59.5 keV γ rays from a 241Am annular radioactive source in order to measure the K shell fluorescence yields. The emitted K X-rays from the samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The measured K shell fluorescence yields were used for the calculation of K shell level widths. Finally, the natural widths of K X-ray lines were determined as the sums of levels which involved in the transition. The obtained values were compared with earlier studies.

  17. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.

    2010-07-23

    Research highlights: {yields} Successful fusion of GFP to M.EcoKI DNA methyltransferase. {yields} GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. {yields} FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerstermore » resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.« less

  18. One-day fluorescent-antibody procedure for detecting salmonellae in frozen and dried foods.

    PubMed

    Goepfert, J M; Mann, M E; Hicks, R

    1970-12-01

    The indirect fluorescent-antibody technique was used to examine 422 food samples for the presence of salmonellae. A cultural phase involving a 16-hr preenrichment in buffered nutrient broth-milk medium followed by a 4- to 5-hr subculture into fresh medium of the same composition was evaluated. This procedure yielded a sufficient population of salmonellae so that no false-negative results were obtained. Of the 31 false-positives obtained, 12 samples yielded positive cultural results upon extensive subculture of the original enrichment broths. Yeast cells and both vegetative and spore forms of bacilli were observed to fluoresce when stained with anti-Salmonella serum. Efforts to ascertain the cause of these cross-reactions and several alternate explanations are discussed.

  19. The low-energy, charge-transfer excited states of 4-amino-4-prime-nitrodiphenyl sulfide

    NASA Technical Reports Server (NTRS)

    O'Connor, Donald B.; Scott, Gary W.; Tran, Kim; Coulter, Daniel R.; Miskowski, Vincent M.; Stiegman, Albert E.; Wnek, Gary E.

    1992-01-01

    Absorption and emission spectra of 4-amino-4-prime-nitrodiphenyl sulfide in polar and nonpolar solvents were used to characterize and assign the low-energy excited states of the molecule. Fluorescence-excitation anisotropy spectra and fluorescence quantum yields were also used to characterize the photophysics of these states. The lowest-energy fluorescent singlet state was determined to be an intramolecular charge transfer (ICT) state involving transfer of a full electron charge from the amino to the nitro group yielding a dipole moment of about 50 D. A low-energy, intense absorption band is assigned as a transition to a different ICT state involving a partial electron charge transfer from sulfur to the nitro group.

  20. Fluorescence spectroscopy and confocal microscopy of the mycotoxin citrinin in condensed phase and hydrogel films.

    PubMed

    Lauer, Milena H; Gehlen, Marcelo H; de Jesus, Karen; Berlinck, Roberto G S

    2014-05-01

    The emission spectra, quantum yields and fluorescence lifetimes of citrinin in organic solvents and hydrogel films have been determined. Citrinin shows complex fluorescence decays due to the presence of two tautomers in solution and interconversion from excited-state double proton transfer (ESDPT) process. The fluorescence decay times associated with the two tautomers have values near 1 and 5 ns depending on the medium. In hydrogel films of agarose and alginate, fluorescence imaging showed that citrinin is not homogeneously dispersed and highly emissive micrometer spots may be formed. Fluorescence spectrum and decay analysis are used to recognize the presence of citrinin in hydrogel films using confocal fluorescence microscopy and spectroscopy.

  1. Advances in Fluorescence Sensing Systems for the Remote Assessment of Nitrogen Supply in Field Corn

    NASA Technical Reports Server (NTRS)

    Corp, L. A.; Chappelle, E. W.; McMurtrey, J. E.; Daughtry, C. S. T.; Kim, M. S.

    2000-01-01

    The studies described herein were conducted to better define changes in fluorescence properties of leaves from field grown corn (Zea mays L.) as they relate to varying levels of nitrogen (N) fertilization. This research was directed toward: 1) providing a remote non-destructive sensing technique to aid in the determination of optimal rates of N fertilization in corn crops and, 2) defining parameters for further development of fluorescence instrumentation to be operated remotely at field canopy levels. Fluorescence imaging bands centered in the blue (450 nm), green (525 nm), red (680 nm), and far-red (740 nm) and ratios of these bands were compared with the following plant parameters: rates of photosynthesis, N:C ratio, pigment concentrations, and grain yields. Both the fluorescence and physiological measures exhibited similar curvilinear responses to N fertilization level while significant linear correlations were obtained among fluorescence bands and band ratios to certain physiological measures of plant productivity. The red / blue, red / green, far-red / blue, far-red /green fluorescence ratios are well suited for remote observation and provided high correlations to grain yield, LAI, N:C, and chlorophyll contents. The results from this investigation indicate that fluorescence technology could aid in the determination of N fertilization requirements for corn. This discussion will also address design concepts and preliminary field trials of a mobile field-based Laser Induced Fluorescence Imaging System (LIFIS) capable of simultaneously acquiring images of four fluorescence emission bands from areas of plant canopies equaling 1 sq m and greater without interference of ambient solar radiation.

  2. Using violet laser-induced chlorophyll fluorescence emission spectra for crop yield assessment of cowpea (Vigna unguiculata (L) Walp) varieties

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin; Buah-Bassuah, Paul K.; Tetteh, Jonathan P.

    2004-07-01

    The use of violet laser-induced chlorophyll fluorescence (LICF) emission spectra to monitor the growth of five varieties of cowpea in the University of Cape Coast Botanical Garden is presented. Radiation from a continuous-wave violet laser diode emitting at 396 nm through a fibre is closely incident on in vivo leaves of cowpea to excite chlorophyll fluorescence, which is detected by an integrated spectrometer with CCD readout. The chlorophyll fluorescence spectra with peaks at 683 and 731 nm were used for growth monitoring of the cowpea plants over three weeks and analysed using Gaussian spectral functions with curve fitted parameters to determine the peak positions, area under the spectral curve and the intensity ratio F683/F731. The variation in the intensity ratio of the chlorophyll bands showed sensitive changes indicating the photosynthetic activity of the cowpea varieties. A discussion of the fluorescence result as compared to conventional assessment is presented with regard to discrimination between the cowpea varieties in terms of crop yield performance.

  3. A highly fluorescent hydrophilic ionic liquid as a potential probe for the sensing of biomacromolecules.

    PubMed

    Chen, Xu-Wei; Liu, Jia-Wei; Wang, Jian-Hua

    2011-02-17

    With respect to the conventional imidazolium ionic liquids which generally create very weak fluorescence with quantum yields at extremely low levels of 0.005-0.02, a symmetrical hydrophilic ionic liquid 1,3-butylimidazolium chloride (BBimCl) was found to be highly fluorescent with λ(em) at 388 nm when excited at λ(ex) < 340 nm. The very high quantum yield of BBimCl in aqueous medium, derived to be 0.523 when excited at 315 nm, was attributed to its symmetrical plane conjugating structure. In the presence of hemoglobin, the fluorescence of BBimCl could be significantly quenched, resulting from the coordinating interaction between the iron atom in the heme group of hemoglobin and the cationic imidazolium moiety. This feature of the present hydrophilic ionic liquid makes it a promising fluorescence probe candidate for the sensitive sensing of hemoglobin. A linear regression was observed within 3 × 10(-7) to 5 × 10(-6) mol L(-1) for hemoglobin, and a detection limit of 7.3 × 10(-8) mol L(-1) was derived.

  4. Homebuilt single-molecule scanning confocal fluorescence microscope studies of single DNA/protein interactions.

    PubMed

    Zheng, Haocheng; Goldner, Lori S; Leuba, Sanford H

    2007-03-01

    Many technical improvements in fluorescence microscopy over the years have focused on decreasing background and increasing the signal to noise ratio (SNR). The scanning confocal fluorescence microscope (SCFM) represented a major improvement in these efforts. The SCFM acquires signal from a thin layer of a thick sample, rejecting light whose origin is not in the focal plane thereby dramatically decreasing the background signal. A second major innovation was the advent of high quantum-yield, low noise, single-photon counting detectors. The superior background rejection of SCFM combined with low-noise, high-yield detectors makes it possible to detect the fluorescence from single-dye molecules. By labeling a DNA molecule or a DNA/protein complex with a donor/acceptor dye pair, fluorescence resonance energy transfer (FRET) can be used to track conformational changes in the molecule/complex itself, on a single molecule/complex basis. In this methods paper, we describe the core concepts of SCFM in the context of a study that uses FRET to reveal conformational fluctuations in individual Holliday junction DNA molecules and nucleosomal particles. We also discuss data processing methods for SCFM.

  5. A series of fluorene-based two-photon absorbing molecules: synthesis, linear and nonlinear characterization, and bioimaging

    PubMed Central

    Andrade, Carolina D.; Yanez, Ciceron O.; Rodriguez, Luis; Belfield, Kevin D.

    2010-01-01

    The synthesis, structural, and photophysical characterization of a series of new fluorescent donor–acceptor and acceptor-acceptor molecules, based on the fluorenyl ring system, with two-photon absorbing properties is described. These new compounds exhibited large Stokes shifts, high fluorescent quantum yields, and, significantly, high two-photon absorption cross sections, making them well suited for two-photon fluorescence microscopy (2PFM) imaging. Confocal and two-photon fluorescence microscopy imaging of COS-7 and HCT 116 cells incubated with probe I showed endosomal selectivity, demonstrating the potential of this class of fluorescent probes in multiphoton fluorescence microscopy. PMID:20481596

  6. Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-derived Dissolved Organic Matter (Tree-DOM) in an Epiphyte-laden Oak-cedar Forest.

    NASA Astrophysics Data System (ADS)

    Whitetree, A.; Van Stan, J. T., II; Wagner, S.; Guillemette, F.; Lewis, J.; Silva, L.; Stubbins, A.

    2017-12-01

    Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched compared to rainfall and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with FDOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g-C m-2 yr-1) compared well to other yields along the rainfall-to- discharge flow pathway, exceeding DOM yields from some river watersheds.

  7. Adapting BODIPYs to singlet oxygen production on silica nanoparticles.

    PubMed

    Epelde-Elezcano, Nerea; Prieto-Montero, Ruth; Martínez-Martínez, Virginia; Ortiz, María J; Prieto-Castañeda, Alejandro; Peña-Cabrera, Eduardo; Belmonte-Vázquez, José L; López-Arbeloa, Iñigo; Brown, Ross; Lacombe, Sylvie

    2017-05-31

    A modified Stöber method is used to synthesize spherical core-shell silica nanoparticles (NPs) with an external surface functionalized by amino groups and with an average size around 50 nm. Fluorescent dyes and photosensitizers of singlet oxygen were fixed, either separately or conjointly, respectively in the core or in the shell. Rhodamines were encapsulated in the core with relatively high fluorescence quantum yields (Φ fl ≥ 0.3), allowing fluorescence tracking of the particles. Various photosensitizers of singlet oxygen (PS) were covalenty coupled to the shell, allowing singlet oxygen production. The stability of NP suspensions strongly deteriorated upon grafting the PS, affecting their apparent singlet oxygen quantum yields. Agglomeration of NPs depends both on the type and on the amount of grafted photosensitizer. New, lab-made, halogenated 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPY) grafted to the NPs achieved higher singlet oxygen quantum yields (Φ Δ ∼ 0.35-0.40) than Rose Bengal (RB) grafted NPs (Φ Δ ∼ 0.10-0.27). Finally, we combined both fluorescence and PS functions in the same NP, namely a rhodamine in the silica core and a BODIPY or RB grafted in the shell, achieving the performance Φ fl ∼ 0.10-0.20, Φ Δ ∼ 0.16-0.25 with a single excitation wavelength. Thus, proper choice of the dyes, of their concentrations inside and on the NPs and the grafting method enables fine-tuning of singlet oxygen production and fluorescence emission.

  8. Green Synthesis of Bifunctional Fluorescent Carbon Dots from Garlic for Cellular Imaging and Free Radical Scavenging.

    PubMed

    Zhao, Shaojing; Lan, Minhuan; Zhu, Xiaoyue; Xue, Hongtao; Ng, Tsz-Wai; Meng, Xiangmin; Lee, Chun-Sing; Wang, Pengfei; Zhang, Wenjun

    2015-08-12

    Nitrogen and sulfur codoped carbon dots (CDs) were prepared from garlic by a hydrothermal method. The as-prepared CDs possess good water dispersibility, strong blue fluorescence emission with a fluorescent quantum yield of 17.5%, and excellent photo and pH stabilities. It is also demonstrated that the fluorescence of CDs are resistant to the interference of metal ions, biomolecules, and high ionic strength environments. Combining with low cytotoxicity properties, CDs could be used as an excellent fluorescent probe for cellular multicolor imaging. Moreover, the CDs were also demonstrated to exhibit favorable radical scavenging activity.

  9. Measuring fluorescence polarization with a dichrometer.

    PubMed

    Sutherland, John C

    2017-09-01

    A method for obtaining fluorescence polarization data from an instrument designed to measure circular and linear dichroism is compared with a previously reported approach. The new method places a polarizer between the sample and a detector mounted perpendicular to the direction of the incident beam and results in determination of the fluorescence polarization ratio, whereas the previous method does not use a polarizer and yields the fluorescence anisotropy. A similar analysis with the detector located axially with the excitation beam demonstrates that there is no frequency modulated signal due to fluorescence polarization in the absence of a polarizer. Copyright © 2017. Published by Elsevier Inc.

  10. Measurement of lifetimes in Fe,6462,Co,6361 , and 59Mn

    NASA Astrophysics Data System (ADS)

    Klintefjord, M.; Ljungvall, J.; Görgen, A.; Lenzi, S. M.; Bello Garrote, F. L.; Blazhev, A.; Clément, E.; de France, G.; Delaroche, J.-P.; Désesquelles, P.; Dewald, A.; Doherty, D. T.; Fransen, C.; Gengelbach, A.; Georgiev, G.; Girod, M.; Goasduff, A.; Gottardo, A.; Hadyńska-KlÈ©k, K.; Jacquot, B.; Konstantinopoulos, T.; Korichi, A.; Lemasson, A.; Libert, J.; Lopez-Martens, A.; Michelagnoli, C.; Navin, A.; Nyberg, J.; Pérez-Vidal, R. M.; Roccia, S.; Sahin, E.; Stefan, I.; Stuchbery, A. E.; Zielińska, M.; Barrientos, D.; Birkenbach, B.; Boston, A.; Charles, L.; Ciemala, M.; Dudouet, J.; Eberth, J.; Gadea, A.; González, V.; Harkness-Brennan, L.; Hess, H.; Jungclaus, A.; Korten, W.; Menegazzo, R.; Mengoni, D.; Million, B.; Pullia, A.; Ralet, D.; Recchia, F.; Reiter, P.; Salsac, M. D.; Sanchis, E.; Stezowski, O.; Theisen, Ch.; Valiente Dobon, J. J.

    2017-02-01

    Lifetimes of the 41+ states in Fe,6462 and the 11 /21- states in Co,6361 and 59Mn were measured at the Grand Accélérateur National d'Ions Lourds (GANIL) facility by using the Advanced Gamma Tracking Array (AGATA) and the large-acceptance variable mode spectrometer (VAMOS++). The states were populated through multinucleon transfer reactions with a 238U beam impinging on a 64Ni target, and lifetimes in the picosecond range were measured by using the recoil distance Doppler shift method. The data show an increase of collectivity in the iron isotopes approaching N =40 . The reduction of the subshell gap between the ν 2 p1 /2 and ν 1 g9 /2 orbitals leads to an increased population of the quasi-SU(3) pair (ν 1 g9 /2,ν 2 d5 /2 ), which causes an increase in quadrupole collectivity. This is not observed for the cobalt isotopes with N <40 for which the neutron subshell gap is larger due to the repulsive monopole component of the tensor nucleon-nucleon interaction. The extracted experimental B (E 2 ) values are compared with large-scale shell-model calculations and with beyond-mean-field calculations with the Gogny D1S interaction. A good agreement between calculations and experimental values is found, and the results demonstrate in particular the spectroscopic quality of the Lenzi, Nowacki, Poves, and Sieja (LNPS) shell-model interaction.

  11. Dielectric controlled excited state relaxation pathways of a representative push-pull stilbene: a mechanistic study using femtosecond fluorescence up-conversion technique.

    PubMed

    Rafiq, Shahnawaz; Sen, Pratik

    2013-02-28

    Femtosecond fluorescence up-conversion technique was employed to reinvestigate the intriguing dependence of fluorescence quantum yield of trans-4-dimethylamino-4(')-nitrostilbene (DNS) on dielectric properties of the media. In polar solvents, such as methanol and acetonitrile, the two time components of the fluorescence transients were assigned to intramolecular charge transfer (ICT) dynamics and to the depletion of the ICT state to the ground state via internal conversion along the torsional coordinate of nitro moiety. The viscosity independence of the first time component indicates the absence of any torsional coordinate in the charge transfer process. In slightly polar solvent (carbon tetrachloride) the fluorescence transients show a triple exponential behavior. The first time component was assigned to the formation of the ICT state on a 2 ps time scale. Second time component was assigned to the relaxation of the ICT state via two torsion controlled channels. First channel involves the torsional motion about the central double bond leading to the trans-cis isomerization via a conical intersection or avoided crossing. The other channel contributing to the depopulation of ICT state involves the torsional coordinates of dimethylanilino and∕or nitrophenyl moieties and leads to the formation of a conformationally relaxed state, which subsequently relaxes back to the ground state radiatively, and is responsible for the high fluorescence quantum yield of DNS in slightly polar solvents such as carbon tetrachloride, toluene, etc. The excited singlet state which is having a dominant π-π∗ character may also decay via intersystem crossing to the n-π∗ triplet manifold and thus accounts for the observed triplet yield of the molecule in slightly polar solvents.

  12. Dielectric controlled excited state relaxation pathways of a representative push-pull stilbene: A mechanistic study using femtosecond fluorescence up-conversion technique

    NASA Astrophysics Data System (ADS)

    Rafiq, Shahnawaz; Sen, Pratik

    2013-02-01

    Femtosecond fluorescence up-conversion technique was employed to reinvestigate the intriguing dependence of fluorescence quantum yield of trans-4-dimethylamino-4'-nitrostilbene (DNS) on dielectric properties of the media. In polar solvents, such as methanol and acetonitrile, the two time components of the fluorescence transients were assigned to intramolecular charge transfer (ICT) dynamics and to the depletion of the ICT state to the ground state via internal conversion along the torsional coordinate of nitro moiety. The viscosity independence of the first time component indicates the absence of any torsional coordinate in the charge transfer process. In slightly polar solvent (carbon tetrachloride) the fluorescence transients show a triple exponential behavior. The first time component was assigned to the formation of the ICT state on a 2 ps time scale. Second time component was assigned to the relaxation of the ICT state via two torsion controlled channels. First channel involves the torsional motion about the central double bond leading to the trans-cis isomerization via a conical intersection or avoided crossing. The other channel contributing to the depopulation of ICT state involves the torsional coordinates of dimethylanilino and/or nitrophenyl moieties and leads to the formation of a conformationally relaxed state, which subsequently relaxes back to the ground state radiatively, and is responsible for the high fluorescence quantum yield of DNS in slightly polar solvents such as carbon tetrachloride, toluene, etc. The excited singlet state which is having a dominant π-π* character may also decay via intersystem crossing to the n-π* triplet manifold and thus accounts for the observed triplet yield of the molecule in slightly polar solvents.

  13. Photophysical parameters and fluorescence quenching of 7-diethylaminocoumarin (DEAC) laser dye

    NASA Astrophysics Data System (ADS)

    El-Mossalamy, E. H.; Obaid, A. Y.; El-Daly, S. A.

    2011-10-01

    The optical properties including electronic absorption spectrum, emission spectrum, fluorescence quantum yield, and dipole moment of electronic transition of 7-diethylaminocoumarin (DEAC) laser dye have been measured in different solvents. Both electronic absorption and fluorescence spectra are red shifted as the polarity of the medium increases, indicating that the dipole moment of molecule increases on excitation. The fluorescence quantum yield of DEAC decreases as the polarity of solvent increases, a result of the role of solvent polarity in stabilization of the twisting of the intramolecular charge transfer (TICT) in excited state, which is a non-emissive state, as well as hydrogen bonding with the hetero-atom of dye. The emission spectrum of DEAC has also been measured in cationic (CTAC) and anionic (SDS) micelles, the intensity increases as the concentration of surfactant increases, and an abrupt change in emission intensity is observed at critical micelle concentration (CMC) of surfactant. 2×10 -3 mol dm -3 of DEAC gives laser emission in the blue region on pumping with nitrogen laser ( λex=337.1 nm). The laser parameters such as tuning range, gain coefficient ( α), emission cross section ( σe), and half-life energy have been calculated in different solvents, namely acetone, dioxane , ethanol, and dimethyforamide (DMF). The photoreactivity of DEAC has been studied in CCl 4 at a wavelength of 366 nm. The values of photochemical yield ( ϕc) and rate constant ( k) are determined. The interaction of organic acceptors such as picric acid (PA), tetracyanoethylene (TCNE), and 7,7,8,8-tetracynoquinonedimethane (TCNQ) with DEAC is also studied using fluorescence measurements in acetonitrile (CH 3CN); from fluorescence quenching study we assume the possible electron transfer from excited donor DEAC to organic acceptor forming non-emissive exciplex.

  14. Highly water-soluble BODIPY-based fluorescent probe for sensitive and selective detection of nitric oxide in living cells.

    PubMed

    Vegesna, Giri K; Sripathi, Srinivas R; Zhang, Jingtuo; Zhu, Shilei; He, Weilue; Luo, Fen-Tair; Jahng, Wan Jin; Frost, Megan; Liu, Haiying

    2013-05-22

    A highly water-soluble BODIPY dye bearing electron-rich o-diaminophenyl groups at 2,6-positions was prepared as a highly sensitive and selective fluorescent probe for detection of nitric oxide (NO) in living cells. The fluorescent probe displays an extremely weak fluorescence with fluorescence quantum yield of 0.001 in 10 mM phosphate buffer (pH 7.0) in the absence of NO as two electron-rich o-diaminophenyl groups at 2,6-positions significantly quench the fluorescence of the BODIPY dye via photoinduced electron transfer mechanism. The presence of NO in cells enhances the dye fluorescence dramatically. The fluorescent probe demonstrates excellent water solubility, membrane permeability, and compatibility with living cells for sensitive detection of NO.

  15. Silole-Based Red Fluorescent Organic Dots for Bright Two-Photon Fluorescence In vitro Cell and In vivo Blood Vessel Imaging.

    PubMed

    Chen, Bin; Feng, Guangxue; He, Bairong; Goh, Chiching; Xu, Shidang; Ramos-Ortiz, Gabriel; Aparicio-Ixta, Laura; Zhou, Jian; Ng, Laiguan; Zhao, Zujin; Liu, Bin; Tang, Ben Zhong

    2016-02-10

    Robust luminescent dyes with efficient two-photon fluorescence are highly desirable for biological imaging applications, but those suitable for organic dots fabrication are still rare because of aggregation-caused quenching. In this work, a red fluorescent silole, 2,5-bis[5-(dimesitylboranyl)thiophen-2-yl]-1-methyl-1,3,4-triphenylsilole ((MesB)2 DTTPS), is synthesized and characterized. (MesB)2 DTTPS exhibits enhanced fluorescence efficiency in nanoaggregates, indicative of aggregation-enhanced emission (AEE). The organic dots fabricated by encapsulating (MesB)2 DTTPS within lipid-PEG show red fluorescence peaking at 598 nm and a high fluorescence quantum yield of 32%. Upon excitation at 820 nm, the dots show a large two-photon absorption cross section of 3.43 × 10(5) GM, which yields a two-photon action cross section of 1.09 × 10(5) GM. These (MesB)2 DTTPS dots show good biocompatibility and are successfully applied to one-photon and two-photon fluorescence imaging of MCF-7 cells and two-photon in vivo visualization of the blood vascular of mouse muscle in a high-contrast and noninvasive manner. Moreover, the 3D blood vasculature located at the mouse ear skin with a depth of over 100 μm can also be visualized clearly, providing the spatiotemporal information about the whole blood vascular network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Novel cookie-with-chocolate carbon dots displaying extremely acidophilic high luminescence

    NASA Astrophysics Data System (ADS)

    Lu, Siyu; Zhao, Xiaohuan; Zhu, Shoujun; Song, Yubin; Yang, Bai

    2014-10-01

    A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+.A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03965c

  17. Solvent Dependency in the Quantum Efficiency of 4-[(4-Aminophenyl)-(4-imino-1-cyclohexa-2, 5- dienylidene) methyl] Aniline Hydrochloride.

    PubMed

    Pathrose, Bini; Nampoori, V P N; Radhakrishnan, P; Sahira, H; Mujeeb, A

    2015-05-01

    In the present work dual beam thermal lens technique is used for studying the solvent dependency on the quantum efficiency of a novel dye used for biomedical applications. The role of solvent in the absolute fluorescence quantum yield of 4-[(4-Aminophenyl)-(4-imino-1-cyclohexa-2, 5- dienylidene) methyl] aniline hydrochloride is studied using thermal lens technique. It is observed that the variation in solvents and its concentration results considerable variations in the fluorescence quantum yield. These variations are due to the non-radiative relaxation of the absorbed energy and because of the different solvent properties. The highest quantum yield of the dye is observed in the polar protic solvent-water.

  18. Intrinsic fluorescence of protein in turbid media using empirical relation based on Monte Carlo lookup table

    NASA Astrophysics Data System (ADS)

    Einstein, Gnanatheepam; Udayakumar, Kanniyappan; Aruna, Prakasarao; Ganesan, Singaravelu

    2017-03-01

    Fluorescence of Protein has been widely used in diagnostic oncology for characterizing cellular metabolism. However, the intensity of fluorescence emission is affected due to the absorbers and scatterers in tissue, which may lead to error in estimating exact protein content in tissue. Extraction of intrinsic fluorescence from measured fluorescence has been achieved by different methods. Among them, Monte Carlo based method yields the highest accuracy for extracting intrinsic fluorescence. In this work, we have attempted to generate a lookup table for Monte Carlo simulation of fluorescence emission by protein. Furthermore, we fitted the generated lookup table using an empirical relation. The empirical relation between measured and intrinsic fluorescence is validated using tissue phantom experiments. The proposed relation can be used for estimating intrinsic fluorescence of protein for real-time diagnostic applications and thereby improving the clinical interpretation of fluorescence spectroscopic data.

  19. Imaging lipid droplets in Arabidopsis mutants

    USDA-ARS?s Scientific Manuscript database

    Confocal fluorescence microscopy was adapted for the imaging of neutral lipids in plant leaves with defects in normal lipid metabolism using two different fluorescent dyes. Disruptions in a gene locus, At4g24160, yielded Arabidopsis thaliana plants with a preponderance of oil bodies in their leaves ...

  20. Cultivating Fluorescent Flowers with Highly Luminescent Carbon Dots Fabricated by a Double Passivation Method

    PubMed Central

    Chang, Tao; Zhao, Haiping; Du, Huanhuan; Liu, Shan; Wu, Baoshuang; Qin, Shenjun

    2017-01-01

    In this work, we present the fabrication of highly luminescent carbon dots (CDs) by a double passivation method with the assistance of Ca(OH)2. In the reaction process, Ca2+ protects the active functional groups from overconsumption during dehydration and carbonization, and the electron-withdrawing groups on the CD surface are converted to electron-donating groups by the hydroxyl ions. As a result, the fluorescence quantum yield of the CDs was found to increase with increasing Ca(OH)2 content in the reaction process. A blue-shift optical spectrum of the CDs was also found with increasing Ca(OH)2 content, which could be attributed to the increasing of the energy gaps for the CDs. The highly photoluminescent CDs obtained (quantum yield: 86%) were used to cultivate fluorescent carnations by a water culture method, while the results of fluorescence microscopy analysis indicated that the CDs had entered the plant tissue structure. PMID:28686178

  1. Investigation of Atmospheric Effects on Retrieval of Sun-Induced Fluorescence Using Hyperspectral Imagery.

    PubMed

    Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei

    2016-04-06

    Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators-depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance-to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O₂-A and O₂-B bands (111.4% and 77.1% in the O₂-A band; and 27.5% and 32.6% in the O₂-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R² = 0.91 for Damm vs. SCOPE SIF; R² = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence.

  2. Investigation of Atmospheric Effects on Retrieval of Sun-Induced Fluorescence Using Hyperspectral Imagery

    PubMed Central

    Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei

    2016-01-01

    Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators—depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance—to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O2-A and O2-B bands (111.4% and 77.1% in the O2-A band; and 27.5% and 32.6% in the O2-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R2 = 0.91 for Damm vs. SCOPE SIF; R2 = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence. PMID:27058542

  3. An Iodine Fluorescence Quenching Clock Reaction

    NASA Astrophysics Data System (ADS)

    Weinberg, Richard B.

    2007-05-01

    A fluorescent clock reaction is described that is based on the principles of the Landolt iodine reaction but uses the potent fluorescence quenching properties of triiodide to abruptly extinguish the ultraviolet fluorescence of optical brighteners present in liquid laundry detergents. The reaction uses easily obtained household products. One variation illustrates the sequential steps and mechanisms of the reaction; other variations maximize the dramatic impact of the demonstration; and a variation that uses liquid detergent in the Briggs Rauscher reaction yields a striking oscillating luminescence. The iodine fluorescence quenching clock reaction can be used in the classroom to explore not only the principles of redox chemistry and reaction kinetics, but also the photophysics of fluorescent pH probes and optical quenching.

  4. Comparison of Air Fluorescence and Ionization Measurements of E.M. Shower Depth Profiles: Test of a UHECR Detector Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belz, J.; Cao, Z.; Huentemeyer, P.

    Measurements are reported on the fluorescence of air as a function of depth in electromagnetic showers initiated by bunches of 28.5 GeV electrons. The light yield is compared with the expected and observed depth profiles of ionization in the showers. It validates the use of atmospheric fluorescence profiles in measuring ultra high energy cosmic rays.

  5. Hydroxylated near-infrared BODIPY fluorophores as intracellular pH sensors

    PubMed Central

    Salim, Mohamed M.; Owens, Eric A.; Gao, Tielong; Lee, Jeong Heon; Hyun, Hoon; Choi, Hak Soo; Henary, Maged

    2015-01-01

    In this study, a series of new, highly sensitive BF2-chelated tetraarylazadipyrromethane dyes are synthesized and analyzed to be suitable as on/off photo-induced electron transfer modulated fluorescent sensors for determination of intracellular pH. The ethanolic solutions of the new indicators feature absorption maxima in the range of 696–700 nm and a fluorescence emission maximum at 720 nm. Molar absorptivity and fluorescence quantum yield data were determined for the studied set of aza-BODIPY indicators. These indicators have high molar absorption coefficients of ~80 000 M−1 cm−1 and quantum yields (up to 18%). Corresponding pKa values of indicators are determined from absorbance and fluorescence measurements and range from 9.1 to 10.8, depending on the selective positioning of electron-donating functionalities. The excellent photostability of the aza-BODIPY indicators makes them particularly suitable for long duration measurements. The in vitro cellular staining of living tissues in PC3 cells based on the isosbestic point at pH 7.8 and pH 9.3 has been employed which shows an increase in fluorescence intensity at 800 nm with increase in pH for certain compounds and fluorescence intensity decreases at 700 nm. Therefore, the new indicators are suitable for exploitation and adaptation in a diverse range of analytical applications. PMID:25105177

  6. Analysis of doxorubicin distribution in MCF-7 cells treated with drug-loaded nanoparticles by combination of two fluorescence-based techniques, confocal spectral imaging and capillary electrophoresis.

    PubMed

    Gautier, Juliette; Munnier, Emilie; Soucé, Martin; Chourpa, Igor; Douziech Eyrolles, Laurence

    2015-05-01

    The intracellular distribution of the antiancer drug doxorubicin (DOX) was followed qualitatively by fluorescence confocal spectral imaging (FCSI) and quantitatively by capillary electrophoresis (CE). FCSI permits the localization of the major fluorescent species in cell compartments, with spectral shifts indicating the polarity of the respective environment. However, distinction between drug and metabolites by FCSI is difficult due to their similar fluorochromes, and direct quantification of their fluorescence is complicated by quantum yield variation between different subcellular environments. On the other hand, capillary electrophoresis with fluorescence detection (CE-LIF) is a quantitative method capable of separating doxorubicin and its metabolites. In this paper, we propose a method for determining drug and metabolite concentration in enriched nuclear and cytosolic fractions of cancer cells by CE-LIF, and we compare these data with those of FCSI. Significant differences in the subcellular distribution of DOX are observed between the drug administered as a molecular solution or as a suspension of drug-loaded iron oxide nanoparticles coated with polyethylene glycol. Comparative analysis of the CE-LIF vs FCSI data may lead to a tentative calibration of this latter method in terms of DOX fluorescence quantum yields in the nucleus and more or less polar regions of the cytosol.

  7. Broadband Fluorescence Enhancement with Self-Assembled Silver Nanoparticle Optical Antennas.

    PubMed

    Vietz, Carolin; Kaminska, Izabela; Sanz Paz, Maria; Tinnefeld, Philip; Acuna, Guillermo P

    2017-05-23

    Plasmonic structures are known to affect the fluorescence properties of dyes placed in close proximity. This effect has been exploited in combination with single-molecule techniques for several applications in the field of biosensing. Among these plasmonic structures, top-down zero-mode waveguides stand out due to their broadband capabilities. In contrast, optical antennas based on gold nanostructures exhibit fluorescence enhancement on a narrow fraction of the visible spectrum typically restricted to the red to near-infrared region. In this contribution, we exploit the DNA origami technique to self-assemble optical antennas based on large (80 nm) silver nanoparticles. We have studied the performance of these antennas with far- and near-field simulations and characterized them experimentally with single-molecule fluorescence measurements. We demonstrate that silver-based optical antennas can yield a fluorescence enhancement of more than 2 orders of magnitude throughout the visible spectral range for high intrinsic quantum yield dyes. Additionally, a comparison between the performance of gold and silver-based antennas is included. The results indicate that silver-based antennas strongly outperform their gold counterparts in the blue and green ranges and exhibit marginal differences in the red range. These characteristics render silver-based optical antennas ready for applications involving several fluorescently labeled species across the visible spectrum.

  8. A study of the relationship between the chemical structures and the fluorescence quantum yields of coumarins, quinoxalinones and benzoxazinones for the development of sensitive fluorescent derivatization reagents.

    PubMed

    Azuma, Kentaro; Suzuki, Sachiko; Uchiyama, Seiichi; Kajiro, Toshi; Santa, Tomofumi; Imai, Kazuhiro

    2003-04-01

    To develop new fluorescent derivatization reagents, we investigated the relationship between the chemical structures and the fluorescence quantum yields (phi(f)) of coumarins, quinoxalinones and benzoxadinones. Forty-six compounds were synthesized and their fluorescence spectra were measured in n-hexane, ethyl acetate, methanol and water. The energy levels of these compounds were calculated by combination of the semi-empirical AM1 and INDO/S (CI = all) methods. The deltaE(Tn(n,pi*), S1(pi,pi*)) (the energy gap between the Tn(n,pi*) and S1(pi,pi*) states) values were well correlated with the phi(f) values, which enables us to predict the phi(f) values from their chemical structures. Based on this relationship, 3-phenyl-7-N-piperazinoquinoxalin-2(1H)-one (PQ-Pz) and 7-(3-(S)-aminopyrrolidin-1-yl)-3-phenylquinoxalin-2-(1H)-one (PQ-APy) were developed as fluorescent derivatization reagents for carboxylic acids. The derivatives of the carboxylic acids with PQ-Pz and PQ-APy showed large phi(f) values even in polar solvents, suggesting that these reagents are suitable for the microanalysis of biologically important carboxylic acids by reversed phase HPLC.

  9. Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore

    PubMed Central

    2016-01-01

    The chemical locking of the central single bond in core chromophores of green fluorescent proteins (GFPs) influences their excited-state behavior in a distinct manner. Experimentally, it significantly enhances the fluorescence quantum yield of GFP chromophores with an ortho-hydroxyl group, while it has almost no effect on the photophysics of GFP chromophores with a para-hydroxyl group. To unravel the underlying physical reasons for this different behavior, we report static electronic structure calculations and nonadiabatic dynamics simulations on excited-state intramolecular proton transfer, cis–trans isomerization, and excited-state deactivation in a locked ortho-substituted GFP model chromophore (o-LHBI). On the basis of our previous and present results, we find that the S1 keto species is responsible for the fluorescence emission of the unlocked o-HBI and the locked o-LHBI species. Chemical locking does not change the parts of the S1 and S0 potential energy surfaces relevant to enol–keto tautomerization; hence, in both chromophores, there is an ultrafast excited-state intramolecular proton transfer that takes only 35 fs on average. However, the locking effectively hinders the S1 keto species from approaching the keto S1/S0 conical intersections so that most of trajectories are trapped in the S1 keto region for the entire 2 ps simulation time. Therefore, the fluorescence quantum yield of o-LHBI is enhanced compared with that of unlocked o-HBI, in which the S1 excited-state decay is efficient and ultrafast. In the case of the para-substituted GFP model chromophores p-HBI and p-LHBI, chemical locking hardly affects their efficient excited-state deactivation via cis–trans isomerization; thus, the fluorescence quantum yields in these chromophores remain very low. The insights gained from the present work may help to guide the design of new GFP chromophores with improved fluorescence emission and brightness. PMID:26744782

  10. Characterization of cap-shaped silver particles for surface-enhanced fluorescence effects.

    PubMed

    Yamaguchi, Tetsuji; Kaya, Takatoshi; Takei, Hiroyuki

    2007-05-15

    Surface-enhanced fluorescence has potentially many desirable properties as an analytical method for medical diagnostics, but the effect observed so far is rather modest and only in conjunction with fluorophores with low quantum yields. Coupled with the fact that preparation of suitable surfaces at low costs has been difficult, this has limited its utilities. Here we report a novel method for forming uniform and reproducible surfaces with respectable enhancement ratios even for high-quantum-yield fluorophores. Formation of dense surface-adsorbed latex spheres on a flat surface via partial aggregation, followed by evaporation of silver, results in a film consisting of cap-shaped silver particles at high densities. Binding of fluorescence biomolecules, either through physisorption or antigen-antibody reaction, was performed, and enhancements close to 50 have been observed with fluorophores such as R-phycoerythrin and Alexa 546-labeled, bovine serum albumin, both of which have quantum yields around 0.8. We attribute this to the unique shape of the silver particle and the presence of abundant gaps among adjacent particles at high densities. The effectiveness of the new surface is also demonstrated with IL-6 sandwich assays.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindberg, David J.; Wranne, Moa S.; Gilbert Gatty, Mélina

    Thioflavin-T (ThT) is one of the most commonly used dyes for amyloid detection, but the origin of its fluorescence enhancement is not fully understood. Herein we have characterised the ThT fluorescence response upon binding to the Aβ(1-40) and Aβ(1-42) variants of the Alzheimer's-related peptide amyloid-β, in order to explore how the photophysical properties of this dye relates to structural and morphological properties of two amyloid fibril types formed by peptides with a high degree of sequence homology. We show that the steady-state ThT fluorescence is 1.7 times more intense with Aβ(1-40) compared to Aβ(1-42) fibrils in concentration matched samples preparedmore » under quiescent conditions. By measuring the excited state lifetime of bound ThT, we also demonstrate a distinct difference between the two fibril isoforms, with Aβ(1-42) fibrils producing a longer ThT fluorescence lifetime compared to Aβ(1-40). The substantial steady-state intensity difference is therefore not explained by differences in fluorescence quantum yield. Further, we find that the ThT fluorescence intensity, but not the fluorescence lifetime, is dependent on the fibril preparation method (quiescent versus agitated conditions). We therefore propose that the fluorescence lifetime is inherent to each isoform and sensitively reports on fibril microstructure in the protofilament whereas the total fluorescence intensity relates to the amount of exposed β-sheet in the mature Aβ fibrils and hence to differences in their morphology. Our results highlight the complexity of ThT fluorescence, and demonstrate its extended use in amyloid fibril characterisation. - Highlights: • ThT emission is more intense with Aβ(1-40) fibrils than with Aβ(1-42) fibrils. • Aβ(1-42) fibrils induce longer ThT fluorescence lifetimes and higher quantum yield. • ThT emission intensity in Aβ fibril samples reports on fibril morphology. • The ThT fluorescence lifetime is a characteristic feature of each Aβ fibril type.« less

  12. Measuring fluorescence polarization with a dichrometer

    DOE PAGES

    Sutherland, John C.

