Sample records for subsp lactis strain

  1. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Pérez, Tania; Balcázar, José Luis; Peix, Alvaro; Valverde, Angel; Velázquez, Encarna; de Blas, Ignacio; Ruiz-Zarzuela, Imanol

    2011-08-01

    The species Lactococcus lactis currently includes three subspecies; L. lactis subsp. lactis and L. lactis subsp. cremoris, isolated from milk sources, and L. lactis subsp. hordniae, isolated from the leafhopper Hordnia circellata. In this study, three strains, designated L105(T), I3 and L101, were isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). These strains were closely related to members of the species Lactococcus lactis. Strain L105(T) showed 99.4 % 16S rRNA gene sequence similarity to that of the type strains L. lactis subsp. lactis NCDO 604(T) and L. lactis subsp. hordniae NCDO 2181(T) and showed 99.9 % similarity to the type strain Lactococcus lactis subsp. cremoris NCDO 607(T). Analysis of two housekeeping genes, rpoB and recA, confirmed the close relationship between the novel strains and L. lactis subsp. cremoris with similarities of 99.3 and 99.7 %, respectively. The three strains could, however, be differentiated from their closest relatives on the basis of several phenotypic characteristics, as was the case for L. lactis subsp. lactis and L. lactis subsp. hordniae, which were also closely related on the basis of 16S rRNA, rpoB and recA gene sequence similarities. The strains isolated in this study represent a new subspecies, for which the name Lactococcus lactis subsp. tructae subsp. nov. is proposed. The type strain is L105(T) ( = LMG 24662(T)  = DSM 21502(T)).

  2. An Ecological Study of Lactococci Isolated from Raw Milk in the Camembert Cheese Registered Designation of Origin Area

    PubMed Central

    Corroler, D.; Mangin, I.; Desmasures, N.; Gueguen, M.

    1998-01-01

    The genetic diversity of lactococci isolated from raw milk in the Camembert cheese Registered Designation of Origin area was studied. Two seasonal samples (winter and summer) of raw milk were obtained from six farms in two areas (Bessin and Bocage Falaisien) of Normandy. All of the strains analyzed had a Lactococcus lactis subsp. lactis phenotype, whereas the randomly amplified polymorphic DNA (RAPD) technique genotypically identified the strains as members of L. lactis subsp. lactis or L. lactis subsp. cremoris. The genotypes were confirmed by performing standard PCR with primers corresponding to a region of the histidine biosynthesis operon. The geographic distribution of each subspecies of L. lactis was determined; 80% of the Bocage Falaisien strains were members of L. lactis subsp. lactis, and 30.5% of the Bessin strains were members of L. lactis subsp. lactis. A dendrogram was produced from a computer analysis of the RAPD profiles in order to evaluate the diversity of the lactococci below the subspecies level. The coefficient of similarity for 117 of the 139 strains identified as members of L. lactis subsp. cremoris was as high as 66%. The L. lactis subsp. lactis strains were more heterogeneous and formed 10 separate clusters (the level of similarity among the clusters was 18%). Reference strains of L. lactis subsp. lactis fell into 2 of these 10 clusters, demonstrating that lactococcal isolates are clearly different. As determined by the RAPD profiles, some L. lactis subsp. lactis strains were specific to the farms from which they originated and were recovered throughout the year (in both summer and winter). Therefore, the typicality of L. lactis subsp. lactis strains was linked to the farm of origin rather than the area. These findings emphasize the significance of designation of origin and the specificity of “Camembert de Normandie” cheese. PMID:9835555

  3. An ecological study of lactococci isolated from raw milk in the camembert cheese registered designation of origin area.

    PubMed

    Corroler, D; Mangin, I; Desmasures, N; Gueguen, M

    1998-12-01

    The genetic diversity of lactococci isolated from raw milk in the Camembert cheese Registered Designation of Origin area was studied. Two seasonal samples (winter and summer) of raw milk were obtained from six farms in two areas (Bessin and Bocage Falaisien) of Normandy. All of the strains analyzed had a Lactococcus lactis subsp. lactis phenotype, whereas the randomly amplified polymorphic DNA (RAPD) technique genotypically identified the strains as members of L. lactis subsp. lactis or L. lactis subsp. cremoris. The genotypes were confirmed by performing standard PCR with primers corresponding to a region of the histidine biosynthesis operon. The geographic distribution of each subspecies of L. lactis was determined; 80% of the Bocage Falaisien strains were members of L. lactis subsp. lactis, and 30.5% of the Bessin strains were members of L. lactis subsp. lactis. A dendrogram was produced from a computer analysis of the RAPD profiles in order to evaluate the diversity of the lactococci below the subspecies level. The coefficient of similarity for 117 of the 139 strains identified as members of L. lactis subsp. cremoris was as high as 66%. The L. lactis subsp. lactis strains were more heterogeneous and formed 10 separate clusters (the level of similarity among the clusters was 18%). Reference strains of L. lactis subsp. lactis fell into 2 of these 10 clusters, demonstrating that lactococcal isolates are clearly different. As determined by the RAPD profiles, some L. lactis subsp. lactis strains were specific to the farms from which they originated and were recovered throughout the year (in both summer and winter). Therefore, the typicality of L. lactis subsp. lactis strains was linked to the farm of origin rather than the area. These findings emphasize the significance of designation of origin and the specificity of "Camembert de Normandie" cheese.

  4. Phenotypic variation in Lactococcus lactis subsp. lactis isolates derived from intestinal tracts of marine and freshwater fish.

    PubMed

    Itoi, S; Yuasa, K; Washio, S; Abe, T; Ikuno, E; Sugita, H

    2009-09-01

    We compared phenotypic characteristics of Lactococcus lactis subsp. lactis derived from different sources including the intestinal tract of marine fish and freshwater fish, and cheese starter culture. In the phylogenetic analysis based on partial 16S rRNA gene nucleotide sequences (1371 bp), freshwater fish-, marine fish- and cheese starter culture-derived strains were identical to that of L. lactis subsp. lactis previously reported. Fermentation profiles determined using the API 50 CH system were similar except for fermentation of several sugars including l-arabinose, mannitol, amygdalin, saccharose, trehalose, inulin and gluconate. The strains did have distinct levels of halotolerance: marine fish-derived strains > cheese starter-derived strain > freshwater fish-derived isolate. Lactococcus lactis subsp. lactis showed extensive diversity in phenotypic adaptation to various environments. The phenotypic properties of these strains suggested that L. lactis subsp. lactis strains from fish intestine have additional functions compared with the cheese starter-derived strain that has previously described. The unique phenotypic traits of the fish intestinal tract-derived L. lactis subsp. lactis might make them useful as a probiotics in aquaculture, and contribute to the development of functional foods and novel food additives, since the strains derived from fish intestines might have additional functions such as antibacterial activity.

  5. Diversity Analysis of Dairy and Nondairy Lactococcus lactis Isolates, Using a Novel Multilocus Sequence Analysis Scheme and (GTG)5-PCR Fingerprinting▿

    PubMed Central

    Rademaker, Jan L. W.; Herbet, Hélène; Starrenburg, Marjo J. C.; Naser, Sabri M.; Gevers, Dirk; Kelly, William J.; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E. T.

    2007-01-01

    The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)5-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene. PMID:17890345

  6. Diversity analysis of dairy and nondairy Lactococcus lactis isolates, using a novel multilocus sequence analysis scheme and (GTG)5-PCR fingerprinting.

    PubMed

    Rademaker, Jan L W; Herbet, Hélène; Starrenburg, Marjo J C; Naser, Sabri M; Gevers, Dirk; Kelly, William J; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E T

    2007-11-01

    The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)(5)-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene.

  7. Draft Genome Sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a Citrate-Fermenting Strain

    PubMed Central

    Zuljan, Federico; Espariz, Martín; Blancato, Victor S.; Esteban, Luis; Alarcón, Sergio

    2016-01-01

    We report the draft genome sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a natural strain isolated from artisanal cheese from northwest Argentina. L. lactis subsp. lactis bv. diacetylactis is one of the most important microorganisms used as starter culture around the world. The CRL264 strain constitutes a model microorganism in the studies on the generation of aroma compounds (diacetyl, acetoin, and 2,3-butanediol) by lactic acid bacteria. Our genome analysis shows similar genetic organization to other available genomes of L. lactis bv. diacetylactis strains. PMID:26847906

  8. Draft Genome Sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a Citrate-Fermenting Strain.

    PubMed

    Zuljan, Federico; Espariz, Martín; Blancato, Victor S; Esteban, Luis; Alarcón, Sergio; Magni, Christian

    2016-02-04

    We report the draft genome sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a natural strain isolated from artisanal cheese from northwest Argentina. L. lactis subsp. lactis bv. diacetylactis is one of the most important microorganisms used as starter culture around the world. The CRL264 strain constitutes a model microorganism in the studies on the generation of aroma compounds (diacetyl, acetoin, and 2,3-butanediol) by lactic acid bacteria. Our genome analysis shows similar genetic organization to other available genomes of L. lactis bv. diacetylactis strains. Copyright © 2016 Zuljan et al.

  9. Comparison of the acidifying activity of Lactococcus lactis subsp. lactis strains isolated from goat's milk and Valdeteja cheese.

    PubMed

    Alonso-Calleja, C; Carballo, J; Capita, R; Bernardo, A; García-López, M L

    2002-01-01

    This work was carried out to study the acid production by Lactococcus lactis subsp. lactis strains isolated from goat's milk and goat cheese (Valdeteja variety) in order to select a suitable starter culture for industrial goat cheese manufacturing. The titrable acidity of 45 Lactococcus lactis subsp. lactis strains isolated from a home-made batch of Valdeteja cheese with excellent sensory characteristics was measured over a period of 18 h. The strains were divided into two groups depending on the acid production rate: 20 fast acid producer (F) strains and 25 slow acid producer (S) strains. The kinetic parameters (lag phase, maximum acid production rate and value of upper asymptote curve) of the acid production curves for F and S strains were significantly (P < 0.001) different. Significant (P < 0.001) differences between titrable acidity of F and S strains were observed after the second hour of incubation. An F strain acetoin producer (Lactococcus lactis subsp. lactis 470Ch2) was selected as autochthonous starter culture for industrial Valdeteja goat cheese manufacturing.

  10. Evaluation of Lactococcus lactis Isolates from Nondairy Sources with Potential Dairy Applications Reveals Extensive Phenotype-Genotype Disparity and Implications for a Revised Species

    PubMed Central

    Cavanagh, Daniel; Casey, Aidan; Altermann, Eric; Cotter, Paul D.; Fitzgerald, Gerald F.

    2015-01-01

    Lactococcus lactis is predominantly associated with dairy fermentations, but evidence suggests that the domesticated organism originated from a plant niche. L. lactis possesses an unusual taxonomic structure whereby strain phenotypes and genotypes often do not correlate, which in turn has led to confusion in L. lactis classification. A bank of L. lactis strains was isolated from various nondairy niches (grass, vegetables, and bovine rumen) and was further characterized on the basis of key technological traits, including growth in milk and key enzyme activities. Phenotypic analysis revealed all strains from nondairy sources to possess an L. lactis subsp. lactis phenotype (lactis phenotype); however, seven of these strains possessed an L. lactis subsp. cremoris genotype (cremoris genotype), determined by two separate PCR assays. Multilocus sequence typing (MLST) showed that strains with lactis and cremoris genotypes clustered together regardless of habitat, but it highlighted the increased diversity that exists among “wild” strains. Calculation of average nucleotide identity (ANI) and tetranucleotide frequency correlation coefficients (TETRA), using the JSpecies software tool, revealed that L. lactis subsp. cremoris and L. lactis subsp. lactis differ in ANI values by ∼14%, below the threshold set for species circumscription. Further analysis of strain TIFN3 and strains from nonindustrial backgrounds revealed TETRA values of <0.99 in addition to ANI values of <95%, implicating that these two groups are separate species. These findings suggest the requirement for a revision of L. lactis taxonomy. PMID:25841018

  11. Bifidobacterium animalis subsp. lactis ATCC 27673 Is a Genomically Unique Strain within Its Conserved Subspecies

    PubMed Central

    Loquasto, Joseph R.; Barrangou, Rodolphe; Dudley, Edward G.; Stahl, Buffy; Chen, Chun

    2013-01-01

    Many strains of Bifidobacterium animalis subsp. lactis are considered health-promoting probiotic microorganisms and are commonly formulated into fermented dairy foods. Analyses of previously sequenced genomes of B. animalis subsp. lactis have revealed little genetic diversity, suggesting that it is a monomorphic subspecies. However, during a multilocus sequence typing survey of Bifidobacterium, it was revealed that B. animalis subsp. lactis ATCC 27673 gave a profile distinct from that of the other strains of the subspecies. As part of an ongoing study designed to understand the genetic diversity of this subspecies, the genome of this strain was sequenced and compared to other sequenced genomes of B. animalis subsp. lactis and B. animalis subsp. animalis. The complete genome of ATCC 27673 was 1,963,012 bp, contained 1,616 genes and 4 rRNA operons, and had a G+C content of 61.55%. Comparative analyses revealed that the genome of ATCC 27673 contained six distinct genomic islands encoding 83 open reading frames not found in other strains of the same subspecies. In four islands, either phage or mobile genetic elements were identified. In island 6, a novel clustered regularly interspaced short palindromic repeat (CRISPR) locus which contained 81 unique spacers was identified. This type I-E CRISPR-cas system differs from the type I-C systems previously identified in this subspecies, representing the first identification of a different system in B. animalis subsp. lactis. This study revealed that ATCC 27673 is a strain of B. animalis subsp. lactis with novel genetic content and suggests that the lack of genetic variability observed is likely due to the repeated sequencing of a limited number of widely distributed commercial strains. PMID:23995933

  12. [A comparison of the properties of bacteriocins formed by Lactococcus lactis subsp. lactis strains of diverse origin].

