Science.gov

Sample records for subsonic aircraft plume

  1. The Role of HO(x) in Super- and Subsonic Aircraft Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Hanisco, T. F.; Wennberg, P. O.; Cohen, R. C.; Anderson, J. G.; Fahey, D. W.; Keim, E. R.; Gao, R. S.; Wamsley, R. C.; Donnelly, S. G.; DelNegro, L. A.; hide

    1997-01-01

    The generation of sulfuric acid aerosols in aircraft exhaust has emerged as a critical issue in determining the impact of supersonic aircraft on stratospheric ozone. It has long been held that the first step in the mechanism of aerosol formation is the oxidation of SO2 emitted from the engine by OH in the exhaust plume. We report in situ measurements of OH and HO2 in the exhaust plumes of a supersonic (Air France Concorde) and a subsonic (NASA ER-2) aircraft in the lower stratosphere. These measurements imply that reactions with OH are responsible for oxidizing only a small fraction of SO2 (2%), and thus cannot explain the large number of particles observed in the exhaust wake of the Concorde.

  2. The Role of HO(x) in Super- and Subsonic Aircraft Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Hanisco, T. F.; Wennberg, P. O.; Cohen, R. C.; Anderson, J. G.; Fahey, D. W.; Keim, E. R.; Gao, R. S.; Wamsley, R. C.; Donnelly, S. G.; DelNegro, L. A.; hide

    1997-01-01

    The generation of sulfuric acid aerosols in aircraft exhaust has emerged as a critical issue in determining the impact of supersonic aircraft on stratospheric ozone. It has long been held that the first step in the mechanism of aerosol formation is the oxidation of SO2, emitted from the engine by OH in the exhaust plume. We report in situ measurements of OH and HO, in the exhaust plumes of a supersonic (Air France Concorde) and a subsonic (NASA ER-2) aircraft in the lower stratosphere. These measurements imply that reactions with OH are responsible for oxidizing only a small fraction of SO2 (2%), and thus cannot explain the large number of particles observed in the exhaust wake of the Concorde.

  3. The Kinetic Nonequilibrium Processes in the Internal Flow and in the Plume of Subsonic and Supersonic Aircrafts

    NASA Technical Reports Server (NTRS)

    Starik, Alexander M.

    1997-01-01

    (1) Our results show that under combustion of thermal destruction products of n-C8H18, and other hydrocarbon fuels with air at the equivalent ratio -0.5 and less the chemical equilibrium is not realized at the exit plane of combustion chamber and in the gas turbine and nozzle for most of small components such as NO2, NO3, HNO, HNO2, HNO3, N(x)H(y), HO2, OH. The chemical equilibrium is not realized in the internal flow of ramjet hydrogen combustion engine too. So at the nozzle exit plane both of gas-turbine hydrocarbon combustion engine and of ramjet hydrogen combustion engine the relatively large values of concentration of such small components as NO3, HNO2, N2O, HNO3, HNO, NH, N2H, HO2, H2O2 may be realized. The exact definition of these component concentration as well as concentration of NO(x), OH, SO2, O, H, H2, H2O at the nozzle exit plane is very important for plume chemistry. (2) The results which were obtained for subsonic and hypersonic aircrafts indicate on the considerable change of the composition of the gas mixture along the plume. This change can be caused not only by the mixture of combustion products with the atmosphere air but by proceeding of whole complex of nonequilibrium photochemical reactions. The photodissociation processes begin to influence on the formation of the free atoms and radicals at flight altitude H greater than or equal to 18 km. Neglect of these processes can result in essential (up to 10(exp 4) times) mistakes of values gamma(sub OH), gamma(sub O), gamma(sub H), gamma(sub HSO3) and some products of CFC's disintegration. It was found that penetration of Cl-containing species from the atmosphere into the exhaust flow and its interaction with nitrogen oxides leads to essential increasing of the concentration of Cl, Cl2, ClO2, ClNO3, CH3Cl and sometimes HCl and the decreasing of ClO concentration by comparison with background values. The results of our analysis show that the plume aircraft with both hydrocarbon and hydrogen

  4. Subsonic Aircraft Safety Icing Study

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Reveley, Mary S.; Evans, Joni K.; Barrientos, Francesca A.

    2008-01-01

    NASA's Integrated Resilient Aircraft Control (IRAC) Project is one of four projects within the agency s Aviation Safety Program (AvSafe) in the Aeronautics Research Mission Directorate (ARMD). The IRAC Project, which was redesigned in the first half of 2007, conducts research to advance the state of the art in aircraft control design tools and techniques. A "Key Decision Point" was established for fiscal year 2007 with the following expected outcomes: document the most currently available statistical/prognostic data associated with icing for subsonic transport, summarize reports by subject matter experts in icing research on current knowledge of icing effects on control parameters and establish future requirements for icing research for subsonic transports including the appropriate alignment. This study contains: (1) statistical analyses of accident and incident data conducted by NASA researchers for this "Key Decision Point", (2) an examination of icing in other recent statistically based studies, (3) a summary of aviation safety priority lists that have been developed by various subject-matter experts, including the significance of aircraft icing research in these lists and (4) suggested future requirements for NASA icing research. The review of several studies by subject-matter experts was summarized into four high-priority icing research areas. Based on the Integrated Resilient Aircraft Control (IRAC) Project goals and objectives, the IRAC project was encouraged to conduct work in all of the high-priority icing research areas that were identified, with the exception of the developing of methods to sense and document actual icing conditions.

  5. Subsonic Ultra Green Aircraft Research

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2011-01-01

    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  6. Atmospheric Effects of Subsonic Aircraft: Interim Assessment Report of the Advanced Subsonic Technology Program

    NASA Technical Reports Server (NTRS)

    Friedl, Randall R. (Editor)

    1997-01-01

    This first interim assessment of the subsonic assessment (SASS) project attempts to summarize concisely the status of our knowledge concerning the impacts of present and future subsonic aircraft fleets. It also highlights the major areas of scientific uncertainty, through review of existing data bases and model-based sensitivity studies. In view of the need for substantial improvements in both model formulations and experimental databases, this interim assessment cannot provide confident numerical predictions of aviation impacts. However, a number of quantitative estimates are presented, which provide some guidance to policy makers.

  7. Study of LH2 fueled subsonic passenger transport aircraft

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1976-01-01

    The potential of using liquid hydrogen as fuel in subsonic transport aircraft was investigated to explore an expanded matrix of passenger aircraft sizes. Aircraft capable of carrying 130 passengers 2,780 km (1500 n.mi.); 200 passengers 5,560 km (3000 n.mi.); and 400 passengers on a 9,265 km (5000 n.mi.) radius mission, were designed parametrically. Both liquid hydrogen and conventionally fueled versions were generated for each payload/range in order that comparisons could be made. Aircraft in each mission category were compared on the basis of weight, size, cost, energy utilization, and noise.

  8. Minimizing life cycle cost for subsonic commercial aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, Vicki S.

    1990-01-01

    A methodology is presented which facilitates the identification of that aircraft design concept which will incur the lowest life-cycle costs (LCCs) while meeting mission requirements. The methodology consists of an LCC module whose constituent elements calculate the costs associated with R&D, testing, evaluation, and production, as well as direct and indirect operating costs, in conjunction with the 'Flight Optimization System' conceptual design/analysis code. Provision is made in the methodology for sensitivities to advanced technologies for the subsonic commercial aircraft in question, which are optimized with respect to minimum gross weight, fuel consumption, acquisition cost, and direct operating cost.

  9. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  10. Aircraft plume signature suppression and stealth

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Gao, Jiaobo; Wang, Weina; Wang, Jilong; Xie, Junhu

    2005-01-01

    How to turning down the heat of aircraft infrared picture, how to get stealthy. To make a stealthy aircraft, designers had to consider a lot of key ingredients. This paper mainly introduces aircraft stealthy and discussed the efficiency of aircraft signature suppression. We describe testing process, measure and analyze the characteristics of aerosol scattering and absorption and present testing data of aircraft plume signature suppression. It covers the waveband from 2μm to 14μm. Another, infrared radiation temperature be minimized by a combination of temperature reduction and masking radiation temperature.

  11. The 1996 Subsonic Aircraft: Contrail and Cloud Effects Special Study

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    During April 1996 NASA, in conjunction with the DOE, will sponsor a multi-aircraft field campaign to better understand the microphysical and radiative properties of cirrus clouds, the origins of ice nuclei and cloud condensation nuclei in the upper troposphere, and the possible role that the commercial subsonic aircraft fleet might play in altering cloud or aerosol properties. The NASA ER-2 aircraft will be used as a remote sensing platform, while the NASA DC-8 aircraft will be used as an in situ measurement platform. In situ observations will include a full set of size distribution measurements from nano-meter to millimeter sizes, ice water content measurements, gas phase and condensed phase chemical measurements, ice crystal optical phase function measurements, lidar observations of cloud top and cloud base, and atmospheric state measurement. The ER-2 will have lidar, microwave ice water path measurements, as well as visible and infrared spectral measurement. In this presentation the highlights of the mission will be presented. The goal will be to address fundamental questions such as the mode of nucleation of cirrus clouds, the composition of the nuclei on which cirrus form, the degree to which aircraft impact cirrus cloud properties.

  12. Subsonic Aircraft With Regression and Neural-Network Approximators Designed

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2004-01-01

    At the NASA Glenn Research Center, NASA Langley Research Center's Flight Optimization System (FLOPS) and the design optimization testbed COMETBOARDS with regression and neural-network-analysis approximators have been coupled to obtain a preliminary aircraft design methodology. For a subsonic aircraft, the optimal design, that is the airframe-engine combination, is obtained by the simulation. The aircraft is powered by two high-bypass-ratio engines with a nominal thrust of about 35,000 lbf. It is to carry 150 passengers at a cruise speed of Mach 0.8 over a range of 3000 n mi and to operate on a 6000-ft runway. The aircraft design utilized a neural network and a regression-approximations-based analysis tool, along with a multioptimizer cascade algorithm that uses sequential linear programming, sequential quadratic programming, the method of feasible directions, and then sequential quadratic programming again. Optimal aircraft weight versus the number of design iterations is shown. The central processing unit (CPU) time to solution is given. It is shown that the regression-method-based analyzer exhibited a smoother convergence pattern than the FLOPS code. The optimum weight obtained by the approximation technique and the FLOPS code differed by 1.3 percent. Prediction by the approximation technique exhibited no error for the aircraft wing area and turbine entry temperature, whereas it was within 2 percent for most other parameters. Cascade strategy was required by FLOPS as well as the approximators. The regression method had a tendency to hug the data points, whereas the neural network exhibited a propensity to follow a mean path. The performance of the neural network and regression methods was considered adequate. It was at about the same level for small, standard, and large models with redundancy ratios (defined as the number of input-output pairs to the number of unknown coefficients) of 14, 28, and 57, respectively. In an SGI octane workstation (Silicon Graphics

  13. Propulsion System for Very High Altitude Subsonic Unmanned Aircraft

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Mockler, Ted; Maldonado, Jaime; Harp, James L., Jr.; King, Joseph F.; Schmitz, Paul C.

    1998-01-01

    This paper explains why a spark ignited gasoline engine, intake pressurized with three cascaded stages of turbocharging, was selected to power NASA's contemplated next generation of high altitude atmospheric science aircraft. Beginning with the most urgent science needs (the atmospheric sampling mission) and tracing through the mission requirements which dictate the unique flight regime in which this aircraft has to operate (subsonic flight at greater then 80 kft) we briefly explore the physical problems and constraints, the available technology options and the cost drivers associated with developing a viable propulsion system for this highly specialized aircraft. The paper presents the two available options (the turbojet and the turbocharged spark ignited engine) which are discussed and compared in the context of the flight regime. We then show how the unique nature of the sampling mission, coupled with the economic considerations pursuant to aero engine development, point to the spark ignited engine as the only cost effective solution available. Surprisingly, this solution compares favorably with the turbojet in the flight regime of interest. Finally, some remarks are made about NASA's present state of development, and future plans to flight demonstrate the three stage turbocharged powerplant.

  14. Far-Field Turbulent Vortex-Wake/Exhaust Plume Interaction for Subsonic and HSCT Airplanes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Adam, Ihab; Wong, Tin-Chee

    1996-01-01

    Computational study of the far-field turbulent vortex-wake/exhaust plume interaction for subsonic and high speed civil transport (HSCT) airplanes is carried out. The Reynolds-averaged Navier-Stokes (NS) equations are solved using the implicit, upwind, Roe-flux-differencing, finite-volume scheme. The two-equation shear stress transport model of Menter is implemented with the NS solver for turbulent-flow calculation. For the far-field study, the computations of vortex-wake interaction with the exhaust plume of a single engine of a Boeing 727 wing in a holding condition and two engines of an HSCT in a cruise condition are carried out using overlapping zonal method for several miles downstream. These results are obtained using the computer code FTNS3D. The results of the subsonic flow of this code are compared with those of a parabolized NS solver known as the UNIWAKE code.

  15. Stratospheric aircraft exhaust plume and wake chemistry

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.

    1993-01-01

    Progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere is documented. A kinetic condensation model was implemented to predict heterogeneous condensation in the plume regime behind an HSCT flying in the lower stratosphere. Simulations were performed to illustrate the parametric dependence of contrail droplet growth on the exhaust condensation nuclei number density and size distribution. Model results indicate that the condensation of water vapor is strongly dependent on the number density of activated CN. Incorporation of estimates for dilution factors into a Lagrangian box model of the far-wake regime with scale-dependent diffusion indicates negligible decrease in ozone and enhancement of water concentrations of 6-13 times background, which decrease rapidly over 1-3 days. Radiative calculations indicate a net differential cooling rate of the plume about 3K/day at the beginning of the wake regime, with a total subsidence ranging between 0.4 and 1 km. Results from the Lagrangian plume model were used to estimate the effect of repeated superposition of aircraft plumes on the concentrations of water and NO(y) along a flight corridor. Results of laboratory studies of heterogeneous chemistry are also described. Kinetics of HCl, N2O5 and ClONO2 uptake on liquid sulfuric acid were measured as a function of composition and temperature. Refined measurements of the thermodynamics of nitric acid hydrates indicate that metastable dihydrate may play a role in the nucleation of more stable trihydrates PSC's.

  16. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes. [predicting afterbody drag

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-01-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  17. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-05-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  18. Infrared Signature Modeling and Analysis of Aircraft Plume

    NASA Astrophysics Data System (ADS)

    Rao, Arvind G.

    2011-09-01

    In recent years, the survivability of an aircraft has been put to task more than ever before. One of the main reasons is the increase in the usage of Infrared (IR) guided Anti-Aircraft Missiles, especially due to the availability of Man Portable Air Defence System (MANPADS) with some terrorist groups. Thus, aircraft IR signatures are gaining more importance as compared to their radar, visual, acoustic, or any other signatures. The exhaust plume ejected from the aircraft is one of the important sources of IR signature in military aircraft that use low bypass turbofan engines for propulsion. The focus of the present work is modelling of spectral IR radiation emission from the exhaust jet of a typical military aircraft and to evaluate the aircraft susceptibility in terms of the aircraft lock-on range due to its plume emission, for a simple case against a typical Surface to Air Missile (SAM). The IR signature due to the aircraft plume is examined in a holistic manner. A comprehensive methodology of computing IR signatures and its affect on aircraft lock-on range is elaborated. Commercial CFD software has been used to predict the plume thermo-physical properties and subsequently an in-house developed code was used for evaluating the IR radiation emitted by the plume. The LOWTRAN code has been used for modeling the atmospheric IR characteristics. The results obtained from these models are in reasonable agreement with some available experimental data. The analysis carried out in this paper succinctly brings out the intricacy of the radiation emitted by various gaseous species in the plume and the role of atmospheric IR transmissivity in dictating the plume IR signature as perceived by an IR guided SAM.

  19. Design Sensitivity for a Subsonic Aircraft Predicted by Neural Network and Regression Models

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Patnaik, Surya N.

    2005-01-01

    A preliminary methodology was obtained for the design optimization of a subsonic aircraft by coupling NASA Langley Research Center s Flight Optimization System (FLOPS) with NASA Glenn Research Center s design optimization testbed (COMETBOARDS with regression and neural network analysis approximators). The aircraft modeled can carry 200 passengers at a cruise speed of Mach 0.85 over a range of 2500 n mi and can operate on standard 6000-ft takeoff and landing runways. The design simulation was extended to evaluate the optimal airframe and engine parameters for the subsonic aircraft to operate on nonstandard runways. Regression and neural network approximators were used to examine aircraft operation on runways ranging in length from 4500 to 7500 ft.

  20. Study of the application of hydrogen fuel to long-range subsonic transport aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Lange, R. H.; Moore, J. W.

    1975-01-01

    The feasibility, practicability, and potential advantages/disadvantages of using liquid hydrogen as fuel in long range, subsonic transport aircraft of advanced design were studied. Both passenger and cargo-type aircraft were investigated. To provide a valid basis for comparison, conventional hydrocarbon (Jet A) fueled aircraft were designed to perform identical missions using the same advanced technology and meeting the same operational constraints. The liquid hydrogen and Jet A fueled aircraft were compared on the basis of weight, size, energy utilization, cost, noise, emissions, safety, and operational characteristics. A program of technology development was formulated.

  1. Impact of aircraft plume dynamics on airport local air quality

    NASA Astrophysics Data System (ADS)

    Barrett, Steven R. H.; Britter, Rex E.; Waitz, Ian A.

    2013-08-01

    Air quality degradation in the locality of airports poses a public health hazard. The ability to quantitatively predict the air quality impacts of airport operations is of importance for assessing the air quality and public health impacts of airports today, of future developments, and for evaluating approaches for mitigating these impacts. However, studies such as the Project for the Sustainable Development of Heathrow have highlighted shortcomings in understanding of aircraft plume dispersion. Further, if national or international aviation environmental policies are to be assessed, a computationally efficient method of modeling aircraft plume dispersion is needed. To address these needs, we describe the formulation and validation of a three-dimensional integral plume model appropriate for modeling aircraft exhaust plumes at airports. We also develop a simplified concentration correction factor approach to efficiently account for dispersion processes particular to aircraft plumes. The model is used to explain monitoring station results in the London Heathrow area showing that pollutant concentrations are approximately constant over wind speeds of 3-12 m s-1, and is applied to reproduce empirically derived relationships between engine types and peak NOx concentrations at Heathrow. We calculated that not accounting for aircraft plume dynamics would result in a factor of 1.36-2.3 over-prediction of the mean NOx concentration (depending on location), consistent with empirical evidence of a factor of 1.7 over-prediction. Concentration correction factors are also calculated for aircraft takeoff, landing and taxi emissions, providing an efficient way to account for aircraft plume effects in atmospheric dispersion models.

  2. Evaluation of laminar flow control systems concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1983-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings and reduced direct operating cost benefits would result from using LFC.

  3. Evaluation of laminar flow control systems for subsonic commercial transport aircraft: Executive summary

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1982-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings.

  4. Subsonic aircraft: Evolution and the matching of size to performance

    NASA Technical Reports Server (NTRS)

    Loftin, L. K., Jr.

    1980-01-01

    Methods for estimating the approximate size, weight, and power of aircraft intended to meet specified performance requirements are presented for both jet-powered and propeller-driven aircraft. The methods are simple and require only the use of a pocket computer for rapid application to specific sizing problems. Application of the methods is illustrated by means of sizing studies of a series of jet-powered and propeller-driven aircraft with varying design constraints. Some aspects of the technical evolution of the airplane from 1918 to the present are also briefly discussed.

  5. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  6. An Impact-Location Estimation Algorithm for Subsonic Uninhabited Aircraft

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.; Teets, Edward

    1997-01-01

    An impact-location estimation algorithm is being used at the NASA Dryden Flight Research Center to support range safety for uninhabited aerial vehicle flight tests. The algorithm computes an impact location based on the descent rate, mass, and altitude of the vehicle and current wind information. The predicted impact location is continuously displayed on the range safety officer's moving map display so that the flightpath of the vehicle can be routed to avoid ground assets if the flight must be terminated. The algorithm easily adapts to different vehicle termination techniques and has been shown to be accurate to the extent required to support range safety for subsonic uninhabited aerial vehicles. This paper describes how the algorithm functions, how the algorithm is used at NASA Dryden, and how various termination techniques are handled by the algorithm. Other approaches to predicting the impact location and the reasons why they were not selected for real-time implementation are also discussed.

  7. Energy and economic trade offs for advanced technology subsonic aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Whereas current airplanes have been designed for AR = 7, supercritical technology and much higher fuel prices will drive aspect ratio to the AR = 9-10 range. Composite materials may raise aspect ratio to about 11-12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  8. Energy and economic trade offs for advanced technology subsonic aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Whereas current airplanes have been designed for AR = 7, supercritical technology and much higher fuel prices will drive aspect ratio to the AR = 9-10 range. Composite materials may raise aspect ratio to about 11-12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  9. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  10. Theoretical prediction of interference loading on aircraft stores. Part 1: Subsonic speeds

    NASA Technical Reports Server (NTRS)

    Danfernandes, F.

    1972-01-01

    A method is developed for theoretically predicting the loading on pylon-mounted stores in subsonic compressible flow. Linear theory is used, without two-dimensional or slender body assumptions, to predict the flow field produced by the aircraft wing, nose, inlet, and pylons. The interference loading is integrated over the store length by considering the local crossflow, its axial and radial derivatives, and buoyancy. Store moment calculations under an F-4 aircraft at Mach 8 are compared to wind tunnel data. The method is computerized, and program user information is included.

  11. Study of methane fuel for subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Carson, L. K.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Daniels, E. J.

    1980-01-01

    The cost and performance were defined for commercial transport using liquid methane including its fuel system and the ground facility complex required for the processing and storage of methane. A cost and performance comparison was made with Jet A and hydrogen powered aircraft of the same payload and range capability. Extensive design work was done on cryogenic fuel tanks, insulation systems as well as the fuel system itself. Three candidate fuel tank locations were evaluated, i.e., fuselage tanks, wing tanks or external pylon tanks.

  12. Thrust modulation methods for a subsonic V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Woollett, R. R.

    1981-01-01

    Low speed wind tunnel tests were conducted to assess four methods for attaining thrust modulation for V/STOL aircraft. The four methods were: (1) fan speed change, (2) fan nozzle exit area change, (3) variable pitch rotor (VPR) fan, and (4) variable inlet guide vanes (VIGV). The interrelationships between inlet and thrust modulation system were also investigated using a double slotted inlet and thick lip inlet. Results can be summarized as: (1) the VPR and VIGV systems were the most promising, (2) changes in blade angle to obtain changes in fan thrust have significant implications for the inlet, and (3) both systems attained required level of thrust with acceptable levels of fan blade stress.

  13. The development and evaluation of advanced technology laminar-flow-control subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1978-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control (LFC) to the wings and empennage of long-range subsonic transport aircraft for initial operation in 1985. For a design mission range of 5500 n mi, advanced technology LFC and turbulent-flow aircraft were developed for a 200-passenger payload, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish optimum geometry, advanced system concepts were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. The final comparisons include consideation of maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft.

  14. Evaluation of Laminar Flow Control System Concepts for Subsonic Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1980-01-01

    Alternatives in the design of laminar flow control (LFC) subsonic commerical transport aircraft for opeation in the 1980's period were studied. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12, 038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatices in the areas of aerodynamics, structures and materials, LFC systems, leading-edge region cleaning, and integration of auxiliary systems were studied. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in DOC but provides descreases of 8.2% in gross weight and 21.7% in fuel consumption.

  15. The development and evaluation of advanced technology laminar-flow-control subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1978-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control (LFC) to the wings and empennage of long-range subsonic transport aircraft for initial operation in 1985. For a design mission range of 5500 n mi, advanced technology LFC and turbulent-flow aircraft were developed for a 200-passenger payload, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish optimum geometry, advanced system concepts were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. The final comparisons include consideation of maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft.

  16. An Overview of NASA's SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft’s mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft’s flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT’s research systems and capabilities

  17. Development of RTM and powder prepreg resins for subsonic aircraft primary structures

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Groleau, Michael R.; Bertram, James L.; Puckett, Paul M.; Maynard, Shawn J.

    1993-01-01

    Dow developed a thermoset resin which could be used to produce composites via the RTM process. The composites formed are useful at 200 F service temperatures after moisture saturation, and are tough systems that are suitable for subsonic aircraft primary structure. At NASA's request, Dow also developed a modified version of the RTM resin system which was suitable for use in producing powder prepreg. In the course of developing the RTM and powder versions of these resins, over 50 different new materials were produced and evaluated.

  18. Design Methodology for Multi-Element High-Lift Systems on Subsonic Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Pepper, R. S.; vanDam, C. P.

    1996-01-01

    The choice of a high-lift system is crucial in the preliminary design process of a subsonic civil transport aircraft. Its purpose is to increase the allowable aircraft weight or decrease the aircraft's wing area for a given takeoff and landing performance. However, the implementation of a high-lift system into a design must be done carefully, for it can improve the aerodynamic performance of an aircraft but may also drastically increase the aircraft empty weight. If designed properly, a high-lift system can improve the cost effectiveness of an aircraft by increasing the payload weight for a given takeoff and landing performance. This is why the design methodology for a high-lift system should incorporate aerodynamic performance, weight, and cost. The airframe industry has experienced rapid technological growth in recent years which has led to significant advances in high-lift systems. For this reason many existing design methodologies have become obsolete since they are based on outdated low Reynolds number wind-tunnel data and can no longer accurately predict the aerodynamic characteristics or weight of current multi-element wings. Therefore, a new design methodology has been created that reflects current aerodynamic, weight, and cost data and provides enough flexibility to allow incorporation of new data when it becomes available.

  19. Activities of NASA's Global Modeling Initiative (GMI) in the Assessment of Subsonic Aircraft Impact

    NASA Technical Reports Server (NTRS)

    Rodriquez, J. M.; Logan, J. A.; Rotman, D. A.; Bergmann, D. J.; Baughcum, S. L.; Friedl, R. R.; Anderson, D. E.

    2004-01-01

    The Intergovernmental Panel on Climate Change estimated a peak increase in ozone ranging from 7-12 ppbv (zonal and annual average, and relative to a baseline with no aircraft), due to the subsonic aircraft in the year 2015, corresponding to aircraft emissions of 1.3 TgN/year. This range of values presumably reflects differences in model input (e.g., chemical mechanism, ground emission fluxes, and meteorological fields), and algorithms. The model implemented by the Global Modeling Initiative allows testing the impact of individual model components on the assessment calculations. We present results of the impact of doubling the 1995 aircraft emissions of NOx, corresponding to an extra 0.56 TgN/year, utilizing meteorological data from NASA's Data Assimilation Office (DAO), the Goddard Institute for Space Studies (GISS), and the Middle Atmosphere Community Climate Model, version 3 (MACCM3). Comparison of results to observations can be used to assess the model performance. Peak ozone perturbations ranging from 1.7 to 2.2 ppbv of ozone are calculated using the different fields. These correspond to increases in total tropospheric ozone ranging from 3.3 to 4.1 Tg/Os. These perturbations are consistent with the IPCC results, due to the difference in aircraft emissions. However, the range of values calculated is much smaller than in IPCC.

  20. Measurements of Nucleation-Mode Particle Size Distributions in Aircraft Plumes during SULFUR 6

    NASA Technical Reports Server (NTRS)

    Brock, Charles A.; Bradford, Deborah G.

    1999-01-01

    This report summarizes the participation of the University of Denver in an airborne measurement program, SULFUR 6, which was undertaken in late September and early October of 1998 by the Deutsches Zentrum fur Luft und Raumfahrt (DLR). Scientific findings from two papers that have been published or accepted and from one manuscript that is in preparation are presented. The SULFUR 6 experiment was designed to investigate the emissions from subsonic aircraft to constrain calculations of possible atmospheric chemical and climatic effects. The University of Denver effort contributed toward the following SULFUR 6 goals: (1) To investigate the relationship between fuel sulfur content (FSC--mass of sulfur per mass of fuel) and particle number and mass emission index (El--quantity emitted per kg of fuel burned); (2) To provide upper and lower limits for the mass conversion efficiency (nu) of fuel sulfur to gaseous and particulate sulfuric acid; (3) To constrain models of volatile particle nucleation and growth by measuring the particle size distribution between 3 and 100 nm at aircraft plume ages ranging from 10(exp -1) to 10(exp 3) s; (4) To determine microphysical and optical properties and bulk chemical composition of soot particles in aircraft exhaust; and (5) To investigate the differences in particle properties between aircraft plumes in contrail and non-contrail situations. The experiment focused on emissions from the ATTAS research aircraft (a well characterized, but older technology turbojet) and from an in-service Boeing 737-300 aircraft provided by Lufthansa, with modem, high-bypass turbofan engines. Measurements were made from the DLR Dassault Falcon 900 aircraft, a modified business jet. The Atmospheric Effects of Aviation Program (AEAP) provided funding to operate an instrument, the nucleation-mode aerosol size spectrometer (N-MASS), during the SULFUR 6 campaign and to analyze the data. The N-MASS was developed at the University of Denver with the support of

  1. A Subsonic Aircraft Design Optimization With Neural Network and Regression Approximators

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.; Haller, William J.

    2004-01-01

    The Flight-Optimization-System (FLOPS) code encountered difficulty in analyzing a subsonic aircraft. The limitation made the design optimization problematic. The deficiencies have been alleviated through use of neural network and regression approximations. The insight gained from using the approximators is discussed in this paper. The FLOPS code is reviewed. Analysis models are developed and validated for each approximator. The regression method appears to hug the data points, while the neural network approximation follows a mean path. For an analysis cycle, the approximate model required milliseconds of central processing unit (CPU) time versus seconds by the FLOPS code. Performance of the approximators was satisfactory for aircraft analysis. A design optimization capability has been created by coupling the derived analyzers to the optimization test bed CometBoards. The approximators were efficient reanalysis tools in the aircraft design optimization. Instability encountered in the FLOPS analyzer was eliminated. The convergence characteristics were improved for the design optimization. The CPU time required to calculate the optimum solution, measured in hours with the FLOPS code was reduced to minutes with the neural network approximation and to seconds with the regression method. Generation of the approximators required the manipulation of a very large quantity of data. Design sensitivity with respect to the bounds of aircraft constraints is easily generated.

  2. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A study was conducted to evaluate alternatives in the design of laminar flow control (LFC) subsonic commercial transport aircraft for operation in the 1980's period. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12,038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatives were evaluated in the areas of aerodynamics structures, materials, LFC systems, leading-edge region cleaning and integration of auxiliary systems. Based on these evaluations, concept in each area were selected for further development and testing and ultimate incorporation in the final study aircraft. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in direct operating cost but provides decreases of 8.2% in gross weight and 21.7% in fuel consumption.

  3. Study of the application of hydrogen fuel to long-range subsonic transport aircraft. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Lange, R. H.; Moore, J. W.

    1975-01-01

    The feasibility of using liquid hydrogen as fuel in advanced designs of long range, subsonic transport aircraft is assessed. Both passenger and cargo type aircraft are investigated. Comparisons of physical, performance, and economic parameters of the LH2 fueled designs with conventionally fueled aircraft are presented. Design studies are conducted to determine appropriate characteristics for the hydrogen related systems required on board the aircraft. These studies included consideration of material, structural, and thermodynamic requirements of the cryogenic fuel tanks and fuel systems with the structural support and thermal protection systems.

  4. On fluttering modes for aircraft wing model in subsonic air flow

    PubMed Central

    Shubov, Marianna A.

    2014-01-01

    The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author’s papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the ‘generalized resolvent operator’, which is a meromorphic operator-valued function of the spectral parameter λ, whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this ‘circle of instability’. Explicit estimate of the ‘instability radius’ in terms of model parameters is given. PMID:25484610

  5. On fluttering modes for aircraft wing model in subsonic air flow.

    PubMed

    Shubov, Marianna A

    2014-12-08

    The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author's papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the 'generalized resolvent operator', which is a meromorphic operator-valued function of the spectral parameter λ, whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this 'circle of instability'. Explicit estimate of the 'instability radius' in terms of model parameters is given.

  6. Technologies and Concepts for Reducing the Fuel Burn of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.

    2012-01-01

    There are many technologies under development that have the potential to enable large fuel burn reductions in the 2025 timeframe for subsonic transport aircraft relative to the current fleet. This paper identifies a potential technology suite and analyzes the fuel burn reduction potential of these technologies when integrated into advanced subsonic transport concepts. Advanced tube-and-wing concepts are developed in the single aisle and large twin aisle class, and a hybrid-wing-body concept is developed for the large twin aisle class. The resulting fuel burn reductions for the advanced tube-and-wing concepts range from a 42% reduction relative to the 777-200 to a 44% reduction relative to the 737-800. In addition, the hybrid-wingbody design resulted in a 47% fuel burn reduction relative to the 777-200. Of course, to achieve these fuel burn reduction levels, a significant amount of technology and concept maturation is required between now and 2025. A methodology for capturing and tracking concept maturity is also developed and presented in this paper.

  7. FLUT - A program for aeroelastic stability analysis. [of aircraft structures in subsonic flow

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.

    1977-01-01

    A computer program (FLUT) that can be used to evaluate the aeroelastic stability of aircraft structures in subsonic flow is described. The algorithm synthesizes data from a structural vibration analysis with an unsteady aerodynamics analysis and then performs a complex eigenvalue analysis to assess the system stability. The theoretical basis of the program is discussed with special emphasis placed on some innovative techniques which improve the efficiency of the analysis. User information needed to efficiently and successfully utilize the program is provided. In addition to identifying the required input, the flow of the program execution and some possible sources of difficulty are included. The use of the program is demonstrated with a listing of the input and output for a simple example.

  8. Propulsion system studies for an advanced high subsonic, long range jet commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Propulsion system characteristics for a long range, high subsonic (Mach 0.90 - 0.98), jet commercial transport aircraft are studied to identify the most desirable cycle and engine configuration and to assess the payoff of advanced engine technologies applicable to the time frame of the late 1970s to the mid 1980s. An engine parametric study phase examines major cycle trends on the basis of aircraft economics. This is followed by the preliminary design of two advanced mixed exhaust turbofan engines pointed at two different technology levels (1970 and 1985 commercial certification for engines No. 1 and No. 2, respectively). The economic penalties of environmental constraints - noise and exhaust emissions - are assessed. The highest specific thrust engine (lowest bypass ratio for a given core technology) achievable with a single-stage fan yields the best economics for a Mach 0.95 - 0.98 aircraft and can meet the noise objectives specified, but with significant economic penalties. Advanced technologies which would allow high temperature and cycle pressure ratios to be used effectively are shown to provide significant improvement in mission performance which can partially offset the economic penalties incurred to meet lower noise goals. Advanced technology needs are identified; and, in particular, the initiation of an integrated fan and inlet aero/acoustic program is recommended.

  9. Modeling the Effects of Aircraft Emissions on Atmospheric Photochemistry Using Layered Plume Dynamics

    NASA Astrophysics Data System (ADS)

    Cameron, M. A.; Jacobson, M. Z.; Naiman, A. D.; Lele, S. K.

    2012-12-01

    Aviation is an expanding industry, experiencing continued growth and playing an increasingly noticed role in upper tropospheric/lower stratospheric composition. Nitrogen oxides and other gas-phase emissions from aircraft react to affect ozone photochemistry. This research investigates the effects of treating aircraft gas-phase chemistry within an expanding layered plume versus at the grid scale. SMVGEAR II, a sparse-matrix, vectorized Gear-type solver for ordinary differential equations, is used to solve chemical equations at both the grid scale and subgrid scale. A Subgrid Plume Model (SPM) is used to advance the expanding plume, accounting for wind shear and diffusion. Simulations suggest that using a layered plume approach results in noticeably different final NOx concentrations, demonstrating the importance of these plume dynamics in predicting the effects of aircraft on ozone concentrations. Results showing the effects of a layered plume, single plume, and no plume on ozone after several hours will be presented.

  10. Model Assessment of the Impact on Ozone of Subsonic and Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm; Weisenstein, Debra; Danilin, Michael; Scott, Courtney; Shia, Run-Lie

    2000-01-01

    This is the final report for work performed between June 1999 through May 2000. The work represents continuation of the previous contract which encompasses five areas: (1) continued refinements and applications of the 2-D chemistry-transport model (CTM) to assess the ozone effects from aircraft operation in the stratosphere; (2) studying the mechanisms that determine the evolution of the sulfur species in the aircraft plume and how such mechanisms affect the way aircraft sulfur emissions should be introduced into global models; (3) the development of diagnostics in the AER 3-wave interactive model to assess the importance of the dynamics feedback and zonal asymmetry in model prediction of ozone response to aircraft operation; (4) the development of a chemistry parameterization scheme in support of the global modeling initiative (GMI); and (5) providing assessment results for preparation of national and international reports which include the "Aviation and the Global Atmosphere" prepared by the Intergovernmental Panel on Climate Change, "Assessment of the effects of high-speed aircraft in the stratosphere: 1998" by NASA, and the "Model and Measurements Intercomparison II" by NASA. Part of the work was reported in the final report. We participated in the SAGE III Ozone Loss and Validation Experiment (SOLVE) campaign and we continue with our analyses of the data.

  11. Hyper-spectral imaging of aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer; Bradley, Kenneth; Gross, Kevin; Perram, Glen; Marciniak, Michael

    2008-10-01

    An imaging Fourier-transform spectrometer has been used to determine low spatial resolution temperature and chemical species concentration distributions of aircraft jet engine exhaust plumes. An overview of the imaging Fourier transform spectrometer and the methodology of the project is presented. Results to date are shared and future work is discussed. Exhaust plume data from a Turbine Technologies, LTD, SR-30 turbojet engine at three engine settings was collected using a Telops Field-portable Imaging Radiometric Spectrometer Technology Mid-Wave Extended (FIRST-MWE). Although the plume exhibited high temporal frequency fluctuations, temporal averaging of hyper-spectral data-cubes produced steady-state distributions, which, when co-added and Fourier transformed, produced workable spectra. These spectra were then reduced using a simplified gaseous effluent model to fit forward-modeled spectra obtained from the Line-By-Line Radiative Transfer Model (LBLRTM) and the high-resolution transmission (HITRAN) molecular absorption database to determine approximate temperature and concentration distributions. It is theorized that further development of the physical model will produce better agreement between measured and modeled data.

  12. Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Lavelle, Thomas M.; Patnaik, Surya

    2003-01-01

    The neural network and regression methods of NASA Glenn Research Center s COMETBOARDS design optimization testbed were used to generate approximate analysis and design models for a subsonic aircraft operating at Mach 0.85 cruise speed. The analytical model is defined by nine design variables: wing aspect ratio, engine thrust, wing area, sweep angle, chord-thickness ratio, turbine temperature, pressure ratio, bypass ratio, fan pressure; and eight response parameters: weight, landing velocity, takeoff and landing field lengths, approach thrust, overall efficiency, and compressor pressure and temperature. The variables were adjusted to optimally balance the engines to the airframe. The solution strategy included a sensitivity model and the soft analysis model. Researchers generated the sensitivity model by training the approximators to predict an optimum design. The trained neural network predicted all response variables, within 5-percent error. This was reduced to 1 percent by the regression method. The soft analysis model was developed to replace aircraft analysis as the reanalyzer in design optimization. Soft models have been generated for a neural network method, a regression method, and a hybrid method obtained by combining the approximators. The performance of the models is graphed for aircraft weight versus thrust as well as for wing area and turbine temperature. The regression method followed the analytical solution with little error. The neural network exhibited 5-percent maximum error over all parameters. Performance of the hybrid method was intermediate in comparison to the individual approximators. Error in the response variable is smaller than that shown in the figure because of a distortion scale factor. The overall performance of the approximators was considered to be satisfactory because aircraft analysis with NASA Langley Research Center s FLOPS (Flight Optimization System) code is a synthesis of diverse disciplines: weight estimation, aerodynamic

  13. Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2015-01-01

    This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals

  14. Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.

    2015-01-01

    This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.

  15. Compact, Lightweight, Ceramic Matrix Composite (CMC) Based Acoustic Liners for Reducing Subsonic Jet Aircraft Engine Noise

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Grady, Joseph E.; Miller, Christopher J.; Hultgren, Lennart S.; Jones, Michael G.

    2016-01-01

    Recent developments have reduced fan and jet noise contributions to overall subsonic aircraft jet-engine noise. Now, aircraft designers are turning their attention toward reducing engine core noise. The NASA Glenn Research Center and NASA Langley Research Center have teamed to investigate the development of a compact, lightweight acoustic liner based on oxide/oxide ceramic matrix composite (CMC) materials. The NASA team has built upon an existing oxide/oxide CMC sandwich structure concept that provides monotonal noise reduction. Oxide/oxide composites have good high temperature strength and oxidation resistance, which could allow them to perform as core liners at temperatures up to 1000C (1832F), and even higher depending on the selection of the composite constituents. NASA has initiated the evaluation of CMC-based liners that use cells of different lengths (variable-depth channels) or effective lengths to achieve broadband noise reduction. Reducing the overall liner thickness is also a major goal, to minimize the volume occupied by the liner. As a first step toward demonstrating the feasibility of our concepts, an oxide/oxide CMC acoustic testing article with different channel lengths was tested. Our approach, summary of test results, current status, and goals for the future are reported.

  16. a Graphical Optimization of Take-Off Noise Abatement Procedures for Subsonic Aircraft

    NASA Astrophysics Data System (ADS)

    Norgia, L.

    1999-05-01

    This paper describes a numerical approach to the simulation of noise contours generated during aircraft operations. Common features of many existing noise-contour programs make these procedures unsuitable for on-line piloted-simulator use. In fact, they usually require large computational tools and exhibit complex structure, so that they generally run quite slowly. The method proposed here is an attempt to overcome some of the above drawbacks. It works for arbitrarily complex take-off and landing paths, and reveals the influence of several quantitites on the shape and size of the contours. Besides, the calculations are simple enough to be implemented on a handheld programmable calculator. The method runs fast, and quickly provides contour shape, evaluates area and analyzes main characteristics of the end. The method has been used to optimize noise abatement procedures for subsonic aircraft; for every take-off procedure the model can generate an isofootprint on the ground which helps the operator to choose the best take-off solution.

  17. Towards Simulating Non-Axisymmetric Influences on Aircraft Plumes for Signature Prediction

    NASA Technical Reports Server (NTRS)

    Kenzakowski, D. C.; Shipman, J. D.; Dash, S. M.

    2000-01-01

    A methodology for efficiently including three-dimensional effects on aircraft plume signature is presented. First, exploratory work on the use of passive mixing enhancement devices, namely chevrons and tabs, in IR signature reduction for external turbofan plumes is demonstrated numerically and experimentally. Such small attachments, when properly designed, cause an otherwise axisymmetric plume to have significant 3D structures, affecting signature prediction. Second, an approach for including non-axisymmetric and installation effects in plume signature prediction is discussed using unstructured methodology. Unstructured flow solvers, using advanced turbulence modeling and plume thermochemistry, facilitate the modeling of aircraft effects on plume structure that previously have been neglected due to gridding complexities. The capabilities of the CRUNCH unstructured Navier-Stokes solver for plume modeling is demonstrated for a passively mixed turbofan nozzle, a generic fighter nozzle, and a complete aircraft.

  18. Towards Simulating Non-Axisymmetric Influences on Aircraft Plumes for Signature Prediction

    NASA Technical Reports Server (NTRS)

    Kenzakowski, D. C.; Shipman, J. D.; Dash, S. M.

    2000-01-01

    A methodology for efficiently including three-dimensional effects on aircraft plume signature is presented. First, exploratory work on the use of passive mixing enhancement devices, namely chevrons and tabs, in IR signature reduction for external turbofan plumes is demonstrated numerically and experimentally. Such small attachments, when properly designed, cause an otherwise axisymmetric plume to have significant 3D structures, affecting signature prediction. Second, an approach for including non-axisymmetric and installation effects in plume signature prediction is discussed using unstructured methodology. Unstructured flow solvers, using advanced turbulence modeling and plume thermochemistry, facilitate the modeling of aircraft effects on plume structure that previously have been neglected due to gridding complexities. The capabilities of the CRUNCH unstructured Navier-Stokes solver for plume modeling is demonstrated for a passively mixed turbofan nozzle, a generic fighter nozzle, and a complete aircraft.

  19. Influence of fuel sulfur on the composition of aircraft exhaust plumes: The experiments SULFUR 1-7

    NASA Astrophysics Data System (ADS)

    Schumann, U.; Arnold, F.; Busen, R.; Curtius, J.; Kärcher, B.; Kiendler, A.; Petzold, A.; Schlager, H.; Schröder, F.; Wohlfrom, K.-H.

    2002-08-01

    The series of SULFUR experiments was performed to determine the aerosol particle and contrail formation properties of aircraft exhaust plumes for different fuel sulfur contents (FSC, from 2 to 5500 μg/g), flight conditions, and aircraft (ATTAS, A310, A340, B707, B747, B737, DC8, DC10). This paper describes the experiments and summarizes the results obtained, including new results from SULFUR 7. The conversion fraction ɛ of fuel sulfur to sulfuric acid is measured in the range 0.34 to 4.5% for an older (Mk501) and 3.3 +/- 1.8% for a modern engine (CFM56-3B1). For low FSC, ɛ is considerably smaller than what is implied by the volume of volatile particles in the exhaust. For FSC >= 100 μg/g and ɛ as measured, sulfuric acid is the most important precursor of volatile aerosols formed in aircraft exhaust plumes of modern engines. The aerosol measured in the plumes of various aircraft and models suggests ɛ to vary between 0.5 and 10% depending on the engine and its state of operation. The number of particles emitted from various subsonic aircraft engines or formed in the exhaust plume per unit mass of burned fuel varies from 2 × 1014 to 3 × 1015 kg-1 for nonvolatile particles (mainly black carbon or soot) and is of order 2 × 1017 kg-1 for volatile particles >1.5 nm at plume ages of a few seconds. Chemiions (CIs) formed in kerosene combustion are found to be quite abundant and massive. CIs contain sulfur-bearing molecules and organic matter. The concentration of CIs at engine exit is nearly 109 cm-3. Positive and negative CIs are found with masses partially exceeding 8500 atomic mass units. The measured number of volatile particles cannot be explained with binary homogeneous nucleation theory but is strongly related to the number of CIs. The number of ice particles in young contrails is close to the number of soot particles at low FSC and increases with increasing FSC. Changes in soot particles and FSC have little impact on the threshold temperature for contrail

  20. Subsonic Ultra Green Aircraft Research: Phase II- Volume III-Truss Braced Wing Aeroelastic Test Report

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher

    2014-01-01

    This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.

  1. Measurements in Vortex Wakes Shed by Conventional and Modified Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1996-01-01

    A theoretical and experimental program is underway at NASA Ames Research Center to first obtain a better understanding of the hazard posed by the vortex wakes of subsonic transports, and then to develop methods on how to modify the wake-generating aircraft in order to make the vortices less hazardous. This paper summarizes results obtained in the 80- by 120-Foot Wind Tunnel at NASA Ames Research Center on the characteristics of the vortex wakes that trail from 0.03 scale models of a B-747 and of a DC-10. Measurements are first described that were taken in the wakes with a hot-film anemometer probe, and with wings that range in size from 0.2 to 1.0 times the span of the wake generating models at downstream distances of 81 ft and 162 ft. behind the wake-generating model; i.e., at scale distances of 0.5 and 1.0 mile. The data are then used to evaluate the accuracy of a vortex-lattice method for prediction of the loads induced on following wings by vortex wakes.

  2. Flutter analysis of swept-wing subsonic aircraft with parameter studies of composite wings

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Stein, M.

    1974-01-01

    A computer program is presented for the flutter analysis, including the effects of rigid-body roll, pitch, and plunge of swept-wing subsonic aircraft with a flexible fuselage and engines mounted on flexible pylons. The program utilizes a direct flutter solution in which the flutter determinant is derived by using finite differences, and the root locus branches of the determinant are searched for the lowest flutter speed. In addition, a preprocessing subroutine is included which evaluates the variable bending and twisting stiffness properties of the wing by using a laminated, balanced ply, filamentary composite plate theory. The program has been substantiated by comparisons with existing flutter solutions. The program has been applied to parameter studies which examine the effect of filament orientation upon the flutter behavior of wings belonging to the following three classes: wings having different angles of sweep, wings having different mass ratios, and wings having variable skin thicknesses. These studies demonstrated that the program can perform a complete parameter study in one computer run. The program is designed to detect abrupt changes in the lowest flutter speed and mode shape as the parameters are varied.

  3. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  4. A plume capture technique for the remote characterization of aircraft engine emissions.

    PubMed

    Johnson, G R; Mazaheri, M; Ristovski, Z D; Morawska, L

    2008-07-01

    A technique for capturing and analyzing plumes from unmodified aircraft or other combustion sources under real world conditions is described and applied to the task of characterizing plumes from commercial aircraft during the taxiing phase of the Landing/Take-Off (LTO) cycle. The method utilizes a Plume Capture and Analysis System (PCAS) mounted in a four-wheel drive vehicle which is positioned in the airfield 60 to 180 m downwind of aircraft operations. The approach offers low test turnaround times with the ability to complete careful measurements of particle and gaseous emission factors and sequentially scanned particle size distributions without distortion due to plume concentration fluctuations. These measurements can be performed for individual aircraft movements at five minute intervals. A Plume Capture Device (PCD) collected samples of the naturally diluted plume in a 200 L conductive membrane conforming to a defined shape. Samples from over 60 aircraft movements were collected and analyzed in situ for particulate and gaseous concentrations and for particle size distribution using a Scanning Particle Mobility Sizer (SMPS). Emission factors are derived for particle number, NO(x), and PM2.5 for a widely used commercial aircraft type, Boeing 737 airframes with predominantly CFM56 class engines, during taxiing. The practical advantages of the PCAS include the capacity to perform well targeted and controlled emission factor and size distribution measurements using instrumentation with varying response times within an airport facility, in close proximity to aircraft during their normal operations.