    2017-04-06

    In this article, a method for obtaining fluorescence polarization data from an instrument designed to measure circular and linear dichroism is compared with a previously reported approach. The new method places a polarizer between the sample and a detector mounted perpendicular to the direction of the incident beam and results in determination of the fluorescence polarization ratio, whereas the previous method does not use a polarizer and yields the fluorescence anisotropy. A similar analysis with the detector located axially with the excitation beam demonstrates that there is no frequency modulated signal due to fluorescence polarization in the absence of amore » polarizer.« less

  13. A fluorescent molecular rotor probes the kinetic process of degranulation of mast cells.

    PubMed

    Furuno, T; Isoda, R; Inagaki, K; Iwaki, T; Noji, M; Nakanishi, M

    1992-08-01

    A confocal fluorescence microscope was used to study the exocytotic secretory processes of mast cells in combination with an fluorescent molecular rotor, 9-(dicyanovinyl)julolidine (DCVJ). DCVJ is known to be an unique fluorescent dye which increases its quantum yield with decreasing intramolecular rotation. Here, DCVJ-loaded peritoneal rat mast cells were stimulated with compound 48/80 and their fluorescence images were compared with fluorescence calcium images of fluo-3-loaded mast cells. Subsequent to transient increases in intracellular free calcium ion concentration, DCVJ fluorescence increased dramatically in the cytoplasm and formed a ring-like structure around the nucleus, suggesting the possibility that the dye bound to the proteins composing the cytoskeletal architecture. Furthermore, the increases of DCVJ fluorescence intensities were mostly blocked in the presence of cytochalasin D (10 microM). However, fluo-3 fluorescence intensities still increased after addition of compound 48/80.

  14. Fluorescent water-Soluble Probes Based on Ammonium Cation Peg Substituted Perylenepisimides: Synthesis, Photophysical Properties, and Live Cell Images

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Cai, Jiaxuan; Zhang, Shuchen; Yi, Xuegang; Gao, Baoxiang

    2018-01-01

    To synthesize perylenbisimides (PBI) fluorescent probes that will improve the water-soluble ability and the cytocompatibility, the synthesis and properties of fluorescent water-soluble probes based on dendritic ammonium cation polyethylene glycol (PEG) substituted perylenebisimides(GPDIs) are presented. As we expected, with increased ammonium cation PEG, the aggregation of the PBI in an aqueous solution is completely suppressed by the hydrophilic ammonium cation PEG groups. And the fluorescence quantum yield increases from 25% for GPDI-1 to 62% for GPDI-2. When incubated with Hela cells for 48 h, the viabilities are 71% (for GPDI-1) and 76% (for GPDI-2). Live cell imaging shows that these probes are efficiently internalized by HeLa cells. The study of the photophysical properties indicated increasing the ammonium cation PEG generation can increase the fluorescence quantum yield. Live cell imaging shows that with the ammonium cation PEG chains of perylenebisimides has high biocompatibility. The exceptionally low cytotoxicity is ascribed to the ammonium cation PEG chains, which protect the dyes from nonspecifically interacting with the extracellular proteins. Live cell imaging shows that ammonium cations PEG chains can promote the internalization of these probes.

  15. Determination of the orbital moment and crystal-field splitting in LaTiO3.

    PubMed

    Haverkort, M W; Hu, Z; Tanaka, A; Ghiringhelli, G; Roth, H; Cwik, M; Lorenz, T; Schüssler-Langeheine, C; Streltsov, S V; Mylnikova, A S; Anisimov, V I; de Nadai, C; Brookes, N B; Hsieh, H H; Lin, H-J; Chen, C T; Mizokawa, T; Taguchi, Y; Tokura, Y; Khomskii, D I; Tjeng, L H

    2005-02-11

    Utilizing a sum rule in a spin-resolved photoelectron spectroscopic experiment with circularly polarized light, we show that the orbital moment in LaTiO3 is strongly reduced from its ionic value, both below and above the Ne el temperature. Using Ti L2,3 x-ray absorption spectroscopy as a local probe, we found that the crystal-field splitting in the t2g subshell is about 0.12-0.30 eV. This large splitting does not facilitate the formation of an orbital liquid.

  16. Multi-Element X-Ray Shields for Spacecraft

    DTIC Science & Technology

    1983-12-30

    34 Theoretical Photoionization Crcss Sections from I to 1500 keV", UCRL-51326 (1973). Values are given for shells and subshells as well as the atomic...effect data are from Hubbell, et al.1 The photoeffect data are from Scofield 2 at 1.0 keV and greater; values at 0.5 to 1.0 keV are from Veigele.3 An...example (not requiring interpolation) is given in Table I, the case of a 100 keV x-ray on lead. Each step in the process of filling the photoionization

  17. Potentials of satellite derived SIF products to constrain GPP simulated by the new ORCHIDEE-FluOR terrestrial model at the global scale

    NASA Astrophysics Data System (ADS)

    Bacour, C.; Maignan, F.; Porcar-Castell, A.; MacBean, N.; Goulas, Y.; Flexas, J.; Guanter, L.; Joiner, J.; Peylin, P.

    2016-12-01

    A new era for improving our knowledge of the terrestrial carbon cycle at the global scale has begun with recent studies on the relationships between remotely sensed Sun Induce Fluorescence (SIF) and plant photosynthetic activity (GPP), and the availability of such satellite-derived products now "routinely" produced from GOSAT, GOME-2, or OCO-2 observations. Assimilating SIF data into terrestrial ecosystem models (TEMs) represents a novel opportunity to reduce the uncertainty of their prediction with respect to carbon-climate feedbacks, in particular the uncertainties resulting from inaccurate parameter values. A prerequisite is a correct representation in TEMs of the several drivers of plant fluorescence from the leaf to the canopy scale, and in particular the competing processes of photochemistry and non photochemical quenching (NPQ).In this study, we present the first results of a global scale assimilation of GOME-2 SIF products within a new version of the ORCHIDEE land surface model including a physical module of plant fluorescence. At the leaf level, the regulation of fluorescence yield is simulated both by the photosynthesis module of ORCHIDEE to calculate the photochemical yield and by a parametric model to estimate NPQ. The latter has been calibrated on leaf fluorescence measurements performed for boreal coniferous and Mediterranean vegetation species. A parametric representation of the SCOPE radiative transfer model is used to model the plant fluorescence fluxes for PSI and PSII and the scaling up to the canopy level. The ORCHIDEE-FluOR model is firstly evaluated with respect to in situ measurements of plant fluorescence flux and photochemical yield for scots pine and wheat. The potentials of SIF data to constrain the modelled GPP are evaluated by assimilating one year of GOME-2-SIF products within ORCHIDEE-FluOR. We investigate in particular the changes in the spatial patterns of GPP following the optimization of the photosynthesis and phenology parameters. We analyze the differences obtained using a simpler fluorescence model in ORCHIDEE hypothesizing a linear relationship between SIF and GPP, and an independent simultaneous assimilation of three data-streams (in situ flux measurements, satellite derived NDVI and atmospheric CO2 concentrations).

  18. [Spectroscopic Diagnosis of Two-Dimensional Distribution of OH Radicals in Wire-Plate Pulsed Corona Discharge Reactor].

    PubMed

    Jiang, Jian-ping; Luo, Zhong-yang; Xuan, Jian-yong; Zhao, Lei; Fang, Meng-xiang; Gao, Xiang

    2015-10-01

    Pulsed corona discharge in atmosphere has been widely regarded as an efficient flue gas treatment technology for the generation of active radical species, such as the OH radicals. The spatial distribution of OH radicals generated by pulsed corona discharge plays an important role in decomposing pollutants. The two-dimensional (2-D) distribution of OH radicals of positive wire--plate pulsed corona discharge was detected using laser-induced fluorescence (LIF). The influence of relative humidity (RH) and oxygen concentration on the 2-D distribution of OH radicals were investigated. The results indicated that the 2-D distribution of OH radicals was characterized by a fan-shaped distribution from the wire electrode to plate electrode, and both the maximum values of vertical length and horizontal width of the fan area was less than 1 cm. The 2-D distribution area of OH radicals increased significantly with increasing the RH and the optimum condition was 65% RH. The optimal level of the oxygen concentration for the 2-D distribution area of OH radicals was 2%. The process of OH radical generation and 2-D distribution area of OH radicals were significantly interfered when the oxygen concentration was larger than 15%. The total quenching rate coefficients for different RH values and oxygen concentration in this study were used to calculate the fluorescence yield of OH radical. The fluorescence yield, which is the ratio between the emission rate (Einstein coefficient) and the sum of the emission rate and quenching rate, was used to normalize the 2-D distribution area of OH radicals. The fluorescence yield of OH radical decreased with increasing the RH and oxygen concentration linearly and rapidly. It was also found that compared with the RH, the influence of the oxygen concentration had more notable effect on the fluorescence yield of OH radical and 2-D distribution area of OH radicals.

  19. A new probe using hybrid virus-dye nanoparticles for near-infrared fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Wu, Changfeng; Barnhill, Hannah; Liang, Xiaoping; Wang, Qian; Jiang, Huabei

    2005-11-01

    A fluorescent probe based on bionanoparticle cowpea mosaic virus has been developed for near-infrared fluorescence tomography. A unique advantage of this probe is that over 30 dye molecules can be loaded onto each viral nanoparticle with an average diameter of 30 nm, making high local dye concentration (∼1.8 mM) possible without significant fluorescence quenching. This ability of high loading of local dye concentration would increase the signal-to-noise ratio considerably, thus sensitivity for detection. We demonstrate successful tomographic fluorescence imaging of a target containing the virus-dye nanoparticles embedded in a tissue-like phantom. Tomographic fluorescence data were obtained through a multi-channel frequency-domain system and the spatial maps of fluorescence quantum yield were recovered with a finite-element-based reconstruction algorithm.

  20. Systematic characterization of maturation time of fluorescent proteins in living cells

    PubMed Central

    Balleza, Enrique; Kim, J. Mark; Cluzel, Philippe

    2017-01-01

    Slow maturation time of fluorescent proteins limits accurate measurement of rapid gene expression dynamics and effectively reduces fluorescence signal in growing cells. We used high-precision time-lapse microscopy to characterize, at two different temperatures in E. coli, the maturation kinetics of 50 FPs that span the visible spectrum. We identified fast-maturing FPs that yield the highest signal-to-noise ratio and temporal resolution in individual growing cells. PMID:29320486

  1. Nonlinear Spectroscopy of Multicomponent Droplets and Two- and Three Dimensional Measurements in Flames.

    DTIC Science & Technology

    1994-03-31

    fluorescence intensity with temperature , which allows the fuel cn ce to be found directly from the acetaldehyde fluorescence. An alternative means of measuring... oxidizer . The measured quantities are used to form 17 a conserved scalar from which the mixtur fraction is determined in an iterative process. We have...turbulent nonpemIixed acetaklehyde flame. Acetaldehyde (CH3CHO) was chosen for its relatively high fluorescence yield and small variation of

  2. Molecular Iodine Fluorescence Using a Green Helium-Neon Laser

    ERIC Educational Resources Information Center

    Williamson, J. Charles

    2011-01-01

    Excitation of molecular iodine vapor with a green (543.4 nm) helium-neon laser produces a fluorescence spectrum that is well suited for the upper-level undergraduate physical chemistry laboratory. Application of standard evaluation techniques to the spectrum yields ground electronic-state molecular parameters in good agreement with literature…

  3. Fluorescent 'two-faced' polymer wafers with embedded pyrene-functionalised gelator nanofibres.

    PubMed

    Moffat, Jamie R; Smith, David K

    2011-11-21

    Pyrene-functionalised gelators self-assemble into nano-fibrillar organogels in DMSO/styrene/divinylbenzene mixtures, which when polymerised yield polymer wafers with two distinct faces, only one of which is fluorescent and has embedded gelator nanofibres. This journal is © The Royal Society of Chemistry 2011

  4. Solvatochromic investigation of highly fluorescent 2-aminobithiophene derivatives.

    PubMed

    Bolduc, Andréanne; Dong, Yanmei; Guérin, Amélie; Skene, W G

    2012-05-21

    The solvatochromic and electrochemical properties of electronic push-pull 2-aminobithiophenes consisting of an aldehyde and nitro withdrawing groups were examined. With the use of an integrating sphere, the absolute quantum yields of the bithiophenes were measured. They were found to be highly fluorescent (Φfl > 70%), provided the nitro group was not located in the 4'-position. High fluorescence yields were observed regardless of solvent, except for alcohols, notably methanol and ethanol. Cryofluorescence was used to probe the bithiophene temperature dependent excited state deactivation modes. The singlet excited state deactivation mode other than fluorescence was found to be internal conversion involving rotation around the thiophene-thiophene bond. Deactivation by intersystem crossing to the triplet state occurred in ca. 40% only for the unsubstituted 2-aminobithiophene. In contrast, the fluorescence was quenched by photoinduced intramolecular electron transfer when the nitro group was located in the 4'-position of the bithiophene. Both the absorbance and fluorescence of the bithiophenes were found to be solvatochromic with more pronounced solvent dependent shifts being observed with the fluorescence. In fact, both the fluorescence and Stokes shifts were linearly dependent on the ET(30) solvent parameter. Deviations from the linear trend of the Stokes shift with ET(30) were observed in ethanol and methanol as a result of intermolecular hydrogen abstraction from the solvent and by the excited nitro group. The oxidation potential of the bithiophenes was also highly dependent on the type and number of the electron withdrawing substituents, with values ranging between 0.8 and 1.2 V vs. SCE.

  5. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing.

    PubMed

    Wu, Xu; Tian, Fei; Wang, Wenxue; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2013-08-21

    A facile bottom-up method for the synthesis of highly fluorescent graphene quantum dots (GQDs) has been developed using a one-step pyrolysis of a natural amino acid, L-glutamic acid, with the assistance of a simple heating mantle device. The developed GQDs showed strong blue, green and red luminescence under the irradiation of ultra-violet, blue and green light, respectively. Moreover, the GQDs emitted near-infrared (NIR) fluorescence in the range of 800-850 nm with the excitation-dependent manner. This NIR fluorescence has a large Stokes shift of 455 nm, providing significant advantage for sensitive determination and imaging of biological targets. The fluorescence properties of the GQDs, such as quantum yields, fluorescence life time, and photostability, were measured and the fluorescence quantum yield was as high as 54.5 %. The morphology and composites of the GQDs were characterized using TEM, SEM, EDS, and FT-IR. The feasibility of using the GQDs as a fluorescent biomarker was investigated through in vitro and in vivo fluorescence imaging. The results showed that the GQDs could be a promising candidate for bioimaging. Most importantly, compared to the traditional quantum dots (QDs), the GQDs is chemically inert. Thus, the potential toxicity of the intrinsic heavy metal in the traditional QDs would not be a concern for GQDs. In addition, the GQDs possessed an intrinsic peroxidase-like catalytic activity that was similar to the graphene sheets and carbon nanotubes. Coupled with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), the GQDs can be used for the sensitive detection of hydrogen peroxide with a limit of detection of 20 μM.

  6. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing

    PubMed Central

    Wu, Xu; Tian, Fei; Wang, Wenxue; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2013-01-01

    A facile bottom-up method for the synthesis of highly fluorescent graphene quantum dots (GQDs) has been developed using a one-step pyrolysis of a natural amino acid, L-glutamic acid, with the assistance of a simple heating mantle device. The developed GQDs showed strong blue, green and red luminescence under the irradiation of ultra-violet, blue and green light, respectively. Moreover, the GQDs emitted near-infrared (NIR) fluorescence in the range of 800–850 nm with the excitation-dependent manner. This NIR fluorescence has a large Stokes shift of 455 nm, providing significant advantage for sensitive determination and imaging of biological targets. The fluorescence properties of the GQDs, such as quantum yields, fluorescence life time, and photostability, were measured and the fluorescence quantum yield was as high as 54.5 %. The morphology and composites of the GQDs were characterized using TEM, SEM, EDS, and FT-IR. The feasibility of using the GQDs as a fluorescent biomarker was investigated through in vitro and in vivo fluorescence imaging. The results showed that the GQDs could be a promising candidate for bioimaging. Most importantly, compared to the traditional quantum dots (QDs), the GQDs is chemically inert. Thus, the potential toxicity of the intrinsic heavy metal in the traditional QDs would not be a concern for GQDs. In addition, the GQDs possessed an intrinsic peroxidase-like catalytic activity that was similar to the graphene sheets and carbon nanotubes. Coupled with 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), the GQDs can be used for the sensitive detection of hydrogen peroxide with a limit of detection of 20 μM. PMID:23997934

  7. Fluorescent staining for leukocyte chemotaxis. Eosinophil-specific fluorescence with aniline blue.

    PubMed

    McCrone, E L; Lucey, D R; Weller, P F

    1988-11-10

    To overcome problems associated with the quantitation of human eosinophil chemotaxis in micropore filters, we have developed a fluorescent method of specifically staining eosinophils in chemotactic filters. A neutral solution of aniline blue yielded bright green fluorescent staining of the cytoplasmic granules of eosinophils. Other leukocytes and contaminating neutrophils potentially present with eosinophils did not fluoresce with aniline blue. The fluorescent staining eosinophils within filters provided bright, non-fading images that facilitated visual microscopic counting and were of sufficiently high contrast, unlike those with conventional eosinophil stains, to allow image analyzer based enumeration of eosinophil chemotactic responses at levels through the filters. Although not cell type-specific, congo red and ethidium bromide also provided high contrast, fluorescent images of all leukocyte types within chemotactic filters. Fluorescent staining with aniline blue constitutes a rapid, stable and eosinophil-specific stain that facilitates the visual or image analyzer-based quantitation of eosinophil chemotaxis.

  8. Presence of Fluorescent Carbon Nanoparticles in Baked Lamb: Their Properties and Potential Application for Sensors.

    PubMed

    Wang, Haitao; Xie, Yisha; Liu, Shan; Cong, Shuang; Song, Yukun; Xu, Xianbing; Tan, Mingqian

    2017-08-30

    The presence of nanoparticles in food has drawn much attention in recent years. Fluorescent carbon nanoparticles are a new class of nanostructures; however, the distribution and physicochemical properties of such nanoparticles in food remain unclear. Herein, the presence of fluorescent carbon nanoparticles in baked lamb was confirmed, and their physicochemical properties were investigated. The fluorescent carbon nanoparticles from baked lamb emit strong blue fluorescence under ultraviolet light with a 10% fluorescent quantum yield. The nanoparticles are roughly spherical in appearance with a diameter of around 2.0 nm. Hydroxyl, amino, and carboxyl groups exist on the surface of nanoparticles. In addition, the nanoparticles could serve as a fluorescence sensor for glucose detection through an oxidation-reduction reaction. This work is the first report on fluorescent carbon nanoparticles present in baked lamb, which provides valuable insight into the physicochemical properties of such nanoparticles and their potential application in sensors.

  9. Observing Short-wave Infrared Atmospheric Fluorescence Near Radioactive Sources: A Feasibility Study

    DTIC Science & Technology

    2014-03-17

    Defense Threat Reduction Agency Ft. Belvoir, VA 22060 76-4184-32-5 MIPR HDTRA 124655 1NRC Postdoctoral Research Associate Contents 1 Introduction 1 2...a desire to measure cosmic ray effects. For example, the pioneering study of cosmic ray detection by fluorescence was by Bunner in 1967 wherein he...wavelengths, the ultra-high energy cosmic ray (UHECR) community has continued to pursue studies of the fluorescence yield from high energy particle impact on

  10. Fluorescence Properties of Dansyl Groups Covalently Bonded to the Surface of Oxidatively Functionalized Low-Density Polyethylene Film.

    DTIC Science & Technology

    1985-12-01

    Weissberger, A.; Rossiter, B. W., Eds.; Wiley-Interscience: New York, 1972; p 575. *16) This value is based on studies of self-assembled Langmuir - Blodgett ... liquids . The Dansyl group was chosen because its fluorescence emission maximum and quantum yield are sensitive to the polarity and acidity of the local...environment. The wavelength of maximum fluorescence depended only weakly on the character of the contacting liquid phase; the difference between

  11. Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis--assessment by chlorophyll fluorescence analysis.

    PubMed

    Lu, C M; Chau, C W; Zhang, J H

    2000-07-01

    Measurement of chlorophyll fluorescence has been shown to be a rapid, non-invasive, and reliable method to assess photosynthetic performance in a changing environment. In this study, acute toxicity of excess Hg on the photosynthetic performance of the cyanobacterium S. platensis, was investigated by use of chlorophyll fluorescence analysis after cells were exposed to excess Hg (up to 20 microM) for 2 h. The results determined from the fast fluorescence kinetics showed that Hg induced a significant increase in the proportion of the Q(B)-non-reducing PSII reaction centers. The fluorescence parameters measured under the steady state of photosynthesis demonstrated that the increase of Hg concentration led to a decrease in the maximal efficiency of PSII photochemistry, the efficiency of excitation energy capture by the open PSII reaction centers, and the quantum yield of PSII electron transport. Mercury also resulted in a decrease in the coefficients of photochemical and non-photochemical quenching. Mercury may have an acute toxicity on cyanobacteria by inhibiting the quantum yield of photosynthesis sensitively and rapidly. Such changes occurred before any other visible damages that may be evaluated by other conventional measurements. Our results also demonstrated that chlorophyll fluorescence analysis can be used as a useful physiological tool to assess early stages of change in photosynthetic performance of algae in response to heavy metal pollution.

  12. Optimal parameters for near infrared fluorescence imaging of amyloid plaques in Alzheimer’s disease mouse models

    PubMed Central

    Raymond, S B; Kumar, A T N; Boas, D A; Bacskai, B J

    2012-01-01

    Amyloid-β plaques are an Alzheimer’s disease biomarker which present unique challenges for near-infrared fluorescence tomography because of size (<50 μm diameter) and distribution. We used high-resolution simulations of fluorescence in a digital Alzheimer’s disease mouse model to investigate the optimal fluorophore and imaging parameters for near-infrared fluorescence tomography of amyloid plaques. Fluorescence was simulated for amyloid-targeted probes with emission at 630 and 800 nm, plaque-to-background ratios from 1–1000, amyloid burden from 0–10%, and for transmission and reflection measurement geometries. Fluorophores with high plaque-to-background contrast ratios and 800 nm emission performed significantly better than current amyloid imaging probes. We tested idealized fluorophores in transmission and full-angle tomographic measurement schemes (900 source–detector pairs), with and without anatomical priors. Transmission reconstructions demonstrated strong linear correlation with increasing amyloid burden, but underestimated fluorescence yield and suffered from localization artifacts. Full-angle measurements did not improve upon the transmission reconstruction qualitatively or in semi-quantitative measures of accuracy; anatomical and initial-value priors did improve reconstruction localization and accuracy for both transmission and full-angle schemes. Region-based reconstructions, in which the unknowns were reduced to a few distinct anatomical regions, produced highly accurate yield estimates for cortex, hippocampus and brain regions, even with a reduced number of measurements (144 source–detector pairs). PMID:19794239

  13. A near-infrared fluorescent probe based on BODIPY derivative with high quantum yield for selective detection of exogenous and endogenous cysteine in biological samples.

    PubMed

    Li, Song-Jiao; Fu, Ya-Jun; Li, Chun-Yan; Li, Yong-Fei; Yi, Lan-Hua; Ou-Yang, Juan

    2017-11-22

    Cysteine (Cys) is involved in cellular growth and Cys deficiency is related with many diseases. So far, a number of fluorescent probes have been constructed for the detection of Cys successfully. However, the probes are difficult to discriminate Cys from Hcy and the emission wavelength of the probes is in ultraviolet or visible range. Herein, a NIR fluorescent probe named NIR-BODIPY-Ac is synthesized and used to detect Cys. The emission wavelength of the probe is at 708 nm that belongs to near-infrared (NIR) region by attaching indolium to BODIPY core, which is suitable for bioimaging in vivo. Moreover, the probe exhibits high fluorescence quantum yield (Φ = 0.51) after the addition of Cys and high sensitivity toward Cys with 81-fold fluorescence enhancement. The linear range of the probe for Cys covers from 0.2 to 30 μM with a detection limit of 0.05 μM. Furthermore, the probe shows high selectivity towards Cys owing to the fact that there is more fast reaction rate between the probe and Cys than that of Hcy. In particular, the NIR fluorescent probe is applied for the detection of exogenous and endogenous Cys in biological samples such as cell, tissue and mouse with satisfactory results. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Microwave-assisted synthesis of highly luminescent N- and S-co-doped carbon dots as a ratiometric fluorescent probe for levofloxacin.

    PubMed

    Li, Huiyu; Xu, Yuan; Ding, Jie; Zhao, Li; Zhou, Tianyu; Ding, Hong; Chen, Yanhua; Ding, Lan

    2018-01-10

    Uniform N- and S-co-doped carbon dots (NSCDs) with fluorescence quantum yields of up to 64% were synthesized via a one-step microwave-assisted method. Ammonium citrate and L-cysteine act as precursors, and synthesis is completed in 2.5 min using a 750 W microwave oven to give a 62% yield. The NSCDs show bright blue fluorescence (with excitation/emission peaks at 353/426 nm) and have narrow size distribution. On exposure to levofloxacin (LEV), the emission maximum shifts to 499 nm. This effect was used to design ratiometric (2-wavelength) assays for LEV. The fluorometric method (based on measurement of the fluorescence intensity ratio at 499 and 426 nm) has a detection limit of 5.1 μg·L -1 (3σ/k) and a linear range that extends from 0.01 to 70 mg·L -1 . The method was applied to the determination of LEV in three kinds of spiked water samples and has recoveries in the range from 98.6 to 106.8%. The fluorescent probe described here is highly selective and sensitive. Graphical Abstract Highly luminescent N- and S-co-doped carbon dots were synthesized using AC (ammonium citrate) and Cys (L-cysteine) by microwave-assisted method, and were applied to the visual and ratiometric fluorescence determination of LEV (levofloxacin).

  15. Variation among slash pine families in chlorophyll fluorescence traits

    Treesearch

    Anita C. Koehn; James H. Roberds; Robert L. Doudrick

    2003-01-01

    Abstract: Photochemical quenching, nonphotochemical quenching, and yield of photosystem II were measured on seedlings of full-sibling, open-, and self-pollinated slash pine (Pinus elliottii Engelm. var. elliottii) families. Our results reveal that genetic variation in photochemical quenching and yield of...

  16. Optical Control of Fluorescence through plasmonic eigenmode extinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaoying; Lin, Shih-Che; Li, Quanshui

    We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, John C.

    In this article, a method for obtaining fluorescence polarization data from an instrument designed to measure circular and linear dichroism is compared with a previously reported approach. The new method places a polarizer between the sample and a detector mounted perpendicular to the direction of the incident beam and results in determination of the fluorescence polarization ratio, whereas the previous method does not use a polarizer and yields the fluorescence anisotropy. A similar analysis with the detector located axially with the excitation beam demonstrates that there is no frequency modulated signal due to fluorescence polarization in the absence of amore » polarizer.« less

  18. Optical Control of Fluorescence through plasmonic eigenmode extinction

    DOE PAGES

    Xu, Xiaoying; Lin, Shih-Che; Li, Quanshui; ...

    2015-04-30

    We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum.

  19. Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-Phenylenediamine in presence of bile acid host

    NASA Astrophysics Data System (ADS)

    Roy, Nayan; Paul, Pradip C.; Singh, T. Sanjoy

    2015-05-01

    Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-phenylenediamine (LH2) is used to study the micelles formed by aggregation of different important bile acids like cholic acid, deoxycholic acid, chenodeoxycholic acid and glycocholic acid by steady state and picosecond time-resolved fluorescence spectroscopy. The fluorescence band intensity was found out to increase with concomitant red shift with gradual addition of different bile acids. Binding constant of the probe with different bile acids as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of bile acids in the medium. The increase in fluorescence quantum yields, fluorescence decay times and substantial decrease in nonradiative decay rate constants in bile acids micellar environment points to the restricted motion of the fluorophore inside the micellar subdomains.

  20. Enumeration of Vibrio cholerae O1 in Bangladesh waters by fluorescent-antibody direct viable count.

    PubMed Central

    Brayton, P R; Tamplin, M L; Huq, A; Colwell, R R

    1987-01-01

    A field trial to enumerate Vibrio cholerae O1 in aquatic environments in Bangladesh was conducted, comparing fluorescent-antibody direct viable count with culture detection by the most-probable-number index. Specificity of a monoclonal antibody prepared against the O1 antigen was assessed and incorporated into the fluorescence staining method. All pond and water samples yielded higher counts of viable V. cholerae O1 by fluorescent-antibody direct viable count than by the most-probable-number index. Fluorescence microscopy is a more sensitive detection system than culture methods because it allows the enumeration of both culturable and nonculturable cells and therefore provides more precise monitoring of microbiological water quality. PMID:3324967

  1. A-TEEMTM, a new molecular fingerprinting technique: simultaneous absorbance-transmission and fluorescence excitation-emission matrix method

    NASA Astrophysics Data System (ADS)

    Quatela, Alessia; Gilmore, Adam M.; Steege Gall, Karen E.; Sandros, Marinella; Csatorday, Karoly; Siemiarczuk, Alex; (Ben Yang, Boqian; Camenen, Loïc

    2018-04-01

    We investigate the new simultaneous absorbance-transmission and fluorescence excitation-emission matrix method for rapid and effective characterization of the varying components from a mixture. The absorbance-transmission and fluorescence excitation-emission matrix method uniquely facilitates correction of fluorescence inner-filter effects to yield quantitative fluorescence spectral information that is largely independent of component concentration. This is significant because it allows one to effectively monitor quantitative component changes using multivariate methods and to generate and evaluate spectral libraries. We present the use of this novel instrument in different fields: i.e. tracking changes in complex mixtures including natural water, wine as well as monitoring stability and aggregation of hormones for biotherapeutics.

  2. Dynamic response of plant chlorophyll fluorescence to light, water and nutrient availability

    USDA-ARS?s Scientific Manuscript database

    Water deficit limits net photosynthesis (Anet) and decreases crop yields. An important challenge for basic and applied research is to establish a rigorous landscape-scale indicator of Anet. Chlorophyll fluorescence (ChF) can be used at the field scale as an indirect measure of Anet in both healthy a...

  3. Room temperature synthesis of pH-switchable polyaniline quantum dots as a turn-on fluorescent probe for acidic biotarget labeling.

    PubMed

    Liu, Yanfeng; Ding, Yin; Gou, Huilin; Huang, Xin; Zhang, Guiyang; Zhang, Qi; Liu, Yunzhong; Meng, Zhen; Xi, Kai; Jia, Xudong

    2018-04-05

    The synthesis of well-defined light-element-derived quantum dots (LEQDs) with advanced optical properties under mild conditions is highly desirable yet challenging. Here, a polyaniline (PANI) structure is introduced into carbon-rich LEQDs to yield well-defined, fluorescent polyaniline quantum dots (PAQDs), PAQD24, through a one-pot room temperature reaction. The mild synthetic conditions effectively minimize the defects introduced during the conventional synthesis and endow PAQD24 with desirable optical properties, including a narrow emission band (full width at half maximum = 55 nm), an optimal quantum yield of 32.5% and two-photon fluorescence. Furthermore, the bandgap of PAQD24 is highly sensitive toward pH variations in the near-neutral region, due to the proton doping and dedoping of the PANI structure. Such unique properties together with its fine bio-compatibility enable the application of this material as a turn-on fluorescent probe for the labeling of acidic biotargets from sub-cellular to organ levels, providing potential applications in diagnosis and surgery guidance for certain diseases.

  4. Green Fluorescent Protein as a Model for Protein Crystal Growth Studies

    NASA Technical Reports Server (NTRS)

    Agena, Sabine; Smith, Lori; Karr, Laurel; Pusey, Marc

    1998-01-01

    Green fluorescent protein (GFP) from jellyfish Aequorea Victoria has become a popular marker for e.g. mutagenesis work. Its fluorescent property, which originates from a chromophore located in the center of the molecule, makes it widely applicable as a research too]. GFP clones have been produced with a variety of spectral properties, such as blue and yellow emitting species. The protein is a single chain of molecular weight 27 kDa and its structure has been determined at 1.9 Angstrom resolution. The combination of GFP's fluorescent property, the knowledge of its several crystallization conditions, and its increasing use in biophysical and biochemical studies, all led us to consider it as a model material for macromolecular crystal growth studies. Initial preparations of GFP were from E.coli with yields of approximately 5 mg/L of culture media. Current yields are now in the 50 - 120 mg/L range, and we hope to further increase this by expression of the GFP gene in the Pichia system. The results of these efforts and of preliminary crystal growth studies will be presented.

  5. Using DNA origami nanorulers as traceable distance measurement standards and nanoscopic benchmark structures.

    PubMed

    Raab, Mario; Jusuk, Ija; Molle, Julia; Buhr, Egbert; Bodermann, Bernd; Bergmann, Detlef; Bosse, Harald; Tinnefeld, Philip

    2018-01-29

    In recent years, DNA origami nanorulers for superresolution (SR) fluorescence microscopy have been developed from fundamental proof-of-principle experiments to commercially available test structures. The self-assembled nanostructures allow placing a defined number of fluorescent dye molecules in defined geometries in the nanometer range. Besides the unprecedented control over matter on the nanoscale, robust DNA origami nanorulers are reproducibly obtained in high yields. The distances between their fluorescent marks can be easily analysed yielding intermark distance histograms from many identical structures. Thus, DNA origami nanorulers have become excellent reference and training structures for superresolution microscopy. In this work, we go one step further and develop a calibration process for the measured distances between the fluorescent marks on DNA origami nanorulers. The superresolution technique DNA-PAINT is used to achieve nanometrological traceability of nanoruler distances following the guide to the expression of uncertainty in measurement (GUM). We further show two examples how these nanorulers are used to evaluate the performance of TIRF microscopes that are capable of single-molecule localization microscopy (SMLM).

  6. Time-resolved fluorescence study of exciplex formation in diastereomeric naproxen-pyrrolidine dyads.

    PubMed

    Khramtsova, Ekaterina A; Plyusnin, Viktor F; Magin, Ilya M; Kruppa, Alexander I; Polyakov, Nikolay E; Leshina, Tatyana V; Nuin, Edurne; Marin, M Luisa; Miranda, Miguel A

    2013-12-19

    The influence of chirality on the elementary processes triggered by excitation of the (S,S)- and (R,S)- diastereoisomers of naproxen-pyrrolidine (NPX-Pyr) dyads has been studied by time-resolved fluorescence in acetonitrile-benzene mixtures. In these systems, the quenching of the (1)NPX*-Pyr singlet excited state occurs through electron transfer and exciplex formation. Fluorescence lifetimes and quantum yields revealed a significant difference (around 20%) between the (S,S)- and (R,S)- diastereomers. In addition, the quantum yields of exciplexes differed by a factor of 2 regardless of solvent polarity. This allows us to suggest a similar influence of the chiral centers on the local charge transfer resulting in exciplex and full charge separation that leads to ion-biradicals. A simplified scheme is proposed to estimate a set of rate constant values (k1-k5) for the elementary stages in each solvent system.

  7. Tubulin Dimer Reversible Dissociation

    PubMed Central

    Schuck, Peter; Sackett, Dan L.

    2016-01-01

    Tubulins are evolutionarily conserved proteins that reversibly polymerize and direct intracellular traffic. Of the tubulin family only αβ-tubulin forms stable dimers. We investigated the monomer-dimer equilibrium of rat brain αβ-tubulin using analytical ultracentrifugation and fluorescence anisotropy, observing tubulin in virtually fully monomeric and dimeric states. Monomeric tubulin was stable for a few hours and exchanged into preformed dimers, demonstrating reversibility of dimer dissociation. Global analysis combining sedimentation velocity and fluorescence anisotropy yielded Kd = 84 (54–123) nm. Dimer dissociation kinetics were measured by analyzing the shape of the sedimentation boundary and by the relaxation of fluorescence anisotropy following rapid dilution of labeled tubulin, yielding koff in the range 10−3–10−2 s−1. Thus, tubulin dimers reversibly dissociate with moderately fast kinetics. Monomer-monomer association is much less sensitive than dimer-dimer association to solution changes (GTP/GDP, urea, and trimethylamine oxide). PMID:26934918

  8. Combining aminocyanine dyes with polyamide dendrons: a promising strategy for imaging in the near-infrared region.

    PubMed

    Ornelas, Cátia; Lodescar, Rachelle; Durandin, Alexander; Canary, James W; Pennell, Ryan; Liebes, Leonard F; Weck, Marcus

    2011-03-21

    Cyanine dyes are known for their fluorescence in the near-IR (NIR) region, which is desirable for biological applications. We report the synthesis of a series of aminocyanine dyes containing terminal functional groups such as acid, azide, and cyclooctyne groups for further functionalization through, for example, click chemistry. These aminocyanine dyes can be attached to polyfunctional dendrons by copper-catalyzed azide alkyne cycloaddition (CuAAC), strain-promoted azide alkyne cycloaddition (SPAAC), peptide coupling, or direct S(NR)1 reactions. The resulting dendron-dye conjugates were obtained in high yields and displayed high chemical stability and photostability. The optical properties of the new compounds were studied by UV/Vis and fluorescence spectroscopy. All compounds show large Stokes shifts and strong fluorescence in the NIR region with high quantum yields, which are optimal properties for in vivo optical imaging. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fluorescence recovery after photo-bleaching as a method to determine local diffusion coefficient in the stratum corneum.