    PubMed

    Stoianova, L G; Egorov, N S; Fedorova, G B; Katrukha, G S; Netrusov, A I

    2007-01-01

    Bacteriocins formed by four strains of Lactococcus lactis subsp. lactis have been studied and compared: 729 (a natural strain isolated from milk), 1605 (a mutant of strain 729), F-116 (a recombinant obtained by fusing of protoplasts of the two related strain 729 and 1605), and a nisin-forming strain obtained by adaptive selection at Moscow State University. Antimicrobial activity studies revealed differences between the strains in the effects on individual groups of microorganisms; the activities of the strains were also distinct from that of Nisaplin (a commercial preparation of the bacteriocin nisin). Methods for isolation and purification of bacteriocins have been developed, making it possible to obtain individual components of antibiotic complexes as chromatographically pure preparations. Bacteriocins formed by the strains of Lactococcus lactis subsp. lactis have been identified and differences in their biological and physicochemical properties, established. A novel potent broad-spectrum antibiotic substance distinct from nisin has been isolated from the recombinant strain F-116.

  13. Use of PCR-Based Methods for Rapid Differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis

    PubMed Central

    Torriani, Sandra; Zapparoli, Giacomo; Dellaglio, Franco

    1999-01-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412T, which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains. PMID:10508059

  14. Use of PCR-based methods for rapid differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis.

    PubMed

    Torriani, S; Zapparoli, G; Dellaglio, F

    1999-10-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412(T), which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.

  15. Draft Genome Sequence of the Putrescine-Producing Strain Lactococcus lactis subsp. lactis 1AA59

    PubMed Central

    del Rio, Beatriz; Linares, Daniel M.; Fernandez, María; Mayo, Baltasar; Martín, M. Cruz

    2015-01-01

    We report here the 2,576,542-bp genome annotated draft assembly sequence of Lactococcus lactis subsp. lactis 1AA59. This strain—isolated from a traditional cheese—produces putrescine, one of the most frequently biogenic amines found in dairy products. PMID:26089428

  16. Draft Genome Sequence of Bifidobacterium animalis subsp. lactis Strain CECT 8145, Able To Improve Metabolic Syndrome In Vivo.

    PubMed

    Chenoll, E; Codoñer, F M; Silva, A; Martinez-Blanch, J F; Martorell, P; Ramón, D; Genovés, S

    2014-03-27

    Bifidobacterium animalis subsp. lactis strain CECT 8145 is able to reduce body fat content and improve metabolic syndrome biomarkers. Here, we report the draft genome sequence of this strain, which may provide insights into its safety status and functional role.

  17. Characterization of two nisin-producing Lactococcus lactis subsp. lactis strains isolated from a commercial sauerkraut fermentation.

    PubMed Central

    Harris, L J; Fleming, H P; Klaenhammer, T R

    1992-01-01

    Two Lactococcus lactis subsp. lactis strains, NCK400 and LJH80, isolated from a commercial sauerkraut fermentation were shown to produce nisin. LJH80 was morphologically unstable and gave rise to two stable, nisin-producing (Nip+) derivatives, NCK318-2 and NCK318-3. NCK400 and derivatives of LJH80 exhibited identical morphological and metabolic characteristics, but could be distinguished on the basis of plasmid profiles and genomic hybridization patterns to a DNA probe specific for the iso-ISS1 element, IS946. NCK318-2 and NCK318-3 harbored two and three plasmids, respectively, which hybridized with IS946. Plasmid DNA was not detected in NCK400, and DNA from this strain failed to hybridize with IS946. Despite the absence of detectable plasmid DNA in NCK400, nisin-negative derivatives (NCK402 and NCK403) were isolated after repeated transfer in broth at 37 degrees C. Nisin-negative derivatives concurrently lost the ability to ferment sucrose and became sensitive to nisin. A 4-kbp HindIII fragment containing the structural gene for nisin (spaN), cloned from L. lactis subsp. lactis ATCC 11454, was used to probe genomic DNA of NCK318-2, NCK318-3, NCK400, and NCK402 digested with EcoRI or HindIII. The spaN probe hybridized to an 8.8-kbp EcoRI fragment and a 10-kbp HindIII fragment in the Nip+ sauerkraut isolates, but did not hybridize to the Nip- derivative, NCK402. A different hybridization pattern was observed when the same probe was used against Nip+ L. lactis subsp. lactis ATCC 11454 and ATCC 7962. These phenotypic and genetic data confirmed that unique Nip+ L. lactis subsp. lactis strains were isolated from fermenting sauerkraut. Images PMID:1622214

  18. Genome Sequence of the Cheese-Starter Strain Lactobacillus delbrueckii subsp. lactis CRL 581.

    PubMed

    Hebert, Elvira María; Raya, Raúl R; Brown, Lucía; Font de Valdez, Graciela; Savoy de Giori, Graciela; Taranto, María Pía

    2013-08-08

    We report the genome sequence of Lactobacillus delbrueckii subsp. lactis CRL 581 (1,911,137 bp, GC 49.7%), a proteolytic strain isolated from a homemade Argentinian hard cheese which has a key role in bacterial nutrition and releases bioactive health-beneficial peptides from milk proteins.

  19. Characterization of a Wild, Novel Nisin A-Producing Lactococcus Strain with an L. lactis subsp. cremoris Genotype and an L. lactis subsp. lactis Phenotype, Isolated from Greek Raw Milk

    PubMed Central

    Parapouli, Maria; Delbès-Paus, Céline; Kakouri, Athanasia; Koukkou, Anna-Irini; Montel, Marie-Christine

    2013-01-01

    Several molecular taxonomic studies have revealed that many natural (wild) Lactococcus lactis strains of dairy origin which are phenotypically representative of the L. lactis subspecies lactis cluster genotypically within subspecies cremoris and vice versa. Recently, we isolated two wild nisin-producing (Nis+) L. lactis strains, M78 and M104, of the lactis phenotype from Greek raw milk (J. Samelis, A. Lianou, A. Kakouri, C. Delbès, I. Rogelj, B. B. Matijašic, and M. C. Montel, J. Food Prot. 72:783–790, 2009); strain M78 possess a novel nisin A sequence (GenBank accession number HM219853). In this study, the actual subspecies identity of M78 and M104 isolates was elucidated, using 16S rRNA and acmA (encoding lactococcal N-acetylmuramidase) gene and histidine biosynthesis operon polymorphisms and 16S rRNA and ldh (encoding lactate dehydrogenase) gene phylogenies. Except the acmA gene analysis, molecular tools revealed that isolates M78 and M104 clustered with strains of the cremoris genotype, including the LMG 6897T strain, while they were distant from strains of the lactis genotype, including the LMG 6890T strain. The two wild isolates had identical repetitive sequence-based PCR (rep-PCR), randomly amplified polymorphic DNA (RAPD), plasmid, and whole-cell protein profiles and shared high 16S rRNA (99.9%) and ldh (100%) gene sequence homologies. In contrast, they exhibited identical sugar fermentation and enzymatic patterns which were similar to those of the subspecies lactis LMG 6890T strain. To our knowledge, this is the first complete identification report on a wild L. lactis subsp. cremoris genotype of the lactis phenotype which is capable of nisin A production and, thus, has strong potential for use as a novel dairy starter and/or protective culture. PMID:23542625

  20. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: evaluation of the probiotic potential.

    PubMed

    Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its probiotic potential. Lc. lactis DF4Mi was resistant to acidic pH and oxbile, presented co-aggregation with Listeria monocytogenes, and was not affected by several drugs from different generic groups, being sensitive to most tested antibiotics. These properties indicate that this Lc. lactis strain can be used for enhancement of dairy foods safety and quality, in combination with potential probiotic properties.

  1. Assessment of probiotic properties of lactic acid bacteria isolated from Indonesian naturally fermented milk

    NASA Astrophysics Data System (ADS)

    Jatmiko, Yoga Dwi; Howarth, Gordon S.; Barton, Mary D.

    2017-11-01

    This study aimed to characterize the probiotic properties of lactic acid bacteria from the naturally fermented milk of Indonesia, namely dangke and dadih. Fifty-one representative lactic acid bacteria belonging to the species Lactobacillus Plantarum, Lactococcus lactis subsp. lactis and Enterococcus faecium were evaluated in vitro for potential probiotic properties based on their bile salt resistance, low pH tolerance, antimicrobial activity, antibiotic susceptibility and adherence to Caco-2 colon cancer cells. In addition, bacteriocin related gene (plantaricin A), bile salt hydrolase (bsh) and mannose-specific adhesin (msa) genes in the genome of lactobacilli were also examined. None of the dangke isolates, which belonged to the species L. lactis subsp. lactis tolerated low pH. However, eight of the isolates were able to grow in the presence of bile salts. It was observed that L. plantarum strain S1.30 and SL2.7 from dadih tolerated low pH, survived bile salt concentrations and were resistant to vancomycin. Furthermore, these strains also contained bacteriocin regulating gene (plantaricin A) and msa and bsh genes in their genome. However, only the strain S1.30 exhibited optimal antimicrobial activity against the selected pathogens and was able to adhere to Caco-2 cells by up to 82.24±0.14%. Antagonistic activity of L. lactis subsp. lactis from dadih and dangke was not detected. However, 73.94±1.26% adherence to Caco-2 cells was demonstrated by L. lactis subsp. lactis strain SL3.34 sourced from dangke. These results suggest that Lactobacillus plantarum strain S1.30 associated with dadih fulfilled the in vitro probiotic criteria and could be exploited for further in vivo evaluation. In addition, dadih was an effective probiotic carrier compared to dangke.

  2. Characterization of lactococci isolated from milk produced in the Camembert region of Normandy.

    PubMed

    Desmasures, N; Mangin, I; Corroler, D; Guéguen, M

    1998-12-01

    Thirty-eight Lactococcus strains, isolated from raw milk produced in two dairy areas in Normandy, were identified at the phenotypic level. Only Lactococcus lactis strains with the lactis phenotype were found in the milk samples. Most strains fermented lactose (97%) and showed proteinase activity (76%). Isolates were characterized by RAPD technique and rRNA gene restriction analysis. More L. lactis strains with the lactis genotype were found in the first area, while L. lactis strains with the cremoris genotype predominated in the second area. RAPD was more efficient than rRNA gene restriction analysis in differentiating between strains with the subsp. lactis genotype. For L. lactis with the subsp. cremoris genotype, the second method gave a better result but there was poor discrimination between strains. Plasmid profiles were determined. Patterns ranged in size from 1.3 to 16.5 kbp, and 29 different profiles were found. Six groups of strains were determined, five of which were specific for the area of origin. It is suggested that the region of manufacture could influence organoleptic properties of cheeses because of different Lactococcus strains in the raw milk used for cheese making.

  3. Assessment of stress tolerance acquisition in the heat-tolerant derivative strains of Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus rhamnosus GG.