  5. Strain Gage Loads Calibration Testing with Airbag Support for the Gulfstream III SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Lokos, William; Miller, Eric; Hudson, Larry; Holguin, Andrew; Neufeld, David; Haraguchi, Ronnie

    2015-01-01

    This paper describes the design and conduct of the strain gage load calibration ground test of the SubsoniC Research Aircraft Testbed, Gulfstream III aircraft, and the subsequent data analysis and its results. The goal of this effort was to create and validate multi-gage load equations for shear force, bending moment, and torque for two wing measurement stations. For some of the testing the aircraft was supported by three air bags in order to isolate the wing structure from extraneous load inputs through the main landing gear. Thirty-two strain gage bridges were installed on the left wing. Hydraulic loads were applied to the wing lower surface through a total of 16 load zones. Some dead weight load cases were applied to the upper wing surface using shot bags. Maximum applied loads reached 54,000 pounds.

  6. Effects of air breathing engine plumes on SSV orbiter subsonic wing pressure distribution, volume 2

    NASA Technical Reports Server (NTRS)

    Soard, T.

    1974-01-01

    Data presented were obtained during wind tunnel tests of a 0.0405-scale model of the -89B ferry configuration of the space shuttle vehicle orbiter. These tests were conducted in the Rockwell International low speed wind tunnel (NAAL). The primary test objective was to investigate orbiter wing pressure distributions resulting from nacelle plumes above and below the wing. Three six-engine nacelle configurations were tested. One configuration has a twin-podded nacelle mounted above each wing and the others had one mounted below each wing. Both had a centerline twin-podded nacelle mounted below the wing. Wing pressure distribution was determined by locating static pressure bugs on the upper and lower surfaces of the left wing. Pressure bugs were also located on the upper and lower surfaces of the body flap and on the B12 afterbody fairing when it was installed. Base and balance cavity pressures were recorded and a strain gage instrumented beam in the right wing measured elevon hinge moments and normal forces.

  7. Effects of forward velocity on sound radiation from convecting monopole and dipole sources in jet flow. [subsonic aircraft model

    NASA Technical Reports Server (NTRS)

    Dash, R.

    1979-01-01

    A theoretical model is presented of the effects of forward velocity of an aircraft at arbitrary subsonic speed on sound radiated from convecting monopole and dipole sources embedded in the jet flow. It is found that with increasing forward velocity there is a steadily increasing amplification (over the static case) of the sound radiated into the forward arc and a large reduction of the sound which is radiated into the rearward arc. The same trend is also shown to result when there is a reduction in the exhaust velocity, with, however, a further rise in amplification in the forward quadrant and a drop in attenuation in the aft quadrant.

  8. Analysis for the application of hybrid laminar flow control to a long-range subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Arcara, P. C., Jr.; Bartlett, D. W.; Mccullers, L. A.

    1991-01-01

    The FLOPS aircraft conceptual design/analysis code has been used to evaluate the effects of incorporating hybrid laminar flow control (HLFC) in a 300-passenger, 6500 n. mi. range, twin-engine subsonic transport aircraft. The baseline configuration was sized to account for 50 percent chord laminar flow on the wing upper surface as well as both surfaces of the empennage airfoils. Attention is given to the additional benefits of achieving various degrees of laminar flow on the engine nacelles, and the horsepower extraction and initial weight and cost increments entailed by the HLFC system. The sensitivity of the results obtained to fuel-price and off-design range are also noted.

  9. Strain Gage Loads Calibration Testing with Airbag Support for the Gulfstream III SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Miller, Eric J.; Hudson, Larry D.; Holguin, Andrew C.; Neufeld, David C.; Haraguchi, Ronnie

    2015-01-01

    This paper describes the design and conduct of the strain-gage load calibration ground test of the SubsoniC Research Aircraft Testbed, Gulfstream III aircraft, and the subsequent data analysis and results. The goal of this effort was to create and validate multi-gage load equations for shear force, bending moment, and torque for two wing measurement stations. For some of the testing the aircraft was supported by three airbags in order to isolate the wing structure from extraneous load inputs through the main landing gear. Thirty-two strain gage bridges were installed on the left wing. Hydraulic loads were applied to the wing lower surface through a total of 16 load zones. Some dead-weight load cases were applied to the upper wing surface using shot bags. Maximum applied loads reached 54,000 lb. Twenty-six load cases were applied with the aircraft resting on its landing gear, and 16 load cases were performed with the aircraft supported by the nose gear and three airbags around the center of gravity. Maximum wing tip deflection reached 17 inches. An assortment of 2, 3, 4, and 5 strain-gage load equations were derived and evaluated against independent check cases. The better load equations had root mean square errors less than 1 percent. Test techniques and lessons learned are discussed.

  10. Aircraft IR/acoustic detection evaluation. Volume 2: Development of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.

    1992-01-01

    The design and performance of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft is described and specified. The acoustic detection system performance criteria will subsequently be used to determine target detection ranges for the subject contract. Although the defined system has never been built and demonstrated in the field, the design parameters were chosen on the basis of achievable technology and overall system practicality. Areas where additional information is needed to substantiate the design are identified.

  11. The Role of Turbulence in Chemical and Dynamical Processes in the Near-Field Wake of Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. Steve

    2002-01-01

    During this grant, covering the period from September 1998 to December 2001, we continued the investigation of the role of turbulent mixing in the wake of subsonic aircraft initiated in 1994 for NASA's Atmospheric Effects of Aviation Project. The goal of the research has been to provide sufficient understanding and quantitative analytical capability to assess the dynamical, chemical, and microphysical interactions in the near-field wake that have the greatest potential to influence the global atmospheric impact of the projected fleet of subsonic aircraft. Through large-eddy simulations we have shown that turbulence in the early wake dynamics can have a strong effect on both the ice microphysics of contrail evolution and on wake chemistry. The wake vortex dynamics are the primary determinant of the vertical extent of the contrail; this together with the local wind shear largely determines the horizontal extent. The fraction of the initial ice crystals surviving the wake vortex dynamics, their spatial distribution, and the ice mass distribution are all sensitive to the aircraft type, assumed initial ice crystal number, and ambient humidity and turbulence conditions. Our model indicates that there is a significant range of conditions for which a smaller aircraft such as a B737 produces as significant a persistent contrail as a larger aircraft such as a B747, even though the latter consumes almost five times as much fuel. Large-eddy simulations of the near wake of a B757 provided a fine-grained chemical-dynamical representation of simplified NOx - HOx chemistry in wakes of ages from a few seconds to several minutes. By sampling the simulated data in a manner similar to that of in situ aircraft measurements it was possible to provide a likely explanation for a puzzle uncovered in the 1996 SUCCESS flight measurements of OH and HO2 The results illustrate the importance of considering fluid dynamics effects in interpreting chemistry results when mixing rates and species

  12. Summary of measurement results of ozone, methane, and nonmethane hydrocarbons for C-54 aircraft. 1979 Southeastern Virginia Urban Plume Study

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Purgold, G. C.; Gregory, G. L.

    1981-01-01

    Methane, nonmethane hydrocarbon, and ozone data collected in a C-54 aircraft during the 1979 Southeastern Virginia Urban Plume Study are presented. Three major aircraft experiments were flown on five separate days in August collecting 20 hours of flight data. Direct correlation between ozone and hydrocarbon plumes was observed on several occasions.

  13. Takeoff certification considerations for large subsonic and supersonic transport airplanes using the Ames flight simulator for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Drinkwater, F. J., III; Fry, E. B.; Forrest, R. D.

    1973-01-01

    Data for use in development of takeoff airworthiness standards for new aircraft designs such as the supersonic transport (SST) and the large wide-body subsonic jet transport are provided. An advanced motion simulator was used to compare the performance and handling characteristics of three representative large jet transports during specific flight certification tasks. Existing regulatory constraints and methods for determining rotation speed were reviewed, and the effects on takeoff performance of variations in rotation speed, pitch attitude, and pitch attitude rate during the rotation maneuver were analyzed. A limited quantity of refused takeoff information was obtained. The aerodynamics, wing loading, and thrust-to-weight ratio of the subject SST resulted in takeoff speeds limited by climb (rather than lift-off) considerations. Take-off speeds based on U.S. subsonic transport requirements were found unacceptable because of the criticality of rotation-abuse effects on one-engine-inoperative climb performance. Adequate safety margin was provided by takeoff speeds based on proposed Anglo-French supersonic transport (TSS) criteria, with the limiting criterion being that takeoff safety speed be at least 1.15 times the one-engine-inoperative zero-rate-of-climb speed. Various observations related to SST certification are presented.

  14. First direct sulfuric acid detection in the exhaust plume of a jet aircraft in flight

    NASA Astrophysics Data System (ADS)

    Curtius, J.; Sierau, B.; Arnold, F.; Baumann, R.; Busen, R.; Schulte, P.; Schumann, U.

    Sulfuric acid (SA) was for the first time directly detected in the exhaust plume of a jet aircraft in flight. The measurements were made by a novel aircraft-based VACA (Volatile Aerosol Component Analyzer) instrument of MPI-K Heidelberg while the research aircraft Falcon was chasing another research aircraft ATTAS. The VACA measures the total SA in the gas and in volatile submicron aerosol particles. During the chase the engines of the ATTAS alternatively burned sulfur-poor and sulfur-rich fuel. In the sulfur-rich plume very marked enhancements of total SA were observed of up to 1300 pptv which were closely correlated with ΔCO2 and ΔT and were far above the local ambient atmospheric background-level of typically 15-50 pptv. Our observations indicate a lower limit for the efficiency ɛ for fuel-sulfur conversion to SA of 0.34 %.

  15. Aircraft emissions, plume chemistry, and alternative fuels: results from the APEX, AAFEX, and MDW-2009 campaigns

    NASA Astrophysics Data System (ADS)

    Wood, E. C.; Herndon, S. C.; Timko, M.; Yu, Z.; Miake-Lye, R. C.; Lee, B. H.; Santoni, G.; Munger, J. W.; Wofsy, S.; Anderson, B.; Knighton, W. B.

    2009-12-01

    We describe observations of aircraft emissions from the APEX, JETS-APEX2, APEX3, MDW-2009 and AAFEX campaigns. Direct emissions of HOx precursors are important for understanding exhaust plume chemistry due to their role in determining HOx concentrations. Nitrous acid (HONO) and formaldehyde are crucial HOx precursors and thus drivers of plume chemistry. At idle power, aircraft engine exhaust is unique among fossil fuel combustion sources due to the speciation of both NOx and VOCs. The impacts of emissions of HOx precursors on plume chemistry at low power are demonstrated with empirical observations of rapid NO to NO2 conversion, indicative of rapid HOx chemistry. The impacts of alternative fuels (derived from biomass, coal, and natural gas) on emissions of NOx, CO, and speciated VOCs are discussed.

  16. Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy; Dyson, Rodger; Felder, James

    2017-01-01

    NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.

  17. Supersonic and Subsonic Aircraft Noise Effects on Animals: A Literature Survey.

    DTIC Science & Technology

    1986-12-01

    overflights (95-138 dB). Rylander also observed solitary birds ( Grey Plovers, oystercatchers, and ruffs) displaying a variety of behaviors during...in Alaska, Klein noted that Grissly Bears reacted very strongly to aircraft noise, while moose and wolves reacted much less than Caribou to aircraft

  18. Near-field commercial aircraft contribution to nitrogen oxides by engine, aircraft type, and airline by individual plume sampling.

    PubMed

    Carslaw, David C; Ropkins, Karl; Laxen, Duncan; Moorcroft, Stephen; Marner, Ben; Williams, Martin L

    2008-03-15

    Nitrogen oxides (NOx) concentrations were measured in individual plumes from aircraft departing on the northern runway at Heathrow Airport in west London. Over a period of four weeks 5618 individual plumes were sampled by a chemiluminescence monitor located 180 m from the runway. Results were processed and matched with detailed aircraft movement and aircraft engine data using chromatographic techniques. Peak concentrations associated with 29 commonly used engines were calculated and found to have a good relationship with N0x emissions taken from the International Civil Aviation Organization (ICAO) databank. However, it is found that engines with higher reported NOx emissions result in proportionately lower NOx concentrations than engines with lower emissions. We show that it is likely that aircraft operational factors such as takeoff weight and aircraftthrust setting have a measurable and important effect on concentrations of N0x. For example, NOx concentrations can differ by up to 41% for aircraft using the same airframe and engine type, while those due to the same engine type in different airframes can differ by 28%. These differences are as great as, if not greater than, the reported differences in NOx emissions between different engine manufacturers for engines used on the same airframe.

  19. Multiple-Purpose Subsonic Naval Aircraft (MPSNA): Multiple Application Propfan Study (MAPS)

    NASA Technical Reports Server (NTRS)

    Engelbeck, R. M.; Havey, C. T.; Klamka, A.; Mcneil, C. L.; Paige, M. A.

    1986-01-01

    Study requirements, assumptions and guidelines were identified regarding carrier suitability, aircraft missions, technology availability, and propulsion considerations. Conceptual designs were executed for two missions, a full multimission aircraft and a minimum mission aircraft using three different propulsion systems, the UnDucted Fan (UDF), the Propfan and an advanced Turbofan. Detailed aircraft optimization was completed on those configurations yielding gross weight performance and carrier spot factors. Propfan STOVL conceptual designs were exercised also to show the effects of STOVL on gross weight, spot factor and cost. An advanced technology research plan was generated to identify additional investigation opportunities from an airframe contractors standpoint. Life cycle cost analysis was accomplished yielding a comparison of the UDF and propfan configurations against each other as well as against a turbofan with equivalent state of the art turbo-machinery.

  20. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.

    1978-01-01

    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  1. Vehicle design considerations for active control application to subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Hofmann, L. G.; Clement, W. F.

    1974-01-01

    The state of the art in active control technology is summarized. How current design criteria and airworthiness regulations might restrict application of this emerging technology to subsonic CTOL transports of the 1980's are discussed. Facets of active control technology considered are: (1) augmentation of relaxed inherent stability; (2) center-of-gravity control; (3) ride quality control; (4) load control; (5) flutter control; (6) envelope limiting, and (7) pilot interface with the control system. A summary and appraisal of the current state of the art, design criteria, and recommended practices, as well as a projection of the risk in applying each of these facets of active control technology is given. A summary of pertinent literature and technical expansions is included.

  2. Technology developments for laminar boundary layer control on subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fischer, M. C.

    1984-01-01

    The development of laminar flow technology for commercial transport aircraft is discussed and illustrated in a review of studies undertaken in the NASA Aircraft Energy Efficiency (ACEE) program since 1976. The early history of laminar flow control (LFC) techniques and natural laminar flow (NLF) airfoil designs is traced, and the aims of ACEE are outlined. The application of slotted structures, composites, and electron beam perforated metals in supercritical LFC airfoils, wing panels, and leading edge systems is examined; wind tunnel and flight test results are summarized; studies of high altitude ice effects are described; and hybrid (LFC/NLF designs are characterized. Drawings and photographs are provided.

  3. Assessment of the application of advanced technologies to subsonic CTOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Graef, J. D.; Sallee, G. P.; Verges, J. T.

    1974-01-01

    Design studies of the application of advanced technologies to future transport aircraft were conducted. These studies were reviewed from the perspective of an air carrier. A fundamental study of the elements of airplane operating cost was performed, and the advanced technologies were ranked in order of potential profit impact. Recommendations for future study areas are given.

  4. First-Order Altitude Effects on the Cruise Efficiency of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.

    2011-01-01

    Aircraft fuel efficiency is a function of many different parameters, including characteristics of the engines, characteristics of the airframe, and the conditions under which the aircraft is operated. For a given vehicle, the airframe and engine characteristics are for the most part fixed quantities and efficiency is primarily a function of operational conditions. One important influence on cruise efficiency is cruise altitude. Various future scenarios have been postulated for cruise altitude, from the freedom to fly at optimum altitudes to altitude restrictions imposed for environmental reasons. This report provides background on the fundamental relationships determining aircraft cruise efficiency and examines the sensitivity of efficiency to cruise altitude. Analytical models of two current aircraft designs are used to derive quantitative results. Efficiency penalties are found to be generally less than 1% when within roughly 2000 ft of the optimum cruise altitude. Even the restrictive scenario of constant altitude cruise is found to result in a modest fuel consumption penalty if the fixed altitude is in an appropriate range.

  5. Impact of supersonic and subsonic aircraft on ozone: Including heterogeneous chemical reaction mechanisms

    NASA Technical Reports Server (NTRS)

    Kinnison, Douglas E.; Wuebbles, Donald J.

    1994-01-01

    Preliminary calculations suggest that heterogeneous reactions are important in calculating the impact on ozone from emissions of trace gases from aircraft fleets. In this study, three heterogeneous chemical processes that occur on background sulfuric acid aerosols are included and their effects on O3, NO(x), Cl(x), HCl, N2O5, ClONO2 are calculated.

  6. The role of ions in the formation and evolution of particles in aircraft plumes

    NASA Astrophysics Data System (ADS)

    Yu, Fangqun; Turco, Richard P.

    We consider the effects on aircraft plume microphysics of ions generated by chemiionization processes within the engine combustors. Ions provide centers around which molecular clusters rapidly coalesce, thus promoting the formation of electrically charged sulfuric acid/water aerosols. The resulting charged micro-particles exhibit enhanced growth due to condensation and coagulation aided by electrostatic effects. Simulations with a plume microphysics code show that volatile particles observed behind aircraft may be explained by such processes, as long as initial ion concentrations in the exhaust exceed ˜108/cm³. This analysis also suggests that the primary emissions of sulfuric acid (plus sulfur trioxide) should amount to at least 20-30% of the fuel sulfur to explain the observed number of volatile particles >9 nm in diameter. Ionized plume simulations reveal a distinct bimodal aerosol distribution, in which an “ion” mode constitutes the larger “activated” volatile sulfuric acid particles, while a smaller “neutral” mode comprises the residual slowly-growing neutral molecular clusters formed in the highly supersaturated region of the plume.

  7. Impact of supersonic and subsonic aircraft on ozone: Including heterogeneous chemical reaction mechanisms

    SciTech Connect

    Kinnison, D.E.; Wuebbles, D.J.

    1992-07-05

    Preliminary calculations suggest that heterogeneous reactions are important in calculating the impact on ozone from emissions of trace gases from aircraft fleets. In this study, three heterogeneous chemical processes that occur on background sulfuric acid aerosols are included and their effects on O{sub 3}, NO{sub x}, Cl{sub x}, HCl, N{sub 2}O{sub 5}, ClONO{sub 2} are calculated.

  8. Multiple-Purpose Subsonic Naval Aircraft (MPSNA) Multiple Application Propfan Study (MAPS)

    NASA Technical Reports Server (NTRS)

    Winkeljohn, D. M.; Mayrand, C. H.

    1986-01-01

    A conceptual design study compared a selected propfan-powered aircraft to a turbofan-powered aircraft for multiple Navy carrier-based support missions in the 1995 timeframe. Conventional takeoff and landing (CTOL) propfan and turbofan-powered designs and short takeoff/vertical landing (STOVL) propfan-powered designs are presented. Ten support mission profiles were defined and the aircraft were sized to be able to perform all ten missions. Emphasis was placed on efficient high altitude loiter for Airborne Early Warning (AEW) and low altitude high speed capability for various offensive and tactical support missions. The results of the study show that the propfan-powered designs have lighter gross weights, lower fuel fractions, and equal or greater performance capability than the turbofan-powered designs. Various sensitives were developed in the study, including the effect of using single-rotation versus counter-rotation propfans and the effect of AEW loiter altitude on vehicle gross weight and empty weight. A propfan technology development plan was presented which illustrates that the development of key components can be achieved without accelerated schedules through the extension of current and planned government and civil propfan programs.

  9. Nighttime aircraft measurements of power plant plumes in the Southeast U.S

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Womack, R. W.; Edwards, P. M.; Dube, W. P.; Min, K.; Ryerson, T. B.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Veres, P. R.; Lee, B.; Lopez-Hilfiker, F.; Thornton, J. A.; Neuman, J. A.; Nowak, J. B.; Graus, M.; Warneke, C.; De Gouw, J. A.; Brock, C. A.; Trainer, M.; Parrish, D. D.

    2013-12-01

    Coal fired electric power plants are responsible for a large but declining fraction of U.S. NO¬x emissions. The influence of these point source emissions on ozone photochemistry has been well documented. Less well understood, however, is their influence on nighttime chemistry, due in part to the difficulty of sampling such plumes at night, when they are emitted into the residual boundary layer and remain decoupled from the surface. Nighttime chemistry in such plumes influences rates of biogenic VOC oxidation by the nitrate radical (NO3), halogen activation through the heterogeneous uptake of N2O5 to form ClNO2, and the overnight removal of primary NO¬x emissions via conversion to soluble nitrate. During the recent SENEX campaign, night flights of the NOAA P-3 aircraft sampled several different power plant plumes across the southeastern U.S., including the E.C. Gaston plant in Alabama, the New Madrid plant in Missouri, and the White Bluff plant in Arkansas. This presentation will analyze these nighttime power plant plume intercepts in terms of mixing (i.e., plume dispersion) and nighttime chemistry. Results will be interpreted in the context of the overall decline in emissions from such sources across the eastern United States, as well as the impact of concentrated anthropogenic emission sources in a region with large summertime biogenic emissions.

  10. Abatement of an aircraft exhaust plume using aerodynamic baffles.

    PubMed

    Bennett, Michael; Christie, Simon M; Graham, Angus; Garry, Kevin P; Velikov, Stefan; Poll, D Ian; Smith, Malcolm G; Mead, M Iqbal; Popoola, Olalekan A M; Stewart, Gregor B; Jones, Roderic L

    2013-03-05

    The exhaust jet from a departing commercial aircraft will eventually rise buoyantly away from the ground; given the high thrust/power (i.e., momentum/buoyancy) ratio of modern aero-engines, however, this is a slow process, perhaps requiring ∼ 1 min or more. Supported by theoretical and wind tunnel modeling, we have experimented with an array of aerodynamic baffles on the surface behind a set of turbofan engines of 124 kN thrust. Lidar and point sampler measurements show that, as long as the intervention takes place within the zone where the Coanda effect holds the jet to the surface (i.e., within about 70 m in this case), then quite modest surface-mounted baffles can rapidly lift the jet away from the ground. This is of potential benefit in abating both surface concentrations and jet blast downstream. There is also some modest acoustic benefit. By distributing the aerodynamic lift and drag across an array of baffles, each need only be a fraction of the height of a single blast fence.

  11. Subsonic Maneuvering Effectiveness of High Performance Aircraft Which Employ Quasi-Static Shape Change Devices

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Scott, Michael A.; Weston, Robert P.

    1998-01-01

    This paper represents an initial study on the use of quasi-static shape change devices in aircraft maneuvering. The macroscopic effects and requirements for these devices in flight control are the focus of this study. Groups of devices are postulated to replace the conventional leading-edge flap (LEF) and the all-moving wing tip (AMT) on the tailless LMTAS-ICE (Lockheed Martin Tactical Aircraft Systems - Innovative Control Effectors) configuration. The maximum quasi-static shape changes are 13.8% and 7.7% of the wing section thickness for the LEF and AMT replacement devices, respectively. A Computational Fluid Dynamics (CFD) panel code is used to determine the control effectiveness of groups of these devices. A preliminary design of a wings-leveler autopilot is presented. Initial evaluation at 0.6 Mach at 15,000 ft. altitude is made through batch simulation. Results show small disturbance stability is achieved, however, an increase in maximum distortion is needed to statically offset five degrees of sideslip. This only applies to the specific device groups studied, encouraging future research on optimal device placement.

  12. Introduction to the SONEX (Subsonic Assessment Ozone and Nitrogen Oxides Experiment) and POLINAT-2 (Pollution from Aircraft Emissions in the North Atlantic Flight Corridor) Special Issue

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Singh, Hanwant B.; Schlager, Hans; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Emissions of atmospheric species from the engines of subsonic aircraft at cruise altitude (roughly, above seven kilometers) are of concern to scientists, the aviation industry and policymakers for two reasons. First, water vapor, soot and sulfur oxides, and related heterogeneous processes, may modify clouds and aerosols enough to perturb radiative forcing in the UT/LS (upper troposphere/lower stratosphere). A discussion of these phenomena appears in Chapter 3 of the IPCC Aviation Assessment (1999). An airborne campaign conducted to evaluate aviation effects on contrail, cirrus and cloud formation, is described in Geophysical Research Letters. The second concern arises from subsonic aircraft emissions of nitrogen oxides (NO + NO2 = NO(sub x)), CO, and hydrocarbons. These species may add to the background mixture of photochemically reactive species that form ozone. In the UT/LS, ozone is a highly effective greenhouse gas. The impacts of subsonic aircraft emissions on tropospheric NO(sub x) and ozone budgets have been studied with models that focus on UT chemistry [e.g. see discussions of individual models in Brasseur et al., 1998; Friedl et al., 1997; IPCC, 1999]. Depending on the model used, projected increases in the global subsonic aircraft fleet from 1992 to 2015 will lead to a 50-100 pptv increase in UT/LS NO. at 12 km (compared to 50-150 pptv background) in northern hemisphere midlatitudes. The corresponding 12-km ozone increase is 7-11 ppbv, or 5-10% (Chapter 4 in IPCC, 1999). Two major sources of uncertainties in model estimates of aviation effects are: (1) the often limited degree to which global models - the scale required to evaluate aircraft emissions - realistically simulate atmospheric transport and other physical processes; (2) limited UT/LS observations of trace gases with which to evaluate model performance. In response to the latter deficiency, a number of airborne campaigns aimed at elucidating the effect of aircraft on atmospheric nitrogen oxides

  13. Aircraft measurements over Europe of an air pollution plume from Southeast Asia - aerosol and chemical characterization

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Huntrieser, H.; Mannstein, H.; McMillan, W. W.; Petzold, A.; Schlager, H.; Weinzierl, B.

    2007-02-01

    An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24-25 March 2006. According to the model, the plume was exported from Southeast Asia six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO) from AIRS satellite measurements, which are in excellent agreement with the model results over the entire transport history. The research aircraft DLR Falcon was sent into this plume west of Spain on 24 March and over Southern Europe on 25 March. On both days, the pollution plume was found close to the predicted locations and, thus, the measurements taken allowed the first detailed characterization of the aerosol content and chemical composition of an anthropogenic pollution plume after a nearly hemispheric transport event. The mixing ratios of CO, reactive nitrogen (NOy) and ozone (O3) measured in the Asian plume were all clearly elevated over a background that was itself likely elevated by Asian emissions: CO by 17-34 ppbv on average (maximum 60 ppbv) and O3 by 2-9 ppbv (maximum 22 ppbv). Positive correlations existed between these species, and a ΔO3/ΔCO slope of 0.25 shows that ozone was formed in this plume, albeit with moderate efficiency. Nucleation mode and Aitken particles were suppressed in the Asian plume, whereas accumulation mode aerosols were strongly elevated and correlated with CO. The suppression of the nucleation mode was likely due to the large pre-existing aerosol surface of the transported larger particles. Super-micron particles, likely desert dust, were found in part of the Asian pollution plume and also in surrounding cleaner air. The aerosol light absorption coefficient was enhanced in the plume (average values for individual plume encounters 0.25-0.70 Mm-1), as was the

  14. Aircraft measurements over Europe of an air pollution plume from Southeast Asia - aerosol and chemical characterization

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Huntrieser, H.; Mannstein, H.; McMillan, W. W.; Petzold, A.; Schlager, H.; Weinzierl, B.

    2006-12-01

    An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24-25 March 2006. According to the model, the plume was exported from Southeast Asia only six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO) from AIRS satellite measurements, which are in excellent agreement with the model results over the entire transport history. The research aircraft DLR Falcon was sent into this plume west of Spain on 24 March and over Southern Europe on 25 March. On both days, the pollution plume was indeed found close to the predicted locations and, thus, the measurements taken allowed the first detailed characterization of the aerosol content and chemical composition of an anthropogenic pollution plume after a nearly hemispheric transport event. The mixing ratios of CO, reactive nitrogen (NOy) and ozone (O3) measured in the Asian plume were all clearly elevated over a background that was itself likely elevated by Asian emissions: CO by 17-34 ppbv on average (maximum 60 ppbv) and O3 by 2-9 ppbv (maximum 22 ppbv). Positive correlations existed between these species, and a ΔO3/ΔCO slope of 0.25 shows that ozone was formed in this plume, albeit with moderate efficiency. Nucleation mode and Aitken particles were suppressed in the Asian plume, whereas accumulation mode aerosols were strongly elevated and correlated with CO. The suppression of the nucleation mode was likely due to the large pre-existing aerosol surface due to the transported larger particles. Super-micron particles, likely desert dust, were found in part of the Asian pollution plume and also in surrounding cleaner air. The aerosol light absorption coefficient was enhanced in the plume (average values for individual plume encounters 0.25-0.70 Mm-1

  15. Effects of the air breathing engine plumes on SSV orbiter subsonic wing pressure distributions (OA57A)

    NASA Technical Reports Server (NTRS)

    Cameron, B. W., Jr.

    1974-01-01

    Experimental aerodynamic pressure investigations were conducted on a 0.0405 scale representation of the -89 space shuttle orbiter ferry configuration in the Rockwell International 7.75 x 11.00 foot Low Speed Wind Tunnel. The primary test objective was to investigate the orbiter wing pressure distribution resulting from five under-wing engine nacelle plumes. Two five engine nacelle configurations were tested at 3 ground plane heights with pressure bug measurements being made on the left upper and lower wing panel. In addition, base and balance cavity pressure measurements were made, with elevon normal and hinge moment measurements on the right panel.

  16. The 1979 Southeastern Virginia Urban Plume Study. Volume 1: Description of experiments and selected aircraft data

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Lee, R. B., III; Mathis, J. J., Jr.

    1981-01-01

    The Southeastern Virginia Urban Plume Study (SEV-UPS) utilizes remote sensors and satellite platforms to monitor the Earth's environment and resources. SEV-UPS focuses on the application of specific remote sensors to the monitoring and study of specific air quality problems. The 1979 SEV-UPS field program was conducted with specific objectives: (1) to provide correlative data to evaluate the Laser Absorption spectrometer ozone remote sensors; (2) to demonstrate the utility of the sensor for the study of urban ozone problems; (3) to provide additional insights into air quality phenomena occuring in Southeastern Virginia; and (4) to compare measurement results of various in situ measurement platforms. The field program included monitoring from 12 surface stations, 4 aircraft, 2 tethered balloons, 2 radiosonde release sites, and numerous surface meteorological observation sites. The aircraft monitored 03, NO, NOX, Bscat, temperature, and dewpoint temperature.

  17. Effects of air breathing engine plumes on SSV orbiter subsonic wing pressure distribution (OA57B), volume 1

    NASA Technical Reports Server (NTRS)

    Soard, T.

    1974-01-01

    Data were obtained during wind tunnel tests of a 0.0405-scale model of the ferry configuration of the space shuttle vehicle orbiter conducted in a low speed wind tunnel during the time period of September 18 to September 23, 1973. The primary test objective was to investigate orbiter wing pressure distributions resulting from nacelle plumes above and below the wing. Three six-engine nacelle configurations were tested. One configuration had a twin-podded nacelle mounted above each wing and the others had one mounted below each wing. Both had a centerline twin-podded nacelle mounted below the wing. Wing pressure distribution was determined by locating static pressure bugs on the upper and lower surfaces of the left wing. Pressure bugs were also located on the upper and lower surfaces of the body flap and on the B12 afterbody fairing when it was installed. Base and balance cavity pressures were recorded and a strain gage instrumented beam in the right wing measured elevon hinge moments and normal forces.

  18. A simulation method of aircraft plumes for real-time imaging

    NASA Astrophysics Data System (ADS)

    Li, Ni; Lv, Zhenhua; Huai, Wenqin; Gong, Guanghong

    2016-07-01

    Real-time infrared simulation technology can provide a large number of infrared images under different conditions to support the design, test and evaluation of a system having infrared imaging equipment with very low costs. By synthesizing heat transfer, infrared physics, fluid mechanics and computer graphics, a real-time infrared simulation method is proposed based on the method of characteristics to predict the infrared feature of aircraft plumes, which tries to obtain a good balance between simulation precision and computation efficiency. The temperature and pressure distribution in the under-expansion status can be rapidly solved with dynamically changing flight statuses and engine working states. And a modified C-G (Curtis-Godson) spectral band model that combines the plume streamlines with the conventional C-G spectral band model was implemented to calculate the non-uniformly distributed radiation parameters inside a plume field. The simulation result was analyzed and compared with the CFD++, which validates the credibility and efficiency of the proposed simulation method.

  19. Aircraft Observations of the Tampa Urban Plume during BRACE: Transport, Photochemical, and Depositional Processes

    NASA Astrophysics Data System (ADS)

    Luke, W.; Arnold, J.; Watson, T.; Gunter, L.; Wellman, D.; Dasgupta, P.; Li, J.; Riemer, D.

    2003-12-01

    Staff from NOAA's Air Resources Laboratory conducted airborne measurements of trace gases and aerosols in the Bay Region Atmospheric Chemistry Experiment (BRACE) using the NOAA Twin Otter. The Twin Otter flew more than 90 hours in 21 flights in and around the Tampa metropolitan region in May, 2002, at altitudes of 60-3000 m MSL. Flights were conducted over rural and suburban areas, over the centers of Tampa and St. Petersburg, and over Tampa Bay and the Gulf of Mexico. The overall objective of the aircraft measurements in BRACE was to study the emission, transport, and photochemical transformations of nitrogen and other ozone precursors in the Tampa area. Continuous instrumentation was used to measure NO, NOX, NOY, HNO3, CO, SO2, O3, CH2O, and H2O2. A semi-continuous GC technique with luminol detection was used to measure PAN. Filter packs were used to make integrated measurements of nitric acid and inorganic aerosols in both fine and bulk aerosol size fractions. Stainless steel grab cans were filled during flight for post-flight analysis of NMHCs by GC/FID/MS. The urban plume was sampled under a variety of meteorological regimes, as it was advected by the prevailing winds over the Florida peninsula (with continuing input of natural and anthropogenic precursors along the advection path) and, in other cases, over the Gulf of Mexico, where additional chemical inputs were negligible and the plume was relatively unaffected by turbulent deposition processes. Case studies will be used to compare and contrast the photochemical processes in the plume under these different regimes. The observed relationships and variations of trace gas concentrations will be used to determine the efficiency of ozone production, as well as instances of NOX or VOC limitation. Sampling the plume at varying downwind distances, over both land and water, allows the determination of overall rates of photochemical ozone production, NOX and SOX oxidation, and estimates of depositional losses of

  20. A study of subsonic transport aircraft configurations using hydrogen (H2) and methane (CH4) as fuel

    NASA Technical Reports Server (NTRS)

    Snow, D. B.; Avery, B. D.; Bodin, L. A.; Baldasare, P.; Washburn, G. F.

    1974-01-01

    The acceptability of alternate fuels for future commercial transport aircraft are discussed. Using both liquid hydrogen and methane, several aircraft configurations are developed and energy consumption, aircraft weights, range and payload are determined and compared to a conventional Boeing 747-100 aircraft. The results show that liquid hydrogen can be used to reduce aircraft energy consumption and that methane offers no advantage over JP or hydrogen fuel.

  1. Sulfuric acid measurements in the exhaust plume of a jet aircraft in flight: Implications for the sulfuric acid formation efficiency

    NASA Astrophysics Data System (ADS)

    Curtius, J.; Arnold, F.; Schulte, P.

    2002-04-01

    Sulfuric acid concentrations were measured in the exhaust plume of a B737-300 aircraft in flight. The measurements were made onboard of the German research aircraft Falcon using the Volatile Aerosol Component Analyzer (VACA). The VACA measures total H2SO4, which is the sum of gaseous H2SO4 and aerosol H2SO4. Measurements took place at distances of 25-200 m behind the B737 corresponding to plume ages of about 0.1-1 seconds. The fuel sulfur content (FSC) of the fuel burned by the B737 engines was alternatively 2.6 and 56 mg sulfur per kilogram fuel (ppmm). H2SO4 concentrations measured in the plume for the 56 ppmm sulfur case were up to ~600 pptv. The average concentration of H2SO4 measured in the ambient atmosphere outside the aircraft plume was 88 pptv, the maximum ambient atmospheric H2SO4 was ~300 pptv. Average efficiencies ɛΔCO2 = 3.3 +/- 1.8% and ɛΔT = 2.9 +/- 1.6% for fuel sulfur conversion to sulfuric acid were inferred when relating the H2SO4 data to measurements of the plume tracers ΔCO2 and ΔT.

  2. Focused Assessment of State-of-the-Art CFD Capabilities for Prediction of Subsonic Fixed Wing Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Wahls, Richard A.

    2008-01-01

    Several recent workshops and studies are used to make an assessment of the current status of CFD for subsonic fixed wing aerodynamics. Uncertainty quantification plays a significant role in the assessment, so terms associated with verification and validation are given and some methodology and research areas are highlighted. For high-subsonic-speed cruise through buffet onset, the series of drag prediction workshops and NASA/Boeing buffet onset studies are described. For low-speed flow control for high lift, a circulation control workshop and a synthetic jet flow control workshop are described. Along with a few specific recommendations, gaps and needs identified through the workshops and studies are used to develop a list of broad recommendations to improve CFD capabilities and processes for this discipline in the future.

  3. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft. Volume 2: AFT C.G. simulation and analysis

    NASA Technical Reports Server (NTRS)

    Urie, D. M.

    1979-01-01

    Relaxed static stability and stability augmentation with active controls were investigated for subsonic transport aircraft. Analytical and simulator evaluations were done using a contemporary wide body transport as a baseline. Criteria for augmentation system performance and unaugmented flying qualities were evaluated. Augmentation control laws were defined based on selected frequency response and time history criteria. Flying qualities evaluations were conducted by pilots using a moving base simulator with a transport cab. Static margin and air turbulence intensity were varied in test with and without augmentation. Suitability of a simple pitch control law was verified at neutral static margin in cruise and landing flight tasks. Neutral stability was found to be marginally acceptable in heavy turbulence in both cruise and landing conditions.

  4. Measurements of HONO, NO, NOy and SO2 in aircraft exhaust plumes at cruise

    NASA Astrophysics Data System (ADS)

    Jurkat, T.; Voigt, C.; Arnold, F.; Schlager, H.; Kleffmann, J.; Aufmhoff, H.; Schäuble, D.; Schaefer, M.; Schumann, U.

    2011-05-01

    Measurements of gaseous nitrogen and sulfur oxide emissions in young aircraft exhaust plumes give insight into chemical oxidation processes inside aircraft engines. Particularly, the OH-induced formation of nitrous acid (HONO) from nitrogen oxide (NO) and sulfuric acid (H2SO4) from sulfur dioxide (SO2) inside the turbine which is highly uncertain, need detailed analysis to address the climate impact of aviation. We report on airborne in situ measurements at cruise altitudes of HONO, NO, NOy, and SO2 in 9 wakes of 8 different types of modern jet airliners, including for the first time also an A380. Measurements of HONO and SO2 were made with an ITCIMS (Ion Trap Chemical Ionization Mass Spectrometer) using a new ion-reaction scheme involving SF5- reagent ions. The measured molar ratios HONO/NO and HONO/NOy with averages of 0.038 ± 0.010 and 0.027 ± 0.005 were found to decrease systematically with increasing NOx emission-index (EI NOx). We calculate an average EI HONO of 0.31 ± 0.12 g NO2 kg-1. Using reliable measurements of HONO and NOy, which are less adhesive than H2SO4 to the inlet walls, we derive the OH-induced conversion fraction of fuel sulfur to sulfuric acid $\\varepsilon$ with an average of 2.2 ± 0.5 %. $\\varepsilon$ also tends to decrease with increasing EI NOx, consistent with earlier model simulations. The lowest HONO/NO, HONO/NOy and $\\varepsilon$ was observed for the largest passenger aircraft A380.

  5. Unmanned Aircraft in the Measurement of Carbon Dioxide in Buoyant Plumes

    NASA Astrophysics Data System (ADS)

    Jacob, J.

    2015-12-01

    Carbon sequestration, the storage of carbon dioxide gas underground, has the potential to reduce global warming by removing a greenhouse gas from the atmosphere. These storage sites, however, must first be monitored to detect if carbon dioxide is leaking back out to the atmosphere. As an alternative to traditional large ground-based sensor networks to monitor CO2 levels for leaks, unmanned aircraft offer the potential to perform in-situ atmospheric leak detection over large areas for a fraction of the cost. This project developed a proof-of-concept sensor system to map relative carbon dioxide levels to detect potential leaks. Ground tests were performed to verify and calibrate the system including wind tunnel tests to determine the optimal configuration of the system to account for dynamic calibration models required to determine accurate location of gas concentration in (x,y,z,t). Field tests were then conducted over a controlled release of CO2 as well as over controlled rangeland fires which released carbon dioxide over a large area. 3D maps of carbon dioxide were developed from the system telemetry that clearly illustrated increased CO2 levels from the fires. Results are compared with dynamic atmospheric models of gas dispersion within plumes.

  6. Ultraviolet scattering properties of alumina particle clusters at three phase states in aircraft plume

    NASA Astrophysics Data System (ADS)

    Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin; Gong, Yanjun

    2017-04-01

    We simulate the clusters of alumina particles using the parallel diffusion limited aggregation algorithm (DLA), and solve the scattering matrixes of the alumina particles in different phase states (alpha phase, gamma phase and liquid) through the multiple sphere T matrix method in UV. The effect of the number of monomers, fractal dimension and incident wavelength to the scattering phase function of the clusters of alumina particles is discussed. The results show that the different of the number of monomers, fractal dimensions and incident wavelengths have significant effect on the scattering properties of the clustered alumina particle. The researchers used to make the alumina particle equivalent to the alpha phase spherical particle, but it is too simplistic. We compare the scattering phase functions of the equivalent volume sphere (EVS), the equivalent surface sphere (ESS) and the clusters of alumina particles in three kinds of phase states. The results show that the backward scattering would be overestimated if the alumina particle is equivalent to the alpha phase spherical particle. Accurate phase function calculation in different phase states is very helpful to study the radiation propagation characteristics of aircraft plume.

  7. Conceptual/preliminary design study of subsonic v/stol and stovl aircraft derivatives of the S-3A

    NASA Technical Reports Server (NTRS)

    Kidwell, G. H., Jr.

    1981-01-01

    A computerized aircraft synthesis program was used to examine the feasibility and capability of a V/STOL aircraft based on the Navy S-3A aircraft. Two major airframe modifications are considered: replacement of the wing, and substitution of deflected thrust turbofan engines similar to the Pegasus engine. Three planform configurations for the all composite wing were investigated: an unconstrained span design, a design with the span constrained to 64 feet, and an unconstrained span oblique wing design. Each design was optimized using the same design variables, and performance and control analyses were performed. The oblique wing configuration was found to have the greatest potential in this application. The mission performance of these V/STOL aircraft compares favorably with that of the CTOL S-3A.

  8. The 1979 Southeastern Virginia Urban Plume Study. Volume 2: Data listings for NASA Cessna aircraft

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Lee, R. B., III; Mathis, J. J., Jr.

    1981-01-01

    The data reported are these measured onboard the NASA Langley chartered Cessna aircraft. Data include ozone, nitrogen oxides, light scattering coefficient, temperature, dewpoint, and aircraft altitude.

  9. Preliminary study of propulsion systems and airplane wing parameters for a US Navy subsonic V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Zola, C. L.; Fishbach, L. H.; Allen, J. L.

    1978-01-01

    Two V/STOL propulsion concepts were evaluated in a common aircraft configuration. One propulsion system consists of cross coupled turboshaft engines driving variable pitch fans. The other system is a gas coupled combination of turbojet gas generators and tip turbine fixed pitch fans. Evaluations were made of endurance at low altitude, low speed loiter with equal takeoff fuel loads. Effects of propulsion system sizing, bypass ratio, and aircraft wing planform parameters were investigated and compared. Shaft driven propulsion systems appear to result in better overall performance, although at higher installed weight, than gas systems.

  10. Summary of 1978 Southeastern Virginia Urban Plume study: Aircraft results for carbon monoxide, methane, nonmethane hydrocarbons, and ozone

    NASA Technical Reports Server (NTRS)

    Hill, G. F.; Sachse, G. W.; Cofer, W. R., III

    1981-01-01

    The characteristics of the Southeastern Virginia urban plume were defined with emphasis on the photon-oxidant species. The measurement area was a rectangle, approximately 150 km by 100 km centered around Cape Charles, Virginia. Included in this area are the cities of Norfolk, Virginia Beach, Chesapeake, Newport News, and Hampton. The area is bounded on the north by Wallops Island, Virginia, and on the south by the Hampton Roads area of Tidewater Virginia. The major axis of the rectangle is oriented in the southwest-northeast direction. The data set includes aircraft measurements for carbon monoxide, methane, nonmethane hydrocarbons, and ozone. The experiment shows that CO can be successfully measured as a tracer gas and used as an index for determining localized and urban plumes. The 1978 data base provided sufficient data to assess an automated chromatograph with flame ionization detection used for measuring methane and nonmethane hydrocarbons in flight.

  11. Removal of NOx and NOy in Asian outflow plumes: Aircraft measurements over the western Pacific in January 2002

    NASA Astrophysics Data System (ADS)

    Takegawa, N.; Kondo, Y.; Koike, M.; Chen, G.; Machida, T.; Watai, T.; Blake, D. R.; Streets, D. G.; Woo, J.-H.; Carmichael, G. R.; Kita, K.; Miyazaki, Y.; Shirai, T.; Liley, J. B.; Ogawa, T.

    2004-12-01

    The Pacific Exploration of Asian Continental Emission Phase A (PEACE-A) aircraft measurement campaign was conducted over the western Pacific in January 2002. Correlations of carbon monoxide (CO) with carbon dioxide (CO2) and back trajectories are used to identify plumes strongly affected by Asian continental emissions. ΔCO/ΔCO2 ratios (i.e., linear regression slopes of CO-CO2) in the plumes generally fall within the variability range of the CO/CO2 emission ratios estimated from an emission inventory for east Asia, demonstrating the consistency between the aircraft measurements and the emission characterization. Removal rates of reactive nitrogen (NOx and NOy) for the study region (altitude <4 km, 124°-140°E, 25°-45°N) are estimated using the correlation with CO2, the photochemical age of the plumes, and the NOx/CO2 emission ratio derived from the emission inventory. The plume age is estimated from the rates of hydrocarbon decay and hydroxyl radical (OH) concentration calculated using a constrained photochemical box model. The average lifetime of NOx is estimated to be 1.2 ± 0.4 days. Possible processes controlling the NOx lifetime are discussed in conjunction with results from earlier studies. The average lifetime of NOy is estimated to be 1.7 ± 0.5 days, which is comparable to the NOy lifetime of 1.7-1.8 days that has been previously reported for outflow from the United States. This similarity suggests the importance of chemical processing near the source regions in determining the NOy abundance.

  12. High-lift flow-physics flight experiments on a subsonic civil transport aircraft (B737-100)

    NASA Technical Reports Server (NTRS)

    Vandam, Cornelis P.

    1994-01-01

    As part of the subsonic transport high-lift program, flight experiments are being conducted using NASA Langley's B737-100 to measure the flow characteristics of the multi-element high-lift system at full-scale high-Reynolds-number conditions. The instrumentation consists of hot-film anemometers to measure boundary-layer states, an infra-red camera to detect transition from laminar to turbulent flow, Preston tubes to measure wall shear stress, boundary-layer rakes to measure off-surface velocity profiles, and pressure orifices to measure surface pressure distributions. The initial phase of this research project was recently concluded with two flights on July 14. This phase consisted of a total of twenty flights over a period of about ten weeks. In the coming months the data obtained in this initial set of flight experiments will be analyzed and the results will be used to finalize the instrumentation layout for the next set of flight experiments scheduled for Winter and Spring of 1995. The main goal of these upcoming flights will be: (1) to measure more detailed surface pressure distributions across the wing for a range of flight conditions and flap settings; (2) to visualize the surface flows across the multi-element wing at high-lift conditions using fluorescent mini tufts; and (3) to measure in more detail the changes in boundary-layer state on the various flap elements as a result of changes in flight condition and flap deflection. These flight measured results are being correlated with experimental data measured in ground-based facilities as well as with computational data calculated with methods based on the Navier-Stokes equations or a reduced set of these equations. Also these results provide insight into the extent of laminar flow that exists on actual multi-element lifting surfaces at full-scale high-life conditions. Preliminary results indicate that depending on the deflection angle, the slat and flap elements have significant regions of laminar flow over

  13. Viscous-flow analysis of a subsonic transport aircraft high-lift system and correlation with flight data

    NASA Technical Reports Server (NTRS)

    Potter, R. C.; Vandam, C. P.

    1995-01-01

    High-lift system aerodynamics has been gaining attention in recent years. In an effort to improve aircraft performance, comprehensive studies of multi-element airfoil systems are being undertaken in wind-tunnel and flight experiments. Recent developments in Computational Fluid Dynamics (CFD) offer a relatively inexpensive alternative for studying complex viscous flows by numerically solving the Navier-Stokes (N-S) equations. Current limitations in computer resources restrict practical high-lift N-S computations to two dimensions, but CFD predictions can yield tremendous insight into flow structure, interactions between airfoil elements, and effects of changes in airfoil geometry or free-stream conditions. These codes are very accurate when compared to strictly 2D data provided by wind-tunnel testing, as will be shown here. Yet, additional challenges must be faced in the analysis of a production aircraft wing section, such as that of the NASA Langley Transport Systems Research Vehicle (TSRV). A primary issue is the sweep theory used to correlate 2D predictions with 3D flight results, accounting for sweep, taper, and finite wing effects. Other computational issues addressed here include the effects of surface roughness of the geometry, cove shape modeling, grid topology, and transition specification. The sensitivity of the flow to changing free-stream conditions is investigated. In addition, the effects of Gurney flaps on the aerodynamic characteristics of the airfoil system are predicted.

  14. The use of SE-WORKBENCH for aircraft infrared signature, taken into account body, engine, and plume contributions

    NASA Astrophysics Data System (ADS)

    Cathala, Thierry; Douchin, Nicolas; Joly, André; Perzon, Sven

    2010-04-01

    The aim of this paper is to explain how the combination of CFD++, CFD computational code, RadTherm-IR, 3D thermal computational code and SE-Workbench-EO from OKTAL-SE is an adequate solution for computing the IR signature of a jet aircraft taking all this major into account. An F16 fighter jet cruising at Ma=0.8 has been simulated in CFD++ including a multi species gas with the plume included in the CFD simulation. The solution adopted for computing the radiative transfer through the plume is based on the IRMA module of the NIRATAM software package. A revisited and extended version of IRMA has been integrated in the non real time rendering module of the SE Workbench-EO, SE-RAY-IR The paper illustrates the use of SE-RAY-IR for computing the IR signature of the F16, including the plume, either as an isolated target in the sky or with the background behind.