    PubMed

    Anissimov, Yuri G; Zhao, Xin; Roberts, Michael S; Zvyagin, Andrei V

    2012-10-01

    Fluorescence recovery after photo-bleaching experiments were performed in human stratum corneum in vitro. Fluorescence multiphoton tomography was used, which allowed the dimensions of the photobleached volume to be at the micron scale and located fully within the lipid phase of the stratum corneum. Analysis of the fluorescence recovery data with simplified mathematical models yielded the diffusion coefficient of small molecular weight organic fluorescent dye Rhodamine B in the stratum corneum lipid phase of about (3-6) × 10(-9)cm(2) s(-1). It was concluded that the presented method can be used for detailed analysis of localised diffusion coefficients in the stratum corneum phases for various fluorescent probes. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Photoactive High Explosives: Substituents Effects on Tetrazine Photochemistry and Photophysics

    DOE PAGES

    McGrane, Shawn David; Bolme, Cynthia Anne; Greenfield, Margo Torello; ...

    2016-01-21

    High explosives that are photoactive, i.e., can be initiated with light, offer significant advantages in reduced potential for accidental electrical initiation. In this study, we examined a series of structurally related tetrazine based photoactive high explosive materials to detail their photochemical and photophysical properties. Using photobleaching infrared absorption, we determined quantum yields of photochemistry for nanosecond pulsed excitation at 355 and 532 nm. Changes in mass spectrometry during laser irradiation in vacuum measured the evolution of gaseous products. Fluorescence spectra, quantum yields, and lifetimes were measured to observe radiative channels of energy decay that compete with photochemistry. For the 6more » materials studied, quantum yields of photochemistry ranged from <10 –5 to 0.03 and quantum yield of fluorescence ranged from <10 –3 to 0.33. In all cases, the photoexcitation nonradiatively relaxed primarily to heat, appropriate for supporting photothermal initiation processes. Lastly, the photochemistry observed was dominated by ring scission of the tetrazine, but there was evidence of more extensive multistep reactions as well.« less

  11. Single-lipid tracking on nanoscale membrane buds: The effects of curvature on lipid diffusion and sorting.

    PubMed

    Woodward, Xinxin; Stimpson, Eric E; Kelly, Christopher V

    2018-05-29

    Nanoscale membrane curvature in cells is critical for endocytosis/exocytosis and membrane trafficking. However, the biophysical ramifications of nanoscale membrane curvature on the behavior of lipids remain poorly understood. Here, we created an experimental model system of membrane curvature at a physiologically-relevant scale and obtained nanoscopic information on single-lipid distributions and dynamics. Supported lipid bilayers were created over 50 and 70 nm radius nanoparticles to create membrane buds. Single-molecule localization microscopy was performed with diverse mixtures of fluorescent and non-fluorescent lipids. Variations in lipid acyl tales length, saturation, head-group, and fluorescent labeling strategy were tested while maintaining a single fluid lipid phase throughout the membrane. Monte Carlo simulations were used to fit our experimental results and quantify the effects of curvature on the lipid diffusion and sorting. Whereas varying the composition of the non-fluorescent lipids yielded minimal changes to the curvature effects, the labeling strategy of the fluorescent lipids yielded highly varying effects of curvature. Most conditions yield single-population Brownian diffusion throughout the membrane; however, curvature-induced lipid sorting, slowing, and aggregation were observed in some conditions. Head-group labeled lipids such as DPPE-Texas Red and POPE-Rhodamine diffused >2.4× slower on the curved vs. the planar membranes; tail-labeled lipids such as NBD-PPC, TopFluor-PPC, TopFluor-PIP2, DiIC 12 , and DiIC 18 displayed no significant changes in diffusion due to the membrane curvature. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. Copyright © 2018. Published by Elsevier B.V.

  12. d-PET-controlled “off-on” Polarity-sensitive Probes for Reporting Local Hydrophilicity within Lysosomes

    NASA Astrophysics Data System (ADS)

    Zhu, Hao; Fan, Jiangli; Mu, Huiying; Zhu, Tao; Zhang, Zhen; Du, Jianjun; Peng, Xiaojun

    2016-10-01

    Polarity-sensitive fluorescent probes are powerful chemical tools for studying biomolecular structures and activities both in vitro and in vivo. However, the lack of “off-on” polarity-sensing probes has limited the accurate monitoring of biological processes that involve an increase in local hydrophilicity. Here, we design and synthesize a series of “off-on” polarity-sensitive fluorescent probes BP series consisting of the difluoroboron dippyomethene (BODIPY) fluorophore connected to a quaternary ammonium moiety via different carbon linkers. All these probes showed low fluorescence quantum yields in nonpolar solution but became highly fluorescent in polar media. BP-2, which contains a two-carbon linker and a trimethyl quaternary ammonium, displayed a fluorescence intensity and quantum yield that were both linearly correlated with solvent polarity. In addition, BP-2 exhibited high sensitivity and selectivity for polarity over other environmental factors and a variety of biologically relevant species. BP-2 can be synthesized readily via an unusual Mannich reaction followed by methylation. Using electrochemistry combined with theoretical calculations, we demonstrated that the “off-on” sensing behavior of BP-2 is primarily due to the polarity-dependent donor-excited photoinduced electron transfer (d-PET) effect. Live-cell imaging established that BP-2 enables the detection of local hydrophilicity within lysosomes under conditions of lysosomal dysfunction.

  13. Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment.

    PubMed

    Hasan, Md Tanvir; Senger, Brian J; Ryan, Conor; Culp, Marais; Gonzalez-Rodriguez, Roberto; Coffer, Jeffery L; Naumov, Anton V

    2017-07-25

    Graphene oxide (GO) is a graphene derivative that emits fluorescence, which makes GO an attractive material for optoelectronics and biotechnology. In this work, we utilize ozone treatment to controllably tune the band gap of GO, which can significantly enhance its applications. Ozone treatment in aqueous GO suspensions yields the addition/rearrangement of oxygen-containing functional groups suggested by the increase in vibrational transitions of C-O and C=O moieties. Concomitantly it leads to an initial increase in GO fluorescence intensity and significant (100 nm) blue shifts in emission maxima. Based on the model of GO fluorescence originating from sp 2 graphitic islands confined by oxygenated addends, we propose that ozone-induced functionalization decreases the size of graphitic islands affecting the GO band gap and emission energies. TEM analyses of GO flakes confirm the size decrease of ordered sp 2 domains with ozone treatment, whereas semi-empirical PM3 calculations on model addend-confined graphitic clusters predict the inverse dependence of the band gap energies on sp 2 cluster size. This model explains ozone-induced increase in emission energies yielding fluorescence blue shifts and helps develop an understanding of the origins of GO fluorescence emission. Furthermore, ozone treatment provides a versatile approach to controllably alter GO band gap for optoelectronics and bio-sensing applications.

  14. The Design and Development of Fluorescent Nano-Optodes for in Vivo Glucose Monitoring

    PubMed Central

    Balaconis, Mary K.; Billingsley, Kelvin; Dubach, J. Matthew; Cash, Kevin J.; Clark, Heather A.

    2011-01-01

    Background The advent of fluorescent nanosensors has enabled intracellular monitoring of several physiological analytes, which was previously not possible with molecular dyes or other invasive techniques. We have extended the capability of these sensors to include the detection of small molecules with the development of glucose-sensitive nano-optodes. Herein, we discuss the design and development of glucose-sensitive nano-optodes, which have been proven functional both in vitro and in vivo. Methods Throughout the design process, each of the sensor formulations was evaluated based on their response to changes in glucose levels. The percent change in signal, sensor reversibility, and the overall fluorescence intensity were the specific parameters used to assess each formulation. Results A hydrophobic boronic acid was selected that yielded a fully reversible fluorescence response to glucose in accordance with the sensor mechanism. The change in fluorescence signal in response to glucose was approximately 11%. The use of different additives or chromophores did not improve the response; however, modifications to the plasticized polymeric membrane extended sensor lifetime. Conclusions Sensors were developed that yielded a dynamic response to glucose and through further modification of the components, sensor lifetime was improved. By following specific design criteria for the macrosensors, the sensors were miniaturized into nano-optodes that track changes in glucose levels in vivo. PMID:21303627

  15. The design and development of fluorescent nano-optodes for in vivo glucose monitoring.

    PubMed

    Balaconis, Mary K; Billingsley, Kelvin; Dubach, Matthew J; Cash, Kevin J; Clark, Heather A

    2011-01-01

    The advent of fluorescent nanosensors has enabled intracellular monitoring of several physiological analytes, which was previously not possible with molecular dyes or other invasive techniques. We have extended the capability of these sensors to include the detection of small molecules with the development of glucose-sensitive nano-optodes. Herein, we discuss the design and development of glucose-sensitive nano-optodes, which have been proven functional both in vitro and in vivo. Throughout the design process, each of the sensor formulations was evaluated based on their response to changes in glucose levels. The percent change in signal, sensor reversibility, and the overall fluorescence intensity were the specific parameters used to assess each formulation. A hydrophobic boronic acid was selected that yielded a fully reversible fluorescence response to glucose in accordance with the sensor mechanism. The change in fluorescence signal in response to glucose was approximately 11%. The use of different additives or chromophores did not improve the response; however, modifications to the plasticized polymeric membrane extended sensor lifetime. Sensors were developed that yielded a dynamic response to glucose and through further modification of the components, sensor lifetime was improved. By following specific design criteria for the macrosensors, the sensors were miniaturized into nano-optodes that track changes in glucose levels in vivo. © 2010 Diabetes Technology Society.

  16. Complexation of β-cyclodextrin with dual molecular probes bearing fluorescent and paramagnetic moieties linked by short polyether chains.

    PubMed

    Mocanu, S; Matei, I; Ionescu, S; Tecuceanu, V; Marinescu, G; Ionita, P; Culita, D; Leonties, A; Ionita, Gabriela

    2017-10-18

    Electron paramagnetic resonance (EPR) and fluorescence spectroscopies provide molecular-level insights on the interaction of paramagnetic and fluorescent species with the microenvironment. A series of dual molecular probes bearing fluorescent and paramagnetic moieties linked by flexible short polyether chains have been synthesized. These new molecular probes open the possibility to investigate various multi-component systems such as host-guest systems, polymeric micelles, gels and protein solutions by using EPR and fluorescence spectroscopies concertedly. The EPR and fluorescence spectra of these compounds show that the dependence of the rotational correlation time and fluorescence quantum yield on the chain length of the linker is not linear, due to the flexibility of the polyether linker. The quenching effect of the nitroxide moiety on the fluorescence intensity of the pyrene group varies with the linker length and flexibility. The interaction of these dual molecular probes with β-cyclodextrin, in solution and in polymeric gels, was evaluated and demonstrated by analysis of EPR and fluorescence spectra.

  17. Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria.

    PubMed

    Hill, Steven C; Pan, Yong-Le; Williamson, Chatt; Santarpia, Joshua L; Hill, Hanna H

    2013-09-23

    This paper describes a mathematical model of fluorescent biological particles composed of bacteria, viruses, or proteins. The fluorescent and/or light absorbing molecules included in the model are amino acids (tryptophan, etc.); nucleic acids (DNA, RNA, etc.); coenzymes (nicotinamide adenine dinucleotides, flavins, and vitamins B₆ and K and variants of these); and dipicolinates. The concentrations, absorptivities, and fluorescence quantum yields are estimated from the literature, often with large uncertainties. The bioparticles in the model are spherical and homogeneous. Calculated fluorescence cross sections for particles excited at 266, 280, and 355 nm are compared with measured values from the literature for several bacteria, bacterial spores and albumins. The calculated 266- and 280-nm excited fluorescence is within a factor of 3.2 of the measurements for the vegetative cells and proteins, but overestimates the fluorescence of spores by a factor of 10 or more. This is the first reported modeling of the fluorescence of bioaerosols in which the primary fluorophores and absorbing molecules are included.

  18. Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian, E-mail: jian@cfs.bioment.umaryland.edu; Fu, Yi; Li, Ge

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Metal nanoparticle for fluorescence cell imaging. Black-Right-Pointing-Pointer Non-invasive emission detection of coenzyme in cell on time-resolved confocal microscope. Black-Right-Pointing-Pointer Near-field interaction of flavin adenine dinucleotide with silver substrate. Black-Right-Pointing-Pointer Isolation of emissions by coenzymes from cellular autofluorescence on fluorescence cell imaging. -- Abstract: Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent,more » but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.« less

  19. Improved discrimination between monocotyledonous and dicotyledonous plants for weed control based on the blue-green region of ultraviolet-induced fluorescence spectra.

    PubMed

    Panneton, Bernard; Guillaume, Serge; Roger, Jean-Michel; Samson, Guy

    2010-01-01

    Precision weeding by spot spraying in real time requires sensors to discriminate between weeds and crop without contact. Among the optical based solutions, the ultraviolet (UV) induced fluorescence of the plants appears as a promising alternative. In a first paper, the feasibility of discriminating between corn hybrids, monocotyledonous, and dicotyledonous weeds was demonstrated on the basis of the complete spectra. Some considerations about the different sources of fluorescence oriented the focus to the blue-green fluorescence (BGF) part, ignoring the chlorophyll fluorescence that is inherently more variable in time. This paper investigates the potential of performing weed/crop discrimination on the basis of several large spectral bands in the BGF area. A partial least squares discriminant analysis (PLS-DA) was performed on a set of 1908 spectra of corn and weed plants over 3 years and various growing conditions. The discrimination between monocotyledonous and dicotyledonous plants based on the blue-green fluorescence yielded robust models (classification error between 1.3 and 4.6% for between-year validation). On the basis of the analysis of the PLS-DA model, two large bands were chosen in the blue-green fluorescence zone (400-425 nm and 425-490 nm). A linear discriminant analysis based on the signal from these two bands also provided very robust inter-year results (classification error from 1.5% to 5.2%). The same selection process was applied to discriminate between monocotyledonous weeds and maize but yielded no robust models (up to 50% inter-year error). Further work will be required to solve this problem and provide a complete UV fluorescence based sensor for weed-maize discrimination.

  20. The ultimate picture-the combination of live cell superresolution microscopy and single molecule tracking yields highest spatio-temporal resolution.

    PubMed

    Dersch, Simon; Graumann, Peter L

    2018-06-01

    We are witnessing a breathtaking development in light (fluorescence) microscopy, where structures can be resolved down to the size of a ribosome within cells. This has already yielded surprising insight into the subcellular structure of cells, including the smallest cells, bacteria. Moreover, it has become possible to visualize and track single fluorescent protein fusions in real time, and quantify molecule numbers within individual cells. Combined, super resolution and single molecule tracking are pushing the limits of our understanding of the spatio-temporal organization even of the smallest cells to an unprecedented depth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Spin-Orbit Mediated Interference in the Radiative and Nonradiative Channels of the La 4d Core Resonances

    NASA Astrophysics Data System (ADS)

    Suljoti, E.; de Groot, F. M. F.; Nagasono, M.; Glatzel, P.; Hennies, F.; Deppe, M.; Pietzsch, A.; Sonntag, B.; Föhlisch, A.; Wurth, W.

    2009-09-01

    Symmetrical fluorescence yield profiles and asymmetrical electron yield profiles of the preresonances at the La NIV,V x-ray absorption edge are experimentally observed in LaPO4 nanoparticles. Theoretical studies show that they are caused by interference effects. The spin-orbit interaction and the giant resonance produce symmetry entangled intermediate states that activate coherent scattering and alter the spectral distribution of the oscillator strength. The scattering amplitudes of the electron and fluorescence decays are further modified by the spin-orbit coupling in the final 5p5ɛl and 5p54f1 states.

  2. Chlorophyll fluorescence is a rigorous, high throughput tool to analyze the impacts of genotype, species, and stress on plant and ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Pleban, J. R.; Aston, T.; Beverly, D.; Speckman, H. N.; Hosseini, A.; Bretfeld, M.; Edwards, C.; Yarkhunova, Y.; Weinig, C.; Mackay, D. S.

    2017-12-01

    Abiotic and biotic stresses reduce plant productivity, yet high-throughput characterization of plant responses across genotypes, species and stress conditions are limited by both instrumentation and data analysis techniques. Recent developments in chlorophyll a fluorescence measurement at leaf to landscape scales could improve our predictive understanding of plants response to stressors. We analyzed the interaction of species and stress across two crop types, five gymnosperm and two angiosperm tree species from boreal and montane forests, grasses, forbs and shrubs from sagebrush steppe, and 30 tree species from seasonally wet tropical forest. We also analyzed chlorophyll fluorescence and gas exchange data from twelve Brassica rapa crop accessions and 120 recombinant inbred lines to investigate phenotypic responses to drought. These data represent more than 10,000 measurements of fluorescence and allow us to answer two questions 1) are the measurements from high-throughput, hand held and drone-mounted instruments quantitatively similar to lower throughput camera and gas exchange mounted instruments and 2) do the measurements find differences in genotypic, species and environmental stress on plants? We found through regression that the high and low throughput instruments agreed across both individual chlorophyll fluorescence components and calculated ratios and were not different from a 1:1 relationship with correlation greater than 0.9. We used hierarchical Bayesian modeling to test the second question. We found a linear relationship between the fluorescence-derived quantum yield of PSII and the quantum yield of CO2 assimilation from gas-exchange, with a slope of ca. 0.1 indicating that the efficiency of the entire photosynthetic process was about 10% of PSII across genotypes, species and drought stress. Posterior estimates of quantum yield revealed that drought-treatment, genotype and species differences were preserved when accounting for measurement uncertainty. High throughput handheld or drone-based measurements of chlorophyll fluorescence provide high quality, quantitative data that can be used to not only connect genotype to phenotype but also quantify how vastly different plant species and genotypes respond to stress and change ecosystem productivity.

  3. Understanding the role of Arg96 in structure and stability of green fluorescent protein

    PubMed Central

    Stepanenko, Olesya V.; Verkhusha, Vladislav V.; Shavlovsky, Michail M.; Kuznetsova, Irina M.; Uversky, Vladimir N.; Turoverov, Konstantin K.

    2010-01-01

    Arg96 is a highly conservative residue known to catalyze spontaneous green fluorescent protein (GFP) chromophore biosynthesis. To understand a role of Arg96 in conformational stability and structural behavior of EGFP, the properties of a series of the EGFP mutants bearing substitutions at this position were studied using circular dichroism, steady state fluorescence spectroscopy, fluorescence lifetime, kinetics and equilibrium unfolding analysis, and acrylamide-induced fluorescence quenching. During the protein production and purification, high yield was achieved for EGFP/Arg96Cys variant, whereas EGFP/Arg96Ser and EGFP/Arg96Ala were characterized by essentially lower yields and no protein was produced when Arg96 was substituted by Gly. We have also shown that only EGFP/Arg96Cys possessed relatively fast chromophore maturation, whereas it took EGFP/Arg96Ser and EGFP/Arg96Ala about a year to develop a noticeable green fluorescence. The intensity of the characteristic green fluorescence measured for the EGFP/Arg96Cys and EGFP/Arg96Ser (or EGFP/Arg96Ala) was 5- and 50-times lower than that of the nonmodified EGFP. Intriguingly, EGFP/Arg96Cys was shown to be more stable than EGFP toward the GdmCl-induced unfolding both in kinetics and in the quasi-equilibrium experiments. In comparison with EGFP, tryptophan residues of EGFP/Arg96Cys were more accessible to the solvent. These data taken together suggest that besides established earlier crucial catalytic role, Arg96 is important for the overall folding and conformational stability of GFP. PMID:18470931

  4. The fluorescence intensities ratio is not a reliable parameter for evaluation of protein unfolding transitions.

    PubMed

    Žoldák, Gabriel; Jancura, Daniel; Sedlák, Erik

    2017-06-01

    Monitoring the fluorescence of proteins, particularly the fluorescence of intrinsic tryptophan residues, is a popular method often used in the analysis of unfolding transitions (induced by temperature, chemical denaturant, and pH) in proteins. The tryptophan fluorescence provides several suitable parameters, such as steady-state fluorescence intensity, apparent quantum yield, mean fluorescence lifetime, position of emission maximum that are often utilized for the observation of the conformational/unfolding transitions of proteins. In addition, the fluorescence intensities ratio at different wavelengths (usually at 330 nm and 350 nm) is becoming an increasingly popular parameter for the evaluation of thermal transitions. We show that, under certain conditions, the use of this parameter for the analysis of unfolding transitions leads to the incorrect determination of thermodynamic parameters characterizing unfolding transitions in proteins (e.g., melting temperature) and, hence, can compromise the hit identification during high-throughput drug screening campaigns. © 2017 The Protein Society.

  5. Synthesis and characterization of photoswitchable fluorescent silica nanoparticles.

    PubMed

    Fölling, Jonas; Polyakova, Svetlana; Belov, Vladimir; van Blaaderen, Alfons; Bossi, Mariano L; Hell, Stefan W

    2008-01-01

    We have designed and synthesized a new functional (amino reactive) highly efficient fluorescent molecular switch (FMS) with a photochromic diarylethene and a rhodamine fluorescent dye. The reactive group in this FMS -N-hydroxysuccinimide ester- allows selective labeling of amino containing molecules or other materials. In ethanolic solutions, the compound displays a large fluorescent quantum yield of 52 % and a large fluorescence modulation ratio (94 %) between two states that may be interconverted with red and near-UV light. Silica nanoparticles incorporating the new FMS were prepared and characterized, and their spectroscopic and switching properties were also studied. The dye retained its properties after the incorporation into the silica, thereby allowing light-induced reversible high modulation of the fluorescence signal of a single particle for up to 60 cycles, before undergoing irreversible photobleaching. Some applications of these particles in fluorescence microscopy are also demonstrated. In particular, subdiffraction images of nanoparticles were obtained, in the focal plane of a confocal microscope.

  6. Fluorescence lifetime assays: current advances and applications in drug discovery.

    PubMed

    Pritz, Stephan; Doering, Klaus; Woelcke, Julian; Hassiepen, Ulrich

    2011-06-01

    Fluorescence lifetime assays complement the portfolio of established assay formats available in drug discovery, particularly with the recent advances in microplate readers and the commercial availability of novel fluorescent labels. Fluorescence lifetime assists in lowering complexity of compound screening assays, affording a modular, toolbox-like approach to assay development and yielding robust homogeneous assays. To date, materials and procedures have been reported for biochemical assays on proteases, as well as on protein kinases and phosphatases. This article gives an overview of two assay families, distinguished by the origin of the fluorescence signal modulation. The pharmaceutical industry demands techniques with a robust, integrated compound profiling process and short turnaround times. Fluorescence lifetime assays have already helped the drug discovery field, in this sense, by enhancing productivity during the hit-to-lead and lead optimization phases. Future work will focus on covering other biochemical molecular modifications by investigating the detailed photo-physical mechanisms underlying the fluorescence signal.

  7. Nuclear shapes: Quest for triaxiality in 86Ge and the shape of 98Zr

    NASA Astrophysics Data System (ADS)

    Werner, V.; Lettmann, M.; Lizarazo, C.; Witt, W.; Cline, D.; Carpenter, M.; Doornenbal, P.; Obertelli, A.; Pietralla, N.; Savard, G.; Söderström, P.-A.; Wu, C.-Y.; Zhu, S.

    2018-05-01

    The region of neutron-rich nuclei above the N = 50 magic neutron shell closure encompasses a rich variety of nuclear structure, especially shapeevolutionary phenomena. This can be attributed to the complexity of sub-shell closures, their appearance and disappearance in the region, such as the N = 56 sub shell or Z = 40 for protons. Structural effects reach from a shape phase transition in the Zr isotopes, over shape coexistence between spherical, prolate, and oblate shapes, to possibly rigid triaxial deformation. Recent experiments in this region and their main physics viewpoints are summarized.

  8. Exciplexes and conical intersections lead to fluorescence quenching in π-stacked dimers of 2-aminopurine with natural purine nucleobases†

    PubMed Central

    Liang, JingXin; Nguyen, Quynh L.; Matsika, Spiridoula

    2016-01-01

    Fluorescent analogues of the natural DNA bases are useful in the study of nucleic acids’ structure and dynamics. 2-Aminopurine (2AP) is a widely used analogue with environmentally sensitive fluorescence behavior. The quantum yield of 2AP has been found to be significantly decreased when engaged in π-stacking interactions with the native bases. We present a theoretical study on fluorescence quenching mechanisms in dimers of 2AP π-stacked with adenine or guanine as in natural DNA. Relaxation pathways on the potential energy surfaces of the first excited states have been computed and reveal the importance of exciplexes and conical intersections in the fluorescence quenching process. PMID:23625036

  9. Algorithms for differentiating between images of heterogeneous tissue across fluorescence microscopes.

    PubMed

    Chitalia, Rhea; Mueller, Jenna; Fu, Henry L; Whitley, Melodi Javid; Kirsch, David G; Brown, J Quincy; Willett, Rebecca; Ramanujam, Nimmi

    2016-09-01

    Fluorescence microscopy can be used to acquire real-time images of tissue morphology and with appropriate algorithms can rapidly quantify features associated with disease. The objective of this study was to assess the ability of various segmentation algorithms to isolate fluorescent positive features (FPFs) in heterogeneous images and identify an approach that can be used across multiple fluorescence microscopes with minimal tuning between systems. Specifically, we show a variety of image segmentation algorithms applied to images of stained tumor and muscle tissue acquired with 3 different fluorescence microscopes. Results indicate that a technique called maximally stable extremal regions followed by thresholding (MSER + Binary) yielded the greatest contrast in FPF density between tumor and muscle images across multiple microscopy systems.

  10. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Wang, Yun; Dai, Xiao

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  11. Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging.

    PubMed

    Wang, Weiping; Lu, Ya-Chun; Huang, Hong; Feng, Jiu-Ju; Chen, Jian-Rong; Wang, Ai-Jun

    2014-04-07

    A simple, facile and green hydrothermal method was developed in the synthesis of water-soluble nitrogen-doped carbon dots (N-CDs) from streptomycin. The as-prepared N-CDs displayed bright blue fluorescence under the irradiation of UV light, together with a high quantum yield of 7.6% and good biocompatibility as demonstrated by the cell viability assay. Thus, the N-CDs can be used as fluorescent probes for cell imaging, which have potential applications in bioimaging and related fields. This strategy opens a new way for the preparation of fluorescent carbon nanomaterials using small molecules as carbon sources.

  12. Albumin-stabilized fluorescent silver nanodots

    NASA Astrophysics Data System (ADS)

    Sych, Tomash; Polyanichko, Alexander; Kononov, Alexei

    2017-07-01

    Ligand-stabilized Ag nanoclusters (NCs) possess many attractive features including high fluorescence quantum yield, large absorption cross-section, good photostability, large Stokes shift and two-photon absorption cross sections. While plenty of fluorescent clusters have been synthesized on various polymer templates, only a few studies have been reported on the fluorescent Ag clusters on peptides and proteins. We study silver NCs synthesized on different protein matrices, including bovine serum albumin, human serum albumin, egg albumin, equine serum albumin, and lysozyme. Our results show that red-emitting Ag NCs can effectively be stabilized by the disulfide bonds in proteins and that the looser structure of the denatured protein favors formation of the clusters.

  13. Considerable fluorescence enhancement upon supramolecular complex formation between berberine and p-sulfonated calixarenes

    NASA Astrophysics Data System (ADS)

    Megyesi, Mónika; Biczók, László

    2006-06-01

    Remarkably strong binding of berberine to 4-sulfonatocalix[8]arene was found in aqueous solution, which led to fluorescence quantum yield increase of a factor about 40 at pH 2. The hypsochromic shift of the fluorescence maximum implied that berberine sensed less polar microenvironment when confined to SCX8. The stability of the supramolecular complex significantly diminished when sulfocalixarenes of smaller ring size served as host compounds but the pH affected the association strength to a much lesser extent. All berberine complexes proved to be barely fluorescent at pH 12.2 because of excited state quenching by the hosts via electron transfer.

  14. Dibenzopyrrolo[1,2-a][1,8]naphthyridines: Synthesis and Structural Modification of Fluorescent L-Shaped Heteroarenes.

    PubMed

    Tateno, Kotaro; Ogawa, Rie; Sakamoto, Ryota; Tsuchiya, Mizuho; Kutsumura, Noriki; Otani, Takashi; Ono, Kosuke; Kawai, Hidetoshi; Saito, Takao

    2018-01-19

    The L-shaped, π-extended pentacycle dibenzopyrrolo[1,2-a][1,8]naphthyridine and its derivatives were synthesized using two methods: fully intramolecular [2 + 2 + 2] cycloaddition and oxidative aromatization using substituted carbodiimide and modification of an electron-rich indole ring of an L-shaped skeleton via electrophilic reaction and cross-coupling. These L-shaped compounds emitted fluorescence in high quantum yield. The position of substituents affected the fluorescence color through two different mechanisms, π-conjugation and skeletal distortion, which caused the substituted L-shaped compounds to emit fluorescence in a variety of colors and to exhibit solvato-fluorochromism.

  15. Bulky Counterions: Enhancing the Two-Photon Excited Fluorescence of Gold Nanoclusters.

    PubMed

    Bertorelle, Franck; Moulin, Christophe; Soleilhac, Antonin; Comby-Zerbino, Clothilde; Dugourd, Philippe; Russier-Antoine, Isabelle; Brevet, Pierre-François; Antoine, Rodolphe

    2018-01-19

    Increasing fluorescence quantum yields of ligand-protected gold nanoclusters has attracted wide research interest. The strategy consisting in using bulky counterions has been found to dramatically enhance the fluorescence. In this Communication, we push forward this concept to the nonlinear optical regime. We show that by an appropriate choice of bulky counterions and of solvent, a 30-fold increase in two-photon excited fluorescence (TPEF) signal at ≈600 nm for gold nanoclusters can be obtained. This would correspond to a TPEF cross-section in the range of 0.1 to 1 GM. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Facile synthesis of a two-photon fluorescent probe based on pyrimidine 2-isothiocyanate and its application in bioimaging.

    PubMed

    Yang, Jie; Hu, Wei; Li, Huirong; Hou, Hanna; Tu, Yi; Liu, Bo

    2018-04-18

    Two-photon microscopy imaging has been widely applied in biological imaging, but the development of two-photon absorption probes is obviously lagging behind in the development of imaging technology. In this paper, a two-photon fluorescent probe (1) based on pyrimidine 2-isothiocyanate has been designed and synthesized through a simple method for two-photon biological imaging. Probe 1 was able to couple effectively with the amino groups on biomolecules. To verify the reactivity of the isothiocyanate group on probe 1 and the amine groups on the biomolecules, d-glucosamine was chosen as a model biomolecule to conjugate with probe 1. The result showed that probe 1 could effectively conjugate with d-glucosamine to synthesize probe 2, and the yield of probe 2 was 83%. After conjugating with d-glucosamine, linear absorption spectra, single-photon fluorescence spectra, and two-photon fluorescence spectra of probes 1 and 2 did not present significant changes. Probes 1 and 2 exhibited high fluorescence quantum yields (0.71-0.79) in toluene and chloroform. They also exhibited different photo-physical properties in solvents with different polarities. The two-photon absorption cross-section of probe 1 was 953 GM in toluene. In addition, probe 1 could be effectively conjugated with transferrin, and the conjugated probe (Tf-1) could be transported into Hep G2 cells through a receptor-mediated process for biological imaging. These results demonstrate that such probes are expected to have great potential applications in two-photon fluorescence bioimaging.

  17. Recommendations for fluorescence instrument qualification: the new ASTM Standard Guide.

    PubMed

    DeRose, Paul C; Resch-Genger, Ute

    2010-03-01

    Aimed at improving quality assurance and quantitation for modern fluorescence techniques, ASTM International (ASTM) is about to release a Standard Guide for Fluorescence, reviewed here. The guide's main focus is on steady state fluorometry, for which available standards and instrument characterization procedures are discussed along with their purpose, suitability, and general instructions for use. These include the most relevant instrument properties needing qualification, such as linearity and spectral responsivity of the detection system, spectral irradiance reaching the sample, wavelength accuracy, sensitivity or limit of detection for an analyte, and day-to-day performance verification. With proper consideration of method-inherent requirements and limitations, many of these procedures and standards can be adapted to other fluorescence techniques. In addition, procedures for the determination of other relevant fluorometric quantities including fluorescence quantum yields and fluorescence lifetimes are briefly introduced. The guide is a clear and concise reference geared for users of fluorescence instrumentation at all levels of experience and is intended to aid in the ongoing standardization of fluorescence measurements.

  18. Glucose sensing molecules having selected fluorescent properties

    DOEpatents

    Satcher, Jr., Joe H.; Lane, Stephen M.; Darrow, Christopher B.; Cary, Douglas R.; Tran, Joe Anh

    2004-01-27

    An analyte sensing fluorescent molecule that employs intramolecular electron transfer is designed to exhibit selected fluorescent properties in the presence of analytes such as saccharides. The selected fluorescent properties include excitation wavelength, emission wavelength, fluorescence lifetime, quantum yield, photostability, solubility, and temperature or pH sensitivity. The compound comprises an aryl or a substituted phenyl boronic acid that acts as a substrate recognition component, a fluorescence switch component, and a fluorophore. The fluorophore and switch component are selected such that the value of the free energy for electron transfer is less than about 3.0 kcal mol.sup.-1. Fluorescent compounds are described that are excited at wavelengths greater than 400 nm and emit at wavelengths greater than 450 nm, which is advantageous for optical transmission through skin. The fluorophore is typically selected from transition metal-ligand complexes and thiazine, oxazine, oxazone, or oxazine-one as well as anthracene compounds. The fluorescent compound can be immobilized in a glucose permeable biocompatible polymer matrix that is implantable below the skin.

  19. Submillisecond Dynamics of Mastoparan X Insertion into Lipid Membranes.

    PubMed

    Schuler, Erin E; Nagarajan, Sureshbabu; Dyer, R Brian

    2016-09-01

    The mechanism of protein insertion into a lipid bilayer is poorly understood because the kinetics of this process is difficult to measure. We developed a new approach to study insertion of the antimicrobial peptide Mastoparan X into zwitterionic lipid vesicles, using a laser-induced temperature-jump to initiate insertion on the microsecond time scale and infrared and fluorescence spectroscopies to follow the kinetics. Infrared probes the desolvation of the peptide backbone and yields biphasic kinetics with relaxation lifetimes of 12 and 117 μs, whereas fluorescence probes the intrinsic tryptophan residue located near the N-terminus and yields a single exponential phase with a lifetime of 440 μs. Arrhenius analysis of the temperature-dependent rates yields an activation energy for insertion of 96 kJ/mol. These results demonstrate the complexity of the insertion process and provide mechanistic insight into the interplay between peptides and the lipid bilayer required for peptide transport across cellular membranes.

  20. OCO-2 Solar-induced Fluorescence Data Portal and Applications to Crop Yield Estimation

    NASA Astrophysics Data System (ADS)

    Zhai, A. J.; Jiang, J. H.; Frankenberg, C.; Yung, Y. L.; Choi, Y. S.

    2016-12-01

    Solar-induced fluorescence (SIF) is a direct byproduct of photosynthesis and is an index that can represent overall plant productivity level of any region around the globe. Recently, in 2014, NASA launched the Orbiting Carbon Observatory 2 (OCO-2) satellite, which collects SIF measurements at a higher spatial resolution than any previous instrument has. We have first assembled a web-based data portal, which can be easily utilized by both farmers and researchers, to allow convenient access to the SIF data from OCO-2. One possible use of SIF is to estimate agricultural status of crop fields anywhere in the world. We are using OCO-2 level 2 measurements in conjunction with the USDA's Cropland Data Layer and reported crop yield data to study how effectively SIF can estimate agricultural yield on various types of landscape and various species of crops. Results, methods, and future implications will be presented.

  1. Quantum Yields of Soluble and Particulate Material in the Ocean

    DTIC Science & Technology

    1999-09-30

    and prospects. IEEE Transactions, 46(5): 825-829 In Press Moisan, T.A. & B.G. Mitchell UV Absorption by Mycosporine - like Amino Acids in Phaeocystis...were grown to evaluate the spectral quantum yield of in vivo chlorophyll a fluorescence. We determined that mycosporine amino acids with UV absorption...evaluate the role of photoprotective pigments, including mycosporine amino acids and the xanthophyll pigments in Phaeocystis, on the spectral quantum yield

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyn, Rodney K.; Department of Chemistry, University of Ottawa, Ottawa; Kennedy, David C.

    Research highlights: {yields} Hepatitis C virus uses lipid droplets (LD) onto which HCV core proteins bind. {yields} HCV core proteins on LDs facilitate viral particle assembly. {yields} We used a novel combination of CARS, two-photon fluorescence, and DIC microscopies. {yields} Particle tracking experiments show that core slowly affects LD localization. {yields} Particle tracking measured the change in speed and directionality of LD movement. -- Abstract: The hepatitis C virus (HCV) is a global health problem, with limited treatment options and no vaccine available. HCV uses components of the host cell to proliferate, including lipid droplets (LD) onto which HCV coremore » proteins bind and facilitate viral particle assembly. We have measured the dynamics of HCV core protein-mediated changes in LDs and rates of LD movement on microtubules using a combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), and differential interference contrast (DIC) microscopies. Results show that the HCV core protein induces rapid increases in LD size. Particle tracking experiments show that HCV core protein slowly affects LD localization by controlling the directionality of LD movement on microtubules. These dynamic processes ultimately aid HCV in propagating and the molecules and interactions involved represent novel targets for potential therapeutic intervention.« less

  3. Photoinhibition of Photosystems I and II Using Chlorophyll Fluorescence Measurements

    ERIC Educational Resources Information Center

    Quiles, Maria Jose

    2005-01-01

    In this study the photoinhibition of photosystems (PS) I and II caused by exposure to high intensity light in oat ("Avena sativa," var Prevision) is measured by the emission of chlorophyll fluorescence in intact leaves adapted to darkness. The maximal quantum yield of PS II was lower in plants grown under high light intensity than in plants grown…

  4. A single thiazole orange molecule forms an exciplex in a DNA i-motif.

    PubMed

    Xu, Baochang; Wu, Xiangyang; Yeow, Edwin K L; Shao, Fangwei

    2014-06-18

    A fluorescent exciplex of thiazole orange (TO) is formed in a single-dye conjugated DNA i-motif. The exciplex fluorescence exhibits a large Stokes shift, high quantum yield, robust response to pH oscillation and little structural disturbance to the DNA quadruplex, which can be used to monitor the folding of high-order DNA structures.