    PubMed

    Aakko, J; Sánchez, B; Gueimonde, M; Salminen, S

    2014-07-01

    The purpose of this study was to investigate the heat-shock response at molecular level in Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. lactis BB-12 and their heat-tolerant derivatives and to characterize the changes that make the derivatives more robust in terms of heat stress. The study strains were exposed for 2 h to a heat-shock treatment, Bif. animalis subsp. lactis BB-12 and its derivative at 50°C and the Lact. rhamnosus GG and its derivative at 60°C. Protein synthesis before and after heat shock was examined using proteomics and RT-qPCR. The analysis revealed that the regulation of seven proteins in both strain pairs was modified as a response to heat or between the original and the derivative strain. The comparison of wild-type strains and the heat-tolerant derivatives suggests that the acquisition of heat tolerance in the Bif. animalis subsp. lactis BB-12 derivative is due to a slightly increased constitutive level of chaperones, while in Lact. rhamnosus GG derivative, the main reason seems to be a higher ability to induce the production of chaperones. This study revealed possible markers of heat tolerance in B. lactis and Lact. rhamnosus strains. This study increases our knowledge on how Lactobacillus and Bifidobacterium strains may acquire heat tolerance. These findings may be useful for improving the heat tolerance of existing probiotic strains as well as screening new heat-tolerant strains. © 2014 The Society for Applied Microbiology.

  4. Unleashing Natural Competence in Lactococcus lactis by Induction of the Competence Regulator ComX

    PubMed Central

    Mulder, Joyce; Wels, Michiel; Kuipers, Oscar P.; Bron, Peter A.

    2017-01-01

    ABSTRACT In biotechnological workhorses like Streptococcus thermophilus and Bacillus subtilis, natural competence can be induced, which facilitates genetic manipulation of these microbes. However, in strains of the important dairy starter Lactococcus lactis, natural competence has not been established to date. However, in silico analysis of the complete genome sequences of 43 L. lactis strains revealed complete late competence gene sets in 2 L. lactis subsp. cremoris strains (KW2 and KW10) and at least 10 L. lactis subsp. lactis strains, including the model strain IL1403 and the plant-derived strain KF147. The remainder of the strains, including all dairy isolates, displayed genomic decay in one or more of the late competence genes. Nisin-controlled expression of the competence regulator comX in L. lactis subsp. lactis KF147 resulted in the induction of expression of the canonical competence regulon and elicited a state of natural competence in this strain. In contrast, comX expression in L. lactis NZ9000, which was predicted to encode an incomplete competence gene set, failed to induce natural competence. Moreover, mutagenesis of the comEA-EC operon in strain KF147 abolished the comX-driven natural competence, underlining the involvement of the competence machinery. Finally, introduction of nisin-inducible comX expression into nisRK-harboring derivatives of strains IL1403 and KW2 allowed the induction of natural competence in these strains also, expanding this phenotype to other L. lactis strains of both subspecies. IMPORTANCE Specific bacterial species are able to enter a state of natural competence in which DNA is taken up from the environment, allowing the introduction of novel traits. Strains of the species Lactococcus lactis are very important starter cultures for the fermentation of milk in the cheese production process, where these bacteria contribute to the flavor and texture of the end product. The activation of natural competence in this industrially relevant organism can accelerate research aiming to understand industrially relevant traits of these bacteria and can facilitate engineering strategies to harness the natural biodiversity of the species in optimized starter strains. PMID:28778888

  5. Characterization of certain bacterial strains for potential use as starter or probiotic cultures in dairy products.

    PubMed

    Monteagudo-Mera, A; Caro, I; Rodríguez-Aparicio, L B; Rúa, J; Ferrero, M A; García-Armesto, M R

    2011-08-01

    The present work was aimed at characterizing 12 strains of lactic acid bacteria (LAB) to obtain improved potential starter or probiotic cultures that could be used for making dairy products from ewe's milk and cow's milk. Eight strains with antimicrobial properties, isolated from ewe's milk and from cheese made from ewe's and/or cow's milk, were studied. They were identified as Enterococcus faecalis (five strains), Lactococcus lactis subsp. cremoris, Leuconostoc mesenteroides, and Lactobacillus paracasei subsp. paracasei (one strain of each species). Additionally, four strains were obtained from the American Type Culture Collection: Lactobacillus casei 393 (isolated from cheese), L. lactis subsp. lactis 11454 (origin nonspecified and a producer of nisin), and two strains isolated from human feces (L. paracasei subsp. paracasei 27092 and Lactobacillus rhamnosus 53103, antibacterial agent producer). All E. faecalis strains showed at least one virulence factor (either hemolysin or gelatinase), which emphasizes the importance of these studies in this species. Both L. lactis strains and most Lactobacillus spp. were good acidifiers in ewe's milk and cow's milk at 30°C. High β-galactosidase activity, as well as aminopeptidase activities that favor the development of desirable flavors in cheese, were detected in all Lactobacillus spp. strains. Furthermore, L. rhamnosus ATCC 53103 showed α-fucosidase activity (thought to help colonization of the intestine) and lack of α-glucosidase activity (a trait considered positive for diabetic and obese humans). This last enzymatic activity was also lacking in L. lactis ATCC 11454. L. mesenteroides was the only strain D(2)-lactic acid producer. The selection of any particular strain for probiotic or dairy cultures should be performed according to the technological and/or functional abilities needed.

  6. Lactococcus lactis subsp. cremoris strain JFR1 attenuates Salmonella adhesion to human intestinal cells in vitro.

    PubMed

    Zhang, Justina Su; Guri, Anilda; Corredig, Milena; Morales-Rayas, Rocio; Hassan, Ashraf; Griffiths, Mansel; LaPointe, Gisèle

    2016-12-01

    Lactococcus lactis subsp. cremoris JFR1 has been studied in reduced fat cheese due to its ability to produce exopolysaccharides (EPS) in situ, contributing to improved textural and organoleptic properties. In this study, the effect of strain JFR1 on virulence gene expression and attachment of Salmonella to HT-29 human colon carcinoma cells was investigated. Overnight cultures of L. lactis subsp. cremoris JFR1 containing EPS, grown in M17 media with 0.5% glucose supplementation, decreased attachment as well as down regulated virulence gene expression in Salmonella enterica subsp. enterica when tested on HT-29 cells. However, EPS isolated from milk fermented with L. lactis subsp. cremoris JFR1 did not affect Salmonella virulence gene expression or attachment to HT-29 cells. These results suggest that EPS does not contribute to the attachment of Salmonella to human intestinal cells. However, the possibility that the isolation process may have affected the structural features of EPS cannot be ruled out. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Microbiota of Minas cheese as influenced by the nisin producer Lactococcus lactis subsp. lactis GLc05.

    PubMed

    Perin, Luana Martins; Dal Bello, Barbara; Belviso, Simona; Zeppa, Giuseppe; Carvalho, Antônio Fernandes de; Cocolin, Luca; Nero, Luís Augusto

    2015-12-02

    Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or pasteurized cow milk. This study proposed an alternative production of Minas cheese using raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production of biogenic amines (BAs) was assessed as a safety aspect. Minas cheese was produced in two treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and independent (rep-PCR and PCR-DGGE) methods were employed to characterize the microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, separating them into two different clusters. Lactococcus sp. was found as the main microorganism in both cheeses, and the microbiota of cheese A presented a higher number of species. High concentrations of tyramine were found in both cheeses and, at specific ripening times, the BA amounts in cheese B were significantly higher than in cheese A (p<0.05). The interaction of nisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by demonstration of its influence in the complex microbiota naturally present in a raw goat milk cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis GLc05 influenced also the production of BA determining that their amounts in the cheeses were maintained at acceptable levels for human consumption. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Characterization of the bacteriocin

    PubMed Central

    Furtado, Danielle N.; Todorov, Svetoslav D.; Landgraf, Mariza; Destro, Maria T.; Franco, Bernadette D.G.M.

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its antimicrobial activity. The bacteriocin presented a broad spectrum of activity, was sensitive to proteolytic enzymes, resistant to heat and pH extremes, and not affected by the presence of SDS, Tween 20, Tween 80, EDTA or NaCl. Bacteriocin production was dependent on the components of the culture media, especially nitrogen source and salts. When tested by PCR, the bacteriocin gene presented 100% homology to nisin Z gene. These properties indicate that this L. lactis subsp. lactis DF4Mi can be used for enhancement of dairy foods safety and quality. PMID:25763065

  9. Lactobacillus delbrueckii subsp lactis CIDCA 133 modulates response of human epithelial and dendritic cells infected with Bacillus cereus.

    PubMed

    Rolny, I S; Tiscornia, I; Racedo, S M; Pérez, P F; Bollati-Fogolín, M

    2016-11-30

    It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of selected lactobacilli strains on the course of B. cereus infection.

  10. Technological characterization and survival of the exopolysaccharide-producing strain Lactobacillus delbrueckii subsp. lactis 193 and its bile-resistant derivative 193+ in simulated gastric and intestinal juices.

    PubMed

    Burns, Patricia; Vinderola, Gabriel; Reinheimer, Jorge; Cuesta, Isabel; de Los Reyes-Gavilán, Clara G; Ruas-Madiedo, Patricia

    2011-08-01

    The capacity of lactic acid bacteria to produce exopolysaccharides (EPS) conferring microorganisms a ropy phenotype could be an interesting feature from a technological point of view. Progressive adaptation to bile salts might render some lactobacilli able to overcome physiological gut barriers but could also modify functional properties of the strain, including the production of EPS. In this work some technological properties and the survival ability in simulated gastrointestinal conditions of Lactobacillus delbrueckii subsp. lactis 193, and Lb. delbrueckii subsp. lactis 193+, a strain with stable bile-resistant phenotype derived thereof, were characterized in milk in order to know whether the acquisition of resistance to bile could modify some characteristics of the microorganism. Both strains were able to grow and acidify milk similarly; however the production of ethanol increased at the expense of the aroma compound acetaldehyde in milk fermented by the strain 193+, with respect to milk fermented by the strain 193. Both microorganisms produced a heteropolysaccharide composed of glucose and galactose, and were able to increase the viscosity of fermented milks. In spite of the higher production yield of EPS by the bile-resistant strain 193+, it displayed a lower ability to increase viscosity than Lb. delbrueckii subsp. lactis 193. Milk increased survival in simulated gastric juice; the presence of bile improved adhesion to the intestinal cell line HT29-MTX in both strains. However, the acquisition of a stable resistance phenotype did not improve survival in simulated gastric and intestinal conditions or the adhesion to the intestinal cell line HT29-MTX. Thus, Lb. delbrueckii subsp. lactis 193 presents suitable technological properties for the manufacture of fermented dairy products; the acquisition of a stable bile-resistant phenotype modified some properties of the microorganism. This suggests that the possible use of bile-resistant derivative strains should be carefully evaluated in each specific application considering the influence that the acquisition of a stable bile-resistant phenotype could have in survival ability in gastric and intestinal conditions and in technological properties.

  11. Development of a pentaplex PCR assay for the simultaneous detection of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. helveticus, L. fermentum in whey starter for Grana Padano cheese.

    PubMed

    Cremonesi, Paola; Vanoni, Laura; Morandi, Stefano; Silvetti, Tiziana; Castiglioni, Bianca; Brasca, Milena

    2011-03-30

    A pentaplex PCR assay for the rapid, selective and simultaneous detection of Lactobacillus helveticus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and L. fermentum, was developed. The target sequences were a group of genes coding for beta-galactosidase production (S. thermophilus and L. delbrueckii subsp. bulgaricus), for cell-enveloped associated proteinase synthesis (L. helveticus), for dipeptide transport system production (L. delbrueckii subsp. lactis) and for arginine-ornithine antiporter protein production (L. fermentum). The analytical specificity of the assay was evaluated with 5 reference strains and 140 lactic acid bacterial strains derived from raw milk cheeses and belonging to the Lactobacillus, Streptococcus, Lactococcus and Enterococcus genera. The identification limit for each target strain was 10(3)CFU/ml. This new molecular assay was used to investigate the LAB population by direct extraction of DNA from the 12 whey cultures for Grana Padano. The pentaplex PCR assay revealed a good correspondence with microbiological analyses and allowed to identify even minor LAB community members which, can be out-competed in vitro by numerically more abundant microbial species. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Three new insertion sequence elements ISLdl2, ISLdl3, and ISLdl4 in Lactobacillus delbrueckii: isolation, molecular characterization, and potential use for strain identification.