  15. Subsonic wind-tunnel tests of a trailing-cone device for calibrating aircraft static pressure systems

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.; Ritchie, V. S.

    1973-01-01

    A trailing-cone device for calibrating aircraft static-pressure systems was tested in a transonic wind tunnel to investigate the pressure-sensing characteristics of the device including effects of several configuration changes. The tests were conducted at Mach numbers from 0.30 to 0.95 with Reynolds numbers from (0.9 x one million to 4.1 x one million per foot). The results of these tests indicated that the pressures sensed by the device changed slightly but consistently as the distance between the device pressure orifices and cone was varied from 4 to 10 cone diameters. Differences between such device-indicated pressures and free-stream static pressure were small, however, and corresponded to Mach number differences of less than 0.001 for device configurations with pressure orifices located 5 or 6 cone diameters ahead of the cone. Differences between device-indicated and free-stream static pressures were not greatly influenced by a protection skid at the downstream end of the pressure tube of the device nor by a 2-to-1 change in test Reynolds number.

  16. Airborne measurements of the Eyjafjallajökull volcanic ash plume over northwestern Germany with a light aircraft and an optical particle counter: first results

    NASA Astrophysics Data System (ADS)

    Weber, Konradin; Vogel, Andreas; Fischer, Christian; van Haren, Günther; Pohl, Tobias

    2010-10-01

    During the eruption phase of the Icelandic volcano Eyjafjallajökull in April/May 2010 the University of Applied Sciences Duesseldorf has performed 14 measurement flights over north-western Germany in the time period of 23 April 2010 to 21 May 2010. Additionally 4 flights have been performed for visual observations, referencing and transfer. The measurement flights have been performed in situations, where the ash plume was present over north-western Germany as well as in situations, when there was no ash plume predicted. For the measurements a light aircraft (Flight Design CTSW Shortwing) was used, which was equipped with an optical particle counter (Grimm 1.107). Additionally the aircraft was equipped for one flight with an UV-DOAS system and a CO2-measurement system. The optical particle counter allowed in-situ measurements of the particle distribution between 250 nm and 32 μm and of PM10, PM2.5 and PM1. The ash plume appeared during the measurements as inhomogeneous in structure. Layers or multilayers of one hundred meters to a few hundred meters vertical depth of ash plume could be identified. Sub-plumes with a horizontal extension of several kilometres to several tenths of kilometres could be found. The layers of the ash plume could be found in altitudes between 2500m and 4500m. The measured concentrations have been compared with the concentration and extension of the ash plume predicted by the Volcanic Ash Advisory Centre (VAAC).

  17. Advanced Subsonic Combustion Rig Developed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Advanced Subsonic Combustion Rig (ASCR), a unique, state-of-the-art facility for conducting combustion research, is located at the NASA Lewis Research Center in Cleveland, Ohio. The ASCR, which was nearing completion at the close of 1995, will be capable of simulating the very high pressure and high temperature conditions that are expected to exist in future, advanced subsonic gas turbine (jet) engines. Future environmental regulations will require much cleaner burning (more environmentally friendly) aircraft engines. The ASCR is critical to the development of these cleaner engines. It will allow NASA and U.S. aircraft engine industry researchers to identify and test promising clean-burning gas turbine engine combustion concepts under the pressure and temperature conditions that are expected for those future engines. Combustion processes will be investigated for a variety of next-generation aircraft engine sizes, including engines for large, long-range aircraft (with typical trip lengths of about 3000 mi) and for regional aircraft (with typical trip lengths of about 400 mi). The ASCR design was conceived and initiated in 1993, and fabrication and construction of the rig, including the buildup of an advanced control room, took place throughout 1994 and 1995. In early 1996, the ASCR will be operational for obtaining research data. The ASCR is an intricate part of the NASA Advanced Subsonic Technology Propulsion Program, which is aimed at developing technologies critical to the next generation of gas turbine engines. This effort is in collaboration with the U.S. aircraft gas turbine engine industry. A goal of the Advanced Subsonic Technology Propulsion Program is to develop combustion concepts and technologies that will result in gas turbine engines that produce 50 percent less nitrous oxide (NO_x) pollutants than current engines do. This facility is unique in its capability to simulate advanced subsonic engine pressure, temperature, and air flow rate conditions

  18. Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Logan, J. A.; Mao, J.; Apel, E.; Riemer, D.; Blake, D.; Cohen, R. C.; Min, K.-E.; Perring, A. E.; Browne, E. C.; Wooldridge, P. J.; Diskin, G. S.; Sachse, G. W.; Fuelberg, H.; Sessions, W. R.; Harrigan, D. L.; Huey, G.; Liao, J.; Case-Hanks, A.; Jimenez, J. L.; Cubison, M. J.; Vay, S. A.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Pollack, I. B.; Wennberg, P. O.; Kurten, A.; Crounse, J.; St. Clair, J. M.; Wisthaler, A.; Mikoviny, T.; Yantosca, R. M.; Carouge, C. C.; Le Sager, P.

    2010-10-01

    We determine enhancement ratios for NOx, PAN, and other NOy species from boreal biomass burning using aircraft data obtained during the ARCTAS-B campaign and examine the impact of these emissions on tropospheric ozone in the Arctic. We find an initial emission factor for NOx of 1.06 g NO per kg dry matter (DM) burned, much lower than previous observations of boreal plumes, and also one third the value recommended for extratropical fires. Our analysis provides the first observational confirmation of rapid PAN formation in a boreal smoke plume, with 40% of the initial NOx emissions being converted to PAN in the first few hours after emission. We find little clear evidence for ozone formation in the boreal smoke plumes during ARCTAS-B in either aircraft or satellite observations, or in model simulations. Only a third of the smoke plumes observed by the NASA DC8 showed a correlation between ozone and CO, and ozone was depleted in the plumes as often as it was enhanced. Special observations from the Tropospheric Emission Spectrometer (TES) also show little evidence for enhanced ozone in boreal smoke plumes between 15 June and 15 July 2008. Of the 22 plumes observed by TES, only 4 showed ozone increasing within the smoke plumes, and even in those cases it was unclear that the increase was caused by fire emissions. Using the GEOS-Chem atmospheric chemistry model, we show that boreal fires during ARCTAS-B had little impact on the median ozone profile measured over Canada, and had little impact on ozone within the smoke plumes observed by TES.

  19. Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Logan, J. A.; Mao, J.; Apel, E.; Riemer, D.; Blake, D.; Cohen, R. C.; Min, K.-E.; Perring, A. E.; Browne, E. C.; Wooldridge, P. J.; Diskin, G. S.; Sachse, G. W.; Fuelberg, H.; Sessions, W. R.; Harrigan, D. L.; Huey, G.; Liao, J.; Case-Hanks, A.; Jimenez, J. L.; Cubison, M. J.; Vay, S. A.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Pollack, I. B.; Wennberg, P. O.; Kurten, A.; Crounse, J.; St. Clair, J. M.; Wisthaler, A.; Mikoviny, T.; Yantosca, R. M.; Carouge, C. C.; Le Sager, P.

    2010-06-01

    We determine enhancement ratios for NOx, PAN, and other NOy species from boreal biomass burning using aircraft data obtained during the ARCTAS-B campaign and examine the impact of these emissions on tropospheric ozone in the Arctic. We find an initial emission factor for NOx of 1.06 g NO per kg dry matter (DM) burned, much lower than previous observations of boreal plumes, and also one third the value recommended for extratropical fires. Our analysis provides the first observational confirmation of rapid PAN formation in a boreal smoke plume, with 40% of the initial NOx emissions being converted to PAN in the first few hours after emission. We find little clear evidence for ozone formation in the boreal smoke plumes during ARCTAS-B in either aircraft or satellite observations, or in model simulations. Only a third of the smoke plumes observed by the NASA DC8 showed a correlation between ozone and CO, and ozone was depleted in the plumes as often as it was enhanced. Special observations from the Tropospheric Emission Spectrometer (TES) also show little evidence for enhanced ozone in boreal smoke plumes between 15 June and 15 July 2008. Of the 22 plumes observed by TES, only 4 showed ozone increasing within the smoke plumes, and even in those cases it was unclear that the increase was caused by fire emissions. Using the GEOS-Chem atmospheric chemistry model, we show that boreal fires during ARCTAS-B had little impact on the median ozone profile measured over Canada, and had little impact on ozone within the smoke plumes observed by TES.

  20. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  1. A study of Asian dust plumes using satellite, surface, and aircraft measurements during the INTEX-B field experiment

    NASA Astrophysics Data System (ADS)

    Logan, Timothy; Xi, Baike; Dong, Xiquan; Obrecht, Rebecca; Li, Zhanqing; Cribb, Maureen

    2010-04-01

    Asian dust events occur frequently during the boreal spring season. Their optical properties have been analyzed by using a combination of source region (ground-based and satellite) and remote Pacific Ocean (aircraft) measurements during the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B) field campaign which lasted from 7 April to 15 May 2006. A strong dust event originating from the Gobi Desert and passing over the Xianghe surface site on 17 April 2006 has been extensively analyzed. The surface averaged aerosol optical depth (AOD) values increased from 0.17 (clear sky) to 4.0 (strong dust), and the Angström exponent (α) dropped from 1.26 (clear sky) to below 0.1. Its total downwelling SW flux over the Xianghe site (thousands of kilometers away from the dust source region) is only 46% of the clear-sky value with almost no direct transmission and nearly double the diffuse SW clear-sky value. This event was also captured 6 days later by satellite observations as well as the UND/NASA DC-8 aircraft over the eastern Pacific Ocean. The DC-8 measurements in the remote Pacific region further classified the plumes into dust dominant, pollution dominant, and a mixture of dust and pollution events. HYSPLIT backward trajectories not only verified the origins of each case we selected but also showed (1) two possible origins for the dust: the Gobi and Taklimakan deserts; and (2) pollution: urban areas in eastern China, Japan, and other industrialized cities east of the two deserts. Based on the averaged satellite retrieved AOD data (0.5° × 0.5° grid box), declining AOD values with respect to longitude demonstrated the evolution of the transpacific transport pathway of Asian dust and pollution over the period of the field campaign.

  2. Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: An integrated analysis of aircraft and satellite observations

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Logan, J. A.; Mao, J.; Apel, E. C.; Riemer, D. D.; Blake, D. R.; Cohen, R. C.; Min, K.; Perring, A. E.; Browne, E. C.; Wooldridge, P. J.; Diskin, G. S.; Sachse, G. W.; Fuelberg, H. E.; Sessions, W.; Harrigan, D. L.; Huey, L. G.; Liao, J.; Case Hanks, A. T.; Jimenez, J. L.; Cubison, M.; Weinheimer, A. J.; Knapp, D. J.; Flocke, F. M.; Wennberg, P. O.; Kuerten, A.; Crounse, J.; St. Clair, J.; Wisthaler, A.; Vay, S. A.; Arctas Science Team

    2010-12-01

    We determine enhancement ratios for NOx , PAN, and other NOy species from boreal biomass burning using aircraft data obtained during the ARCTAS-B campaign and examine the impact of these emissions on tropospheric ozone in the Arctic. We find an initial emission factor for NOx of 1.06 g NO per kg dry matter (DM) burned, one third the value recommended for extratropical fires. Our analysis provides the first observational confirmation of rapid PAN formation in a boreal smoke plume, with 40% of the initial NOx emissions being converted to PAN in the first few hours after emission. We find little clear evidence for ozone formation in the boreal smoke plumes during ARCTAS-B in either aircraft or satellite observations, or in model simulations. Only a third of the smoke plumes observed by the NASA DC8 showed a correlation between ozone and CO, and ozone was depleted in the plumes as often as it was enhanced. Special observations from the Tropospheric Emission Spectrometer (TES) also show little evidence for enhanced ozone in boreal smoke plumes between 15 June and 15 July 2008. Using the GEOS-Chem atmospheric chemistry model, we show that boreal fires during ARCTAS-B had little impact on the median ozone profile measured over Canada, and had little impact on ozone within the smoke plumes observed by TES. We show that the modeled ozone levels are more sensitive to estimates of injection height, total biomass consumed and NOy emission factor than to the initial partitioning of the NOy emissions between NOx and PAN.

  3. Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker Amundsen from the Polar 6 aircraft platform

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir A.; Thomas, Jennie L.; Herber, Andreas B.; Staebler, Ralf M.; Leaitch, W. Richard; Schulz, Hannes; Law, Kathy S.; Marelle, Louis; Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Hoor, Peter M.; Köllner, Franziska; Schneider, Johannes; Levasseur, Maurice; Abbatt, Jonathan P. D.

    2016-06-01

    Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols) campaign, the plume dispersion and gas and particle emission factors of effluents originating from the Canadian Coast Guard icebreaker Amundsen operating near Resolute Bay, NU, Canada, were investigated. The Amundsen burned distillate fuel with 1.5 wt % sulfur. Emissions were studied via plume intercepts using the Polar 6 aircraft measurements, an analytical plume dispersion model, and using the FLEXPART-WRF Lagrangian particle dispersion model. The first plume intercept by the research aircraft was carried out on 19 July 2014 during the operation of the Amundsen in the open water. The second and third plume intercepts were carried out on 20 and 21 July 2014 when the Amundsen had reached the ice edge and operated under ice-breaking conditions. Typical of Arctic marine navigation, the engine load was low compared to cruising conditions for all of the plume intercepts. The measured species included mixing ratios of CO2, NOx, CO, SO2, particle number concentration (CN), refractory black carbon (rBC), and cloud condensation nuclei (CCN). The results were compared to similar experimental studies in mid-latitudes. Plume expansion rates (γ) were calculated using the analytical model and found to be γ = 0.75 ± 0.81, 0.93 ± 0.37, and 1.19 ± 0.39 for plumes 1, 2, and 3, respectively. These rates were smaller than prior studies conducted at mid-latitudes, likely due to polar boundary layer dynamics, including reduced turbulent mixing compared to mid-latitudes. All emission factors were in agreement with prior

  4. A plume-in-grid approach to characterize air quality impacts of aircraft emissions at the Hartsfield-Jackson Atlanta International Airport

    NASA Astrophysics Data System (ADS)

    Rissman, J.; Arunachalam, S.; Woody, M.; West, J. J.; BenDor, T.; Binkowski, F. S.

    2013-09-01

    This study examined the impacts of aircraft emissions during the landing and takeoff cycle on PM2.5 concentrations during the months of June and July 2002 at the Hartsfield-Jackson Atlanta International Airport. Primary and secondary pollutants were modeled using the Advanced Modeling System for Transport, Emissions, Reactions, and Deposition of Atmospheric Matter (AMSTERDAM). AMSTERDAM is a modified version of the Community Multiscale Air Quality (CMAQ) model that incorporates a plume-in-grid process to simulate emissions sources of interest at a finer scale than can be achieved using CMAQ's model grid. Three fundamental issues were investigated: the effects of aircraft on PM2.5 concentrations throughout northern Georgia, the differences resulting from use of AMSTERDAM's plume-in-grid process rather than a traditional CMAQ simulation, and the concentrations observed in aircraft plumes at subgrid scales. Comparison of model results with an air quality monitor located in the vicinity of the airport found that normalized mean bias ranges from -77.5% to 6.2% and normalized mean error ranges from 40.4% to 77.5%, varying by species. Aircraft influence average PM2.5 concentrations by up to 0.232 μg m-3 near the airport and by 0.001-0.007 μg m-3 throughout the Atlanta metro area. The plume-in-grid process increases concentrations of secondary PM pollutants by 0.005-0.020 μg m-3 (compared to the traditional grid-based treatment) but reduces the concentration of non-reactive primary PM pollutants by up to 0.010 μg m-3, with changes concentrated near the airport. Examination of subgrid-scale results indicates that median aircraft contribution to grid cells is higher than median puff concentration in the airport's grid cell and outside of a 20 km × 20 km square area centered on the airport, while in a 12 km × 12 km square ring centered on the airport, puffs have median concentrations over an order of magnitude higher than aircraft contribution to the grid cells. Maximum

  5. Aircraft measurements of the impacts of urban plume on cloud activation properties during GoAmazon - preliminary results

    NASA Astrophysics Data System (ADS)

    Mei, F.; Comstock, J. M.; Wang, J.; Tomlinson, J. M.; Hubbe, J. M.; Schmid, B.; Martin, S. T.; Longo, K.; Kuang, C.; Chand, D.; Pekour, M. S.; Shilling, J. E.

    2014-12-01

    Currently, the indirect effects of atmospheric aerosols remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2007). This large uncertainty is partially a result of our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturations. One of the objectives of the US Department of Energy (DOE) Green Ocean Amazon Project (GoAmazon) is to understand the influence of the emission from Manaus, a tropical megacity, on aerosol size, concentration, and chemical composition, and their impact on aerosol cloud condensation nuclei (CCN) spectrum. During the GoAmazon study, size distributions, CCN spectra and chemical composition of aerosols both under pristine conditions and inside Manaus plume were measured in-situ from the DOE Gulfstream 1 (G-1) research aircraft during two Intensive Operations Periods, one conducted in the wet season (Feb 22- March 24, 2014) and the other in dry season (Sep 1 - Oct 10, 2014). Aerosol size distributions were measured by a Fast Integrated Mobility Spectrometer (FIMS) and compared with the merged size distribution from two other instruments, an Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), and a Passive Cavity Aerosol Spectrometer Probe (PCASP-200, DMT). Optical measurements of light scattering by nephelometer and absorption by a particle soot absorption photometer (PSAP) were combined with number/size distributions data in a iterative method, which retrieves the effective imaginary refractive index of the particles at a wavelength of 545 nm. Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.). CCN number concentration was measured by a DMT dual column CCN counter at two supersaturations 0.25% and 0.5%. Based on the aerosol properties mentioned above, CCN closure is carried out. In addition, the sensitivity of calculated CCN

  6. A plume-in-grid approach to characterize air quality impacts of aircraft emissions at the Hartsfield-Jackson Atlanta International Airport

    NASA Astrophysics Data System (ADS)

    Rissman, J.; Arunachalam, S.; Woody, M.; West, J. J.; BenDor, T.; Binkowski, F. S.

    2013-01-01

    This study examined the impacts of aircraft emissions during the landing and takeoff cycle on PM2.5 concentrations during the months of June 2002 and July 2002 at the Hartsfield-Jackson Atlanta International Airport. Primary and secondary pollutants were modeled using the Advanced Modeling System for Transport, Emissions, Reactions, and Deposition of Atmospheric Matter (AMSTERDAM). AMSTERDAM is a modified version of the Community Multiscale Air Quality (CMAQ) model that incorporates a plume-in-grid process to simulate emissions sources of interest at a finer scale than can be achieved using CMAQ's model grid. Three fundamental issues were investigated: the effects of aircraft on PM2.5 concentrations throughout northern Georgia, the differences resulting from use of AMSTERDAM's plume-in-grid process rather than a traditional CMAQ simulation, and the concentrations observed in aircraft plumes at sub-grid scales. Comparison of model results with an air quality monitor located in the vicinity of the airport found that normalized mean bias ranges from -77.5% to 6.2% and normalized mean error ranges from 40.4% to 77.5%, varying by species. Aircraft influence average PM2.5 concentrations by up to 0.232 μg m-3 near the airport and by 0.001-0.007 μg m-3 throughout the Atlanta metro area. The plume-in-grid process increases concentrations of secondary PM pollutants by 0.005-0.020 μg m-3 (compared to the traditional grid-based treatment) but reduces the concentration of non-reactive primary PM pollutants by up to 0.010 μg m-3, with changes concentrated near the airport. Examination of sub-grid scale results indicates that puffs within 20 km of the airport often have average PM2.5 concentrations one order of magnitude higher than aircraft contribution to the grid cells containing those puffs, and within 1-4 km of emitters, puffs may have PM2.5 concentrations 3 orders of magnitude greater than the aircraft contribution to their grid cells. 21% of all aircraft-related puffs

  7. Wind tunnel investigation of an all flush orifice air data system for a large subsonic aircraft. [conducted in a Langley 8 foot transonic pressure tunnel

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Flechner, S. G.; Siemers, P. M., III

    1980-01-01

    The results of a wind tunnel investigation on an all flush orifice air data system for use on a KC-135A aircraft are presented. The investigation was performed to determine the applicability of fixed all flush orifice air data systems that use only aircraft surfaces for orifices on the nose of the model (in a configuration similar to that of the shuttle entry air data system) provided the measurements required for the determination of stagnation pressure, angle of attack, and angle of sideslip. For the measurement of static pressure, additional flush orifices in positions on the sides of the fuselage corresponding to those in a standard pitot-static system were required. An acceptable but less accurate system, consisting of orifices only on the nose of the model, is defined and discussed.

  8. A review of technologies applicable to low-speed flight of high-performance aircraft investigated in the Langley 14- x 22-foot subsonic tunnel

    NASA Technical Reports Server (NTRS)

    Paulson, John W., Jr.; Quinto, P. Frank; Banks, Daniel W.; Kemmerly, Guy T.; Gatlin, Gregory M.

    1988-01-01

    An extensive research program has been underway at the NASA Langley Research Center to define and develop the technologies required for low-speed flight of high-performance aircraft. This 10-year program has placed emphasis on both short takeoff and landing (STOL) and short takeoff and vertical landing (STOVL) operations rather than on regular up and away flight. A series of NASA in-house as well as joint projects have studied various technologies including high lift, vectored thrust, thrust-induced lift, reversed thrust, an alternate method of providing trim and control, and ground effects. These technologies have been investigated on a number of configurations ranging from industry designs for advanced fighter aircraft to generic wing-canard research models. Test conditions have ranged from hover (or static) through transition to wing-borne flight at angles of attack from -5 to 40 deg at representative thrust coefficients.

  9. Summary of aircraft results for 1978 southeastern Virginia urban plume measurement study of ozone, nitrogen oxides, and methane

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Wornom, D. E.; Mathis, J. J., Jr.; Sebacher, D. I.

    1980-01-01

    Ozone production was determined from aircraft and surface in situ measurements, as well as from an airborne laser absorption spectrometer. Three aircraft and approximately 10 surface stations provided air-quality data. Extensive meteorological, mixing-layer-height, and ozone-precursor data were also measured. Approximately 50 hrs (9 flight days) of data from the aircraft equipped to monitor ozone, nitrogen oxides, dewpoint temperature, and temperature are presented. In addition, each experiment conducted is discussed.

  10. Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.

    2005-01-01

    This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.

  11. Propulsion technology for an advanced subsonic transport

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.; Antl, R. J.; Povolny, J. H.

    1972-01-01

    Engine design studies for future subsonic commercial transport aircraft were conducted in parallel with airframe studies. These studies surveyed a broad distribution of design variables, including aircraft configuration, payload, range, and speed, with particular emphasis on reducing noise and exhaust emissions without severe economic and performance penalties. The results indicated that an engine for an advanced transport would be similar to the currently emerging turbofan engines. Application of current technology in the areas of noise suppression and combustors imposed severe performance and economic penalties.

  12. Subsonic and transonic propeller noise

    NASA Astrophysics Data System (ADS)

    Lewy, S.; Gounet, H.

    Models for the noise levels from propellers are discussed, with results compared to in-flight measurements. Methods originally applied to noise from light aircraft are modified and extended to high speed passenger aircraft. Noise emitted from propellers has three components: a monopolar emission due to the air displaced by a blade; a bipolar form from average and fluctuating forces exerted by the blades; and a quadripolar component produced by deformation of the streamlines around the blade profile and defined by the Lighthill tensor. The latter is not a factor in the subsonic regime and can be neglected. Attention is given to a formalism which accounts for the sound level along each band, the frequency harmonics at each blade passage, the number of blades, and the rotation rate. The measured directivities of the two components are described. It is found that the radiated noise levels can be reduced in slow aircraft by lowering the peripheral velocity while keeping the same power with more blades. Calculations including the quadripolar term are necessary for modeling noise levels in transonic propellers.

  13. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft. Volume 1: Load alleviation/extended span development and flight tests

    NASA Technical Reports Server (NTRS)

    Johnston, J. F.

    1979-01-01

    Active wing load alleviation to extend the wing span by 5.8 percent, giving a 3 percent reduction in cruise drag is covered. The active wing load alleviation used symmetric motions of the outboard ailerons for maneuver load control (MLC) and elastic mode suppression (EMS), and stabilizer motions for gust load alleviation (GLA). Slow maneuvers verified the MLC, and open and closed-loop flight frequency response tests verified the aircraft dynamic response to symmetric aileron and stabilizer drives as well as the active system performance. Flight tests in turbulence verified the effectiveness of the active controls in reducing gust-induced wing loads. It is concluded that active wing load alleviation/extended span is proven in the L-1011 and is ready for application to airline service; it is a very practical way to obtain the increased efficiency of a higher aspect ratio wing with minimum structural impact.

  14. Steady and Oscillatory, Subsonic and Supersonic, Aerodynamic Pressure and Generalized Forces for Complex Aircraft Configurations and Applications to Flutter. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, L. T.

    1975-01-01

    A general method for analyzing aerodynamic flows around complex configurations is presented. By applying the Green function method, a linear integral equation relating the unknown, small perturbation potential on the surface of the body, to the known downwash is obtained. The surfaces of the aircraft, wake and diaphragm (if necessary) are divided into small quadrilateral elements which are approximated with hyperboloidal surfaces. The potential and its normal derivative are assumed to be constant within each element. This yields a set of linear algebraic equations and the coefficients are evaluated analytically. By using Gaussian elimination method, equations are solved for the potentials at the centroids of elements. The pressure coefficient is evaluated by the finite different method; the lift and moment coefficients are evaluated by numerical integration. Numerical results are presented, and applications to flutter are also included.

  15. Airborne in-situ investigations of the Eyjafjallajökull volcanic ash plume on Iceland and over north-western Germany with light aircrafts and optical particle counters

    NASA Astrophysics Data System (ADS)

    Weber, K.; Eliasson, J.; Vogel, A.; Fischer, C.; Pohl, T.; van Haren, G.; Meier, M.; Grobéty, B.; Dahmann, D.

    2012-03-01

    During the time period of the eruption of the Icelandic volcano Eyjafjallajökull in April/May 2010 the Duesseldorf University of Applied Sciences has performed 14 research flights in situations with and without the volcanic ash plume over Germany. In parallel to the research flights in Germany three measurement flights have been performed by the University of Iceland in May 2010 over the western part of Iceland. During two of these flights the outskirts of the eruption plume were entered directly, delivering most direct measurements within the eruption plume during this eruptive event. For all the measurement flights reported here, light durable piston-motor driven aircrafts were used, which were equipped with optical particle counters for in-situ measurements. Real-time monitoring of the particle concentrations was possible during the flights. As different types of optical particle counters have been used in Iceland and Germany, the optical particle counters have been re-calibrated after the flights to the same standard using gravimetric reference methods and original Eyjafjallajökull volcanic ash samples. In-situ measurement results with high spatial resolution, directly from the eruption plume in Iceland as well as from the dispersed and several days old plume over Germany, are therefore presented here for the first time. They are normalized to the same ash concentration calibration standard. Moreover, airborne particles could be sampled directly out of the eruption plume in Iceland as well as during the flights over Germany. During the research flights over Iceland from 9 May 2011 to 11 May 2011 the ash emitted from the vent of the volcano turned out to be concentrated in a narrow well-defined plume of about 10 km width at a distance of 45-60 km away from the vent. Outside this plume the airborne ash concentrations could be proved to be below 50 μg m -3 over western Iceland. However, by entering the outskirts of the plume directly the research aircraft could

  16. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  17. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  18. Design procedure for low-drag subsonic airfoils

    NASA Technical Reports Server (NTRS)

    Peterson, J. B.; Chen, A. B.

    1975-01-01

    Airfoil has least amount of drag under given restrictions of boundary layer transition position, lift coefficient, thickness ratio, and Reynolds number based on airfoil chord. It is suitable for use as wing and propeller aircraft sections operating at subsonic speeds and for hydrofoil sections and blades for fans, compressors, turbines, and windmills.

  19. The requirements for a new full scale subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kelly, M. W.; Mckinney, M. O.; Luidens, R. W.

    1972-01-01

    Justification and requirements are presented for a large subsonic wind tunnel capable of testing full scale aircraft, rotor systems, and advanced V/STOL propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed.

  20. SHARP: Subsonic High Altitude Research Platform

    NASA Technical Reports Server (NTRS)

    Beals, Todd; Burton, Craig; Cabatan, Aileen; Hermano, Christine; Jones, Tom; Lee, Susan; Radloff, Brian

    1991-01-01

    The Universities Space Research Association is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.mi. at 100,000 ft with a 2500 lb payload. The second mission is also a polar mission, with an altitude of 70,000 ft and an increased payload of 4000 lbs. For the third mission, the aircraft will takeoff at NASA Ames, cruise at 100,000 ft carrying a 2500 lb payload, and land at Puerto Montt, Chile. The final mission requires the aircraft to take off at NASA Ames, cruise at 100,000 ft with a 1000 lb payload, make an excursion to 120,000 ft, and land at Howard AFB, Panama. Three missions require that a subsonic Mach number be maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations have been determined to be the most suitable for meeting the above requirements. In the event that a requirement cannot be obtained within the given constraints, recommendations for proposal modifications are given.

  1. Aircraft

    DTIC Science & Technology

    2003-01-01

    national power. But with the recent events such as the war with Iraq, the Severe Acute Respiratory Syndrome (SARS) outbreak, some major carriers... TITLE AND SUBTITLE 2003 Industry Studies: Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  2. Aerodynamic interactions with turbulent jet exhaust plumes

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1982-01-01

    The importance of aerodynamic interactions associated with external flow-field effects on turbulent jet exhaust plume structure is discussed. A viscous/inviscid prediction technique is presented which combines the overlaid mixing and inviscid plume components of the JANNAF Standardized Plume Flow-Field (SPF) model with inviscid external flow and boundary-layer analyses for treating nozzle afterbodies at subsonic/transonic speeds. Validation of the technique via comparisons between predictions and experiment for cold-air jet plumes is presented. Predicted spatial temperature distributions for hot, nonafterburning plumes are presented and compared to results obtained from more simplified prediction techniques in order to assess the importance of the aerodynamic interactions associated with external boundary layers and pressure gradients. It is demonstrated that these interactions play a significant role in determining the near-field turbulent mixing and inviscid plume shock structure. The implication of these results to plume radiation predictions is discussed.

  3. The chemistry and diffusion of aircraft exhausts in the lower stratosphere during the first few hours after fly-by. [with attention to ozone depletion by SST exhaust plumes

    NASA Technical Reports Server (NTRS)

    Hilst, G. R.

    1974-01-01

    An analysis of the hydrogen-nitrogen-oxygen reaction systems in the lower stratosphere as they are initially perturbed by individual aircraft engine exhaust plumes was conducted in order to determine whether any significant chemical reactions occur, either among exhaust chemical species, or between these species and the environmental ozone, while the exhaust products are confined to intact plume segments at relatively high concentrations. The joint effects of diffusive mixing and chemical kinetics on the reactions were also studied, using the techniques of second-order closure diffusion/chemistry models. The focus of the study was on the larger problem of the potential depletion of ozone by supersonic transport aircraft exhaust materials emitted into the lower stratosphere.

  4. Pressure and Vorticity Transients from Summer Storms and Aircraft.

    NASA Astrophysics Data System (ADS)

    Jordan, A. Raymond

    1980-10-01

    A field study directed primarily to the pressure fields produced by thunderstorms, plumes, dust devils and aircraft has been conducted during several summers at locations in northeastern Colorado and near Stapleton International Airport, Denver. A 60 m tripartite array of anemometers plus sensors of pressure, vertical wind and vorticity were employed in the study of plumes and small vortices. The transient or short-lived phenomena studied required high-sensitivity microbarographs designed for gravity-wave measurements in the Brunt-Väisälä band of the subsonic spectrum. As a supplement to usual anemometry a vorticity meter well suited to microscale work was used to observe small vortices.Convective plumes were observed to occur in an unstable atmosphere with variable winds. One sees not only a strong updraft and accompanying negative pressure pulse but also a small peripheral downdraft with a corresponding positive pressure from the descending air, mainly at the plume's trailing edge. A second type of convective element, consisting of a plume-like column with vorticity, gives rise to a negative-positive pressure oscillation and related variations in wind speed and direction. Observations on two dust devils show some characteristics similar to the small convective vortices just mentioned, but with the principal exception that there is a descending flow in the core whose sense of rotation is opposite to that of the peripheral region of updraft. Pressure and vorticity effects in thunderstorm gust fronts were observed. The smooth, exponentially rising pressure curve generated by the gust may sometimes be interrupted by a sharp negative pressure spike indicative of shear and cross-stream circulation.Field studies of pressure profiles of wake vortices from aircraft at take-off and landing show similarities with those from naturally occurring vortices even though the axes of the wake vortices are initially almost horizontal. Vortex sound was sometimes heard during the

  5. Preliminary Analysis of the Effect of Flow Separation Due to Rocket Jet Pluming on Aircraft Dynamic Stability During Atmospheric Exit

    NASA Technical Reports Server (NTRS)

    Dryer, Murray; North, Warren J.

    1959-01-01

    A theoretical investigation was conducted to determine the effects of body boundary-layer separation resulting from a highly underexpanded jet on the dynamic stability of a typical rocket aircraft during an atmospheric exit trajectory. The particular flight condition studied on a digital computer for five degrees of freedom was at Mach 6.0 and 150,000 feet. In view of the unknown character of the separated flow field, two estimates of the pressures in the separated region were made to calculate the unbalanced forces and moments. These estimates, based on limited fundamental zero-angle-of-attack studies and observations, are believed to cover what may be the actual case. In addition to a fixed control case, two simulated pilot control inputs were studied: rate-limited and instantaneous responses. The resulting-motions with and without boundary-layer separation were compared for various initial conditions. The lower of the assumed misalinement forces and moments led to a situation whereby a slowly damped motion could be satisfactorily controlled with rate-limited control input. The higher assumption led to larger amplitude, divergent motions when the same control rates were used. These motions were damped only when the instantaneous control responses were assumed.

  6. Multiscale predictions of aviation-attributable PM2.5 for U.S. airports modeled using CMAQ with plume-in-grid and an aircraft-specific 1-D emission model

    NASA Astrophysics Data System (ADS)

    Woody, M. C.; Wong, H.-W.; West, J. J.; Arunachalam, S.

    2016-12-01

    Aviation activities represent an important and unique mode of transportation, but also impact air quality. In this study, we aim to quantify the impact of aircraft on air quality, focusing on aviation-attributable PM2.5 at scales ranging from local (a few kilometers) to continental (spanning hundreds of kilometers) using the Community Multiscale Air Quality-Advanced Plume Treatment (CMAQ-APT) model. In our CMAQ-APT simulations, a plume scale treatment is applied to aircraft emissions from 99 major U.S. airports over the contiguous U.S. in January and July 2005. In addition to the plume scale treatment, we account for the formation of non-traditional secondary organic aerosols (NTSOA) from the oxidation of semivolatile and intermediate volatility organic compounds (S/IVOCs) emitted from aircraft, and utilize alternative emission estimates from the Aerosol Dynamics Simulation Code (ADSC). ADSC is a 1-D plume scale model that estimates engine specific PM and S/IVOC emissions at ambient conditions, accounting for relative humidity and temperature. We estimated monthly and contiguous U.S. average aviation-attributable PM2.5 to be 2.7 ng m-3 in January and 2.6 ng m-3 in July using CMAQ-APT with ADSC emissions. This represents an increase of 40% and 12% in January and July, respectively, over impacts using traditional modeling approaches (traditional emissions without APT). The maximum fine scale (subgrid scale) hourly impacts at a major airport were 133.6 μg m-3 in January and 165.4 μg m-3 in July, considerably higher than the maximum grid-based impacts at the airport of 4.3 μg m-3 in January and 0.5 μg m-3 in July.

  7. Follow-On Technology Requirement Study for Advanced Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Wendus, Bruce E.; Stark, Donald F.; Holler, Richard P.; Funkhouser, Merle E.

    2003-01-01

    A study was conducted to define and assess the critical or enabling technologies required for a year 2005 entry into service (EIS) engine for subsonic commercial aircraft, with NASA Advanced Subsonic Transport goals used as benchmarks. The year 2005 EIS advanced technology engine is an Advanced Ducted Propulsor (ADP) engine. Performance analysis showed that the ADP design offered many advantages compared to a baseline turbofan engine. An airplane/ engine simulation study using a long range quad aircraft quantified the effects of the ADP engine on the economics of typical airline operation. Results of the economic analysis show the ADP propulsion system provides a 6% reduction in direct operating cost plus interest, with half the reduction resulting from reduced fuel consumption. Critical and enabling technologies for the year 2005 EIS ADP were identified and prioritized.

  8. The future of very large subsonic transports

    NASA Technical Reports Server (NTRS)

    Justice, R. Steven; Hays, Anthony P.; Parrott, Ed L.

    1996-01-01

    The Very Large Subsonic Transport (VLST) is a multi-use commercial passenger, commercial cargo, and military airlifter roughly 50% larger than the current Lockheed C-5 and Boeing 747. Due to the large size and cost of the VLST, it is unlikely that the commercial market can support more than one aircraft production line, while declining defense budgets will not support a dedicated military VLST. A successful VLST must therefore meet airline requirements for more passenger and cargo capacity on congested routes into slot-limited airports and also provide a cost effective heavy airlift capacity to support the overseas deployment of US military forces. A successful VLST must satisfy three key missions: commercial passenger service with nominal seating capacity at a minimum of 650 passengers with a range capability of 7,000 to 10,000 miles; commercial air cargo service for containerized cargo to support global manufacturing of high value added products, 'just-in-time' parts delivery, and the general globalization of trade; and military airlift with adequate capacity to load current weapon systems, with minimal break-down, over global ranges (7,000 to 10,000 miles) required to reach the operational theater without need of overseas bases and midair refueling. The development of the VLST poses some technical issues specific to large aircraft, but also key technologies applicable to a wide range of subsonic transport aircraft. Key issues and technologies unique to the VLST include: large composite structures; dynamic control of a large, flexible structure; aircraft noise requirements for aircraft over 850,000 pounds; and increased aircraft separation due to increased wake vortex generation. Other issues, while not unique to the VLST, will critically impact the ability to build an efficient and affordable aircraft include: active control systems: Fly-By-Light/Power-By-Wire (FBL/PBW); high lift systems; flight deck associate systems; laminar flow; emergency egress; and

  9. Rocket plume burn hazard.

    PubMed

    Stoll, A M; Piergallini, J R; Chianta, M A

    1980-05-01

    By use of miniature rocket engines, the burn hazard posed by exposure to ejection seat rocket plume flames was determined in the anaesthetized rat. A reference chart is provided for predicting equivalent effects in human skin based on extrapolation of earlier direct measurements of heat input for rat and human burns. The chart is intended to be used in conjunction with thermocouple temperature measurements of the plume environment for design and modification of escape seat system to avoid thermal injury on ejection from multiplace aircraft.

  10. Fuel conservative aircraft engine technology

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1978-01-01

    Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.

  11. a Numerical Model for Subsonic Acoustic Choking.

    NASA Astrophysics Data System (ADS)

    Walkington, Noel John

    In aircraft turbofan inlets, fan generated noise is observed experimentally to be significantly attenuated at high subsonic inlet Mach numbers. This phenomenon cannot be predicted by linear acoustic theory. In order to study the physical process by which this may occur, a numerical algorithm has been developed to solve a related nonlinear problem in one dimensional gas dynamics. The nonlinear solution admits the possibility of wave steepening and shock waves. Approximate solutions are obtained using several finite difference schemes. The boundary conditions required to model an acoustic source and an anechoic termination are developed. The numerical solutions agree closely with those obtained using the method of matched asymptotic expansions. Solutions involving shock waves exhibit a large reduction in the ratio of transmitted to incident power. This offers an explanation for acoustic choking. The results indicate that more power is dissipated as the Mach number, sound amplitude and frequency are increased. These observations are in agreement with those observed experimentally.

  12. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  13. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  14. Exhaust Nozzle Plume and Shock Wave Interaction

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan

    2013-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.

  15. Flight-Determined Subsonic Longitudinal Stability and Control Derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) with Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles

    1997-01-01

    The subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) are extracted from dynamic flight data using a maximum likelihood parameter identification technique. The technique uses the linearized aircraft equations of motion in their continuous/discrete form and accounts for state and measurement noise as well as thrust-vectoring effects. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft, particularly at high angles of attack. Thrust vectoring was implemented using electrohydraulically-actuated nozzle postexit vanes and a specialized research flight control system. During maneuvers, a control system feature provided independent aerodynamic control surface inputs and independent thrust-vectoring vane inputs, thereby eliminating correlations between the aircraft states and controls. Substantial variations in control excitation and dynamic response were exhibited for maneuvers conducted at different angles of attack. Opposing vane interactions caused most thrust-vectoring inputs to experience some exhaust plume interference and thus reduced effectiveness. The estimated stability and control derivatives are plotted, and a discussion relates them to predicted values and maneuver quality.

  16. Power-by-Wire Development and Demonstration for Subsonic Civil Transport

    NASA Technical Reports Server (NTRS)

    1996-01-01

    During the last decade, three significant studies by the Lockheed Martin Corporation, the NASA Lewis Research Center, and McDonnell Douglas Corporation have clearly shown operational, weight, and cost advantages for commercial subsonic transport aircraft that use all-electric or more-electric technologies in the secondary electric power systems. Even though these studies were completed on different aircraft, used different criteria, and applied a variety of technologies, all three have shown large benefits to the aircraft industry and to the nation's competitive position. The Power-by-Wire (PBW) program is part of the highly reliable Fly-By-Light/Power-By-Wire (FBL/PBW) Technology Program, whose goal is to develop the technology base for confident application of integrated FBL/PBW systems for transport aircraft. This program is part of the NASA aeronautics strategic thrust in subsonic aircraft/national airspace (Thrust 1) to "develop selected high-leverage technologies and explore new means to ensure the competitiveness of U.S. subsonic aircraft and to enhance the safety and productivity of the national aviation system" (The Aeronautics Strategic Plan). Specifically, this program is an initiative under Thrust 1, Key Objective 2, to "develop, in cooperation with U.S. industry, selected high-payoff technologies that can enable significant improvements in aircraft efficiency and cost."

  17. Advanced subsonic transport approach noise: The relative contribution of airframe noise

    NASA Technical Reports Server (NTRS)

    Willshire, William L., Jr.; Garber, Donald P.

    1992-01-01

    With current engine technology, airframe noise is a contributing source for large commercial aircraft on approach, but not the major contributor. With the promise of much quieter jet engines with the planned new generation of high-by-pass turbofan engines, airframe noise has become a topic of interest in the advanced subsonic transport research program. The objective of this paper is to assess the contribution of airframe noise relative to the other aircraft noise sources on approach. The assessment will be made for a current technology large commercial transport aircraft and for an envisioned advanced technology aircraft. NASA's Aircraft Noise Prediction Program (ANOPP) will be used to make total aircraft noise predictions for these two aircraft types. Predicted noise levels and areas of noise contours will be used to determine the relative importance of the contributing approach noise sources. The actual set-up decks used to make the ANOPP runs for the two aircraft types are included in appendixes.

  18. Robust, Optimal Subsonic Airfoil Shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2014-01-01

    A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.

  19. Review of Propulsion Technologies for N+3 Subsonic Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Ashcraft, Scott W.; Padron, Andres S.; Pascioni, Kyle A.; Stout, Gary W., Jr.; Huff, Dennis L.

    2011-01-01

    NASA has set aggressive fuel burn, noise, and emission reduction goals for a new generation (N+3) of aircraft targeting concepts that could be viable in the 2035 timeframe. Several N+3 concepts have been formulated, where the term "N+3" indicate aircraft three generations later than current state-of-the-art aircraft, "N". Dramatic improvements need to be made in the airframe, propulsion systems, mission design, and the air transportation system in order to meet these N+3 goals. The propulsion system is a key element to achieving these goals due to its major role with reducing emissions, fuel burn, and noise. This report provides an in-depth description and assessment of propulsion systems and technologies considered in the N+3 subsonic vehicle concepts. Recommendations for technologies that merit further research and development are presented based upon their impact on the N+3 goals and likelihood of being operational by 2035.

  20. Advanced subsonic long-haul transport terminal area compatibility study. Volume 1: Compatibility assessment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis was made to identify airplane research and technology necessary to ensure advanced transport aircraft the capability of accommodating forecast traffic without adverse impact on airport communities. Projections were made of the delay, noise, and emissions impact of future aircraft fleets on typical large urban airport. Design requirements, based on these projections, were developed for an advanced technology, long-haul, subsonic transport. A baseline aircraft was modified to fulfill the design requirements for terminal area compatibility. Technical and economic comparisons were made between these and other aircraft configured to support the study.

  1. Splash Plumes

    NASA Astrophysics Data System (ADS)

    Davies, J. H.

    2006-12-01

    I have discovered a new class of thermal upwellings in mantle convection simulations which are not rooted in a thermal boundary layer (ref 1). Since they look a bit like water droplet splashes, I have abbreviated these `plumes not rooted in thermal boundary layers' as `splash plumes'. These mantle convection simulations are high resolution ( ~ 22km spacing) 3D spherical simulations at Earth-like vigour. They have a chondritic rate of internal heating and bottom heating that straddles expected Earth values. There is a realistic depth variation in viscosity, with a lithosphere and lower mantle more viscous than upper mantle. The mantle is compressible with the coefficient of thermal expansion decreasing with depth. Some models have phase transitions. The surface of the models is driven by 119Myr of recent plate motion history. At the end of most simulations (present day) we discover many examples of hot mid-mantle thermal anomalies in the shape of bowls which have hot cylindrical plumes rising from the rim. They originate at a range of depths and are not rooted in thermal boundary layers. These splash plumes are formed from hot mantle collecting beneath the surface, and then a cold instability from the surface descending onto the sheet of hot underlying material pushing it down into the mantle and forming a bowl. The plumes are formed by instabilities coming from the bowl rim edge. In fact the downwellings can push the sheets all the way to the core mantle boundary in certain cases where it is then difficult to tell splash plumes apart from `traditional plumes'. Splash plumes might provide explanations for weak, short-lived plumes that do not seem to have deep roots (e.g. Eifel). If the surface boundary condition is made free-slip (ref 2), rather than be driven by recent plate motion history, we do not discover splash plumes but rather large steady strong thermal boundary layer plumes. Therefore while the discovery of splash plumes is interesting, potentially a more

  2. NASA Noise Reduction Program for Advanced Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Stephens, David G.; Cazier, F. W., Jr.

    1995-01-01

    Aircraft noise is an important byproduct of the world's air transportation system. Because of growing public interest and sensitivity to noise, noise reduction technology is becoming increasingly important to the unconstrained growth and utilization of the air transportation system. Unless noise technology keeps pace with public demands, noise restrictions at the international, national and/or local levels may unduly constrain the growth and capacity of the system to serve the public. In recognition of the importance of noise technology to the future of air transportation as well as the viability and competitiveness of the aircraft that operate within the system, NASA, the FAA and the industry have developed noise reduction technology programs having application to virtually all classes of subsonic and supersonic aircraft envisioned to operate far into the 21st century. The purpose of this paper is to describe the scope and focus of the Advanced Subsonic Technology Noise Reduction program with emphasis on the advanced technologies that form the foundation of the program.

  3. Subsonic longitudinal aerodynamic characteristics and engine pressure distributions for an aircraft with an integrated scramjet designed for Mach 6 cruise. [conducted in Langley 7 by 10 foot high speed tunnel

    NASA Technical Reports Server (NTRS)

    Huffman, J. K.; Fox, C. H., Jr.; Johnston, P. J.

    1977-01-01

    A 1/10-scale model of a proposed hypersonic aircraft with an integrated scramjet was tested. The investigation took place over a Mach number range from 0.2 to 0.7 and an angle of attack range from 2 deg to approximately 17 deg at a sideslip angle of 0 deg. The primary configuration variables studied were engine location, internal engine geometry, and external engine geometry. The results are presented without analysis.

  4. Impact of aircraft NO x emission on NO x and ozone over China

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Isaksen, I. S. A.; Sundet, J. K.; Zhou, Xiuji; Ma, Jianzhong

    2003-07-01

    A three-dimensional global chemistry transport model (OSLO CTM2) is used to investigate the impact of subsonic aircraft NO x emission on NO x and ozone over China in terms of a year 2000 scenario of subsonic aircraft NO x emission. The results show that subsonic aircraft NO x emission significantly affects northern China, which makes NO x at 250 hPa increase by about 50 pptv with the highest percentage of 60% in January, and leading to an ozone increase of 8 ppbv with 5% relative change in April. The NO x increase is mainly attributed to the transport process, but ozone increase is produced by the chemical process. The NO x increases by less than 10 pptv by virtue of subsonic aircraft NO x emission over China, and ozone changes less than 0.4 ppbv. When subsonic aircraft NO x emission over China is doubled, its influence is still relatively small.

  5. Calibration and demonstration of a condensation nuclei counting system for airborne measurements of aircraft exhausted particles

    NASA Astrophysics Data System (ADS)

    Cofer, Wesley R.; Anderson, Bruce E.; Winstead, Edward L.; Bagwell, Donald R.