  5. Thermally activated delayed fluorescence of a Zr-based metal–organic framework

    DOE PAGES

    Mieno, H.; Kabe, R.; Allendorf, M. D.; ...

    2017-12-22

    Here, the first metal–organic framework exhibiting thermally activated delayed fluorescence (TADF) was developed. The zirconium-based framework (UiO-68-dpa) uses a newly designed linker composed of a terphenyl backbone, an electron-accepting carboxyl group, and an electron-donating diphenylamine and exhibits green TADF emission with a photoluminescence quantum yield of 30% and high thermal stability.

  6. Laser-induced fluorescence spectroscopy for improved chemical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbwachs, J.A.

    1983-09-01

    This report summarizes the progress achieved over the past five years in the laser-induced fluorescence spectroscopy (LIFS) for improved chemical analysis program. Our initial efforts yielded significantly lower detection limits for trace elemental analysis by the use of both cw and pulsed laser excitations. New methods of LIFS were developed that were shown to overcome many of the traditional limitations to LIFS techniques. LIFS methods have been applied to yield fundamental scientific data that further the understanding of forces between atoms and other atoms and molecules. In recent work, two-photon ionization was combined with LIFS and applied, for the firstmore » time, to the study of energy transfer in ions.« less

  7. An Environmentally Sensitive Fluorescent Dye as a Multidimensional Probe of Amyloid Formation

    PubMed Central

    2016-01-01

    We have explored amyloid formation using poly(amino acid) model systems in which differences in peptide secondary structure and hydrophobicity can be introduced in a controlled manner. We show that an environmentally sensitive fluorescent dye, dapoxyl, is able to identify β-sheet structure and hydrophobic surfaces, structural features likely to be related to toxicity, as a result of changes in its excitation and emission profiles and its relative quantum yield. These results show that dapoxyl is a multidimensional probe of the time dependence of amyloid aggregation, which provides information about the presence and nature of metastable aggregation intermediates that is inaccessible to the conventional probes that rely on changes in quantum yield alone. PMID:26865546

  8. Growing root, tuber and nut crops hydroponically for CELSS

    NASA Technical Reports Server (NTRS)

    Hill, W. A.; Mortley, D. G.; Loretan, P. A.; Bonsi, C. K.; Morris, C. E.; Mackowiak, C. L.; Wheeler, R. M.; Tibbitts, T. W.

    1992-01-01

    Among the crops selected by NASA for growth in controlled ecological life-support systems are four that have subsurface edible parts: potatoes, sweet potatoes, sugar beets and peanuts. These crops can be produced in open and closed (recirculating), solid media and liquid, hydroponic systems. Fluorescent, fluorescent plus incandescent, and high-pressure sodium-plus-metal-halide lamps have proven to be effective light sources. Continuous light with 16-C and 28/22-C (day/night) temperatures produce highest yields for potato and sweet potato, respectively. Dry weight yields of up to 4685, 2541, 1151 and 207 g/sq m for potatoes, sweet potatoes, sugar beets and peanuts, respectively, are produced in controlled environment hydroponic systems.

  9. Lasing characteristics of gas mixtures involving UFG: Application to nuclear pumping of lasers

    NASA Technical Reports Server (NTRS)

    Verdeyen, J. T.; Eden, J. G.

    1980-01-01

    Intense blue-green fluorescence from a structured band centered at lambda approximately 484 nm was observed from Ar, CF3I and NF3 gas mixtures excited by an electron beam. This emission was tentatively assigned to the E yields A transition of the iodine monofluoride (IF) molecule. The fluorescence efficiency of the IF(E yields A) band and the IF (E) state radiative lifetime were estimated to be approximately 6% and 15 ns, respectively. The emission band structure, the short IF(E) radiative lifetime and the Franck-Condon shift between the E and A states suggest that IF is an attractive candidate for a blue-green laser.

  10. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology

    PubMed Central

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-01-01

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress. PMID:29271905

  11. Spectral and Temporal Properties of the Alpha and Beta Subunits and (alpha Beta) Monomer Isolated from Nostoc SP. Using Picosecond Laser Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Dagen, Aaron J.

    1985-12-01

    The fluorescence decay profiles, relative quantum yield and transmission of the (alpha), (beta) and ((alpha)(beta)) complexes from phycoerythrin isolated from the photosynthetic antenna system of Nostoc sp. and measured by single picosecond laser spectroscopic techniques is studied. The fluorescence decay profiles of all three complexes are found to be intensity independent for the intensity range investigated ((TURN)4 x 10('13) to (TURN)4 x 10('15) photons-cm('-2) per pulse). The apparent decrease in the relative quantum yield of all three complexes as intensity increases is offset by a corresponding increase in the relative transmission. This evidence, along with the intensity independent fluorescence kinetics, suggests that exciton annihilation is absent in these complexes. The decay profiles are fit to models assuming energy transfer amongst fluorescing chromophores. The intraprotein transfer rate is found to be 100 ps in the (alpha) subunit, 666 ps in the (beta) subunit. Constraining these rates to be identical in the monomer results in explaining the monomer kinetics by an increase in the nonradiative rate of the f(,(beta)) chromophore, an apparent result of aggregation effects.

  12. Spectral and temporal properties of the alpha and beta subunits and (alpha beta) monomer isolated from Nostoc sp. using picosecond laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Dagen, A. J.

    1985-12-01

    The fluorescence decay profiles, relative quantum yield and transmission of the alpha, beta and (alpha beta) complexes from phycoerythrin isolated from the photosynthetic antenna system of Nostoc sp. and measured by single picosecond laser spectroscopic techniques is studied. The fluorescence decay profiles of all three complexes are found to be intensity independent for the intensity range investigated (approx. 4x10 to the 13th power to 4x10 to the 15th power photons/sq cm per pulse). The apparent decrease in the relative quantum yield of all three complexes as intensity increases is offset by a corresponding increase in the relative transmission. This evidence, along with the intensity independent fluorescence kinetics, suggests that exciton annihilation is absent in these complexes. The decay profiles are fit to models assuming energy transfer amongst fluorescing chromophores. The intraprotein transfer rate is found to be 100 ps in the alpha subunit, 666 ps in the beta subunit. Constraining these rates to be identical in the monomer results in explaining the monomer kinetics by an increase in the nonradiative rate of the f beta chromophore, an apparent result of aggregation effects.

  13. Photophysics of covalently functionalized single wall carbon nanotubes with verteporfin

    NASA Astrophysics Data System (ADS)

    Staicu, Angela; Smarandache, Adriana; Pascu, Alexandru; Pascu, Mihail Lucian

    2017-09-01

    Covalently functionalized single wall carbon nanotubes (SWCNT) with the photosensitizer verteporfin (VP) were synthesized and studied. Photophysical properties of the obtained compounds like optical absorption, laser-induced fluorescence and generated singlet oxygen were investigated. In order to highlight the features of the conjugated compound, its photophysical characteristics were compared with those of the mixtures of the initial components. The optical absorption data evidenced a compound that combines features of the primary SWCNTs and VP. This is the also the case of the laser induced fluorescence of the synthesized product. Moreover, fluorescence quantum yield (Φf) of the compound (Φf = 2.4%) is smaller than for the mixture of SWCNT and VP in (Φf = 3.2%). The behavior is expected, because linked VP (carrying the fluorescent moiety) transfers easier a part of its excitation energy to the SWCNT in the covalent structure. Relative to the quantum yield of singlet oxygen generation (ΦΔ) by Methylene Blue, it was found that the ΦΔ for the conjugated VP-SWCNT is 51% while for the mixture ΦΔ is 23%. The results indicate covalently functionalized single walled carbon nanotubes with verteporfin as potential compounds of interest in targeted drug delivery and photodynamic therapy.

  14. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology.

    PubMed

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-12-22

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.

  15. Organic petrology of selected oil shale samples from lower Carboniferous Albert Formation, New Brunswick, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalkreuth, W.; Macauley, G.

    1984-04-01

    Incident light microscopy was used to describe maturation and composition of organic material in oil shale samples from the Lower Carboniferous Albert Formation of New Brunswick. The maturation level was determined in normal (white) light by measuring vitrinite reflectance and in fluorescent light by measuring fluorescence spectral of alginite B. Results indicate low to intermediate maturation for all of the samples. Composition was determined by maceral analysis. Alginite B is the major organic component in all samples having significant oil potential. Oil yields obtained from the Fischer Assay process, and oil and gas potentials from Rock-Eval analyses correlate to themore » amounts of alginite B and bituminite determined in the samples. In some of the samples characterized by similar high concentrations of alginite B, decrease in Fischer Assay yields and oil and gas potentials is related to an increase in maturation, as expected by increase in the fluorescence parameter lambda/sub max/ and red/green quotient of alginite B. Incident light microscopy, particularly with fluorescent light, offers a valuable tool for the identification of the organic matter in oil shales and for the evaluation of their oil and gas potentials.« less

  16. Quantitative fluorescence using 5-aminolevulinic acid–induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery

    PubMed Central

    Valdés, Pablo A.; Jacobs, Valerie; Harris, Brent T.; Wilson, Brian C.; Leblond, Frederic; Paulsen, Keith D.; Roberts, David W.

    2015-01-01

    OBJECT Previous studies in high-grade gliomas (HGGs) have indicated that protoporphyrin IX (PpIX) accumulates in higher concentrations in tumor tissue, and, when used to guide surgery, it has enabled improved resection leading to increased progression-free survival. Despite the benefits of complete resection and the advances in fluorescence-guided surgery, few studies have investigated the use of PpIX in low-grade gliomas (LGGs). Here, the authors describe their initial experience with 5-aminolevulinic acid (ALA)–induced PpIX fluorescence in a series of patients with LGG. METHODS Twelve patients with presumed LGGs underwent resection of their tumors after receiving 20 μg/kg of ALA approximately 3 hours prior to surgery under an institutional review board–approved protocol. Intraoperative assessments of the resulting PpIX emissions using both qualitative, visible fluorescence and quantitative measurements of PpIX concentration were obtained from tissue locations that were subsequently biopsied and evaluated histopathologically. Mixed models for random effects and receiver operating characteristic curve analysis for diagnostic performance were performed on the fluorescence data relative to the gold-standard histopathology. RESULTS Five of the 12 LGGs (1 ganglioglioma, 1 oligoastrocytoma, 1 pleomorphic xanthoastrocytoma, 1 oligodendroglioma, and 1 ependymoma) demonstrated at least 1 instance of visible fluorescence during surgery. Visible fluorescence evaluated on a specimen-by-specimen basis yielded a diagnostic accuracy of 38.0% (cutoff threshold: visible fluorescence score ≥ 1, area under the curve = 0.514). Quantitative fluorescence yielded a diagnostic accuracy of 67% (for a cutoff threshold of the concentration of PpIX [CPpIX] > 0.0056 μg/ml, area under the curve = 0.66). The authors found that 45% (9/20) of nonvisibly fluorescent tumor specimens, which would have otherwise gone undetected, accumulated diagnostically significant levels of CPpIX that were detected quantitatively. CONCLUSIONS The authors’ initial experience with ALA-induced PpIX fluorescence in LGGs concurs with other literature reports that the resulting visual fluorescence has poor diagnostic accuracy. However, the authors also found that diagnostically significant levels of CPpIX do accumulate in LGGs, and the resulting fluorescence emissions are very often below the detection threshold of current visual fluorescence imaging methods. Indeed, at least in the authors’ initial experience reported here, if quantitative detection methods are deployed, the diagnostic performance of ALA-induced PpIX fluorescence in LGGs approaches the accuracy associated with visual fluorescence in HGGs. PMID:26140489

  17. Robust, directed assembly of fluorescent nanodiamonds.

    PubMed

    Kianinia, Mehran; Shimoni, Olga; Bendavid, Avi; Schell, Andreas W; Randolph, Steven J; Toth, Milos; Aharonovich, Igor; Lobo, Charlene J

    2016-10-27

    Arrays of fluorescent nanoparticles are highly sought after for applications in sensing, nanophotonics and quantum communications. Here we present a simple and robust method of assembling fluorescent nanodiamonds into macroscopic arrays. Remarkably, the yield of this directed assembly process is greater than 90% and the assembled patterns withstand ultra-sonication for more than three hours. The assembly process is based on covalent bonding of carboxyl to amine functional carbon seeds and is applicable to any material, and to non-planar surfaces. Our results pave the way to directed assembly of sensors and nanophotonics devices.

  18. P700+- and 3P700-induced quenching of the fluorescence at 760 nm in trimeric Photosystem I complexes from the cyanobacterium Arthrospira platensis.

    PubMed

    Schlodder, Eberhard; Cetin, Marianne; Byrdin, Martin; Terekhova, Irina V; Karapetyan, Navassard V

    2005-01-07

    The 5 K absorption spectrum of Photosystem I (PS I) trimers from Arthrospira platensis (old name: Spirulina platensis) exhibits long-wavelength antenna (exciton) states absorbing at 707 nm (called C707) and at 740 nm (called C740). The lowest energy state (C740) fluoresces around 760 nm (F760) at low temperature. The analysis of the spectral properties (peak position and line width) of the lowest energy transition (C740) as a function of temperature within the linear electron-phonon approximation indicates a large optical reorganization energy of approximately 110 cm(-1) and a broad inhomogeneous site distribution characterized by a line width of approximately 115 cm(-1). Linear dichroism (LD) measurements indicate that the transition dipole moment of the red-most state is virtually parallel to the membrane plane. The relative fluorescence yield at 760 nm of PS I with P700 oxidized increases only slightly when the temperature is lowered to 77 K, whereas in the presence of reduced P700 the fluorescence yield increases nearly 40-fold at 77 K as compared to that at room temperature (RT). A fluorescence induction effect could not be resolved at RT. At 77 K the fluorescence yield of PS I trimers frozen in the dark in the presence of sodium ascorbate decreases during illumination by about a factor of 5 due to the irreversible formation of (P700+)F(A/B-) in about 60% of the centers and the reversible accumulation of the longer-lived state (P700+)FX-. The quenching efficiency of different functionally relevant intermediate states of the photochemistry in PS I has been studied. The redox state of the acceptors beyond A(0) does not affect F760. Direct kinetic evidence is presented that the fluorescence at 760 nm is strongly quenched not only by P700+ but also by 3P700. Similar kinetics were observed for flash-induced absorbance changes attributed to the decay of 3P700 or P700+, respectively, and flash-induced fluorescence changes at 760 nm measured under identical conditions. A nonlinear relationship between the variable fluorescence around 760 nm and the [P700red]/[P700total] ratio was derived from titration curves of the absorbance change at 826 nm and the variable fluorescence at 760 nm as a function of the redox potential imposed on the sample solution at room temperature before freezing. The result indicates that the energy exchange between the antennae of different monomers within a PS I trimer stimulates quenching of F760 by P700+.

  19. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    DOE PAGES

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; ...

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl 3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length L D =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less

  20. Laser diagnostics of an evaporating electrospray

    NASA Astrophysics Data System (ADS)

    Yi, Tongxun

    2014-01-01

    An electrospray atomizer generates monodisperse, dilute sprays when working in the cone-jet mode. Evolution of an electrospray with droplet diameter below 10 μm is studied with phase Doppler particle analyzer (PDPA) and the exciplex-PLIF technique. The evaporation rate constant is determined from droplet velocity and diameter measured with a PDPA and is found to sharply increase with the velocity slip and the coflow temperature. Fluorescence around 400 nm, usually referred to as TMPD fluorescence, is calibrated with a heated, laminar, coflow vapor jet diluted with nitrogen. The TMPD fluorescence yield nonlinearly increases with temperature up to 538 K and then declines. Single-shot images show that fluorescence around 400 nm is mainly generated from TMPD vapor and that from droplets can be neglected as a first analysis; however, fluorescence around 490 nm, usually referred to as exciplex fluorescence, is generated from both droplets and fuel vapor immediately around droplets. Exciplex fluorescence is correlated with PDPA measurements and TMPD fluorescence. Effects of temperature, fuel composition, overlap of fluorescent spectra, and chemical equilibrium for exciplex formation are discussed. Technical challenges for quantitative exciplex-PLIF measurements are highlighted.

  1. Assessment of variable fluorescence fluorometry as an approach for rapidly detecting living photoautotrophs in ballast water

    NASA Astrophysics Data System (ADS)

    First, Matthew R.; Robbins-Wamsley, Stephanie H.; Riley, Scott C.; Drake, Lisa A.

    2018-03-01

    Variable fluorescence fluorometry, an analytical approach that estimates the fluorescence yield of chlorophyll a (F0, a proximal measure of algal concentration) and photochemical yield (FV/FM, an indicator of the physiological status of algae) was evaluated as a means to rapidly assess photoautotrophs. Specifically, it was used to gauge the efficacy of ballast water treatment designed to reduce the transport and delivery of potentially invasive organisms. A phytoflagellate, Tetraselmis spp. (10-12 μm) and mixed communities of ambient protists were examined in both laboratory experiments and large-scale field trials simulating 5-d hold times in mock ballast tanks. In laboratory incubations, ambient organisms held in the dark exhibited declining F0 and FV/FM measurements relative to organisms held under lighted conditions. In field experiments, increases and decreases in F0 and FV/FM over the tank hold time corresponded to those of microscope counts of organisms in two of three trials. In the third trial, concentrations of organisms ≥ 10 and < 50 μm (presumably heterotrophic protists) increased while F0 and FV/FM decreased. Rapid and sensitive, variable fluorescence fluorometry is appropriate for detecting changes in organism concentrations and physiological status in samples dominated by microalgae. Changes in the heterotrophic community, which may become more prevalent in light-limited ballast tanks, would not be detected via variable fluorescence fluorometry, however.

  2. Development of Mechanochemically Active Polymers for Early Damage Detection

    NASA Astrophysics Data System (ADS)

    Zou, Jin

    Identification of early damage in polymer composite materials is of significant importance so that preventative measures can be taken before the materials reach catastrophic failure. Scientists have been developing damage detection technologies over many years and recently, mechanophore-based polymers, in which mechanical energy is translated to activate a chemical transformation, have received increasing attention. More specifically, the damage can be made detectable by mechanochromic polymers, which provide a visible color change upon the scission of covalent bonds under stress. This dissertation focuses on the study of a novel self-sensing framework for identifying early and in-situ damage by employing unique stress-sensing mechanophores. Two types of mechanophores, cyclobutane and cyclooctane, were utilized, and the former formed from cinnamoyl moeities and the latter formed from anthracene upon photodimerization. The effects on the thermal and mechanical properties with the addition of the cyclobutane-based polymers into epoxy matrices were investigated. The emergence of cracks was detected by fluorescent signals at a strain level right after the yield point of the polymer blends, and the fluorescence intensified with the accumulation of strain. Similar to the mechanism of fluorescence emission from the cleavage of cyclobutane, the cyclooctane moiety generated fluorescent emission with a higher quantum yield upon cleavage. The experimental results also demonstrated the success of employing the cyclooctane type mechanophore as a potential force sensor, as the fluorescence intensification was correlated with the strain increase.

  3. Sensitometric effects of varying the intensifying screens used with Agfa Dentus ST8G and RP6 panoramic radiographic films.

    PubMed

    Wakoh, M; Farman, A G; Scarfe, W C; Kitagawa, H; Kuroyanagi, K

    1997-07-01

    To compare the sensitometric effects and information yield of varying the intensifying screens used with both Dentus ST8G and RP6 Agfa Gevaert, Dormagen, Germany panoramic radiographic films. Four screen-film combinations were employed for each of the two film types. The screens used were blue fluorescing PX-III (Kasei Optonix, Tokyo, Japan) and Special (Siemens AG, Bensheim, Germany), as well as green fluorescing Lanex Regular (Eastman Kodak, Rochester, NY, USA) and Trimax T16 (3M, Mineapolis, Minnesota, USA). The density response for each screen-film combination was evaluated using the characteristic curves generated. Information yield, as determined by the radiographic detection of defects in an aluminium test object, was evaluated by nine observers. The characteristic curves for ST8G were different when green and blue fluorescing screens were used; however, those for RP6 varied little irrespective of the choice of intensifying screens. Observers were able to perceive defects at significantly lower radiation exposures for ST8G combined with green fluorescing screens compared with blue emitting screens. RP6 with all screen combinations provided similar image detail perceptibility at comparable exposures with ST8G with green-fluorescing screens. RP6 is suitable for use with either the spectrally matched blue emitting screens or green-emitting screens. ST8G radiographic film should always be matched to rare earth screens.

  4. Use of algal fluorescence for determination of phytotoxicity of heavy metals and pesticides as environmental pollutants.

    PubMed

    Samson, G; Popovic, R

    1988-12-01

    The phytotoxicity of heavy metals and pesticides was studied by using the fluorescence induction from the alga Dunaliella tertiolecta. The complementary area calculated from the variable fluorescence induction was used as a direct parameter to estimate phytotoxicity. The value of this parameter was affected when algae were treated with different concentrations of mercury, copper, atrazine, DCMU, Dutox, and Soilgard. The toxic effect of these pollutants was estimated by monitoring the decrease in the complementary area, which reflects photosystem II photochemistry. Further, the authors have demonstrated the advantage of using the complementary area as a parameter of phytotoxicity over using variable fluorescence yield. The complementary area of algal fluorescence can be used as a simple and sensitive parameter in the estimation of the phytotoxicity of polluted water.

  5. Multispectral guided fluorescence diffuse optical tomography using upconverting nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svenmarker, Pontus, E-mail: pontus.svenmarker@physics.umu.se; Department of Physics, Umeå University, SE-901 87 Umeå; Centre for Microbial Research

    2014-02-17

    We report on improved image detectability for fluorescence diffuse optical tomography using upconverting nanoparticles doped with rare-earth elements. Core-shell NaYF{sub 4}:Yb{sup 3+}/Er{sup 3+}@NaYF{sub 4} upconverting nanoparticles were synthesized through a stoichiometric method. The Yb{sup 3+}/Er{sup 3+} sensitizer-activator pair yielded two anti-Stokes shifted fluorescence emission bands at 540 nm and 660 nm, here used to a priori estimate the fluorescence source depth with sub-millimeter precision. A spatially varying regularization incorporated the a priori fluorescence source depth estimation into the tomography reconstruction scheme. Tissue phantom experiments showed both an improved resolution and contrast in the reconstructed images as compared to not using any amore » priori information.« less

  6. Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes.

    PubMed

    Khakbaz, Faeze; Mahani, Mohamad

    2017-04-15

    Carbon quantum dots have been proposed as an effective platform for miRNA detection. Carbon dots were synthesized by citric acid. The synthesized dots were characterized by dynamic light scattering, UV-Vis spectrophotometry, spectrofluorimetry, transmission electron microscopy and FT-IR spectrophotometry. The fluorescence quantum yield of the synthesized dots was determined using quinine sulfate as the standard. The FAM-labeled single stranded DNA, as sensing element, was adsorbed on dots by π-π interaction. The quenching of the dots fluorescence due to fluorescence resonance energy transfer (FRET) was used for mir 9-1 detection. In the presence of the complementary miRNA, the FRET did not take place and the fluorescence was recovered. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Determination of the Residual Anthracene Concentration in Cultures of Haloalkalitolerant Actinomycetes by Excitation Fluorescence, Emission Fluorescence, and Synchronous Fluorescence: Comparative Study

    PubMed Central

    Lara-Severino, Reyna del Carmen; Camacho-López, Miguel Ángel; García-Macedo, Jessica Marlene; Gómez-Oliván, Leobardo M.; Sandoval-Trujillo, Ángel H.; Isaac-Olive, Keila; Ramírez-Durán, Ninfa

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are compounds that can be quantified by fluorescence due to their high quantum yield. Haloalkalitolerant bacteria tolerate wide concentration ranges of NaCl and pH. They are potentially useful in the PAHs bioremediation of saline environments. However, it is known that salinity of the sample affects fluorescence signal regardless of the method. The objective of this work was to carry out a comparative study based on the sensitivity, linearity, and detection limits of the excitation, emission, and synchronous fluorescence methods, during the quantification of the residual anthracene concentration from the following haloalkalitolerant actinomycetes cultures Kocuria rosea, Kocuria palustris, Microbacterium testaceum, and 4 strains of Nocardia farcinica, in order to establish the proper fluorescence method to study the PAHs biodegrading capacity of haloalkalitolerant actinobacteria. The study demonstrated statistical differences among the strains and among the fluorescence methods regarding the anthracene residual concentration. The results showed that excitation and emission fluorescence methods performed very similarly but sensitivity in excitation fluorescence is slightly higher. Synchronous fluorescence using Δλ = 150 nm is not the most convenient method. Therefore we propose the excitation fluorescence as the fluorescence method to be used in the study of the PAHs biodegrading capacity of haloalkalitolerant actinomycetes. PMID:26925294

  8. The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields

    USDA-ARS?s Scientific Manuscript database

    Large-scale crop monitoring and yield estimation are important for both scientific research and practical applications. Satellite remote sensing provides an effective means for regional and global cropland monitoring, particularly in data-sparse regions that lack reliable ground observations and rep...

  9. Limitations to photosynthesis under light and heat stress in three high-yielding wheat genotypes.

    PubMed

    Monneveux, Philippe; Pastenes, Claudio; Reynolds, Matthew P

    2003-06-01

    Three high-yielding wheat genotypes (T. aestivum L., c.v. Siete Cerros, Seri and Bacanora, released in 1966, 1982 and 1988, respectively) were grown under irrigation in two high radiation, low relative humidity environments (Tlaltizapan and Ciudad Obregon CIMMYT experimental stations, Mexico). Gas exchange and fluorescence parameters were assessed on the flag leaf during the day. Carbon isotope discrimination (delta) was analysed in flag leaf at anthesis and in grain at maturity. In both environments, gas exchange and fluorescence parameters varied markedly with irradiance and temperature. Analysis of their respective variation indicated the occurrence of photo-respiration and photo-inhibition, particularly in Tlaltizapan, the warmest environment, and in Siete Cerros. In Ciudad Obregon (high-yielding environment) lower Ci (internal CO2 concentration) and delta La (carbon isotope discrimination of the leaf) suggested a higher intrinsic photosynthetic capacity in the variety Bacanora. Higher yield of this genotype was also associated with higher Fv'/Fo' (ratio of photochemical and non photochemical rate constants in the light) and Fm'/Fm (ratio of the non photochemical rate constants in the dark and light adapted state).

  10. Facile synthesis of fluorescent polymer nanoparticles by covalent modification-nanoprecipitation of amine-reactive ester polymers.

    PubMed

    Lee, Yeonju; Hanif, Sadaf; Theato, Patrick; Zentel, Rudolf; Lim, Jeewoo; Char, Kookheon

    2015-06-01

    Emission wavelength control in fluorescent nanoparticles (NPs) is crucial for their applications. In the case of inorganic quantum dots or dye-impregnated silica NPs, such a control is readily achieved by changing the size of the particles or choosing appropriate fluorescent dyes, respectively. A similar modular approach for controlling the emission wavelength of fluo-rescent polymer NPs, however, is difficult. This article reports on fluorescent polymer NPs, the synthesis of which provides a platform for a modular approach towards the preparation of fluorescent NPs of desired emission wavelength. Atom-transfer radical polymerization (ATRP) is employed to synthesize reactive ester polymers, which are then easily modified with a commercially available dye and subsequently subjected to nanoprecipitation. The resulting NPs, with low size polydispersity, show an enhanced emission quantum yield when compared with the same dye molecules in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chamber catalogues of optical and fluorescent signatures distinguish bioaerosol classes

    NASA Astrophysics Data System (ADS)

    Hernandez, Mark; Perring, Anne E.; McCabe, Kevin; Kok, Greg; Granger, Gary; Baumgardner, Darrel

    2016-07-01

    Rapid bioaerosol characterization has immediate applications in the military, environmental and public health sectors. Recent technological advances have facilitated single-particle detection of fluorescent aerosol in near real time; this leverages controlled ultraviolet exposures with single or multiple wavelengths, followed by the characterization of associated fluorescence. This type of ultraviolet induced fluorescence has been used to detect airborne microorganisms and their fragments in laboratory studies, and it has been extended to field studies that implicate bioaerosol to compose a substantial fraction of supermicron atmospheric particles. To enhance the information yield that new-generation fluorescence instruments can provide, we report the compilation of a referential aerobiological catalogue including more than 50 pure cultures of common airborne bacteria, fungi and pollens, recovered at water activity equilibrium in a mesoscale chamber (1 m3). This catalogue juxtaposes intrinsic optical properties and select bandwidths of fluorescence emissions, which manifest to clearly distinguish between major classes of airborne microbes and pollens.

  12. Interactions between colloidal silver and photosynthetic pigments located in cyanobacteria fragments and in solution.

    PubMed

    Siejak, Przemysław; Frackowiak, Danuta

    2007-09-25

    Changes in the yield of the fluorescence emitted by pigments of photosynthetic organisms could be used for the establishment of the presence of some toxic substances. The presence of colloidal metals can be indicated by enhancement of pigments' emission as a result of plasmons generation. The spectra of the pigments of cyanobacterium Synechocystis located in the bacterium fragments and in solutions with and without colloidal silver additions have been measured. The quantum yield of the pigments' fluorescence in solution has been observed to increase at some wavelength of excitation, while the fluorescence of the pigments in the bacteria fragments has been only quenched as a consequence of interactions with colloidal silver particles. Close contact between pigment molecules located in bacteria fragments and silver particles is probably not possible. We plan in future to investigate the influence of other, more typical metal pollutants of water, using similar spectral methods and several other photosynthetic bacteria pigments, in solution, in cell fragments and in the whole bacteria organisms.

  13. Discrimination and quantification of Fe and Ni abundances in Genesis solar wind implanted collectors using X-ray standing wave fluorescence yield depth profiling with internal referencing

    DOE PAGES

    Choi, Y.; Eng, P.; Stubbs, J.; ...

    2016-08-21

    In this paper, X-ray standing wave fluorescence yield depth profiling was used to determine the solar wind implanted Fe and Ni fluences in a silicon-on-sapphire (SoS) Genesis collector (60326). An internal reference standardization method was developed based on fluorescence from Si and Al in the collector materials. Measured Fe fluence agreed well with that measured previously by us on a sapphire collector (50722) as well as SIMS results by Jurewicz et al. Measured Ni fluence was higher than expected by a factor of two; neither instrumental errors nor solar wind fractionation effects are considered significant perturbations to this value. Impuritymore » Ni within the epitaxial Si layer, if present, could explain the high Ni fluences and therefore needs further investigation. As they stand, these results are consistent with minor temporally-variable Fe and Ni fractionation on the timescale of a year.« less

  14. Heavy Metals Effect on Cyanobacteria Synechocystis aquatilis Study Using Absorption, Fluorescence, Flow Cytometry, and Photothermal Measurements

    NASA Astrophysics Data System (ADS)

    Dudkowiak, A.; Olejarz, B.; Łukasiewicz, J.; Banaszek, J.; Sikora, J.; Wiktorowicz, K.

    2011-04-01

    The toxic effect of six heavy metals on cyanobacteria Synechocystis aquatilis was studied by absorption, fluorescence, flow cytometry, and photothermal measurements. This study indicates that at the concentration used, the cyanobacteria are more sensitive to silver, copper, and mercury than to cadmium, lead, and zinc metals. Disregarding the decrease in the yields of the related radiative processes caused by photochemical processes and/or damage to phycobilisomes, no changes were detected in the efficiency of thermal deactivation processes within a few microseconds, which can indicate the lack of disturbances in the photosynthetic light reaction and the lack of damage to the photosystem caused by the heavy metal ions in the concentrations used. The results demonstrate that the relative values of fluorescence yield as well as promptly generated heat calculated for the metal-affected and unaffected (reference) bacteria are sensitive indicators of environmental pollution with heavy metal ions, whereas the complementary methods proposed could be used as a noninvasive and fast procedure for in vivo assessment of their toxicity.

  15. In vitro energy transfer in Renilla bioluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, W.W.; Cormier, M.J.

    1976-09-23

    A quantitative study of in vitro energy transfer in a natural biological system is reported. The in vitro bioluminescent oxidation of Renilla (sea pansy) luciferin by luciferase produces a broad, structureless emission, peaking in the blue at 490 nm. In contrast, the live animal produces a structured emission peaking in the green at 509 nm. This difference in emission characteristics is due to the presence, in Renilla, of a green fluorescent protein (GFP). Addition of GFP in vitro sensitizes the oxyluciferin product excited state, resulting in the narrow, structured green emission characteristic of GFP fluorescence (lambda/sub max/ 509 nm). Undermore » conditions of efficient in vitro energy transfer (2.7 x 10/sup -6/ M GFP) the radiative quantum yield (with respect to luciferin) increases 5.7-fold from 5.3% (blue pathway) to 30% (green pathway). The fluorescence quantum yield of the Renilla GFP has been measured as 30%; thus, within the precision of our measurements (15% coefficient of variation) the in vitro energy transfer efficiency is a surprising 100%.« less

  16. Discrimination and quantification of Fe and Ni abundances in Genesis solar wind implanted collectors using X-ray standing wave fluorescence yield depth profiling with internal referencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Y.; Eng, P.; Stubbs, J.

    In this paper, X-ray standing wave fluorescence yield depth profiling was used to determine the solar wind implanted Fe and Ni fluences in a silicon-on-sapphire (SoS) Genesis collector (60326). An internal reference standardization method was developed based on fluorescence from Si and Al in the collector materials. Measured Fe fluence agreed well with that measured previously by us on a sapphire collector (50722) as well as SIMS results by Jurewicz et al. Measured Ni fluence was higher than expected by a factor of two; neither instrumental errors nor solar wind fractionation effects are considered significant perturbations to this value. Impuritymore » Ni within the epitaxial Si layer, if present, could explain the high Ni fluences and therefore needs further investigation. As they stand, these results are consistent with minor temporally-variable Fe and Ni fractionation on the timescale of a year.« less

  17. Latent fingermark development on a range of porous substrates using ninhydrin analogs--a comparison with ninhydrin and 1,8-diazofluoren.

    PubMed

    Berdejo, Stephanie; Rowe, Mark; Bond, John W

    2012-03-01

    Three relatively new reagents for developing latent fingermarks on porous substrates, 1,2-indandione (IND), 5-methylthioninhydrin (5-MTN), and lawsone, are compared with the more widely used ninhydrin and 1,8-diazofluoren (DFO). Developed latent fingermark visualization on 10 different substrates comprising colored papers, cardboard, and cellophane rather than conventional printer and writing/notepad paper is assessed using latent fingermark deposits from 48 donors. Results show improved fluorescent fingermark visualization using IND compared with DFO on a range of colored cardboards and thick white paper, thus extending the range of substrates known to yield improved visualization with IND. Adding zinc chloride to IND failed to yield any further improvement in fluorescent fingermark visualization. 5-MTN (with and without zinc chloride posttreatment) showed no improvement in visualization compared with ninhydrin and DFO although visible fingermarks were developed. Lawsone produced fluorescent visible fingermarks only with white substrates, which were inferior to those produced with DFO. © 2011 American Academy of Forensic Sciences.

  18. A practical teaching course in directed protein evolution using the green fluorescent protein as a model.

    PubMed

    Ruller, Roberto; Silva-Rocha, Rafael; Silva, Artur; Cruz Schneider, Maria Paula; Ward, Richard John

    2011-01-01

    Protein engineering is a powerful tool, which correlates protein structure with specific functions, both in applied biotechnology and in basic research. Here, we present a practical teaching course for engineering the green fluorescent protein (GFP) from Aequorea victoria by a random mutagenesis strategy using error-prone polymerase chain reaction. Screening of bacterial colonies transformed with random mutant libraries identified GFP variants with increased fluorescence yields. Mapping the three-dimensional structure of these mutants demonstrated how alterations in structural features such as the environment around the fluorophore and properties of the protein surface can influence functional properties such as the intensity of fluorescence and protein solubility. Copyright © 2011 Wiley Periodicals, Inc.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reducedmore » lifetime near the coverslip in TIR compared to epifluorescence FLIM.« less

  20. Metallic-nanoparticles-enhanced fluorescence from individual micron-sized aerosol particles on-the-fly.

    PubMed

    Sivaprakasam, Vasanthi; Hart, Matthew B; Jain, Vaibhav; Eversole, Jay D

    2014-08-11

    Fluorescence spectra from individual aerosol particles that were either coated or embedded with metallic nanoparticles (MNPs) was acquired on-the-fly using 266 nm and 355 nm excitation. Using aqueous suspensions of MNPs with either polystyrene latex (PSL) spheres or dissolved proteins (tryptophan or ovalbumin), we generated PSL spheres coated with MNPs, or protein clusters embedded with MNPs as aerosols. Both enhanced and quenched fluorescence intensities were observed as a function of MNP concentration. Optimizing MNP material, size and spacing should yield enhanced sensitivity for specific aerosol materials that could be exploited to improve detection limits of single-particle, on-the-fly fluorescence or Raman based spectroscopic sensors.

  1. Enhanced fluorescence of tetrasulfonated zinc phthalocyanine by graphene quantum dots and its application in molecular sensing/imaging.

    PubMed

    Wang, Jian; Zhang, Yanjun; Ye, Jiqing; Jiang, Zhou

    2017-06-01

    When excited at 435 nm, tetra-sulfonate zinc phthalocyanine (ZnPcS 4 ) emitted dual fluorescence at 495 and 702 nm. The abnormal fluorescence at 495 nm was experimentally studied and analyzed in detail for the first time. The abnormal fluorescence at 495 nm was deduced to originate from triplet-triplet (T-T) energy transfer of excited phthalocyanine ( 3 *ZnPcS 4 ). Furthermore, graphene quantum dots (GQDs) enhanced the 495 nm fluorescence quantum yield (Q) of ZnPcS 4 . The fluorescence properties of ZnPcS 4 -GQDs conjugate were retained in a cellular environment. Based on the fluorescence of ZnPcS 4 -GQDs conjugate, we designed and prepared an Apt29/thrombin/Apt15 sandwich thrombin sensor with high specificity and affinity. This cost-saving, simple operational sensing strategy can be extended to use in sensing/imaging of other biomolecules. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Thermally activated delayed fluorescence organic dots for two-photon fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    He, Tingchao; Ren, Can; Li, Zhuohua; Xiao, Shuyu; Li, Junzi; Lin, Xiaodong; Ye, Chuanxiang; Zhang, Junmin; Guo, Lihong; Hu, Wenbo; Chen, Rui

    2018-05-01

    Autofluorescence is a major challenge in complex tissue imaging when molecules present in the biological tissue compete with the fluorophore. This issue may be resolved by designing organic molecules with long fluorescence lifetimes. The present work reports the two-photon absorption (TPA) properties of a thermally activated delayed fluorescence (TADF) molecule with carbazole as the electron donor and dicyanobenzene as the electron acceptor (i.e., 4CzIPN). The results indicate that 4CzIPN exhibits a moderate TPA cross-section (˜9 × 10-50 cm4 s photon-1), high fluorescence quantum yield, and a long fluorescence lifetime (˜1.47 μs). 4CzIPN was compactly encapsulated into an amphiphilic copolymer via nanoprecipitation to achieve water-soluble organic dots. Interestingly, 4CzIPN organic dots have been utilized in applications involving two-photon fluorescence lifetime imaging (FLIM). Our work aptly demonstrates that TADF molecules are promising candidates of nonlinear optical probes for developing next-generation multiphoton FLIM applications.