    PubMed

    Ravin, Victor; Alatossava, Tapani

    2003-05-01

    A group of new insertion sequence (IS) elements, ISLdl2, ISLdl3, and ISLdl4, from Lactobacillus delbrueckii subsp. lactis ATCC 15808 was isolated, characterized, and used for strain identification together with ISLdl1, recently characterized as an L. delbrueckii IS element belonging to the ISL3 family. ISLdl2 was 1367 bp in size and had a 24 bp IR and an 8 bp DR. The single ORF of ISLdl2 encoded a protein of 392 aa similar to transposases of the IS256 family. ISLdl3 had a single ORF encoding a protein of 343 aa similar to transposases of the IS30 family. Finally, ISLdl4 had a single ORF encoding a protein of 406 aa and displayed homology to the transposases of the IS110 family. ISLdl4 was only slight different from ISL4 (Accession No. AY040213). ISLdl1, ISLdl2, and ISLdl4 were present in all of the 10 L. delbrueckii subsp. lactis and subsp. delbrueckii strains tested, as well as in three of the 11 L. delbrueckii subsp. bulgaricus strains tested. ISLdl3 was present only in four closely related strains of L. delbrueckii subsp. lactis. These IS elements were not observed in Lactobacillus rhamnosus, Lactobacillus acidophilus, Lactobacillus helveticus, or Lactobacillus plantarum. A cluster of IS elements, ISLdl1, ISLdl2, ISLdl3, ISLdl4, and ISL6, was observed in L. delbrueckii subsp. lactis strain ATCC 15808. Within this cluster, ISLdl4 was inserted into ISLdl1 between the left IR and the start codon of ORF455, encoding a putative transposase. Most of the integration sites of the IS elements were strain-specific. We have observed that IS elements can migrate from one strain to another as integral parts of bacterial DNA by using phage LL-H as a vehicle. We demonstrate for the first time that inverse PCR and vectorette PCR methods with primers based on sequences of the IS elements could be used for identification of L. delbrueckii strains.

  13. Antilisterial Activity of Nisin-Like Bacteriocin-Producing Lactococcus lactis subsp. lactis Isolated from Traditional Sardinian Dairy Products

    PubMed Central

    Cosentino, Sofia; Fadda, Maria Elisabetta; Deplano, Maura; Melis, Roberta; Pomata, Rita; Pisano, Maria Barbara

    2012-01-01

    With the aim of selecting LAB strains with antilisterial activity to be used as protective cultures to enhance the safety of dairy products, the antimicrobial properties of 117 Lactococcus lactis subsp. lactis isolated from artisanal Sardinian dairy products were evaluated, and six strains were found to produce bacteriocin-like substances. The capacity of these strains to antagonize Listeria monocytogenes during cocultivation in skimmed milk was evaluated, showing a reduction of L. monocytogenes counts of approximately 4 log units compared to the positive control after 24 h of incubation. In order for a strain to be used as bioprotective culture, it should be carefully evaluated for the presence of virulence factors, to determine what potential risks might be involved in its use. None of the strains tested was found to produce biogenic amines or to possess haemolytic activity. In addition, all strains were sensitive to clinically important antibiotics such as ampicillin, tetracycline, and vancomycin. Our results suggest that these bac+ strains could be potentially applied in cheese manufacturing to control the growth of L. monocytogenes. PMID:22536018

  14. Inhibition of Listeria monocytogenes in Hot Dogs by Surface Application of Freeze-Dried Bacteriocin-Containing Powders from Lactic Acid Bacteria.

    PubMed

    Ünlü, Gülhan; Nielsen, Barbara; Ionita, Claudia

    2016-06-01

    Six lactic acid bacteria (LAB) strains, Lactococcus lactis BFE 920, L. lactis subsp. lactis ATCC 11454, L. lactis subsp. cremoris ATCC 14365, Lactobacillus curvatus L442, Lact. curvatus LTH 1174, and Lact. bavaricus MN, were grown in cheddar cheese whey supplemented with complex nutrient sources. Cell-free culture supernatants were freeze-dried, and the resulting bacteriocin-containing powders were applied on the surface of hot dogs that were inoculated (~4 log cfu/hot dog) with a five-strain Listeria monocytogenes cocktail. Hot dogs were vacuum-sealed and stored at 4 °C for 4 weeks. L. monocytogenes was enumerated, using both tryptic soy agar (TSA) and oxford listeria agar (OXA), on day 0 and at 1, 2, 3, and 4 weeks of the refrigerated storage. In hot dogs containing only the L. monocytogenes inoculum, L. monocytogenes counts increased from 4 up to 7 log cfu/hot dog. All samples containing freeze-dried bacteriocin-containing powders exhibited significantly lowered (P < 0.05) L. monocytogenes populations on the surface of hot dogs throughout the 4-week study except for bavaricin MN powder. Bacterial counts on hot dogs packed without any powder were statistically equal on day 0 when enumerated on OXA. Freeze-dried bacteriocin-containing powders from Lact. curvatus L442 and L. lactis subsp. cremoris ATCC 14365 decreased L. monocytogenes populations on the surface of hot dogs by greater than 2 log cfu/hot dog throughout the 4-week study. For the powdered bacteriocin preparations from L. lactis BFE 920, L. lactis subsp. lactis ATCC 11454, and Lact. curvatus LTH 1174, L. monocytogenes populations were determined to be approximately 3-log cfu/hot dog after 4 weeks of storage.

  15. Evaluation of a select strain of Lactobacillus delbrueckii subsp. lactis as a biological control agent for pathogens on fresh-cut vegetables stored at 7 degrees C.

    PubMed

    Harp, E; Gilliland, S E

    2003-06-01

    Raw vegetables inoculated with selected pathogenic bacteria were treated with a strain of Lactobacillus delbrueckii subsp. lactis, which was selected for its ability to produce hydrogen peroxide at refrigerated temperatures. The vegetables inoculated included broccoli, cabbage, carrots, and lettuce. Each vegetable was rinsed, chopped, and stored under conditions similar to those used for ready-to-eat vegetables sold at retail. Portions of each vegetable were separately inoculated with one of two pathogenic bacteria, Escherichia coli O157:H7 or Listeria monocytogenes. Prior to packaging, one portion of each inoculated vegetable was treated with a cell suspension of the selected strain of L. delbrueckii subsp. lactis. The vegetables were stored at 7 degrees C for 6 days. The populations of pathogens and lactobacilli on each sample were enumerated on storage days 0, 3, and 6. Although populations of L. delbrueckii subsp. lactis remained at high levels during storage, there was no noticeable antagonistic action against the pathogens under conditions similar to those used for these products at the retail level. Each pathogen survived on all vegetables throughout storage. Further testing revealed that there was apparently sufficient catalase activity in the cut vegetables to destroy enough of the hydrogen peroxide to prevent antagonistic action against the pathogens.

  16. Combination of Metabolomic and Proteomic Analysis Revealed Different Features among Lactobacillus delbrueckii Subspecies bulgaricus and lactis Strains While In Vivo Testing in the Model Organism Caenorhabditis elegans Highlighted Probiotic Properties

    PubMed Central

    Zanni, Elena; Schifano, Emily; Motta, Sara; Sciubba, Fabio; Palleschi, Claudio; Mauri, Pierluigi; Perozzi, Giuditta; Uccelletti, Daniela; Devirgiliis, Chiara; Miccheli, Alfredo

    2017-01-01

    Lactobacillus delbrueckii represents a technologically relevant member of lactic acid bacteria, since the two subspecies bulgaricus and lactis are widely associated with fermented dairy products. In the present work, we report the characterization of two commercial strains belonging to L. delbrueckii subspecies bulgaricus, lactis and a novel strain previously isolated from a traditional fermented fresh cheese. A phenomic approach was performed by combining metabolomic and proteomic analysis of the three strains, which were subsequently supplemented as food source to the model organism Caenorhabditis elegans, with the final aim to evaluate their possible probiotic effects. Restriction analysis of 16S ribosomal DNA revealed that the novel foodborne strain belonged to L. delbrueckii subspecies lactis. Proteomic and metabolomic approaches showed differences in folate, aminoacid and sugar metabolic pathways among the three strains. Moreover, evaluation of C. elegans lifespan, larval development, brood size, and bacterial colonization capacity demonstrated that L. delbrueckii subsp. bulgaricus diet exerted beneficial effects on nematodes. On the other hand, both L. delbrueckii subsp. lactis strains affected lifespan and larval development. We have characterized three strains belonging to L. delbrueckii subspecies bulgaricus and lactis highlighting their divergent origin. In particular, the two closely related isolates L. delbrueckii subspecies lactis display different galactose metabolic capabilities. Moreover, the L. delbrueckii subspecies bulgaricus strain demonstrated potential probiotic features. Combination of omic platforms coupled with in vivo screening in the simple model organism C. elegans is a powerful tool to characterize industrially relevant bacterial isolates. PMID:28702021

  17. Combination of Metabolomic and Proteomic Analysis Revealed Different Features among Lactobacillus delbrueckii Subspecies bulgaricus and lactis Strains While In Vivo Testing in the Model Organism Caenorhabditis elegans Highlighted Probiotic Properties.

    PubMed

    Zanni, Elena; Schifano, Emily; Motta, Sara; Sciubba, Fabio; Palleschi, Claudio; Mauri, Pierluigi; Perozzi, Giuditta; Uccelletti, Daniela; Devirgiliis, Chiara; Miccheli, Alfredo

    2017-01-01

    Lactobacillus delbrueckii represents a technologically relevant member of lactic acid bacteria, since the two subspecies bulgaricus and lactis are widely associated with fermented dairy products. In the present work, we report the characterization of two commercial strains belonging to L. delbrueckii subspecies bulgaricus , lactis and a novel strain previously isolated from a traditional fermented fresh cheese. A phenomic approach was performed by combining metabolomic and proteomic analysis of the three strains, which were subsequently supplemented as food source to the model organism Caenorhabditis elegans , with the final aim to evaluate their possible probiotic effects. Restriction analysis of 16S ribosomal DNA revealed that the novel foodborne strain belonged to L. delbrueckii subspecies lactis . Proteomic and metabolomic approaches showed differences in folate, aminoacid and sugar metabolic pathways among the three strains. Moreover, evaluation of C. elegans lifespan, larval development, brood size, and bacterial colonization capacity demonstrated that L. delbrueckii subsp. bulgaricus diet exerted beneficial effects on nematodes. On the other hand, both L. delbrueckii subsp. lactis strains affected lifespan and larval development. We have characterized three strains belonging to L. delbrueckii subspecies bulgaricus and lactis highlighting their divergent origin. In particular, the two closely related isolates L. delbrueckii subspecies lactis display different galactose metabolic capabilities. Moreover, the L. delbrueckii subspecies bulgaricus strain demonstrated potential probiotic features. Combination of omic platforms coupled with in vivo screening in the simple model organism C. elegans is a powerful tool to characterize industrially relevant bacterial isolates.

  18. Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays

    PubMed Central

    Saraiva, Tessália D. L.; Silva, Wanderson M.; Pereira, Ulisses P.; Campos, Bruno C.; Benevides, Leandro J.; Rocha, Flávia S.; Figueiredo, Henrique C. P.; Azevedo, Vasco; Soares, Siomar C.

    2017-01-01

    Lactococcus lactis subsp. lactis NCDO 2118 was recently reported to alleviate colitis symptoms via its anti-inflammatory and immunomodulatory activities, which are exerted by exported proteins that are not produced by L. lactis subsp. lactis IL1403. Here, we used in vitro and in silico approaches to characterize the genomic structure, the safety aspects, and the immunomodulatory activity of this strain. Through comparative genomics, we identified genomic islands, phage regions, bile salt and acid stress resistance genes, bacteriocins, adhesion-related and antibiotic resistance genes, and genes encoding proteins that are putatively secreted, expressed in vitro and absent from IL1403. The high degree of similarity between all Lactococcus suggests that the Symbiotic Islands commonly shared by both NCDO 2118 and KF147 may be responsible for their close relationship and their adaptation to plants. The predicted bacteriocins may play an important role against the invasion of competing strains. The genes related to the acid and bile salt stresses may play important roles in gastrointestinal tract survival, whereas the adhesion proteins are important for persistence in the gut, culminating in the competitive exclusion of other bacteria. Finally, the five secreted and expressed proteins may be important targets for studies of new anti-inflammatory and immunomodulatory proteins. Altogether, the analyses performed here highlight the potential use of this strain as a target for the future development of probiotic foods. PMID:28384209

  19. Genome Sequence of Lactobacillus delbrueckii subsp. lactis CNRZ327, a Dairy Bacterium with Anti-Inflammatory Properties.

    PubMed

    El Kafsi, Hela; Binesse, Johan; Loux, Valentin; Buratti, Julien; Boudebbouze, Samira; Dervyn, Rozenn; Hammani, Amal; Maguin, Emmanuelle; van de Guchte, Maarten

    2014-07-17

    Lactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain. Copyright © 2014 El Kafsi et al.

  20. Phenotypic and genotypic characterization of lactic acid bacteria isolated from raw goat milk and effect of farming practices on the dominant species of lactic acid bacteria.