    A system of multiple continuous-flow condensation nuclei counters (CNC) was assembled, calibrated, and demonstrated on a NASA T-39 Sabreliner jet aircraft. The mission was to penetrate the exhaust plumes and/or contrails of other subsonic jet aircraft and determine the concentrations of submicrometer diameter aerosol particles. Mission criteria required rapid response measurements ( ˜ 1 s) at aircraft cruise altitudes (9-12 km). The CNC sampling system was optimized to operate at 160 Torr. Aerosol samples were acquired through an externally mounted probe. Installed downstream of the probe was a critical flow orifice that provided sample to the CNC system. The orifice not only controlled volumetric flow rate, but also dampened probe pressure/flow oscillations encountered in the turbulent aircraft-wake vortex environment. Laboratory calibrations with NaCl particles under representative conditions are reported that indicate small amounts of particle loss and a maximum measurement efficiency of ˜ 75% for particles with diameters ranging from ⩾ 0.01- ⩽ 0.18 μm Data from exhaust/contrail samplings of a NASA B757 and DC-8 at cruise altitude are discussed. Data include exhaust/contrail measurements made during periods in which the B757 port jet engine burned low-sulfur fuel while the starboard engine simultaneously burned specially prepared high-sulfur fuel. The data discussed highlight the CNC systems performance, and introduce new observations pertinent to the behavior of sulfur in aircraft exhaust aerosol chemistry.

  6. Robust, optimal subsonic airfoil shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor)

    2008-01-01

    Method system, and product from application of the method, for design of a subsonic airfoil shape, beginning with an arbitrary initial airfoil shape and incorporating one or more constraints on the airfoil geometric parameters and flow characteristics. The resulting design is robust against variations in airfoil dimensions and local airfoil shape introduced in the airfoil manufacturing process. A perturbation procedure provides a class of airfoil shapes, beginning with an initial airfoil shape.

  7. Subsonic Wind Tunnel Testing Handbook

    DTIC Science & Technology

    1991-05-01

    1532 For the wing, 17 - 4PH stainless steel screws... f= 120000 psi S.F. - 120000 = 78.4 1532 Screw head pullout in wing tip missile attachment... shear...Handbook, Subsonic, Wind Tunnel Testing 16. PRICE CODE 17 . SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF...XI- 16 XI-4 Raw Balance Data ........ .......................... XI- 17 A-1 Dynamic Pressure Determination

  8. Alternate-fueled transport aircraft possibilities

    NASA Technical Reports Server (NTRS)

    Aiken, W. S.

    1977-01-01

    The paper is organized to describe: (1) NASA's cryogenically fueled aircraft program; (2) LH2 subsonic and supersonic transport design possibilities (3) the fuel system and ground side problems associated with LH2 distribution; (4) a comparison of LCH4 with LH2; (5) the design possibilities for LCH4 fueled aircraft; and (6) a summary of where NASA's cryogenically fueled programs are headed.

  9. Computer programs for estimating civil aircraft economics

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Molloy, J. K.; Neubawer, M. J.

    1980-01-01

    Computer programs for calculating airline direct operating cost, indirect operating cost, and return on investment were developed to provide a means for determining commercial aircraft life cycle cost and economic performance. A representative wide body subsonic jet aircraft was evaluated to illustrate use of the programs.

  10. The Liquid Hydrogen Option for the Subsonic Transport: A status report

    NASA Technical Reports Server (NTRS)

    Korycinski, P. F.

    1977-01-01

    Continued subsonic air transport design studies include the option for a liquid hydrogen fuel system as an aircraft fuel conservation measure. Elements of this option discussed include: (1) economical production of hydrogen; (2) efficient liquefaction of hydrogen; (3) materials for long service life LH2 fuel tanks; (4) insulation materials; (5) LH2 fuel service and installations at major air terminals; (6) assessment of LH2 hazards; and (7) the engineering definition of an LH2 fuel system for a large subsonic passenger air transport.

  11. NASA's Subsonic Jet Transport Noise Reduction Research

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Preisser, John S.

    2000-01-01

    Although new jet transport airplanes in today s fleet are considerably quieter than the first jet transports introduced about 40 years ago, airport community noise continues to be an important environmental issue. NASA s Advanced Subsonic Transport (AST) Noise Reduction program was begun in 1994 as a seven-year effort to develop technology to reduce jet transport noise 10 dB relative to 1992 technology. This program provides for reductions in engine source noise, improvements in nacelle acoustic treatments, reductions in the noise generated by the airframe, and improvements in the way airplanes are operated in the airport environs. These noise reduction efforts will terminate at the end of 2001 and it appears that the objective will be met. However, because of an anticipated 3-8% growth in passenger and cargo operations well into the 21st Century and the slow introduction of new the noise reduction technology into the fleet, world aircraft noise impact will remain essentially constant until about 2020 to 2030 and thereafter begin to rise. Therefore NASA has begun planning with the Federal Aviation Administration, industry, universities and environmental interest groups in the USA for a new noise reduction initiative to provide technology for significant further reductions.

  12. Subsonic Wing Optimization for Handling Qualities Using ACSYNT

    NASA Technical Reports Server (NTRS)

    Soban, Danielle Suzanne

    1996-01-01

    The capability to accurately and rapidly predict aircraft stability derivatives using one comprehensive analysis tool has been created. The PREDAVOR tool has the following capabilities: rapid estimation of stability derivatives using a vortex lattice method, calculation of a longitudinal handling qualities metric, and inherent methodology to optimize a given aircraft configuration for longitudinal handling qualities, including an intuitive graphical interface. The PREDAVOR tool may be applied to both subsonic and supersonic designs, as well as conventional and unconventional, symmetric and asymmetric configurations. The workstation-based tool uses as its model a three-dimensional model of the configuration generated using a computer aided design (CAD) package. The PREDAVOR tool was applied to a Lear Jet Model 23 and the North American XB-70 Valkyrie.

  13. Tvashtar's Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This dramatic image of Io was taken by the Long Range Reconnaissance Imager (LORRI) on New Horizons at 11:04 Universal Time on February 28, 2007, just about 5 hours after the spacecraft's closest approach to Jupiter. The distance to Io was 2.5 million kilometers (1.5 million miles) and the image is centered at 85 degrees west longitude. At this distance, one LORRI pixel subtends 12 kilometers (7.4 miles) on Io.

    This processed image provides the best view yet of the enormous 290-kilometer (180-mile) high plume from the volcano Tvashtar, in the 11 o'clock direction near Io's north pole. The plume was first seen by the Hubble Space Telescope two weeks ago and then by New Horizons on February 26; this image is clearer than the February 26 image because Io was closer to the spacecraft, the plume was more backlit by the Sun, and a longer exposure time (75 milliseconds versus 20 milliseconds) was used. Io's dayside was deliberately overexposed in this picture to image the faint plumes, and the long exposure also provided an excellent view of Io's night side, illuminated by Jupiter. The remarkable filamentary structure in the Tvashtar plume is similar to details glimpsed faintly in 1979 Voyager images of a similar plume produced by Io's volcano Pele. However, no previous image by any spacecraft has shown these mysterious structures so clearly.

    The image also shows the much smaller symmetrical fountain of the plume, about 60 kilometers (or 40 miles) high, from the Prometheus volcano in the 9 o'clock direction. The top of a third volcanic plume, from the volcano Masubi, erupts high enough to catch the setting Sun on the night side near the bottom of the image, appearing as an irregular bright patch against Io's Jupiter-lit surface. Several Everest-sized mountains are highlighted by the setting Sun along the terminator, the line between day and night.

    This is the last of a handful of LORRI images that New Horizons is sending 'home' during its busy close

  14. Tvashtar's Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This dramatic image of Io was taken by the Long Range Reconnaissance Imager (LORRI) on New Horizons at 11:04 Universal Time on February 28, 2007, just about 5 hours after the spacecraft's closest approach to Jupiter. The distance to Io was 2.5 million kilometers (1.5 million miles) and the image is centered at 85 degrees west longitude. At this distance, one LORRI pixel subtends 12 kilometers (7.4 miles) on Io.

    This processed image provides the best view yet of the enormous 290-kilometer (180-mile) high plume from the volcano Tvashtar, in the 11 o'clock direction near Io's north pole. The plume was first seen by the Hubble Space Telescope two weeks ago and then by New Horizons on February 26; this image is clearer than the February 26 image because Io was closer to the spacecraft, the plume was more backlit by the Sun, and a longer exposure time (75 milliseconds versus 20 milliseconds) was used. Io's dayside was deliberately overexposed in this picture to image the faint plumes, and the long exposure also provided an excellent view of Io's night side, illuminated by Jupiter. The remarkable filamentary structure in the Tvashtar plume is similar to details glimpsed faintly in 1979 Voyager images of a similar plume produced by Io's volcano Pele. However, no previous image by any spacecraft has shown these mysterious structures so clearly.

    The image also shows the much smaller symmetrical fountain of the plume, about 60 kilometers (or 40 miles) high, from the Prometheus volcano in the 9 o'clock direction. The top of a third volcanic plume, from the volcano Masubi, erupts high enough to catch the setting Sun on the night side near the bottom of the image, appearing as an irregular bright patch against Io's Jupiter-lit surface. Several Everest-sized mountains are highlighted by the setting Sun along the terminator, the line between day and night.

    This is the last of a handful of LORRI images that New Horizons is sending 'home' during its busy close

  15. Transverse Injection into Subsonic Crossflow with Various Injector Orifice Geometries

    NASA Technical Reports Server (NTRS)

    Foster, Lancert E.; Zaman, Khairul B.

    2010-01-01

    Computational and experimental results are presented for a case study of single injectors employed in 90 deg transverse injection into a non-reacting subsonic flow. Different injector orifice shapes are used (including circular, square, diamond-shaped, and wide rectangular slot), all with constant cross-sectional area, to observe the effects of this variation on injector penetration and mixing. Whereas the circle, square, and diamond injector produce similar jet plumes, the wide rectangular slot produces a plume with less vertical penetration than the others. There is also some evidence that the diamond injector produces slightly faster penetration with less mixing of the injected fluid. In addition, a variety of rectangular injectors were analyzed, with varying length/width ratios. Both experimental and computational data show improved plume penetration with increased streamwise orifice length. 3-D Reynolds-Averaged Navier-Stokes (RANS) results are obtained for the various injector geometries using NCC (National Combustion Code) with the kappa-epsilon turbulence model in multi-species modes on an unstructured grid. Grid sensitivity results are also presented which indicate consistent qualitative trends in the injector performance comparisons with increasing grid refinement.

  16. Evaluation of viscous drag reduction schemes for subsonic transports

    NASA Technical Reports Server (NTRS)

    Marino, A.; Economos, C.; Howard, F. G.

    1975-01-01

    The results are described of a theoretical study of viscous drag reduction schemes for potential application to the fuselage of a long-haul subsonic transport aircraft. The schemes which were examined included tangential slot injection on the fuselage and various synergetic combinations of tangential slot injection and distributed suction applied to wing and fuselage surfaces. Both passive and mechanical (utilizing turbo-machinery) systems were examined. Overall performance of the selected systems was determined at a fixed subsonic cruise condition corresponding to a flight Mach number of free stream M = 0.8 and an altitude of 11,000 m. The nominal aircraft to which most of the performance data was referenced was a wide-body transport of the Boeing 747 category. Some of the performance results obtained with wing suction are referenced to a Lockheed C-141 Star Lifter wing section. Alternate designs investigated involved combinations of boundary layer suction on the wing surfaces and injection on the fuselage, and suction and injection combinations applied to the fuselage only.

  17. Aircraft Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    Aircraft laminar flow control (LFC) from the 1930's through the 1990's is reviewed and the current status of the technology is assessed. Examples are provided to demonstrate the benefits of LFC for subsonic and supersonic aircraft. Early studies related to the laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. LFC concept studies in wind-tunnel and flight experiments are the major focus of the paper. LFC design tools are briefly outlined for completeness.

  18. Aircraft engines. II

    SciTech Connect

    Smith, M.G. Jr.

    1988-01-01

    An account is given of the design features and prospective performance gains of ultrahigh bypass subsonic propulsion configurations and various candidate supersonic commercial aircraft powerplants. The supersonic types, whose enhanced thermodynamic cycle efficiency is considered critical to the economic viability of a second-generation SST, are the variable-cycle engine, the variable stream control engine, the turbine-bypass engine, and the supersonic-throughflow fan. Also noted is the turboramjet concept, which will be applicable to hypersonic aircraft whose airframe structure materials can withstand the severe aerothermodynamic conditions of this flight regime.

  19. Model Evaluation and Sensitivity Studies for Determining Aircraft Effects on the Global Atmosphere

    NASA Technical Reports Server (NTRS)

    Wuebbles, Donald J.

    1997-01-01

    This project, started in July 1995 and ending in July 1996, related: to evaluation of the possible importance of soot and sulfur dioxide emissions from subsonic and supersonic aircraft; to research contributions and special responsibilities for NASA AEAP assessments of subsonic aircraft and High Speed Civil Transport aircraft; and to science team responsibilities supporting the development of the three-dimensional atmospheric chemistry model of the Global Modeling Initiative.

  20. Monitoring radioactive plumes by airborne gamma-ray spectrometry

    SciTech Connect

    Grasty, R.L.; Hovgaard, J.; Multala, J.

    1996-06-01

    Airborne gamma-ray spectrometer surveys using large volume sodium-iodide detectors are routinely flown throughout the world for mineral exploration and geological mapping. Techniques have now been developed to detect and map man-made sources of radiation. In Canada, airborne gamma-rays surveys have been flown around nuclear reactors to map {sup 41}Ar plumes from nuclear reactors and to calculate the dose rate at ground level. In May 1986, the Finnish Geological survey aircraft flew through a radioactive plume from the Chernobyl nuclear accident. As the aircraft flew through the plume, the aircraft became increasingly contaminated. By measuring the final aircraft contamination, the activity of the plume could be separated from the contamination due to the aircraft. Within 1 h of encountering the plume, the aircraft activity was comparable to the maximum levels found in the plume. From an analysis of the gamma-ray spectra, the concentration of {sup 131}I and {sup 140}La within the plume were calculated as a function of time.

  1. Aircraft-borne aerosol chemical composition measurements in the lower to middle troposphere over southern West Africa: Biomass burning, urban outflow plumes, and long-range transport.

    NASA Astrophysics Data System (ADS)

    Batenburg, Anneke; Schulz, Christiane; Schneider, Johannes; Sauer, Daniel; Schlager, Hans; Borrmann, Stephan

    2017-04-01

    During the DACCIWA field campaign in June and July 2016, aircraft-borne in-situ aerosol chemical composition measurements were performed over southern West Africa (SWA). This presentation will focus on the submicron particle measurements done with a Compact Time-of-Flight Aerosol Mass Spectrometer (C-ToF-AMS) on board of the DLR Falcon aircraft during twelve research flights from Lomé, Togo, covering the altitude range from the boundary layer (BL) to the middle troposphere (12 km). A preliminary analysis of the results shows typical baseline total non-refractory aerosol mass loadings of 1.5 to 2.8 μg m-3 in the BL, and 0.4 to 1.1 μg m-3above. Up to half of the baseline aerosol mass in the BL appears to consist of sulphate, compared to only 10 to 35 % above the BL; organic matter dominates in the middle troposphere. During several flights, the DLR Falcon crossed a pronounced and seemingly widespread aerosol layer at 2—4.5 km altitude, partly in or slightly above the BL. The AMS data indicate that about half of the non-refractory aerosol mass in the middle of this layer consisted of organic matter. We consider it likely that these aerosol particles were produced by biomass burning in Central Africa. Emissions from cities and industrial areas were also intercepted, as well as enhancements in some species at higher altitudes. Trajectory analysis suggests that an increase of the organics to more than 2.5 μg m-3 observed at 8 km during one flight came from the Arabian Peninsula. Several ammonium peaks during the same flight at higher altitudes were traced back to the Asian Summer Monsoon Anticyclone (ASMA).

  2. An Analytical Assessment of NASA's N(+)1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2010-01-01

    The Subsonic Fixed Wing Project of NASA s Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called "N+1" aircraft--designated in NASA vernacular as such since they will follow the current, in-service, "N" airplanes--are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are empirically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  3. An Analytical Assessment of NASA's N+1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called 'N+1' aircraft - designated in NASA vernacular as such since they will follow the current, in-service, 'N' airplanes - are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are analytically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  4. Abe Silverstein 10- by 10-Foot Supersonic Wind Tunnel Validated for Low-Speed (Subsonic) Operation

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.

    2001-01-01

    The NASA Glenn Research Center and Lockheed Martin Corporation tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Objectives of the test were to determine and document the similarities and uniqueness of the tunnels and to validate that Glenn's 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility. Results from two of Glenn's wind tunnels compare very favorably and show that the 10x10 SWT is a viable low-speed wind tunnel. The Subsonic Comparison Test was a joint effort by NASA and Lockheed Martin using the Lockheed Martin's Joint Strike Fighter Concept Demonstration Aircraft model. Although Glenn's 10310 and 836 SWT's have many similarities, they also have unique characteristics. Therefore, test data were collected for multiple model configurations at various vertical locations in the test section, starting at the test section centerline and extending into the ceiling and floor boundary layers.

  5. Langley 14- by 22-foot subsonic tunnel test engineer's data acquisition and reduction manual

    NASA Technical Reports Server (NTRS)

    Quinto, P. Frank; Orie, Nettie M.

    1994-01-01

    The Langley 14- by 22-Foot Subsonic Tunnel is used to test a large variety of aircraft and nonaircraft models. To support these investigations, a data acquisition system has been developed that has both static and dynamic capabilities. The static data acquisition and reduction system is described; the hardware and software of this system are explained. The theory and equations used to reduce the data obtained in the wind tunnel are presented; the computer code is not included.

  6. Wind-Tunnel Measurements on the Henschel Missile "Zitterrochen" in Subsonic and Supersonic Velocities

    NASA Technical Reports Server (NTRS)

    Weber; Kehl

    1948-01-01

    At the request of the Henschel Aircraft Works. A. G. Berlin. three models of the missile "Zitterrochen" were investigated at subsonic velocities.(open jet 215-millimeter diameter) and at supersonic velocities (open jet 110 by 130 millimeters) in order to determine the effect of various wing forms on the air forces and moments. Three-component measurements were taken, and one model was also investigated with deflected control plates.

  7. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1992-01-01

    The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.

  8. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    DOE PAGES

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; ...

    2015-03-06

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less

  9. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    SciTech Connect

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2015-03-06

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, an acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.

  10. Advanced Configurations for Very Large Subsonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    McMasters, John H.; Paisley, David J.; Hubert, Richard J.; Kroo, Ilan; Bofah, Kwasi K.; Sullivan, John P.; Drela, Mark

    1996-01-01

    Recent aerospace industry interest in developing a subsonic commercial transport airplane with 50 percent greater passenger capacity than the largest existing aircraft in this category (the Boeing 747-400 with approximately 400-450 seats) has generated a range of proposals based largely on the configuration paradigm established nearly 50 years ago with the Boeing B-47 bomber. While this basic configuration paradigm has come to dominate subsonic commercial airplane development since the advent of the Boeing 707/Douglas DC-8 in the mid-1950's, its extrapolation to the size required to carry more than 600-700 passengers raises several questions. To explore these and a number of related issues, a team of Boeing, university, and NASA engineers was formed under the auspices of the NASA Advanced Concepts Program. The results of a Research Analysis focused on a large, unconventional transport airplane configuration for which Boeing has applied for a patent are the subject of this report. It should be noted here that this study has been conducted independently of the Boeing New Large Airplane (NLA) program, and with the exception of some generic analysis tools which may be common to this effort and the NLA (as will be described later), no explicit Boeing NLA data other than that published in the open literature has been used in the conduct of the study reported here.

  11. Subsonic Round and Rectangular Twin Jet Flow Effects

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Wernet, Mark

    2014-01-01

    Subsonic and supersonic aircraft concepts proposed by NASAs Fundamental Aeronautics Program have integrated propulsion systems with asymmetric nozzles. The asymmetry in the exhaust of these propulsion systems creates asymmetric flow and acoustic fields. The flow asymmetries investigated in the current study are from two parallel round, 2:1, and 8:1 aspect ratio rectangular jets at the same nozzle conditions. The flow field was measured with streamwise and cross-stream particle image velocimetry (PIV). A large dataset of single and twin jet flow field measurements was acquired at subsonic jet conditions. The effects of twin jet spacing and forward flight were investigated. For round, 2:1, and 8:1 rectangular twin jets at their closest spacings, turbulence levels between the two jets decreased due to enhanced jet mixing at near static conditions. When the flight Mach number was increased to 0.25, the flow around the twin jet model created a velocity deficit between the two nozzles. This velocity deficit diminished the effect of forward flight causing an increase in turbulent kinetic energy relative to a single jet. Both of these twin jet flow field effects decreased with increasing twin jet spacing relative to a single jet. These variations in turbulent kinetic energy correlate with changes in far-field sound pressure level.

  12. A study of the formation and evolution of aerosols and contrails in aircraft wakes: Development, validation and application of an advanced particle microphysics (APM) model

    NASA Astrophysics Data System (ADS)

    Yu, Fangqun

    1998-10-01

    The aerosols generated by current and future fleets of subsonic and supersonic aircraft may affect stratosphere ozone abundances by enhancing the particulate surface area on which heterogeneous chemical reactions can occur, and may affect global climate by modifying high-level clouds. A reliable assessment of aviation impacts requires a thorough understanding of the mechanisms that control the production and physical properties of the emitted particles. This dissertation discusses the development of an advanced particle microphysics (APM) model, and the application of this model to investigate the formation mechanisms and physical properties of the aviation- generated aerosols. In the model, the composition and size distributions of various categories of particles (electrically charged and uncharged, volatile and nonvolatile, and liquid and solid) are tracked through the different phases of plume evolution, including the condensation and evaporation of contrails when ambient conditions favor ice formation. The APM model is modularized and highly efficient, and may be applied to study a variety of aerosol-related problems. Here, the model is applied to analyze in-situ plume particle observations obtained in several field campaigns. The simulations-constrained by measurements-reveal that the largest volatile particles-those most likely to contribute to the background abundance of condensation nuclei-are dominated by ``ion-mode'' aerosols, which are formed on the chemiions emitted by the aircraft engines. The population of ion-mode aerosols is controlled by the abundance of chemiions which is determined by combustion chemistry and is relatively invariant. The theory of chemiion effects on aircraft plume microphysics is developed here, and the first quantitative calculations of chemiion-influenced plume aerosols are presented. In this work, a molecular kinetic model is used for the first time to interpret in-situ aircraft particle measurements, showing that the

  13. Atmospheric chemistry of an Antarctic volcanic plume

    NASA Astrophysics Data System (ADS)

    Oppenheimer, Clive; Kyle, Philip; Eisele, Fred; Crawford, Jim; Huey, Greg; Tanner, David; Kim, Saewung; Mauldin, Lee; Blake, Don; Beyersdorf, Andreas; Buhr, Martin; Davis, Doug

    2010-01-01

    We report measurements of the atmospheric plume emitted by Erebus volcano, Antarctica, renowned for its persistent lava lake. The observations were made in December 2005 both at source, with an infrared spectrometer sited on the crater rim, and up to 56 km downwind, using a Twin Otter aircraft; with the two different measurement platforms, plume ages were sampled ranging from <1 min to as long as 9 h. Three species (CO, carbonyl sulfide (OCS), and SO2) were measured from both air and ground. While CO and OCS were conserved in the plume, consistent with their long atmospheric lifetimes, the downwind measurements indicate a SO2/CO ratio about 20% of that observed at the crater rim, suggesting rapid chemical conversion of SO2. The aircraft measurements also identify volcanogenic H2SO4, HNO3 and, recognized for the first time in a volcanic plume, HO2NO2. We did not find NOx in the downwind plume despite previous detection of NO2 above the crater. This suggests that near-source NOx was quickly oxidized to HNO3 and HO2NO2, and probably NO32-(aq), possibly in tandem with the conversion of SO2 to sulfate. These fast processes may have been facilitated by "cloud processing" in the dense plume immediately downwind from the crater. A further striking observation was O3 depletion of up to ˜35% in parts of the downwind plume. This is likely to be due to the presence of reactive halogens (BrO and ClO) formed through heterogeneous processes in the young plume. Our analysis adds to the growing evidence for the tropospheric reactivity of volcanic plumes and shows that Erebus volcano has a significant impact on Antarctic atmospheric chemistry, at least locally in the Southern Ross Sea area.

  14. Compromise - An effective approach for conceptual aircraft design

    NASA Technical Reports Server (NTRS)

    Mistree, Farrokh; Marinopoulos, Stergios; Jackson, david; Shupe, Jon

    1987-01-01

    The Decision Support Problem (DSP) technique for aircraft design is presently demonstrated through the development of a compromise DSP template for the conceptual design of subsonic transport aircraft. System variables are wing span and area, fuselage diameter and length, takeoff weight, and installed thrust. Such system constraints as range and wing loading are represented algebraically using standard subsonic aircraft theory, and economic efficiency is modeled in terms of rates-of-return. The DSP template thus obtained has been tested and validated using the known mission requirements and design constants of the B 727-200 airliner.

  15. On the use of controls for subsonic transport performance improvement: Overview and future directions

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn; Espana, Martin

    1994-01-01

    Increasing competition among airline manufacturers and operators has highlighted the issue of aircraft efficiency. Fewer aircraft orders have led to an all-out efficiency improvement effort among the manufacturers to maintain if not increase their share of the shrinking number of aircraft sales. Aircraft efficiency is important in airline profitability and is key if fuel prices increase from their current low. In a continuing effort to improve aircraft efficiency and develop an optimal performance technology base, NASA Dryden Flight Research Center developed and flight tested an adaptive performance seeking control system to optimize the quasi-steady-state performance of the F-15 aircraft. The demonstrated technology is equally applicable to transport aircraft although with less improvement. NASA Dryden, in transitioning this technology to transport aircraft, is specifically exploring the feasibility of applying adaptive optimal control techniques to performance optimization of redundant control effectors. A simulation evaluation of a preliminary control law optimizes wing-aileron camber for minimum net aircraft drag. Two submodes are evaluated: one to minimize fuel and the other to maximize velocity. This paper covers the status of performance optimization of the current fleet of subsonic transports. Available integrated controls technologies are reviewed to define approaches using active controls. A candidate control law for adaptive performance optimization is presented along with examples of algorithm operation.

  16. Subsonic steady and unsteady aerodynamic loads on missiles and aircraft

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Steady lifting flows over highly swept delta wings at large incidence were studied. After an exhaustive literature review, development of a vortex-lattice method was attempted. To demonstrate the feasibility of using such a method, an existing code was modified. A system of vortex lines to simulate the leading-edge wake was added. The coefficients predicted by the modified code were in good agreement with experimental data.

  17. Special Course on Subsonic/Transonic Aerodynamic Interference for Aircraft

    DTIC Science & Technology

    1983-07-01

    model in a transonic wind tunnel. The end result would then have to be checked on a low -spted model usually in another tunnel. Some additional cycling...drop and wing rock tendencies in flight. This comparison shows (i) at low Mach number, M z 0.6, the addition of the pylons/stores improves both the...as simple as possible to keep production and maintenance costs low . FIG. 9 shows the wing planform of a typical transport configuration, which was

  18. Introduction to the aerodynamics of flight. [including aircraft stability, and hypersonic flight

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1975-01-01

    General concepts of the aerodynamics of flight are discussed. Topics considered include: the atmosphere; fluid flow; subsonic flow effects; transonic flow; supersonic flow; aircraft performance; and stability and control.

  19. Development of Longitudinal Equivalent System Models for Selected U.S. Navy Tactical Aircraft

    DTIC Science & Technology

    1981-08-01

    revaraa side II nacaaaary and Identlly by block number) Aircraft Longitudinal Flying Qualities Equivalent Systems Frequency Response Matching...is a twin turbofan powered, land and carrier based, subsonic, anti- submarine warfare aircraft . Longitudinal control is accomplished via a...based, supersonic fighter aircraft . Longitudinal control is accomplished via an irreversible mechanical flight control system which transmits

  20. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  1. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  2. Simulation Packages Expand Aircraft Design Options

    NASA Technical Reports Server (NTRS)

    2013-01-01

    In 2001, NASA released a new approach to computational fluid dynamics that allows users to perform automated analysis on complex vehicle designs. In 2010, Palo Alto, California-based Desktop Aeronautics acquired a license from Ames Research Center to sell the technology. Today, the product assists organizations in the design of subsonic aircraft, space planes, spacecraft, and high speed commercial jets.

  3. ASSESSMENT OF PLUME DIVING

    EPA Science Inventory

    This presentation presents an assessment of plume diving. Observations included: vertical plume delineation at East Patchogue, NY showed BTEX and MTBE plumes sinking on either side of a gravel pit; Lake Druid TCE plume sank beneath unlined drainage ditch; and aquifer recharge/dis...

  4. The influence of subsonic mission segments on the use of variable-sweep wings for high speed civil transport configurations

    NASA Technical Reports Server (NTRS)

    Martin, Glenn L.; Beissner, Fred L., Jr.; Domack, Christopher S.; Shields, E. William

    1988-01-01

    A Mach-3.0, 250-passenger, 6500-n. mi. range SST configuration's alternative use of fixed-planform or variable-sweep wings is presently evaluated, with a view to effects on aerodynamics, mission performance, and sizing. After preliminary design, the fixed and variable-wing configurations were resized to perform missions incorporating subsonic cruise segments of as much as 4000 n. mi.; the effect of subsonic segment length on design gross weight and block time was then ascertained. Due to the reduced supersonic efficiency of the variable-sweep aircraft, over one-half of the 6500-n. mi. mission would have to be flown subsonically for its sizing to reach a lower ramp weight than that of its fixed-geometry counterpart.

  5. Volcanic Plume Chemistry: Models, Observations and Impacts

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda; Martin, Robert; Oppenheimer, Clive; Griffiths, Paul; Braban, Christine; Cox, Tony; Jones, Rod; Durant, Adam; Kelly, Peter

    2010-05-01

    mercury. Excitingly, we can now begin to compare the model simulations to very recently reported in-situ aircraft and balloon measurements in downwind volcanic plumes, which found e.g. ozone depletion at Redoubt, ozone depletion and elevated HNO3 at Erebus and sulfate-H2O interactions at Kilauea. Satellite observations of volcanic BrO, and DOAS observations of BrO under varying plume conditions have also recently been reported. Such comparisons may highlight additional chemistry (e.g. HO2NO2 at Erebus), identify further underlying processes (e.g. the role of plume dispersion and gas fluxes in controlling plume chemistry), guide future field-observation strategies, and support and improve the model simulations that aim to understand volcanic emissions, plume chemistry, and predict the environmental impacts of volcanic plumes.

  6. Unsteady Aerodynamics - Subsonic Compressible Inviscid Case

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1999-01-01

    This paper presents a new analytical treatment of Unsteady Aerodynamics - the linear theory covering the subsonic compressible (inviscid) case - drawing on some recent work in Operator Theory and Functional Analysis. The specific new results are: (a) An existence and uniqueness proof for the Laplace transform version of the Possio integral equation as well as a new closed form solution approximation thereof. (b) A new representation for the time-domain solution of the subsonic compressible aerodynamic equations emphasizing in particular the role of the initial conditions.

  7. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic...

  8. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic...

  9. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  10. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  11. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  12. Atmospheric Effects of Aviation: First Report of the Subsonic Assessment Project

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M. (Editor); Friedl, Randall R. (Editor); Wesoky, Howard L. (Editor)

    1996-01-01

    This document is the first report from the Office of Aeronautics Advanced Subsonic Technology (AST) Program's Subsonic Assessment (SASS) Project. This effort, initiated in late 1993, has as its objective the assessment of the atmospheric effects of the current and predicted future aviation fleet. The two areas of impact are ozone (stratospheric and tropospheric) and radiative forcing. These are driven, respectively, by possible perturbations from aircraft emissions of NOX and soot and/or sulfur-containing particles. The report presents the major questions to which project assessments will be directed (Introduction) and the status of six programmatic elements: Emissions Scenarios, Exhaust Characterization, Near-Field Interactions, Kinetics and Laboratory Studies, Global Modeling, and Atmospheric Observations (field studies).

  13. V/STOL aircraft configurations and opportunities in the Pacific Basin

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1988-01-01

    Advanced aircraft configurations offer new transportation options for the Pacific Basin. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, subsonic vertical and short takeoff and landing (V/STOL) aircraft, and subsonic short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for satisfying many of the transportation requirements of the Pacific Basin; as such, they could revolutionize short-haul transportation in that region.

  14. V/STOL aircraft configurations and opportunities in the Pacific Basin

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1987-01-01

    Advanced aircraft configurations offer new transportation options for the Pacific Basin. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, subsonic vertical and short takeoff and landing (V/STOL) aircraft, and subsonic short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for satisfying many of the transportation requirements of the Pacific Basin; as such, they could revolutionize short-haul transportation in that region.

  15. NASA Subsonic Rotary Wing Project

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2009-01-01

    This slide presentation will outline the rationale for, and the initial results of, a contractor study being performed by a SAIC-led team of Bell Helicopter Textron, Sensis, and Optimal Synthesis. Together, this team represents an extensive body of subject matter expertise as related to rotorcraft technologies and design, airspace demand modeling simulation, and terminal area operations and flight path planning. The initial conceptual design results of a fleet of civil tiltrotor aircraft ranging in size from 10 to 120 passengers is a key highlight of the work to be presented. The intent of this presentation is to begin to provide the general community of rotorcraft researchers, manufacturers, and end-users an appreciation of the criticality of interjecting rotorcraft-specific technology and concepts of operation issues into Next Gen airspace requirements

  16. Airfoil shape for flight at subsonic speeds

    DOEpatents

    Whitcomb, Richard T.

    1976-01-01

    An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.

  17. Future Civil Aircraft and Technologies

    NASA Technical Reports Server (NTRS)

    Albers, J.; Zuk, J.

    1989-01-01

    New aircraft technologies are presented that have the potential to expand the air transportation system and reduce congestion through new operating capabilities while also providing greater levels of safety and environmental compatibility. These new capabilities will result from current and planned civil aeronautics technology at the NASA Ames, Lewis, and Langley Research Centers and will cover the complete spectrum of current aircraft and new vehicle concepts including rotorcraft (helicopters and tilt rotors), vertical and short takeoff and landing (V/STOL), and short takeoff and landing (STOL) aircraft, subsonic transports, high-speed transports, and hypersonic/transatmospheric vehicles. New technologies will improve efficiency, affordability, safety, and environmental compatibility of current aircraft and will enable the development of new transportation system. The new capabilities of vehicles could lead to substantial market opportunities and economic growth and could improve the competitive position of the U.S. aerospace industry.

  18. Future Civil Aircraft and Technologies

    NASA Technical Reports Server (NTRS)

    Albers, J.; Zuk, J.

    1989-01-01

    New aircraft technologies are presented that have the potential to expand the air transportation system and reduce congestion through new operating capabilities while also providing greater levels of safety and environmental compatibility. These new capabilities will result from current and planned civil aeronautics technology at the NASA Ames, Lewis, and Langley Research Centers and will cover the complete spectrum of current aircraft and new vehicle concepts including rotorcraft (helicopters and tilt rotors), vertical and short takeoff and landing (V/STOL), and short takeoff and landing (STOL) aircraft, subsonic transports, high-speed transports, and hypersonic/transatmospheric vehicles. New technologies will improve efficiency, affordability, safety, and environmental compatibility of current aircraft and will enable the development of new transportation system. The new capabilities of vehicles could lead to substantial market opportunities and economic growth and could improve the competitive position of the U.S. aerospace industry.

  19. An investigation of wing buffeting response at subsonic and transonic speeds: Phase 1: F-111A flight data analysis. Volume 1: Summary of technical approach, results and conclusions

    NASA Technical Reports Server (NTRS)

    Benepe, D. B.; Cunningham, A. M., Jr.; Dunmyer, W. D.

    1978-01-01

    The structural response to aerodynamic buffet during moderate to high-g maneuvers at subsonic and transonic speeds was investigated. The investigation is reported in three volumes. This volume presents a summary of the investigation with a complete description of the technical approach, description of the aircraft, its instrumentation, the data reduction procedures, results and conclusion.

  20. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  1. Aircraft Design Software

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successful commercialization of the AirCraft SYNThesis (ACSYNT) tool has resulted in the creation of Phoenix Integration, Inc. ACSYNT has been exclusively licensed to the company, an outcome of a seven year, $3 million effort to provide unique software technology to a focused design engineering market. Ames Research Center formulated ACSYNT and in working with the Virginia Polytechnic Institute CAD Laboratory, began to design and code a computer-aided design for ACSYNT. Using a Joint Sponsored Research Agreement, Ames formed an industry-government-university alliance to improve and foster research and development for the software. As a result of the ACSYNT Institute, the software is becoming a predominant tool for aircraft conceptual design. ACSYNT has been successfully applied to high- speed civil transport configuration, subsonic transports, and supersonic fighters.

  2. Determination of critical nondimensional parameters in aircraft dynamic response to random input

    NASA Technical Reports Server (NTRS)

    Hillard, S. E.; Sevik, M. M.

    1974-01-01

    The critical parameters of subsonic jet aircraft response in a random atmospheric environment are determined. Equations of motion are presented for semirigid aircraft with a flexible primary airfoil. However, the analysis is easily extendable to include additional appendage flexibility. The analysis establishes the mechanical admittance values for pitching, plunging, and the first mode effects from wing elastic bending and torsion. Nondimensional parameters are established which allow the representation of all subsonic jet transport aircraft with one nondimensional model. The critical parameters for random forcing are found to be aircraft relative mass, reduced natural and forcing frequencies, and Mach number. Turbulence scale lengths are found to be directly related to the critical values of reduced forcing frequency. Results are given for subsonic craft traveling at constant altitude. Specific values of admittance functions are tabulated at Mach numbers of 0.2, 0.5, and 0.7. The relative mass range covers all aircraft currently in operation.

  3. Four dimensional reconstruction and analysis of plume images

    NASA Astrophysics Data System (ADS)

    Dhawan, Atam P.; Peck, Charles, III; Disimile, Peter

    1991-05-01

    A number of methods have been investigated and are under current investigation for monitoring the health of the Space Shuttle Main Engine (SSME). Plume emission analysis has recently emerged as a potential technique for correlating the emission characteristics with the health of an engine. In order to correlate the visual and spectral signatures of the plume emission with the characteristic health monitoring features of the engine, the plume emission data must be acquired, stored, and analyzed in a manner similar to flame emission spectroscopy. The characteristic visual and spectral signatures of the elements vaporized in exhaust plume along with the features related to their temperature, pressure, and velocity can be analyzed once the images of plume emission are effectively acquired, digitized, and stored on a computer. Since the emission image varies with respect to time at a specified planar location, four dimensional visual and spectral analysis need to be performed on the plume emission data. In order to achieve this objective, feasibility research was conducted to digitize, store, analyze, and visualize the images of a subsonic jet in a cross flow. The jet structure was made visible using a direct injection flow visualization technique. The results of time-history based three dimensional reconstruction of the cross sectional images corresponding to a specific planar location of the jet structure are presented. The experimental set-up to acquire such data is described and three dimensional displays of time-history based reconstructions of the jet structure are discussed.

  4. Simulating study of the interaction between the propulsion and flight control systems of a subsonic lift fan VTOL

    NASA Technical Reports Server (NTRS)

    Tinling, B. E.; Cole, G. L.

    1980-01-01

    The possibility of interactions between the propulsion and flight control systems of a three-fan subsonic VTOL aircraft was studied using nonreal time simulation. Time histories of critical internal engine parameters were obtained and possible deleterious effects of engine dynamics on flight control were identified and analyzed. No deleterious effects, with the exception of the effects of the fan actuator deadband, were found. A method of alleviating these effects through feedback of the actuator output to the flight controller was developed.

  5. Multispectral imaging of aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Berkson, Emily E.; Messinger, David W.

    2016-05-01

    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  6. Design Considerations for Laminar Flow Control Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.; Bennett, J. A.

    1976-01-01

    A study was conducted to investigate major design considerations involved in the application of laminar flow control to the wings and empennage of long range subsonic transport aircraft compatible with initial operation in 1985. For commercial transports with a design mission range of 10,186 km (5500 n mil) and a payload of 200 passengers, parametric configuration analyses were conducted to evaluate the effect of aircraft performance, operational, and geometric parameters on fuel efficiency. Study results indicate that major design goals for aircraft optimization include maximization of aspect ratio and wing loading and minimization of wing sweep consistent with wing volume and airport performance requirements.

  7. Alternate aircraft fuels prospects and operational implications

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The paper discusses NASA studies of the potentials of coal-derived aviation fuels, specifically synthetic aviation kerosene, liquid methane, and liquid hydrogen. Topics include areas of fuel production, air terminal requirements for aircraft fueling (for liquid hydrogen only), and the performance characteristics of aircraft designed to utilize alternate fuels. Energy requirements associated with the production of each of the three selected fuels are determined, and fuel prices are estimated. Subsonic commercial air transports using liquid hydrogen fuel have been analyzed, and their performance and the performance of aircraft which use commercial aviation kerosene are compared. Environmental and safety issues are considered.

  8. Guidelines for Computing Longitudinal Dynamic Stability Characteristics of a Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Thompson, Joseph R.; Frank, Neal T.; Murphy, Patrick C.

    2010-01-01

    A systematic study is presented to guide the selection of a numerical solution strategy for URANS computation of a subsonic transport configuration undergoing simulated forced oscillation about its pitch axis. Forced oscillation is central to the prevalent wind tunnel methodology for quantifying aircraft dynamic stability derivatives from force and moment coefficients, which is the ultimate goal for the computational simulations. Extensive computations are performed that lead in key insights of the critical numerical parameters affecting solution convergence. A preliminary linear harmonic analysis is included to demonstrate the potential of extracting dynamic stability derivatives from computational solutions.

  9. Theoretical methods and design studies for NLF and HLFC swept wings at subsonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Goradia, Suresh H.; Morgan, Harry L., Jr.

    1987-01-01

    Laminarization of the boundary layer on the surface of aircraft wings can be accomplished by the use of concepts such as Natural Laminar Flow (NLF), Laminar-Flow Control (LFC), and Hybrid Laminar-Flow Control (HLFC). Several integral boundary-layer methods were developed for the prediction of laminar, transition, and separating turbulent boundary layers. These methods were developed for use at either subsonic or supersonic speeds, have small computer execution times, and are simple to use. The theoretical equations and assumptions which form the basis of the boundary-layer method, are briefly outlined and the results of several correlation cases with exciting experimental data are presented.

  10. Dust Plume off Mauritania

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A thick plume of dust blew off the coast of Mauritania in western Africa on October 2, 2007. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite observed the dust plume as it headed toward the southwest over the Atlantic Ocean. In this image, the dust varies in color from nearly white to medium tan. The dust plume is easier to see over the dark background of the ocean, but the plume stretches across the land surface to the east, as well. The dust plume's structure is clearest along the coastline, where relatively clear air pockets separate distinct puffs of dust. West of that, individual pillows of dust push together to form a more homogeneous plume. Near its southwest tip, the plume takes on yet another shape, with stripes of pale dust fanning out toward the northwest. Occasional tiny white clouds dot the sky overhead, but skies are otherwise clear.

  11. Modeling Europa's dust plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B. S.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected.

  12. Multivariate Analysis, Retrieval, and Storage System (MARS). Volume 6: MARS System - A Sample Problem (Gross Weight of Subsonic Transports)

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Woodbury, N. W.

    1975-01-01

    The Mars system is a tool for rapid prediction of aircraft or engine characteristics based on correlation-regression analysis of past designs stored in the data bases. An example of output obtained from the MARS system, which involves derivation of an expression for gross weight of subsonic transport aircraft in terms of nine independent variables is given. The need is illustrated for careful selection of correlation variables and for continual review of the resulting estimation equations. For Vol. 1, see N76-10089.

  13. Aeropropulsion 1987. Session 5: Subsonic Propulsion Technology

    NASA Technical Reports Server (NTRS)

    1987-01-01

    NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.

  14. Flow quality measurements in compressible subsonic flows

    NASA Technical Reports Server (NTRS)

    Stainback, P. Calvin; Johnson, Charles B.

    1987-01-01

    The purpose is to re-examine the heat transfer from a hot-wire probe in the compressible subsonic flow regime; describe the three-wire hot-wire probe calibration and data reduction techniques used to measure the velocity, density, and total temperature fluctuation; and present flow quality results obtained in the Langley 0.3 meter Transonic Cryogenic Wind Tunnel and in flight with the NASA JetStar from the same three-wire hot-wire probe.

  15. Research Data Acquired in World-Class, 60-atm Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Wey, Changlie

    1999-01-01

    NASA Lewis Research Center's new, world-class, 60-atmosphere (atm) combustor research facility, the Advanced Subsonic Combustion Rig (ASCR), is in operation and producing highly unique research data. Specifically, data were acquired at high pressures and temperatures representative of future subsonic engines from a fundamental flametube configuration with an advanced fuel injector. The data acquired include exhaust emissions as well as pressure and temperature distributions. Results to date represent an improved understanding of nitrous oxide (NOx) formation at high pressures and temperatures and include an NOx emissions reduction greater than 70 percent with an advanced fuel injector at operating pressures to 800 pounds per square inch absolute (psia). ASCR research is an integral part of the Advanced Subsonic Technology (AST) Propulsion Program. This program is developing critical low-emission combustion technology that will result in the next generation of gas turbine engines producing 50 to 70 percent less NOx emissions in comparison to 1996 International Civil Aviation Organization (ICAO) limits. The results to date indicate that the AST low-emission combustor goals of reducing NOx emissions by 50 to 70 percent are feasible. U.S. gas turbine manufacturers have started testing the low-emissions combustors at the ASCR. This collaborative testing will enable the industry to develop low-emission combustors at the high pressure and temperature conditions of future subsonic engines. The first stage of the flametube testing has been implemented. Four GE Aircraft Engines low-emissions fuel injector concepts, three Pratt & Whitney concepts, and two Allison concepts have been tested at Lewis ASCR facility. Subsequently, the flametube was removed from the test stand, and the sector combustor was installed. The testing of low emissions sector has begun. Low-emission combustors developed as a result of ASCR research will enable U.S. engine manufacturers to compete on a

  16. The Impact of Subsonic Twin Jets on Airport Noise

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.

    2012-01-01

    Subsonic and supersonic aircraft concepts proposed through NASA s Fundamental Aeronautics Program have multiple engines mounted near one another. Engine configurations with multiple jets introduce an asymmetry to the azimuthal directivity of the jet noise. Current system noise predictions add the jet noise from each jet incoherently, therefore, twin jets are estimated by adding 3 EPNdB to the far-field noise radiated from a single jet. Twin jet effects have the ability to increase or decrease the radiated noise to different azimuthal observation locations. Experiments have shown that twin jet effects are reduced with forward flight and increasing spacings. The current experiment investigates the impact of spacing, and flight effects on airport noise for twin jets. Estimating the jet noise radiated from twin jets as that of a single jet plus 3 EPNdB may be sufficient for horizontal twin jets with an s/d of 4.4 and 5.5, where s is the center-to-center spacing and d is the jet diameter. However, up to a 3 EPNdB error could be present for jet spacings with an s/d of 2.6 and 3.2.

  17. Supersonic Jet Exhaust Noise at High Subsonic Flight Speed

    NASA Technical Reports Server (NTRS)

    Norum, Thomas D.; Garber, Donald P.; Golub, Robert A.; Santa Maria, Odilyn L.; Orme, John S.

    2004-01-01

    An empirical model to predict the effects of flight on the noise from a supersonic transport is developed. This model is based on an analysis of the exhaust jet noise from high subsonic flights of the F-15 ACTIVE Aircraft. Acoustic comparisons previously attainable only in a wind tunnel were accomplished through the control of both flight operations and exhaust nozzle exit diameter. Independent parametric variations of both flight and exhaust jet Mach numbers at given supersonic nozzle pressure ratios enabled excellent correlations to be made for both jet broadband shock noise and jet mixing noise at flight speeds up to Mach 0.8. Shock noise correlated with flight speed and emission angle through a Doppler factor exponent of about 2.6. Mixing noise at all downstream angles was found to correlate well with a jet relative velocity exponent of about 7.3, with deviations from this behavior only at supersonic eddy convection speeds and at very high flight Mach numbers. The acoustic database from the flight test is also provided.

  18. The Impact of Subsonic Twin Jets on Airport Noise

    NASA Technical Reports Server (NTRS)

    Bozak, Richard, F.

    2012-01-01

    Subsonic and supersonic aircraft concepts proposed through NASA s Fundamental Aeronautics Program have multiple engines mounted near one another. Engine configurations with multiple jets introduce an asymmetry to the azimuthal directivity of the jet noise. Current system noise predictions add the jet noise from each jet incoherently, therefore, twin jets are estimated by adding 3 EPNdB to the far-field noise radiated from a single jet. Twin jet effects have the ability to increase or decrease the radiated noise to different azimuthal observation locations. Experiments have shown that twin jet effects are reduced with forward flight and increasing spacings. The current experiment investigates the impact of spacing, and flight effects on airport noise for twin jets. Estimating the jet noise radiated from twin jets as that of a single jet plus 3 EPNdB may be sufficient for horizontal twin jets with an s/d of 4.4 and 5.5, where s is the center-to-center spacing and d is the jet diameter. However, up to a 3 EPNdB error could be present for jet spacings with an s/d of 2.6 and 3.2.

  19. Analysis of supersonic combustion flow fields with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.

  20. Dynamic pressure loads associated with twin supersonic plume resonance

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Manning, J. C.; Ponton, M. K.

    1986-01-01

    The phenomenon of twin supersonic plume resonance is defined and studied as it pertains to high level dynamic loads in the inter-nozzle region of aircraft like the F-15 and B1-A. Using a 1/40th scale model twin jet nacelle with powered choked nozzles, it is found that intense internozzle dynamic pressures are associated with the synchrophased coupling of each plume's jet flapping mode. This condition is found most prevalent when each plume's jet flapping mode has constituent elements composed of the B-type helical instability. Suppression of these fatigue bearing loads was accomplished by simple geometric modifications to only one plume's nozzle. These modifications disrupt the natural selection of the B-type mode and thereby decouple the plumes.

  1. AVIATION AND THE ENVIRONMENT: Transition to Quieter Aircraft Occurred as Planned, but Concerns About Noise Persist

    DTIC Science & Technology

    2001-09-01

    International Civil Aviation Organization ( ICAO ) to develop a more stringent aircraft noise standard for subsonic jets and large propeller-driven aircraft...On June 27, 2001, the ICAO Council approved the adoption of a new noise certification standard called Chapter 4.

  2. Nighttime chemistry in the Houston urban plume

    NASA Astrophysics Data System (ADS)

    Luria, Menachem; Valente, Ralph J.; Bairai, Solomon; Parkhurst, William J.; Tanner, Roger L.