  3. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2009-03-01

    Roseoflavin (8-dimethylamino-8-demethyl- D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).

  4. Carbon "Quantum" Dots for Fluorescence Labeling of Cells.

    PubMed

    Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping

    2015-09-02

    The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.

  5. Triarylborane-Based Materials for OLED Applications.

    PubMed

    Turkoglu, Gulsen; Cinar, M Emin; Ozturk, Turan

    2017-09-13

    Multidisciplinary research on organic fluorescent molecules has been attracting great interest owing to their potential applications in biomedical and material sciences. In recent years, electron deficient systems have been increasingly incorporated into fluorescent materials. Triarylboranes with the empty p orbital of their boron centres are electron deficient and can be used as strong electron acceptors in conjugated organic fluorescent materials. Moreover, their applications in optoelectronic devices, energy harvesting materials and anion sensing, due to their natural Lewis acidity and remarkable solid-state fluorescence properties, have also been investigated. Furthermore, fluorescent triarylborane-based materials have been commonly utilized as emitters and electron transporters in organic light emitting diode (OLED) applications. In this review, triarylborane-based small molecules and polymers will be surveyed, covering their structure-property relationships, intramolecular charge transfer properties and solid-state fluorescence quantum yields as functional emissive materials in OLEDs. Also, the importance of the boron atom in triarylborane compounds is emphasized to address the key issues of both fluorescent emitters and their host materials for the construction of high-performance OLEDs.

  6. DNA Encapsulation of Ten Silver Atoms Produces a Bright, Modulatable, Near Infrared-Emitting Cluster

    PubMed Central

    Petty, Jeffrey T.; Fan, Chaoyang; Story, Sandra P.; Sengupta, Bidisha; Iyer, Ashlee St. John; Prudowsky, Zachary; Dickson, Robert M.

    2010-01-01

    Photostability, inherent fluorescence brightness, and optical modulation of fluorescence are key attributes distinguishing silver nanoclusters as fluorophores. DNA plays a central role both by protecting the clusters in aqueous environments and by directing their formation. Herein, we characterize a new near infrared-emitting cluster with excitation and emission maxima at 750 and 810 nm, respectively that is stabilized within C3AC3AC3TC3A. Following chromatographic resolution of the near infrared species, a stoichiometry of 10 Ag/oligonucleotide was determined. Combined with excellent photostability, the cluster’s 30% fluorescence quantum yield and 180,000 M−1cm−1 extinction coefficient give it a fluorescence brightness that significantly improves on that of the organic dye Cy7. Fluorescence correlation analysis shows an optically accessible dark state that can be directly depopulated with longer wavelength co-illumination. The coupled increase in total fluorescence demonstrates that enhanced sensitivity can be realized through Synchronously Amplified Fluorescence Image Recovery (SAFIRe), which further differentiates this new fluorophore. PMID:21116486

  7. Predicting fluorescence quantum yield for anisole at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Tran, K. H.; Morin, C.; Bonnety, J.; Legros, G.; Guibert, P.

    2017-07-01

    Aromatic molecules are promising candidates for using as a fluorescent tracer for gas-phase scalar parameter diagnostics in a drastic environment like engines. Along with anisole turning out an excellent temperature tracer by Planar Laser-Induced Fluorescence (PLIF) diagnostics in Rapid Compression Machine (RCM), its fluorescence signal evolution versus pressure and temperature variation in a high-pressure and high-temperature cell have been reported in our recent paper on Applied Phys. B by Tran et al. Parallel to this experimental study, a photophysical model to determine anisole Fluorescence Quantum Yield (FQY) is delivered in this paper. The key to development of the model is the identification of pressure, temperature, and ambient gases, where the FQY is dominated by certain processes of the model (quenching effect, vibrational relaxation, etc.). In addition to optimization of the vibrational relaxation energy cascade coefficient and the collision probability with oxygen, the non-radiative pathways are mainly discussed. The common non-radiative rate (intersystem crossing and internal conversion) is simulated in parametric form as a function of excess vibrational energy, derived from the data acquired at different pressures and temperatures from the literature. A new non-radiative rate, namely, the equivalent Intramolecular Vibrational Redistribution or Randomization (IVR) rate, is proposed to characterize anisole deactivated processes. The new model exhibits satisfactory results which are validated against experimental measurements of fluorescence signal induced at a wavelength of 266 nm in a cell with different bath gases (N2, CO2, Ar and O2), a pressure range from 0.2 to 4 MPa, and a temperature range from 473 to 873 K.

  8. Conformational Switching in a Light-Harvesting Protein as Followed by Single-Molecule Spectroscopy

    PubMed Central

    Gall, Andrew; Ilioaia, Cristian; Krüger, Tjaart P.J.; Novoderezhkin, Vladimir I.; Robert, Bruno; van Grondelle, Rienk

    2015-01-01

    Among the ultimate goals of protein physics, the complete, experimental description of the energy paths leading to protein conformational changes remains a challenge. Single protein fluorescence spectroscopy constitutes an approach of choice for addressing protein dynamics, and, among naturally fluorescing proteins, light-harvesting (LH) proteins from purple bacteria constitute an ideal object for such a study. LHs bind bacteriochlorophyll a molecules, which confer on them a high intrinsic fluorescence yield. Moreover, the electronic properties of these pigment-proteins result from the strong excitonic coupling between their bound bacteriochlorophyll a molecules in combination with the large energetic disorder due to slow fluctuations in their structure. As a result, the position and probability of their fluorescence transition delicately depends on the precise realization of the disorder of the set of bound pigments, which is governed by the LH protein dynamics. Analysis of these parameters using time-resolved single-molecule fluorescence spectroscopy thus yields direct access to the protein dynamics. Applying this technique to the LH2 protein from Rhodovulum (Rdv.) sulfidophilum, the structure—and consequently the fluorescence properties—of which depends on pH, allowed us to follow a single protein, pH-induced, reversible, conformational transition. Hence, for the first time, to our knowledge, a protein transition can be visualized through changes in the electronic structure of the intrinsic cofactors, at a level of a single LH protein, which opens a new, to our knowledge, route for understanding the changes in energy landscape that underlie protein function and adaptation to the needs of living organisms. PMID:26039172

  9. An overview of remote sensing of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Xing, Xiao-Gang; Zhao, Dong-Zhi; Liu, Yu-Guang; Yang, Jian-Hong; Xiu, Peng; Wang, Lin

    2007-03-01

    Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyl l - a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

  10. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it; De Michelis, Ida; Ferella, Francesco

    2013-11-15

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2{sup 2} full factorial plan and the highest extraction yields for yttrium and zinc equalmore » to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H{sub 2}O{sub 2} concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2{sup 2} full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na{sub 2}S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%.« less

  11. Fluorescence of crop residue: postmortem analysis of crop conditions

    NASA Astrophysics Data System (ADS)

    McMurtrey, James E., III; Kim, Moon S.; Daughtry, Craig S. T.; Corp, Lawrence A.; Chappelle, Emmett W.

    1997-07-01

    Fluorescence of crop residues at the end of the growing season may provide an indicator of the past crop's vegetative condition. Different levels of nitrogen (N) fertilization were applied to field grown corn and wheat at Beltsville, Maryland. The N fertilizer treatments produce a range of physiological conditions, pigment concentrations, biomass levels, and grain yields that resulted in varying growth and stress conditions in the living crops. After normal harvesting procedures the crop residues remained. The fluorescence spectral characteristics of the plant residues from crops grown under different levels of N nutrition were analyzed. The blue-green fluorescence response of in-vitro residue biomass of the N treated field corn had different magnitudes. A blue-green- yellow algorithm, (460/525)*600 nm, gave the best separations between prior corn growth conditions at different N fertilization levels. Relationships between total dry biomass, the grain yield, and fluorescence properties in the 400 - 670 nm region of the spectrum were found in both corn and wheat residues. The wheat residue was analyzed to evaluate the constituents responsible for fluorescence. A ratio of the blue-green, 450/550 nm, images gave the best separation among wheat residues at different N fertilization levels. Fluorescence of extracts from wheat residues showed inverse fluorescence intensities as a function of N treatments compared to that of the intact wheat residue or ground residue samples. The extracts also had an additional fluorescence emission peak in the red, 670 nm. Single band fluorescence intensity in corn and wheat residues is due mostly to the quantity of the material on the soil surface. Ratios of fluorescence bands varied as a result of the growth conditions created by the N treatments and are thought to be indicative of the varying concentrations of the plant residues fluorescing constituents. Estimates of the amount and cost effectiveness of N fertilizers to satisfy optimal plant growth condition for specific areas of the field for the next growing season may be useful indicators for crop management. Analysis of plant constituent qualities and quantities of dead crop materials during the harvesting practice or after harvest could be useful indicators of the previous crop's conditions. These measures could be used as a tool in determining precision farming management practices for site specific areas in a field.

  12. Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side.

    PubMed

    Schansker, Gert; Tóth, Szilvia Z; Strasser, Reto J

    2006-07-01

    The dark recovery kinetics of the Chl a fluorescence transient (OJIP) after 15 min light adaptation were studied and interpreted with the help of simultaneously measured 820 nm transmission. The kinetics of the changes in the shape of the OJIP transient were related to the kinetics of the qE and qT components of non-photochemical quenching. The dark-relaxation of the qE coincided with a general increase of the fluorescence yield. Light adaptation caused the disappearance of the IP-phase (20-200 ms) of the OJIP-transient. The qT correlated with the recovery of the IP-phase and with a recovery of the re-reduction of P700(+) and oxidized plastocyanin in the 20-200 ms time-range as derived from 820 nm transmission measurements. On the basis of these observations, the qT is interpreted to represent the inactivation kinetics of ferredoxin-NADP(+)-reductase (FNR). The activation state of FNR affects the fluorescence yield via its effect on the electron flow. The qT therefore represents a form of photochemical quenching. Increasing the light intensity of the probe pulse from 1800 to 15000 mumol photons m(-2) s(-1) did not qualitatively change the results. The presented observations imply that in light-adapted leaves, it is not possible to 'close' all reaction centers with a strong light pulse. This supports the hypothesis that in addition to Q(A) a second modulator of the fluorescence yield located on the acceptor side of photosystem II (e.g., the occupancy of the Q(B)-site) is needed to explain these results. Besides, some of our results indicate that in pea leaves state 2 to 1 transitions may contribute to the qI-phase.

  13. Novel Fluorescent Microemulsion: Probing Properties, Investigating Mechanism, and Unveiling Potential Application.

    PubMed

    Hou, Mengna; Dang, Leping; Liu, Tiankuo; Guo, Yun; Wang, Zhanzhong

    2017-08-09

    Nanoscale microemulsions have been utilized as delivery carriers for nutraceuticals and active biological drugs. Herein, we designed and synthesized a novel oil in water (O/W) fluorescent microemulsion based on isoamyl acetate, polyoxyethylene castor oil EL (CrEL), and water. The microemulsion emitted bright blue fluorescence, thus exhibiting its potential for active drug detection with label-free strategy. The microemulsion exhibited excitation-dependent emission and distinct red shift with longer excitation wavelengths. Lifetime and quantum yield of fluorescent microemulsion were 2.831 ns and 5.0%, respectively. An excellent fluorescent stability of the microemulsion was confirmed by altering pH, ionic strength, temperature, and time. Moreover, we proposed a probable mechanism of fluorochromic phenomenon, in connection with the aromatic ring structure of polyoxyethylene ether substituent in CrEL. Based on our findings, we concluded that this new fluorescent microemulsion is a promising drug carrier that can facilitate active drug detection with a label-free strategy. Although further research is required to understand the exact mechanism behind its fluorescence property, this work provided valuable guidance to develop new biosensors based on fluorescent microemulsion.

  14. Oral cancer detection based on fluorescence polarization of blood plasma at excitation wavelength 405 nm

    NASA Astrophysics Data System (ADS)

    Pachaiappan, Rekha; Prakasarao, Aruna; Manoharan, Yuvaraj; Dornadula, Koteeswaran; Singaravelu, Ganesan

    2017-02-01

    During metabolism the metabolites such as hormones, proteins and enzymes were released in to the blood stream by the cells. These metabolites reflect any change that occurs due to any disturbances in normal metabolic function of the human system. This was well observed with the altered spectral signatures observed with fluorescence spectroscopic technique. Previously many have reported on the significance of native fluorescence spectroscopic method in the diagnosis of cancer. As fluorescence spectroscopy is sensitive and simple, it has complementary techniques such as excitation-emission matrix, synchronous and polarization. The fluorescence polarization measurement provides details about any association or binding reactions and denaturing effects that occurs due to change in the micro environment of cells and tissues. In this study, we have made an attempt in the diagnosis of oral cancer at 405 nm excitation using fluorescence polarization measurement. The fluorescence anisotropic values calculated from polarized fluorescence spectral data of normal and oral cancer subjects yielded a good accuracy when analyzed with linear discriminant analysis based artificial neural network. The results will be discussed in detail.

  15. Nuclear chemistry research and spectroscopy with radioactive sources. Sixteenth annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, R.W.

    1980-10-31

    Nuclear spectroscopic studies included the decay of /sup 201/Po to /sup 201/Bi, decay of /sup 201/At, decay of /sup 187/Au, and g/sub 7/2/ intruder band in /sup 109/Ag. A systematic comparison was conducted of the Interacting Boson-Fermion Approximation model predictions with experiment on neutron-deficient odd-A gold isotopes. An international comparison of /sup 133/Ba ..gamma..-ray standards was completed. L/sub 1/, L/sub 2/, and L/sub 3/ subshells were studied, and the decay energy of /sup 207/Bi is being measured. Carrier-free /sup 18/F has been prepared in crown ether solution. (DLC)

  16. Activation barriers for series of exothermic homologous reactions. VI. Reactions of lanthanide and transition metal atoms.

    NASA Astrophysics Data System (ADS)

    Blue, Alan S.; Fontijn, Arthur

    2001-09-01

    Semiempirical configuration interaction (SECI) theory to predict activation barriers, E, as given by k(T)=ATn exp(-E(RT), has been applied to homologous series of lanthanide (LN) and transition metal (TM) atom oxidation reactions. This was achieved by considering as homologous series reactions of elements differing only by the number of electrons in one subshell. Comparison between SECI and experimental results leads to an average deviation for the LN+N2O reactions of 0.66 kJ mol-1, and up to 5.5 kJ mol-1 for other series. Thirty-one activation barriers are reported.

  17. Growing root, tuber and nut crops hydroponically for CELSS.

    PubMed

    Hill, W A; Mortley, D G; Mackowiak, C L; Loretan, P A; Tibbitts, T W; Wheeler, R M; Bonsi, C K; Morris, C E

    1992-01-01

    Among the crops selected by the National Aeronautics and Space Administration for growth in controlled ecological life support systems are four that have subsurface edible parts -- potatoes, sweet potatoes, sugar beets and peanuts. These crops have been produced in open and closed (recirculating), solid media and liquid, hydroponic systems. Fluorescent , fluorescent plus incandescent and high pressure sodium plus metal halide lamps have proven to be effective light sources. Continuous light with 16 degrees C and 28/22 degrees C (day/night) temperatures have produced highest yields for potato and sweet potato, respectively. Dry weight yields of up to 4685, 2541, 1151 and 207 g m-2 for for potatoes, sweet potatoes, sugar beets and peanuts, respectively, have been produced in controlled environment hydroponic systems.

  18. Laser-induced-fluorescence spectroscopy for improved chemical analysis. Progress report, 1978-1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbwachs, J.A.

    1983-09-01

    This report summarizes the progress achieved over the past five years in the laser-induced fluorescence spectroscopy (LIFS) for improved chemical analysis program. Our initial efforts yielded significantly lower detection limits for trace elemental analysis by the use of both cw and pulsed laser excitations. New methods of LIFS were developed that were shown to overcome many of the traditional limitations to LIFS techniques. LIFS methods have been applied to yield fundamental scientific data that further the understanding of forces between atoms and other atoms and molecules. In recent work, two-photon ionization was combined with LIFS and applied, for the firstmore » time, to the study of energy transfer in ions.« less

  19. Laser-induced-fluorescence spectroscopy for improved chemical analysis. Progress report, 1978-1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbwachs, J.A.

    1983-09-01

    This report summarizes the progress achieved over the past five years in the laser-induced-fluorescence spectroscopy (LIFS) for improved chemical-analysis program. Our initial efforts yielded significantly lower detection limits for trace elemental analysis by the use of both cw and pulsed-laser excitations. New methods of LIFS were developed that were shown to overcome many of the traditional limitations to LIFS techniques. LIFS methods have been applied to yield fundamental scientific data that further the understanding of forces between atoms and other atoms and molecules. In recent work, two-photon ionization was combined with LIFS and applied, for the first time, to themore » study of energy transfer in ions.« less

  20. Comparison of fluorescent and high-pressure sodium lamps on growth of leaf lettuce

    NASA Technical Reports Server (NTRS)

    Koontz, H. V.; Prince, R. P.; Koontz, R. F.; Knott, W. M. (Principal Investigator)

    1987-01-01

    Radiation from high-pressure sodium (HPS) lamps provided more than a 50% increased yield (fresh and dry weight of tops) of loose-leaf lettuce cultivars Grand Rapids Forcing and RubyConn, compared to that obtained by radiation from cool-white fluorescent (CWF) lamps at equal photosynthetic photon flux; yet, input wattage was approximately 36% less. It was postulated that the considerable output of 700 to 850 nm radiation from the HPS lamp was a significant factor of the increased yield. Under HPS lamps, the leaves of both cultivars were slightly less green with very little red pigmentation ('RubyConn') and slightly elongated, compared to CWF, but plant productivity per unit electrical energy input was vastly superior with HPS.

  1. Influence of Bridgehead Substitution and Ring Annelation on the Photophysical Properties of Polycyclic DBO-Type Azoalkanes.

    PubMed

    Adam, Waldemar; Nikolaus, Achim; Sauer, Jürgen

    1999-05-14

    The photophysical data for the polycyclic, bridgehead-substituted derivatives 1-10 of the photoreluctant diazabicyclo[2.2.2]oct-2-ene (DBO) are presented. Substitution on the bridgehead positions with radical-stabilizing substituents enhances the photoreactivity (Phi(r)) and decreases the fluorescence quantum yields (Phi(f)) and lifetimes (tau) compared to the parent DBO. The annelated rings have no influence on the photoreactivity, except when steric interactions with an alpha substituent hinder the optimal radical-stabilizing conformation. The fused rings and some of the bridgehead substituents reduce the solvent-induced quenching of the singlet-excited azo chromophore by steric shielding of the azo group and, thus, increase the fluorescence quantum yields and lifetimes.

  2. Photo-degradation behaviour of roseoflavin in some aqueous solutions

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2010-03-01

    An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris-HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF - singlet RoF excitation transfer with subsequent triplet-state RoF degradation.

  3. Eco-friendly carbon-nanodot-based fluorescent paints for advanced photocatalytic systems

    PubMed Central

    Young Park, So; Uk Lee, Hyun; Lee, Young-Chul; Choi, Saehae; Hyun Cho, Dae; Sik Kim, Hee; Bang, Sunghee; Seo, Soonjoo; Chang Lee, Soon; Won, Jonghan; Son, Byung-Chul; Yang, Mino; Lee, Jouhahn

    2015-01-01

    Fluorescent carbon nanomaterials, especially zero-dimensional (0D) carbon nanodots (CDs), are widely used in broad biological and optoelectronic applications. CDs have unique characteristics such as strong fluorescence, biocompatibility, sun-light response, and capability of mass-production. Beyond the previous green CD obtained from harmful natural substances, we report a new type of fluid-based fluorescent CD paints (C-paints) derived from polyethylene glycol (PEG; via simple ultrasound irradiation at room temperatures) and produced in quantum yields of up to ~14%. Additionally, C-paints possess a strong, UV- and visible-light-responsive photoluminescent (PL) property. Most especially, C-paints, by incorporation into a photocatalytic system, show additional roles in the emission of fluorescent light for activation of TiO2 nanoparticles (NPs) and the resultant detoxification of most organic dyes, thus further enabling embarkation in advanced water purification. PMID:26201431

  4. Förster resonance energy transfer (FRET)-based picosecond lifetime reference for instrument response evaluation

    NASA Astrophysics Data System (ADS)

    Luchowski, R.; Kapusta, P.; Szabelski, M.; Sarkar, P.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I.

    2009-09-01

    Förster resonance energy transfer (FRET) can be utilized to achieve ultrashort fluorescence responses in time-domain fluorometry. In a poly(vinyl) alcohol matrix, the presence of 60 mM Rhodamine 800 acceptor shortens the fluorescence lifetime of a pyridine 1 donor to about 20 ps. Such a fast fluorescence response is very similar to the instrument response function (IRF) obtained using scattered excitation light. A solid fluorescent sample (e.g a film) with picosecond lifetime is ideal for IRF measurements and particularly useful for time-resolved microscopy. Avalanche photodiode detectors, commonly used in this field, feature color- dependent-timing responses. We demonstrate that recording the fluorescence decay of the proposed FRET-based reference sample yields a better IRF approximation than the conventional light-scattering method and therefore avoids systematic errors in decay curve analysis.

  5. Eco-friendly carbon-nanodot-based fluorescent paints for advanced photocatalytic systems.

    PubMed

    Park, So Young; Lee, Hyun Uk; Lee, Young-Chul; Choi, Saehae; Cho, Dae Hyun; Kim, Hee Sik; Bang, Sunghee; Seo, Soonjoo; Lee, Soon Chang; Won, Jonghan; Son, Byung-Chul; Yang, Mino; Lee, Jouhahn

    2015-07-23

    Fluorescent carbon nanomaterials, especially zero-dimensional (0D) carbon nanodots (CDs), are widely used in broad biological and optoelectronic applications. CDs have unique characteristics such as strong fluorescence, biocompatibility, sun-light response, and capability of mass-production. Beyond the previous green CD obtained from harmful natural substances, we report a new type of fluid-based fluorescent CD paints (C-paints) derived from polyethylene glycol (PEG; via simple ultrasound irradiation at room temperatures) and produced in quantum yields of up to ~14%. Additionally, C-paints possess a strong, UV- and visible-light-responsive photoluminescent (PL) property. Most especially, C-paints, by incorporation into a photocatalytic system, show additional roles in the emission of fluorescent light for activation of TiO2 nanoparticles (NPs) and the resultant detoxification of most organic dyes, thus further enabling embarkation in advanced water purification.

  6. Towards a Solid Foundation of Using Remotely Sensed Solar-Induced Chlorophyll Fluorescence for Crop Monitoring and Yield Forecast

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Sun, Y.; You, L.; Liu, Y.

    2017-12-01

    The growing demand for food production due to population increase coupled with high vulnerability to volatile environmental changes poses a paramount challenge for mankind in the coming century. Real-time crop monitoring and yield forecasting must be a key part of any solution to this challenge as these activities provide vital information needed for effective and efficient crop management and for decision making. However, traditional methods of crop growth monitoring (e.g., remotely sensed vegetation indices) do not directly relate to the most important function of plants - photosynthesis and therefore crop yield. The recent advance in the satellite remote sensing of Solar-Induced chlorophyll Fluorescence (SIF), an integrative photosynthetic signal from molecular origin and a direct measure of plant functions holds great promise for real-time monitoring of crop growth conditions and forecasting yields. In this study, we use satellite measurements of SIF from both the Global Ozone Monitoring Experiment-2 (GOME-2) onboard MetOp-A and the Orbiting Carbon Observatory-2 (OCO-2) satellites to estimate crop yield using both process-based and statistical models. We find that SIF-based crop yield well correlates with the global yield product Spatial Production Allocation Model (SPAM) derived from ground surveys for all major crops including maize, soybean, wheat, sorghum, and rice. The potential and challenges of using upcoming SIF satellite missions for crop monitoring and prediction will also be discussed.

  7. Fast repetition rate (FRR) fluorometer and method for measuring fluorescence and photosynthetic parameters

    DOEpatents

    Kolber, Zbigniew; Falkowski, Paul

    1995-06-20

    A fast repetition rate fluorometer device and method for measuring in vivo fluorescence of phytoplankton or higher plants chlorophyll and photosynthetic parameters of phytoplankton or higher plants by illuminating the phytoplankton or higher plants with a series of fast repetition rate excitation flashes effective to bring about and measure resultant changes in fluorescence yield of their Photosystem II. The series of fast repetition rate excitation flashes has a predetermined energy per flash and a rate greater than 10,000 Hz. Also, disclosed is a flasher circuit for producing the series of fast repetition rate flashes.

  8. Free energy gap laws for the pulse-induced and stationary fluorescence quenching by reversible charge transfer in polar solutions.

    PubMed

    Khokhlova, Svetlana S; Burshtein, Anatoly I

    2011-01-21

    The Stern-Volmer constants for either pulse-induced or stationary fluorescence being quenched by a contact charge transfer are calculated and their free energy dependencies (the free energy gap laws) are specified. The reversibility of charge transfer is taken into account as well as spin conversion in radical ion pairs, followed by their recombination in either singlet or triplet neutral products. The natural decay of triplets as well as their impurity quenching by ionization are accounted for when estimating the fluorescence quantum yield and its free energy dependence.

  9. LCLS in—photon out: fluorescence measurement of neon using soft x-rays

    DOE PAGES

    Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; ...

    2018-01-09

    Here, we measured the fluorescence photon yield of neon upon soft x-ray ionization (~1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.

  10. X-ray-induced fluorescent centers formation in zinc- phosphate glasses doped with Ag and Cu ions

    NASA Astrophysics Data System (ADS)

    Klyukin, D. A.; Pshenova, A. S.; Sidorov, A. I.; Stolyarchuk, M. V.

    2016-08-01

    Fluorescent properties of silver and copper doped zinc-phosphate glasses were studied. By X-ray irradiation of silver and copper co-doped glasses we could create and identify new emission centers which do not exist in single-doped samples. Doping of the glass with both silver and copper ions leads to the increase of quantum yield by 2.7 times. The study was complemented by quantum chemical calculations using the time-dependent density functional theory. It was shown that fluorescence may be attributed to the formation of mixed Ag-Cu molecular clusters.

  11. LCLS in—photon out: fluorescence measurement of neon using soft x-rays

    NASA Astrophysics Data System (ADS)

    Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; Beerwerth, Randolf; Holmes, Michael; Aldrich, Jeff; Lin, Ming-Fu; Minitti, Michael; Osipov, Timur; Schlotter, William; Cederbaum, Lorenz S.; Fritzsche, Stephan; Berrah, Nora

    2018-02-01

    We measured the fluorescence photon yield of neon upon soft x-ray ionization (∼1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.

  12. Flow Cytometric Analysis of Bimolecular Fluorescence Complementation: A High Throughput Quantitative Method to Study Protein-protein Interaction

    PubMed Central

    Wang, Li; Carnegie, Graeme K.

    2013-01-01

    Among methods to study protein-protein interaction inside cells, Bimolecular Fluorescence Complementation (BiFC) is relatively simple and sensitive. BiFC is based on the production of fluorescence using two non-fluorescent fragments of a fluorescent protein (Venus, a Yellow Fluorescent Protein variant, is used here). Non-fluorescent Venus fragments (VN and VC) are fused to two interacting proteins (in this case, AKAP-Lbc and PDE4D3), yielding fluorescence due to VN-AKAP-Lbc-VC-PDE4D3 interaction and the formation of a functional fluorescent protein inside cells. BiFC provides information on the subcellular localization of protein complexes and the strength of protein interactions based on fluorescence intensity. However, BiFC analysis using microscopy to quantify the strength of protein-protein interaction is time-consuming and somewhat subjective due to heterogeneity in protein expression and interaction. By coupling flow cytometric analysis with BiFC methodology, the fluorescent BiFC protein-protein interaction signal can be accurately measured for a large quantity of cells in a short time. Here, we demonstrate an application of this methodology to map regions in PDE4D3 that are required for the interaction with AKAP-Lbc. This high throughput methodology can be applied to screening factors that regulate protein-protein interaction. PMID:23979513

  13. Flow cytometric analysis of bimolecular fluorescence complementation: a high throughput quantitative method to study protein-protein interaction.

    PubMed

    Wang, Li; Carnegie, Graeme K

    2013-08-15

    Among methods to study protein-protein interaction inside cells, Bimolecular Fluorescence Complementation (BiFC) is relatively simple and sensitive. BiFC is based on the production of fluorescence using two non-fluorescent fragments of a fluorescent protein (Venus, a Yellow Fluorescent Protein variant, is used here). Non-fluorescent Venus fragments (VN and VC) are fused to two interacting proteins (in this case, AKAP-Lbc and PDE4D3), yielding fluorescence due to VN-AKAP-Lbc-VC-PDE4D3 interaction and the formation of a functional fluorescent protein inside cells. BiFC provides information on the subcellular localization of protein complexes and the strength of protein interactions based on fluorescence intensity. However, BiFC analysis using microscopy to quantify the strength of protein-protein interaction is time-consuming and somewhat subjective due to heterogeneity in protein expression and interaction. By coupling flow cytometric analysis with BiFC methodology, the fluorescent BiFC protein-protein interaction signal can be accurately measured for a large quantity of cells in a short time. Here, we demonstrate an application of this methodology to map regions in PDE4D3 that are required for the interaction with AKAP-Lbc. This high throughput methodology can be applied to screening factors that regulate protein-protein interaction.

  14. Multispectral fluorescence imaging techniques for nondestructive food safety inspection

    NASA Astrophysics Data System (ADS)

    Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren

    2004-03-01

    The use of spectral sensing has gained acceptance as a rapid means for nondestructive inspection of postharvest food produce. Current technologies generally use color or a single wavelength camera technology. The applicability and sensitivity of these techniques can be expanded through the use of multiple wavelengths. Reflectance in the Vis/NIR is the prevalent spectral technique. Fluorescence, compared to reflectance, is regarded as a more sensitive technique due to its dynamic responses to subtle changes in biological entities. Our laboratory has been exploring fluorescence as a potential means for detection of quality and wholesomeness of food products. Applications of fluorescence sensing require an understanding of the spectral characteristics emanating from constituents and potential contaminants. A number of factors affecting fluorescence emission characteristics are discussed. Because of relatively low fluorescence quantum yield from biological samples, a system with a powerful pulse light source such as a laser coupled with a gated detection device is used to harvest fluorescence, in the presence of ambient light. Several fluorescence sensor platforms developed in our laboratory, including hyperspectral imaging, and laser-induced fluorescence (LIF) and steady-state fluorescence imaging systems with multispectral capabilities are presented. We demonstrate the potential uses of recently developed fluorescence imaging platforms in food safety inspection of apples contaminated with animal feces.

  15. Laser and sunlight-induced fluorescence from chlorophyll pigments

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Brown, K. S.

    1986-01-01

    Fluorescence properties of chlorophyll pigment bearing plant foliage utilizing a 337 nm nitrogen laser and integrating sphere were studied. Measured yields, in terms of number of photons emitted per 100 photons absorbed, range from 1.5 to 0.1 for the 685 nm peak, and from 4.2 to 0.2 for the 730 nm peak. Decreasing order of magnitude puts herbaceous leaves ahead of all others followed by broad leaves of hardwoods and coniferous needles. Meaningful quantization for the fluorescence peaks at 430 and 530 nm could not be attained. Passive monitoring of these fluorescence peaks is successful only for the 685 nm from the ocean surface. Field data show the reflectance changes at 685 nm due to the algae presence amounts to 1% at most.

  16. Quantitative fluorescence and elastic scattering tissue polarimetry using an Eigenvalue calibrated spectroscopic Mueller matrix system.

    PubMed

    Soni, Jalpa; Purwar, Harsh; Lakhotia, Harshit; Chandel, Shubham; Banerjee, Chitram; Kumar, Uday; Ghosh, Nirmalya

    2013-07-01

    A novel spectroscopic Mueller matrix system has been developed and explored for both fluorescence and elastic scattering polarimetric measurements from biological tissues. The 4 × 4 Mueller matrix measurement strategy is based on sixteen spectrally resolved (λ = 400 - 800 nm) measurements performed by sequentially generating and analyzing four elliptical polarization states. Eigenvalue calibration of the system ensured high accuracy of Mueller matrix measurement over a broad wavelength range, either for forward or backscattering geometry. The system was explored for quantitative fluorescence and elastic scattering spectroscopic polarimetric studies on normal and precancerous tissue sections from human uterine cervix. The fluorescence spectroscopic Mueller matrices yielded an interesting diattenuation parameter, exhibiting differences between normal and precancerous tissues.

  17. Photoluminescence of epoxy resin modified by carbazole and its halogen derivative at 82 K

    NASA Astrophysics Data System (ADS)

    Mandowska, E.; Mandowski, A.; Tsvirko, M.

    2009-10-01

    The spectra and relative quantum yield of fluorescence and phosphorescence were measured for 9-(2,3-epoxypropyl)carbazole (EPK) added to epoxy resin (R) (R 5EPK - 5% weight content of the carbazole group in a polymer) and its mono and dihalogen derivative (Cl and Br). The materials under study have excellent mechanical properties. At 82 K photoluminescence (PL) spectra of these materials are composed of fluorescence (FL) and phosphorescence (PH) components while at 280 K, PH component is not observed. The vibrational frequencies of fluorescence and phosphorescence for R 5EPK were determined using Gaussian deconvolution. A decrease in the fluorescence and an increase in the phosphorescence quantum efficiency were observed after chemical bonding of heavy atoms Cl and Br.

  18. Excited State Intramolecular Proton Transfer of 2,5-bis(5-ethyl-2-benzoxazolyl)-hydroquinone and its OH/OD-isotopomers studied in supersonic jets

    NASA Astrophysics Data System (ADS)

    Peukert, Sebastian; Gil, Michał; Kijak, Michał; Sepioł, Jerzy

    2015-11-01

    The Excited State Intramolecular Proton Transfer (ESIPT) reactions of dually fluorescent 2,5-bis(5-ethyl-2-benzoxazolyl)-hydroquinone (DE-BBHQ) and its isotopomers have been studied in the supersonic jet applying laser induced fluorescence (LIF) and fluorescence-depletion (F-D) spectroscopy. LIF-spectra measured at photo-tautomeric (red) fluorescence exhibit a characteristic triplet pattern of vibronic bands, which gradually collapses upon successive deuteration. Complementary TDDFT calculations indicate the possibility of 2 consecutive ESIPT reactions yielding an excited state diketo-tautomer. However, concerning this matter the present experimental results are not unambiguous and could be also rationalized without assuming the formation of an additional photo-tautomer.

  19. A photophysical study of two fluorogen-activating proteins bound to their cognate fluorogens

    NASA Astrophysics Data System (ADS)

    Gaiotto, Tiziano; Nguyen, Hau B.; Jung, Jaemyeong; Gnanakaran, Gnana S.; Schmidt, Jurgen G.; Waldo, Geoffrey S.; Bradbury, Andrew M.; Goodwin, Peter M.

    2011-03-01

    We are exploring the use of fluorogen-activating proteins (FAPs) as reporters for single-molecule imaging. FAPs are single-chain antibodies selected to specifically bind small chromophoric molecules termed fluorogens. Upon binding to its cognate FAP the fluorescence quantum yield of the fluorogen increases giving rise to a fluorescent complex. Based on the seminal work of Szent-Gyorgyi et al. (Nature Biotechnology, Volume 26, Number 2, pp 235-240, 2008) we have chosen to study two fluorogen-activating single-chain antibodies, HL1.0.1-TO1 and H6-MG, bound to their cognate fluorogens, thiazole orange and malachite green derivatives, respectively. Here we use fluorescence correlation spectroscopy to study the photophysics of these fluorescent complexes.

  20. Rapid and qualitative fluorescence-based method for the assessment of PHA production in marine bacteria during batch culture.

    PubMed

    Elain, Anne; Le Fellic, Magali; Corre, Yves-Marie; Le Grand, Adélaïde; Le Tilly, Véronique; Audic, Jean-Luc; Bruzaud, Stéphane

    2015-10-01

    The expansion of polyhydroxyalkanoates (PHAs) into the biodegradable polymers market is mainly prevented by their production process which is still complicated with a low efficiency, resulting in relatively expensive products. In this study, we developed a method that used the lipophilic fluorescent probe Nile Red (1 mg l(-1) solution in DMSO) directly into the culture broth to stain the PHA inclusions inside bacterial cells followed by detection of the emitted fluorescence by both microscopic and spectrometric techniques. Epifluorescence microscopy provides a rapid tool to distinguish producing from non-producing bacterial species and the relative fluorescence intensity (FI) determined at the maximum of emission spectra in the wavelength region of 560-710 nm (λ(ex): 543 nm), allows a fast assessment of the cultural conditions that may enhance PHA production yield. During two-step cultivation in 500-ml flasks with glucose as the sole carbon source, the method aimed to select bacterial strains efficient for PHA synthesis among a marine collection. Subsequently, the NR assay was used to determine the C0/N0 ratio of the producing media that may improve the polymer yield as well as to follow the time course of fermentation. Characterization by GC-MS and DSC confirmed the production of the P(3-HB) homopolymer.