    PubMed

    Tormo, Hélène; Ali Haimoud Lekhal, Djamila; Roques, C

    2015-10-01

    Lactic acid bacteria, in particular Lactococcus lactis, play a decisive role in the cheese making process and more particularly in lactic cheeses which are primarily produced on goat dairy farms. The objective of this study was therefore to identify the main lactic acid bacteria found in raw goats' milk from three different regions in France and evaluate if certain farming practices have an effect on the distribution of species of lactic acid bacteria in the various milk samples. Identification at genus or species level was carried out using phenotypic tests and genotypic methods including repetitive element REP-PCR, species-specific PCR and 16S rRNA gene sequencing. The distribution of the main bacterial species in the milk samples varied depending on farms and their characteristics. Out of the 146 strains identified, L. lactis was the dominant species (60% of strains), followed by Enterococcus (38%) of which Enterococcus faecalis and Enterococcus faecium. Within the species L. lactis, L. lactis subsp lactis was detected more frequently than L. lactis subsp cremoris (74% vs. 26%). The predominance of L. lactis subsp cremoris was linked to geographical area studied. It appears that the animals' environment plays a role in the balance between the dominance of L. lactis and enterococci in raw goats' milk. The separation between the milking parlor and the goat shed (vs no separation) and only straw in the bedding (vs straw and hay) seems to promote L. lactis in the milk (vs enterococci). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Spray-drying process preserves the protective capacity of a breast milk-derived Bifidobacterium lactis strain on acute and chronic colitis in mice

    PubMed Central

    Burns, Patricia; Alard, Jeanne; Hrdỳ, Jiri; Boutillier, Denise; Páez, Roxana; Reinheimer, Jorge; Pot, Bruno; Vinderola, Gabriel; Grangette, Corinne

    2017-01-01

    Gut microbiota dysbiosis plays a central role in the development and perpetuation of chronic inflammation in inflammatory bowel disease (IBD) and therefore is key target for interventions with high quality and functional probiotics. The local production of stable probiotic formulations at limited cost is considered an advantage as it reduces transportation cost and time, thereby increasing the effective period at the consumer side. In the present study, we compared the anti-inflammatory capacities of the Bifidobacterium animalis subsp. lactis (B. lactis) INL1, a probiotic strain isolated in Argentina from human breast milk, with the commercial strain B. animalis subsp. lactis BB12. The impact of spray-drying, a low-cost alternative of bacterial dehydration, on the functionality of both bifidobacteria was also investigated. We showed for both bacteria that the spray-drying process did not impact on bacterial survival nor on their protective capacities against acute and chronic colitis in mice, opening future perspectives for the use of strain INL1 in populations with IBD. PMID:28233848

  2. Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii.

    PubMed

    Tanigawa, Kana; Watanabe, Koichi

    2011-03-01

    Currently, the species Lactobacillus delbrueckii is divided into four subspecies, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. indicus and L. delbrueckii subsp. lactis. These classifications were based mainly on phenotypic identification methods and few studies have used genotypic identification methods. As a result, these subspecies have not yet been reliably delineated. In this study, the four subspecies of L. delbrueckii were discriminated by phenotype and by genotypic identification [amplified-fragment length polymorphism (AFLP) and multilocus sequence typing (MLST)] methods. The MLST method developed here was based on the analysis of seven housekeeping genes (fusA, gyrB, hsp60, ileS, pyrG, recA and recG). The MLST method had good discriminatory ability: the 41 strains of L. delbrueckii examined were divided into 34 sequence types, with 29 sequence types represented by only a single strain. The sequence types were divided into eight groups. These groups could be discriminated as representing different subspecies. The results of the AFLP and MLST analyses were consistent. The type strain of L. delbrueckii subsp. delbrueckii, YIT 0080(T), was clearly discriminated from the other strains currently classified as members of this subspecies, which were located close to strains of L. delbrueckii subsp. lactis. The MLST scheme developed in this study should be a useful tool for the identification of strains of L. delbrueckii to the subspecies level.

  3. Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products.

    PubMed

    Dewan, Sailendra; Tamang, Jyoti Prakash

    2007-10-01

    Ethnic people of the Himalayan regions of India, Nepal, Bhutan and China consume a variety of indigenous fermented milk products made from cows milk as well as yaks milk. These lesser-known ethnic fermented foods are dahi, mohi, chhurpi, somar, philu and shyow. The population of lactic acid bacteria (LAB) ranged from 10(7) to 10(8) cfu/g in these Himalayan milk products. A total of 128 isolates of LAB were isolated from 58 samples of ethnic fermented milk products collected from different places of India, Nepal and Bhutan. Based on phenotypic characterization including API sugar test, the dominant lactic acid bacteria were identified as Lactobacillus bifermentans, Lactobacillus paracasei subsp. pseudoplantarum, Lactobacillus kefir, Lactobacillus hilgardii, Lactobacillus alimentarius, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris and Enterococcus faecium. LAB produced a wide spectrum of enzymes and showed high galactosidase, leucine-arylamidase and phosphatase activities. They showed antagonistic properties against selected Gram-negative bacteria. None of the strains produced bacteriocin and biogenic amines under the test conditions used. Most strains of LAB coagulated skim milk with a moderate drop in pH. Some strains of LAB showed a high degree of hydrophobicity, suggesting these strains may have useful adhesive potential. This paper is the first report on functional lactic acid bacterial composition in some lesser-known ethnic fermented milk products of the Himalayas.

  4. Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation.

    PubMed

    Kelleher, Philip; Bottacini, Francesca; Mahony, Jennifer; Kilcawley, Kieran N; van Sinderen, Douwe

    2017-03-29

    Lactococcus lactis is among the most widely studied lactic acid bacterial species due to its long history of safe use and economic importance to the dairy industry, where it is exploited as a starter culture in cheese production. In the current study, we report on the complete sequencing of 16 L. lactis subsp. lactis and L. lactis subsp. cremoris genomes. The chromosomal features of these 16 L. lactis strains in conjunction with 14 completely sequenced, publicly available lactococcal chromosomes were assessed with particular emphasis on discerning the L. lactis subspecies division, evolution and niche adaptation. The deduced pan-genome of L. lactis was found to be closed, indicating that the representative data sets employed for this analysis are sufficient to fully describe the genetic diversity of the taxon. Niche adaptation appears to play a significant role in governing the genetic content of each L. lactis subspecies, while (differential) genome decay and redundancy in the dairy niche is also highlighted.

  5. Proteolysis in goat "coalho" cheese supplemented with probiotic lactic acid bacteria.

    PubMed

    Bezerra, Taliana Kênia Alves; de Araujo, Ana Rita Ribeiro; do Nascimento, Edilza Santos; de Matos Paz, José Eduardo; Gadelha, Carlos Alberto; Gadelha, Tatiane Santi; Pacheco, Maria Teresa Bertoldo; do Egypto Queiroga, Rita de Cássia Ramos; de Oliveira, Maria Elieidy Gomes; Madruga, Marta Suely

    2016-04-01

    This study aimed to analyse the proteolytic effects of adding isolated and combined probiotic strains to goat "coalho" cheese. The cheeses were: QS - with culture Start, composed by Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris (R704); QLA - with Lactobacillus acidophilus (LA-5); QLP - with Lactobacillus paracasei subsp. paracasei (L. casei 01); QB - with Bifidobacterium animalis subsp. lactis (BB 12); and QC, co-culture with the three probiotic microorganisms. The cheeses were analysed during 28 days of storage at 10°C. The probiotic cell count was higher than 6.5 and 7 log colony-forming units (CFU) g(-1) of cheese at the 1st and 28th days of storage, respectively. The addition of co-culture influenced (p<0.01) proteolysis in the cheese and resulted in a higher content of soluble protein and release of amino acids at the 1st day after processing. However, over all 28 days, the cheese supplemented with Bifidobacterium lactis in its isolated form showed the highest proteolytic activity, particularly in the hydrolysis of the alpha-s2 and kappa-casein fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Molecular discrimination of lactobacilli used as starter and probiotic cultures by amplified ribosomal DNA restriction analysis.

    PubMed

    Roy, D; Sirois, S; Vincent, D

    2001-04-01

    Lactic acid bacteria such as Lactobacillus helveticus, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, L. acidophilus, and L. casei related taxa which are widely used as starter or probiotic cultures can be identified by amplified ribosomal DNA restriction analysis (ARDRA). The genetic discrimination of the related species belonging to these groups was first obtained by PCR amplifications by using group-specific or species-specific 16S rDNA primers. The numerical analysis of the ARDRA patterns obtained by using CfoI, HinfI, Tru9I, and ScrFI was an efficient typing tool for identification of species of the L. acidophilus and L. casei complex. ARDRA by using CfoI was a reliable method for differentiation of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. Finally, strains ATCC 393 and ATCC 15820 exhibited unique ARDRA patterns with CfoI and Tru9I restriction enzymes as compared with the other strains of L. casei, L. paracasei, and L. rhamnosus.

  7. Identification and characterization of tetracycline resistance in Lactococcus lactis isolated from Polish raw milk and fermented artisanal products.

    PubMed

    Zycka-Krzesinska, Joanna; Boguslawska, Joanna; Aleksandrzak-Piekarczyk, Tamara; Jopek, Jakub; Bardowski, Jacek K

    2015-10-15

    To assess the occurrence of antibiotic-resistant Lactic Acid Bacteria (LAB) in Polish raw milk and fermented artisanal products, a collection comprising 500 isolates from these products was screened. Among these isolates, six strains (IBB28, IBB160, IBB161, IBB224, IBB477 and IBB487) resistant to tetracycline were identified. The strains showing atypical tetracycline resistance were classified as Lactococcus lactis: three of them were identified as L. lactis subsp. cremoris (IBB224, IBB477 and IBB487) and the other three (IBB28, IBB160, IBB161) were identified as L. lactis subsp. lactis. The mechanism involving Ribosomal Protection Proteins (RPP) was identified as responsible for tetracycline resistance. Three of the tested strains (IBB28, IBB160 and IBB224) had genes encoding the TetS protein, whereas the remaining three (IBB161, IBB477 and IBB487) expressed TetM. The results also demonstrated that the genes encoding these proteins were located on genetic mobile elements. The tet(S) gene was found to be located on plasmids, whereas tet(M) was found within the Tn916 transposon. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Characterization of lactic acid bacteria isolated from a Thai low-salt fermented fish product and the role of garlic as substrate for fermentation.

    PubMed

    Paludan-Müller, C; Huss, H H; Gram, L

    1999-02-18

    Lactic acid bacteria (LAB) isolated from raw materials (fish, rice, garlic and banana leaves) and processed som-fak (a Thai low-salt fermented fish product) were characterized by API 50-CH and other phenotypic criteria. Lactococcus lactis subsp. lactis and Leuconostoc citreum were specifically associated with fish fillet and minced fish, Lactobacillus paracasei subsp. paracasei with boiled rice and Weisella confusa with garlic mix and banana leaves. In addition, Lactobacillus plantarum, Lactobacillus pentosus and Pediococcus pentosaceus were isolated from raw materials. A succession of aciduric, homofermentative lactobacillus species, dominated by Lb. plantarum/pentosus, was found during fermentation. In total, 9% of the strains fermented starch and 19% fermented garlic, the two main carbohydrate components in som-fak. The ability to ferment garlic was paralleled by a capacity to ferment inulin. An increased percentage of garlic fermenting strains was found during fermentation of som-fak, from 8% at day 1 to 40% at day 5. No starch fermenting strains were isolated during fermentation. Three mixed LAB cultures, composed of either starch fermenting Lc. lactis subsp. lactis and Lb. paracasei subsp. paracasei, or garlic fermenting Lb. plantarum and Pd. pentosaceus, or a combination of these strains were inoculated into laboratory prepared som-fak with or without garlic. In som-fak without garlic, pH was above 4.8 after three days, irrespective of addition of mixed LAB cultures. The starch fermenting LAB were unable to ferment som-fak and sensory spoilage occurred after three days. Fermentation with the combined mix of starch and garlic fermenting strains led to production of 2.5% acid and a decrease in pH to 4.5 in two days. The fermentation was slightly slower with the garlic fermenting strains alone. This is the first report describing the role of garlic as carbohydrate source for LAB in fermented fish products.

  9. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) stimulates murine macrophages infected with Citrobacter rodentium.