    A late afternoon polluted air parcel transported from the Houston metropolitan area was monitored by an instrumented aircraft throughout the night of 21-22 July, 2005. Sampling was conducted during three flight segments over several downwind areas that were identified by a controllable meteorological balloon released from the Houston area at sundown. Samples were taken for approximately 2 h over each area. Using carbon monoxide as a tracer of the urban plume, it was revealed that the dilution inside the plume was relatively small. Ozone levels of up to 120 ppb were found in the plume at the furthest downwind distance, some 250 km northwest of Houston, with plume transport in the direction of the Dallas metropolitan area. The data further suggest that the nighttime conversion of NO x to NO z was very rapid, with complete (˜100%) conversion by the end of the night. At two locations the urban plume mixed with fresh emissions from power plants. At these sampling points ˜50% of the NO y had already been converted to NO z, thus indicating very rapid oxidation at night.

  3. Representative Atmospheric Plume Development for Elevated Releases

    SciTech Connect

    Eslinger, Paul W.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Prichard, Andrew W.

    2014-02-01

    An atmospheric explosion of a low-yield nuclear device will produce a large number of radioactive isotopes, some of which can be measured with airborne detection systems. However, properly equipped aircraft may not arrive in the region where an explosion occurred for a number of hours after the event. Atmospheric conditions will have caused the radioactive plume to move and diffuse before the aircraft arrives. The science behind predicting atmospheric plume movement has advanced enough that the location of the maximum concentrations in the plume can be determined reasonably accurately in real time, or near real time. Given the assumption that an aircraft can follow a plume, this study addresses the amount of atmospheric dilution expected to occur in a representative plume as a function of time past the release event. The approach models atmospheric transport of hypothetical releases from a single location for every day in a year using the publically available HYSPLIT code. The effective dilution factors for the point of maximum concentration in an elevated plume based on a release of a non-decaying, non-depositing tracer can vary by orders of magnitude depending on the day of the release, even for the same number of hours after the release event. However, the median of the dilution factors based on releases for 365 consecutive days at one site follows a power law relationship in time, as shown in Figure S-1. The relationship is good enough to provide a general rule of thumb for estimating typical future dilution factors in a plume starting at the same point. However, the coefficients of the power law function may vary for different release point locations. Radioactive decay causes the effective dilution factors to decrease more quickly with the time past the release event than the dilution factors based on a non-decaying tracer. An analytical expression for the dilution factors of isotopes with different half-lives can be developed given the power law expression

  4. Modeling Europa's Dust Plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring the properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we adjust the ejection model by Schmidt et al. [2008] to the conditions at Europa. In this way, we estimate properties of a possible, yet unobserved dust component of the Europa plume. For a size-dependent speed distribution of emerging ice particles we use the model from Kempf et al. [2010] for grain dynamics, modified to run simulations of plumes on Europa. Specifically, we model emission from the two plume locations determined from observations by Roth et al. [2014] and also from other locations chosen at the closest approach of low-altitude flybys investigated in the Europa Clipper study. This allows us to estimate expected fluxes of ice grains on the spacecraft. We then explore the parameter space of Europa dust plumes with regard to particle speed distribution parameters, plume location, and spacecraft flyby elevation. Each parameter set results in a 3-dimensional particle density structure through which we simulate flybys, and a map of particle fallback ('snowfall') on the surface of Europa. Due to the moon's high escape speed, a Europa plume will eject few to no particles that can escape its gravity, which has several further consequences: (i) For given ejection velocity a Europa plume will have a smaller scale height, with a higher particle number densities than the plume on Enceladus, (ii) plume particles will not feed the diffuse Galilean dust ring, (iii) the snowfall pattern on the surface will be more localized about the plume location, and will not induce a global m = 2 pattern as seen on Enceladus, and (iv) safely observing an active plume will require low altitude flybys, preferably at 50

  5. An experimental investigation of a highly underexpanded sonic jet ejecting from a flat plate into a subsonic crossflow

    NASA Technical Reports Server (NTRS)

    Shaw, C. S.; Margason, R. J.

    1973-01-01

    The induced static pressures due to a highly underexpanded sonic jet ejecting normally from a flat plate into a subsonic crosswind have been investigated. These pressure data have been recorded on the flat plate for a range of nominal jet-to-free-stream dynamic-pressure ratios from 0 to 1000 at free-stream Mach numbers of 0.1, 0.2, 0.4, and 0.6. The static pressure data measured on the flat plate are presented and correlated based upon the Riemann shock geometry in the jet plume. This data correlation improves with increasing free-stream Mach number.

  6. Engine exhaust characteristics evaluation in support of aircraft acoustic testing

    NASA Astrophysics Data System (ADS)

    Ennix, Kimberly A.

    1994-02-01

    NASA Dryden Flight Research Facility and NASA Langley Research Center completed a joint acoustic flight test program. Test objectives were (1) to quantify and evaluate subsonic climb-to-cruise noise and (2) to obtain a quality noise database for use in validating the Aircraft Noise Prediction Program. These tests were conducted using aircraft with engines that represent the high nozzle pressure ratio of future transport designs. Test flights were completed at subsonic speeds that exceeded Mach 0.3 using F-18 and F-16XL aircraft. This paper describes the efforts of NASA Dryden Flight Research Facility in this flight test program. Topics discussed include the test aircraft, setup, and matrix. In addition, the engine modeling codes and nozzle exhaust characteristics are described.

  7. Engine exhaust characteristics evaluation in support of aircraft acoustic testing

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.

    1994-01-01

    NASA Dryden Flight Research Facility and NASA Langley Research Center completed a joint acoustic flight test program. Test objectives were (1) to quantify and evaluate subsonic climb-to-cruise noise and (2) to obtain a quality noise database for use in validating the Aircraft Noise Prediction Program. These tests were conducted using aircraft with engines that represent the high nozzle pressure ratio of future transport designs. Test flights were completed at subsonic speeds that exceeded Mach 0.3 using F-18 and F-16XL aircraft. This paper describes the efforts of NASA Dryden Flight Research Facility in this flight test program. Topics discussed include the test aircraft, setup, and matrix. In addition, the engine modeling codes and nozzle exhaust characteristics are described.

  8. Engine exhaust characteristics evaluation in support of aircraft acoustic testing

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.

    1993-01-01

    NASA Dryden Flight Research Facility and NASA Langley Research Center completed a joint acoustic flight test program. Test objectives were (1) to quantify and evaluate subsonic climb-to-cruise noise and (2) to obtain a quality noise database for use in validating the Aircraft Noise Prediction Program. These tests were conducted using aircraft with engines that represent the high nozzle pressure ratio of future transport designs. Test flights were completed at subsonic speeds that exceeded Mach 0.3 using F-18 and F-16XL aircraft. This paper describes the efforts of NASA Dryden Flight Research Facility in this flight test program. Topics discussed include the test aircraft, setup, and matrix. In addition, the engine modeling codes and nozzle exhaust characteristics are described.

  9. Three-dimensional subsonic diffuser design optimization and analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Li

    A novel methodology is developed to integrate state-of-the-art CFD analysis, the Non-uniform Rational B-Spline technique (NURBS) and optimization theory to reduce total pressure distortion and sustain or improve total pressure recovery within a curved three dimensional subsonic diffuser. Diffusing S-shaped ducts are representative of curved subsonic diffusers and are characterized by the S-shaped curvature of the duct's centerline and their increasing cross-sectional area. For aircraft inlet applications the measure of duct aerodynamic performance is the ability to decelerate the flow to the desired velocity while maintaining high total pressure recovery and flow near-uniformity. Reduced total pressure recovery lowers propulsion efficiency, whereas nonuniform flow conditions at the engine face lower engine stall and surge limits. Three degrees of freedom are employed as the number of independent design variables. The change of the surface shape is assumed to be Gaussian. The design variables are the location of the flow separation, the width and height of the Gaussian change. The General Aerodynamic Simulation Program (GASP) with the Baldwin-Lomax turbulence model is employed for the flow field prediction and proved to give good agreement with the experimental results for the baseline diffuser geometry. With the automatic change of the design variables, the configuration of the diffuser surface shape is able to be changed while keeping the entrance and exit of the diffuser unchanged in order to meet the specification of the engine and inlet. A trade study was performed which analyzed more than 10 configurations of the modified diffuser. Surface static pressure, surface flow visualization, and exit plane total pressure and transverse velocity data were acquired. The aerodynamic performance of each configuration was assessed by calculating total pressure recovery and spatial distortion elements. The automated design optimization is performed with a gradient

  10. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1990-01-01

    Flow field measurements of three subsonic rectangular cold air jets are presented. The three cases had aspect ratios of 1x2, 1x4 at a Mach number of 0.09 and an aspect ratio of 1x2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemometer system. The data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data are presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made.

  11. Solar Jetlets and Plumes

    NASA Astrophysics Data System (ADS)

    DeForest, Craig; Antiochos, Spiro K.; DeVore, C. Richard; Karpen, Judith T.; Kumar, Pankaj; Raouafi, Nour-Eddine; Roberts, Merrill; Uritsky, Vadim; Wyper, Peter

    2017-08-01

    We present results of a careful deep-field (low-noise) analysis of evolution and structure of solar plumes using multiple wavelength channels from SDO/AIA. Using new noise-reduction techniques on SDO/AIA images, we reveal myriad small, heating events that appear to be the primary basis of plume formation and sustenance. These events ("jetlets") comprise a dynamic tapestry that forms the more distributed plume itself. We identify the "jetlets" with ejecta that have been previously observed spectroscopically, and distinguish them from the quasi-periodic slow mode waves that are seen as large collective motions. We speculate that the jetlets themselves, which are consistent with multiple interchange reconnection events near the base of the plume, are the primary energy driver heating plasma in the plume envelope.Solar polar (and low-latitude) plumes have been analyzed by many authors over many years. Plumes are bright, persistent vertical structures embedded in coronal holes over quasi-unipolar magnetic flux concentrations. They are EUV-bright in the ~1MK lines, slightly cooler (by ionization fraction) than the surrounding coronal hole, persistent on short timescales of a few hours, and recurrent on timescales of a few days. Their onset has been associated with large X-ray jets, although not all plumes are formed that way. Plumes appear to comprise myriad small "threads" or "strands", and may (or may not) contribute significantly to the solar wind, though they have been associated with myriad small, frequent eruptive ejection events.Our results are new and interesting because they are the lowest-noise, time-resolved observations of polar plumes to date; and they reveal the deep association between small-scale magnetic activity and the formation of the plumes themselves.

  12. Study of the application of advanced technologies to laminar flow control systems for subsonic transports. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.; Bennett, J. A.; Etchberger, F. R.; Ferrill, R. S.; Meade, L. E.

    1976-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control to the wings and empennage of long-range subsonic transport aircraft compatible with initial operation in 1985. For a design mission range of 10,186 km (5500 n mi), advanced technology laminar-flow-control (LFC) and turbulent-flow (TF) aircraft were developed for both 200 and 400-passenger payloads, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish the optimum geometry for LFC and TF aircraft, advanced LFC system concepts and arrangements were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. For the final LFC aircraft, analyses were conducted to define maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft. Compared to the corresponding advanced technology TF transports, the 200- and 400-passenger LFC aircraft realized reductions in fuel consumption up to 28.2%, reductions in direct operating costs up to 8.4%, and improvements in fuel efficiency, in ssm/lb of fuel, up to 39.4%. Compared to current commercial transports at the design range, the LFC study aircraft demonstrate improvements in fuel efficiency up to 131%. Research and technology requirements requisite to the development of LFC transport aircraft were identified.

  13. Aircraft systems design studies employing advanced transport technologies

    NASA Technical Reports Server (NTRS)

    Downie, B.; Pearce, C.; Quartero, C.; Taylor, A.

    1972-01-01

    System and design integration studies are presented to define and assess the application of the advanced technology most likely to result in a superior next generation, high subsonic/sonic conventional takeoff and landing transport aircraft system. It is concluded that the new technologies can be directed toward the achievement of improved economy and performance. These benefits may be used to compensate for the penalties associated with reduced noise requirements anticipated to make future aircraft ecologically acceptable.

  14. A proposed criterion for aircraft flight in turbulence

    NASA Technical Reports Server (NTRS)

    Porter, R. F.; Robinson, A. C.

    1971-01-01

    A proposed criterion for aircraft flight in turbulent conditions is presented. Subjects discussed are: (1) the problem of flight safety in turbulence, (2) new criterion for turbulence flight where existing ones seem adequate, and (3) computational problems associated with new criterion. Primary emphasis is placed on catastrophic occurrences in subsonic cruise with the aircraft under automatic control. A Monte Carlo simulation is used in the formulation and evaluation of probabilities of survival of an encounter with turbulence.

  15. Effects of aircraft noise on human sleep.

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.

    1972-01-01

    Under controlled conditions in two test rooms, studies were made of the response of sleeping subjects to the stimuli of simulated sonic booms and subsonic jet aircraft noise. Children were relatively nonresponsive to the stimuli. In general, the older the subject, the more likely is behavioral awakening. The response rates to the two types of stimuli were essentially the same. The stimulus intensity had little, if any, effect on frequency of arousal, although other degrees of response did increase.

  16. Effects of aircraft noise on human sleep.

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.

    1972-01-01

    Under controlled conditions in two test rooms, studies were made of the response of sleeping subjects to the stimuli of simulated sonic booms and subsonic jet aircraft noise. Children were relatively nonresponsive to the stimuli. In general, the older the subject, the more likely is behavioral awakening. The response rates to the two types of stimuli were essentially the same. The stimulus intensity had little, if any, effect on frequency of arousal, although other degrees of response did increase.

  17. Methods for Aircraft State and Parameter Identification

    DTIC Science & Technology

    1975-05-01

    generated fluctuations, associated with the charac- teriotic unsteadiness of separated flowl, 2 . As aircraft speed is increased fron subsonic into...the tran- sonic range, the angle of &track at which these undesirable features occur tends to decrease; indeed, at transonic speeds steady conditions...angles of attack and relatively low speeds , where the forms of the relevant mathematical models are relatively well understood and research interest lies

  18. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  19. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  20. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  1. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  2. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  3. FPGA development for high altitude subsonic parachute testing

    NASA Technical Reports Server (NTRS)

    Kowalski, James E.; Gromov, Konstantin G.; Konefat, Edward H.

    2005-01-01

    This paper describes a rapid, top down requirements-driven design of a Field Programmable Gate Array (FPGA) used in an Earth qualification test program for a new Mars subsonic parachute. The FPGA is used to process and control storage of telemetry data from multiple sensors throughout launch, ascent, deployment and descent phases of the subsonic parachute test.

  4. FPGA development for high altitude subsonic parachute testing

    NASA Technical Reports Server (NTRS)

    Kowalski, James E.; Konefat, Edward H.; Gromovt, Konstantin

    2005-01-01

    This paper describes a rapid, top down requirements-driven design of an FPGA used in an Earth qualification test program for a new Mars subsonic parachute. The FPGA is used to process and store data from multiple sensors at multiple rates during launch, ascent, deployment and descent phases of the subsonic parachute test.

  5. High altitude subsonic parachute field programmable gate array

    NASA Technical Reports Server (NTRS)

    Kowalski, James E.; Gromov, Konstantin; Konefat, Edward H.

    2005-01-01

    This paper describes a rapid, top down requirements-driven design of an FPGA used in an Earth qualification test program for a new Mars subsonic parachute. The FPGA is used to process and control storage of telemetry data from multiple sensors throughout; launch, ascent, deployment and descent phases of the subsonic parachute test.

  6. High-altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdi, Renee Anna

    1991-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000+ ft, which is beyond the capabilities of the ER-2, NASA's current high-altitude reconnaissance aircraft. This project is geared to designing an aircraft that can study the ozone layer. The aircraft must be able to satisfy four mission profiles. The first is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.m. at 100,000 ft with a 2500-lb payload. The second mission is also a polar mission with a decreased altitude and an increased payload. For the third mission, the aircraft will take off at NASA Ames, cruise at 100,000 ft, and land in Chile. The final mission requires the aircraft to make an excursion to 120,000 ft. All four missions require that a subsonic Mach number be maintained because of constraints imposed by the air sampling equipment. Three aircraft configurations were determined to be the most suitable for meeting the requirements. The performance of each is analyzed to investigate the feasibility of the mission requirements.

  7. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  8. Nonlinear interaction model of subsonic jet noise.

    PubMed

    Sandham, Neil D; Salgado, Adriana M

    2008-08-13

    Noise generation in a subsonic round jet is studied by a simplified model, in which nonlinear interactions of spatially evolving instability modes lead to the radiation of sound. The spatial mode evolution is computed using linear parabolized stability equations. Nonlinear interactions are found on a mode-by-mode basis and the sound radiation characteristics are determined by solution of the Lilley-Goldstein equation. Since mode interactions are computed explicitly, it is possible to find their relative importance for sound radiation. The method is applied to a single stream jet for which experimental data are available. The model gives Strouhal numbers of 0.45 for the most amplified waves in the jet and 0.19 for the dominant sound radiation. While in near field axisymmetric and the first azimuthal modes are both important, far-field sound is predominantly axisymmetric. These results are in close correspondence with experiment, suggesting that the simplified model is capturing at least some of the important mechanisms of subsonic jet noise.

  9. High-Speed Propeller for Aircraft

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Gatzen, B. S.

    1986-01-01

    Engine efficiency increased. Propeller blades required to be quite thin and highly swept to minimize compressibility losses and propeller noise during high-speed cruise. Use of 8 or 10 blades with highpropeller-power loading allows overall propeller diameter to be kept relatively small. Area-ruled spinner and integrated nacelle shape reduce compressibility losses in propeller hub region. Finally, large modern turboshaft engine and gearbox provide power to advanced propeller. Fuel savings of 30 to 50 percent over present systems anticipated. Propfan system adaptable to number of applications, such as highspeed (subsonic) business and general-aviation aircraft, and military aircraft including V/STOL.

  10. High performance forward swept wing aircraft

    NASA Technical Reports Server (NTRS)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)

    1988-01-01

    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  11. Multiscale predictions of aviation-attributable PM2.5 for U.S. airports modeled using CMAQ with plume-in-grid and an aircraft-specific 1-D emission model

    EPA Science Inventory

    Aviation activities represent an important and unique mode of transportation, but also impact air quality. In this study, we aim to quantify the impact of aircraft on air quality, focusing on aviation-attributable PM2.5 at scales ranging from local (a few kilometers) to continent...

  12. Multiscale predictions of aviation-attributable PM2.5 for U.S. airports modeled using CMAQ with plume-in-grid and an aircraft-specific 1-D emission model

    EPA Science Inventory

    Aviation activities represent an important and unique mode of transportation, but also impact air quality. In this study, we aim to quantify the impact of aircraft on air quality, focusing on aviation-attributable PM2.5 at scales ranging from local (a few kilometers) to continent...

  13. Wedge Shock and Nozzle Exhaust Plume Interaction in a Supersonic Jet Flow

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Zaman, Khairul; Fagan, Amy; Heath, Christopher

    2014-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the nozzle exhaust plume. Aft body shock waves that interact with the exhaust plume contribute to the near-field pressure signature of a vehicle. The plume and shock interaction was studied using computational fluid dynamics and compared with experimental data from a coaxial convergent-divergent nozzle flow in an open jet facility. A simple diamond-shaped wedge was used to generate the shock in the outer flow to study its impact on the inner jet flow. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the opposite plume boundary. The sonic boom pressure signature of the nozzle exhaust plume was modified by the presence of the wedge. Both the experimental results and computational predictions show changes in plume deflection.

  14. Entrainment by Lazy Plumes

    NASA Astrophysics Data System (ADS)

    Kaye, Nigel; Hunt, Gary

    2004-11-01

    We consider plumes with source conditions that have a net momentum flux deficit compared to a pure plume - so called lazy plumes. We examine both the case of constant buoyancy flux and buoyancy flux linearly increasing with height. By re-casting the plume conservation equations (Morton, Taylor & Turner 1956) for a constant entrainment coefficient ((α)) in terms of the plume radius (β) and the dimensionless parameter (Γ=frac5Q^2 B4α M^5/2) we show that the far-field flow in a plume with a linear internal buoyancy flux gain is a constant velocity lazy plume with reduced entrainment and radial growth rate. For highly lazy source conditions we derive first-order approximate solutions which indicate a region of zero entrainment near the source. These phenomena have previously been observed, however, it has often been assumed that reduced entrainment implies a reduced (α). We demonstrate that a constant (α) formulation is able to capture the behaviour of these reduced entrainment flows. Morton, B. R., Taylor, G. I. & Turner, J. S. (1956), Turbulent gravitational convection from maintained and instantaneous sources.', Proc. Roy. Soc. 234, 1-23.

  15. Assessment of the Performance Potential of Advanced Subsonic Transport Concepts for NASA's Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Haller, William J.

    2016-01-01

    NASA's Environmentally Responsible Aviation (ERA) project has matured technologies to enable simultaneous reductions in fuel burn, noise, and nitrogen oxide (NOx) emissions for future subsonic commercial transport aircraft. The fuel burn reduction target was a 50% reduction in block fuel burn (relative to a 2005 best-in-class baseline aircraft), utilizing technologies with an estimated Technology Readiness Level (TRL) of 4-6 by 2020. Progress towards this fuel burn reduction target was measured through the conceptual design and analysis of advanced subsonic commercial transport concepts spanning vehicle size classes from regional jet (98 passengers) to very large twin aisle size (400 passengers). Both conventional tube-and-wing (T+W) concepts and unconventional (over-wing-nacelle (OWN), hybrid wing body (HWB), mid-fuselage nacelle (MFN)) concepts were developed. A set of propulsion and airframe technologies were defined and integrated onto these advanced concepts which were then sized to meet the baseline mission requirements. Block fuel burn performance was then estimated, resulting in reductions relative to the 2005 best-in-class baseline performance ranging from 39% to 49%. The advanced single-aisle and large twin aisle T+W concepts had reductions of 43% and 41%, respectively, relative to the 737-800 and 777-200LR aircraft. The single-aisle OWN concept and the large twin aisle class HWB concept had reductions of 45% and 47%, respectively. In addition to their estimated fuel burn reduction performance, these unconventional concepts have the potential to provide significant noise reductions due, in part, to engine shielding provided by the airframe. Finally, all of the advanced concepts also have the potential for significant NOx emissions reductions due to the use of advanced combustor technology. Noise and NOx emissions reduction estimates were also generated for these concepts as part of the ERA project.

  16. Estimation of Ship-plume Ozone Production Efficiency: ITCT 2K2 Case Study

    NASA Astrophysics Data System (ADS)

    Kim, H.; Kim, Y.; Song, C.

    2013-12-01

    The Ozone Production Efficiency (OPE) of ship plume was evaluated in this study, based on ship-plume photochemical/dynamic model simulations and the ship-plume composition data measured during the ITCT 2K2 (Intercontinental Transport and Chemical Transformation 2002) aircraft campaign. The averaged instantaneous OPEs (OPEi ) estimated via the ship-plume photochemical/dynamic modeling for the ITCT 2K2 ship-plume ranged between 4.61 and 18.92, showing that the values vary with the extent of chemical evolution (or chemical stage) of the ship plume and the stability classes of the marine boundary layer (MBL). Together with OPEi, the equivalent OPEs (OPEe) for the entire ITCT 2K2 ship-plume were also estimated. The OPEe values varied between 9.73 (for the stable MBL) and 12.73 (for the moderately stable MBL), which agreed well with the OPEe of 12.85 estimated based on the ITCT 2K2 ship-plume observations. It was also found that both the model-simulated and observation-based OPEe inside the ship-plume were 0.29-0.38 times smaller than the OPEe calculated/measured outside the ITCT 2K2 ship-plume. Lower OPEs insides the ship plume were due to the high levels of NOx. Possible implications of this ship-plume OPE study in the global chemistry-transport modeling are also discussed in this study.

  17. On the stability of subsonic thermal fronts

    SciTech Connect

    Ibanez S, Miguel H.; Shchekinov, Yuri; Bessega L, Maria C.

    2005-08-15

    The stability of subsonic thermal fronts against corrugation is analyzed and an exact dispersion relation is obtained taking into account the compressibility of the gas. For heat fronts, this dispersion equation has an unstable root ({omega}{sub ex}) corresponding to the Landau-Darrieus unstable mode ({omega}{sub 0}) modified by the compressional effects. In particular, the exact solution shows a conspicuous maximum very close to the value of the intake Mach number M{sub 1} at which a Chapman-Jouguet deflagration wave behind the heat front is formed. Cooling fronts are stable for corrugation-like disturbances. A maximum damping as well as a maximum in the frequency occur at a value of M{sub 1} depending on the value of the normalized cooling q.

  18. Subsonic Glideback Rocket Demonstrator Flight Testing

    NASA Technical Reports Server (NTRS)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  19. Subsonic Gas Flow Past A Wing Profile

    NASA Technical Reports Server (NTRS)

    Christianovich, S. A.; Yuriev, I. M.

    1950-01-01

    The use of the linearized equations of Chaplygin to calculate the subsonic flow of a gas permits solving the problem of the flow about a wing profile for absence and presence of circulation. The solution is obtained in a practical convenient form that permits finding all the required magnitudes for the gas flow (lift, lift moment velocity distribution over the profile, and critical Mach number). This solution is not expressed in simple closed form; for a certain simplifying assumption, however, the equations of Chaplygin can be reduced to equations with constant coefficients, and solutions are obtained by using only the mathematical apparatus of the theory of functions of a complex variable. The method for simplifying the equations was pointed out by Chaplygin himself. These applied similar equations to the solution of the flow problem and obtained a solution for the case of the absence of circulation.

  20. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1989-01-01

    Flow field measurements are presented of 3 subsonic rectangular cold air jets. The 3 cases presented had aspect ratios of 1 x 2, 1 x 4 at a Mach number of 0.09 and an aspect ratio of 1 x 2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemoneter system. The presented data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data is presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made. All tabular data are available in ASCII format on MS-DOS compatible disks.

  1. Scanning thermal plumes. [from power plant condensers

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Madding, R. P.; Green, T., III

    1974-01-01

    In order to study the behavior and effects of thermal plumes associated with the condenser cooling of power plants, thermal line scans are periodically made from aircraft over all power plants along the Wisconsin shore of Lake Michigan. Simultaneous ground truth is also gathered with a radiometer. Some sequential imagery has been obtained for periods up to two hours to study short term variations in the surface temperature of the plume. The article concentrates on the techniques used to analyze thermal scanner data for a single power plant which was studied intensively. The calibration methods, temperature dependence of the thermal scanner, and calculation of the modulation transfer function for the scanner are treated. It is concluded that obtaining quantitative surface-temperature data from thermal scanning is a nontrivial task. Accuracies up to plus or minus 0.1 C are attainable.

  2. Trajectories of the mount st. Helens eruption plume.

    PubMed

    Danielsen, E F

    1981-02-20

    The plume of the major eruption of Mount St. Helens on 18 May 1980 penetrated 10 to 11 kilometers into the stratosphere, attaining heights of 22 to 23 kilometers. Wind shears rapidly converted the plume from an expanding vertical cone to a thin, slightly inclined lamina. The lamina was extruded zonally in the stratosphere as the lower part moved eastward at jet stream velocities, while the upper part slowly moved westward in the region of nonsteady transition from the westerlies to the summer stratospheric easterlies. Trajectories computed to position the NASA U-2 aircraft for sampling in the plume are described. Plume volume after 8 hours of strong volcanic emission is estimated at 2 x 10(6) cubic kilometers. Only about 1 percent of this volume is attributed to the volcano; the rest was entrained from the environment.

  3. Trajectories of the Mount St. Helens eruption plume

    SciTech Connect

    Danielsen, E.F.

    1981-01-01

    The plume of the major eruption of Mount St. Helens on 18 May 1980 penetrated 10 to 11 kilometers into the stratosphere, attaining heights of 22 to 23 kilometers. Wind shears rapidly converted the plume from expanding vertical cone to a thin, slightly inclined lamina. The lamina was extruded zonally in the stratosphere as the lower part moved eastward at jet stream velocities, while the upper part slowly moved westward in the region of nonsteady transition from the westerlies to the summer stratospheric easterlies. Trajectories computed to position the NASA U-2 aircraft for sampling in the plume are described. Plume volume after 8 hours of strong volcanic emission is estimated at 2 x 10/sup +6/ cubic kilometers. Only about 1 percent of this volume is attributed to the volcano; the rest was entrained from the environment.

  4. El Chichon - Composition of plume gases and particles

    NASA Astrophysics Data System (ADS)

    Kotra, J. P.; Finnegan, D. L.; Zoller, W. H.; Hart, M. A.; Moyers, J. L.

    1983-12-01

    Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichon volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (not greater than 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.

  5. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska

    USGS Publications Warehouse

    Sassen, Kenneth; Zhu, Jiang; Webley, Peter W.; Dean, K.; Cobb, Patrick

    2007-01-01

    During mid January to early February 2006, a series of explosive eruptions occurred at the Augustine volcanic island off the southern coast of Alaska. By early February a plume of volcanic ash was transported northward into the interior of Alaska. Satellite imagery and Puff volcanic ash transport model predictions confirm that the aerosol plume passed over a polarization lidar (0.694 mm wavelength) site at the Arctic Facility for Atmospheric Remote Sensing at the University of Alaska Fairbanks. For the first time, lidar linear depolarization ratios of 0.10 – 0.15 were measured in a fresh tropospheric volcanic plume, demonstrating that the nonspherical glass and mineral particles typical of volcanic eruptions generate strong laser depolarization. Thus, polarization lidars can identify the volcanic ash plumes that pose a threat to jet air traffic from the ground, aircraft, or potentially from Earth orbit.

  6. El Chichon - Composition of plume gases and particles

    NASA Technical Reports Server (NTRS)

    Kotra, J. P.; Finnegan, D. L.; Zoller, W. H.; Hart, M. A.; Moyers, J. L.

    1983-01-01

    Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichon volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (not greater than 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.

  7. Small particles in plumes of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Rose, W. I.; Chuan, R. L.; Woods, D. C.

    1982-01-01

    Particles in the size range 0.1-25 microns were sampled by aircraft carrying a quartz crystal microcascade in the Mount St. Helens plume on three dates in August and September 1980. Two of the sampling dates represented 'typical' emissions of the volcano between plinian eruptions. One sampling flight was made 1-4 hours before the small plinian eruption of August 7, 1980 when the plume had become discontinuous and visibly darker. The plume sampled on August 7, before the eruption, contained mainly approximately 2-micron diameter silicic glass particles, fragments of the Mount St. Helens magma. The typical plumes sampled on September 22 and August 6 had much smaller concentrations of particles, trimodal size distributions with peaks at 10, 0.4, and 0.1 microns. The particles were largely nonsilicate and apparently represented Cu-Zn oxide (10 micron peak), Al sulfate, chloride, and oxide, and sulfuric acid (smallest size peak).

  8. El Chichon - Composition of plume gases and particles

    NASA Technical Reports Server (NTRS)

    Kotra, J. P.; Finnegan, D. L.; Zoller, W. H.; Hart, M. A.; Moyers, J. L.

    1983-01-01

    Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichon volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (not greater than 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.

  9. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  10. Methane Plumes on Mars

    NASA Image and Video Library

    Spectrometer instruments attached to several telescopes detect plumes of methane emitted from Mars during its summer and spring seasons. High levels of methane are indicated by warmer colors. The m...

  11. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  12. Sulfur plumes off Namibia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sulfur plumes rising up from the bottom of the ocean floor produce colorful swirls in the waters off the coast of Namibia in southern Africa. The plumes come from the breakdown of marine plant matter by anaerobic bacteria that do not need oxygen to live. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on April 24, 2002 Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  13. Enceladus' water vapor plume.

    PubMed

    Hansen, Candice J; Esposito, L; Stewart, A I F; Colwell, J; Hendrix, A; Pryor, W; Shemansky, D; West, R

    2006-03-10

    The Cassini spacecraft flew close to Saturn's small moon Enceladus three times in 2005. Cassini's UltraViolet Imaging Spectrograph observed stellar occultations on two flybys and confirmed the existence, composition, and regionally confined nature of a water vapor plume in the south polar region of Enceladus. This plume provides an adequate amount of water to resupply losses from Saturn's E ring and to be the dominant source of the neutral OH and atomic oxygen that fill the Saturnian system.

  14. Sulfur plumes off Namibia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sulfur plumes rising up from the bottom of the ocean floor produce colorful swirls in the waters off the coast of Namibia in southern Africa. The plumes come from the breakdown of marine plant matter by anaerobic bacteria that do not need oxygen to live. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on April 24, 2002 Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  15. Plume Measurement System (PLUMES) Calibration Experiment

    DTIC Science & Technology

    1994-08-01

    Atle Lohrmann SonTek, Inc. 7940 Silverton Avenue, No. 105 San Diego, California 92126 and Craig Huhta JIMAR University of Hawaii, Honolulu, Hawaii 96822...Measurement System (PLUMES) Calibration Experiment by Age Lohrmann SonTek, Inc. 7940 Silverton Avenue, No. 105 San Diego, CA 92126 Craig Huhta JIMAR...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) &. PERFORMING ORGANIZATION SonTek, Inc., 7940 Silverton Avenue, No. 105, San Diego, CA 92126 REPORT NUMBER

  16. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Rich; Madavan, Nateri

    2014-01-01

    Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets.The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The paper will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe

  17. Assessment of Lifting Body Linear Aerospike Plume Effects on Vehicle Aerodynamics

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; Frost, Alonzo L.; Vu, Bruce; Canabal, Francisco

    1996-01-01

    The lifting body/linear aerospike is one of three configurations being studied for a single stage to orbit (SSTO) vehicle. A preliminary aerodynamics database existed for then current lifting body configurations, however, this database was developed without considering plume effects. A combined effort by the Computational Fluid Dynamics (CFD) and the Experimental Fluids Dynamics Branches was undertaken to determine first order effects of plume/external flow interactions on vehicle aerodynamics of this lifting body/linear aerospike configuration. Of interest were plume pumping/entrainment at low Mach numbers and plume induced separation of flow over the vehicle at higher altitudes. The CFD analysis included combinations of four Mach numbers, two angles of attack, and four throttle settings. The majority of the CFD was two dimensional centerline analysis of the lifting body/aerospike. Incremental plume effects were derived by comparing the power-on, power-off, and throttled cases and were extrapolated to the preliminary aerodynamic database. The plume had little effect on the vehicle aerodynamics for supersonic freestream velocities. At subsonic freestream velocities, the plume affected the vehicle aerodynamics through both jet pumping/entrainment and the jet flap effect.

  18. Turboprop aircraft against terrorism: a SWOT analysis of turboprop aircraft in CAS operations

    NASA Astrophysics Data System (ADS)

    Yavuz, Murat; Akkas, Ali; Aslan, Yavuz

    2012-06-01

    Today, the threat perception is changing. Not only for countries but also for defence organisations like NATO, new threat perception is pointing terrorism. Many countries' air forces become responsible of fighting against terorism or Counter-Insurgency (COIN) Operations. Different from conventional warfare, alternative weapon or weapon systems are required for such operatioins. In counter-terrorism operations modern fighter jets are used as well as helicopters, subsonic jets, Unmanned Aircraft Systems (UAS), turboprop aircraft, baloons and similar platforms. Succes and efficiency of the use of these platforms can be determined by evaluating the conditions, the threats and the area together. Obviously, each platform has advantages and disadvantages for different cases. In this research, examples of turboprop aircraft usage against terrorism and with a more general approach, turboprop aircraft for Close Air Support (CAS) missions from all around the world are reviewed. In this effort, a closer look is taken at the countries using turboprop aircraft in CAS missions while observing the fields these aircraft are used in, type of operations, specifications of the aircraft, cost and the maintenance factors. Thus, an idea about the convenience of using these aircraft in such operations can be obtained. A SWOT analysis of turboprop aircraft in CAS operations is performed. This study shows that turboprop aircraft are suitable to be used in counter-terrorism and COIN operations in low threat environment and is cost benefical compared to jets.

  19. 1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  20. 3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  1. 7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  2. 5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  3. Subsonic aerodynamic and flutter characteristics of several wings calculated by the SOUSSA P1.1 panel method

    NASA Technical Reports Server (NTRS)

    Yates, E. C., Jr.; Cunningham, H. J.; Desmarais, R. N.; Silva, W. A.; Drobenko, B.

    1982-01-01

    The SOUSSA (steady, oscillatory, and unsteady subsonic and supersonic aerodynamics) program is the computational implementation of a general potential flow analysis (by the Green's function method) that can generate pressure distributions on complete aircraft having arbitrary shapes, motions and deformations. Some applications of the initial release version of this program to several wings in steady and oscillatory motion, including flutter are presented. The results are validated by comparisons with other calculations and experiments. Experiences in using the program as well as some recent improvements are described.

  4. Subsonic tests of an all-flush-pressure-orifice air data system

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Siemers, P. M., III

    1981-01-01

    The use of an all-flush-pressure-orifice array as a subsonic air data system was evaluated in flight and wind tunnel tests. Two orifice configurations were investigated. Both used orifices arranged in a cruciform pattern on the airplane nose. One configuration also used orifices on the sides of the fuselage for a source of static pressure. The all-nose-orifice configuration was similar to the shuttle entry air data system (SEADS). The flight data were obtained with a KC-135A airplane. The wind tunnel data were acquired with a 0.035-scale model of the KC-135A airplane. With proper calibration, several orifices on the vertical centerline of the vehicle's nose were found to be satisfactory for the determination of total pressure and angle of attack. Angle of sideslip could be accurately determined from pressure measurements made on the horizontal centerline of the aircraft. Orifice pairs were also found that provided pressure ratio relationships suitable for the determination of Mach number. The accuracy that can be expected for the air data determined with SEADS during subsonic orbiter flight is indicated.

  5. The role of freestream turbulence scale in subsonic flow separation

    NASA Technical Reports Server (NTRS)

    Potter, J. L.; Seebaugh, W. R.; Barnett, R. J.; Gokhale, R. B.

    1984-01-01

    The ojective of this work is the clarification of the role of freestream turbulence scale in determining the location of boundary layer separation. An airfoil in subsonic wind tunnel flow is the specific case studied. Hot-film and hot-wire anemometry, liquid-film visualization and pressure measurements are the principal diagnostic techniques in use. The Vanderbilt University subsonic wind tunnel is the flow facility being used.

  6. Plume-induced subduction

    NASA Astrophysics Data System (ADS)

    Gerya, T.; Stern, R. J.; Baes, M.; Sobolev, S. V.; Whattam, S. A.

    2016-12-01

    Dominant present-day subduction initiation mechanisms require acting plate forces and/or pre-existing zones of lithospheric weakness, which are themselves consequences of plate tectonics. In contrast, recently discovered plume-induced subduction initiation could have started the first subduction zone without pre-existing plate tectonics. Here, we investigate this new mechanism with high-resolution 3D numerical thermomechanical modeling experiments. We show that typical plume-induced subduction dynamics is subdivided into five different stages: (1) oceanic plateau formation by arrival of a mantle plume head; (2) formation of an incipient trench and a descending nearly-circular slab at the plateau margins; (3) tearing of the circular slab; (4) formation of several self-sustained retreating subduction zones and (5) cooling and spreading of the new lithosphere formed between the retreating subduction zones. At the final stage of plume-induced subduction initiation, a mosaic of independently moving, growing and cooling small oceanic plates heading toward individual retreating subduction zones forms. The plates are separated by spreading centers, triple junctions and transform faults and thus the newly formed multi-slab subduction system operates as an embryonic plate tectonic cell. We demonstrate that three key physical factors combine to trigger self-sustained plume-induced subduction: (1) old negatively buoyant oceanic lithosphere; (2) intense weakening of the lithosphere by plume-derived magmas; and (3) lubrication of the forming subduction interface by hydrated oceanic crust. We furthermore discuss that plume-induced subduction, which is rare at present day conditions, may have been common in the Precambrian time and likely started global plate tectonics on Earth.

  7. SUBSONIC WIND TUNNEL PERFORMANCE ANALYSIS SOFTWARE

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.

    1994-01-01

    This program was developed as an aid in the design and analysis of subsonic wind tunnels. It brings together and refines previously scattered and over-simplified techniques used for the design and loss prediction of the components of subsonic wind tunnels. It implements a system of equations for determining the total pressure losses and provides general guidelines for the design of diffusers, contractions, corners and the inlets and exits of non-return tunnels. The algorithms used in the program are applicable to compressible flow through most closed- or open-throated, single-, double- or non-return wind tunnels or ducts. A comparison between calculated performance and that actually achieved by several existing facilities produced generally good agreement. Any system through which air is flowing which involves turns, fans, contractions etc. (e.g., an HVAC system) may benefit from analysis using this software. This program is an update of ARC-11138 which includes PC compatibility and an improved user interface. The method of loss analysis used by the program is a synthesis of theoretical and empirical techniques. Generally, the algorithms used are those which have been substantiated by experimental test. The basic flow-state parameters used by the program are determined from input information about the reference control section and the test section. These parameters were derived from standard relationships for compressible flow. The local flow conditions, including Mach number, Reynolds number and friction coefficient are determined for each end of each component or section. The loss in total pressure caused by each section is calculated in a form non-dimensionalized by local dynamic pressure. The individual losses are based on the nature of the section, local flow conditions and input geometry and parameter information. The loss forms for typical wind tunnel sections considered by the program include: constant area ducts, open throat ducts, contractions, constant

  8. SUBSONIC WIND TUNNEL PERFORMANCE ANALYSIS SOFTWARE

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.

    1994-01-01

    This program was developed as an aid in the design and analysis of subsonic wind tunnels. It brings together and refines previously scattered and over-simplified techniques used for the design and loss prediction of the components of subsonic wind tunnels. It implements a system of equations for determining the total pressure losses and provides general guidelines for the design of diffusers, contractions, corners and the inlets and exits of non-return tunnels. The algorithms used in the program are applicable to compressible flow through most closed- or open-throated, single-, double- or non-return wind tunnels or ducts. A comparison between calculated performance and that actually achieved by several existing facilities produced generally good agreement. Any system through which air is flowing which involves turns, fans, contractions etc. (e.g., an HVAC system) may benefit from analysis using this software. This program is an update of ARC-11138 which includes PC compatibility and an improved user interface. The method of loss analysis used by the program is a synthesis of theoretical and empirical techniques. Generally, the algorithms used are those which have been substantiated by experimental test. The basic flow-state parameters used by the program are determined from input information about the reference control section and the test section. These parameters were derived from standard relationships for compressible flow. The local flow conditions, including Mach number, Reynolds number and friction coefficient are determined for each end of each component or section. The loss in total pressure caused by each section is calculated in a form non-dimensionalized by local dynamic pressure. The individual losses are based on the nature of the section, local flow conditions and input geometry and parameter information. The loss forms for typical wind tunnel sections considered by the program include: constant area ducts, open throat ducts, contractions, constant

  9. Subsonic streamers in water: initiation, propagation and morphology

    NASA Astrophysics Data System (ADS)

    Li, X. D.; Liu, Y.; Zhou, G. Y.; Liu, S. W.; Li, Z. Y.; Lin, F. C.

    2017-06-01

    In this paper, we focus on the development and morphology of underwater subsonic streamers in a pin-plane electrode configuration. The processes of initiation, propagation and branching of underwater subsonic streamers are studied in detail, and the effects of applied voltage amplitude and polarity are discussed. The results show a similar initiation process for both polarities including the formation of a low-density shadowed region, an initial bubble and streamers. Joule heating is thought to be the dominant intrinsic dynamic in the initiation process. There is a distinct difference in the propagation mode and the morphology between positive and negative subsonic streamers. Positive subsonic streamers develop in the form of a bubble cluster with a constant low speed of 20-80 m s-1, but the development mode transition from bubble cluster to secondary streamer occurs at the final stage of streamer propagation. On the other hand, negative subsonic streamers develop in the form of tree-like structures with a thinner root and propagate faster at a speed of 100-370 m s-1, and the propagation velocity increases significantly near the final breakdowns. A specific phenomenon has been observed in which the breakdown voltage of positive polarity can be higher than that of negative polarity in micro-second underwater discharge. The above results indicate that the polarity effect of subsonic streamers is quite different from that of the supersonic streamers.

  10. A Brilliant Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Long Range Reconnaissance Imager (LORRI) on New Horizons captured another dramatic picture of Jupiter's moon Io and its volcanic plumes, 19 hours after the spacecraft's closest approach to Jupiter on Feb. 28, 2007. LORRI took this 75 millisecond exposure at 0035 Universal Time on March 1, 2007, when Io was 2.3 million kilometers (1.4 million miles) from the spacecraft.

    Io's dayside is deliberately overexposed to bring out faint details in the plumes and on the moon's night side. The continuing eruption of the volcano Tvashtar, at the 1 o'clock position, produces an enormous plume roughly 330 kilometers (200 miles) high, which is illuminated both by sunlight and 'Jupiter light.'

    The shadow of Io, cast by the Sun, slices across the plume. The plume is quite asymmetrical and has a complicated wispy texture, for reasons that are still mysterious. At the heart of the eruption incandescent lava, seen here as a brilliant point of light, is reminding scientists of the fire fountains spotted by the Galileo Jupiter orbiter at Tvashtar in 1999.

    The sunlit plume faintly illuminates the surface underneath. 'New Horizons and Io continue to astonish us with these unprecedented views of the solar system's most geologically active body' says John Spencer, deputy leader of the New Horizons Jupiter Encounter Science Team and an Io expert from Southwest Research Institute.

    Because this image shows the side of Io that faces away from Jupiter, the large planet does not illuminate the moon's night side except for an extremely thin crescent outlining the edge of the disk at lower right. Another plume, likely from the volcano Masubi, is illuminated by Jupiter just above this lower right edge. A third and much fainter plume, barely visible at the 2 o'clock position, could be the first plume seen from the volcano Zal Patera.

    As in other New Horizons images of Io, mountains catch the setting Sun just beyond the terminator (the line dividing day and night

  11. A Brilliant Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Long Range Reconnaissance Imager (LORRI) on New Horizons captured another dramatic picture of Jupiter's moon Io and its volcanic plumes, 19 hours after the spacecraft's closest approach to Jupiter on Feb. 28, 2007. LORRI took this 75 millisecond exposure at 0035 Universal Time on March 1, 2007, when Io was 2.3 million kilometers (1.4 million miles) from the spacecraft.

    Io's dayside is deliberately overexposed to bring out faint details in the plumes and on the moon's night side. The continuing eruption of the volcano Tvashtar, at the 1 o'clock position, produces an enormous plume roughly 330 kilometers (200 miles) high, which is illuminated both by sunlight and 'Jupiter light.'

    The shadow of Io, cast by the Sun, slices across the plume. The plume is quite asymmetrical and has a complicated wispy texture, for reasons that are still mysterious. At the heart of the eruption incandescent lava, seen here as a brilliant point of light, is reminding scientists of the fire fountains spotted by the Galileo Jupiter orbiter at Tvashtar in 1999.

    The sunlit plume faintly illuminates the surface underneath. 'New Horizons and Io continue to astonish us with these unprecedented views of the solar system's most geologically active body' says John Spencer, deputy leader of the New Horizons Jupiter Encounter Science Team and an Io expert from Southwest Research Institute.

    Because this image shows the side of Io that faces away from Jupiter, the large planet does not illuminate the moon's night side except for an extremely thin crescent outlining the edge of the disk at lower right. Another plume, likely from the volcano Masubi, is illuminated by Jupiter just above this lower right edge. A third and much fainter plume, barely visible at the 2 o'clock position, could be the first plume seen from the volcano Zal Patera.

    As in other New Horizons images of Io, mountains catch the setting Sun just beyond the terminator (the line dividing day and night

  12. Towards Intelligent Control for Next Generation Aircraft

    NASA Technical Reports Server (NTRS)

    Acosta, Diana Michelle; KrishnaKumar, Kalmanje Srinvas; Frost, Susan Alane

    2008-01-01

    NASA Aeronautics Subsonic Fixed Wing Project is focused on mitigating the environmental and operation impacts expected as aviation operations triple by 2025. The approach is to extend technological capabilities and explore novel civil transport configurations that reduce noise, emissions, fuel consumption and field length. Two Next Generation (NextGen) aircraft have been identified to meet the Subsonic Fixed Wing Project goals - these are the Hybrid Wing-Body (HWB) and Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft. The technologies and concepts developed for these aircraft complicate the vehicle s design and operation. In this paper, flight control challenges for NextGen aircraft are described. The objective of this paper is to examine the potential of state-of-the-art control architectures and algorithms to meet the challenges and needed performance metrics for NextGen flight control. A broad range of conventional and intelligent control approaches are considered, including dynamic inversion control, integrated flight-propulsion control, control allocation, adaptive dynamic inversion control, data-based predictive control and reinforcement learning control.

  13. Towards Intelligent Control for Next Generation Aircraft

    NASA Technical Reports Server (NTRS)

    Acosta, Diana Michelle; KrishnaKumar, Kalmanje Srinvas; Frost, Susan Alane

    2008-01-01

    NASA Aeronautics Subsonic Fixed Wing Project is focused on mitigating the environmental and operation impacts expected as aviation operations triple by 2025. The approach is to extend technological capabilities and explore novel civil transport configurations that reduce noise, emissions, fuel consumption and field length. Two Next Generation (NextGen) aircraft have been identified to meet the Subsonic Fixed Wing Project goals - these are the Hybrid Wing-Body (HWB) and Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft. The technologies and concepts developed for these aircraft complicate the vehicle s design and operation. In this paper, flight control challenges for NextGen aircraft are described. The objective of this paper is to examine the potential of state-of-the-art control architectures and algorithms to meet the challenges and needed performance metrics for NextGen flight control. A broad range of conventional and intelligent control approaches are considered, including dynamic inversion control, integrated flight-propulsion control, control allocation, adaptive dynamic inversion control, data-based predictive control and reinforcement learning control.

  14. Martian Atmospheric Plumes: Behavior, Detectability and Plume Tracing

    NASA Astrophysics Data System (ADS)

    Banfield, Don; Mischna, M.; Sykes, R.; Dissly, R.