  1. Optical Properties of CdSe/ZnS Nanocrystals

    PubMed Central

    Gaigalas, Adolfas K; DeRose, Paul; Wang, Lili; Zhang, Yu-Zhong

    2014-01-01

    Measurements are presented of the absorbance, fluorescence emission, fluorescence quantum yield, and fluorescence lifetime of CdSe/ZnS nanocrystals, also known as quantum dots (QDs). The study included three groups of nanocrystals whose surfaces were either passivated with organic molecules, modified further with carboxyl groups, or conjugated with CD14 mouse anti-human antibodies. The surface modifications had observable effects on the optical properties of the nanocrystals. The oscillator strength (OS) of the band edge transition was about 1.0 for the nanocrystals emitting at 565 nm, 605 nm, and 655 nm. The OS could not be determined for QDs with emission at 700 nm and 800 nm. The fluorescence lifetimes varied from 26 ns for nanocrystals emitting near 600 nm to 150 ns for nanocrystals emitting near 800 nm. The quantum yield ranged between 0.4 and 0.9 for the nanocrystals in this study. A brightness index (BI) was used to evaluate the suitability of the nanocrystal labels for flow cytometer measurements. Most QD labels are at least as bright as fluorescein for applications in flow cytometer assays with 488 nm excitation. For optimal brightness the QDs should be excited with 405 nm light. We observed a strong dependence of the QD absorbance at 250 nm on the surface modification of the QD. PMID:26601047

  2. A Generalization of Theory for Two-Dimensional Fluorescence Recovery after Photobleaching Applicable to Confocal Laser Scanning Microscopes

    PubMed Central

    Kang, Minchul; Day, Charles A.; Drake, Kimberly; Kenworthy, Anne K.; DiBenedetto, Emmanuele

    2009-01-01

    Abstract Fluorescence recovery after photobleaching (FRAP) using confocal laser scanning microscopes (confocal FRAP) has become a valuable technique for studying the diffusion of biomolecules in cells. However, two-dimensional confocal FRAP sometimes yields results that vary with experimental setups, such as different bleaching protocols and bleaching spot sizes. In addition, when confocal FRAP is used to measure diffusion coefficients (D) for fast diffusing molecules, it often yields D-values that are one or two orders-of-magnitude smaller than that predicted theoretically or measured by alternative methods such as fluorescence correlation spectroscopy. Recently, it was demonstrated that this underestimation of D can be corrected by taking diffusion during photobleaching into consideration. However, there is currently no consensus on confocal FRAP theory, and no efforts have been made to unify theories on conventional and confocal FRAP. To this end, we generalized conventional FRAP theory to incorporate diffusion during photobleaching so that analysis by conventional FRAP theory for a circular region of interest is easily applicable to confocal FRAP. Finally, we demonstrate the accuracy of these new (to our knowledge) formulae by measuring D for soluble enhanced green fluorescent protein in aqueous glycerol solution and in the cytoplasm and nucleus of COS7 cells. PMID:19720039

  3. Production yield of rare-earth ions implanted into an optical crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornher, Thomas, E-mail: t.kornher@physik.uni-stuttgart.de; Xia, Kangwei; Kolesov, Roman

    2016-02-01

    Rare-earth (RE) ions doped into desired locations of optical crystals might enable a range of novel integrated photonic devices for quantum applications. With this aim, we have investigated the production yield of cerium and praseodymium by means of ion implantation. As a measure, the collected fluorescence intensity from both implanted samples and single centers was used. With a tailored annealing procedure for cerium, a yield up to 53% was estimated. Praseodymium yield amounts up to 91%. Such high implantation yield indicates a feasibility of creation of nanopatterned rare-earth doping and suggests strong potential of RE species for on-chip photonic devices.

  4. Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Pogue, Brian W.; Springett, Roger; Leussler, Christoph; Mazurkewitz, Peter; Tuttle, Stephen B.; Gibbs-Strauss, Summer L.; Jiang, Shudong S.; Dehghani, Hamid; Paulsen, Keith D.

    2008-06-01

    A multichannel spectrally resolved optical tomography system to image molecular targets in small animals from within a clinical MRI is described. Long source/detector fibers operate in contact mode and couple light from the tissue surface in the magnet bore to 16 spectrometers, each containing two optical gratings optimized for the near infrared wavelength range. High sensitivity, cooled charge coupled devices connected to each spectrograph provide detection of the spectrally resolved signal, with exposure times that are automated for acquisition at each fiber. The design allows spectral fitting of the remission light, thereby separating the fluorescence signal from the nonspecific background, which improves the accuracy and sensitivity when imaging low fluorophore concentrations. Images of fluorescence yield are recovered using a nonlinear reconstruction approach based on the diffusion approximation of photon propagation in tissue. The tissue morphology derived from the MR images serves as an imaging template to guide the optical reconstruction algorithm. Sensitivity studies show that recovered values of indocyanine green fluorescence yield are linear to concentrations of 1nM in a 70mm diameter homogeneous phantom, and detection is feasible to near 10pM. Phantom data also demonstrate imaging capabilities of imperfect fluorophore uptake in tissue volumes of clinically relevant sizes. A unique rodent MR coil provides optical fiber access for simultaneous optical and MR data acquisition of small animals. A pilot murine study using an orthotopic glioma tumor model demonstrates optical-MRI imaging of an epidermal growth factor receptor targeted fluorescent probe in vivo.

  5. Crosslinked polymer nanoparticles containing single conjugated polymer chains

    NASA Astrophysics Data System (ADS)

    Ponzio, Rodrigo A.; Marcato, Yésica L.; Gómez, María L.; Waiman, Carolina V.; Chesta, Carlos A.; Palacios, Rodrigo E.

    2017-06-01

    Conjugated polymer nanoparticles are widely used in fluorescent labeling and sensing, as they have mean radii between 5 and 100 nm, narrow size dispersion, high brightness, and are photochemically stable, allowing single particle detection with high spatial and temporal resolution. Highly crosslinked polymers formed by linking individual chains through covalent bonds yield high-strength rigid materials capable of withstanding dissolution by organic solvents. Hence, the combination of crosslinked polymers and conjugated polymers in a nanoparticulated material presents the possibility of interesting applications that require the combined properties of constituent polymers and nanosized dimension. In the present work, F8BT@pEGDMA nanoparticles composed of poly(ethylene glycol dimethacrylate) (pEGDMA; a crosslinked polymer) and containing the commercial conjugated polymer poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) were synthesized and characterized. Microemulsion polymerization was applied to produce F8BT@pEDGMA particles with nanosized dimensions in a ∼25% yield. Photophysical and size distribution properties of F8BT@pEDGMA nanoparticles were evaluated by various methods, in particular single particle fluorescence microscopy techniques. The results demonstrate that the crosslinking/polymerization process imparts structural rigidity to the F8BT@pEDGMA particles by providing resistance against dissolution/disintegration in organic solvents. The synthesized fluorescent crosslinked nanoparticles contain (for the most part) single F8BT chains and can be detected at the single particle level, using fluorescence microscopy, which bodes well for their potential application as molecularly imprinted polymer fluorescent nanosensors with high spatial and temporal resolution.

  6. Spectral-fluorescent study of the interaction of the polymethine dye probe Cyan 2 with chondroitin-4-sulfate

    NASA Astrophysics Data System (ADS)

    Tatikolov, Alexander S.; Akimkin, Timofey M.; Panova, Ina G.; Yarmoluk, Sergiy M.

    2017-04-01

    The noncovalent interaction of the polymethine dye probe 3,3‧,9-trimethylthiacarbocyanine iodide (Cyan 2) with chondroitin-4-sulfate (C4S) in buffer solutions with different pH and in water in the absence of buffers has been studied by spectral-fluorescent methods. It has been shown that in all media studied, at relatively high concentrations, the dye is bound to C4S mainly as a monomer, which is accompanied by a steep rise of fluorescence (the intermediate formation of dye aggregates on the biopolymer is also observed). From the dependence of the fluorescence quantum yield on the concentration of C4S, the parameters of binding of the dye monomer to C4S were obtained: the effective binding constant K, the number of the monomeric C4S units n per one dye monomer bound to C4S, and the fluorescence quantum yield of the bound dye monomer Φfb. The dependence of Φfb (and K) on pH of the medium is not monotonic: it has a minimum in the region of neutral pH and a growth in the regions of acid and basic pH. This can be explained by changing the charge of a C4S macromolecule as a function of pH and related conformational alterations in the biopolymer, which can affect the rigidity of a dye molecule and the energy of its interaction with the biopolymer.

  7. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    PubMed Central

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo; Ma, Zhuoran; Zhang, Zhe; Zhu, Shoujun; Wang, Joy; Lozano, Alexander X.; Fan, Quli; Chew, Leila; Zhu, Mark; Cheng, Kai; Hong, Xuechuan; Dai, Hongjie; Cheng, Zhen

    2017-01-01

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ∼50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body. PMID:28524850

  8. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less

  9. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    DOE PAGES

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo; ...

    2017-05-19

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less

  10. Physiological and biochemical response to high temperature stress in Okra (Abelmoschus esculentus L. Moench)

    NASA Astrophysics Data System (ADS)

    Hayamanesh, Shahnoosh; Keitel, Claudia; Ahmad, Nabil; Trethowan, Richard

    2016-04-01

    High temperature has been shown to lower the growth and yield of Okra, an important summer vegetable crop grown in Asia, Africa, the Middle East and Australia. We aimed to characterise the physiological and biochemical response of Okra to heat stress. 150 genotypes from Pakistan and the AVRDC (The World Vegetable Centre) were screened for their physiological response (fluorescence, electrolyte leakage and yield) to heat in a greenhouse. Four genotypes (including heat tolerant and sensitive) were selected and subsequently grown in control and hot greenhouses. Daytime temperatures were on average 10°C warmer in the hot greenhouse, whereas nighttime temperatures were similar between the two temperature treatments. During a 12 week period, the physiological (assimilation rate, transpiration rate, stomatal conductance, fluorescence, electrolyte leakage, water potential) and biochemical (carbohydrates, sugar alcohols, C content) response of the four genotypes to heat stress was assessed. The effect of heat stress on the C allocation patterns and yield in Okra will be discussed.

  11. Plasmonic enhancement of ultraviolet fluorescence

    NASA Astrophysics Data System (ADS)

    Jiao, Xiaojin

    Plasmonics relates to the interaction between electromagnetic radiation and conduction electrons at metallic interfaces or in metallic nanostructures. Surface plasmons are collective electron oscillations at a metal surface, which can be manipulated by shape, texture and material composition. Plasmonic applications cover a broad spectrum from visible to near infrared, including biosensing, nanolithography, spectroscopy, optoelectronics, photovoltaics and so on. However, there remains a gap in this activity in the ultraviolet (UV, < 400 nm), where significant opportunity exists for both fundamental and application research. Motivating factors in the study of UV Plasmonics are the direct access to biomolecular resonances and native fluorescence, resonant Raman scattering interactions, and the potential for exerting control over photochemical reactions. This dissertation aims to fill in the gap of Plasmonics in the UV with efforts of design, fabrication and characterization of aluminium (Al) and magnesium (Mg) nanostructures for the application of label-free bimolecular detection via native UV fluorescence. The first contribution of this dissertation addresses the design of Al nanostructures in the context of UV fluorescence enhancement. A design method that combines analytical analysis with numerical simulation has been developed. Performance of three canonical plasmonic structures---the dipole antenna, bullseye nanoaperture and nanoaperture array---has been compared. The optimal geometrical parameters have been determined. A novel design of a compound bullseye structure has been proposed and numerically analyzed for the purpose of compensating for the large Stokes shift typical of UV fluorescence. Second, UV lifetime modification of diffusing molecules by Al nanoapertures has been experimentally demonstrated for the first time. Lifetime reductions of ~3.5x have been observed for the high quantum yield (QY) laser dye p-terphenyl in a 60 nm diameter aperture with 50 nm undercut. Furthermore, quantum-yield-dependence of lifetime reduction has been experimentally demonstrated for the first time. Lifetime reduction as a function of aperture size and native quantum yield has been accurately predicted by simulation. Simulation further predicts greater net fluorescence enhancement for tryptophan compared to p-terphenyl. In order to increase fluorescence enhancement, the "poor" molecules and structures with proper undercuts are required. Third, UV lifetime modification by Mg nanoapertures has been experimentally demonstrated for the fisrt time. Lifetime reductions of ~13x have been observed for the laser dye p-terphenyl with high QY in a 50 nm diameter aperture with 125 nm undercut. In addition, extraordinary optical transmission of Mg nanohole arrays in the UV has been measured for the first time. By using Al as a reference, the feasibility of applying Mg in the UV plasmonic applications has been evaluated both numerically and experimentally. Finally, this work has established a methodology for the study of plasmonic enhancement of UV fluorescence, including design method, thin-film characterization, nanofabrication with focus ion beam milling, and fluorescence measurement. It has paved the way for more extensive research on UV fluorescence enhancement.

  12. Fluorescence polarization immunoassays for monitoring nucleoside triphosphate diphosphohydrolase (NTPDase) activity.

    PubMed

    Fiene, Amelie; Baqi, Younis; Lecka, Joanna; Sévigny, Jean; Müller, Christa E

    2015-01-07

    The following members of the ecto-nucleoside triphosphate diphosphohydrolase family, NTPDase1 (CD39), NTPDase-2, -3, and -8, play an important role in purinergic signal transduction by regulating extracellular nucleotide levels. Potent and selective NTPDase inhibitors are required as pharmacological tools and have potential as novel drugs, e.g. for anti-cancer and anti-bacterial therapy. We have developed fast and sensitive NTPDase fluorescence polarization (FP) immunoassays using the natural substrates (ATP or ADP). During the NTPDase1-catalyzed reaction, the substrate is dephosphorylated to ADP which is further dephosphorylated yielding AMP as the final product (by NTPDase1). NTPDase3 and -8 yield AMP and ADP, while NTPDase2 results mainly in the formation of ADP. Direct quantification of the respective product, AMP or ADP, is achieved by displacement of an appropriate fluorescent tracer nucleotide from a specific antibody leading to a change in fluorescence polarization. The assays are highly sensitive and can be performed with low substrate concentrations (20 μM ATP or 10 μM ADP) below the KM values of NTPDases, which simplifies the identification of novel competitive inhibitors. Optimized antibody and enzyme concentrations allow the reproducible detection of 2 μM ADP and 1 μM AMP (at 10% substrate conversion). Validation of the assays yielded excellent Z'-factors greater than 0.70 for all investigated NTPDase subtypes indicating high robustness of the analytical method. Furthermore, we tested a standard inhibitor and performed a first exemplary screening campaign with a library consisting of >400 compounds (Z'-factor: 0.87, hit rate 0.5%). Thereby we demonstrated the suitability of the FP assay for IC50 value determination and high-throughput screening in a 384-well format. The new FP assays were shown to be superior to current standard assays.

  13. Fluorescent microscopy and Ziehl-Neelsen staining of bronchoalveolar lavage, bronchial washings, bronchoscopic brushing and post bronchoscopic sputum along with cytological examination in cases of suspected tuberculosis.

    PubMed

    Bodal, Vijay Kumar; Bal, Manjit S; Bhagat, Sunita; Kishan, Jai; Brar, Rupinder K

    2015-01-01

    Ever since the discovery of Mycobacterium tuberculosis in 1882, many diagnostic methods have been developed. However "The gold standard" for the diagnosis of tuberculosis (TB) is still the demonstration of acid fast Bacilli (AFB) by microscopic examination of smear or bacteriological confirmation by culture method. In suspected 75 patients with active pulmonary TB, the materials obtained bronchoscopically, were bronchoalveolar lavage (BAL), bronchial brushings, bronchial washings and post bronchoscopic sputum. Four smears were made from each of the specimen. Fluorescent Staining, Ziehl-Neelsen (ZN), Pap and May Grunwald-Giemsa (MGG) stains were carried out for cytological examination. Fluorescent stain yielded maximum AFB positivity in all the methods, that is 36 (48%) in post fibre-optic bronchoscopy (FOB) sputum and 19 (25.33%) by fluorescence microscopy in both bronchial brushings and bronchial washings. Maximum yield of AFB with ZN staining 12 (16%) was equal to the post FOB sputum and bronchial brushings samples. It was followed by 6 cases (8%) in BAL and 4 (5.3%) in bronchial washings. The cytological examination was suggestive of TB in only 8 (10.66%) cases in bronchial washings and 6 (8%) cases in post FOB collection. It was equal in BAL and Bronchial brushings each that is 5 (6.67%). Bronchoscopy is a useful diagnostic tool and fluorescent microscopy is more sensitive than ZN and cytology. On X-ray examination, other diseases like malignancy or fungus can also mimick TB. So apart from ZN staining or fluorescence microscopy, Pap and MGG stain will be worthwhile to identify other microorganisms.

  14. Modeling regional cropland GPP by empirically incorporating sun-induced chlorophyll fluorescence into a coupled photosynthesis-fluorescence model

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Guanter, L.; Van der Tol, C.; Joiner, J.; Berry, J. A.

    2015-12-01

    Global sun-induced chlorophyll fluorescence (SIF) retrievals are currently available from several satellites. SIF is intrinsically linked to photosynthesis, so the new data sets allow to link remotely-sensed vegetation parameters and the actual photosynthetic activity of plants. In this study, we used space measurements of SIF together with the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) balance model in order to simulate regional photosynthetic uptake of croplands in the US corn belt. SCOPE couples fluorescence and photosynthesis at leaf and canopy levels. To do this, we first retrieved a key parameter of photosynthesis model, the maximum rate of carboxylation (Vcmax), from field measurements of CO2 and water flux during 2007-2012 at some crop eddy covariance flux sites in the Midwestern US. Then we empirically calibrated Vcmax with apparent fluorescence yield which is SIF divided by PAR. SIF retrievals are from the European GOME-2 instrument onboard the MetOp-A platform. The resulting apparent fluorescence yield shows a stronger relationship with Vcmax during the growing season than widely-used vegetation index, EVI and NDVI. New seasonal and regional Vcmax maps were derived based on the calibration model for the cropland of the corn belt. The uncertainties of Vcmax were also estimated through Gaussian error propagation. With the newly derived Vcmax maps, we modeled regional cropland GPP during the growing season for the Midwestern USA, with meteorological data from MERRA reanalysis data and LAI from MODIS product (MCD15A2). The results show the improvement in the seasonal and spatial patterns of cropland productivity in comparisons with both flux tower and agricultural inventory data.

  15. Simulating Canopy-Level Solar Induced Fluorescence with CLM-SIF 4.5 at a Sub-Alpine Conifer Forest in the Colorado Rockies

    NASA Astrophysics Data System (ADS)

    Raczka, B. M.; Bowling, D. R.; Lin, J. C.; Lee, J. E.; Yang, X.; Duarte, H.; Zuromski, L.

    2017-12-01

    Forests of the Western United States are prone to drought, temperature extremes, forest fires and insect infestation. These disturbance render carbon stocks and land-atmosphere carbon exchanges highly variable and vulnerable to change. Regional estimates of carbon exchange from terrestrial ecosystem models are challenged, in part, by a lack of net ecosystem exchange observations (e.g. flux towers) due to the complex mountainous terrain. Alternatively, carbon estimates based on light use efficiency models that depend upon remotely-sensed greenness indices are challenged due to a weak relationship with GPP during the winter season. Recent advances in the retrieval of remotely sensed solar induced fluorescence (SIF) have demonstrated a strong seasonal relationship between GPP and SIF for deciduous, grass and, to a lesser extent, conifer species. This provides an important opportunity to use remotely-sensed SIF to calibrate terrestrial ecosystem models providing a more accurate regional representation of biomass and carbon exchange across mountainous terrain. Here we incorporate both leaf-level fluorescence and leaf-to-canopy radiative transfer represented by the SCOPE model into CLM 4.5 (CLM-SIF). We simulate canopy level fluorescence at a sub-alpine forest site (Niwot Ridge, Colorado) and test whether these simulations reproduce remotely-sensed SIF from a satellite (GOME2). We found that the average peak SIF during the growing season (yrs 2007-2013) was similar between the model and satellite observations (within 15%); however, simulated SIF during the winter season was significantly greater than the satellite observations (5x higher). This implies that the fluorescence yield is overestimated by the model during the winter season. It is important that the modeled representation of seasonal fluorescence yield is improved to provide an accurate seasonal representation of SIF across the Western United States.

  16. Sensitivity and Specificity of Cetuximab-IRDye800CW to Identify Regional Metastatic Disease in Head and Neck Cancer.

    PubMed

    Rosenthal, Eben L; Moore, Lindsay S; Tipirneni, Kiranya; de Boer, Esther; Stevens, Todd M; Hartman, Yolanda E; Carroll, William R; Zinn, Kurt R; Warram, Jason M

    2017-08-15

    Purpose: Comprehensive cervical lymphadenectomy can be associated with significant morbidity and poor quality of life. This study evaluated the sensitivity and specificity of cetuximab-IRDye800CW to identify metastatic disease in patients with head and neck cancer. Experimental Design: Consenting patients scheduled for curative resection were enrolled in a clinical trial to evaluate the safety and specificity of cetuximab-IRDye800CW. Patients ( n = 12) received escalating doses of the study drug. Where indicated, cervical lymphadenectomy accompanied primary tumor resection, which occurred 3 to 7 days following intravenous infusion of cetuximab-IRDye800CW. All 471 dissected lymph nodes were imaged with a closed-field, near-infrared imaging device during gross processing of the fresh specimens. Intraoperative imaging of exposed neck levels was performed with an open-field fluorescence imaging device. Blinded assessments of the fluorescence data were compared to histopathology to calculate sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV). Results: Of the 35 nodes diagnosed pathologically positive, 34 were correctly identified with fluorescence imaging, yielding a sensitivity of 97.2%. Of the 435 pathologically negative nodes, 401 were correctly assessed using fluorescence imaging, yielding a specificity of 92.7%. The NPV was determined to be 99.7%, and the PPV was 50.7%. When 37 fluorescently false-positive nodes were sectioned deeper (1 mm) into their respective blocks, metastatic cancer was found in 8.1% of the recut nodal specimens, which altered staging in two of those cases. Conclusions: Fluorescence imaging of lymph nodes after systemic cetuximab-IRDye800CW administration demonstrated high sensitivity and was capable of identifying additional positive nodes on deep sectioning. Clin Cancer Res; 23(16); 4744-52. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source.

    PubMed

    Tan, Mingqian; Zhang, Lingxin; Tang, Rong; Song, Xiaojie; Li, Yimin; Wu, Hao; Wang, Yanfang; Lv, Guojun; Liu, Wanfa; Ma, Xiaojun

    2013-10-15

    Carbon dots (C-dots) are a class of novel fluorescent nanomaterials, which have drawn great attention for their potential applications in bio-nanotechnology. Multicolor C-dots have been synthesized by chemical nitric acid oxidation using the reproducible plant soot as raw material. TEM analysis reveals that the prepared C-dots have an average size of 3.1 nm. The C-dots are well dispersed in aqueous solution and are strongly fluorescent under the irradiation of ultra-violet light. X-ray photoelectron spectroscopy characterization demonstrates that the O/C atomic ratio for C-dots change to from 0.207 to 0.436 due to the chemical oxidation process. The photo bleaching experiment reveals that the C-dots show excellent photostability as compared with the conventional organic dyes, fluorescein and rhodamine B. The fluorescence intensity of the C-dots did not change significantly in the pH range of 3-10. To further enhance the fluorescence quantum yield, the C-dots were surface modified with four types of passivation ligands, 4,7,10-trioxa-1,13-tridecanediamine (TTDDA), poly-L-lysine (PLL), cysteine and chitosan and the fluorescence quantum yields of the TTDDA, PLL, cysteine and chitosan passivated C-dots were improved 1.53-, 5.94-, 2.00- and 3.68-fold, respectively. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The bio-application of the C-dots as fluorescent bio-probes was evaluated in cell imaging and ex vivo fish imaging, which suggests that the C-dots may have potential applications in biolabeling and bioimaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Photoinduced electron transfer of oxazine 1/TiO2 nanoparticles at single molecule level by using confocal fluorescence microscopy.

    PubMed

    Chen, Yi-Ju; Tzeng, Hsin-Yu; Fan, Hsiu-Fang; Chen, Ming-Shiang; Huang, Jer-Shing; Lin, King-Chuen

    2010-06-01

    Kinetics of photoinduced electron transfer (ET) from oxazine 1 dye to TiO(2) nanoparticles (NPs) surface is studied at a single molecule level by using confocal fluorescence microscopy. Upon irradiation with a pulsed laser at 630 nm, the fluorescence lifetimes sampled among 100 different dye molecules are determined to yield an average lifetime of 2.9 +/- 0.3 ns, which is close to the value of 3.0 +/- 0.6 ns measured on the bare coverslip. The lifetime proximity suggests that most interfacial electron transfer (IFET) processes for the current system are inefficient, probably caused by physisorption between dye and the TiO(2) film. However, there might exist some molecules which are quenched before fluorescing and fail to be detected. With the aid of autocorrelation analysis under a three-level energy system, the IFET kinetics of single dye molecules in the conduction band of TiO(2) NPs is evaluated to be (1.0 +/- 0.1) x 10(4) s(-1) averaged over 100 single molecules and the back ET rate constant is 4.7 +/- 0.9 s(-1). When a thicker TiO(2) film is substituted, the resultant kinetic data do not make a significant difference. The trend of IFET efficacy agrees with the method of fluorescence lifetime measurements. The obtained forward ET rate constants are about ten times smaller than the photovoltage response measured in an assembled dye-sensitized solar cell. The discrepancy is discussed. The inhomogeneous and fluctuation characters for the IFET process are attributed to microenvironment variation for each single molecule. The obtained ET rates are much slower than the fluorescence relaxation. Such a small ET quantum yield is yet feasibly detectable at a single molecule level.

  19. White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX

    NASA Astrophysics Data System (ADS)

    Flynn, Brendan P.; DSouza, Alisha V.; Kanick, Stephen C.; Davis, Scott C.; Pogue, Brian W.

    2013-04-01

    Subsurface fluorescence imaging is desirable for medical applications, including protoporphyrin-IX (PpIX)-based skin tumor diagnosis, surgical guidance, and dosimetry in photodynamic therapy. While tissue optical properties and heterogeneities make true subsurface fluorescence mapping an ill-posed problem, ultrasound-guided fluorescence-tomography (USFT) provides regional fluorescence mapping. Here USFT is implemented with spectroscopic decoupling of fluorescence signals (auto-fluorescence, PpIX, photoproducts), and white light spectroscopy-determined bulk optical properties. Segmented US images provide a priori spatial information for fluorescence reconstruction using region-based, diffuse FT. The method was tested in simulations, tissue homogeneous and inclusion phantoms, and an injected-inclusion animal model. Reconstructed fluorescence yield was linear with PpIX concentration, including the lowest concentration used, 0.025 μg/ml. White light spectroscopy informed optical properties, which improved fluorescence reconstruction accuracy compared to the use of fixed, literature-based optical properties, reduced reconstruction error and reconstructed fluorescence standard deviation by factors of 8.9 and 2.0, respectively. Recovered contrast-to-background error was 25% and 74% for inclusion phantoms without and with a 2-mm skin-like layer, respectively. Preliminary mouse-model imaging demonstrated system feasibility for subsurface fluorescence measurement in vivo. These data suggest that this implementation of USFT is capable of regional PpIX mapping in human skin tumors during photodynamic therapy, to be used in dosimetric evaluations.

  20. Preparation of highly fluorescent magnetic nanoparticles for analytes-enrichment and subsequent biodetection.

    PubMed

    Zhang, Bingbo; Chen, Bingdi; Wang, Yilong; Guo, Fangfang; Li, Zhuoquan; Shi, Donglu

    2011-01-15

    Bifunctional nanoparticles with highly fluorescence and decent magnetic properties have been widely used in biomedical application. In this study, highly fluorescent magnetic nanoparticles (FMNPs) with uniform size of ca. 40 nm are prepared by encapsulation of both magnetic nanoparticles (MNPs) and shell/core quantum dots (QDs) with well-designed shell structure/compositions into silica matrix via a one-pot reverse microemulsion approach. The spectral analysis shows that the FMNPs hold high fluorescent quantum yield (QY). The QYs and saturation magnetization of the FMNPs can be regulated by varying the ratio of the encapsulated QDs to MNPs. Moreover, the surface of the FMNPs can be modified to offer chemical groups for antibody conjugation for following use in target-enrichment and subsequent fluorescent detection. The in vitro immunofluorescence assay and flow cytometric analysis indicate that the bifunctional FMNPs-antibody bioconjugates are capable of target-enrichment, magnetic separation and can also be used as alternative fluorescent probes on flow cytometry for biodetection. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Is the flower fluorescence relevant in biocommunication?

    NASA Astrophysics Data System (ADS)

    Iriel, Analía; Lagorio, María Gabriela

    2010-10-01

    Flower fluorescence has been previously proposed as a potential visual signal to attract pollinators. In this work, this point was addressed by quantitatively measuring the fluorescence quantum yield ( Φ f) for flowers of Bellis perennis (white, yellow, pink, and purple), Ornithogalum thyrsoides (petals and ovaries), Limonium sinuatum (white and yellow), Lampranthus productus (yellow), Petunia nyctaginiflora (white), Bougainvillea spectabilis (white and yellow), Antirrhinum majus (white and yellow), Eustoma grandiflorum (white and blue), Citrus aurantium (petals and stigma), and Portulaca grandiflora (yellow). The highest values were obtained for the ovaries of O. thyrsoides ( Φ f = 0.030) and for Citrus aurantium petals ( Φ f = 0.014) and stigma ( Φ f = 0.013). Emitted photons as fluorescence were compared with reflected photons. It was concluded that the fluorescence emission is negligible compared to the reflected light, even for the most fluorescent samples, and it may not be considered as an optical signal in biocommunication. The work was complemented with the calculation of quantum catches for each studied flower species to describe the visual sensitization of eye photoreceptors.

  2. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.

    PubMed

    Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2012-07-01

    In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30  s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.

  3. Mechanism of wavelength conversion in polystyrene doped with benzoxanthene: emergence of a complex.

    PubMed

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Sato, Nobuhiro; Shinji, Osamu; Saito, Katashi; Takahashi, Sentaro

    2013-01-01

    Fluorescent guest molecules doped in polymers have been used to convert ultraviolet light into visible light for applications ranging from optical fibres to filters for the cultivation of plants. The wavelength conversion process involves the absorption of light at short wavelengths followed by fluorescence emission at a longer wavelength. However, a precise understanding of the light conversion remains unclear. Here we show light responses for a purified polystyrene base substrates doped with fluorescent benzoxanthene in concentrations varied over four orders of magnitude. The shape of the excitation spectrum for fluorescence emission changes significantly with the concentration of the benzoxanthene, indicating formation of a base substrate/fluorescent molecule complex. Furthermore, the wavelength conversion light yield increases in three stages depending on the nature of the complex. These findings identify a mechanism that will have many applications in wavelength conversion materials.

  4. Mechanism of wavelength conversion in polystyrene doped with benzoxanthene: emergence of a complex

    PubMed Central

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Sato, Nobuhiro; Shinji, Osamu; Saito, Katashi; Takahashi, Sentaro

    2013-01-01

    Fluorescent guest molecules doped in polymers have been used to convert ultraviolet light into visible light for applications ranging from optical fibres to filters for the cultivation of plants. The wavelength conversion process involves the absorption of light at short wavelengths followed by fluorescence emission at a longer wavelength. However, a precise understanding of the light conversion remains unclear. Here we show light responses for a purified polystyrene base substrates doped with fluorescent benzoxanthene in concentrations varied over four orders of magnitude. The shape of the excitation spectrum for fluorescence emission changes significantly with the concentration of the benzoxanthene, indicating formation of a base substrate/fluorescent molecule complex. Furthermore, the wavelength conversion light yield increases in three stages depending on the nature of the complex. These findings identify a mechanism that will have many applications in wavelength conversion materials. PMID:23974205

  5. Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Gonsior, Michael; Luek, Jenna; Timko, Stephen; Ianiri, Hope; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Fang, Xiaoting; Zeng, Qinglu; Jiao, Nianzhi; Chen, Feng

    2017-05-01

    Marine chromophoric dissolved organic matter (CDOM) and its related fluorescent components (FDOM), which are widely distributed but highly photobleached in the surface ocean, are critical in regulating light attenuation in the ocean. However, the origins of marine FDOM are still under investigation. Here we show that cultured picocyanobacteria, Synechococcus and Prochlorococcus, release FDOM that closely match the typical fluorescent signals found in oceanic environments. Picocyanobacterial FDOM also shows comparable apparent fluorescent quantum yields and undergoes similar photo-degradation behaviour when compared with deep-ocean FDOM, further strengthening the similarity between them. Ultrahigh-resolution mass spectrometry (MS) and nuclear magnetic resonance spectroscopy reveal abundant nitrogen-containing compounds in Synechococcus DOM, which may originate from degradation products of the fluorescent phycobilin pigments. Given the importance of picocyanobacteria in the global carbon cycle, our results indicate that picocyanobacteria are likely to be important sources of marine autochthonous FDOM, which may accumulate in the deep ocean.

  6. Highly fluorescent carbon dots for visible sensing of doxorubicin release based on efficient nanosurface energy transfer.

    PubMed

    Wang, Beibei; Wang, Shujun; Wang, Yanfang; Lv, Yan; Wu, Hao; Ma, Xiaojun; Tan, Mingqian

    2016-01-01

    To prepare fluorescent carbon dots for loading cationic anticancer drug through donor-quenched nanosurface energy transfer in visible sensing of drug release. Highly fluorescent carbon dots (CDs) were prepared by a facile hydrothermal approach from citric acid and o-phenylenediamine. The obtained CDs showed a high quantum yield of 46 % and exhibited good cytocompatibility even at 1 mg/ml. The cationic anticancer drug doxorubicin (DOX) can be loaded onto the negatively charged CDs through electrostatic interactions. Additionally, the fluorescent CDs feature reversible donor-quenched mode nanosurface energy transfer. When loading the energy receptor DOX, the donor CDs' fluorescence was switched "off", while it turned "on" again after DOX release from the surface through endocytic uptake. Most DOX molecules were released from the CDs after 6 h incubation and entered cell nuclear region after 8 h, suggesting the drug delivery system may have potential for visible sensing in drug release.

  7. Multiphoton fluorescence spectra and lifetimes of biliverdins and their protein-associated complex

    NASA Astrophysics Data System (ADS)

    Huang, Chin-Jie; Wu, Cheng-Ham; Liu, Tzu-Ming

    2012-03-01

    To investigate whether endogenous biliverdins can serve as a fluorescence metabolic marker in cancer diagnosis, we measured their multiphoton fluorescence spectra and lifetimes with femtosecond Cr:forsterite laser. Excited at 1230nm, the two-photon fluorescence of biliverdins peaks around 670nm. The corresponding lifetime (<100ps) was much shorter than those of porphyrins (~10ns), which is another commonly present metabolites in living cells. Further mixing biliverdins with proteins like fetal bovine serum (FBS), biliverdins reductase A (BVRA), or heme oxygenase-1 (HO-1), the yields of red autofluorescences didn't change a lot, but the corresponding lifetimes with HO-1 and BSA were lengthened to 200~300ps. This indicates that biliverdin can have an association with these proteins and change its lifetime. These spectral and temporal characteristics of fluorescence make biliverdin a potential marker fluorophore for hyperspectral diagnosis on the heme catabolism in human cells or tissues.

  8. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.

    2009-10-01

    The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  9. Automatic enhancement of skin fluorescence localization due to refractive index matching

    NASA Astrophysics Data System (ADS)

    Churmakov, Dmitry Y.; Meglinski, Igor V.; Piletsky, Sergey A.; Greenhalgh, Douglas A.

    2004-07-01

    Fluorescence diagnostic techniques are notable amongst many other optical methods, as they offer high sensitivity and non-invasive measurements of tissue properties. However, a combination of multiple scattering and physical heterogeneity of biological tissues hampers the interpretation of the fluorescence measurements. The analyses of the spatial distribution of endogenous and exogenous fluorophores excitations within tissues and their contribution to the detected signal localization are essential for many applications. We have developed a novel Monte Carlo technique that gives a graphical perception of how the excitation and fluorescence detected signal are localized in tissues. Our model takes into account spatial distribution of fluorophores and their quantum yields. We demonstrate that matching of the refractive indices of ambient medium and topical skin layer improves spatial localization of the detected fluorescence signal within the tissue. This result is consistent with the recent conclusion that administering biocompatible agents results in higher image contrast.

  10. Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties

    PubMed Central

    Zhao, Zhao; Gonsior, Michael; Luek, Jenna; Timko, Stephen; Ianiri, Hope; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Fang, Xiaoting; Zeng, Qinglu; Jiao, Nianzhi; Chen, Feng

    2017-01-01

    Marine chromophoric dissolved organic matter (CDOM) and its related fluorescent components (FDOM), which are widely distributed but highly photobleached in the surface ocean, are critical in regulating light attenuation in the ocean. However, the origins of marine FDOM are still under investigation. Here we show that cultured picocyanobacteria, Synechococcus and Prochlorococcus, release FDOM that closely match the typical fluorescent signals found in oceanic environments. Picocyanobacterial FDOM also shows comparable apparent fluorescent quantum yields and undergoes similar photo-degradation behaviour when compared with deep-ocean FDOM, further strengthening the similarity between them. Ultrahigh-resolution mass spectrometry (MS) and nuclear magnetic resonance spectroscopy reveal abundant nitrogen-containing compounds in Synechococcus DOM, which may originate from degradation products of the fluorescent phycobilin pigments. Given the importance of picocyanobacteria in the global carbon cycle, our results indicate that picocyanobacteria are likely to be important sources of marine autochthonous FDOM, which may accumulate in the deep ocean. PMID:28513605

  11. Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip.

    PubMed

    Wang, Chen; Ouyang, Jun; Ye, De-Kai; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua

    2012-08-07

    Fluorescence analysis has proved to be a powerful detection technique for achieving single molecule analysis. However, it usually requires the labeling of targets with bright fluorescent tags since most chemicals and biomolecules lack fluorescence. Conventional fluorescence labeling methods require a considerable quantity of biomolecule samples, long reaction times and extensive chromatographic purification procedures. Herein, a micro/nanofluidics device integrating a nanochannel in a microfluidics chip has been designed and fabricated, which achieves rapid protein concentration, fluorescence labeling, and efficient purification of product in a miniaturized and continuous manner. As a demonstration, labeling of the proteins bovine serum albumin (BSA) and IgG with fluorescein isothiocyanate (FITC) is presented. Compared to conventional methods, the present micro/nanofluidics device performs about 10(4)-10(6) times faster BSA labeling with 1.6 times higher yields due to the efficient nanoconfinement effect, improved mass, and heat transfer in the chip device. The results demonstrate that the present micro/nanofluidics device promises rapid and facile fluorescence labeling of small amount of reagents such as proteins, nucleic acids and other biomolecules with high efficiency.

  12. Serum albumin binding sites properties in donors and in schizophrenia patients: the study of fluorescence decay of the probe K-35 using S-60 synchrotron pulse excitation

    NASA Astrophysics Data System (ADS)

    Gryzunov, Yu. A.; Syrejshchikova, T. I.; Komarova, M. N.; Misionzhnik, E. Yu; Uzbekov, M. G.; Molodetskich, A. V.; Dobretsov, G. E.; Yakimenko, M. N.

    2000-06-01

    The properties of serum albumin obtained from donors and from paranoid schizophrenia patients were studied with the fluorescent probe K-35 (N-carboxyphenylimide of dimethylaminonaphthalic acid) and time-resolved fluorescence spectroscopy on the SR beam station of the S-60 synchrotron of the Lebedev Physical Institute. The mean fluorescence quantum yield of K-35 in patients serum was decreased significantly by 25-60% comparing with donors. The analysis of pre-exponential factors of fluorescence decay using "amplitude standard" method has shown that in patient sera the fraction of K-35 molecules bound with albumin and inaccessible to fluorescence quenchers ("bright" K-35 molecules with τ1=8.0±0.4 ns) is 1.2-3 times less than in the donor sera. The fraction of K-35 molecules with partly quenched fluorescence ( τ2=1.44±0.22 ns) was significantly increased in schizophrenia patients. The results obtained suggest that the properties of binding region in serum albumin molecules of acute paranoid schizophrenia patients change significantly.