    PubMed

    Hugo, Ayelén A; Rolny, Ivanna S; Romanin, David; Pérez, Pablo F

    2017-03-01

    Citrobacter rodentium is a specific murine enteropathogen which causes diarrheal disease characterized by colonic hyperplasia and intestinal inflammation. Recruitment of neutrophils and macrophages constitute a key step to control the infection. Since modulation of the activity of professional phagocytic cells could contribute to improve host´s defences against C. rodentium, we investigated the effect of Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) on the interaction between murine macrophages (RAW 264.7) and C. rodentium. Phagocytosis, surface molecules and inducible nitric oxide synthase (iNOs) expression were determined by flow cytometry. Reactive oxygen species (ROS) were assessed by fluorescence microscopy. The presence of lactobacilli increased phagocytosis of C. rodentium whereas C. rodentium had no effect on lactobacilli internalization. Survival of internalized C. rodentium diminished when strain CIDCA 133 was present. CD-86, MHCII, iNOs expression and nitrite production were increased when C. rodentium and lactobacilli were present even though strain CIDCA 133 alone had no effect. Strain CIDCA 133 led to a strong induction of ROS activity which was not modified by C. rodentium. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) is able to increase the activation of murine macrophages infected with C. rodentium. The sole presence of lactobacilli is enough to modify some stimulation markers (e.g. ROS induction) whereas other markers require the presence of both bacteria; thus, indicating a synergistic effect.

  10. Sequencing and Transcriptional Analysis of the Biosynthesis Gene Cluster of Putrescine-Producing Lactococcus lactis ▿ †

    PubMed Central

    Ladero, Victor; Rattray, Fergal P.; Mayo, Baltasar; Martín, María Cruz; Fernández, María; Alvarez, Miguel A.

    2011-01-01

    Lactococcus lactis is a prokaryotic microorganism with great importance as a culture starter and has become the model species among the lactic acid bacteria. The long and safe history of use of L. lactis in dairy fermentations has resulted in the classification of this species as GRAS (General Regarded As Safe) or QPS (Qualified Presumption of Safety). However, our group has identified several strains of L. lactis subsp. lactis and L. lactis subsp. cremoris that are able to produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. Putrescine is a biogenic amine that confers undesirable flavor characteristics and may even have toxic effects. The AGDI cluster of L. lactis is composed of a putative regulatory gene, aguR, followed by the genes (aguB, aguD, aguA, and aguC) encoding the catabolic enzymes. These genes are transcribed as an operon that is induced in the presence of agmatine. In some strains, an insertion (IS) element interrupts the transcription of the cluster, which results in a non-putrescine-producing phenotype. Based on this knowledge, a PCR-based test was developed in order to differentiate nonproducing L. lactis strains from those with a functional AGDI cluster. The analysis of the AGDI cluster and their flanking regions revealed that the capacity to produce putrescine via the AGDI pathway could be a specific characteristic that was lost during the adaptation to the milk environment by a process of reductive genome evolution. PMID:21803900

  11. Lactolisterin BU, a Novel Class II Broad-Spectrum Bacteriocin from Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4.

    PubMed

    Lozo, Jelena; Mirkovic, Nemanja; O'Connor, Paula M; Malesevic, Milka; Miljkovic, Marija; Polovic, Natalija; Jovcic, Branko; Cotter, Paul D; Kojic, Milan

    2017-11-01

    Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 produces a novel bacteriocin, lactolisterin BU, with strong antimicrobial activity against many species of Gram-positive bacteria, including important food spoilage and foodborne pathogens, such as Listeria monocytogenes , Staphylococcus aureus , Bacillus spp., and streptococci. Lactolisterin BU was extracted from the cell surface of BGBU1-4 by 2-propanol and purified to homogeneity by C 18 solid-phase extraction and reversed-phase high-performance liquid chromatography. The molecular mass of the purified lactolisterin BU was 5,160.94 Da, and an internal fragment, AVSWAWQH, as determined by N-terminal sequencing, showed low-level similarity to existing antimicrobial peptides. Curing and transformation experiments revealed the presence of a corresponding bacteriocin operon on the smallest plasmid, pBU6 (6.2 kb), of strain BGBU1-4. Analysis of the bacteriocin operon revealed a leaderless bacteriocin of 43 amino acids that exhibited similarity to bacteriocin BHT-B (63%) from Streptococcus ratti , a bacteriocin with analogy to aureocin A. IMPORTANCE Lactolisterin BU, a broad-spectrum leaderless bacteriocin produced by L. lactis subsp. lactis bv. diacetylactis BGBU1-4, expresses strong antimicrobial activity against food spoilage and foodborne pathogens, such as Listeria monocytogenes , Staphylococcus aureus , Bacillus spp., and streptococci. Lactolisterin BU showed the highest similarity to aureocin-like bacteriocins produced by different bacteria. The operon for synthesis is located on the smallest plasmid, pBU6 (6.2 kb), of strain BGBU1-4, indicating possible horizontal transfer among producers. Copyright © 2017 American Society for Microbiology.

  12. Lactolisterin BU, a Novel Class II Broad-Spectrum Bacteriocin from Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4

    PubMed Central

    Lozo, Jelena; Mirkovic, Nemanja; O'Connor, Paula M.; Malesevic, Milka; Miljkovic, Marija; Polovic, Natalija; Cotter, Paul D.

    2017-01-01

    ABSTRACT Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 produces a novel bacteriocin, lactolisterin BU, with strong antimicrobial activity against many species of Gram-positive bacteria, including important food spoilage and foodborne pathogens, such as Listeria monocytogenes, Staphylococcus aureus, Bacillus spp., and streptococci. Lactolisterin BU was extracted from the cell surface of BGBU1-4 by 2-propanol and purified to homogeneity by C18 solid-phase extraction and reversed-phase high-performance liquid chromatography. The molecular mass of the purified lactolisterin BU was 5,160.94 Da, and an internal fragment, AVSWAWQH, as determined by N-terminal sequencing, showed low-level similarity to existing antimicrobial peptides. Curing and transformation experiments revealed the presence of a corresponding bacteriocin operon on the smallest plasmid, pBU6 (6.2 kb), of strain BGBU1-4. Analysis of the bacteriocin operon revealed a leaderless bacteriocin of 43 amino acids that exhibited similarity to bacteriocin BHT-B (63%) from Streptococcus ratti, a bacteriocin with analogy to aureocin A. IMPORTANCE Lactolisterin BU, a broad-spectrum leaderless bacteriocin produced by L. lactis subsp. lactis bv. diacetylactis BGBU1-4, expresses strong antimicrobial activity against food spoilage and foodborne pathogens, such as Listeria monocytogenes, Staphylococcus aureus, Bacillus spp., and streptococci. Lactolisterin BU showed the highest similarity to aureocin-like bacteriocins produced by different bacteria. The operon for synthesis is located on the smallest plasmid, pBU6 (6.2 kb), of strain BGBU1-4, indicating possible horizontal transfer among producers. PMID:28842543

  13. A Nisin Bioassay Based on Bioluminescence

    PubMed Central

    Wahlström, G.; Saris, P. E. J.

    1999-01-01

    A Lactococcus lactis subsp. lactis strain that can sense the bacteriocin nisin and transduce the signal into bioluminescence was constructed. By using this strain, a bioassay based on bioluminescence was developed for quantification of nisin, for detection of nisin in milk, and for identification of nisin-producing strains. As little as 0.0125 ng of nisin per ml was detected within 3 h by this bioluminescence assay. This detection limit was lower than in previously described methods. PMID:10427078

  14. [Characteristics and identification of bacteriocins produced by Lactococcus lactis subsp. lactis 194-K].

    PubMed

    Ustiugova, E A; Timofeeva, A V; Stoianova, L G; Netrusov, A I; Katrukha, G S

    2012-01-01

    The Lactococcus lactis subsp. lactis 194-K strain has been established to be able to produce two bacteriocins, one of which was identified as the known lantibiotic nisin A, and the other 194-D bacteriocin represents a polypeptide with a 2589-Da molecular mass and comprises 20 amino acid residues. Both bacteriocins were produced in varying proportions in all of the studied nutrient media, which support the growth of the producer. Depending on the cultivation medium, the nisin A content was 380- to 1123-fold lower in the 194-K stain culture fluid than that of the 194-D peptide. In comparision to to nisin A Bacteriocin 194-D possessed a wide range of antibacterial activity and suppressed the growth of both Gram-positive and Gram-negative bacteria. An optimal medium for 194-D bacteriocin synthesis was shown to be a fermentation medium which contained yeast extract, casein hydrolysate, and potassium phosphate. The biosynthesis ofbacteriocin 194-D by the 194-K strain in these media occurred parallel to producer growth, and its maximal accumulation in the culture fluid was observed at 14-20 h of the strain's growth.

  15. Molecular identification and cluster analysis of homofermentative thermophilic lactobacilli isolated from dairy products.

    PubMed

    Andrighetto, C; De Dea, P; Lombardi, A; Neviani, E; Rossetti, L; Giraffa, G

    1998-10-01

    Twenty-five strains of thermophilic lactobacilli isolated from yoghurt and from semi-hard and hard cheeses (in parallel with nine type or reference strains) were identified and grouped according to their genetic relatedness. Strains were identified by sugar fermentation patterns using the "API 50 CHL" galleries, by species-specific DNA probes in dot-blot hybridization experiments, by amplification and restriction analysis of the 16S rRNA gene (ARDRA) and by polymerase chain reaction (PCR) using species-specific oligonucleotide primers. Strains were classified as Lactobacillus delbrueckii subsp. lactis and subsp. bulgaricus, L. helveticus, and L. acidophilus. Strains which were atypical by sugar fermentation patterns were also identified. Most of the strains could not be grouped using carbohydrate fermentation profiles. PCR fingerprinting was used to identify DNA profiles for the 25 lactobacilli. Experimentally obtained PCR profiles enabled discrimination of all strains, which were grouped according to the similarities in their combined patterns. In general, the clustering of the strains corresponded well with species delineation obtained by molecular identification. The dendrogram of genetic relatedness enabled the unambiguous identification of most of the strains which were shown to be atypical by the sugar fermentation profile, except for a discrepancy in one L. delbrueckii subsp. lactis strain and one atypical Lactobacillus sp. strain.

  16. Identification and characterization of lactic acid bacteria isolated from mixed pasture of timothy and orchardgrass, and its badly preserved silage.

    PubMed

    Tohno, Masanori; Kobayashi, Hisami; Nomura, Masaru; Uegaki, Ryuichi; Cai, Yimin

    2012-04-01

    In order to understand the relationship between lactic acid bacteria (LAB) species and silage fermentation, a total of 65 LAB strains isolated from mixed pasture of timothy (Phleum pratense L.) and orchardgrass (Dactylis glomerata L.), and its badly preserved silages were subjected to phenotypic and genetic analysis. According to these analyses, the isolates were divided into 13 groups, including Enterococcus gallinarum, Lactobacillus acidipiscis, L. coryniformis subsp. coryniformis, L. coryniformis subsp. torquens, L. curvatus, L. paraplantarum, L. plantarum subsp. argentoratensis, L. plantarum subsp. plantarum, L. sakei subsp. carnosus, Lactococcus garvieae, Lactococcus lactis subsp. cremoris, Leuconostoc pseudomesenteroides, Pediococcus acidilactici, Pediococcus pentosaceus, Weissella hellenica, Weissella paramesenteroides and Carnobacterium divergens. This is the first report to document that C. divergens, L. acidipiscis, L. sakei subsp. carnosus, L. garvieae, phenotypically novel L. lactis subsp. cremoris, E. gallinarum and W. hellenica are present in vegetative forage crops. L. plantarum group strains were most frequently isolated from the badly preserved silages. Some isolates showed a wide range of growth preferences for carbohydrate utilization, optimal growth pH and temperature in vitro, indicating that they have a high growth potential. These results are useful in understanding the diversity of LAB associated with decayed silage of timothy and orchardgrass. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  17. Safety evaluation of Lactobacillus delbrueckii subsp. lactis UO 004, a probiotic bacterium.

    PubMed

    Fernández, M Fernanda; Boris, Soledad; Barbés, Covadonga

    2005-03-01

    Lactobacillus delbrueckii subsp. lactis UO 004 was evaluated for its use as a potential probiotic from a safety point of view. The strain did not exhibit mucinolytic or other enzymatic activities that might be detrimental, such as those involving glycosidases (beta-D-glucosaminidase or alpha-D-galactosidase) or arylamidases (factor Xa and quimotrypsin-like activities), frequently present in Lactobacillus strains isolated from patients with endocarditis, although it was able to express protein Ca and kallikrein-like activities. On the other hand, the presence of the strain did not interfere with the growth of certain species of normal intestinal microbiota, such as Enterococcus fecalis, Escherichia coli, Bifidobacterium bifidum or Bacteroides fragilis. Moreover, the potential probiotic strain UO 004 is sensitive to antibiotics with transmissible resistance mechanisms in Lactobacillus such as chloramphenicol, erythromycin, tetracycline and vancomycin. In addition, strain L. delbrueckii UO 004 was not able to translocate towards the intestinal barrier of mice or produce changes in their activity or general health status.