    2013-10-01

    We will present our recent work simulating neutrally buoyant plumes in the martian atmosphere. This work is primarily directed at understanding the behavior of discrete plumes of biogenic tracer gases, and thus increasing our understanding of their detectability (both from orbit and from in situ measurements), and finally how to use the plumes to identify their precise source locations. We have modeled the detailed behavior of martian atmospheric plumes using MarsWRF for the atmospheric dynamics and SCIPUFF (a terrestrial state of the art plume modeling code that we have modified to represent martian conditions) for the plume dynamics. This combination of tools allows us to accurately simulate plumes not only from a regional scale from which an orbital observing platform would witness the plume, but also from an in situ perspective, with the instantaneous concentration variations that a turbulent flow would present to a point sampler in situ instrument. Our initial work has focused on the detectability of discrete plumes from an orbital perspective and we will present those results for a variety of notional orbital trace gas detection instruments. We have also begun simulating the behavior of the plumes from the perspective of a sampler on a rover within the martian atmospheric boundary layer. The detectability of plumes within the boundary layer has a very strong dependence on the atmospheric stability, with plume concentrations increasing by a factor of 10-1000 during nighttime when compared to daytime. In the equatorial regions of the planet where we have simulated plumes, the diurnal tidal “clocking” of the winds is strongly evident in the plume trail, which similarly “clocks” around its source. This behavior, combined with the strong diurnal concentration variations suggests that a rover hunting a plume source would be well suited to approach it from a particular azimuth (downwind at night) to maximize detectability of the plume and the ability to

  15. CFD Assessment of Aerodynamic Degradation of a Subsonic Transport Due to Airframe Damage

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar Z.; Atkins, Harold L.; Viken, Sally A.; Morrison, Joseph H.

    2010-01-01

    A computational study is presented to assess the utility of two NASA unstructured Navier-Stokes flow solvers for capturing the degradation in static stability and aerodynamic performance of a NASA General Transport Model (GTM) due to airframe damage. The approach is to correlate computational results with a substantial subset of experimental data for the GTM undergoing progressive losses to the wing, vertical tail, and horizontal tail components. The ultimate goal is to advance the probability of inserting computational data into the creation of advanced flight simulation models of damaged subsonic aircraft in order to improve pilot training. Results presented in this paper demonstrate good correlations with slope-derived quantities, such as pitch static margin and static directional stability, and incremental rolling moment due to wing damage. This study further demonstrates that high fidelity Navier-Stokes flow solvers could augment flight simulation models with additional aerodynamic data for various airframe damage scenarios.

  16. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  17. Modeling the Launch Abort Vehicle's Subsonic Aerodynamics from Free Flight Testing

    NASA Technical Reports Server (NTRS)

    Hartman, Christopher L.

    2010-01-01

    An investigation into the aerodynamics of the Launch Abort Vehicle for NASA's Constellation Crew Launch Vehicle in the subsonic, incompressible flow regime was conducted in the NASA Langley 20-ft Vertical Spin Tunnel. Time histories of center of mass position and Euler Angles are captured using photogrammetry. Time histories of the wind tunnel's airspeed and dynamic pressure are recorded as well. The primary objective of the investigation is to determine models for the aerodynamic yaw and pitch moments that provide insight into the static and dynamic stability of the vehicle. System IDentification Programs for AirCraft (SIDPAC) is used to determine the aerodynamic model structure and estimate model parameters. Aerodynamic models for the aerodynamic body Y and Z force coefficients, and the pitching and yawing moment coefficients were identified.

  18. Comparison of all-electric secondary power systems for civil subsonic transports

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1992-01-01

    Three separate studies have shown operational, weight, and cost advantages for commercial subsonic transport aircraft using an all-electric secondary power system. The first study in 1982 showed that all-electric secondary power systems produced the second largest benefit compared to four other technology upgrades. The second study in 1985 showed a 10 percent weight and fuel savings using an all-electric high frequency (20 kHz) secondary power system. The last study in 1991 showed a 2 percent weight savings using today's technology (400 Hz) in an all-electric secondary power system. This paper will compare the 20 kHz and 400 Hz studies, analyze the 2 to 10 percent difference in weight savings and comment on the common benefits of the all-electric secondary power system.

  19. Aerodynamic sensitivities from subsonic, sonic and supersonic unsteady, nonplanar lifting-surface theory

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.

    1987-01-01

    The technique of implicit differentiation has been used in combination with linearized lifting-surface theory to derive analytical expressions for aerodynamic sensitivities (i.e., rates of change of lifting pressures with respect to general changes in aircraft geometry, including planform variations) for steady or oscillating planar or nonplanar lifting surfaces in subsonic, sonic, or supersonic flow. The geometric perturbation is defined in terms of a single variable, and the user need only provide simple expressions or similar means for defining the continuous or discontinuous global or local perturbation of interest. Example expressions are given for perturbations of the sweep, taper, and aspect ratio of a wing with trapezoidal semispan planform. In addition to direct computational use, the analytical method presented here should provide benchmark criteria for assessing the accuracy of aerodynamic sensitivities obtained by approximate methods such as finite geometry perturbation and differencing. The present process appears to be readily adaptable to more general surface-panel methods.

  20. A Probabilistic Assessment of NASA Ultra-Efficient Engine Technologies for a Large Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Arcara, Philip C., Jr.; Haller, William J.

    2004-01-01

    NASA's Ultra Efficient Engine Technology (UEET) program features advanced aeropropulsion technologies that include highly loaded turbomachinery, an advanced low-NOx combustor, high-temperature materials, intelligent propulsion controls, aspirated seal technology, and an advanced computational fluid dynamics (CFD) design tool to help reduce airplane drag. A probabilistic system assessment is performed to evaluate the impact of these technologies on aircraft fuel burn and NOx reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-pound) engines is chosen for the study. The results show that a large subsonic aircraft equipped with the UEET technologies has a very high probability of meeting the UEET Program goals for fuel-burn (or equivalent CO2) reduction (15% from the baseline) and LTO (landing and takeoff) NOx reductions (70% relative to the 1996 International Civil Aviation Organization rule). These results are used to provide guidance for developing a robust UEET technology portfolio, and to prioritize the most promising technologies required to achieve UEET program goals for the fuel-burn and NOx reductions.

  1. Predicted aircraft effects on stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Wofsy, Steve; Kley, Dieter; Zhadin, Evgeny A.; Johnson, Colin; Weisenstein, Debra; Prather, Michael J.; Wuebbles, Donald J.

    1991-01-01

    The possibility that the current fleet of subsonic aircraft may already have caused detectable changes in both the troposphere and stratosphere has raised concerns about the impact of such operations on stratospheric ozone and climate. Recent interest in the operation of supersonic aircraft in the lower stratosphere has heightened such concerns. Previous assessments of impacts from proposed supersonic aircraft were based mostly on one-dimensional model results although a limited number of multidimensional models were used. In the past 15 years, our understanding of the processes that control the atmospheric concentrations of trace gases has changed dramatically. This better understanding was achieved through accumulation of kinetic data and field observations as well as development of new models. It would be beneficial to start examining the impact of subsonic aircraft to identify opportunities to study and validate the mechanisms that were proposed to explain the ozone responses. The two major concerns are the potential for a decrease in the column abundance of ozone leading to an increase in ultraviolet radiation at the ground, and redistribution of ozone in the lower stratosphere and upper troposphere leading to changes in the Earth's climate. Two-dimensional models were used extensively for ozone assessment studies, with a focus on responses to chlorine perturbations. There are problems specific to the aircraft issues that are not adequately addressed by the current models. This chapter reviews the current status of the research on aircraft impact on ozone with emphasis on immediate model improvements necessary for extending our understanding. The discussion will be limited to current and projected commercial aircraft that are equipped with air-breathing engines using conventional jet fuel. The impacts are discussed in terms of the anticipated fuel use at cruise altitude.

  2. Plume primary smoke

    NASA Astrophysics Data System (ADS)

    Chastenet, J. C.

    1993-06-01

    The exhaust from a solid propellant rocket motor usually contains condensed species. These particles, also called 'Primary Smoke', are often prejudicial to missile detectability and to the guidance system. To avoid operational problems it is necessary to know and quantify the effects of particles on all aspects of missile deployment. A brief description of the origin of the primary smoke is given. It continues with details of the interaction between particles and light as function of both particles and light properties (nature, size, wavelength, etc). The effects of particles on plume visibility, attenuation of an optical beam propagated through the plume and the contribution of particles on optical signatures of the plume are also described. Finally, various methods used in NATO countries to quantify the primary smoke effects are discussed.

  3. The Cylinder and Semicylinder in Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Bingham, Harry J.; Weimer, David K..; Griffith, Wayland

    1952-01-01

    In studying the diffraction of shock waves around various two-dimensional obstacles we have observed that flow separation and the formation of vortices contributes in an important way to transient loading of the obstacle. The cases of a cylinder and semicylinder are especially interesting because the breakaway point is not clearly defined as it is for objects having sharp corners. Accordingly a number of experiments have been made in the shock tube to observe the influence of Reynolds number and Mach number on the transient flow patterns about a cylinder and about a semicylinder mounted on a smooth plane. Some differences might be anticipated since the plane would impose a symmetry on the flow and produce a viscous boundary layer for which there is no counterpart with the cylinder. In the course of these experiments it was noted that a condition of steady subsonic flow about both the cylinder and semicylinder was approached. Thus a comparison with von Karrnan's theoretical calculation of the drag on a cylinder, from certain characteristics of its wake or "vortex street", was undertaken.

  4. Advanced Subsonic Airplane Design and Economic Studies

    NASA Technical Reports Server (NTRS)

    Liebeck, Robert H.; Andrastek, Donald A.; Chau, Johnny; Girvin, Raquel; Lyon, Roger; Rawdon, Blaine K.; Scott, Paul W.; Wright, Robert A.

    1995-01-01

    A study was made to examine the effect of advanced technology engines on the performance of subsonic airplanes and provide a vision of the potential which these advanced engines offered. The year 2005 was selected as the entry-into-service (EIS) date for engine/airframe combination. A set of four airplane classes (passenger and design range combinations) that were envisioned to span the needs for the 2005 EIS period were defined. The airframes for all classes were designed and sized using 2005 EIS advanced technology. Two airplanes were designed and sized for each class: one using current technology (1995) engines to provide a baseline, and one using advanced technology (2005) engines. The resulting engine/airframe combinations were compared and evaluated on the basis on sensitivity to basic engine performance parameters (e.g. SFC and engine weight) as well as DOC+I. The advanced technology engines provided significant reductions in fuel burn, weight, and wing area. Average values were as follows: reduction in fuel burn = 18%, reduction in wing area = 7%, and reduction in TOGW = 9%. Average DOC+I reduction was 3.5% using the pricing model based on payload-range index and 5% using the pricing model based on airframe weight. Noise and emissions were not considered.

  5. Subsonic-transonic stall flutter study

    NASA Technical Reports Server (NTRS)

    Stardter, H.

    1979-01-01

    The objective of the Subsonic/Transonic Stall Flutter Program was to obtain detailed measurements of both the steady and unsteady flow field surrounding a rotor and the mechanical state of the rotor while it was operating in both steady and flutter modes to provide a basis for future analysis and for development of theories describing the flutter phenomenon. The program revealed that while all blades flutter at the same frequency, they do not flutter at the same amplitude, and their interblade phase angles are not equal. Such a pattern represents the superposition of a number of rotating nodal diameter patterns, each characterized by a different amplitude and different phase indexing, but each rotating at a speed that results in the same flutter frequency as seen in the rotor system. Review of the steady pressure contours indicated that flutter may alter the blade passage pressure distribution. The unsteady pressure amplitude contour maps reveal regions of high unsteady pressure amplitudes near the leading edge, lower amplitudes near the trailing.

  6. Large-Eddy Simulation of Subsonic Jets

    NASA Astrophysics Data System (ADS)

    Vuorinen, Ville; Wehrfritz, Armin; Yu, Jingzhou; Kaario, Ossi; Larmi, Martti; Boersma, Bendiks Jan

    2011-12-01

    The present study deals with development and validation of a fully explicit, compressible Runge-Kutta-4 (RK4) Navier-Stokes solver in the opensource CFD programming environment OpenFOAM. The background motivation is to shift towards explicit density based solution strategy and thereby avoid using the pressure based algorithms which are currently proposed in the standard OpenFOAM release for Large-Eddy Simulation (LES). This shift is considered necessary in strongly compressible flows when Ma > 0.5. Our application of interest is related to the pre-mixing stage in direct injection gas engines where high injection pressures are typically utilized. First, the developed flow solver is discussed and validated. Then, the implementation of subsonic inflow conditions using a forcing region in combination with a simplified nozzle geometry is discussed and validated. After this, LES of mixing in compressible, round jets at Ma = 0.3, 0.5 and 0.65 are carried out. Respectively, the Reynolds numbers of the jets correspond to Re = 6000, 10000 and 13000. Results for two meshes are presented. The results imply that the present solver produces turbulent structures, resolves a range of turbulent eddy frequencies and gives also mesh independent results within satisfactory limits for mean flow and turbulence statistics.

  7. The numerical simulation of subsonic flutter

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas W.; Mitchum, Maria V.; Mook, Dean T.

    1987-01-01

    The present paper describes a numerical simulation of unsteady, subsonic aeroelastic responses. The technique accounts for aerodynamic nonlinearities associated with angles of attack, vortex-dominated flow, static deformations, and unsteady behavior. The fluid and the wing together are treated as a single dynamic system, and the equations of motion for the structure and flowfield are integrated simultaneously and interactively in the time domain. The method employs an iterative scheme based on a predictor-corrector technique. The aerodynamic loads are computed by the general unsteady vortex-lattice method and are determined simultaneously with the motion of the wing. Two models are used to demonstrate the technique: a rigid wing on an elastic support experiencing plunge and pitch about the elastic axis, and a continuous wing rigidly supported at the root chord experiencing spanwise bending and twisting. The time domain solution coupled with the unsteady vortex-lattice method provides the capability of graphically depicting wing and wake motion. Several graphs that illustrate the time domain behavior of the wing and wake are presented.

  8. Recent Progress in V/STOL Aircraft Technology

    NASA Technical Reports Server (NTRS)

    Roberts, L.; Deckert, W.; Hickey, D.

    1981-01-01

    Results from wind tunnel and flight tests investigations for V/STOL aircraft are reviewed. Primary emphasis is given to technical results relating to three types of subsonic aircraft: a quiet STOL aircraft; a tilt rotor aircraft; and a turbofan V/STOL aircraft. Comparison and correlation between theoretical and experimental results and between wind tunnel and flight test results, is made. The quiet STOL aircraft technology results are primarily those derived from the NASA/Boeing Quiet Short Haul Technology (QSRA) program. The QSRA aircraft uses an upper surface blown flap and develops a usable engine-out landing approach lift coefficient of 5.5 and landing distances less than 1,000 ft. The tilt rotor aircraft technology results are those obtained from the NASA/Army/Navy/Bell (XV-15-TRRA) aircraft flight investigations. The TRRA is a twin rotor research aircraft capable of vertical takeoff and landing and cruise speeds of 300 knots. The turbofan V/STOL aircraft technology results are from static ground facility and wind tunnel investigations of a NASA/NAVY/Grumman full scale lift/cruise fan aircraft model, which features two tilting nacelles with TF-34 engines.

  9. Eiffel Tower Plume

    NASA Image and Video Library

    2015-08-19

    This still image from an animation from NASA GSFC Solar Dynamics Observatory shows a single plume of plasma, many times taller than the diameter of Earth, spewing streams of particles for over two days Aug. 17-19, 2015 before breaking apart. At times, its shape resembled the Eiffel Tower. Other lesser plumes and streams of particles can be seen dancing above the solar surface as well. The action was observed in a wavelength of extreme ultraviolet light. http://photojournal.jpl.nasa.gov/catalog/PIA19875

  10. Where Plumes Live

    NASA Astrophysics Data System (ADS)

    King, S. D.

    2004-12-01

    From the perspective of fluid dynamics, `Plumes or not?' might be the wrong question. Let me begin by defining a few terms. Plume with a `P' is the well-known thermal structure with thin (order 100 km) tail and large, bulbous head that originates at the core-mantle boundary. The thin tail/large, bulbous-head morphology has been generated in a number of laboratory and numerical experiments. It can be seen, for example, on the cover of the famous fluid dynamics text by Batchelor. There is a clearly-defined range of parameters for which this structure is the preferred solution for instabilities arising from a bottom boundary layer in a convecting fluid. For example, a strong temperature-dependent rheology is needed. By contrast, plume with a `p' is any cylindrical or quasi-cylindrical instability originating from a thermal (or thermo-chemical) boundary layer. In fluid dynamics plume is sometimes used interchangeable with jet. Unless there is a very small temperature drop across the core-mantle boundary or a rather remarkable balance between temperature and composition at the base of the mantle, there are almost certainly plumes. (Note the little p.) Are these plumes the thermal structures with thin (order 100 km) tails and large bulbous heads or could they be broad, hot regions such as the degree 2 pattern seen in global seismic tomography images of the lower mantle, or the disconnected droplets seen in chaotic convection? To study this question, I will present a sequence of numerical `experiments' that illustrate the morphology of instabilities from a basal thermal boundary layer, i.e., plumes. Some of the aspects I will present include: spherical geometry, temperature-and pressure-dependence of rheology, internal heating, pressure-dependent coefficient of thermal expansion, variable coefficient of thermal diffusivity, phase transformations, and compositional layering at the base of the mantle. The goal is to map out the parameters and conditions where Plumes live

  11. Cart3D Analysis of Plume and Shock Interaction Effects on Sonic Boom

    NASA Technical Reports Server (NTRS)

    Castner, Raymond

    2015-01-01

    A plume and shock interaction study was developed to collect data and perform CFD on a configuration where a nozzle plume passed through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedge-shaped shock generator. Three configurations were analyzed consisting of two strut mounted wedges and one propulsion pod with an aft deck from a low boom vehicle concept. Research efforts at NASA were intended to enable future supersonic flight over land in the United States. Two of these efforts provided data for regulatory change and enabled design of low boom aircraft. Research has determined that sonic boom is a function of aircraft lift and volume distribution. Through careful tailoring of these variables, the sonic boom of concept vehicles has been reduced. One aspect of vehicle tailoring involved how the aircraft engine exhaust interacted with aft surfaces on a supersonic aircraft, such as the tail and wing trailing edges. In this work, results from Euler CFD simulations are compared to experimental data collected on sub-scale components in a wind tunnel. Three configurations are studied to simulate the nozzle plume interaction with representative wing and tail surfaces. Results demonstrate how the plume and tail shock structure moves with increasing nozzle pressure ratio. The CFD captures the main features of the plume and shock interaction. Differences are observed in the plume and deck shock structure that warrant further research and investigation.

  12. Active Volcanic Plumes on Io

    NASA Image and Video Library

    1998-03-26

    This color image, acquired during NASA Galileo ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon, erupting over a caldera volcanic depression named Pillan Patera.

  13. Hydrostatic Modeling of Buoyant Plumes

    NASA Astrophysics Data System (ADS)

    Stroman, A.; Dewar, W. K.; Wienders, N.; Deremble, B.

    2014-12-01

    The Deepwater Horizon oil spill in the Gulf of Mexico has led to increased interest in understanding point source convection dynamics. Most of the existing oil plume models use a Lagrangian based approach, which computes integral measures such as plume centerline trajectory and plume radius. However, this approach doesn't account for feedbacks of the buoyant plume on the ambient environment. Instead, we employ an Eulerian based approach to acquire a better understanding of the dynamics of buoyant plumes. We have performed a series of hydrostatic modeling simulations using the MITgcm. Our results show that there is a dynamical response caused by the presence of the buoyant plume, in that there is a modification of the background flow. We find that the buoyant plume becomes baroclinically unstable and sheds eddies at the neutral buoyancy layer. We also explore different scenarios to determine the effect of the buoyancy source and the temperature stratification on the evolution of buoyant plumes.

  14. LAMP Observes the LCROSS Plume

    NASA Image and Video Library

    This video shows LAMP’s view of the LCROSS plume. The first half of the animation shows the LAMP viewport scanning across the horizon, passing through the plume, and moving on. The second half of...

  15. EUV analysis of polar plumes

    NASA Technical Reports Server (NTRS)

    Ahmad, I. A.; Withbroe, G. L.

    1977-01-01

    Three polar plumes were studied using Skylab Mg X and O VI data. The plumes lie within the boundaries of a polar coronal hole. We find that the mean temperature of the plumes is about 1.1 million K and that they have a small vertical temperature gradient. Densities are determined and found consistent with white light analyses. The variation of density with height in the plumes is compared with that expected for hydrostatic equilibrium. As is the case for other coronal features, polar plumes will be a source of solar wind if the magnetic field lines are open. On the basis of the derived plume model and estimates of the numbers of plumes in polar coronal holes, it appears that polar plumes contain about 15% of the mass in a typical polar hole and occupy about 10% of the volume.

  16. CFD-Based Design Optimization Tool Developed for Subsonic Inlet

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The traditional approach to the design of engine inlets for commercial transport aircraft is a tedious process that ends with a less-than-optimum design. With the advent of high-speed computers and the availability of more accurate and reliable computational fluid dynamics (CFD) solvers, numerical optimization processes can effectively be used to design an aerodynamic inlet lip that enhances engine performance. The designers' experience at Boeing Corporation showed that for a peak Mach number on the inlet surface beyond some upper limit, the performance of the engine degrades excessively. Thus, our objective was to optimize efficiency (minimize the peak Mach number) at maximum cruise without compromising performance at other operating conditions. Using a CFD code NPARC, the NASA Lewis Research Center, in collaboration with Boeing, developed an integrated procedure at Lewis to find the optimum shape of a subsonic inlet lip and a numerical optimization code, ADS. We used a GRAPE-based three-dimensional grid generator to help automate the optimization procedure. The inlet lip shape at the crown and the keel was described as a superellipse, and the superellipse exponents and radii ratios were considered as design variables. Three operating conditions: cruise, takeoff, and rolling takeoff, were considered in this study. Three-dimensional Euler computations were carried out to obtain the flow field. At the initial design, the peak Mach numbers for maximum cruise, takeoff, and rolling takeoff conditions were 0.88, 1.772, and 1.61, respectively. The acceptable upper limits on the takeoff and rolling takeoff Mach numbers were 1.55 and 1.45. Since the initial design provided by Boeing was found to be optimum with respect to the maximum cruise condition, the sum of the peak Mach numbers at takeoff and rolling takeoff were minimized in the current study while the maximum cruise Mach number was constrained to be close to that at the existing design. With this objective, the

  17. PLUME and research sotware

    NASA Astrophysics Data System (ADS)

    Baudin, Veronique; Gomez-Diaz, Teresa

    2013-04-01

    The PLUME open platform (https://www.projet-plume.org) has as first goal to share competences and to value the knowledge of software experts within the French higher education and research communities. The project proposes in its platform the access to more than 380 index cards describing useful and economic software for this community, with open access to everybody. The second goal of PLUME focuses on to improve the visibility of software produced by research laboratories within the higher education and research communities. The "development-ESR" index cards briefly describe the main features of the software, including references to research publications associated to it. The platform counts more than 300 cards describing research software, where 89 cards have an English version. In this talk we describe the theme classification and the taxonomy of the index cards and the evolution with new themes added to the project. We will also focus on the organisation of PLUME as an open project and its interests in the promotion of free/open source software from and for research, contributing to the creation of a community of shared knowledge.

  18. Buoyant plume calculations

    SciTech Connect

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures.

  19. Evaluation of Visible Plumes.

    ERIC Educational Resources Information Center

    Brennan, Thomas

    Developed for presentation at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971, this outline discusses plumes with contaminants that are visible to the naked eye. Information covers: (1) history of air pollution control regulations, (2) need for methods of evaluating…

  20. Evaluation of Visible Plumes.

    ERIC Educational Resources Information Center

    Brennan, Thomas

    Developed for presentation at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971, this outline discusses plumes with contaminants that are visible to the naked eye. Information covers: (1) history of air pollution control regulations, (2) need for methods of evaluating…

  1. Enceladus' Water Vapour Plumes

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Esposito, L.; Colwell, J.; Hendrix, A.; Matson, Dennis; Parkinson, C.; Pryor, W.; Shemansky, D.; Stewart, I.; Tew, J.; Yung, Y.

    2006-01-01

    A viewgraph presentation on the discovery of Enceladus water vapor plumes is shown. Conservative modeling of this water vapor is also presented and also shows that Enceladus is the source of most of the water required to supply the neutrals in Saturn's system and resupply the E-ring against losses.

  2. Enceladus' Water Vapour Plumes

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Esposito, L.; Colwell, J.; Hendrix, A.; Matson, Dennis; Parkinson, C.; Pryor, W.; Shemansky, D.; Stewart, I.; Tew, J.; hide

    2006-01-01

    A viewgraph presentation on the discovery of Enceladus water vapor plumes is shown. Conservative modeling of this water vapor is also presented and also shows that Enceladus is the source of most of the water required to supply the neutrals in Saturn's system and resupply the E-ring against losses.

  3. Double Diffusive Plumes

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce; Lee, Brace

    2008-11-01

    Sour gas flares attempt to dispose of deadly H2S gas through combustion. What does not burn rises as a buoyant plume. But the gas is heavier than air at room temperature, so as the rising gas cools eventually it becomes negatively buoyant and descends back to the ground. Ultimately, our intent is to predict the concentrations of the gas at ground level in realistic atmospheric conditions. As a first step towards this goal we have performed laboratory experiments examining the structure of a steady state plume of hot and salty water that rises buoyantly near the source and descends as a fountain after it has cooled sufficiently. We call this a double-diffusive plume because its evolution is dictated by the different (turbulent) diffusivities of heat and salt. A temperature and conductivity probe measures both the salinity and temperature along the centreline of the plume. The supposed axisymmetric structure of the salinity concentration as it changes with height is determined by light-attenuation methods. To help interpret the results, a theory has been successfully adapted from the work of Bloomfield and Kerr (2000), who developed coupled equations describing the structure of fountains. Introducing a new empirical parameter for the relative rates of turbulent heat and salt diffusion, the predictions are found to agree favourably with experimental results.

  4. Recommendations for field measurements of aircraft noise

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1982-01-01

    Specific recommendations for environmental test criteria, data acquisition procedures, and instrument performance requirements for measurement of noise levels produced by aircraft in flight are provided. Recommendations are also given for measurement of associated airplane and engine parameters and atmospheric conditions. Recommendations are based on capabilities which were available commercially in 1981; they are applicable to field tests of aircraft flying subsonically past microphones located near the surface of the ground either directly under or to the side of a flight path. Aircraft types covered by the recommendations include fixed-wing airplanes powered by turbojet or turbofan engines or by propellers. The recommended field-measurement procedures are consistent with assumed requirements for data processing and analysis.

  5. Alternate aircraft fuels: Prospects and operational implications

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.

  6. Preliminary flight-determined subsonic lift and drag characteristics of the X-29A forward-swept-wing airplane

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Huckabine, Thomas

    1989-01-01

    The X-29A subsonic lift and drag characteristics determined, met, or exceeded predictions, particularly with respect to the drag polar shapes. Induced drag levels were as great as 20 percent less than wind tunnel estimates, particularly at coefficients of lift above 0.8. Drag polar shape comparisons with other modern fighter aircraft showed the X-29A to have a better overall aircraft aerodynamic Oswald efficiency factor for the same aspect ratio. Two significant problems arose in the data reduction and analysis process. These included uncertainties in angle of attack upwash calibration and effects of maneuver dynamics on drag levels. The latter problem resulted from significantly improper control surface automatic camber control scheduling. Supersonic drag polar results were not obtained during this phase because of a lack of engine instrumentation to measure afterburner fuel flow.

  7. Enceladus Plume Movie

    NASA Image and Video Library

    2005-12-06

    Jets of icy particles burst from Saturn’s moon Enceladus in this brief movie sequence of four images taken on Nov. 27, 2005. The sensational discovery of active eruptions on a third outer solar system body (Io and Triton are the others) is surely one of the great highlights of the Cassini mission. Imaging scientists, as reported in the journal Science on March 10, 2006, believe that the jets are geysers erupting from pressurized subsurface reservoirs of liquid water above 273 degrees Kelvin (0 degrees Celsius). Images taken in January 2005 appeared to show the plume emanating from the fractured south polar region of Enceladus, but the visible plume was only slightly brighter than the background noise in the image, because the lighting geometry was not suitable to reveal the true details of the feature. This potential sighting, in addition to the detection of the icy particles in the plume by other Cassini instruments, prompted imaging scientists to target Enceladus again with exposures designed to confirm the validity of the earlier plume sighting. The new views show individual jets, or plume sources, that contribute to the plume with much greater visibility than the earlier images. The full plume towers over the 505-kilometer-wide (314-mile) moon and is at least as tall as the moon's diameter. The four 10-second exposures were taken over the course of about 36 minutes at approximately 12 minute intervals. Enceladus rotates about 7.5 degrees in longitude over the course of the frames, and most of the observed changes in the appearances of the jets is likely attributable to changes in the viewing geometry. However, some of the changes may be due to actual variation in the flow from the jets on a time scale of tens of minutes. Additionally, the shift of the sources seen here should provide information about their location in front of and behind the visible limb (edge) of Enceladus. These images were obtained using the Cassini spacecraft narrow-angle camera at

  8. Volcanic Plume Measurements with UAV (Invited)

    NASA Astrophysics Data System (ADS)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  9. Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program

    NASA Technical Reports Server (NTRS)

    Florance, Jennifer P.; Chwalowski, Pawel; Wieseman, Carol D.

    2010-01-01

    Aeroelasticity Branch will examine other experimental efforts within the Subsonic Fixed Wing (SFW) program (such as testing of the NASA Common Research Model (CRM)) and other NASA programs and assess aeroelasticity issues and research topics.

  10. Modeling the Complex Photochemistry of Biomass Burning Plumes in Plume-Scale, Regional, and Global Air Quality Models

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Travis, K.; Fischer, E. V.; Lin, J. C.

    2014-12-01

    Forecasting the impacts of biomass burning (BB) plumes on air quality is difficult due to the complex photochemistry that takes place in the concentrated young BB plumes. The spatial grid of global and regional scale Eulerian models is generally too large to resolve BB photochemistry, which can lead to errors in predicting the formation of secondary organic aerosol (SOA) and O3, as well as the partitioning of NOyspecies. AER's Aerosol Simulation Program (ASP v2.1) can be used within plume-scale Lagrangian models to simulate this complex photochemistry. We will present results of validation studies of the ASP model against aircraft observations of young BB smoke plumes. We will also present initial results from the coupling of ASP v2.1 into the Lagrangian particle dispersion model STILT-Chem in order to better examine the interactions between BB plume chemistry and dispersion. In addition, we have used ASP to develop a sub-grid scale parameterization of the near-source chemistry of BB plumes for use in regional and global air quality models. The parameterization takes inputs from the host model, such as solar zenith angle, temperature, and fire fuel type, and calculates enhancement ratios of O3, NOx, PAN, aerosol nitrate, and other NOy species, as well as organic aerosol (OA). We will present results from the ASP-based BB parameterization as well as its implementation into the global atmospheric composition model GEOS-Chem for the SEAC4RS campaign.

  11. Effects of Aircraft Wake Dynamics on Measured and Simulated NO(x) and HO(x) Wake Chemistry. Appendix B

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.

    2001-01-01

    High-resolution numerical large-eddy simulations of the near wake of a B757 including simplified NOx and HOx chemistry were performed to explore the effects of dynamics on chemistry in wakes of ages from a few seconds to several minutes. Dilution plays an important basic role in the NOx-O3 chemistry in the wake, while a more interesting interaction between the chemistry and dynamics occurs for the HOx species. These simulation results are compared with published measurements of OH and HO2 within a B757 wake under cruise conditions in the upper troposphere taken during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) mission in May 1996. The simulation provides a much finer grained representation of the chemistry and dynamics of the early wake than is possible from the 1 s data samples taken in situ. The comparison suggests that the previously reported discrepancy of up to a factor of 20 - 50 between the SUCCESS measurements of the [HO2]/[OH] ratio and that predicted by simplified theoretical computations is due to the combined effects of large mixing rates around the wake plume edges and averaging over volumes containing large species fluctuations. The results demonstrate the feasibility of using three-dimensional unsteady large-eddy simulations with coupled chemistry to study such phenomena.

  12. Advanced Low Emissions Subsonic Combustor Study

    NASA Technical Reports Server (NTRS)

    Smith, Reid

    1998-01-01

    Recent advances in commercial and military aircraft gas turbines have yielded significant improvements in fuel efficiency and thrust-to-weight ratio, due in large part to increased combustor operating pressures and temperatures. However, the higher operating conditions have increased the emission of oxides of nitrogen (NOx), which is a pollutant with adverse impact on the atmosphere and environment. Since commercial and military aircraft are the only important direct source of NOx emissions at high altitudes, there is a growing consensus that considerably more stringent limits on NOx emissions will be required in the future for all aircraft. In fact, the regulatory communities have recently agreed to reduce NOx limits by 20 percent from current requirements effective in 1996. Further reductions at low altitude, together with introduction of limits on NOx at altitude, are virtual certainties. In addition, the U.S. Government recently conducted hearings on the introduction of federal fees on the local emission of pollutants from all sources, including aircraft. While no action was taken regarding aircraft in this instance, the threat of future action clearly remains. In these times of intense and growing international competition, the U.S. le-ad in aerospace can only be maintained through a clear technological dominance that leads to a product line of maximum value to the global airline customer. Development of a very low NOx combustor will be essential to meet the future needs of both the commercial and military transport markets, if additional economic burdens and/or operational restrictions are to be avoided. In this report, Pratt & Whitney (P&W) presents the study results with the following specific objectives: Development of low-emissions combustor technologies for advances engines that will enter into service circa 2005, while producing a goal of 70 percent lower NOx emissions, compared to 1996 regulatory levels. Identification of solution approaches to

  13. Composition and distribution of aerosols over the North Atlantic during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX)

    NASA Astrophysics Data System (ADS)

    Dibb, Jack E.; Talbot, Robert W.; Scheuer, Eric M.

    2000-02-01

    We report the mixing ratios of aerosol-associated soluble ions (focusing on SO4= and NO3-) and HNO3 over the North Atlantic during NASA's Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX). The SONEX campaign was designed to quantify the impacts of jet emissions in the North Atlantic Flight Corridor (NAFC) by sampling both directly within and far removed from the organized track system. Beryllium-7 activities were also measured to assess the magnitude of stratospheric influence in the SONEX study region. Mixing ratios of aerosol-associated SO4= and NO3- above 8 km during SONEX were lower than recent measurements over the central United States during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) and the same as those over the remote South Pacific during the Pacific Exploratory Mission-Tropics (PEM-Tropics), suggesting that aircraft emissions cannot yet be a major source of these ions. Furthermore, mean SO4= mixing ratios at high altitudes were 65% higher in regions away from the NAFC than they were directly in the track system just a few hours after peak traffic. Nitric acid mixing ratios at the highest DC-8 sampling altitudes were elevated during SONEX compared to PEM-Tropics, but there was no clear signal of enhancement by jet exhaust. Strong correlations with 7Be indicate that a large fraction of HNO3 and aerosol-associated SO4= measured at high altitudes during SONEX were derived from a stratospheric source.

  14. Impact of New Chevron Configurations on Mixing Enhancement in Subsonic Jets

    NASA Astrophysics Data System (ADS)

    Mullick, Sunayan

    A major contributor to the overall noise of an aircraft is jet noise - the noise generated by the gases exiting the exhaust nozzle of a jet engine. One approach to mitigate jet noise is through the implementation of chevron nozzles. In the present context, first, a baseline axisymmetric separate-flow nozzle, termed the 3BB model, with an external plug having a bypass ratio of 5 is analyzed. The specifications of this nozzle are taken from an acoustic study carried out at the NASA John H. Glenn Research Center. Then, various chevron configurations are added to the core and fan nozzles to produce three chevron nozzles. Of these, two are presented as modified versions of the conventional chevron nozzle and form the essence of this work. The third chevron nozzle represents the conventional chevron nozzle in use today. For all the nozzles considered in this study, the flow conditions used represent the takeoff environment of a contemporary subsonic aircraft. The fan nozzle total pressure is set to 1.8 atm while the core nozzle total pressure is 1.65 atm. The total temperature inside the fan nozzle is set to 333.3 K while the core nozzle has a total temperature of 833.3 K. The freestream conditions are given as: static pressure = 0.98 atm, total pressure = 1.04 atm, total temperature = 298.8 K and Mach number = 0.28. For the three chevron nozzles, the core and fan nozzles have 12 chevrons each. Each chevron extends over a sector of 30 degrees of the circumference. To carry out the study presented herein, first, computer-aided design (CAD) models of the four nozzles are created. These models are then used to carry out computational fluid dynamics (CFD) simulations with the conditions stated above. The CFD simulations are performed on STAR-CCM+. The results of the simulations carried out for the baseline nozzle are compared with existing experimental and numerical data to validate the use of STAR-CCM+ as a tool for studying jet flows. Once this step is complete, numerical

  15. Assessing the Impact of Aircraft Emissions on the Stratosphere

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Anderson, D. E.

    1999-01-01

    For the past decade, the NASA Atmospheric Effects of Aviation Project (AEAP) has been the U.S. focal point for research on aircraft effects. In conjunction with U.S. basic research programs, AEAP and concurrent European research programs have driven remarkable progress reports released in 1999 [IPCC, 1999; Kawa et al., 1999]. The former report primarily focuses on aircraft effects in the upper troposphere, with some discussion on stratospheric impacts. The latter report focuses entirely on the stratosphere. The current status of research regarding aviation effects on stratospheric ozone and climate, as embodied by the findings of these reports, is reviewed. The following topics are addressed: Aircraft Emissions, Pollution Transport, Atmospheric Chemistry, Polar Processes, Climate Impacts of Supersonic Aircraft, Subsonic Aircraft Effect on the Stratosphere, Calculations of the Supersonic Impact on Ozone and Sensitivity to Input Conditions.

  16. Effects of aircraft noise on flight and ground structures

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Mayes, W. H.; Willis, C. M.

    1976-01-01

    Acoustic loads measured on jet-powered STOL configurations are presented for externally blown and upper surface blown flap models ranging in size from a small laboratory model up to a full-scale aircraft model. The implications of the measured loads for potential acoustic fatigue and cabin noise are discussed. Noise transmission characteristics of light aircraft structures are presented. The relative importance of noise transmission paths, such as fuselage sidewall and primary structure, is estimated. Acceleration responses of a historic building and a residential home are presented for flyover noise from subsonic and supersonic aircraft. Possible effects on occupant comfort are assessed. The results from these three examples show that aircraft noise can induce structural responses that are large enough to require consideration in the design or operation of the aircraft.

  17. Subsonic potential aerodynamics for complex configurations - A general theory

    NASA Technical Reports Server (NTRS)

    Morino, L.; Kuo, C.-C.

    1974-01-01

    A general theory of subsonic potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the velocity potential is obtained for both supersonic and subsonic flow. Under the small perturbation assumption, the potential at any point in the field depends only upon the values of the potential and its normal derivative on the surface of the body. On the surface of the body, this representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface. The theory is applied to finite-thickness wings in subsonic steady and oscillatory flows.

  18. Subsonic loads on wings having sharp leading edges and tips

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

    1976-01-01

    A vortex-lattice method for predicting the aerodynamics of wings having separation at the sharp edges in incompressible flows is extended to compressible subsonic flows using a modified Prandtl-Glauert transformation. Numerical results showing the effect of freestream Mach number on the aerodynamic coefficients are compared with available experimental data for several planforms. It is shown that the proposed method is suitable for predicting the aerodynamic loads on low-aspect wings at moderate angles of attack for high subsonic freestream Mach number. The method is limited to angles of attack up to 12 deg for high subsonic freestream Mach number and to angles of attack up to 20 deg for Mach number not exceeding 0.5.

  19. Using the GPS SNR Technique to Detect Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    Naik, S. R.; Mattia, M.; Larson, K. M.; Rossi, M.; Bruno, V.; Coltelli, M.; Ohta, Y.; Schneider, D. J.

    2015-12-01

    Detection of volcanic plumes, especially ash-laden ones, is important both for public health and aircraft safety. A variety of geophysical tools and satellite data are used to monitor volcanic eruptions and to predict the movement of ash. However, satellite-based methods are restricted by time of day and weather, while radars are often unavailable because of cost/ portability. GPS instruments are frequently deployed near volcanos, but typically they have only been used to measure deformation. Here a method is proposed to detect volcanic plumes using GPS signal to noise ratio (SNR) data. The strengths and limitations of the method are assessed using GPS data collected during eruptions at Mt. Redoubt (2009) and Mt. Etna (2013). Plume detections are compared with independently collected seismic and radar data.

  20. Civil applications of high speed rotorcraft and powered lift aircraft configurations

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1988-01-01

    Advanced subsonic vertical and short takeoff and landing (V/STOL) aircraft configurations offer new transportation options for civil applications. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, V/STOL aircraft, and short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for relieving congestion in high population-density regions and providing transportation opportunities for low population-density regions.

  1. Recent Developments in Aircraft Flyover Noise Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.; Aumann, Aric R.

    2008-01-01

    The NASA Langley Research Center is involved in the development of a new generation of synthesis and simulation tools for creation of virtual environments used in the study of aircraft community noise. The original emphasis was on simulation of flyover noise associated with subsonic fixed wing aircraft. Recently, the focus has shifted to rotary wing aircraft. Many aspects of the simulation are applicable to both vehicle classes. Other aspects, particularly those associated with synthesis, are more vehicle specific. This paper discusses the capabilities of the current suite of tools, their application to fixed and rotary wing aircraft, and some directions for the future.

  2. Civil applications of high-speed rotorcraft and powered-lift aircraft configurations

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1987-01-01

    Advanced subsonic vertical and short takeoff and landing (V/STOL) aircraft configurations offer new transportation options for civil applications. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, V/STOL aircraft, and short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for relieving congestion in high population-density regions and providing transportation opportunities for low population-density regions.

  3. X-24A Detailing Subsonic Control Surface Configuration

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This annotated photo shows a rear view of the X-24A lifting body research vehicle, emphasizing the control surfaces used for the subsonic portions of the aircraft's flights. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19, 1970. The X-24A was flown 28 times in the program that, like the HL-10, validated the concept that a Space Shuttle vehicle could be landed unpowered. The fastest speed achieved by the X-24A was 1,036 miles per hour (mph--Mach 1.6). Its maximum altitude was 71,400 feet. It was powered by an XLR-11 rocket engine with a maximum theoretical vacuum thrust of 8,480 pounds. The X-24A was later modified into the X-24B. The bulbous shape of the X-24A was converted into a 'flying flatiron' shape with a rounded top, flat bottom, and double delta platform that ended in a pointed nose. The X-24B demonstrated that accurate unpowered reentry vehicle

  4. Acoustic mode in numerical calculations of subsonic combustion

    SciTech Connect

    O'Rourke, P.J.

    1984-01-01

    A review is given of the methods for treating the acoustic mode in numerical calculations of subsonic combustion. In numerical calculations of subsonic combustion, treatment of the acoustic mode has been a problem for many researchers. It is widely believed that Mach number and acoustic wave effects are negligible in many subsonic combustion problems. Yet, the equations that are often solved contain the acoustic mode, and many numerical techniques for solving these equations are inefficient when the Mach number is much smaller than one. This paper reviews two general approaches to ameliorating this problem. In the first approach, equations are solved that ignore acoustic waves and Mach number effects. Section II of this paper gives two such formulations which are called the Elliptic Primitive and the Stream and Potential Function formulations. We tell how these formulations are obtained and give some advantages and disadvantages of solving them numerically. In the second approach to the problem of calculating subsonic combustion, the fully compressible equations are solved by numerical methods that are efficient, but treat the acoustic mode inaccurately, in low Mach number calculations. Section III of this paper introduces two of these numerical methods in the context of an analysis of their stability properties when applied to the acoustic wave equations. These are called the ICE and acoustic subcycling methods. It is shown that even though these methods are more efficient than traditional methods for solving subsonic combustion problems, they still can be inefficient when the Mach number is very small. Finally, a method called Pressure Gradient Scaling is described that, when used in conjunction with either the ICE or acoustic subcycling methods, allows for very efficient numerical solution of subsonic combustion problems. 11 refs.

  5. Dynamics of thermochemical plumes: 2. Complexity of plume structures and its implications for mapping mantle plumes

    NASA Astrophysics Data System (ADS)

    Lin, Shu-Chuan; van Keken, Peter E.

    2006-03-01

    The mantle plume hypothesis provides explanations for several major observations of surface volcanism. The dynamics of plumes with purely thermal origin has been well established, but our understanding of the role of compositional variations in the Earth's mantle on plume formation is still incomplete. In this study we explore the structures of plumes originating from a thermochemical boundary layer at the base of the mantle in an attempt to complement fluid dynamical studies of purely thermal plumes. Our numerical experiments reveal diverse characteristics of thermochemical plumes that frequently deviate from the classic features of plumes. In addition, owing to the interplay between the thermal and compositional buoyancy forces, the morphology, temperature, and flow fields in both the plume head and plume conduit are strongly time-dependent. The entrainment of the dense layer and secondary instabilities developed in the boundary layer contribute to lateral heterogeneities and enhance stirring processes in the plume head. Our models show that substantial topography of the compositional layer can develop simultaneously with the plumes. In addition, plumes may be present in the lower mantle for more than 70 million years. These features may contribute to the large low seismic velocity provinces beneath the south central Pacific, the southern Atlantic Ocean, and Africa. Our model results support the idea that the dynamics of mantle plumes is much more complicated than conventional thinking based on studies of purely thermal plumes. The widely used criteria for mapping mantle plumes, such as a vertically continuous low seismic velocity signature and strong surface topography swell, may not be universally applicable. We propose that the intrinsic density contrast of the distinct composition may reduce the associated topography of some large igneous provinces such as Ontong Java.

  6. Generation of a multi-component aircraft grid system using NGP and Begger

    SciTech Connect

    Lijewski, L.E.; Belk, D.M.

    1996-12-31

    Generation of a multiple component aircraft grid system is presented. A hybrid system of blocked and overset grids axe generated using NGP and overlap communications established with the Beggar code. Techniques for gridding wing-flap and fuselage-flap gap regions axe discussed. Steady-state subsonic flow solutions are presented.

  7. Sampling by mantle plumes : the legacy of the plume source

    NASA Astrophysics Data System (ADS)

    Brandeis, G.; Touitou, F.; Davaille, A.

    2013-12-01

    Plumes in the Earth's mantle are considered to be at the origin of intraplate volcanism (or hotspots). They continue to fascinate the scientific community by the heterogeneity of the material they sample on the surface of our planet. To characterize what part of the mantle is sampled by plumes, we have developed a laboratory model for laminar thermal plumes at high Prandtl number, in a fluid whose viscosity depends strongly on the temperature. This study describes the precise phenomenology of the plume and proposes scaling laws for the speed and temperature of the conduit of the plume. We show a strong dependence of these features of the plume with the Rayleigh number and viscosity ratio. Our visualization technique allows for the simultaneous non-intrusive measurements of the temperature, deformation and velocity fields. By calculating numerically the advection of passive markers through the experimental velocity field, we found that (1) the hot center of the plume conduit only consists of fluid which has passed through the thermal boundary layer ("TBL") at the bottom of the tank from which the plume was issued. Moreover, as material is stretched by velocity gradients, it is also in the thermal boundary layer that most of the material stretching occurs (2). The fluid is then transported in the conduit without lateral mixing, and further stretched vertically by the lateral velocity gradients. Since it is only the hot upwelling plume center which melts and therefore is sampled by volcanic activity, (1) implies that the plume geochemical signature is representative of the material located in the deep TBL of the mantle from which the plume is issued. On the other hand, (2) implies that filaments, pancakes, and concentric or bimodal zonation of the plume at the surface all result from different distributions of the heterogeneities in the plume source, filaments being the most generic case. Finally, we apply the scaling laws to the case of Hawaii.

  8. Second-order subsonic airfoil theory including edge effects

    NASA Technical Reports Server (NTRS)

    Van Dyke, Milton D

    1956-01-01

    Several recent advances in plane subsonic flow theory are combined into a unified second-order theory for airfoil sections of arbitrary shape. The solution is reached in three steps: the incompressible result is found by integration, it is converted into the corresponding subsonic compressible result by means of the second-order compressibility rule, and it is rendered uniformly valid near stagnation points by further rules. Solutions for a number of airfoils are given and are compared with the results of other theories and of experiment. A straight-forward computing scheme is outlined for calculating the surface velocities and pressures on any airfoil at any angle of attack

  9. Subsonic flow over thin oblique airfoils at zero lift

    NASA Technical Reports Server (NTRS)

    Jones, Robert T

    1948-01-01

    A previous report gave calculations for the pressure distribution over thin oblique airfoils at supersonic speed. The present report extends the calculations to subsonic speeds. It is found that the flows again can be obtained by the superposition of elementary conical flow fields. In the case of the swept-back wing the pressure distributions remain qualitatively similar at subsonic and supersonic speeds. Thus a distribution similar to the Ackeret type of distribution appears on the root sections of the swept-back wing at Mach=0. The resulting positive pressure drag on the root section is balanced by negative drags on outboard sections.

  10. The VIBRA-8 Subsonic Aerodynamic Nuclear Gust Vulnerability Code.

    DTIC Science & Technology

    1979-05-01

    entries along with AA(a=O, M) as given by Eq. (12) to obtain f NP(s-*). Data for the symmetric 64A006 and 64A010 airfoils (6 and 10 percent thick...N.A.C.A. Report 1977, 1952. 5. Stivers, L.S., Jr., Effects of Subsonic Mach Number on the Forces and Pressure Distributions on Four NACA 64A-Series...Airfoil Sections at Angles of Attack as High as 280, NACA TN3162, March 1954. 6. Axelson, J.A., and Haacker, J.F., Subsonic Wing Loadings on a 450 Sweptback

  11. Aircraft HO sub x and NO sub x emission effects on stratospheric ozone and temperature

    NASA Technical Reports Server (NTRS)

    Glatt, L.; Widhopf, G. F.