  13. Very Bright Green Fluorescent Proteins from the Pontellid Copepod Pontella mimocerami

    PubMed Central

    Hunt, Marguerite E.; Scherrer, Michael P.; Ferrari, Frank D.; Matz, Mikhail V.

    2010-01-01

    Background Fluorescent proteins (FP) homologous to the green fluorescent protein (GFP) from the jellyfish Aequorea victoria have revolutionized biomedical research due to their usefulness as genetically encoded fluorescent labels. Fluorescent proteins from copepods are particularly promising due to their high brightness and rapid fluorescence development. Results Here we report two novel FPs from Pontella mimocerami (Copepoda, Calanoida, Pontellidae), which were identified via fluorescence screening of a bacterial cDNA expression library prepared from the whole-body total RNA of the animal. The proteins are very similar in sequence and spectroscopic properties. They possess high molar extinction coefficients (79,000 M−1 cm−) and quantum yields (0.92), which make them more than two-fold brighter than the most common FP marker, EGFP. Both proteins form oligomers, which we were able to counteract to some extent by mutagenesis of the N-terminal region; however, this particular modification resulted in substantial drop in brightness. Conclusions The spectroscopic characteristics of the two P. mimocerami proteins place them among the brightest green FPs ever described. These proteins may therefore become valuable additions to the in vivo imaging toolkit. PMID:20644720

  14. Highly Sensitive Detection of Glucose by a "Turn-Off-On" Fluorescent Probe Using Gadolinium-Doped Carbon Dots and Carbon Microparticles.

    PubMed

    Hu, Meixin; Qi, Jianrong; Ruan, Jing; Shen, Guangxia

    2018-06-01

    Carbon dots, as a potential substitute for semiconductor quantum dots, have drawn great interest in recent years. The preparation of fluorescent carbon dots has been made easy with many significant advances, but the complicated purifying processes, low quantum yield, and blue emission wavelength still limit its wider application in biosensors, biomedicine, and photonic devices. Here we report a strategy to synthesis Gd-doped carbon dots (Gd-Cdots) of super-high quantum yield with a microwave assisted hydrothermal method. The Gd-Cdots, with a diameter of 47∼8 nm, can be purified easily with conventional centrifugal techniques. Carbon microparticles (CMPs) have also been synthesized with a similar procedure. Meanwhile, we demonstrated a novel "turn-off-on" fluorescent biosensor, which has been developed for highly sensitive detection of glucose using Gd-doped carbon dots as probes. The proposed biosensor has exhibited low-cost and non-toxic properties, with high sensitivity and good specificity. In addition, the results in real blood samples further confirmed it as a promising application in diabetes diagnosis.

  15. Efficient and Scalable Synthesis of 4-Carboxy-Pennsylvania Green Methyl Ester: A Hydrophobic Building Block for Fluorescent Molecular Probes.

    PubMed

    Woydziak, Zachary R; Fu, Liqiang; Peterson, Blake R

    2014-01-01

    Fluorinated fluorophores are valuable tools for studies of biological systems. However, amine-reactive single-isomer derivatives of these compounds are often very expensive. To provide an inexpensive alternative, we report a practical synthesis of 4-carboxy-Pennsylvania Green methyl ester. Derivatives of this hydrophobic fluorinated fluorophore, a hybrid of the dyes Oregon Green and Tokyo Green, are often cell permeable, enabling labeling of intracellular targets and components. Moreover, the low pKa of Pennsylvania Green (4.8) confers bright fluorescence in acidic cellular compartments such as endosomes, enhancing its utility for chemical biology investigations. To improve access to the key intermediate 2,7-difluoro-3,6-dihydroxyxanthen-9-one, we subjected bis-(2,4,5-trifluorophenyl)methanone to iterative nucleophilic aromatic substitution by hydroxide on scales of > 40 g. This intermediate was used to prepare over 15 grams of pure 4-carboxy-Pennsylvania Green methyl ester in 28% overall yield without requiring chromatography. This compound can be converted into the amine reactive N -hydroxysuccinimidyl ester in essentially quantitative yield for the synthesis of a wide variety of fluorescent molecular probes.

  16. Systematic investigations on fused π-system compounds of seven benzene rings prepared by photocyclization of diphenanthrylethenes.

    PubMed

    Fujino, Shota; Yamaji, Minoru; Okamoto, Hideki; Mutai, Toshiki; Yoshikawa, Isao; Houjou, Hirohiko; Tani, Fumito

    2017-06-14

    We studied the photoproducts of 1-(n-phenanthryl)-2-(m-phenanthryl)ethenes (nEm; n, m = 1, 3 and 9) for understanding photocyclization patterns based on NMR spectroscopy. The crystal structures of the photoproducts were analyzed by X-ray crystallography, and the photophysical features of the photocyclized molecules were investigated based on emission and transient absorption measurements. Phenanthrene derivatives substituted at the 1- and 3-positions were prepared for synthesizing nEm by photocyclization of stilbene derivatives. We obtained four types of primary photoproducts (n@m) from the corresponding nEm. Two of them were found to have racemic molecular structures in the single crystal determined by X-ray crystallography. Besides the primary photoproducts, two types of secondary photoproducts (n@mPP) were isolated. Fluorescence quantum yields and lifetimes of the obtained photoproducts were determined in solution whereas the definite fluorescence quantum yields were obtained in the powder. Observation of the triplet-triplet absorption spectra in solution by laser photolysis techniques showed that intersystem crossing to the triplet state competes with the fluorescence process.

  17. A novel flurophore-cyano-carboxylic-Ag microhybrid: Enhanced two photon absorption for two-photon photothermal therapy of HeLa cancer cells by targeting mitochondria.

    PubMed

    Kong, Lin; Yang, Li; Xin, Chen-Qi; Zhu, Shu-Juan; Zhang, Hui-Hui; Zhang, Ming-Zhu; Yang, Jia-Xiang; Li, Lin; Zhou, Hong-Ping; Tian, Yu-Peng

    2018-06-15

    In this study, a novel two-photon photothermal therapy (TP-PTT) agent based on an organic-metal microhybrid with surface Plasmon resonance (SPR) enhanced two-photon absorption (TPA) characteristic was designed and synthesized using a fluorescent cyano-carboxylic derivative 2-cyano-3-(9-ethyl-9H-carbazol-3-yl) -acrylic acid (abbreviated as CECZA) and silver nanoparticles through self-assembly process induced by the interfacial coordination interactions between the O/N atom of CECZA and Ag + ion at the surface of Ag nanoparticles. The coordination interactions caused electron transfer from the Ag nanoparticles to CECZA molecules at the excited state, resulting in a decreased fluorescence quantum yield. The interfacial coordination interactions also enhanced the nonlinear optical properties, including 13 times increase in the TPA cross-section (δ). The decreased fluorescence quantum yield and increased two photon absorption caused by the SPR effect led excellent two-photon photothermal conversion, which was beneficial for the TP-PTT effect on HeLa cancer cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Diurnal variability in turbidity and coral fluorescence on a fringing reef flat: Southern Molokai, Hawaii

    USGS Publications Warehouse

    Piniak, G.A.; Storlazzi, C.D.

    2008-01-01

    Terrigenous sediment in the nearshore environment can pose both acute and chronic stresses to coral reefs. The reef flat off southern Molokai, Hawaii, typically experiences daily turbidity events, in which trade winds and tides combine to resuspend terrigenous sediment and transport it alongshore. These chronic turbidity events could play a role in restricting coral distribution on the reef flat by reducing the light available for photosynthesis. This study describes the effects of these turbidity events on the Hawaiian reef coral Montipora capitata using in situ diurnal measurements of turbidity, light levels, and chlorophyll fluorescence yield via pulse-amplitude-modulated (PAM) fluorometry. Average surface irradiance was similar in the morning and the afternoon, while increased afternoon turbidity resulted in lower subsurface irradiance, higher fluorescence yield (??F/Fm???), and lower relative electron transport rates (rETR). Model calculations based on observed light extinction coeffecients suggest that in the absence of turbidity events, afternoon subsurface irradiances would be 1.43 times higher than observed, resulting in rETR for M. capitata that are 1.40 times higher.

  19. Light harvesting control in plants.

    PubMed

    Ruban, Alexander V

    2018-05-23

    In 1991, my colleagues and I published a hypothesis article that proposed a mechanism that controls light harvesting in plants and protects them against photodamage. The major light harvesting complex, LHCII, was suggested to undergo aggregation upon exposure of the plant to damaging levels of light. Aggregated LHCII was found to be much less efficient in light harvesting, as it promptly dissipated absorbed energy into heat, possessing a very low chlorophyll fluorescence yield. Non-photochemical quenching (NPQ) is a term coined to describe this reduction in chlorophyll fluorescence yield. This article is a story of how the hypothesis that LHCII aggregation is involved in NPQ is developed into a model that is now becoming broadly accepted by the research community. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Facile and eco-friendly synthesis of green fluorescent carbon nanodots for applications in bioimaging, patterning and staining

    NASA Astrophysics Data System (ADS)

    Shi, Lihong; Li, Yanyan; Li, Xiaofeng; Wen, Xiangping; Zhang, Guomei; Yang, Jun; Dong, Chuan; Shuang, Shaomin

    2015-04-01

    We report a facile and eco-friendly strategy for the fabrication of green fluorescent carbon nanodots (CDs), and demonstrate their applications for bio-imaging, patterning, and staining. A one-pot hydrothermal method using various plant petals yields bright green-emitting CDs, providing an easy way for the production of green fluorescent CDs without the need for a tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. The as-prepared CDs show small size distribution and excellent dispersibility. Their strong green fluorescence is observed when the excitation wavelength is between 430 nm and 490 nm. Moreover, they exhibit high tolerance to various external conditions, such as pH values, external cations, and continuous excitation. Due to minimum toxicity as well as good photoluminescence properties, these CDs can be applied to in vitro and in vivo imaging, patterning, and staining. According to confocal fluorescence imaging of human uterine cervical squamous cell carcinoma cells, CDs penetrate into the cell and enter the cytoplasm and the nucleus. More strikingly, carp is directly fed with CDs for in vivo imaging and shows bright green fluorescence at an excitation wavelength of 470 nm. In addition, the obtained CDs are used as fluorescent inks for drawing luminescence patterns. Finally, we also apply the CDs as a fluorescent dye. Interestingly, the absorbent filter paper with staining emits dramatic fluorescence under 470 nm excitation.We report a facile and eco-friendly strategy for the fabrication of green fluorescent carbon nanodots (CDs), and demonstrate their applications for bio-imaging, patterning, and staining. A one-pot hydrothermal method using various plant petals yields bright green-emitting CDs, providing an easy way for the production of green fluorescent CDs without the need for a tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. The as-prepared CDs show small size distribution and excellent dispersibility. Their strong green fluorescence is observed when the excitation wavelength is between 430 nm and 490 nm. Moreover, they exhibit high tolerance to various external conditions, such as pH values, external cations, and continuous excitation. Due to minimum toxicity as well as good photoluminescence properties, these CDs can be applied to in vitro and in vivo imaging, patterning, and staining. According to confocal fluorescence imaging of human uterine cervical squamous cell carcinoma cells, CDs penetrate into the cell and enter the cytoplasm and the nucleus. More strikingly, carp is directly fed with CDs for in vivo imaging and shows bright green fluorescence at an excitation wavelength of 470 nm. In addition, the obtained CDs are used as fluorescent inks for drawing luminescence patterns. Finally, we also apply the CDs as a fluorescent dye. Interestingly, the absorbent filter paper with staining emits dramatic fluorescence under 470 nm excitation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00783f

  1. Direct and inverted reciprocal chromosome insertions between chromosomes 7 and 14 in a woman with recurrent miscarriages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying-Tai Wang; Zhao-Cai Wang; Bajalica, S.

    We present the first case of direct and inverted reciprocal chromosome insertions between human chromosomes 7 and 14, ascertained because of repeated spontaneous abortions. Prometaphase GTG banding analysis showed the karyotype to be 46, XX, inv ins (7;14)(7pter {yields} 7q11.23::14q32.2 {yields} 14q22::7q21.2 {yields} 7qter), dir ins(14;7)(14pter {yields} 14q22::7q11.23 {yields} 7q21.2::14q32.2 {yields} 14qter). Origins of the insertion have been confirmed by chromosome painting with libraries specific for chromosomes 7 and 14 using fluorescence in situ hybridization. 5 refs., 3 figs.

  2. Green Synthesis of Red-Emitting Carbon Nanodots as a Novel "Turn-on" Nanothermometer in Living Cells.

    PubMed

    Wang, Chuanxi; Jiang, Kaili; Wu, Qian; Wu, Jiapeng; Zhang, Chi

    2016-10-04

    Temperature measurements in biology and medical diagnostics, along with sensitive temperature probing of living cells, is of great importance; however, it still faces significant challenges. Herein, a novel "turn-on" carbon-dot-based fluorescent nanothermometry device for spatially resolved temperature measurements in living cells is presented. The carbon nanodots (CNDs) are prepared by a green microwave-assisted method and exhibit red fluorescence (λem =615 nm) with high quantum yields (15 %). Then, an on-off fluorescent probe is prepared for detecting glutathione (GSH) based on aggregation-induced fluorescence quenching. Interestingly, the quenched fluorescence could be recovered by increasing temperature and the CNDs-GSH mixture could behave as an off-on fluorescent probe for temperature. Thus, red-emitting CNDs can be utilized for "turn-on" fluorescent nanothermometry through the fluorescence quenching and recovery processes, respectively. We employ MC3T3-E1 cells as an example model to demonstrate the red-emitting CNDs can function as "non-contact" tools for the accurate measurement of temperature and its gradient inside a living cell. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo

    PubMed Central

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M.; Specht, Christian G.; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-01

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling. PMID:26711992

  4. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo.

    PubMed

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M; Specht, Christian G; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-19

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling.

  5. Gas response behaviour and photochemistry of borondiketonate in acrylic polymer matrices for sensing applications.

    PubMed

    Arias Espinoza, Juan Diego; Sazhnikov, Viacheslav; Smits, Edsger C P; Ionov, Dmirity; Kononevich, Yuriy; Yakimets, Iryna; Alfimov, Mikael; Schoo, Herman F M

    2014-11-01

    The fluorescent spectra in combination with gas response behavior of acrylic polymers doped with dibenzoyl(methanato)boron difluoride (DBMBF2) were studied by fluorescence spectroscopy and time-resolved fluorescence lifetime. The role of acrylic matrix polarity upon the fluorescence spectra and fluorescence lifetime was analyzed. Changes in emission of the dye doped polymers under exposure to toluene, n-hexane and ethanol were monitored. The fluorescence lifetimes were measured for the singlet excited state as well as the exciplex formed between DBMBF2 and toluene. A reduction of the transition energy to the first singlet-excited state in the four polymers was observed, compared to solution. Reversible exciplex formation, viz. a red shifted fluorescence emission was perceived when exposing the polymers to toluene, while for hexane and ethanol only reversible reduction of the fluorescence occurred. Longer singlet and shorter exciplex lifetimes were observed for non-polar matrixes. The latter mechanism is explained in function of the lower charge transfer character of the exciplex in non-polar matrixes. Additionally, the quantum yield of the dye in the polymer matrix increased almost seventh-fold compared to values for solution.

  6. Fluorescent labeling of proteins with amine-specific 1,3,2-(2H)-dioxaborine polymethine dye.

    PubMed

    Gerasov, Andriy; Shandura, Mykola; Kovtun, Yuriy; Losytskyy, Mykhaylo; Negrutska, Valentyna; Dubey, Igor

    2012-01-15

    A novel water-soluble amine-reactive dioxaborine trimethine dye was synthesized in a good yield and characterized. The potential of the dye as a specific reagent for protein labeling was demonstrated with bovine serum albumin and lysozyme. Its interaction with proteins was studied by fluorescence spectroscopy and gel electrophoresis. The covalent binding of this almost nonfluorescent dye to proteins results in a 75- to 78-fold increase of its emission intensity accompanied by a red shift of the fluorescence emission maximum by 27 to 45 nm, with fluorescence wavelengths of labeled biomolecules being more than 600 nm. The dye does not require activation for the labeling reaction and can be used in a variety of bioassay applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy†

    PubMed Central

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-soo; Torelli, Marco D.; Hamers, Robert J.; Murhpy, Catherine J.; Orr, Galya

    2015-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate eficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells. PMID:24816810

  8. Fluorescent chemosensor based on sensitive Schiff base for selective detection of Zn2+

    NASA Astrophysics Data System (ADS)

    Singh, T. Sanjoy; Paul, Pradip C.; Pramanik, Harun A. R.

    2014-03-01

    A Schiff-base fluorescent compound - N, N‧-bis(salicylidene)-1,2 - phenylenediamine (LH2) was synthesized and evaluated as a chemoselective Zn2+ sensor. Addition of Zn2+ to ethanol solution of LH2 resulted in a red shift with a pronounced enhancement in the fluorescence intensity. Moreover, other common alkali, alkaline earth and transition metal ions failed to induce response or minimal spectral changes. Notably, this chemosensor could distinguish clearly Zn2+ from Cd2+. Fluorescence studies on free Schiff base ligand LH2 and LH2 - Zn2+ complex reveal that the quantum yield strongly increases upon coordination. The stoichiometric ratio and association constant were evaluated using Benesi - Hildebrand relation giving 1:1 stoichiometry. This further corroborated 1:1 complex formation based on Job's plot analyses.

  9. Fluorescent-Spectroscopic Research of in Vivo Tissues Pathological Conditions

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Medzhidov, R. T.

    The steady-state spectra of autofluorescence and the reflection coefficient on the excitation wavelength of some stomach tissues in vivo with various pathological conditions (surface gastritis, displasia, cancer) are measured under excitation by the nitrogen laser irradiation (λex=337.1 nm). The contour expansion of obtained fluorescence spectra into contributions of components is conducted by the Gaussian-Lorentzian curves method. It is shown that at least 7 groups of fluorophores forming a total luminescence spectrum can be distinguished during the development of displasia and tumor processes. The correlation of intensities of flavins and NAD(P)·H fluorescence is determined and the degree of respiratory activity of cells for the functional condition considered is estimated. The evaluations of the fluorescence quantum yield of the tissue's researched are given.

  10. Stationary spectroscopy of biotissues in vivo: Fluorescent studies of some pathological states

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Medzhidov, R. T.

    2003-11-01

    The stationary spectra of autofluorescence, along with the reflection coefficient at the wavelength of excitation, are measured in vivo for some stomach tissues in the case of different pathological states (dysplasia, superficial gastritis, and cancer) using a nitrogen laser as the source of excitation (λrad=337.1 nm). The fluorescence spectra obtained are decomposed into Gaussian-Lorentzian components. It is found that, in development of dysplasia and tumor processes, at least seven groups of fluorophores can be distinguished that form the entire emission spectrum. The ratio between the fluorescence intensities of flavins and NAD(P)H is determined and the degree of respiratory activity of cells estimated for the states considered. The quantum yields of fluorescence of the biotissues under investigation are estimated.

  11. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localizationmore » patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.« less

  12. Sentinel lymph nodes fluorescence detection and imaging using Patent Blue V bound to human serum albumin

    PubMed Central

    Tellier, Franklin; Steibel, Jérôme; Chabrier, Renée; Blé, François Xavier; Tubaldo, Hervé; Rasata, Ravelo; Chambron, Jacques; Duportail, Guy; Simon, Hervé; Rodier, Jean-François; Poulet, Patrick

    2012-01-01

    Patent Blue V (PBV), a dye used clinically for sentinel lymph node detection, was mixed with human serum albumin (HSA). After binding to HSA, the fluorescence quantum yield increased from 5 × 10−4 to 1.7 × 10−2, which was enough to allow fluorescence detection and imaging of its distribution. A detection threshold, evaluated in scattering test objects, lower than 2.5 nmol × L−1 was obtained, using a single-probe setup with a 5-mW incident light power. The detection sensitivity using a fluorescence imaging device was in the µmol × L−1 range, with a noncooled CCD camera. Preclinical evaluation was performed on a rat model and permitted to observe inflamed nodes on all animals. PMID:23024922

  13. Chlorxanthomycin, a Fluorescent, Chlorinated, Pentacyclic Pyrene from a Bacillus sp.†

    PubMed Central

    Magyarosy, Andrew; Ho, Jonathan Z.; Rapoport, Henry; Dawson, Scott; Hancock, Joe; Keasling, Jay D.

    2002-01-01

    A gram-positive Bacillus sp. that fluoresces yellow under long-wavelength UV light on several common culture media was isolated from soil samples. On the basis of carbon source utilization studies, fatty acid methyl ester analysis, and 16S ribosomal DNA analysis, this bacterium was most similar to Bacillus megaterium. Chemical extraction yielded a yellow-orange fluorescent pigment, which was characterized by X-ray crystallography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The fluorescent compound, chlorxanthomycin, is a pentacyclic, chlorinated molecule with the molecular formula C22H15O6Cl and a molecular weight of 409.7865. Chlorxanthomycin appears to be located in the cytoplasm, does not diffuse out of the cells into the culture medium, and has selective antibiotic activity. PMID:12147512

  14. Certain tricyclic and pentacyclic-hetero nitrogen rhodol dyes

    DOEpatents

    Haugland, Richard P.; Whitaker, James E.

    1993-01-01

    Novel fluorescent dyes based on the rhodol structure are provided. The new reagents contain functional groups capable of forming a stable fluorescent product with functional groups typically found in biomolecules or polymers including amines, phenols, thiols, acids, aldehydes and ketones. Reactive groups in the rhodol dyes include activated esters, isothiocyanates, amines, hydrazines, halides, acids, azides, maleimides, aldehydes, alcohols, acrylamides and haloacetamides. The products are detected by their absorbance or fluorescence properties. The spectral properties of the fluorescent dyes are sufficiently similar in wavelengths and intensity to fluorescein or rhodamine derivatives as to permit use of the same equipment. The dyes, however, show less spectral sensitivity to pH in the physiological range than does fluorescein, have higher solubility in non-polar solvents and have improved photostability and quantum yields.

  15. Highly soluble 3,4-(dimethoxyphenylthio) substituted phthalocyanines: Synthesis, photophysical and photochemical studies

    NASA Astrophysics Data System (ADS)

    Öztürk, Cansu; Erdoğmuş, Ali; Durmuş, Mahmut; Uğur, Ahmet Lütfi; Kılıçarslan, Fatma Aytan; Erden, İbrahim

    2012-02-01

    The synthesis of a new 3,4-(dimethoxyphenylthio) substituted phthalonitrile ( 1) and its soluble metal free ( 2), zinc (II) ( 3), oxo-titanium (IV) ( 4) and nickel (II) ( 5) phthalocyanine derivatives are reported for the first time. The new compounds have been characterized by elemental analysis, FT-IR, 1H NMR, UV-Vis, fluorescence spectroscopies and mass spectra. General trends are described for fluorescence, photodegradation and singlet oxygen quantum yields and fluorescence lifetimes of oxo-titanium (IV) and zinc (II) phthalocyanine compounds in dimethylsulfoxide (DMSO). The effects of the metal ion on the photophysical and photochemical parameters for these phthalocyanines ( 3 and 4) are also reported.

  16. New fluorescent probes for detection and characterization of amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Gorbenko, Galyna; Trusova, Valeriya; Kirilova, Elena; Kirilov, Georgiy; Kalnina, Inta; Vasilev, Aleksey; Kaloyanova, Stefka; Deligeorgiev, Todor

    2010-08-01

    The applicability of the novel fluorescent probes, aminoderivative of benzanthrone ABM, squaraine dye SQ-1 and polymethine dye V2 to identification and structural analysis of amyloid fibrils has been evaluated using the lysozyme model system in which fibrillar aggregates have been formed in concentrated ethanol solution. The association constant, binding stoichiometry and molar fluorescence of the bound dye have been determined. ABM was found to surpass classical amyloid marker ThT in the sensitivity to the presence of fibrillar aggregates. Resonance energy transfer measurements involving ABM-SQ-1 and SQ-1-V2 donor-acceptor pairs yielded the limits for fractal-like dimension of lysozyme fibrils.

  17. Fluorescence of carotenoids. Effect of oxygenation and cis/trans isomerization

    NASA Astrophysics Data System (ADS)

    Jørgensen, Kevin; Stapelfeldt, Henrik; Skibsted, Leif H.

    1992-03-01

    C 40 carotenoids fall, with respect to fluorescence in homogeneous solution, into two distinct groups depending on the presence of a CO group in the molecule. Excitation spectra agree with absorption spectra for the carbonyl derivatives astaxanthin and canthaxanthin. In contrast, zeaxanthin and isomers of β-carotene have a twentyfold increase in fluorescence quantum yield for excitation around 350 nm compared to excitation near the absorption maximum (at approximatively 430 nm). These differences are interpreted in terms of the role of non-emitting 1(n, π*) states related to the CO group in facilitating non-radiative deactivation of higher 1(π, π*) states.

  18. Fast repetition rate (FRR) fluorometer and method for measuring fluorescence and photosynthetic parameters

    DOEpatents

    Kolber, Z.; Falkowski, P.

    1995-06-20

    A fast repetition rate fluorometer device and method for measuring in vivo fluorescence of phytoplankton or higher plants chlorophyll and photosynthetic parameters of phytoplankton or higher plants is revealed. The phytoplankton or higher plants are illuminated with a series of fast repetition rate excitation flashes effective to bring about and measure resultant changes in fluorescence yield of their Photosystem II. The series of fast repetition rate excitation flashes has a predetermined energy per flash and a rate greater than 10,000 Hz. Also, disclosed is a flasher circuit for producing the series of fast repetition rate flashes. 14 figs.

  19. Picosecond time-resolved fluorescence spectroscopy of K-590 in the bacteriorhodopsin photocycle.

    PubMed Central

    Atkinson, G H; Blanchard, D; Lemaire, H; Brack, T L; Hayashi, H

    1989-01-01

    The fluorescence spectrum of a distinct isometric and conformational intermediate formed on the 10(-11) s time scale during the bacteriorhodopsin (BR) photocycle is observed at room temperature using a two laser, pump-probe technique with picosecond time resolution. The BR photocycle is initiated by pulsed (8 ps) excitation at 565 nm, whereas the fluorescence is generated by 4-ps laser pulses at 590 nm. The unstructured fluorescence extends from 650 to 880 nm and appears in the same general spectral region as the fluorescence spectrum assigned to BR-570. The transient fluorescence spectrum can be distinguished from that assigned to BR-570 by a larger emission quantum yield (approximately twice that of BR-570) and by a maximum intensity near 731 nm (shifted 17 nm to higher energy from the maximum of the BR-570 fluorescence spectrum). The fluorescence spectrum of BR-570 only is measured with low energy, picosecond pulsed excitation at 590 nm and is in good agreement with recent data in the literature. The assignment of the transient fluorescence spectrum to the K-590 intermediate is based on its appearance at time delays longer than 40 ps. The K-590 fluorescence spectrum remains unchanged over the entire 40-100-ps interval. The relevance of these fluorescence data with respect to the molecular mechanism used to model the primary processes in the BR photocycle also is discussed. PMID:2713439

  20. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions

    PubMed Central

    Mishra, Anamika; Höermiller, Imke I; Heyer, Arnd G; Nedbal, Ladislav

    2011-01-01

    Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a collection of nine Arabidopsis thaliana accessions and compared their fluorescence features with cold tolerance quantified by the well established electrolyte leakage method on detached leaves. We found that, during progressive cooling, the minimal chlorophyll fluorescence emission rose strongly and that this rise was highly dependent on the cold tolerance of the accessions. Maximum quantum yield of PSII photochemistry and steady state fluorescence normalized to minimal fluorescence were also highly correlated to the cold tolerance measured by the electrolyte leakage method. In order to further increase the capacity of the fluorescence detection to reveal the low temperature tolerance, we applied combinatorial imaging that employs plant classification based on multiple fluorescence features. We found that this method, by including the resolving power of several fluorescence features, can be well employed to detect cold tolerance already at mild sub-zero temperatures. Therefore, there is no need to freeze the screened plants to the largely damaging temperatures of around −15°C. This, together with the method's easy applicability, represents a major advantage of the fluorescence technique over the conventional electrolyte leakage method. PMID:21427532

  1. Aneuploidy detection for chromosomes 1, X and Y by fluorescence in situ hybridization in human sperm from oligoasthenoteratozoospermic patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, M.G.; Zackowski, J.L.; Acosta, A.A.

    1994-09-01

    Oligoasthenoteratozoospermic males (n=15) were investigated for infertility as compared with proven fertile donors. The oligoasthenoteratozoospermic population showed a mean sperm concentration of 9.7 x 10{sup 6}/ml (Range 4.2-19.7), mean motility of 38.5% (Range 10.6-76.8) and morphology (measured by the percentage of normal forms evaluated by strict criteria) with a mean of 3.49% (Range 1.5-5.0). Fluorescence in situ hybridization (FISH) using satellite DNA probes specific for chromosomes 1 (puc 1.77), X (alpha satellite), and Y (satellite-III at Yqh) was performed on human interphase sperm nuclei. DNA probes were either directly labelled with rhodamine-dUTP, FITC-dUTP, or biotinylated by nick translation. Hybridization andmore » signal detection were done by routine laboratory protocols. Microscopic analysis was performed using a cooled CCD camera attached to an epi-fluorescent microscope. After hybridization, fertile donors yielded a frequency of 0.96% (n=12) nullisomic, 98.5% (n=1231) monosomic and 0.96% (n=12) disomic for chromosome 1, whereas oligoasthenoteratozoospermic males yielded a frequency of 16% (n=600) nullisomic, 74.5% (n=2792) monosomic and 9.9% (n=370) disomic. In addition, fertile donors yielded a frequency of 45.7% (n=633) monosomic and 0.7% (n=11) disomic for chromosome X, whereas oligoasthenoteratozoospermic males yielded a frequency of 38.7% (n=760) monosomic and 0.8% (n=13) disomic. Chromosome Y frequencies for fertile donors showed 44.6% (n=614) monosomic and 0.6% (n=2) disomic, whereas oligoasthenoteratozoospermic males yielded a frequency of 33.2% (n=701) monosomic and 0.8% (n=15) disomic. This suggests that the frequency of nullisomy for chromosome 1 is significantly higher (p<0.001) in sperm from oligoasthenoteratozoospermic makes versus sperm from our fertile donors. We conclude that FISH is a powerful tool to determine the frequency of aneuploidy in sperm from oligoasthenoteratozoospermic patients.« less

  2. Can we Predict Quantum Yields Using Excited State Density Functional Theory for New Families of Fluorescent Dyes?

    NASA Astrophysics Data System (ADS)

    Kohn, Alexander W.; Lin, Zhou; Shepherd, James J.; Van Voorhis, Troy

    2016-06-01

    For a fluorescent dye, the quantum yield characterizes the efficiency of energy transfer from the absorbed light to the emitted fluorescence. In the screening among potential families of dyes, those with higher quantum yields are expected to have more advantages. From the perspective of theoreticians, an efficient prediction of the quantum yield using a universal excited state electronic structure theory is in demand but still challenging. The most representative examples for such excited state theory include time-dependent density functional theory (TDDFT) and restricted open-shell Kohn-Sham (ROKS). In the present study, we explore the possibility of predicting the quantum yields for conventional and new families of organic dyes using a combination of TDDFT and ROKS. We focus on radiative (kr) and nonradiative (knr) rates for the decay of the first singlet excited state (S_1) into the ground state (S_0) in accordance with Kasha's rule. M. Kasha, Discuss. Faraday Soc., 9, 14 (1950). For each dye compound, kr is calculated with the S_1-S_0 energy gap and transition dipole moment obtained using ROKS and TDDFT respectively at the relaxed S_1 geometry. Our predicted kr agrees well with the experimental value, so long as the order of energy levels is correctly predicted. Evaluation of knr is less straightforward as multiple processes are involved. Our study focuses on the S_1-T_1 intersystem crossing (ISC) and the S_1-S_0 internal conversion (IC): we investigate the properties that allow us to model the knr value using a Marcus-like expression, such as the Stokes shift, the reorganization energy, and the S_1-T_1 and S_1-S_0 energy gaps. Taking these factors into consideration, we compare our results with those obtained using the actual Marcus theory and provide explanation for discrepancy. T. Kowalczyk, T. Tsuchimochi, L. Top, P.-T. Chen, and T. Van Voorhis, J. Chem. Phys., 138, 164101 (2013). M. Kasha, Discuss. Faraday Soc., 9, 14 (1950).

  3. Comparison of multiple enzyme activatable near infrared fluorescent molecular probes for detection and quantification of inflammation in murine colitis models

    PubMed Central

    Ding, Shengli; Blue, Randal E.; Morgan, Douglas R.; Lund, Pauline K.

    2015-01-01

    Background Activatable near-infrared fluorescent (NIRF) probes have been used for ex vivo and in vivo detection of intestinal tumors in animal models. We hypothesized that NIRF probes activatable by cathepsins or MMPs will detect and quantify dextran sulphate sodium (DSS) induced acute colonic inflammation in wild type (WT) mice or chronic colitis in IL-10 null mice ex vivo or in vivo. Methods WT mice given DSS, water controls and IL-10 null mice with chronic colitis were administered probes by retro-orbital injection. FMT2500 LX system imaged fresh and fixed intestine ex vivo and mice in vivo. Inflammation detected by probes was verified by histology and colitis scoring. NIRF signal intensity was quantified using 2D region of interest (ROI) ex vivo or 3D ROI-analysis in vivo. Results Ex vivo, seven probes tested yielded significant higher NIRF signals in colon of DSS treated mice versus controls. A subset of probes was tested in IL-10 null mice and yielded strong ex vivo signals. Ex vivo fluorescence signal with 680 series probes was preserved after formalin fixation. In DSS and IL-10 null models, ex vivo NIRF signal strongly and significantly correlated with colitis scores. In vivo, ProSense680, CatK680FAST and MMPsense680 yielded significantly higher NIRF signals in DSS treated mice than controls but background was high in controls. Conclusion Both cathepsin or MMP-activated NIRF-probes can detect and quantify colonic inflammation ex vivo. ProSense680 yielded the strongest signals in DSS colitis ex vivo and in vivo, but background remains a problem for in vivo quantification of colitis. PMID:24374874

  4. Photochemical properties of squarylium cyanine dyes.

    PubMed

    Ferreira, D P; Conceição, D S; Ferreira, V R A; Graça, V C; Santos, P F; Vieira Ferreira, L F

    2013-11-01

    This study presents several new squarylium dyes derived from benzothiazole and benzoselenazole with several structural variations, namely the nature of the heteroaromatic ring and the length of the N,N'-dialkyl groups. Before being investigated in connection with their effect on living cells and/or tissues, these novel compounds were characterized, namely with respect to the determination of their main photophysical parameters. Therefore, a study of the ground state absorption, fluorescence emission (quantum yields and lifetimes) and singlet oxygen generation quantum yields was performed for all the compounds synthesized in order to evaluate their efficiency as photosensitizers. An increase of the alkyl chain length from ethyl to hexyl did not produce a clear change in the fluorescence quantum yields, showing no influence on the photoisomerization process. Heavy atom inclusion (Se instead of S) enhanced the singlet oxygen generation efficiency and decreased the intensity of the fluorescence emission. The external heavy atom effect (I(-) as a counterion instead of CF3SO3(-)) produced a significant increase in the singlet oxygen formation quantum yield (about 20%). Transient absorption studies in aerated and oxygen free samples revealed that the photoisomerization process, which could compete with the triplet state formation for all dyes in solution, is a negligible pathway for the excited state deactivation, in accordance with the rigidity introduced by the squaric ring into the polymethine chain of the dye, both in chloroform and ethanol. However, in the case of the chloroform solution a new transient was detected in air equilibrated solutions, resulting from a reaction of the excited squarylium dye in the singlet state with CHCl3˙, and assigned to the radical cation (SQ(+)˙) of the dye.

  5. Temperature-induced labelling of Fluo-3 AM selectively yields brighter nucleus in adherent cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Guixian; Pan, Leiting, E-mail: plt@nankai.edu.cn; Li, Cunbo

    2014-01-17

    Highlights: •We detailedly examine temperature effects of Fluo-3 AM labelling in adherent cells. •4 °C Loading and 20 °C de-esterification of Fluo-3 AM yields brighter nuclei. •Brighter nuclei labelling by Fluo-3 AM also depends on cell adhesion quality. •A qualitative model of the brighter nucleus is proposed. -- Abstract: Fluo-3 is widely used to study cell calcium. Two traditional approaches: (1) direct injection and (2) Fluo-3 acetoxymethyl ester (AM) loading, often bring conflicting results in cytoplasmic calcium ([Ca{sup 2+}]{sub c}) and nuclear calcium ([Ca{sup 2+}]{sub n}) imaging. AM loading usually yields a darker nucleus than in cytoplasm, while direct injectionmore » always induces a brighter nucleus which is more responsive to [Ca{sup 2+}]{sub n} detection. In this work, we detailedly investigated the effects of loading and de-esterification temperatures on the fluorescence intensity of Fluo-3 in response to [Ca{sup 2+}]{sub n} and [Ca{sup 2+}]{sub c} in adherent cells, including osteoblast, HeLa and BV2 cells. Interestingly, it showed that fluorescence intensity of nucleus in osteoblast cells was about two times larger than that of cytoplasm when cells were loaded with Fluo-3 AM at 4 °C and allowed a subsequent step for de-esterification at 20 °C. Brighter nuclei were also acquired in HeLa and BV2 cells using the same experimental condition. Furthermore, loading time and adhesion quality of cells had effect on fluorescence intensity. Taken together, cold loading and room temperature de-esterification treatment of Fluo-3 AM selectively yielded brighter nucleus in adherent cells.« less

  6. The Effect of Intense Laser Radiation on Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Young, Stephen Michael Radley

    1991-02-01

    Available from UMI in association with The British Library. Requires signed TDF. We have carried out theoretical and experimental studies into the effect of intense laser radiation on atomic collisions. The first experiment used neon. Excitation by electron impact in a gas discharge demanded a pressure of at least 0.075 Torr. Measurement of the intensity of 3^1S_0to 3^1P_1 fluorescence has been made for the case where high intensity ASE wings in the laser profile and background laser scatter are unimportant, with the laser tuned to resonance. The field intensity required to produce strong field fluorescence (exemplified by the Mollow triplet) was found to give rise to complications capable of screening the effects sought. Our theoretical model has suggested that at finite detunings, line-centre fluorescence will dominate Rayleigh scatter and omega_3 fluorescence. Our measurements provide information on the saturation of neon fluorescence but not of the variation of the intense field collision rate. Absorption of weak field 253.7 nm laser photons by ground state mercury atoms yielded a high 6 ^3P_1 population at a lower pressure of 0.02 Torr. The Mollow triplet has been observed in the self-broadened mercury system. Dressing of the upper transition (6^3P_1rightarrow 7^3S_1) by an intense laser close to 435.8 nm yielded the strong field signal. Polarisation studies were made possible by the 3-level mercury system (radiation trapping in a 2-level system would depolarise fluorescence) perturbed by argon. The studies yielded results that were explainable in terms of the selective population of Stark shifted dressed states by a detuned, weak probe field. Use has been made of the electric-dipole radiation selection rule m_{J}=0 rightarrow m_{J^' } = 0 unless J=J^' to devise a 'Stark shift collision switch'. The competition between collision and radiation induced transitions within the mercury atom has then been studied. The resonant, strong lambda 435.8 nm field was used in conjunction with the weak lambda 253.7 nm field detuned by 0 to 6 cm^ {-1}. Measurement of fluorescence intensity in two perpendicular planes of polarisation has revealed the dominant | e_1> to | e_2> excitation channel as a function of the Stark shift by way of the U.V. detuning. Competition between the channels was dependent on the generalised Rabi frequency. However, we could only monitor the relative strength of the channels and were thus unable to say that the Stark shift switched collisions off. (Abstract shortened by UMI.).