  18. DNA probe for lactobacillus delbrueckii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delley, M.; Mollet, B.; Hottinger, H.

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  19. DNA Probe for Lactobacillus delbrueckii

    PubMed Central

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233

  20. Addition to thermized milk of Lactococcus lactis subsp. cremoris M104, a wild, novel nisin a-producing strain, replaces the natural antilisterial activity of the autochthonous raw milk microbiota reduced by thermization.

    PubMed

    Lianou, Alexandra; Samelis, John

    2014-08-01

    Recent research has shown that mild milk thermization treatments routinely used in traditional Greek cheese production are efficient to inactivate Listeria monocytogenes and other pathogenic or undesirable bacteria, but they also inactivate a great part of the autochthonous antagonistic microbiota of raw milk. Therefore, in this study, the antilisterial activity of raw or thermized (63°C, 30 s) milk in the presence or absence of Lactococcus lactis subsp. cremoris M104, a wild, novel, nisin A-producing (Nis-A+) raw milk isolate, was assessed. Bulk milk samples were taken from a local cheese plant before or after thermization and were inoculated with a five-strain cocktail of L. monocytogenes (approximately 4 log CFU/ml) or with the cocktail, as above, plus the Nis-A+ strain (approximately 6 log CFU/ml) as a bioprotective culture. Heat-sterilized (121°C, 5 min) raw milk inoculated with L. monocytogenes was used as a control treatment. All milk samples were incubated at 37°C for 6 h and then at 18°C for an additional 66 h. L. monocytogenes grew abundantly (>8 log CFU/ml) in heat-sterilized milk, whereas its growth was completely inhibited in all raw milk samples. Conversely, in thermized milk, L. monocytogenes increased by 2 log CFU/ml in the absence of strain M104, whereas its growth was completely inhibited in the presence of strain M104. Furthermore, nisin activity was detected only in milk samples inoculated with strain M104. Thus, postthermal supplementation of thermized bulk milk with bioprotective L. lactis subsp. cremoris cultures replaces the natural antilisterial activity of raw milk reduced by thermization.

  1. Continuous D-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41.

    PubMed

    Tashiro, Yukihiro; Kaneko, Wataru; Sun, Yanqi; Shibata, Keisuke; Inokuma, Kentaro; Zendo, Takeshi; Sonomoto, Kenji

    2011-03-01

    We isolated and characterized a D-lactic acid-producing lactic acid bacterium (D-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 (T) and L. delbrueckii subsp. lactis JCM 1248 (T), which are also known as D-LAB, the QU 41 strain exhibited a high thermotolerance and produced D-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on D-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l D-lactic acid was acquired with high optical purity (>99.9% of D-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve D-lactic acid productivity. At a dilution rate of 0.87 h(-1), the high cell density continuous culture exhibited the highest D-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.

  2. Safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12-supplemented yogurt in healthy adults on antibiotics: a phase I safety study

    USDA-ARS?s Scientific Manuscript database

    Probiotics are live microorganisms that, when administered in sufficient doses, provide health benefits on the host. The United States Food and Drug Administration (FDA) requires phase I safety studies for probiotics when the intended use of the product is as a drug. The purpose of the study was to ...

  3. Supplementation with fruit and okara soybean by-products and amaranth flour increases the folate production by starter and probiotic cultures.

    PubMed

    Albuquerque, Marcela Albuquerque Cavalcanti de; Bedani, Raquel; Vieira, Antônio Diogo Silva; LeBlanc, Jean Guy; Saad, Susana Marta Isay

    2016-11-07

    The ability of two starter cultures (Streptococcus (S.) thermophilus ST-M6 and St. thermophilus TA-40) and eleven probiotic cultures (St. thermophilus TH-4, Lactobacillus (Lb.) acidophilus LA-5, Lb. fermentum PCC, Lb. reuteri RC-14, Lb. paracasei subsp. paracasei, Lb. casei 431, Lb. paracasei subsp. paracasei F19, Lb. rhamnosus GR-1, and Lb. rhamnosus LGG, Bifidobacterium (B.) animalis subsp. lactis BB-12, B. longum subsp. longum BB-46, and B. longum subsp. infantis BB-02) to produce folate in a modified MRS broth (mMRS) supplemented with different fruit (passion fruit, acerola, orange, and mango) and okara soybean by-products and amaranth flour was investigated. Initially, the folate content of each vegetable substrate was determined: passion fruit by-product showed the lowest folate content (8±2ng/mL) and okara the highest (457±22ng/mL). When the orange by-product and amaranth flour were added to mMRS, all strains were able to increase folate production after 24h of fermentation. B. longum subsp infantis BB-02 produced the highest concentrations (1223±116ng/mL) in amaranth flour. Okara was the substrate that had the lowest impact on the folate production by all strains evaluated. Lb. acidophilus LA-5 (297±36ng/mL) and B. animalis subsp. lactis BB-12 (237±23ng/mL) were also able to produce folate after growth in mMRS containing acerola and orange by-products, respectively. The results of this study demonstrate that folate production is not only strain-dependent but also influenced by the addition of different substrates in the growth media. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Lactococcus lactis Diversity in Undefined Mixed Dairy Starter Cultures as Revealed by Comparative Genome Analyses and Targeted Amplicon Sequencing of epsD.

    PubMed

    Frantzen, Cyril A; Kleppen, Hans Petter; Holo, Helge

    2018-02-01

    Undefined mesophilic mixed (DL) starter cultures are used in the production of continental cheeses and contain unknown strain mixtures of Lactococcus lactis and leuconostocs. The choice of starter culture affects the taste, aroma, and quality of the final product. To gain insight into the diversity of Lactococcus lactis strains in starter cultures, we whole-genome sequenced 95 isolates from three different starter cultures. Pan-genomic analyses, which included 30 publically available complete genomes, grouped the strains into 21 L. lactis subsp . lactis and 28 L. lactis subsp. cremoris lineages. Only one of the 95 isolates grouped with previously sequenced strains, and the three starter cultures showed no overlap in lineage distributions. The culture diversity was assessed by targeted amplicon sequencing using purR , a core gene, and epsD , present in 93 of the 95 starter culture isolates but absent in most of the reference strains. This enabled an unprecedented discrimination of starter culture Lactococcus lactis and revealed substantial differences between the three starter cultures and compositional shifts during the cultivation of cultures in milk. IMPORTANCE In contemporary cheese production, standardized frozen seed stock starter cultures are used to ensure production stability, reproducibility, and quality control of the product. The dairy industry experiences significant disruptions of cheese production due to phage attacks, and one commonly used countermeasure to phage attack is to employ a starter rotation strategy, in which two or more starters with minimal overlap in phage sensitivity are used alternately. A culture-independent analysis of the lactococcal diversity in complex undefined starter cultures revealed large differences between the three starter cultures and temporal shifts in lactococcal composition during the production of bulk starters. A better understanding of the lactococcal diversity in starter cultures will enable the development of more robust starter cultures and assist in maintaining the efficiency and stability of the production process by ensuring the presence of key bacteria that are important to the characteristics of the product. Copyright © 2018 American Society for Microbiology.

  5. In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine.

    PubMed

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Ye, Fei; Liu, Cunxia; Liu, Hongfeng; Wang, Maopeng; Li, Yi; Sun, Yang; Li, Xiao; Tian, Mingyao; Jin, Ningyi

    2014-12-01

    This study aims to evaluate the functional and probiotic characteristics of eight indigenous Lactobacillus strains in vitro. The selected lactobacilli include strains of Lactobacillus casei subsp. casei, Lactobacillus salivarius subsp. salicinius, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus delbrueckii subsp. lactis, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus rhamnosus. All strains tolerated both pH 2 for 3 h and 1% bile salt for 24 h. The strains CICC 23174 and CGMCC 1.557 were the most adhesive strains producing the highest quantity of EPS. Although a wide variation in the ability of the eight strains to deplete cholesterol and nitrite, antagonize pathogens, scavenge free radical, and stimulate innate immune response were observed, the strains CICC 23174 and CGMCC 1.557 showed the widest range of these useful traits. Taken together, the strains CICC 23174 and CGMCC 1.557 exhibited the best probiotic properties with the potential for use in the production of probiotic fermented foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Grana Padano cheese whey starters: microbial composition and strain distribution.

    PubMed

    Rossetti, Lia; Fornasari, Maria Emanuela; Gatti, Monica; Lazzi, Camilla; Neviani, Erasmo; Giraffa, Giorgio

    2008-09-30

    The aim of this work was to evaluate the species composition and the genotypic strain heterogeneity of dominant lactic acid bacteria (LAB) isolated from whey starter cultures used to manufacture Grana Padano cheese. Twenty-four Grana Padano cheese whey starters collected from dairies located over a wide geographic production area in the north of Italy were analyzed. Total thermophilic LAB streptococci and lactobacilli were quantified by agar plate counting. Population structure of the dominant and metabolically active LAB species present in the starters was profiled by reverse transcriptase, length heterogeneity-PCR (RT-LH-PCR), a culture-independent technique successfully applied to study whey starter ecosystems. The dominant bacterial species were Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum. Diversity in the species composition allowed the whey cultures to be grouped into four main typologies, the one containing L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus being the most frequent one (45% of the cultures analyzed), followed by that containing only the two lactobacilli (40%). Only a minor fraction of the cultures contained L. helveticus alone (4%) or all the four LAB species (11%). Five hundred and twelve strains were isolated from the 24 cultures and identified by M13-PCR fingerprinting coupled with 16S rRNA gene sequencing. Most of the strains were L. helveticus (190 strains; 37% of the total), L delbrueckii subsp. lactis (90 strains; 18%) and S. thermophilus (215 strains; 42%). This result was in good agreement with the qualitative whey starter composition observed by RT-LH-PCR. M13-PCR fingerprinting indicated a markedly low infra-species diversity, i.e. the same biotypes were often found in more than one culture. The distribution of the biotypes into the different cultures was mainly dairy plant-specific rather than correlated with the different production areas.

  7. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    PubMed

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  8. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    PubMed Central

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-01-01

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity. PMID:29584690

  9. Safety evaluation of HOWARU® Restore (Lactobacillus acidophilus NCFM, Lactobacillus paracasei Lpc-37, Bifidobacterium animalis subsp. lactis Bl-04 and B. lactis Bi-07) for antibiotic resistance, genomic risk factors, and acute toxicity.

    PubMed

    Morovic, Wesley; Roper, Jason M; Smith, Amy B; Mukerji, Pushkor; Stahl, Buffy; Rae, Jessica Caverly; Ouwehand, Arthur C

    2017-12-01

    Although probiotic lactobacilli and bifidobacteria are generally considered safe by various regulatory agencies, safety properties, such as absence of transferable antibiotic resistance, must still be determined for each strain prior to market introduction as a probiotic. Safety requirements for probiotics vary regionally and evaluation methods are not standardized, therefore methodologies are often adopted from food ingredients or chemicals to assess microbial safety. Four individual probiotic strains, Lactobacillus acidophilus NCFM ® , Lactobacillus paracasei Lpc-37 ® , Bifidobacterium animalis subsp. lactis strains Bl-04 ® , and Bi-07 ® , and their combination (HOWARU ® Restore) were examined for antibiotic resistance by broth microdilution culture, toxin genes by PCR and genome mining, and acute oral toxicity in rats. Only B. lactis Bl-04 exhibited antibiotic resistance above a regulated threshold due to a tetW gene previously demonstrated to be non-transferable. Genomic mining did not reveal any bacterial toxin genes known to harm mammalian hosts in any of the strains. The rodent studies did not indicate any evidence of acute toxicity following a dose of 1.7-4.1 × 10 12  CFU/kg body weight. Considering a 100-fold safety margin, this corresponds to 1.2-2.8 × 10 12  CFU for a 70 kg human. Our findings demonstrate a comprehensive approach of in vitro, in silico, and in vivo safety testing for probiotics. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Allergenicity reduction of bovine milk β-lactoglobulin by proteolytic activity of lactococcus lactis BMC12C and BMC19H isolated from Iranian dairy products.