    1978-01-01

    A simplified two-dimensional steady-state photochemical model of the atmosphere was developed. The model was used to study the effect on the thermal and chemical structure of the atmosphere of two types of pollution cases: (1) injection of NOx and HOx from a hypothetical fleet of supersonic and subsonic aircraft and (2) injection of HOx from a hypothetical fleet of liquid-fueled hydrogen aircraft. The results are discussed with regard to stratospheric perturbations in ozone, water vapor and temperature.

  12. Ozone production efficiency of a ship-plume: ITCT 2K2 case study.

    PubMed

    Kim, Hyun S; Kim, Yong H; Han, Kyung M; Kim, Jhoon; Song, Chul H

    2016-01-01

    Ozone production efficiency (OPE) of ship plume was first evaluated in this study, based on ship-plume photochemical/dynamic model simulations and the ship-plume composition data measured during the ITCT 2K2 (Intercontinental Transport and Chemical Transformation 2002) aircraft campaign. The averaged instantaneous OPEs (OPE(i)‾) estimated via the ship-plume photochemical/dynamic modeling for the ITCT 2K2 ship-plume ranged between 4.61 and 18.92, showing that the values vary with the extent of chemical evolution (or chemical stage) of the ship plume and the stability classes of the marine boundary layer (MBL). Together with OPE(i)‾, the equivalent OPEs (OPE(e)‾) for the entire ITCT 2K2 ship-plume were also estimated. The OPE(e)‾ values varied between 9.73 (for the stable MBL) and 12.73 (for the moderately stable MBL), which agreed well with the OPE(e)‾ of 12.85 estimated based on the ITCT 2K2 ship-plume observations. It was also found that both the model-simulated and observation-based OPE(e)‾ inside the ship-plume were 0.29-0.38 times smaller than the OPE(e)‾ calculated/measured outside the ITCT 2K2 ship-plume. Such low OPEs insides the ship plume were due to the high levels of NO and non-liner ship-plume photochemistry. Possible implications of this ship-plume OPE study in the global chemistry-transport modeling are also discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Chemical plume source localization.

    PubMed

    Pang, Shuo; Farrell, Jay A

    2006-10-01

    This paper addresses the problem of estimating a likelihood map for the location of the source of a chemical plume using an autonomous vehicle as a sensor probe in a fluid flow. The fluid flow is assumed to have a high Reynolds number. Therefore, the dispersion of the chemical is dominated by turbulence, resulting in an intermittent chemical signal. The vehicle is capable of detecting above-threshold chemical concentration and sensing the fluid flow velocity at the vehicle location. This paper reviews instances of biological plume tracing and reviews previous strategies for a vehicle-based plume tracing. The main contribution is a new source-likelihood mapping approach based on Bayesian inference methods. Using this Bayesian methodology, the source-likelihood map is propagated through time and updated in response to both detection and nondetection events. Examples are included that use data from in-water testing to compare the mapping approach derived herein with the map derived using a previously existing technique.

  14. Flight dynamics research for highly agile aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Luat T.

    1989-01-01

    This paper highlights recent results of research conducted at the NASA Langley Research Center as part of a broad flight dynamics program aimed at developing technology that will enable future combat aircraft to achieve greatly enhanced agility capability at subsonic combat conditions. Studies of advanced control concepts encompassing both propulsive and aerodynamic approaches are reviewed. Dynamic stall phenomena and their potential impact on maneuvering performance and stability are summarized. Finally, issues of mathematical modeling of complex aerodynamics occurring during rapid, large amplitude maneuvers are discussed.

  15. Materials Aspects of Turboelectric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.

    2009-01-01

    The turboelectric distributed propulsion approach for aircraft makes a contribution to all four "corners" of NASA s Subsonic Fixed Wing trade space, reducing fuel burn, noise, emissions and field length. To achieve the system performance required for the turboelectric approach, a number of advances in materials and structures must occur. These range from improved superconducting composites to structural composites for support windings in superconducting motors at cryogenic temperatures. The rationale for turboelectric distributed propulsion and the materials research and development opportunities that it may offer are outlined.

  16. Recent Progress in Aircraft Noise Research

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    An overview of the acoustics research at NASA under the Subsonic Fixed Wing project is given. The presentation describes the rationale behind the noise reduction goals of the project in the context of the next generation air transportation system, and the emphasis placed on achieving these goals through a combination of the in-house and collaborative efforts with industry, universities and other government agencies. The presentation also describes the in-house research plan which is focused on the development of advanced noise and flow diagnostic techniques, next generation noise prediction tools, and novel noise reduction techniques that are applicable across a wide range of aircraft.

  17. Vehicle Design Evaluation Program (VDEP). A computer program for weight sizing, economic, performance and mission analysis of fuel-conservative aircraft, multibodied aircraft and large cargo aircraft using both JP and alternative fuels

    NASA Technical Reports Server (NTRS)

    Oman, B. H.

    1977-01-01

    The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.

  18. Natural laminar flow application to transport aircraft

    NASA Technical Reports Server (NTRS)

    Gratzer, Louis B.

    1990-01-01

    A major goal of NASA during the last 15 years has been the development of laminar flow technology for aircraft drag reduction. Of equal importance is achieving a state of readiness that will allow the successful application of this technology by industry to large, long-range aircraft. Recent progress in achieving extensive laminar flow with limited suction on the Boeing 757 has raised the prospects from practical application of the hybrid laminar flow control (HLFC) concept to subsonic aircraft. Also, better understanding of phenomena affecting laminar flow stability and response to disturbances has encouraged consideration of natural laminar flow (NLF), obtained without suction or active mechanical means, for application to transport aircraft larger than previously thought feasible. These ideas have inspired the current NASA/ASEE project with goals as follows: explore the feasibility of extensive NLF for aircraft at high Reynolds number under realistic flight conditions; determine the potential applications of NLF technology and the conditions under which they may be achieved; and identify existing aircraft that could be adapted to carry out flight experiments to validate NLF technology application. To achieve these objectives, understanding of the physical limits to natural laminar flow and possible ways to extend these limits was sought. The primary factors involved are unit Reynolds number, Mach number, wing sweep, thickness, and lift coefficients as well as surface pressure gradients and curvature. Based on previous and ongoing studies using laminar boundary layer stability theory, the interplay of the above factors and the corresponding transition limits were postulated.

  19. An experimental study of the flow field surrounding a subsonic jet in a cross flow. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dennis, Robert Foster

    1993-01-01

    An experimental investigation of the flow interaction of a 5.08 cm (2.00 in.) diameter round subsonic jet exhausting perpendicularly to a flat plate in a subsonic cross flow was conducted in the NASA Ames 7x1O ft. Wind Tunnel Number One. Flat plate surface pressures were measured at 400 locations in a 30.48 cm (12.0 in.) concentric circular array surrounding the jet exit. Results from these measurements are provided in tabular and graphical form for jet-to-crossflow velocity ratios ranging from 4 to 12, and for jet exit Mach numbers ranging from 0.50 to 0.93. Laser doppler velocimeter (LDV) three component velocity measurements were made in selected regions in the developed jet plume and near the flat plate surface, at a jet Mach number of 0.50 and jet-to-crossflow velocity ratios of 6 and 8. The results of both pressure and LDV measurements are compared with the results of previous experiments. In addition, pictures of the jet plume shape at jet velocity ratios ranging from 4 to 12 were obtained using schleiren photography. The LDV measurements are consistent with previous work, but more extensive measurements will be necessary to provide a detailed picture of the flow field. The surface pressure results compare closely with previous work and provide a useful characterization of jet induced surface pressures. The results demonstrate the primary influence of jet velocity ratio and the secondary influence of jet Mach number in determining such surface pressures.

  20. Detection of aerosol plumes from associated gas flaring by laser sensing

    NASA Astrophysics Data System (ADS)

    Penner, I. E.; Balin, Yu. S.; Kokhanenko, G. P.; Belan, B. D.; Arshinov, M. Y.; Chernov, D. G.; Kozlov, V. S.

    2015-11-01

    A cycle of the TU-134 "Optik" aircraft-laboratory flights was carried out was carried out in the frameworks of investigations of radiative and climatic changes in sub-Arctic regions of Siberia. The vast aerosol plume was observed from onboard the aircraft using the data of laser sensing. Comprehensive analysis of the results of measurements of aerosol and gaseous components of the atmosphere and the accompanying data allowed us to reveal the nature of appearance of this plume from associated gas burning.

  1. Cosmic radiation exposure in subsonic air transport

    NASA Technical Reports Server (NTRS)

    Wallace, R. W.; Sondhaus, C. A.

    1978-01-01

    Data derived from 1973 statistics on 2.99 million intercity flights carrying 468 million seats were included in the calculations, yielding a total of 581 billion seat-kilometer. The average flight was 1,084 km in length, was flown at an altitude of 9.47 km, and lasted 1.41 h. The average dose rate was 0.20 mrem/h, resulting in an average passenger dose of 2.82 mrem/year and an average crewmember dose of 160 mrem/year. The average radiation dose to the total U.S. population was 0.47 mrem/person/year. These results are in good agreement with data from several experiments performed by us and others in aircraft at various altitudes and latitudes. The significance of these doses to the population is discussed.

  2. Subsonic annular wing theory with application to flow about nacelles

    NASA Technical Reports Server (NTRS)

    Mann, M. J.

    1974-01-01

    A method has recently been developed for calculating the flow over a subsonic nacelle at zero angle of attack. The method makes use of annular wing theory and boundary-layer theory and has shown good agreement with both experimental data and more complex theoretical solutions. The method permits variation of the mass flow by changing the size of a center body.

  3. Near-Field Noise Computation for a Subsonic Coannular Jet

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Hultgren, Lennart S.; Jorgenson, Philip C. E.

    2008-01-01

    A high-Reynolds-number, subsonic coannular jet is simulated, using a three-dimensional finite-volume LES method, with emphasis on the near field noise. The nozzle geometry used is the NASA Glenn 3BB baseline model. The numerical results are generally in good agreement with existing experimental findings.

  4. SPHYNX: SPH hydrocode for subsonic hydrodynamical instabilities and strong shocks

    NASA Astrophysics Data System (ADS)

    Cabezon, Ruben M.; Garcia-Senz, Domingo

    2017-09-01

    SPHYNX addresses subsonic hydrodynamical instabilities and strong shocks; it is Newtonian, grounded on the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique, and density based. SPHYNX uses an integral approach for estimating gradients, a flexible family of interpolators to suppress pairing instability, and incorporates volume elements to provides better partition of the unity.

  5. 27. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH LABORATORY, BUILDING 25C, WHICH REPLACED THE 10-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  6. 28. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH LABORATORY, BUILDING 25C, WHICH REPLACED THE 10-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  7. 26. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH LABORATORY, BUILDING 25C, WHICH REPLACED THE 10-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  8. Wing-Design Program for Subsonic or Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Walkley, K. B.

    1986-01-01

    Surface of mildest possible camber generated. WINGDES provides analysis, design capability and is applicable to both subsonic and supersonic flows. Optimization carried out for entire wing or for designated leading- and trailing-edge areas, for design of missionadaptive surfaces. WINGDES written in FORTRAN IV.

  9. Subsonic maneuver capability of a supersonic cruise fighter wing concept

    NASA Technical Reports Server (NTRS)

    Riebe, Gregory D.; Fox, Charles H., Jr.

    1987-01-01

    A theoretical and experimental investigation was conducted of the subsonic maneuver capability of a fighter wing concept designed for supersonic cruise. To improve the subsonic maneuver capability, the wing utilized full-span leading- and trailing-edge flaps that were designed with the aid of a subsonic-analysis computer program. Wind-tunnel tests were made at Mach numbers of 0.3, 0.5, and 0.7. Force and moment data obtained were compared with theoretical predictions of Mach 0.5 from two subsonic-analysis computer programs. The two theoretical programs gave a good prediction of the lift and drag characteristics but only a fair prediction of the pitching moment. The experimental results of this study show that with the proper combination of leading- and trailing-edge flap deflections, a suction parameter of nearly 90 percent can be attained at a Mach number of 0.5 and a lift coefficient of 0.73; this is a three-fold improvement from 30 percent for the basic wing.

  10. Navier-Stokes computations useful in aircraft design

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1990-01-01

    Large scale Navier-Stokes computations about aircraft components as well as reasonably complete aircraft configurations are presented and discussed. Speed and memory requirements are described for various general problem classes, which in some cases are already being used in the industrial design environment. Recent computed results, with experimental comparisons when available, are included to highlight the presentation. Finally, prospects for the future are described and recommendations for areas of concentrated research are indicated. The future of Navier-Stokes computations is seen to be rapidly expanding across a broad front of applications, which includes the entire subsonic-to-hypersonic speed regime.

  11. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1973-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  12. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1974-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  13. Navier-Stokes computations useful in aircraft design

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1990-01-01

    Large scale Navier-Stokes computations about aircraft components as well as reasonably complete aircraft configurations are presented and discussed. Speed and memory requirements are described for various general problem classes, which in some cases are already being used in the industrial design environment. Recent computed results, with experimental comparisons when available, are included to highlight the presentation. Finally, prospects for the future are described and recommendations for areas of concentrated research are indicated. The future of Navier-Stokes computations is seen to be rapidly expanding across a broad front of applications, which includes the entire subsonic-to-hypersonic speed regime.

  14. Nighttime NOx Chemistry in Coal-Fired Power Plant Plumes

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; McDuffie, E. E.; Dube, W. P.; Veres, P. R.; Lopez-Hilfiker, F.; Lee, B. H.; Green, J. R.; Fiddler, M. N.; Ebben, C. J.; Sparks, T.; Weinheimer, A. J.; Montzka, D.; Campos, T. L.; Cohen, R. C.; Bililign, S.; Holloway, J. S.; Thornton, J. A.; Brown, S. S.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) play a key role in atmospheric chemistry. During the day, they catalyze ozone (O3) production, while at night they can react to form nitric acid (HNO3) and nitryl chloride (ClNO2) and remove O3 from the atmosphere. These processes are well studied in the summer, but winter measurements are more limited. Coal-fired power plants are a major source of NOx to the atmosphere, making up approximately 30% of emissions in the US (epa.gov). NOx emissions can vary seasonally, as well as plant-to-plant, with important impacts on the details of the plume chemistry. In particular, due to inefficient plume dispersion, nighttime NOx emissions from power plants are held in concentrated plumes, where rates of mixing with ambient O3 have a strong influence on plume evolution. We will show results from the aircraft-based WINTER campaign over the northeastern United States, where several nighttime intercepts of power plant plumes were made. Several of these intercepts show complete O3 titration, which can have a large influence on NOx lifetime, and thus O3 production, in the plume. When power plant NO emissions exceed background O3 levels, O3 is completely consumed converting NO to NO2. In the presence of O3, NO2 will be oxidized to NO3, which will then react with NO2 to form N2O5, which can then form HNO3 and/or ClNO2 and, ultimately, remove NOx from the atmosphere or provide next-day oxidant sources. If there is no O3 present, however, no further chemistry can occur and NO and NO2 will be transported until mixing with sufficient O3 for higher oxidation products. Modeling results of plume development and mixing, which can tell us more about this transport, will also be presented.

  15. Seismic Imaging of Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  16. Low altitude plume impingement handbook

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    Plume Impingement modeling is required whenever an object immersed in a rocket exhaust plume must survive or remain undamaged within specified limits, due to thermal and pressure environments induced by the plume. At high altitudes inviscid plume models, Monte Carlo techniques along with the Plume Impingement Program can be used to predict reasonably accurate environments since there are usually no strong flowfield/body interactions or atmospheric effects. However, at low altitudes there is plume-atmospheric mixing and potential large flowfield perturbations due to plume-structure interaction. If the impinged surface is large relative to the flowfield and the flowfield is supersonic, the shock near the surface can stand off the surface several exit radii. This results in an effective total pressure that is higher than that which exists in the free plume at the surface. Additionally, in two phase plumes, there can be strong particle-gas interaction in the flowfield immediately ahead of the surface. To date there have been three levels of sophistication that have been used for low altitude plume induced environment predictions. Level 1 calculations rely on empirical characterizations of the flowfield and relatively simple impingement modeling. An example of this technique is described by Piesik. A Level 2 approach consists of characterizing the viscous plume using the SPF/2 code or RAMP2/LAMP and using the Plume Impingement Program to predict the environments. A Level 3 analysis would consist of using a Navier-Stokes code such as the FDNS code to model the flowfield and structure during a single calculation. To date, Level 1 and Level 2 type analyses have been primarily used to perform environment calculations. The recent advances in CFD modeling and computer resources allow Level 2 type analysis to be used for final design studies. Following some background on low altitude impingement, Level 1, 2, and 3 type analysis will be described.

  17. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  18. Mantle plumes and continental tectonics.

    PubMed

    Hill, R I; Campbell, I H; Davies, G F; Griffiths, R W

    1992-04-10

    Mantle plumes and plate tectonics, the result of two distinct modes of convection within the Earth, operate largely independently. Although plumes are secondary in terms of heat transport, they have probably played an important role in continental geology. A new plume starts with a large spherical head that can cause uplift and flood basalt volcanism, and may be responsible for regional-scale metamorphism or crustal melting and varying amounts of crustal extension. Plume heads are followed by narrow tails that give rise to the familiar hot-spot tracks. The cumulative effect of processes associated with tail volcanism may also significantly affect continental crust.

  19. Structure of axisymmetric mantle plumes

    NASA Technical Reports Server (NTRS)

    Olson, Peter; Schubert, Gerald; Anderson, Charles

    1993-01-01

    The structure of axisymmetric subsolidus thermal plumes in the earth's lower mantle is inferred from calculations of axisymmetric thermal plumes in an infinite Prandtl number fluid with thermally activated viscosity. The velocity and temperature distribution is determined for axisymmetric convection above a heated disk in an incompressible fluid cylinder 2,400 km in height and 1,200 km in diameter. Several calculations of plumes with heat transport in the range 100-400 GW, similar to the advective heat transport at the Hawaiian hotspot, are presented. Hotspot formation by plumes originating at the base of the mantle requires both large viscosity variations and a minimum heat transport.

  20. Viscous-inviscid calculations of jet entrainment effects on the subsonic flow over nozzle afterbodies

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1980-01-01

    A viscous-inviscid interaction model was developed to account for jet entrainment effects in the prediction of the subsonic flow over nozzle afterbodies. The model is based on the concept of a weakly interacting shear layer in which the local streamline deflections due to entrainment are accounted for by a displacement-thickness type of correction to the inviscid plume boundary. The entire flow field is solved in an iterative manner to account for the effects on the inviscid external flow of the turbulent boundary layer, turbulent mixing and chemical reactions in the shear layer, and the inviscid jet exhaust flow. The components of the computational model are described, and numerical results are presented to illustrate the interactive effects of entrainment on the overall flow structure. The validity of the model is assessed by comparisons with data obtained form flow-field measurements on cold-air jet exhausts. Numerical results and experimental data are also given to show the entrainment effects on nozzle boattail drag under various jet exhaust and free-stream flow conditions.

  1. DONBOL: A computer program for predicting axisymmetric nozzle afterbody pressure distributions and drag at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Putnam, L. E.

    1979-01-01

    A Neumann solution for inviscid external flow was coupled to a modified Reshotko-Tucker integral boundary-layer technique, the control volume method of Presz for calculating flow in the separated region, and an inviscid one-dimensional solution for the jet exhaust flow in order to predict axisymmetric nozzle afterbody pressure distributions and drag. The viscous and inviscid flows are solved iteratively until convergence is obtained. A computer algorithm of this procedure was written and is called DONBOL. A description of the computer program and a guide to its use is given. Comparisons of the predictions of this method with experiments show that the method accurately predicts the pressure distributions of boattail afterbodies which have the jet exhaust flow simulated by solid bodies. For nozzle configurations which have the jet exhaust simulated by high-pressure air, the present method significantly underpredicts the magnitude of nozzle pressure drag. This deficiency results because the method neglects the effects of jet plume entrainment. This method is limited to subsonic free-stream Mach numbers below that for which the flow over the body of revolution becomes sonic.

  2. The 1979 Southeastern Virginia Urban Plume Study (SEV-UPS): Surface and airborne studies

    NASA Technical Reports Server (NTRS)

    White, J. H.; Eaton, W. C.; Saeger, M. L.; Strong, R. B.; Tommerdahl, J. B.

    1980-01-01

    The operation of two surface monitoring stations (one in downtown Norfolk, Virginia, one south of the city near the Great Dismal Swamp) and the collection of 40 hours of airborne measurements is described. Surface site measurements of ozone, oxides of nitrogen, sulfur dioxide, temperature, dew point, b sub seat, and condensation nuclei were made. Instrument calibrations, quality assurance audits, and preliminary data analysis in support of the Urban Plume Study were also made. The air pollution problems that were addressed are discussed. Data handling procedures followed for the surface stations are presented. The operation of the aircraft sampling platform is described. Aircraft sampling procedures are discussed. A preliminary descriptive analysis of the aircraft data is given along with data or plots for surface sites, airborne studies, hydrocarbon species, and instrument performance audits. Several of the aircraft flights clearly show the presence of an urban ozone plume downwind of Norfolk in the direction of the mean wind flow.

  3. DIRECT MEASUREMENT OF MERCURY REACTIONS IN COAL POWER PLANT PLUMES

    SciTech Connect

    Leonard Levin

    2006-06-01

    -September 5, 2003. The experimental site was the Pleasant Prairie Power Plant in Pleasant Prairie, Wisconsin, just west of Kenosha. The experiment involved using an aircraft to capture emissions and document chemistry changes in the plume. While using the airplane for sampling, supplemental fast-response sensors for NOx, connected to data loggers, were used to gauge entry and exit times and transect intervals through plume emissions material. The Frontier Geosciences Static Plume Dilution Chamber (SPDC) was employed simultaneously adjacent to the stack to correlate its findings with the aircraft sampling, as well as providing evaluation of the SPDC as a rapid, less costly sampler for mercury chemistry. A complementary stack plume method, the Dynamic Plume Dilution (DPD) was used in the latter portion of the experiment to measure mercury speciation to observe any mercury reduction reaction with respect to both the reaction time (5 to 30 seconds) and dilution ratio. In addition, stack sampling using the ''Ontario Hydro'' wet chemistry method and continuous mercury monitors (CMM) were used to establish the baseline chemistry in the stack. Comparisons among stack, SPDC, DPD and aircraft measurements allow establishment of whether significant chemical changes to mercury occur in the plume, and of the verisimilitude of the SPDC and DPD methods. This progress report summarizes activities during a period of results review from the stack/aircraft subcontractor, data analysis and synthesis, and preparation and presentation of preliminary results to technical and oversight meetings.

  4. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  5. Patos Lagoon Outflow Within the Rio de la Plata Plume Using an Airborne Salinity Mapper

    NASA Astrophysics Data System (ADS)

    Burrage, D.; Wesson, J.; Martinez, C.; Perez, T.; Moller, O., Jr.; Piola, A.

    2005-05-01

    Major river systems discharging into continental shelf waters frequently form buoyant coastal currents that propagate along the continental shelf in a direction corresponding to that of coastal trapped wave propagation (with the coast on the right/left, in the northern/southern hemisphere). The combined flow of the Uruguay and Parana Rivers, which discharges freshwater into the Rio de La Plata estuary (Latitude ~36 S), frequently gives rise to a buoyant coastal current (the 'La Plata plume') that extends northward along the continental shelf off Uruguay and Southern Brazil. Depending upon the prevailing rainfall, wind and tidal conditions, the Patos/Mirim Lagoon complex (Latitude ~ 32 S) also produces a freshwater outflow plume that expands across the inner continental shelf. Under these circumstances the Patos outflow plume may be embedded in temperature, salinity and current fields that are strongly influenced by the larger Plata plume. The purpose of this paper is to present observations of such an embedded plume structure and to determine the implications for the dynamics of the smaller Patos plume. We describe the results of an airborne remote sensing and shipboard in situ study of the salinity distribution and extent of the La Plata and Patos/Mirim Lagoon plumes conducted under contrasting winter (2003) and summer (2004) conditions. The survey was conducted using an aircraft carrying NRL's Salinity, Temperature and Roughness Remote Scanner (STARRS). A series of broad-scale flights was conducted over the continental shelf off Argentina, Uruguay and Brazil, and a detailed mapping flight was undertaken over the Patos/Mirim outflow region. Their purpose was to determine the distribution and behavior of the Plata and Patos Lagoon plumes on the continental shelf under representative winter and summer conditions. The resulting airborne and shipboard hydrographic data are compared with dynamical model parameter estimates to address the following questions: What is

  6. Single SCA-plume dynamics

    NASA Astrophysics Data System (ADS)

    Yano, J.-I.; Baizig, Hichem

    2012-11-01

    A fully prognostic prototype of bulk mass-flux convection parameterization is presented. The bulk mass-flux parameterization is formulated by assuming a subgrid-scale system consisting only of a convective plume and environment. Both subcomponents (segments) are assumed to be homogeneous horizontally. This assumption is called the segmentally constant approximation (SCA). The present study introduces this purely geometrical constraint (SCA) into the full nonhydrostatic anelastic system. A continuous-space description of the full system is, thus, replaced by a discretization consisting only of two segments (plume and environment) in the horizontal direction. The resulting discretized system is mathematically equivalent to a 0th order finite volume formulation with the only two finite volumes. The model is presented under a two-dimensional configuration. Interfaces between the plume and the environment segments may either be fixed in time or Lagrangianly advected as two limiting cases. Under this framework, the single-plume dynamics is systematically investigated in a wide phase space of Richardson number, the aspect ratio, and a displacement rate of the plume interfaces relative to the Lagrangian displacement. Advantage of the present model is in evaluating the lateral mixing processes of the plume without invoking an entrainment-detrainment hypothesis. The fractional entrainment-detrainment rate diagnosed from the present model simulations highly varies both over space and time, suggesting a limitation of applying an entrainment-detrainment hypothesis to unsteady plumes, as in the present case, in which circulations of the plume scale dominates over the turbulent mixing process. Furthermore, when the entrainment-plume hypothesis of Morton et al. is adopted for defining the plume-interface displacement rate, the plume continuously expands with time without reaching equilibrium.

  7. Hybrid plume plasma rocket

    NASA Technical Reports Server (NTRS)

    Chang, Franklin R. (Inventor)

    1989-01-01

    A technique for producing thrust by generating a hybrid plume plasma exhaust is disclosed. A plasma flow is generated and introduced into a nozzle which features one or more inlets positioned to direct a flow of neutral gas about the interior of the nozzle. When such a neutral gas flow is combined with the plasma flow within the nozzle, a hybrid plume is constructed including a flow of hot plasma along the center of the nozzle surrounded by a generally annular flow of neutral gas, with an annular transition region between the pure plasma and the neutral gas. The temperature of the outer gas layer is below that of the pure plasma and generally separates the pure plasma from the interior surfaces of the nozzle. The neutral gas flow both insulates the nozzle wall from the high temperatures of the plasma flow and adds to the mass flow rate of the hybrid exhaust. The rate of flow of neutral gas into the interior of the nozzle may be selectively adjusted to control the thrust and specific impulse of the device.

  8. Ash Plume from Shiveluch

    NASA Image and Video Library

    2017-09-27

    When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet. By the time NASA’s Aqua satellite passed over the area two hours later (bottom image), the volcano had erupted and sent a plume of ash over the Kamchatskiy Zaliv. The plume traveled about 90 kilometers (55 miles) toward the south-southeast, where a change in wind direction began pushing the plume toward the east. On October 6, 2012, the Kamchatka Volcanic Emergency Response Team (KVERT) reported that the ash plume from Shiveluch reached an altitude of 3 kilometers (9,800 feet) above sea level, and had traveled some 220 kilometers (140 miles) from the volcano summit. Shiveluch (also spelled Sheveluch) ranks among the biggest and most active volcanoes on the Kamchatka Peninsula. Rising to 3,283 meters (10,771 feet) above sea level, Shiveluch is a stratovolcano composed of alternating layers of hardened lava, compacted ash, and rocks ejected by previous eruptions. The beige-colored expanse of rock on the volcano’s southern slopes (visible in both images) is due to an explosive eruption that occurred in 1964. Part of Shiveluch’s southern flank collapsed, and the light-colored rock is avalanche debris left by that event. High-resolution imagery of Shiveluch shows very little vegetation within that avalanche zone. On October 6, 2012, KVERT cited observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua in detecting the Shiveluch eruption. This was not the first time that MODIS observed a Shiveluch eruption shortly after it started. In 2007, MODIS captured an image within minutes of the eruption’s start, before winds could blow the ash away from the summit. When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet (top image). By the time NASA

  9. Quest for Performance: the Evolution of Modern Aircraft

    NASA Technical Reports Server (NTRS)

    Loftin, Lawrence K., Jr.

    1985-01-01

    The technical evolution of the subsonic airplane is traced from a curiosity at the beginning of World War I to the highly useful machine of today. Included are descriptions of significant aircraft which incorporated important technical innovations and served to shape the future course of aeronautical development, as well as aircraft which represented the state-of-art in a particular time frame or were much used or liked. The discussion is related primarily to aircraft configuration evolution and associated aerodynamic characteristics and, to a lesser extent, to developments in aircraft construction and propulsion. The material is presented in a manner designed to appeal to the nontechnical reader who is interested in the evolution of the airplane, as well as to students of aeronautical engineering and others with an aeronautical background.

  10. Aircraft technology opportunities for the 21st Century

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1988-01-01

    New aircraft technologies are presented that have the potential to expand the air transportation system and reduce congestion through new operating capabilities, and at the same time provide greater levels of safety and environmental compatibility. Both current and planned civil aeronautics technology at the NASA Ames, Lewis, and Langley Research Centers are addressed. The complete spectrum of current aircraft and new vehicle concepts is considered including rotorcraft (helicopters and tiltrotors), vertical and short takeoff and landing (V/STOL) and short takeoff and landing (STOL) aircraft, subsonic transports, high speed transports, and hypersonic/transatmospheric vehicles. New technologies for current aircraft will improve efficiency, affordability, safety, and environmental compatibility. Research and technology promises to enable development of new vehicles that will revolutionize or greatly change the transportation system. These vehicles will provide new capabilities which will lead to enormous market opportunities and economic growth, as well as improve the competitive position of the U.S. aerospace industry.

  11. Recommended procedures for measuring aircraft noise and associated parameters

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1977-01-01

    Procedures are recommended for obtaining experimental values of aircraft flyover noise levels (and associated parameters). Specific recommendations are made for test criteria, instrumentation performance requirements, data-acquisition procedures, and test operations. The recommendations are based on state-of-the-art measurement capabilities available in 1976 and are consistent with the measurement objectives of the NASA Aircraft Noise Prediction Program. The recommendations are applicable to measurements of the noise produced by an airplane flying subsonically over (or past) microphones located near the surface of the ground. Aircraft types covered by the recommendations are fixed-wing airplanes powered by turbojet or turbofan engines and using conventional aerodynamic means for takeoff and landing. Various assumptions with respect to subsequent data processing and analysis were made (and are described) and the recommended measurement procedures are compatible with the assumptions. Some areas where additional research is needed relative to aircraft flyover noise measurement techniques are also discussed.

  12. Dissipation and Steepening of Slow Magnetosonic Waves in Polar Plumes and the Effect on the Solar Wind Close to the Sun

    NASA Astrophysics Data System (ADS)

    Ofman, L.

    1999-10-01

    Recently, slow magnetosonic waves were identified in polar plumes at heights up to about 1.2Rs, using Extreme ultraviolet Imaging Telescope (EIT) observations of quasi-periodic EUV intensity fluctuations (Ofman, Nakariakov, DeForest 1999). We model the propagation and dissipation of slow magnetosonic waves in polar plumes using 2D MHD code in spherical geometry. We find that outward propagating slow magnetosonic waves may become trapped due to transverse density and temperature structure of the plumes. The slow waves nonlinearly steepen in the gravitationally stratified plumes. The nonlinear steepening of the waves leads to enhanced acceleration of the subsonic solar wind due to momentum transfer, and to the enhances dissipation due to compressive viscosity at the wave-fronts. The slow waves can contribute to the heating of coronal holes close to the Sun (r<2Rs), a region where the shear Alfven wave heating is inefficient.

  13. SUCCESS Studies of the Impact of Aircraft on Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    During April of 1996 NASA will sponsor the SUCCESS project to better understand the impact of subsonic aircraft on the Earth's radiation budget. We plan to better determine the radiative properties of cirrus clouds and of contrails so that satellite observations can better determine their impact on Earth's radiation budget. We hope to determine how cirrus clouds form, whether the exhaust from subsonic aircraft presently affects the formation of cirrus clouds, and if the exhaust does affect the clouds whether the changes induced are of climatological significance. We seek to pave the way for future studies by developing and testing several new instruments. We also plan to better determine the characteristics of gaseous and particulate exhaust products from subsonic aircraft and their evolution in the region near the aircraft. In order to achieve our experimental objectives we plan to use the DC-8 aircraft as an in situ sampling platform. It will carry a wide variety of gaseous, particulate, radiative, and meteorological instruments. We will also use a T-39 aircraft primarily to sample the exhaust from other aircraft. It will carry a suite of instruments to measure particles and gases. We will employ an ER-2 aircraft as a remote sensing platform. The ER-2 will act as a surrogate satellite so that remote sensing observations can be related to the in situ parameters measured by the DC-8 and T-39. The mission strategy calls for a 5 week deployment beginning on April 8, 1996, and ending on May 10, 1996. During this time all three aircraft will be based in Salina, Kansas. A series of flights, averaging one every other day during this period, will be made mainly near the Department of Energy's Climate and Radiation Testbed site (CART) located in Northern Oklahoma, and Southern Kansas. During this same time period an extensive set of ground based measurements will be made by the DOE, which will also be operating several aircraft in the area to better understand the

  14. Atmospheric chemistry in volcanic plumes

    PubMed Central

    von Glasow, Roland

    2010-01-01

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis. PMID:20368458

  15. Atmospheric chemistry in volcanic plumes.

    PubMed

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  16. CFD for applications to aircraft aeroelasticity

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    1989-01-01

    Strong interactions of structures and fluids are common in many engineering environments. Such interactions can give rise to physically important phenomena such as those occurring for aircraft due to aeroelasticity. Aeroelasticity can significantly influence the safe performance of aircraft. At present exact methods are available for making aeroelastic computations when flows are in either the linear subsonic or supersonic range. However, for complex flows containing shock waves, vortices and flow separations, computational methods are still under development. Several phenomena that can be dangerous and limit the performance of an aircraft occur due to the interaction of these complex flows with flexible aircraft components such as wings. For example, aircraft with highly swept wings experience vortex induced aeroelastic oscillations. Correct understanding of these complex aeroelastic phenomena requires direct coupling of fluids and structural equations. Here, a summary is presented of the development of such coupled methods and applications to aeroelasticity since about 1978 to present. The successful use of the transonic small perturbation theory (TSP) coupled with structures is discussed. This served as a major stepping stone for the current stage of aeroelasticity using computational fluid dynamics. The need for the use of more exact Euler/Navier-Stokes (ENS) equations for aeroelastic problems is explained. The current development of unsteady aerodynamic and aeroelastic procedures based on the ENS equations are discussed. Aeroelastic results computed using both TSP and ENS equations are discussed.

  17. Anthropogenic point and area source CO2 plume measurements: Implications for spaceborne CO2 sensor design

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.; Ryerson, T. B.; Peischl, J.; Parrish, D. D.; Trainer, M.; Tans, P. P.

    2011-12-01

    Anthropogenic point and area source CO2 plume measurements: Implications for spaceborne CO2 sensor design A. Andrews, T. Ryerson, J. Peischl, D. Parrish, M. Trainer, P. Tans An extensive dataset of CO2 concentrations including enhancements in point and area source plumes is available from in situ measurements collected using the NOAA P-3 and NCAR Electra research aircraft during seven major field projects from 1999 through 2010. Research flights sampled emission plumes from coal-, oil-, and natural gas-fired electric utility power plants, industrial facilities, and urban areas. Plume sampling often included horizontal transects at several altitudes and multiple distances downwind. CO2 data from crosswind transects upwind and downwind, coupled with ancillary measurements of co-emitted nitric oxide, nitrogen dioxide and sulfur dioxide, along with plume location, and wind speed and direction permit unambiguous attribution and quantification of atmospheric plumes from individual sources. Certain point sources were revisited on multiple flights over the course of 1-2 month long field projects and on successive field projects spanning several years. Sampling occurred primarily in the summertime, daytime continental boundary layer, with some plume studies performed after dark and in the spring, fall, and winter seasons. The data provide rigorously calibrated, measurement-based constraints on the expected range of atmospheric CO2 plume enhancements that can be used to assess satellite sensor concepts. Crosswind near-field (~5 km) transects in the summer daytime mixed-layer downwind of the strongest point sources were characterized by peak plume CO2 mixing ratio enhancements >100 ppm above background for the 100-m spatial averages reported from the moving aircraft. On many flights, the aircraft tracked such emissions plumes beyond 150 km downwind, or up to 10 hours of transport time, until plume enhancements were indistinguishable from background variability in CO2

  18. Comparison of the 10x10 and the 8x6 Supersonic Wind Tunnels at the NASA Glenn Research Center for Low-Speed (Subsonic) Operation

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.; Johns, Albert L.; Bury, Mark E.

    2002-01-01

    NASA Glenn Research Center and Lockheed Martin tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Test objectives were to determine and document similarities and uniqueness of the tunnels and to verify that the 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility when compared to the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). Conclusions are that the data from the two facilities compares very favorably and that the 10-by 10-Foot Supersonic Wind Tunnel at NASA Glenn Research Center is a viable low-speed wind tunnel.

  19. Acoustic Prediction Methodology and Test Validation for an Efficient Low-Noise Hybrid Wing Body Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Kawai, Ronald T. (Compiler)

    2011-01-01

    This investigation was conducted to: (1) Develop a hybrid wing body subsonic transport configuration with noise prediction methods to meet the circa 2007 NASA Subsonic Fixed Wing (SFW) N+2 noise goal of -52 dB cum relative to FAR 36 Stage 3 (-42 dB cum re: Stage 4) while achieving a -25% fuel burned compared to current transports (re :B737/B767); (2) Develop improved noise prediction methods for ANOPP2 for use in predicting FAR 36 noise; (3) Design and fabricate a wind tunnel model for testing in the LaRC 14 x 22 ft low speed wind tunnel to validate noise predictions and determine low speed aero characteristics for an efficient low noise Hybrid Wing Body configuration. A medium wide body cargo freighter was selected to represent a logical need for an initial operational capability in the 2020 time frame. The Efficient Low Noise Hybrid Wing Body (ELNHWB) configuration N2A-EXTE was evolved meeting the circa 2007 NRA N+2 fuel burn and noise goals. The noise estimates were made using improvements in jet noise shielding and noise shielding prediction methods developed by UC Irvine and MIT. From this the Quiet Ultra Integrated Efficient Test Research Aircraft #1 (QUIET-R1) 5.8% wind tunnel model was designed and fabricated.

  20. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3

    EPA Science Inventory

    The f1me particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine ...

  1. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3

    EPA Science Inventory

    The f1me particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine ...

  2. Overnight atmospheric transport and chemical processing of photochemically aged Houston urban and petrochemical industrial plume

    NASA Astrophysics Data System (ADS)

    Zaveri, Rahul A.; Voss, Paul B.; Berkowitz, Carl M.; Fortner, Edward; Zheng, Jun; Zhang, Renyi; Valente, Ralph J.; Tanner, Roger L.; Holcomb, Daniel; Hartley, Thomas P.; Baran, Leslie

    2010-12-01

    Overnight atmospheric transport and chemical evolution of photochemically aged Houston urban and petrochemical industrial plume were investigated in July 2005. We report here on the 26 July episode in which the aged plume was tagged 1.5 h before sunset with a pair of free-floating controlled meteorological balloons, which guided quasi-Lagrangian aircraft sampling in the plume as it was advected 300 km to the north over 8 h. The aged plume around sunset was well mixed within a 1600 m residual layer, and was characterized by enhanced levels of aerosol, O3, CO, olefins, acetaldehyde, total odd nitrogen compounds (NOy), and relatively small amounts (<1 ppbv) of NOx. The plume experienced appreciable shearing overnight due to the development of a low-altitude nocturnal jet between 300 and 500 m above mean sea level (MSL). However, the plume above 600 m MSL remained largely undiluted even after 8 h of transport due to lack of turbulent mixing above the jet. About 40-60% of the NOx present in the aged plume around sunset was found to be depleted over this 8 h period. A constrained plume modeling analysis of the quasi-Lagrangian aircraft observations suggested that by dawn this NOx was converted to nitric acid, organic nitrates, and peroxy acyl nitrates via reactions of NO3 radicals with enhanced levels of olefins and aldehydes in the plume. Sensitivity of NOx depletion to heterogeneous hydrolysis of N2O5 on aerosols was examined. These results have significant implications for the impacts of urban and industrial pollution on far downwind regions.

  3. Scanning thermal plumes

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Madding, R. P.; Green, T., III

    1975-01-01

    Over a three-year period 800 thermal line scans of power plant plumes were made by an airborne scanner, with ground truth measured concurrently at the plants. Computations using centered finite differences in the thermal scanning imagery show a lower bound in the horizontal temperature gradient in excess of 1.6 C/m. Gradients persist to 3 m below the surface. Vector plots of the velocity of thermal fronts are constructed by tracing the front motion in successive thermal images. A procedure is outlined for the two-point ground calibration of a thermal scanner from an equation describing the scanner signal and the voltage for two known temperatures. The modulation transfer function is then calculated by input of a thermal step function and application of digital time analysis techniques using Fast Fourier Transforms to the voltage output. Field calibration tests are discussed. Data accuracy is limited by the level of ground truth effort chosen.

  4. Scanning thermal plumes

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Madding, R. P.; Green, T., III

    1975-01-01

    Over a three-year period 800 thermal line scans of power plant plumes were made by an airborne scanner, with ground truth measured concurrently at the plants. Computations using centered finite differences in the thermal scanning imagery show a lower bound in the horizontal temperature gradient in excess of 1.6 C/m. Gradients persist to 3 m below the surface. Vector plots of the velocity of thermal fronts are constructed by tracing the front motion in successive thermal images. A procedure is outlined for the two-point ground calibration of a thermal scanner from an equation describing the scanner signal and the voltage for two known temperatures. The modulation transfer function is then calculated by input of a thermal step function and application of digital time analysis techniques using Fast Fourier Transforms to the voltage output. Field calibration tests are discussed. Data accuracy is limited by the level of ground truth effort chosen.

  5. Aeroacoustic Data for a High Reynolds Number Axisymmetric Subsonic Jet

    NASA Technical Reports Server (NTRS)

    Ponton, Michael K.; Ukeiley, Lawrence S.; Lee, Sang W.

    1999-01-01

    The near field fluctuating pressure and aerodynamic mean flow characteristics of a cold subsonic jet issuing from a contoured convergent nozzle are presented. The data are presented for nozzle exit Mach numbers of 0.30, 0.60, and 0.85 at a constant jet stagnation temperature of 104 F. The fluctuating pressure measurements were acquired via linear and semi-circular microphone arrays and the presented results include plots of narrowband spectra, contour maps, streamwise/azimuthal spatial correlations for zero time delay, and cross-spectra of the azimuthal correlations. A pitot probe was used to characterize the mean flow velocity by assuming the subsonic flow to be pressure-balanced with the ambient field into which it exhausts. Presented are mean flow profiles and the momentum thickness of the free shear layer as a function of streamwise position.

  6. A study of sound generation in subsonic rotors, volume 2

    NASA Technical Reports Server (NTRS)

    Chalupnik, J. D.; Clark, L. T.

    1975-01-01

    Computer programs were developed for use in the analysis of sound generation by subsonic rotors. Program AIRFOIL computes the spectrum of radiated sound from a single airfoil immersed in a laminar flow field. Program ROTOR extends this to a rotating frame, and provides a model for sound generation in subsonic rotors. The program also computes tone sound generation due to steady state forces on the blades. Program TONE uses a moving source analysis to generate a time series for an array of forces moving in a circular path. The resultant time series are than Fourier transformed to render the results in spectral form. Program SDATA is a standard time series analysis package. It reads in two discrete time series and forms auto and cross covariances and normalizes these to form correlations. The program then transforms the covariances to yield auto and cross power spectra by means of a Fourier transformation.

  7. User's manual: Subsonic/supersonic advanced panel pilot code

    NASA Technical Reports Server (NTRS)

    Moran, J.; Tinoco, E. N.; Johnson, F. T.

    1978-01-01

    Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words.

  8. Volcanic Plume Above Mount St. Helens Detected with GPS

    NASA Astrophysics Data System (ADS)

    Houlié, N.; Briole, P.; Nercessian, A.; Murakami, M.

    2005-07-01

    Eruptions can produce not only flows of incandescent material along the slopes of a volcano but also ash plumes in the troposphere [Sparks et al., 1997] that can threaten aircraft flying in the vicinity [Fisher et al., 1997]. To protect aircraft, passengers, and crews, the International Civil Aviation Organization and the World Meteorological Organization created eight Volcanic Ash Advisory Centers (VAAC, http://www.ssd.noaa.gov/VAAC/vaac.html) around the globe with the goal of tracking volcanic plumes and releasing eruption alerts to airports, pilots, and companies. Currently, the VAAC monitoring system is based mostly on the monitoring systems of any local volcano observatories and on real-time monitoring of data acquired by meteorological satellites. In the case of the 18 August 2000 eruption of the Miyakejima volcano in Japan, Houlié et al. [2005] showed that the Global Positioning System(GPS) might be used as an additional tool for monitoring volcanic plumes. The present article indicates that the 9 March 2005 eruption of Mount St. Helens, Washington, also produced detectable anomalies in GPS data.>

  9. Development of panel methods for subsonic analysis and design

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.

    1980-01-01

    Two computer programs, developed for subsonic inviscid analysis and design are described. The first solves arbitrary mixed analysis design problems for multielement airfoils in two dimensional flow. The second calculates the pressure distribution for arbitrary lifting or nonlifting three dimensional configurations. In each program, inviscid flow is modelled by using distributed source doublet singularities on configuration surface panels. Numerical formulations and representative solutions are presented for the programs.

  10. Static aeroelastic behavior of a subsonic plate wing

    NASA Astrophysics Data System (ADS)

    Berci, M.

    2017-07-01

    The static aeroelastic behavior of a subsonic plate wing is here described by semi-analytical means. Within a generalised modal formulation, any distribution of the plate's properties is allowed. Modified strip theory is employed for the aerodynamic modelling and a linear aeroelastic model is eventually derived. Numerical results are then shown for the plate's aeroelastic stability in terms of divergence speed, with respect to the most relevant aero-structural parameters.

  11. Subsonic/transonic prediction capabilities for nozzle/afterbody configurations

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.; Putnam, L. E.

    1984-01-01

    Prediction methods for several nozzle/afterbody flow problems at subsonic and transonic speeds are presented. These methods range from viscous-inviscid interaction methods to solutions for the Navier-Stokes equations in two and three dimensions. The problems addressed are the flow around isolated axisymmetric nozzles, isolated nonaxisymmetric nozzles, and axisymmetric nozzles with empennage. An assessment of the state of development of the methods via comparisons with experimental data is presented.

  12. Effect of Riblets upon Flow Separation in a Subsonic Diffuser

    DTIC Science & Technology

    1988-12-01

    Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautical Engineering Nathan W. Martens...afterburner where the flow leaving the turbine must be 4 slowed from a high subsonic Mach number to a Mach number of about 0.2" (8:305). Physicall ., a...Second Edition). New York: McGraw-Hill Book Company, 1975. 3. Cebeci, Tuncer and A. M. 0. Smith. Analysis of Turbulent Boundary Layers. Orlando: Academic

  13. Three dimensional supersonic flows with subsonic axial Mach numbers

    NASA Technical Reports Server (NTRS)

    Marconi, F.; Moretti, G.

    1976-01-01

    A numerical approach is presented for the computation of flows in which the component of velocity in the selected marching direction is subsonic although the total velocity is supersonic. A local coordinate rotation procedure is employed together with an implicit differencing scheme. Complex coordinate transformations and time-consuming iterations are avoided. The implementation of the described approach is illustrated with the aid of a two-dimensional problem. An application in the case of three-dimensional flows is also discussed.

  14. Advanced surface paneling method for subsonic and supersonic flow

    NASA Technical Reports Server (NTRS)

    Erickson, L. L.; Johnson, F. T.; Ehlers, F. E.

    1976-01-01

    Numerical results illustrating the capabilities of an advanced aerodynamic surface paneling method are presented. The method is applicable to both subsonic and supersonic flow, as represented by linearized potential flow theory. The method is based on linearly varying sources and quadratically varying doublets which are distributed over flat or curved panels. These panels are applied to the true surface geometry of arbitrarily shaped three dimensional aerodynamic configurations.

  15. Aircraft Disinsection

    EPA Pesticide Factsheets

    Some countries may require aircraft coming from countries where certain insects or insect-borne diseases are present, such as malaria and Zika virus, to be treated with insecticide. Find out about regulation of pesticides for this treatment.

  16. DIRECT MEASUREMENT OF MERCURY REACTIONS IN COAL POWER PLANT PLUMES

    SciTech Connect

    Leonard Levin

    2004-01-01

    -September 5, 2003. The experimental site was the Pleasant Prairie Power Plant in Pleasant Prairie, Wisconsin, just west of Kenosha. The experiment involved using an aircraft to capture emissions and document chemistry changes in the plume. While using the airplane for sampling, supplemental fast-response sensors for NOx, connected to data loggers, were used to gauge entry and exit times and transect intervals through plume emissions material. The Frontier Geosciences Static Plume Dilution Chamber (SPDC) was employed simultaneously adjacent to the stack to correlate its findings with the aircraft sampling, as well as providing evaluation of the SPDC as a rapid, less costly sampler for mercury chemistry. A complementary stack plume method, the Dynamic Plume Dilution (DPD) was used in the latter portion of the experiment to measure mercury speciation to observe any mercury reduction reaction with respect to both the reaction time (5 to 30 seconds) and dilution ratio. In addition, stack sampling using the ''Ontario Hydro'' wet chemistry method and continuous mercury monitors (CMM) were used to establish the baseline chemistry in the stack. Comparisons among stack, SPDC, DPD and aircraft measurements following data analysis will allow establishment of whether significant chemical changes to mercury occur in the plume, and of the verisimilitude of the SPDC and DPD methods.