  7. Tolerance of a Knotted Near-Infrared Fluorescent Protein to Random Circular Permutation.

    PubMed

    Pandey, Naresh; Kuypers, Brianna E; Nassif, Barbara; Thomas, Emily E; Alnahhas, Razan N; Segatori, Laura; Silberg, Jonathan J

    2016-07-12

    Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFPs to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified 27 circularly permuted iRFPs that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants that initiated translation within the PAS and GAF domains were discovered. Circularly permuted iRFPs retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a quantum yield similar to that of iRFPs but exhibited increased resistance to chemical denaturation, suggesting that the observed increase in the magnitude of the signal arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step toward the creation of near-infrared biosensors with expanded chemical sensing functions for in vivo imaging.

  8. Tolerance of a knotted near infrared fluorescent protein to random circular permutation

    PubMed Central

    Pandey, Naresh; Kuypers, Brianna E.; Nassif, Barbara; Thomas, Emily E.; Alnahhas, Razan N.; Segatori, Laura; Silberg, Jonathan J.

    2016-01-01

    Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFP to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified twenty seven circularly permuted iRFP that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants were discovered that initiated translation within the PAS and GAF domains. Circularly permuted iRFP retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a similar quantum yield as iRFP, but exhibited increased resistance to chemical denaturation, suggesting that the observed signal increase arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step towards the creation of near-infrared biosensors with expanded chemical-sensing functions for in vivo imaging. PMID:27304983

  9. Water-Soluble Nonconjugated Polymer Nanoparticles with Strong Fluorescence Emission for Selective and Sensitive Detection of Nitro-Explosive Picric Acid in Aqueous Medium.

    PubMed

    Liu, Shi Gang; Luo, Dan; Li, Na; Zhang, Wei; Lei, Jing Lei; Li, Nian Bing; Luo, Hong Qun

    2016-08-24

    Water-soluble nonconjugated polymer nanoparticles (PNPs) with strong fluorescence emission were prepared from hyperbranched poly(ethylenimine) (PEI) and d-glucose via Schiff base reaction and self-assembly in aqueous phase. Preparation of the PEI-d-glucose (PEI-G) PNPs was facile (one-pot reaction) and environmentally friendly under mild conditions. Also, PEI-G PNPs showed a high fluorescence quantum yield in aqueous solution, and the fluorescence properties (such as concentration- and solvent-dependent fluorescence) and origin of intrinsic fluorescence were investigated and discussed. PEI-G PNPs were then used to develop a fluorescent probe for fast, selective, and sensitive detection of nitro-explosive picric acid (PA) in aqueous medium, because the fluorescence can be easily quenched by PA whereas other nitro-explosives and structurally similar compounds only caused negligible quenching. A wide linear range (0.05-70 μM) and a low detection limit (26 nM) were obtained. The fluorescence quenching mechanism was carefully explored, and it was due to a combined effect of electron transfer, resonance energy transfer, and inner filter effect between PA and PEI-G PNPs, which resulted in good selectivity and sensitivity for PA. Finally, the developed sensor was successfully applied to detection of PA in environmental water samples.

  10. Intrinsic photosensitizer fluorescence measured using multi-diameter single-fiber spectroscopy in vivo

    NASA Astrophysics Data System (ADS)

    van Leeuwen-van Zaane, Floor; Gamm, Ute A.; van Driel, Pieter B. A. A.; Snoeks, Thomas J.; de Bruijn, Henriette S.; van der Ploeg-van den Heuvel, Angelique; Sterenborg, Henricus J. C. M.; Löwik, Clemens W.; Amelink, Arjen; Robinson, Dominic J.

    2014-01-01

    Quantification of fluorescence in vivo is complicated by the influence of tissue optical properties on the collected fluorescence signal. When tissue optical properties in the measurement volume are quantified, one can obtain the intrinsic fluorescence, which equals the product of fluorophore absorption coefficient and quantum yield. We applied this method to in vivo single-fiber fluorescence spectroscopy measurements on mouse tongue, skin, liver, and oral squamous cell carcinoma, where we detected intrinsic fluorescence spectra of the photosensitizers chlorin e6 and Bremachlorin at t=[3,4.5,6,24,48] h incubation time. We observed a tissue-dependent maximum of 35% variation in the total correction factor over the visible wavelength range. Significant differences in spectral shape over time between sensitizers were observed. Although the wavelength position of the fluorescence intensity maximum for ce6 shifted to the red, Bremachlorin showed a blue shift. Furthermore, the Bremachlorin peak appeared to be broader than the ce6 fluorescence peak. Intrinsic fluorescence intensity, which can be related to photosensitizer concentration, was decreasing for all time points but showed significantly more Bremachlorin present compared to ce6 at long incubation times. Results from this study can be used to define an optimal treatment protocol for Bremachlorin-based photodynamic therapy.

  11. Photosynthetic Physiological Response of Radix Isatidis (Isatis indigotica Fort.) Seedlings to Nicosulfuron

    PubMed Central

    Ning, Na; Wen, Yinyuan; Dong, Shuqi; Yin, Meiqiang; Guo, Meijun; Wang, Binqiang; Feng, Lei; Guo, Pingyi

    2014-01-01

    Radix Isatidis (Isatis indigotica Fort.) is one of the most important traditional Chinese medicine plants. However, there is no suitable herbicide used for weed control in Radix Isatidis field during postemergence stage. To explore the safety of sulfonylurea herbicide nicosulfuron on Radix Isatidis (Isatis indigotica Fort.) seedlings and the photosynthetic physiological response of the plant to the herbicide, biological mass, leaf area, photosynthetic pigment content, photosynthetic rate, chlorophyll fluorescence characteristics, and P700 parameters of Radix Isatidis seedlings were analyzed 10 d after nicosulfuron treatment at 5th leaf stage in this greenhouse research. The results showed that biological mass, total chlorophyll, chlorophyll a, and carotenoids content, photosynthetic rate, stomatal conductance, PS II maximum quantum yield, PS II effective quantum yield, PS II electron transport rate, photochemical quenching, maximal P700 change, photochemical quantum yield of PS I, and PS I electron transport rate decreased with increasing herbicide concentrations, whereas initial fluorescence, quantum yield of non-regulated energy dissipation in PS II and quantum yield of non-photochemical energy dissipation due to acceptor side limitation in PS I increased. It suggests that nicosulfuron ≥1 mg L−1 causes the damage of chloroplast, PS II and PS I structure. Electron transport limitations in PS I receptor side, and blocked dark reaction process may be the main cause of the significantly inhibited growth and decreased photosynthetic rate of Radix Isatidis seedlings. PMID:25165819

  12. B(E2)↑ Measurements for Radioactive Neutron-Rich Ge Isotopes: Reaching the N=50 Closed Shell

    NASA Astrophysics Data System (ADS)

    Padilla-Rodal, E.; Galindo-Uribarri, A.; Baktash, C.; Batchelder, J. C.; Beene, J. R.; Bijker, R.; Brown, B. A.; Castaños, O.; Fuentes, B.; del Campo, J. Gomez; Hausladen, P. A.; Larochelle, Y.; Lisetskiy, A. F.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego, J. P.; Varner, R. L.; Yu, C.-H.

    2005-03-01

    The B(E2;0+1→2+1) values for the radioactive neutron-rich germanium isotopes 78,80Ge and the closed neutron shell nucleus 82Ge were measured at the HRIBF using Coulomb excitation in inverse kinematics. These data allow a study of the systematic trend between the subshell closures at N=40 and 50. The B(E2) behavior approaching N=50 is similar to the trend observed for heavier isotopic chains. A comparison of the experimental results with a shell model calculation demonstrates persistence of the N=50 shell gap and a strong sensitivity of the B(E2) values to the effective interaction.

  13. Systematics of first 2+ state g factors around mass 80

    NASA Astrophysics Data System (ADS)

    Mertzimekis, T. J.; Stuchbery, A. E.; Benczer-Koller, N.; Taylor, M. J.

    2003-11-01

    The systematics of the first 2+ state g factors in the mass 80 region are investigated in terms of an IBM-II analysis, a pairing-corrected geometrical model, and a shell-model approach. Subshell closure effects at N=38 and overall trends were examined using IBM-II. A large-space shell-model calculation was successful in describing the behavior for N=48 and N=50 nuclei, where single-particle features are prominent. A schematic truncated-space calculation was applied to the lighter isotopes. The variations of the effective boson g factors are discussed in connection with the role of F -spin breaking, and comparisons are made between the mass 80 and mass 180 regions.

  14. Papain-templated Cu nanoclusters: assaying and exhibiting dramatic antibacterial activity cooperating with H2O2

    NASA Astrophysics Data System (ADS)

    Miao, Hong; Zhong, Dan; Zhou, Zinan; Yang, Xiaoming

    2015-11-01

    Herein, papain-functionalized Cu nanoclusters (CuNCs@Papain) were originally synthesized in aqueous solution together with a quantum yield of 14.3%, and showed obviously red fluorescence at 620 nm. Meanwhile, their corresponding fluorescence mechanism was fully elucidated by fluorescence spectroscopy, HR-TEM, FTIR spectroscopy, and XPS. Subsequently, the as-prepared CuNCs were employed as probes for detecting H2O2. Using CuNCs as probes, H2O2 was determined in the range from 1 μM to 50 μM based on a linear decrease of fluorescence intensity as well as a detection limit of 0.2 μM with a signal-to-noise ratio of 3. More significantly, it has been proved that CuNCs could convert H2O2 to &z.rad;OH, which exhibited dramatic antibacterial activity. Both in vitro and in vivo experiments were performed to validate their antibacterial activity against Gram-positive/negative bacteria and actual wound infection, suggesting their potential for serving as one type of promising antibacterial material.Herein, papain-functionalized Cu nanoclusters (CuNCs@Papain) were originally synthesized in aqueous solution together with a quantum yield of 14.3%, and showed obviously red fluorescence at 620 nm. Meanwhile, their corresponding fluorescence mechanism was fully elucidated by fluorescence spectroscopy, HR-TEM, FTIR spectroscopy, and XPS. Subsequently, the as-prepared CuNCs were employed as probes for detecting H2O2. Using CuNCs as probes, H2O2 was determined in the range from 1 μM to 50 μM based on a linear decrease of fluorescence intensity as well as a detection limit of 0.2 μM with a signal-to-noise ratio of 3. More significantly, it has been proved that CuNCs could convert H2O2 to &z.rad;OH, which exhibited dramatic antibacterial activity. Both in vitro and in vivo experiments were performed to validate their antibacterial activity against Gram-positive/negative bacteria and actual wound infection, suggesting their potential for serving as one type of promising antibacterial material. Electronic supplementary information (ESI) available: Relevant figures. See DOI: 10.1039/c5nr05362e

  15. Stepwise synthesis and characterization of germa[4], [5], [8], and [10]pericyclynes.

    PubMed

    Tanimoto, Hiroki; Nagao, Tomohiko; Fujiwara, Taro; Nishiyama, Yasuhiro; Morimoto, Tsumoru; Suzuka, Toshimasa; Tsutsumi, Ken; Kakiuchi, Kiyomi

    2015-07-14

    The stepwise syntheses of germa[N]pericyclynes, including [5]pericyclynes, and their characterization are described. The yields of germa[4] and [8]pericyclynes were improved significantly compared to those obtained in previous studies. The routes reported herein afforded the novel germa[5] and [10]pericyclynes, which were characterized by X-ray crystallography, UV-Vis spectroscopy, and fluorescence emission spectroscopy. A unique fluorescence emission was observed for the large germa[10]pericyclyne ring.

  16. Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging

    NASA Astrophysics Data System (ADS)

    Hamon, Casey L.; Dorsey, Christopher L.; Özel, Tuğba; Barnes, Eugenia M.; Hudnall, Todd W.; Betancourt, Tania

    2016-07-01

    Nanoparticles are being readily investigated as carriers for the delivery of imaging and therapeutic agents for the detection, monitoring, and treatment of cancer and other diseases. In the present work, the preparation of biodegradable polymeric nanoparticles loaded with a near-infrared fluorescent aza-boron dipyrromethene (NIR-BODIPY ) derivative, and their use as contrast agents for optical imaging in cancer are described. Nanoparticles were prepared by nanoprecipitation of amphiphilic block copolymers of poly(lactic acid) and poly(ethylene glycol). The size, morphology, dye loading, spectral properties, quantum yield, cytocompatibility, and in vitro NIR imaging potential of the nanoparticles in breast and ovarian cancer cells were evaluated. Spherical nanoparticles of 30-70 nm in diameter were loaded with 0.73 w/w% BODIPY derivative. At this loading, the dye presented a fluorescence quantum yield in the same order of magnitude as in solution. Nanoparticle suspensions at concentrations up to 580 μg/mL were cytocompatible to breast (MDA-MB-231) and ovarian (SKOV-3 and Caov-3) cancer cells after a four-hour incubation period. Fluorescence microscopy images demonstrated the ability of the nanoparticles to act as imaging agents in all three cell lines in as little as 1 hour. The results shown indicate the potential of these NIR-BODIPY-loaded nanoparticles as contrast agents for near-infrared optical imaging in cancer.

  17. Quenching Enhancement of the Singlet Excited State of Pheophorbide-a by DNA in the Presence of the Quinone Carboquone

    PubMed Central

    Díaz-Espinosa, Yisaira; Crespo-Hernández, Carlos E.; Alegría, Antonio E.; García, Carmelo; Arce, Rafael

    2011-01-01

    Changes in the emission fluorescence intensity of pheophorbide-a (PHEO) in the presence of carboquone (CARBOQ) were used to obtain the association constant, the number of CARBOQ molecules interacting with PHEO, and the fluorescence quantum yield of the complex. Excitation spectra of mixtures of PHEO and CARBOQ in ethanol (EtOH) show an unresolved doublet in the red-most excitation band of PHEO, indicating the formation of a loose ground-state complex. The 1:1 CARBOQ–PHEO complex shows a higher fluorescence quantum yield in EtOH (0.41 ± 0.02) than in buffer solution (0.089 ± 0.002), which is also higher than that of the PHEO monomer (0.28). Quenching of the PHEO fluorescence by DNA nucleosides and double-stranded oligonucleotides was also observed and the bimolecular quenching rate constants were determined. The quenching rate constant increase as the oxidation potential of the DNA nucleoside increases. Larger quenching constants were obtained in the presence of CARBOQ suggesting that CARBOQ enhances DNA photo-oxidation, presumably by inhibiting the back–electron-transfer reaction from the photoreduced PHEO to the oxidized base. Thus, the enhanced DNA-base photosensitized oxidation by PHEO in the presence of CARBOQ may be related to the large extent by which this quinone covalently binds to DNA, as previously reported. PMID:21138440

  18. User-Friendly End Station at the ALS for Nanostructure Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. J. Himpsel; P. Alivisatos; T. Callcott

    2006-07-05

    This is a construction project for an end station at the ALS, which is optimized for measuring NEXAFS of nanostructures with fluorescence detection. Compared to the usual electron yield detection, fluorescence is able to probe buried structures and is sensitive to dilute species, such as nanostructures supported on a substrate. Since the quantum yield for fluorescence is 10{sup -4}-10{sup -5} times smaller than for electrons in the soft x-ray regime, such an end station requires bright undulator beamlines at the ALS. In order to optimize the setup for a wide range of applications, two end stations were built: (1) Amore » simple, mobile chamber with efficient photon detection (>10{sup 4} times the solid angle collection of fluorescence spectrographs) and a built-in magnet for MCD measurements at EPU beamlines (Fig. 1 left). It allows rapid mapping the electronic states of nanostructures (nanocrystals, nanowires, tailored magnetic materials, buried interfaces, biologically-functionalized surfaces). It was used with BL 8.0 (linear polarized undulator) and BL 4.0 (variable polarization). (2) A sophisticated, stationary end station operating at Beamline 8.0 (Fig. 1 right). It contains an array of surface characterization instruments and a micro-focus capability for scanning across graded samples (wedges for thickness variation, stoichiometry gradients, and general variations of the sample preparation conditions for optimizing nanostructures).« less

  19. Maize histone H2B-mCherry: a new fluorescent chromatin marker for somatic and meiotic chromosome research.

    PubMed

    Howe, Elizabeth S; Clemente, Thomas E; Bass, Hank W

    2012-06-01

    Cytological studies of fluorescent proteins are rapidly yielding insights into chromatin structure and dynamics. Here we describe the production and cytological characterization of new transgenic maize lines expressing a fluorescent histone fusion protein, H2B-mCherry. The transgene is expressed under the control of the maize ubiquitin1 promoter, including its first exon and intron. Polymerase chain reaction-based genotyping and root-tip microscopy showed that most of the lines carrying the transgene also expressed it, producing bright uniform staining of nuclei. Further, plants showing expression in root tips at the seedling stage also showed expression during meiosis, late in the life cycle. Detailed high-resolution three-dimensional imaging of cells and nuclei from various somatic and meiotic cell types showed that H2B-mCherry produced remarkably clear images of chromatin and chromosome fiber morphology, as seen in somatic, male meiotic prophase, and early microgametophyte cells. H2B-mCherry also yielded distinct nucleolus staining and was shown to be compatible with fluorescence in situ hybridization. We found several instances where H2B-mCherry was superior to DAPI as a generalized chromatin stain. Our study establishes these histone H2B-mCherry lines as new biological reagents for visualizing chromatin structure, chromosome morphology, and nuclear dynamics in fixed and living cells in a model plant genetic system.

  20. Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer.

    PubMed

    Ale, Angelique; Ermolayev, Vladimir; Deliolanis, Nikolaos C; Ntziachristos, Vasilis

    2013-05-01

    The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method. Despite this progress, the detection sensitivity of targeted fluorescence agents remains limited by nonspecific background accumulation of the fluorochrome employed, which complicates early detection of murine cancers. Therefore we examine whether x-ray CT information and bulk fluorescence detection can be combined to increase detection sensitivity. Correspondingly, we research the performance of a data-driven fluorescence background estimator employed for subtraction of background fluorescence from acquisition data. Using mice containing known fluorochromes ex vivo, we demonstrate the reduction of background signals from reconstructed images and sensitivity improvements. Finally, by applying the method to in vivo data from K-ras transgenic mice developing lung cancer, we find small tumors at an early stage compared with reconstructions performed using raw data. We conclude with the benefits of employing fluorescence subtraction in hybrid FMT-XCT for early detection studies.

  1. Analyzing Intracellular Binding and Diffusion with Continuous Fluorescence Photobleaching

    PubMed Central

    Wachsmuth, Malte; Weidemann, Thomas; Müller, Gabriele; Hoffmann-Rohrer, Urs W.; Knoch, Tobias A.; Waldeck, Waldemar; Langowski, Jörg

    2003-01-01

    Transport and binding of molecules to specific sites are necessary for the assembly and function of ordered supramolecular structures in cells. For analyzing these processes in vivo, we have developed a confocal fluorescence fluctuation microscope that allows both imaging of the spatial distribution of fluorescent molecules with confocal laser scanning microscopy and probing their mobility at specific positions in the cell with fluorescence correlation spectroscopy and continuous fluorescence photobleaching (CP). Because fluorescence correlation spectroscopy is restricted to rapidly diffusing particles and CP to slower processes, these two methods complement each other. For the analysis of binding-related contributions to mobility we have derived analytical expressions for the temporal behavior of CP curves from which the bound fraction and/or the dissociation rate or residence time at binding sites, respectively, can be obtained. In experiments, we investigated HeLa cells expressing different fluorescent proteins: Although enhanced green fluorescent protein (EGFP) shows high mobility, fusions of histone H2B with the yellow fluorescent protein are incorporated into chromatin, and these nuclei exhibit the presence of a stably bound and a freely diffusing species. Nonpermanent binding was found for mTTF-I, a transcription termination factor for RNA polymerase I, fused with EGFP. The cells show fluorescent nucleoli, and binding is transient. CP yields residence times for mTTF-I-EGFP of ∼13 s. PMID:12719264

  2. Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching.

    PubMed

    Wachsmuth, Malte; Weidemann, Thomas; Müller, Gabriele; Hoffmann-Rohrer, Urs W; Knoch, Tobias A; Waldeck, Waldemar; Langowski, Jörg

    2003-05-01

    Transport and binding of molecules to specific sites are necessary for the assembly and function of ordered supramolecular structures in cells. For analyzing these processes in vivo, we have developed a confocal fluorescence fluctuation microscope that allows both imaging of the spatial distribution of fluorescent molecules with confocal laser scanning microscopy and probing their mobility at specific positions in the cell with fluorescence correlation spectroscopy and continuous fluorescence photobleaching (CP). Because fluorescence correlation spectroscopy is restricted to rapidly diffusing particles and CP to slower processes, these two methods complement each other. For the analysis of binding-related contributions to mobility we have derived analytical expressions for the temporal behavior of CP curves from which the bound fraction and/or the dissociation rate or residence time at binding sites, respectively, can be obtained. In experiments, we investigated HeLa cells expressing different fluorescent proteins: Although enhanced green fluorescent protein (EGFP) shows high mobility, fusions of histone H2B with the yellow fluorescent protein are incorporated into chromatin, and these nuclei exhibit the presence of a stably bound and a freely diffusing species. Nonpermanent binding was found for mTTF-I, a transcription termination factor for RNA polymerase I, fused with EGFP. The cells show fluorescent nucleoli, and binding is transient. CP yields residence times for mTTF-I-EGFP of approximately 13 s.

  3. Light propagation and fluorescence quantum yields in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Buck, C.; Gramlich, B.; Wagner, S.

    2015-09-01

    For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.

  4. Gritty Surface Sample Holder Invented To Obtain Correct X-ray Absorption Fine Structure Spectra for Concentrated Materials by Fluorescence Yield.

    PubMed

    Abe, Hitoshi; Niwa, Yasuhiro; Kimura, Masao; Murakami, Youichi; Yokoyama, Toshiharu; Hosono, Hideo

    2016-04-05

    A gritty surface sample holder has been invented to obtain correct XAFS spectra for concentrated samples by fluorescence yield (FY). Materials are usually mixed with boron nitride (BN) to prepare proper concentrations to measure XAFS spectra. Some materials, however, could not be mixed with BN and would be measured in too concentrated conditions to obtain correct XAFS spectra. Consequently, XAFS spectra will be incorrect typically with decreased intensities of the peaks. We have invented the gritty surface sample holders to obtain correct XAFS spectra even for concentrated materials for FY measurements. Pure Cu and CuO powders were measured mounted on the sample holders, and the same spectra were obtained as transmission spectra of properly prepared samples. This sample holder is useful to measure XAFS for any concentrated materials.

  5. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asakura, Daisuke; Hosono, Eiji; Nanba, Yusuke

    2016-03-07

    Here, we evaluate the utilities of fluorescence-yield (FY) modes in soft X-ray absorption spectroscopy (XAS) of several cathodematerials for Li-ion batteries. In the case of total-FY (TFY) XAS for LiNi 0.5Mn 1.5O 4, the line shape of the Mn L 3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the Ni L 3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY) spectra. We found that, in the cathodematerials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are usefulmore » enough for the Ni L edge which is far from the O K edge.« less

  6. Determination of total x-ray absorption coefficient using non-resonant x-ray emission

    PubMed Central

    Achkar, A. J.; Regier, T. Z.; Monkman, E. J.; Shen, K. M.; Hawthorn, D. G.

    2011-01-01

    An alternative measure of x-ray absorption spectroscopy (XAS) called inverse partial fluorescence yield (IPFY) has recently been developed that is both bulk sensitive and free of saturation effects. Here we show that the angle dependence of IPFY can provide a measure directly proportional to the total x-ray absorption coefficient, µ(E). In contrast, fluorescence yield (FY) and electron yield (EY) spectra are offset and/or distorted from µ(E) by an unknown and difficult to measure amount. Moreover, our measurement can determine µ(E) in absolute units with no free parameters by scaling to µ(E) at the non-resonant emission energy. We demonstrate this technique with measurements on NiO and NdGaO3. Determining µ(E) across edge-steps enables the use of XAS as a non-destructive measure of material composition. In NdGaO3, we also demonstrate the utility of IPFY for insulating samples, where neither EY or FY provide reliable spectra due to sample charging and self-absorption effects, respectively. PMID:22355697

  7. Laser induced fluorescence and phosphorescence of matrix isolated glyoxal - Evidence for exciplex formation in the A 1Au and a 3Au states

    NASA Technical Reports Server (NTRS)

    Van Ijzendoorn, L. J.; Baas, F.; Koernig, S.; Greenberg, J. M.; Allamandola, L. J.

    1986-01-01

    Laser-induced fluorescence and phosphorescence as well as infrared and visible absorption spectra of glyoxal in Ar, N2, and CO matrices are presented and analyzed. Glyoxal in its first excited electronic state is shown to form an exciplex with its nearest neighbors in all three matrices, and transitions normally forbidden dominate the emission spectra. The spectral characteristics of these complexes are similar to those of the Ar-glyoxal complex found in supersonic beam experiments. Due to the matrix cage effect, no vibrational predissociation is observed. The phosphorescence lifetime is determined and an upper limit is given for the fluorescence lifetime. This, in combination with the relative intensities of fluorescence and phosphorescence, can be used to place limits on the quantum yields of the various relaxation processes.

  8. Time-resolved tryptophan fluorescence in photosynthetic reaction centers from Rhodobacter sphaeroides

    NASA Technical Reports Server (NTRS)

    Godik, V. I.; Blankenship, R. E.; Causgrove, T. P.; Woodbury, N.

    1993-01-01

    Tryptophan fluorescence of reaction centers isolated from Rhodobacter sphaeroides, both stationary and time-resolved, was studied. Fluorescence kinetics were found to fit best a sum of four discrete exponential components. Half of the initial amplitude was due to a component with a lifetime of congruent to 60 ps, belonging to Trp residues, capable of efficient transfer of excitation energy to bacteriochlorophyll molecules of the reaction center. The three other components seem to be emitted by Trp ground-state conformers, unable to participate in such a transfer. Under the influence of intense actinic light, photooxidizing the reaction centers, the yield of stationary fluorescence diminished by congruent to 1.5 times, while the number of the kinetic components and their life times remained practically unchanged. Possible implications of the observed effects for the primary photosynthesis events are considered.

  9. Aggregation-Induced Emission (AIE) Fluorophore Exhibits a Highly Ratiometric Fluorescent Response to Zn2+ in vitro and in Human Liver Cancer Cells.

    PubMed

    Mehdi, Hassan; Gong, Weitao; Guo, Huimin; Watkinson, Michael; Ma, Hua; Wajahat, Ali; Ning, Guiling

    2017-09-21

    Two novel organic fluorophores, containing bis-naphthylamide and quinoline motifs, have been designed and synthesized. One of the fluorophores contains an isobutylene unit and exhibits a significant aggregation-induced emission (AIE) and a remarkable highly selective ratiometric fluorescence response towards Zn 2+ in solution as well as in human liver cancer cells. The AIE behavior of this fluorophore was fully verified by fluorescence and UV/Vis spectroscopy, quantum yield calculations, and single-crystal X-ray diffraction, which revealed an intricate crystal packing system. Conversely, a fluorophore that lacks the isobutylene moiety did not exhibit any significant fluorescent properties as a result of its more flexible molecular structure that presumably allows free intramolecular rotational processes to occur. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters.

    PubMed

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Elastic Organic Crystals of a Fluorescent π-Conjugated Molecule.

    PubMed

    Hayashi, Shotaro; Koizumi, Toshio

    2016-02-18

    An elastic organic crystal of a π-conjugated molecule has been fabricated. A large fluorescent single crystal of 1,4-bis[2-(4-methylthienyl)]-2,3,5,6-tetrafluorobenzene (over 1 cm long) exhibited a fibril lamella morphology based on slip-stacked molecular wires, and it was found to be a remarkably elastic crystalline material. The straight crystal was capable of bending more than 180° under applied stress and then quickly reverted to its original shape upon relaxation. In addition, the fluorescence quantum yield of the crystal was about twice that of the compound in THF solution. Mechanical bending-relaxation resulted in reversible change of the morphology and fluorescence. This research offers a more general approach to flexible crystals as a promising new family of organic semiconducting materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Quninolylthiazole Derivatives as an ICT-Based Fluorescent Probe of Hg(II) and its Application in Ratiometric Imaging in Live HeLa Cells.

    PubMed

    Bai, Jian-Ying; Xie, Yu-Zhong; Wang, Chang-Jiang; Fang, Shu-Qing; Cao, Lin-Nan; Wang, Ling-Li; Jin, Jing-Yi

    2018-05-28

    As a structural analogue of pyridylthiazole, 2-(2-benzothiazoyl)-phenylethynylquinoline (QBT) was designed as a fluorescent probe for Hg(II) based on an intramolecular charge transfer (ICT) mechanism. The compound was synthesized in three steps starting from 6-bromo-2-methylquinoline, with moderate yield. Corresponding studies on the optical properties of QBT indicate that changes in the fluorescence ratio of QBT in response to Hg(II) could be quantified based on dual-emission changes. More specifically, the emission spectrum of QBT before and after interactions with Hg(II) exhibited a remarkable red shift of about 120 nm, which is rarely reported in ICT-based fluorescent sensors. Finally, QBT was applied in the two-channel imaging of Hg(II) in live HeLa cells.

  13. Emission behaviors of unsymmetrical 1,3-diaryl-β-diketones: A model perfectly disclosing the effect of molecular conformation on luminescence of organic solids

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao; Li, Feng; Han, Shenghua; Zhang, Yufei; Jiao, Chuanjun; Wei, Jinbei; Ye, Kaiqi; Wang, Yue; Zhang, Hongyu

    2015-03-01

    A series of unsymmetrical 1,3-diaryl-β-diketones 1-6 displaying molecular conformation-dependent fluorescence quantum yields have been synthesized. Crystals with planar molecular conformation such as 1, 2, 3 and 4 are highly fluorescent (φf: 39-53%), and the one holding slightly twisted conformation (5) is moderately luminescent (φf = 17%), while crystal 6 possessing heavily bent structure is completely nonluminous (φf ~ 0). The distinct fluorescence efficiencies are ascribed to their different molecular conformations, since all the crystals hold the same crystal system, space group and crystal packing structures. Additionally, the fluorescent crystals 1-5 display low threshold amplified spontaneous emission (ASE) with small full widths at half-maximum (FWHM: 3-7 nm), indicating their potential as candidates for organic crystal lasing devices.

  14. Absolute 1* quantum yields for the ICN A state by diode laser gain versus absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I* quantum yields were measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The temperature yields are obtained by the technique of time-resolved diode laser gain-versus-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 +/- 2% and it falls off to 53.4 +/- 2% and 44.0 +/- 4% at 284 and 248 respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I* quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I* yields. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I* yield results.

  15. Is the flower fluorescence relevant in biocommunication?

    PubMed

    Iriel, Analía; Lagorio, María Gabriela

    2010-10-01

    Flower fluorescence has been previously proposed as a potential visual signal to attract pollinators. In this work, this point was addressed by quantitatively measuring the fluorescence quantum yield (Φ(f)) for flowers of Bellis perennis (white, yellow, pink, and purple), Ornithogalum thyrsoides (petals and ovaries), Limonium sinuatum (white and yellow), Lampranthus productus (yellow), Petunia nyctaginiflora (white), Bougainvillea spectabilis (white and yellow), Antirrhinum majus (white and yellow), Eustoma grandiflorum (white and blue), Citrus aurantium (petals and stigma), and Portulaca grandiflora (yellow). The highest values were obtained for the ovaries of O. thyrsoides (Φ(f) = 0.030) and for Citrus aurantium petals (Φ(f) = 0.014) and stigma (Φ(f) = 0.013). Emitted photons as fluorescence were compared with reflected photons. It was concluded that the fluorescence emission is negligible compared to the reflected light, even for the most fluorescent samples, and it may not be considered as an optical signal in biocommunication. The work was complemented with the calculation of quantum catches for each studied flower species to describe the visual sensitization of eye photoreceptors.

  16. One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-cysteine in aqueous solution.

    PubMed

    Yang, Xiaoming; Feng, Yuanjiao; Zhu, Shanshan; Luo, Yawen; Zhuo, Yan; Dou, Yao

    2014-10-17

    Herein, an innovative and simple strategy for synthesizing high fluorescent Cu nanoclusters was successfully established while L-cysteine played a role as the stabilizer. Meaningfully, the current Cu nanoclusters together with a quantum yield of 14.3% were prepared in aqueous solution, indicating their extensive applications. Subsequently, the possible fluorescence mechanism was elucidated by fluorescence, UV-vis, HR-TEM, FTIR, XPS, and MS. Additionally, the CuNCs were employed for assaying Hg(2+) on the basis of the interactions between Hg(2+) and L-cysteine; thus facilitating the quenching of their fluorescence. The proposed analytical strategy permitted detections of Hg(2+) in a linear range of 1.0×10(-7) mol L(-1)×10(-3) mol L(-1), with a detection limit of 2.4×10(-8) mol L(-1) at a signal-to-noise ratio of 3. Significantly, this CuNCs described here were further applied for coding and fluorescent staining, suggesting may broaden avenues toward diverse applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Excitation-resolved multispectral method for imaging pharmacokinetic parameters in dynamic fluorescent molecular tomography

    NASA Astrophysics Data System (ADS)

    Chen, Maomao; Zhou, Yuan; Su, Han; Zhang, Dong; Luo, Jianwen

    2017-04-01

    Imaging of the pharmacokinetic parameters in dynamic fluorescence molecular tomography (DFMT) can provide three-dimensional metabolic information for biological studies and drug development. However, owing to the ill-posed nature of the FMT inverse problem, the relatively low quality of the parametric images makes it difficult to investigate the different metabolic processes of the fluorescent targets with small distances. An excitation-resolved multispectral DFMT method is proposed; it is based on the fact that the fluorescent targets with different concentrations show different variations in the excitation spectral domain and can be considered independent signal sources. With an independent component analysis method, the spatial locations of different fluorescent targets can be decomposed, and the fluorescent yields of the targets at different time points can be recovered. Therefore, the metabolic process of each component can be independently investigated. Simulations and phantom experiments are carried out to evaluate the performance of the proposed method. The results demonstrated that the proposed excitation-resolved multispectral method can effectively improve the reconstruction accuracy of the parametric images in DFMT.

  18. PH-sensitive fluorescence detection by diffuse fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Li, Jiao; Gao, Feng; Duan, Linjing; Wang, Xin; Zhang, Limin; Zhao, Huijuan

    2012-03-01

    The importance of cellular pH has been shown clearly in the study of cell activity, pathological feature, drug metabolism, etc. Monitoring pH changes of living cells and imaging the regions with abnormal pH values in vivo could provide the physiologic and pathologic information for the research of the cell biology, pharmacokinetics, diagnostics and therapeutics of certain diseases such as cancer. Thus, pH-sensitive fluorescence imaging of bulk tissues has been attracting great attention in the regime of near-infrared diffuse fluorescence tomography (DFT), an efficient small-animal imaging tool. In this paper, the feasibility of quantifying pH-sensitive fluorescence targets in turbid medium is investigated using both time-domain and steady-state DFT methods. By use of the specifically designed time-domain and continuous-wave systems and the previously proposed image reconstruction scheme, we validate the method through 2-dimensional imaging experiments on a small-animal-sized phantom with multiply targets of distinct pH values. The results show that the approach can localize the targets with reasonable accuracy and achieve quantitative reconstruction of the pH-sensitive fluorescent yield.

  19. Ensemble and Single-Molecule Studies on Fluorescence Quenching in Transition Metal Bipyridine-Complexes

    PubMed Central

    Brox, Dominik; Kiel, Alexander; Wörner, Svenja Johanna; Pernpointner, Markus; Comba, Peter; Martin, Bodo; Herten, Dirk-Peter

    2013-01-01

    Beyond their use in analytical chemistry fluorescent probes continuously gain importance because of recent applications of single-molecule fluorescence spectroscopy to monitor elementary reaction steps. In this context, we characterized quenching of a fluorescent probe by different metal ions with fluorescence spectroscopy in the bulk and at the single-molecule level. We apply a quantitative model to explain deviations from existing standard models for fluorescence quenching. The model is based on a reversible transition from a bright to a dim state upon binding of the metal ion. We use the model to estimate the stability constants of complexes with different metal ions and the change of the relative quantum yield of different reporter dye labels. We found ensemble data to agree widely with results from single-molecule experiments. Our data indicates a mechanism involving close molecular contact of dye and quenching moiety which we also found in molecular dynamics simulations. We close the manuscript with a discussion of possible mechanisms based on Förster distances and electrochemical potentials which renders photo-induced electron transfer to be more likely than Förster resonance energy transfer. PMID:23483966

  20. Excited-state properties of nucleic acid components

    NASA Astrophysics Data System (ADS)

    Salet, C.; Bensasson, R. V.; Becker, R. S.

    1981-12-01

    Measurements were made of the fluorescence and phosphorescence spectra and lifetimes, and also of the absorption spectra, lifetimes, extinction coefficients, and quantum yields of the T1 lower triplet states of thymine, uracil, their N, N'-dimethyl derivatives, thymidine, thymidine monophosphate, uridine, and uridine monophosphate in various solvents at 300 °K. The influence of the solvent on the quantum yield of the T1 state of nucleic acid components is discussed.

Top