  17. Observation and Modeling of the Evolution of Texas Power Plant Plumes

    EPA Science Inventory

    During the second Texas Air Quality Study 2006 (TexAQS II), a full range of pollutants was measured by aircraft in eastern Texas during successive transects of power plant plumes (PPPs). A regional photochemical model is applied to simulate the physical and chemical evolution of ...

  18. Observation and Modeling of the Evolution of Texas Power Plant Plumes

    EPA Science Inventory

    During the second Texas Air Quality Study 2006 (TexAQS II), a full range of pollutants was measured by aircraft in eastern Texas during successive transects of power plant plumes (PPPs). A regional photochemical model is applied to simulate the physical and chemical evolution of ...

  19. An Overview of the Nighttime Aerosol/Oxidant Plume Experiment (NAOPEX)

    SciTech Connect

    Berkowitz, Carl M.; Zaveri, Rahul A.; Hubbe, John M.; Springston, Stephen R.; Coulter, Richard L.

    2003-12-01

    The Nighttime Aerosol/Oxidant Plume Experiment was designed to characterize aerosols (number density, geographic distribution, physical characteristics) and trace gases coming from the greater Boston area at night between July 29 and August 8, 2002. Aircraft flights below 1500m MSL measured upwind/downwind characteristics of the urban plume and included Lagrangian measurements made in conjunction with tetroon releases within the plume. We focus here on just the upwind/downwind characeristics of the plume, with the Lagrangian results to be presented elsewhere. Statistically insignificant variations in aerosol number density, O3, and CO downwind of Boston were found under conditions of westerly flow, although large (50%) increases in downwind NOy were measured. Much bigger upwind/downwind differences were found in O3 and CO when sampling under light and variable wind conditions although the downwind NOy levels were much less (increase of only 15%), and were not associated with any measurable increase in the NOx relative to observations made under westerly flow. There was, in general, little evidence of the Boston plume at aircraft sampling heights, which suggests a greatly reduced potential for long range transport of the urban plume within the free troposphere over the Atlantic.

  20. Aerosol microphysical processes and properties in Canadian boreal forest fire plumes measured during BORTAS

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kimiko; Allen, James; Coe, Hugh; Taylor, Jonathan; Duck, Thomas; Pierce, Jeffrey

    2013-04-01

    Biomass burning emissions contribute significantly to aerosol concentrations and clound condensation nuclei in many regions of the atmosphere. Plume-aerosol characteristics vary according to age, fuel type, and region. These differences are poorly represented in regional and global aerosol models, and they contribute to large uncertainties in predicted size distributions in biomass-burning-dominated regions. The Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) measurement campaign was designed to invesigate boreal biomass burning emissions over Atlantic Canada during July-August of 2011. Aged (2-3 days) biomass burning aerosols originating from western Ontario were measured by an SMPS and AMS on board the British Atmospheric Research Aircraft. We identify the presence of plumes using CO concentrations and acetonitrile enhancement ratios. In-plume aerosol size distributions were collected for six aged plume profiles. The size distributions show an accumulation-mode median diameter of ~240 nm. However, there are persistant nucleation and Aitken modes present in the profiles, even 2-3 days from the source. Without continuous nucleation and condensation (likely SOA production), these small modes would be lost by coagulation in less than 1 day. We use an aerosol microphysics plume model to estimate the mean nucleation and condensation rates necessary to maintain the small aerosols, and calculate how these processes enhance the total number of particles and cloud condensation nuclei in the aged plume.

  1. Aircraft Steels

    DTIC Science & Technology

    2009-02-19

    NAWCADPAX/TR-2009/ 12 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders 19 February 2009...MARYLAND NAWCADPAX/TR-2009/ 12 19 February 2009 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders...Prescribed by ANSI Std. Z39-18 NAWCADPAX/TR-2009/ 12 ii SUMMARY Five high strength and four stainless steels have been studied, identifying their

  2. Subsonic Flow for the Multidimensional Euler-Poisson System

    NASA Astrophysics Data System (ADS)

    Bae, Myoungjean; Duan, Ben; Xie, Chunjing

    2016-04-01

    We establish the existence and stability of subsonic potential flow for the steady Euler-Poisson system in a multidimensional nozzle of a finite length when prescribing the electric potential difference on a non-insulated boundary from a fixed point at the exit, and prescribing the pressure at the exit of the nozzle. The Euler-Poisson system for subsonic potential flow can be reduced to a nonlinear elliptic system of second order. In this paper, we develop a technique to achieve a priori {C^{1,α}} estimates of solutions to a quasi-linear second order elliptic system with mixed boundary conditions in a multidimensional domain enclosed by a Lipschitz continuous boundary. In particular, we discovered a special structure of the Euler-Poisson system which enables us to obtain {C^{1,α}} estimates of the velocity potential and the electric potential functions, and this leads us to establish structural stability of subsonic flows for the Euler-Poisson system under perturbations of various data.

  3. Research requirements for a real-time flight measurements and data analysis system for subsonic transport high-lift research

    NASA Technical Reports Server (NTRS)

    Whitehead, Julia H.; Harris, Franklin K.; Lytle, Carroll D.

    1993-01-01

    A multiphased research program to obtain detailed flow characteristics on a multielement high-lift flap system is being conducted on the Transport Systems Research Vehicle (B737-100 aircraft) at NASA Langley Research Center. Upcoming flight tests have required the development of a highly capable and flexible flight measurement and data analysis instrumentation system. This instrumentation system will be more comprehensive than any of the systems used on previous high-lift flight experiment at NASA Langley. The system will provide the researcher near-real-time information for decision making needed to modify a flight test in order to further examine unexpected flow conditions. This paper presents the research requirements and instrumentation design concept for an upcoming flight experiment for the subsonic transport high-lift research program. The flight experiment objectives, the measurement requirements, the data acquisition system, and the onboard data analysis and display capabilities are described.

  4. An Overview of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Ultra High Bypass Partnership Research Goals

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2009-01-01

    An overview of the NASA Fundamental Aeronautics Program (FAP) mission and goals is presented. One of the subprograms under the FAP, the Subsonic Fixed Wing Project (SFW), is the focus of the presentation. The SFW system environmental metrics are discussed, along with highlights of planned, systematic approach to research to reduce the environmental impact of commercial aircraft in the areas of acoustics, fuel burn and emissions. The presentation then focuses on collaborative research being conducted with U.S. Industry on the Ultra High Bypass (UHB) engine cycle, the propulsion cycle selected by the SFW to meet the system goals. The partnerships with General Electric Aviation to investigate Open Rotor propulsion concepts and with Pratt & Whitney to investigate the Geared Turbofan UHB engine are highlighted, including current and planned future collaborative research activities with NASA and each organization.

  5. Research requirements for a real-time flight measurements and data analysis system for subsonic transport high-lift research

    NASA Technical Reports Server (NTRS)

    Whitehead, Julia H.; Harris, Franklin K.; Lytle, Carroll D.

    1993-01-01

    A multiphased research program to obtain detailed flow characteristics on a multielement high-lift flap system is being conducted on the Transport Systems Research Vehicle (B737-100 aircraft) at NASA Langley Research Center. Upcoming flight tests have required the development of a highly capable and flexible flight measurement and data analysis instrumentation system. This instrumentation system will be more comprehensive than any of the systems used on previous high-lift flight experiment at NASA Langley. The system will provide the researcher near-real-time information for decision making needed to modify a flight test in order to further examine unexpected flow conditions. This paper presents the research requirements and instrumentation design concept for an upcoming flight experiment for the subsonic transport high-lift research program. The flight experiment objectives, the measurement requirements, the data acquisition system, and the onboard data analysis and display capabilities are described.

  6. A NASA study of the impact of technology on future sea based attack aircraft

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    1992-01-01

    A conceptual aircraft design study was recently completed evaluating carrier-based, subsonic attack aircraft using contemporary and future technology assumptions. The study examined a configuration matrix that was made up of light and medium bomb loads, one and two man crews, internal and external weapons carriage, as well as conventional and flying wing planforms. Use of common technology assumptions, engine cycle simulation code, design mission, and consistent application of methods allow for direct comparison of the aircraft. This paper describes the design study ground rules and the aircraft designed. The aircraft descriptions include weights, dimensions, layout, design mission, design constraints, maneuver performance, and fallout mission performance. The strengths, and weaknesses of each aircraft are highlighted.

  7. Buckling of Chemical Wave Plumes

    NASA Astrophysics Data System (ADS)

    Rogers, Michael C.; Morris, Stephen W.

    2004-03-01

    Chemical wave fronts are found in many autocatalytic chemical reactions, such as the iodate oxidation of arsenous acid. In vertical capillary tubes, ascending chemical wave fronts show convective behavior when a dimensionless driving parameter S exceeds a critical value Sc ˜ 100. S ∝ a^3, where a is the radius of the tube. In the iodate arsenous-acid reaction, the density jump that drives convection is created by both the partial molal density decrease of the product solution and by thermal expansion due to the slight exothermicity of the reaction. We observed strongly supercritical ascending chemical wave plumes in vertical tubes with S 10^7. We report on the motion of these plumes in experiments where both the viscosity and the temperature of the reactant fluid are control parameters. We find experimentally that the background temperature of the reactant fluid has a significant influence on the behavior of the plumes. Above a critical temperature, plumes rise straight up the tube, whereas below this temperature, plumes go through an initial stage of buckling before they surrender to straight rising motion. The flow induced by the chemical plumes can be visualized using tracer particles. The buckling behavior of the plumes may arise from the Kelvin-Helmholtz instability, as in the case of a fluid jet descending through stratified surroundings [Pesci et al., Phys. Rev. E, 68, 056305 (2003)].

  8. Measuring Wildfires From Aircraft And Satellites

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Arvesen, J. C.; Ambrosia, V. G.; Riggan, P. J.; Meyers, J. S.

    1991-01-01

    Aircraft and satellite systems yield wide-area views, providing total coverage of affected areas. System developed for use aboard aircraft includes digital scanner that records data in 12 channels. Transmits data to ground station for immediate use in fighting fires. Enables researchers to estimate gaseous and particulate emissions from fires. Provides information on temperatures of flame fronts and soils, intensities and rate of spread of fires, characteristics of fuels and smoke plumes, energy-release rates, and concentrations and movements of trace gases. Data relates to heating and cooling of soils, loss of nutrients, and effects on atmospheric, terrestrial, and aquatic systems.

  9. Wind tunnel investigations of forebody strakes for yaw control on F/A-18 model at subsonic and transonic speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Murri, Daniel G.

    1993-01-01

    Wind tunnel investigations have been conducted of forebody strakes for yaw control on 0.06-scale models of the F/A-18 aircraft at free-stream Mach numbers of 0.20 to 0.90. The testing was conducted in the 7- by 10-Foot Transonic Tunnel at the David Taylor Research Center and the Langley 7- by 10-Foot High-Speed Tunnel. The principal objectives of the testing were to determine the effects of the Mach number and the strake plan form on the strake yaw control effectiveness and the corresponding strake vortex induced flow field. The wind tunnel model configurations simulated an actuated conformal strake deployed for maximum yaw control at high angles of attack. The test data included six-component forces and moments on the complete model, surface static pressure distributions on the forebody and wing leading-edge extensions, and on-surface and off-surface flow visualizations. The results from these studies show that the strake produces large yaw control increments at high angles of attack that exceed the effect of conventional rudders at low angles of attack. The strake yaw control increments diminish with increasing Mach number but continue to exceed the effect of rudder deflection at angles of attack greater than 30 degrees. The character of the strake vortex induced flow field is similar at subsonic and transonic speeds. Cropping the strake planform to account for geometric and structural constraints on the F-18 aircraft has a small effect on the yaw control increments at subsonic speeds and no effect at transonic speeds.

  10. Future aircraft and potential effects on stratospheric ozone and climate

    SciTech Connect

    Kinnison, D.E.; Wuebbles, D.J.

    1991-10-01

    The purpose of this study is to extend the recent research examining the global environmental effects from potential fleets of subsonic and supersonic commercial aircraft. Initial studies with LLNL models of global atmospheric chemical, radiative, and transport processes have indicated that substantial decreases in stratospheric ozone concentrations could result from emissions of NO{sub x} from aircraft flying in the stratosphere, depending on fleet size and magnitude of the engine emissions. These studies used homogeneous chemical reaction rates (e.g. gas-phase chemistry). Recent evidence indicates that reactions on particles in the stratosphere may be important. Heterogeneous chemical reactions, for instance, N{sub 2}O{sub 5}and ClONO{sub 2} on background sulfuric acid aerosols, convert NO{sub x}(NO and NO{sub 2}) molecules to HNO{sub 3}. This decreases the odd oxygen loss from the NO{sub x} catalytic cycle and increases the odd oxygen loss from the Cl{sub x} catalytic cycle. By including these heterogeneous reactions in the LLNL model, the relative partitioning of odd oxygen loss between these two families changes, with the result that emissions of NO{sub x} from proposed aircraft fleets flying in the stratosphere now increase zone. Having these heterogeneous processes present also increases ozone concentration in the troposphere relative to gas-phase only chemistry calculations for emissions of NO{sub x} from subsonic aircraft. 26 refs., 5 figs., 3 tabs.

  11. Orbital Maneuvering Vehicle (OMV) plume and plume effects study

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    The objective was to characterize the Orbital Maneuvering Vehicle (OMV) propulsion and attitude control system engine exhaust plumes and predict the resultant plume impingement pressure, heat loads, forces, and moments. Detailed description is provided of the OMV gaseous nitrogen (GN2) thruster exhaust plume flow field characteristics calculated with the RAMP2 snd SFPGEN computer codes. Brief descriptions are included of the two models, GN2 thruster characteristics and RAMP2 input data files. The RAMP2 flow field could be recalculated by other organizations using the information presented. The GN2 flow field can be readily used by other organizations who are interested in GN2 plume induced environments which require local flow field properties which can be supplied using the SFPGEN GN2 model.

  12. CHEMICAL EVOLUTION OF A POWER-PLANT PLUME.

    SciTech Connect

    SPRINGSTON,S.R.; KLEINMAN,L.I.; BRECHTEL,F.; DAUM,P.H.; LEE,Y.N.; NUNNERMACKER,L.J.; WEINSTEIN-LLOYD,J.

    2001-10-01

    Measurements made from the DOE G-1 aircraft were used to calculate the rate and efficiency of O{sub 3} production downwind of an isolated, coal-fired power plant. The plume was transected 12 times at distances ranging to 65 km from its source (corresponding to an age of {approx}4 h assuming constant wind velocity). For NO{sub x}, a loss rate of 0.5 h{sup -1} was calculated. If reaction with OH was the sole loss mechanism, then an [OH] = 1.6 x 10{sup 7}molec/cm{sup 3} is inferred, which is {approx}2-3X values calculated using a box model constrained by observations. Possible explanations for this discrepancy are discussed. O{sub 3} production per molecule of NO{sub x} approached 6-8 after the plume had aged >3h. Peak O{sub 3} concentrations were 15 ppbv above background. Dilution appears to limit the peak O{sub 3} concentration despite the high production efficiency. Hydrocarbon samples indicate high levels of VOC reactivity ({approx}8 s{sup -1}) in the plume. The number concentration of accumulation mode particles increases significantly with plume age indicating a rapid formation of aerosol mass.

  13. El Chichon: Composition of Plume Gases and Particles

    NASA Astrophysics Data System (ADS)

    Phelan Kotra, Janet; Finnegan, David L.; Zoller, William H.; Hart, Mark A.; Moyers, Jarvis L.

    1983-12-01

    Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichon volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. Rates of trace element emission to the atmosphere for each species were estimated by normalization to the simultaneously determined total sulfur emission rate. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (<= 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.

  14. Gas and hydrogen isotopic analyses of volcanic eruption clouds in Guatemala sampled by aircraft

    USGS Publications Warehouse

    Rose, W.I.; Cadle, R.D.; Heidt, L.E.; Friedman, I.; Lazrus, A.L.; Huebert, B.J.

    1980-01-01

    Gas samples were collected by aircraft entering volcanic eruption clouds of three Guatemalan volcanoes. Gas chromatographic analyses show higher H2 and S gas contents in ash eruption clouds and lower H2 and S gases in vaporous gas plumes. H isotopic data demonstrate lighter isotopic distribution of water vapor in ash eruption clouds than in vaporous gas plumes. Most of the H2O in the vaporous plumes is probably meteoric. The data are the first direct gas analyses of explosive eruptive clouds, and demonstrate that, in spite of atmospheric admixture, useful compositional information on eruptive gases can be obtained using aircraft. ?? 1980.

  15. Stratospheric aircraft exhaust plume and wake chemistry studies

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.

    1992-01-01

    This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3.

  16. The Kinetics and Spectroscopy of Aircraft and Rocket Plume Constituents.

    DTIC Science & Technology

    1980-12-10

    by linear least squares analysis of k’ vs. [D2] date. Flash energy,o - 80J, a0- 200J. 4. Plots of ink1 and ink 2 vs. 1000/T. For the sake of clarity...Force under Contract No. - F49620-77-C-01 11. ATR 𔄁: i : " " I ENTIFIC RESEXP"I’ 1 NTS " ’ NOTT’TZ .............. ’ I [C Th j , ’ :’ "’- ! ’ - rete...to achieve. Experi- ments at flame temperatures typically range from studies utilizing end product analysis alone to investigations involving detailed

  17. Stratospheric aircraft exhaust plume and wake chemistry studies

    NASA Astrophysics Data System (ADS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R.-L.

    1992-10-01

    This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3.

  18. Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1998-01-01

    Simulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies

  19. Optimized aerodynamic design process for subsonic transport wing fitted with winglets. [wind tunnel model

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1979-01-01

    The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.

  20. Development and validation of cryogenic foam insulation for LH2 subsonic transports

    NASA Technical Reports Server (NTRS)

    Anthony, F. M.; Colt, J. Z.; Helenbrook, R. G.

    1981-01-01

    Fourteen foam insulation specimens were tested. Some were plain foam while others contained flame retardants, chopped fiberglass reinforcement and/or vapor barriers. The thermal performance of the insulation was determined by measuring the rate at which LH2 boiled from an aluminum tank insulated with the test material. The test specimens were approximately 50 mm (2 in.) thick. They were structurally scaled so that the test cycle would duplicate the maximum thermal stresses predicted for the thicker insulation of an aircraft liquid hydrogen fuel tank during a typical subsonic flight. The simulated flight cycle of approximately 10 minutes duration heated the other insulation surface to 316 K (110 F) and cooled it to 226 K (20 F) while the inner insulation surface remained at liquid hydrogen temperature of 20 K (-423 F). Two urethane foam insulations exceeded the initial life goal of 2400 simulated flight cycles and sustained 4400 cycles with only minor damage. The addition of fiberglass reinforcement of flame retardant materials to an insulation degraded thermal performance and/or the life of the foam material. Installation of vapor barriers enhanced the structural integrity of the material but did not improve thermal performance. All of the foams tested were available materials; none were developed specifically for LH2 service.

  1. Investigation of a Technique for Measuring Dynamic Ground Effect in a Subsonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.

    1999-01-01

    To better understand the ground effect encountered by slender wing supersonic transport aircraft, a test was conducted at NASA Langley Research Center's 14 x 22 foot Subsonic Wind Tunnel in October, 1997. Emphasis was placed on improving the accuracy of the ground effect data by using a "dynamic" technique in which the model's vertical motion was varied automatically during wind-on testing. This report describes and evaluates different aspects of the dynamic method utilized for obtaining ground effect data in this test. The method for acquiring and processing time data from a dynamic ground effect wind tunnel test is outlined with details of the overall data acquisition system and software used for the data analysis. The removal of inertial loads due to sting motion and the support dynamics in the balance force and moment data measurements of the aerodynamic forces on the model is described. An evaluation of the results identifies problem areas providing recommendations for future experiments. Test results are validated by comparing test data for an elliptical wing planform with an Elliptical wing planform section with a NACA 0012 airfoil to results found in current literature. Major aerodynamic forces acting on the model in terms of lift curves for determining ground effect are presented. Comparisons of flight and wind tunnel data for the TU-144 are presented.

  2. Design of Supersonic Transport Flap Systems for Thrust Recovery at Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Mann, Michael J.; Carlson, Harry W.; Domack, Christopher S.

    1999-01-01

    A study of the subsonic aerodynamics of hinged flap systems for supersonic cruise commercial aircraft has been conducted using linear attached-flow theory that has been modified to include an estimate of attainable leading edge thrust and an approximate representation of vortex forces. Comparisons of theoretical predictions with experimental results show that the theory gives a reasonably good and generally conservative estimate of the performance of an efficient flap system and provides a good estimate of the leading and trailing-edge deflection angles necessary for optimum performance. A substantial reduction in the area of the inboard region of the leading edge flap has only a minor effect on the performance and the optimum deflection angles. Changes in the size of the outboard leading-edge flap show that performance is greatest when this flap has a chord equal to approximately 30 percent of the wing chord. A study was also made of the performance of various combinations of individual leading and trailing-edge flaps, and the results show that aerodynamic efficiencies as high as 85 percent of full suction are predicted.

  3. Development and validation of cryogenic foam insulation for LH2 subsonic transports

    NASA Astrophysics Data System (ADS)

    Anthony, F. M.; Colt, J. Z.; Helenbrook, R. G.

    1981-02-01

    Fourteen foam insulation specimens were tested. Some were plain foam while others contained flame retardants, chopped fiberglass reinforcement and/or vapor barriers. The thermal performance of the insulation was determined by measuring the rate at which LH2 boiled from an aluminum tank insulated with the test material. The test specimens were approximately 50 mm (2 in.) thick. They were structurally scaled so that the test cycle would duplicate the maximum thermal stresses predicted for the thicker insulation of an aircraft liquid hydrogen fuel tank during a typical subsonic flight. The simulated flight cycle of approximately 10 minutes duration heated the other insulation surface to 316 K (110 F) and cooled it to 226 K (20 F) while the inner insulation surface remained at liquid hydrogen temperature of 20 K (-423 F). Two urethane foam insulations exceeded the initial life goal of 2400 simulated flight cycles and sustained 4400 cycles with only minor damage. The addition of fiberglass reinforcement of flame retardant materials to an insulation degraded thermal performance and/or the life of the foam material. Installation of vapor barriers enhanced the structural integrity of the material but did not improve thermal performance. All of the foams tested were available materials; none were developed specifically for LH2 service.

  4. Theoretical performance characteristics of sharp-lip inlets at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Fradenburgh, Evan A; Demarquis, D Wyatt

    1954-01-01

    A method is presented for the estimation of the subsonic-flight-speed characteristics of sharp-lip inlets applicable to supersonic aircraft. The analysis, based on a simple momentum balance consideration, permits the computation of inlet-pressure-recovery mass-flow relations and additive-drag coefficients for forward velocities from zero to the speed of sound. The penalties for operation of a sharp-lip inlet at velocity ratios other than 1.0 may be severe; at lower velocity ratios an additive drag is incurred that is not cancelled by lip suction, while at higher velocity ratios, unavoidable losses in inlet total pressure will result. In particular, at the take-off condition, the total pressure and the mass flow for a choked inlet are only 79 percent of the values ideally attainable with a rounded lip. The test specimens were polished and unnotched. The manufacturer of the material, the Aluminum Company of America, has made axial-load tests on 24S-T4 and 75S-T6 rod material. The test techniques used at the three laboratories are described in detail; the test results are presented and are compared with each other and with results obtained on unpolished sheet by the National Bureau of Standards. Experimental data obtained at zero speed with a sharp-lip supersonic inlet model were in substantial agreement with the theoretical results. (author)

  5. Pollution Emission Analysis of Selected Air Force Aircraft

    DTIC Science & Technology

    1974-04-29

    percent for large non-combat tranaport engines) are proposed. Eraoke numbers wlilch will ensure Invisible aircraft smoke plumes are specified. The...standards are being violated, as well as being significant sources of smoke , ,••(3) that maintenance of the national ambient sir quality BlSndards...and reduced impact of smoke emission requires that air- craft and aircraft engines be Bubjected to a program of control compatible with their

  6. Pool fires in a simulated aircraft cabin interior with ventilation

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Back, L. H.; Cho, Y. I.; Shakkottai, P.

    1987-01-01

    Results of experiments conducted at the JPL to evaluate aircraft postcrash fire hazards are presented. The experiments were carried out in a one-third scale simulated aircraft cabin geometry to study pool fire and ventilation flow interactions. It is shown that wind-induced ventilation may significantly affect fire plume orientation, smoke transport, and heat fluxes and thus will affect subsequent fire spread and the immediate survivability of the passengers.

  7. Aircraft Accident Survivability: Rotary Wing Aircraft

    DTIC Science & Technology

    2005-10-01

    struts, stroking seats, and occupant restraint systems can affect the likelihood of survival following an aircraft accident . Energy attenuating...AIRCRAFT ACCIDENT SURVIVABILITY: ROTARY WING AIRCRAFT Elizabeth B. Motley Naval Air Warfare Center Patuxent River, MD ABSTRACT The...intent of this paper is to explore the premise of aircraft accident survivability focusing primarily on military rotary wing aircraft. Human tolerance

  8. A new method for GPS-based wind speed determinations during airborne volcanic plume measurements

    USGS Publications Warehouse

    Doukas, Michael P.

    2002-01-01

    Begun nearly thirty years ago, the measurement of gases in volcanic plumes is today an accepted technique in volcano research. Volcanic plume measurements, whether baseline gas emissions from quiescent volcanoes or more substantial emissions from volcanoes undergoing unrest, provide important information on the amount of gaseous output of a volcano to the atmosphere. Measuring changes in gas emission rates also allows insight into eruptive behavior. Some of the earliest volcanic plume measurements of sulfur dioxide were made using a correlation spectrometer (COSPEC). The COSPEC, developed originally for industrial pollution studies, is an upward-looking optical spectrometer tuned to the ultraviolet absorption wavelength of sulfur dioxide (Millán and Hoff, 1978). In airborne mode, the COSPEC is mounted in a fixed-wing aircraft and flown back and forth just underneath a volcanic plume, perpendicular to the direction of plume travel (Casadevall and others, 1981; Stoiber and others, 1983). Similarly, for plumes close to the ground, the COSPEC can be mounted in an automobile and driven underneath a plume if a suitable road system is available (Elias and others, 1998). The COSPEC can also be mounted on a tripod and used to scan a volcanic plume from a fixed location on the ground, although the effectiveness of this configuration declines with distance from the plume (Kyle and others, 1990). In the 1990’s, newer airborne techniques involving direct sampling of volcanic plumes with infrared spectrometers and electrochemical sensors were developed in order to measure additional gases such as CO2 and H2S (Gerlach and others, 1997; Gerlach and others, 1999; McGee and others, 2001). These methods involve constructing a plume cross-section from several measurement traverses through the plume in a vertical plane. Newer instruments such as open-path Fourier transform infrared (FTIR) spectrometers are now being used to measure the gases in volcanic plumes mostly from fixed

  9. The Saturn hydrogen plume

    NASA Astrophysics Data System (ADS)

    Shemansky, D. E.; Liu, X.; Melin, H.

    2009-12-01

    Images of the Saturn atmosphere and magnetosphere in H Lyα emission during the Cassini spacecraft pre and post Saturn orbit insertion (SOI) event obtained using the UVIS experiment FUV spectrograph have revealed definitive evidence for the escape of H I atoms from the top of the thermosphere. An image at 0.1×0.1 Saturn equatorial radii ( RS) pixel resolution with an edge-on-view of the rings shows a distinctive structure (plume) with full width at half maximum (FWHM) of 0.56RS at the exobase sub-solar limb at ˜-13.5∘ latitude as part of the distributed outflow of H I from the sunlit hemisphere, with a counterpart on the antisolar side peaking near the equator above the exobase limb. The structure of the image indicates that part of the outflowing population is sub-orbital and re-enters the thermosphere in an approximate 5 h time scale. An evident larger more broadly distributed component fills the magnetosphere to beyond 45RS in the orbital plane in an asymmetric distribution in local time, similar to an image obtained at Voyager 1 post encounter in a different observational geometry. It has been found that H2 singlet ungerade Rydberg EUV/FUV emission spectra collected with the H Lyα into the image mosaic show a distinctive resonance property correlated with the H Lyα plume. The inferred approximate globally averaged energy deposition at the top of the thermosphere from the production of the hot atomic hydrogen accounts for the measured atmospheric temperature. The only known process capable of producing the atoms at the required few eV/atom kinetic energy appears to be the direct electron excitation of non-LTE H2XΣg+1( v:J) into the repulsive H2bΣu+3, although details of the processes need to be examined under the constraints imposed by the observations to determine compatibility with the current knowledge of hydrogen rate processes.

  10. COMPARING AND LINKING PLUMES ACROSS MODELING APPROACHES

    EPA Science Inventory

    River plumes carry many pollutants, including microorganisms, into lakes and the coastal ocean. The physical scales of many stream and river plumes often lie between the scales for mixing zone plume models, such as the EPA Visual Plumes model, and larger-sized grid scales for re...

  11. COMPARING AND LINKING PLUMES ACROSS MODELING APPROACHES

    EPA Science Inventory

    River plumes carry many pollutants, including microorganisms, into lakes and the coastal ocean. The physical scales of many stream and river plumes often lie between the scales for mixing zone plume models, such as the EPA Visual Plumes model, and larger-sized grid scales for re...

  12. Observations of ozone formation in power plant plumes and implications for ozone control strategies.

    PubMed

    Ryerson, T B; Trainer, M; Holloway, J S; Parrish, D D; Huey, L G; Sueper, D T; Frost, G J; Donnelly, S G; Schauffler, S; Atlas, E L; Kuster, W C; Goldan, P D; Hubler, G; Meagher, J F; Fehsenfeld, F C

    2001-04-27

    Data taken in aircraft transects of emissions plumes from rural U.S. coal-fired power plants were used to confirm and quantify the nonlinear dependence of tropospheric ozone formation on plume NO(x) (NO plus NO(2)) concentration, which is determined by plant NO(x) emission rate and atmospheric dispersion. The ambient availability of reactive volatile organic compounds, principally biogenic isoprene, was also found to modulate ozone production rate and yield in these rural plumes. Differences of a factor of 2 or greater in plume ozone formation rates and yields as a function of NO(x) and volatile organic compound concentrations were consistently observed. These large differences suggest that consideration of power plant NO(x) emission rates and geographic locations in current and future U.S. ozone control strategies could substantially enhance the efficacy of NO(x) reductions from these sources.

  13. Retrieving eruptive vent conditions from dynamical properties of unsteady volcanic plume using high-speed imagery and numerical simulations

    NASA Astrophysics Data System (ADS)

    Tournigand, Pierre-Yves; Taddeucci, Jacopo; José Peña Fernandez, Juan; Gaudin, Damien; Sesterhenn, Jörn; Scarlato, Piergiorgio; Del Bello, Elisabetta

    2016-04-01

    simulations of momentum-driven gas jets impulsively released from a vent in a pressurized container. These simulations solve flow conditions globally, thus allowing one to set empirical relations between flow conditions in different parts of the jet, most notably the shear layer, the flow centerline, and at the vent. Applying these relations to the volcanic cases gives access to the evolution of velocity and temperature at the vent. From these, the speed of sound and flow Mach number can be obtained, which in turn can be used to estimate the pressure ratio between atmosphere and vent and finally, assuming some conduit geometry and mixture density, the total amount of erupted gas. Preliminary results suggest subsonic exit velocities of the eruptive mixture at the vent, and a plume centerline velocity that can be twice as fast as the one measured at the plume boundary.

  14. Remote monitoring of the Gravelly Run thermal plume at Hopewell and the thermal plume at the Surry Nuclear Power Plant on the James River

    NASA Technical Reports Server (NTRS)

    Talay, T. A.; Sykes, K. W.; Kuo, C. Y.

    1979-01-01

    On May 17, 1977, a remote sensing experiment was conducted on the James River, Virginia, whereby thermal spectrometer and near-infrared photography data of thermal discharges at Hopewell and the Surry nuclear power plant were obtained by an aircraft for one tidal cycle. These data were used in subsequent investigations into the near field discharge trajectories. For the Gravelly Run thermal plume at Hopewell, several empirical expressions for the plume centerline were evaluated by comparisons of the computed trajectories and those observed in the remote sensing images.

  15. Electrical Charging of Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    James, M. R.; Wilson, L.; Lane, S. J.; Gilbert, J. S.; Mather, T. A.; Harrison, R. G.; Martin, R. S.

    2008-06-01

    Many explosive terrestrial volcanic eruptions are accompanied by lightning and other atmospheric electrical phenomena. The plumes produced generate large perturbations in the surface atmospheric electric potential gradient and high charge densities have been measured on falling volcanic ash particles. The complex nature of volcanic plumes (which contain gases, solid particles, and liquid drops) provides several possible charging mechanisms. For plumes rich in solid silicate particles, fractoemission (the ejection of ions and atomic particles during fracture events) is probably the dominant source of charge generation. In other plumes, such as those created when lava enters the sea, different mechanisms, such as boiling, may be important. Further charging mechanisms may also subsequently operate, downwind of the vent. Other solar system bodies also show evidence for volcanism, with activity ongoing on Io. Consequently, volcanic electrification under different planetary scenarios (on Venus, Mars, Io, Moon, Enceladus, Tethys, Dione and Triton) is also discussed.

  16. Electrical Charging of Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    James, M. R.; Wilson, L.; Lane, S. J.; Gilbert, J. S.; Mather, T. A.; Harrison, R. G.; Martin, R. S.

    Many explosive terrestrial volcanic eruptions are accompanied by lightning and other atmospheric electrical phenomena. The plumes produced generate large perturbations in the surface atmospheric electric potential gradient and high charge densities have been measured on falling volcanic ash particles. The complex nature of volcanic plumes (which contain gases, solid particles, and liquid drops) provides several possible charging mechanisms. For plumes rich in solid silicate particles, fractoemission (the ejection of ions and atomic particles during fracture events) is probably the dominant source of charge generation. In other plumes, such as those created when lava enters the sea, different mechanisms, such as boiling, may be important. Further charging mechanisms may also subsequently operate, downwind of the vent. Other solar system bodies also show evidence for volcanism, with activity ongoing on Io. Consequently, volcanic electrification under different planetary scenarios (on Venus, Mars, Io, Moon, Enceladus, Tethys, Dione and Triton) is also discussed.

  17. Collapsing plumes and resurrecting fountains

    NASA Astrophysics Data System (ADS)

    van den Bremer, Ton; Hunt, Gary

    2012-11-01

    We explore the range of behaviour predicted for steady plumes and fountains that undergo an increase or decrease in buoyancy which arise due to phase changes or chemical reactions. We model these changes in the simplest possible way by assuming a quadratic relationship between the density and the temperature of the fluid. We thereby extend the model of Caulfield & Woods (`95) to include the most recent developments in the literature on steady releases of buoyancy emitted vertically from horizontal area sources in unconfined quiescent environments of uniform density based on the plume model of Morton, Taylor & Turner (`56). We provide closed-form solutions and identify four classes of solution: collapsing plumes, resurrecting fountains, plumes with enhanced buoyancy and fountains with enhanced negative buoyancy. We provide criteria for each category of behaviour in terms of the source-value of two non-dimensional quantities: the Richardson number and a temperature parameter.

  18. Smoke plumes: Emissions and effects

    Treesearch

    Susan O' Neill; Shawn Urbanski; Scott Goodrick; Sim Larkin

    2017-01-01

    Smoke can manifest itself as a towering plume rising against the clear blue sky-or as a vast swath of thick haze, with fingers that settle into valleys overnight. It comes in many forms and colors, from fluffy and white to thick and black. Smoke plumes can rise high into the atmosphere and travel great distances across oceans and continents. Or smoke can remain close...

  19. IR sensor design insight from missile-plume prediction models

    NASA Astrophysics Data System (ADS)

    Rapanotti, John L.; Gilbert, Bruno; Richer, Guy; Stowe, Robert

    2002-08-01

    Modern anti-tank missiles and the requirement of rapid deployment have significantly reduced the use of passive armour in protecting land vehicles. Vehicle survivability is becoming more dependent on sensors, computers and countermeasures to detect and avoid threats. An analysis of missile propellants suggests that missile detection based on plume characteristics alone may be more difficult than anticipated. Currently, the passive detection of missiles depends on signatures with a significant ultraviolet component. This approach is effective in detecting anti-aircraft missiles that rely on powerful motors to pursue high-speed aircraft. The high temperature exhaust from these missiles contains significant levels of carbon dioxide, water and, often, metal oxides such as alumina. The plumes emits strongest in the infrared, 1 to 5micrometers , regions with a significant component of the signature extending into the ultraviolet domain. Many anti-tank missiles do not need the same level of propulsion and radiate significantly less. These low velocity missiles, relying on the destructive force of shaped-charge warhead, are more difficult to detect. There is virtually no ultraviolet component and detection based on UV sensors is impractical. The transition in missile detection from UV to IR is reasonable, based on trends in imaging technology, but from the analysis presented in this paper even IR imagers may have difficulty in detecting missile plumes. This suggests that the emphasis should be placed in the detection of the missile hard body in the longer wavelengths of 8 to 12micrometers . The analysis described in this paper is based on solution of the governing equations of plume physics and chemistry. These models will be used to develop better sensors and threat detection algorithms.

  20. Precursor gases of aerosols in the Mount St. Helens eruption plumes at stratospheric altitudes

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Condon, E. P.; Ohara, D.

    1982-01-01

    Nineteen stratospheric samples from the eruption plumes of Mount St. Helens were collected in five flight experiments. The plume samples were collected at various altitudes from 13.1 to 20.7 km by using the Ames cryogenic sampling system on board the NASA U-2 aircraft. The enriched, cryogenically collected samples were analyzed by chromatography. The concentrations of aerosols precursor gases (OCS, SO2, and CS2), CH3Cl, N2O, CF2Cl2, and CFCl3 were measured by gas chromatography. Large enhancement of the mixing ratio of SO2 and moderate enhancement of CS2 and OCS were found in the plume samples compared with similar measurement under pre-volcanic conditions. A fast decay rate of the SO2 mixing ratio in the plume was observed. Measurement of Cl(-), SO2(2-), and NO3(-) by ion chromatography was also carried out on water solutions prepared from the plume samples. The results obtained with this technique imply large mixing ratios of HCl, (NO + NO2 + HNO3), and SO2, in which these constituents are the respective sources of the anions. Measurement of the Rn222 concentration in the plume was made. Other stratospheric constituents in the plume samples, such as H2O, CO2, CH4, and CO, were also observed.

  1. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A two-year study conducted to establish a basis for industry decisions on the application of laminar flow control (LFC) to future commercial transports was presented. Areas of investigation included: (1) mission definition and baseline selection; (2) concepts evaluations; and (3) LFC transport configuration selection and component design. The development and evaluation of competing design concepts was conducted in the areas of aerodynamics, structures and materials, and systems. The results of supporting wind tunnel and laboratory testing on a full-scale LFC wing panel, suction surface opening concepts and structural samples were included. A final LFC transport was configured in incorporating the results of concept evaluation studies and potential performance improvements were assessed. Remaining problems together with recommendations for future research are discussed.

  2. Entrainment characteristics of unsteady subsonic jets. [for V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Platzer, M. F.; Simmons, J. M.; Bremhorst, K.

    1979-01-01

    The effectiveness of jet unsteadiness in enhancing flow entrainment was assessed. It was conducted that entrainment depends on the type and amount of jet unsteadiness. Apparently, the mere introduction of jet unsteadiness by small sinusoidal flow angle variations is insufficient to enhance entrainment but, it should be noted that the results were obtained at measuring stations which are all many nozzle widths downstream of the jet nozzle. Thus, no fully conclusive statement can be made at this time about the entrainment close to the nozzle. The high entrainment of the fluidically oscillated jet was caused by the high-frequency content of this square wave type of oscillation but more detailed measurements are clearly needed, in particular for the fluidically oscillated and the pulsed jets. Practical ejector application requires the proper trade-off between entrainment and primary nozzle thrust efficiency.

  3. Interdependence of parameters important to the design of subsonic canard-configured aircraft

    NASA Technical Reports Server (NTRS)

    Feistel, T. W.

    1985-01-01

    An analysis is made of the interrelationship of the longitudinal parameters important to the aerodynamic design of an efficient canard or tandem wing configuration. It is shown that theoretical configuration span efficiencies substantially greater than one are feasible with the proper choice of parameters. This improvement can translate into significantly increased lift/drag ratios assuming fixed spans. The Prandtl-Munk relationship for induced drag is used as a convenient qualitative guide, with stability and trim criteria superimposed. An 'aspect-ratio ratio' parameter is introduced to aid in optimizing a configuration longitudinally. It is shown that a canard/wing 'aspect-ratio ratio' of approximately 3/2 to 2 is necessary to achieve peak span efficiency for a given span ratio and gap, assuming representative parameters.

  4. Effects of nacelle position and shape on performance of subsonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.; Krivec, D. K.; Segall, R. N.

    1983-01-01

    The reduction of installed-propulsion-system drag by installing circular and D-shaped-cross-section nacelles in an underwing-aft position is investigated experimentally in the NASA-Langley 16-foot transonic wind tunnel. Measurements were made at Mach 0.70 to 0.85, -2.5 to 4.1-deg angle of attack, and 3.4 to 4.0 million/ft Reynolds numbers using the NASA USB full-span transonic transport model; and results were compared with those for the wing-body and underwing-forward/pylon-mounted-nacelle (UTW) configurations. While all nacelle configurations are found to have interference drag, which can probably be reduced by eliminating supersonic flows, both aft configurations are shown to reduce drag relative to UTW and increase lift coefficients. The aft D-nacelle had the lowest drag, 6.8 percent of airplane drag lower than UTW at Mach 8.0 and lift coefficient 0.45. Wing pressure distributions and the effects of deflectors are discussed.

  5. A study of engine variable geometry systems for an advanced high subsonic long range commercial aircraft

    NASA Technical Reports Server (NTRS)

    Compagnon, M. A.

    1973-01-01

    Several variable geometry high Mach inlet concepts, aimed at meeting a system noise objective of 15 EPNdB below FAR part 36, for a long range, Mach 0.9 advanced commercial transport are assessed and compared to a fixed geometry inlet with multiple splitters. The effects of a variable exhaust nozzle (mixed exhaust engine) on noise, inlet geometry requirements, and economics are also presented. The best variable geometry inlet configuration identified is a variable cowl design which relies on a high throat Mach number for additional inlet noise suppression only at takeoff, and depends entirely on inlet wall treatment for noise suppression at approach power. Relative economic penalties as a function of noise level are also presented.

  6. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results of a 2-year study are reported which were carried out to extend the development of laminar flow control (LFC) technology and evaluate LFC systems concepts. The overall objective of the LFC program is to provide a sound basis for industry decisions on the application of LFC to future commercial transports. The study was organized into major tasks to support the stated objectives through application of LFC systems concepts to a baseline LFC transport initially generated for the study. Based on competitive evaluation of these concepts, a final selection was made for incorporation into the final design of an LFC transport which also included other advanced technology elements appropriate to the 1990 time period.

  7. A study of rapid engine response systems for an advanced high subsonic, long range commercial aircraft

    NASA Technical Reports Server (NTRS)

    Barber, J. H.; Bennett, G. W.; Derosier, T. A.

    1973-01-01

    A dynamic model representing the characteristics of an advanced technology study engine (1985 certification time period) was constructed and programmed on an analogue/digital computer. This model was then exercised to study and evaluate a large number of techniques, singly and in combination, to improve engine response. Several effective methods to reduce engine accelerating time are identified.

  8. Refinement of Plume Modeling in the Infrared Spectral Region

    DTIC Science & Technology

    1978-06-30

    complex shock wave structure and the presence of a turbulent viscous lnixing layer between the inner hot jet flow and the external freestream flow. The...and Gray [ 19-1 for the compressible free mixing of a primary jet with quiescent air: -p = K pLUs a~ ar where K is the mixing rate factor, L is a...22,23J, which were developed for CO2 radiation from aircraft plumes, to include water vapor radiation and to include the capability of treating

  9. Automated analyzer for aircraft measurements of atmospheric methane and total hydrocarbons

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Purgold, G. C.

    1981-01-01

    An automated methane/total hydrocarbon analyzer is presented, which can produce alternate methane/total hydrocarbon measurements every 7 seconds to provide the spatial resolution required for regional hydrocarbon measurements at aircraft speeds. The construction and sampling techniques developed for the aircraft mounted system are discussed. A technique to periodically measure atmosphere oxygen is incorporated into the analyzer to ensure accurate hydrocarbon measurements, and a data collection methodology is developed to minimize errors resulting from changes in flame ionization detector sensitivity at different altitudes. Aircraft data acquired at the 1979 Southeastern Virginia Urban Plume Study are also presented, which illustrate the application of the instrument to a troposphere pollution plume.

  10. Active Volcanic Plumes on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).

    The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.

    North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page

  11. Potential applications of advanced aircraft in developing countries

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1978-01-01

    An investigation sponsored by NASA indicates that air transportation can play an important role in the economic progress of developing countries. By the turn of the century, the rapid economic growth now occurring in many developing countries should result in a major redistribution of the world's income. Some countries now classified as 'developing' will become 'developed' and are likely to become far more important to the world's civil aviation industry. Developing countries will be increasingly important buyers of conventional subsonic long-haul jet passenger aircraft but not to the point of significant influence on the design or technological content of future aircraft of this type. However, the technological content of more specialized aircraft may be influenced by developing country requirements and reflected in designs which fill a need concerning specialized missions, related to short-haul, low-density, rough runways, and natural resource development.

  12. The Atmospheric Effects of Stratospheric Aircraft: a First Program Report

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.; Wesoky, Howard L.; Miake-Lye, Richard C.; Douglass, Anne R.; Turco, Richard P.; Wuebbles, Donald J.; Ko, Malcolm K. W.; Schmeltekopf, Arthur L.

    1992-01-01

    Studies have indicated that, with sufficient technology development, high speed civil transport aircraft could be economically competitive with long haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern; and this is addressed in the planned 6 yr HSRP begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, the AESA studies particularly emphasizing stratospheric ozone effects. Because it will not be possible to directly measure the impact of an HSCT aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. Lab simulation of heterogeneous chemistry and other effects will continue to be used to improve the current models.

  13. Potential applications of advanced aircraft in developing countries

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1978-01-01

    An investigation sponsored by NASA indicates that air transportation can play an important role in the economic progress of developing countries. By the turn of the century, the rapid economic growth now occurring in many developing countries should result in a major redistribution of the world's income. Some countries now classified as 'developing' will become 'developed' and are likely to become far more important to the world's civil aviation industry. Developing countries will be increasingly important buyers of conventional subsonic long-haul jet passenger aircraft but not to the point of significant influence on the design or technological content of future aircraft of this type. However, the technological content of more specialized aircraft may be influenced by developing country requirements and reflected in designs which fill a need concerning specialized missions, related to short-haul, low-density, rough runways, and natural resource development.

  14. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  15. Sound radiation from a subsonic rotor subjected to turbulence

    NASA Technical Reports Server (NTRS)

    Sevik, M.

    1974-01-01

    The broadband sound radiated by a subsonic rotor subjected to turbulence in the approach stream has been analyzed. The power spectral density of the sound intensity has been found to depend on a characteristic time scale-namely, the integral scale of the turbulence divided by the axial flow velocity-as well as several length-scale ratios. These consist of the ratio of the integral scale to the acoustic wavelength, rotor radius, and blade chord. Due to the simplified model chosen, only a limited number of cascade parameters appear. Limited comparisons with experimental data indicate good agreement with predicted values.

  16. Simulation of Atmospheric-Entry Capsules in the Subsonic Regime

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Childs, Robert E.; Garcia, Joseph A.

    2015-01-01

    The accuracy of Computational Fluid Dynamics predictions of subsonic capsule aerodynamics is examined by comparison against recent NASA wind-tunnel data at high-Reynolds-number flight conditions. Several aspects of numerical and physical modeling are considered, including inviscid numerical scheme, mesh adaptation, rough-wall modeling, rotation and curvature corrections for eddy-viscosity models, and Detached-Eddy Simulations of the unsteady wake. All of these are considered in isolation against relevant data where possible. The results indicate that an improved predictive capability is developed by considering physics-based approaches and validating the results against flight-relevant experimental data.

  17. Computation of subsonic base flow on a vector processor

    NASA Technical Reports Server (NTRS)

    Rudy, D. H.

    1987-01-01

    Two-dimensional subsonic laminar compressible base flow has been studied using numerical solutions of the time-dependent Navier-Stokes equations. These solutions were obtained using an explicit finite-difference scheme which is highly efficient on a vector processor. The organization of the code for a CDC CYBER-205 computer is described. Solutions were obtained for Mach 0.4 and 0.6 flows past a slender blunt-based model at moderately high Reynolds numbers. The flow in the wake is unsteady with periodic shedding of vortices from the trailing edge. The computed shedding frequency was found to increase with increasing Reynolds number.

  18. NASA Subsonic Rotary Wing Project - Structures and Materials Discipline

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Johnson, Susan M.

    2008-01-01

    The Structures & Materials Discipline within the NASA Subsonic Rotary Wing Project is focused on developing rotorcraft technologies. The technologies being developed are within the task areas of: 5.1.1 Life Prediction Methods for Engine Structures & Components 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life 5.2.1 Crashworthiness 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing 5.3.1 Propulsion High Temperature Materials 5.3.2 Lightweight Structures and Noise Integration The presentation will discuss rotorcraft specific technical challenges and needs as well as details of the work being conducted in the six task areas.

  19. Finite element analysis of inviscid subsonic boattail flow

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Gerhart, P. M.

    1981-01-01

    A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.

  20. High speed visualizations applied to subsonic and transonic base flow

    NASA Astrophysics Data System (ADS)

    Rodriguez, O.; Ducruet, C.; Desse, J. M.

    The present experimental study of two-dimensional base flows at subsonic and transonic speeds gives attention to their unsteady properties through the synchronization of high speed visualizations with pressure measurements. The optical test apparatus employed may function as either a shadowgraph or a schlieren system. The time history of the observed phenomenon is restored, and it is found that it is possible to determine the effects of the vortex street on the body in question for different values of the parameters that are involved in the problem investigated.