    PubMed

    Kazemi, Rezvan; Taheri-Kafrani, Asghar; Motahari, Ahmad; Kordesedehi, Reihane

    2018-06-01

    Nowadays health benefits of bioactive food constituents, known as probiotic microorganisms, are a growing awareness. Cow's milk is a nutritious food containing probiotic bacteria. However, milk allergenicity is one of the most common food allergies. The milk protein, β-lactoglobulin (BLG), is in about 80% of all main cases of milk allergies for children and infants. With the aim of screening proteolytic strains of lactic acid bacteria to evaluate their potential for the reduction of allergenicity of the major bovine milk proteins, we isolated new proteolytic strains of cocci lactic acid bacteria from traditional Iranian dairy products. The proteases produced by these strains had strong proteolytic activity against BLG. Proteolysis of BLG, observed after sodium dodecyl sulfate-PAGE, was confirmed by the analysis of the peptide profiles by reversed-phase HPLC. The two isolates were submitted to 16S rDNA sequencing and identified as Lactcoccus lactis subsp. cremoris and Lactcoccus lactis subsp. hordniea. The competitive ELISA experiments confirmed that these isolates, with high proteolytic activity, reduce significantly the allergenicity of BLG. Accordingly, these isolates can reduce the immunoreactivity of bovine milk proteins, which can be helpful for the production of low-allergic dairy products. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Introduction of Peptidase Genes from Lactobacillus delbrueckii subsp. lactis into Lactococcus lactis and Controlled Expression

    PubMed Central

    Wegmann, U.; Klein, J. R.; Drumm, I.; Kuipers, O. P.; Henrich, B.

    1999-01-01

    Peptidases PepI, PepL, PepW, and PepG from Lactobacillus delbrueckii subsp. lactis, which have no counterparts in Lactococcus lactis, and peptidase PepQ were examined to determine their potential to confer new peptidolytic properties to lactococci. Controllable expression of the corresponding genes (pep genes) was achieved by constructing translational fusions with the promoter of the nisA gene (PnisA). A suitable host strain, UKLc10, was constructed by chromosomal integration of the genes encoding the NisRK two-component system into the fivefold peptidase-deficient mutant IM16 of L. lactis. Recombinants of this strain were used to analyze growth, peptidase activities, peptide utilization, and intracellular protein cleavage products. After nisin induction of PnisA::pep fusions, all of the peptidases were visible as distinct bands in protein gels. Despite the fact that identical transcription and translation signals were used to express the pep genes, the relative amounts of individual peptidases varied considerably. All of the peptidases exhibited activities in extracts of recombinant UKLc10 clones, but only PepL and PepG allowed the clones to utilize specific peptide substrates as sources of essential amino acids. In milk medium, induction of pepG and induction of pepW resulted in growth acceleration. The activities of all five peptidases during growth in milk medium were revealed by high-performance liquid chromatography analyses of intracellular amino acid and peptide pools. PMID:10543778

  12. Electrotransformation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis with Various Plasmids

    PubMed Central

    Serror, Pascale; Sasaki, Takashi; Ehrlich, S. Dusko; Maguin, Emmanuelle

    2002-01-01

    We describe, for the first time, a detailed electroporation procedure for Lactobacillus delbrueckii. Three L. delbrueckii strains were successfully transformed. Under optimal conditions, the transformation efficiency was 104 transformants per μg of DNA. Using this procedure, we identified several plasmids able to replicate in L. delbrueckii and integrated an integrative vector based on phage integrative elements into the L. delbrueckii subsp. bulgaricus chromosome. These vectors provide a good basis for developing molecular tools for L. delbrueckii and open the field of genetic studies in L. delbrueckii. PMID:11772607

  13. Extraction of the same novel homoglycan mixture from two different strains of Bifidobacterium animalis and three strains of Bifidobacterium breve.

    PubMed

    Alhudhud, M; Sadiq, S; Ngo, H N; Hidalgo-Cantabrana, C; Ruas-Madiedo, P; van Sinderen, D; Humphreys, P N; Laws, A P

    2018-06-15

    Three strains of Bifidobacterium breve (JCM 7017, JCM 7019 and JCM 2258) and two strains of Bifidobacterium animalis subsp. lactis (AD011 and A1dOxR) were grown in broth cultures or on plates, and a standard exopolysaccharide extraction method was used in an attempt to recover exocellular polysaccharides. When the extracted materials were analysed by NMR it was clear that mixtures of polysaccharides were being isolated including exopolysaccharides (EPS) cell wall polysaccharides and intracellular polysaccharides. Treatment of the cell biomass from the B. breve strains, or the B. animalis subsp. lactis AD011 strain, with aqueous sodium hydroxide provided a very similar mixture of polysaccharides but without the EPS. The different polysaccharides were partially fractionated by selective precipitation from an aqueous solution upon the addition of increasing percentages of ethanol. The polysaccharides extracted from B. breve JCM 7017 grown in HBM media supplemented with glucose (or isotopically labelled D-glucose-1- 13 C) were characterised using 1D and 2D-NMR spectroscopy. Addition of one volume of ethanol generated a medium molecular weight glycogen (Mw=1×10 5 Da, yield 200 mg/l). The addition of two volumes of ethanol precipitated an intimate mixture of a low molecular weight β-(1→6)-glucan and a low molecular weight β-(1→6)-galactofuranan which could not be separated (combined yield 46 mg/l). When labelled D-glucose-1- 13 C was used as a carbon supplement, the label was incorporated into >95% of the anomeric carbons of each polysaccharide confirming they were being synthesised in situ. Similar 1 H NMR profiles were obtained for polysaccharides recovered from the cells of B. animalis subsp. lactis AD011and A1dOxR (in combination with an EPS), B. breve JCM 7017, B. breve JCM 7019, B. breve JCM 2258 and from an EPS (-ve) mutant of B. breve 7017 (a non-EPS producer).

  14. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins

    PubMed Central

    McNulty, Nathan P.; Yatsunenko, Tanya; Hsiao, Ansel; Faith, Jeremiah J.; Muegge, Brian D.; Goodman, Andrew L.; Henrissat, Bernard; Oozeer, Raish; Cools-Portier, Stéphanie; Gobert, Guillaume; Chervaux, Christian; Knights, Dan; Lozupone, Catherine A.; Knight, Rob; Duncan, Alexis E.; Bain, James R.; Muehlbauer, Michael J.; Newgard, Christopher B.; Heath, Andrew C.; Gordon, Jeffrey I.

    2012-01-01

    Understanding how the human gut microbiota and host are impacted by probiotic bacterial strains requires carefully controlled studies in humans and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks prior to, 7 weeks during, and 4 weeks following consumption of a commercially available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied prior to and after gavage with all five sequenced FMP strains. No significant changes in bacterial species composition or in the proportional representation of genes encoding known enzymes were observed in the feces of humans consuming the FMP. Only minimal changes in microbiota configuration were noted in mice following single or repeated gavage with the FMP consortium. However, RNA-Seq analysis of fecal samples and follow-up mass spectrometry of urinary metabolites disclosed that introducing the FMP strains into mice results in significant changes in expression of microbiome-encoded enzymes involved in numerous metabolic pathways, most prominently those related to carbohydrate metabolism. B. animalis subsp. lactis, the dominant persistent member of the FMP consortium in gnotobiotic mice, upregulates a locus in vivo that is involved in the catabolism of xylooligosaccharides, a class of glycans widely distributed in fruits, vegetables and other foods, underscoring the importance of these sugars to this bacterial species. The human fecal metatranscriptome exhibited significant changes, confined to the period of FMP consumption, that mirror changes in gnotobiotic mice, including those related to plant polysaccharide metabolism. These experiments illustrate a translational research pipeline for characterizing the effects of fermented milk products on the human gut microbiome. PMID:22030749

  15. Changes in the microbial composition of raw milk induced by thermization treatments applied prior to traditional Greek hard cheese processing.

    PubMed

    Samelis, John; Lianou, Alexandra; Kakouri, Athanasia; Delbès, Céline; Rogelj, Irena; Bogovic-Matijasić, Bojana; Montel, Marie-Christine

    2009-04-01

    The microbiological quality, safety, and composition of mixtures of ewe's and goat's milk (90:10) used for cheesemaking were evaluated before and after thermization at 60 and 67 degrees C for 30 s. Such mild thermal treatments are commonly applied to reduce natural contaminants of raw milk before processing for traditional hard Greek cheeses. Raw milk samples had an average total bacterial count of 7.3 log CFU/ml; most of these bacteria were lactic acid bacteria (LAB) and pseudomonads. The LAB flora of raw milk was dominated by enterococci (40.8%), followed by lactococci (20.4%), leuconostocs (18.4%), and mesophilic lactobacilli (10.2%). Enterococcus faecalis (30.1%) and Enterococcus faecium (13.7%) were the most common LAB isolates, followed by Enterococcus durans, Lactococcus lactis subsp. lactis, Lactobacillus plantarum, and Leuconostoc lactis. Thermization at 60 degrees C for 30 s was effective for reducing raw milk contamination by enterobacteria (5.1 log CFU/ml), coagulase-positive staphylococci (3.3 log CFU/ml), and Listeria (present in 25-ml samples) to safe levels, but it also reduced mesophilic lactococci, leuconostocs, lactobacilli, and selected enterococci (72.0%) in thermized milk. Thermization at 67 degrees C for 30 s had a major inactivation effect on all bacterial groups. Two nisin-producing L. lactis subsp. lactis strains (M78 and M104) were isolated from raw milk, but neither nisin-producing nor other bacteriocin-producing LAB strains were isolated from thermized milk. Thus, thermization treatments control harmful bacteria but also may have a negative impact on milk quality by reducing desirable LAB and the biodiversity of raw milk bacteria overall, inactivating potentially protective LAB strains and enhancing the ability of potentially pathogenic enterococci to grow in fresh cheese curds.

  16. Fermentation performance of lactic acid bacteria in different lupin substrates-influence and degradation ability of antinutritives and secondary plant metabolites.

    PubMed

    Fritsch, C; Vogel, R F; Toelstede, S

    2015-10-01

    The main objectives were to determine the influence of secondary plant metabolites and antinutritives in lupin seeds on the fermentation performance of lactic acid bacteria and to study their ability to degrade these substances. The suitability of lupin raw materials as fermentation substrates was examined. To evaluate the fermentation performance, microbial growth, metabolite formation and substrate uptake in three different lupin substrates was monitored. On the one hand, a lupin protein isolate, which contained only trace amounts of phytochemicals was used in the study. On the other hand, the flour of Lupinus angustifolius cv. Boregine and the flour of the alkaloid rich lupin Lupinus angustifolius cv. Azuro were inoculated with Bifidobacterium animalis subsp. lactis, Pediococcus pentosaceus, Lactobacillus plantarum and Lactococcus lactis subsp. lactis. The micro-organisms showed no significant differences in the fermentation performance on the different lupin flours. Similarly, the growth of most strains on lupin protein isolate was comparable to that on the lupin flours. The fermentation with Bifidobacterium animalis subsp. lactis led to a significant decrease in flatulence causing oligosaccharides. During fermentation with Lactobacillus plantarum the phytic acid content was partially degraded. Neither the secondary plant metabolites nor the antinutritives of lupin flour inhibited the growth or metabolic activity of the tested micro-organisms. Therefore, lupin flour is suitable for lactic fermentation. Some strains showed the ability to degrade oligosaccharides or phytic acid. This work contributes to the fundamental knowledge of the metabolism of lactic acid bacteria during fermentation of lupin substrates. Fermentation of lupin raw materials could be used to improve the nutritional value of the substrates due to the reduction of antinutritives. © 2015 The Society for Applied Microbiology.

  17. Evidence for the presence of restriction/modification systems in Lactobacillus delbrueckii.

    PubMed

    Suárez, Viviana; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge; Quiberoni, Andrea

    2009-11-01

    The bacteriophages Cb1/204 and Cb1/342 were obtained by induction from the commercial strain Lactobacillus delbrueckii subsp. lactis Cb1, and propagated on Lactobacillus delbrueckii subsp. lactis 204 (Lb.l 204) and Lactobacillus delbrueckii subsp. bulgaricus 342 (Lb.b 342), respectively. By cross sensitivity, it was possible to detect a delay in the lysis of Lb.l 204 with Cb1/342 phage, while the adsorption rate was high (99.5%). Modified and unmodified phages were isolated using phage Cb1/342 and strain Lb.l 204. The EOP (Efficiency of Plaquing) values for the four phages (Cb1/204, Cb1/342, Cb1/342modified and Cb1/342unmodified) suggested that an R/M system modified the original temperate phage, and the BglII-DNA restriction patterns of these phages might point out the presence of a Type II R/M system. Also, the existence of a Type I R/M system was demonstrated by PCR and nucleotide sequence, being the percentages of alignment homology with Type I R/M systems reported previously higher than 95%. In this study it was possible to demonstrate that the native phage resistant mechanisms and the occurrence of prophages in commercial host strains, contribute strongly to diversify the phage population in a factory environment.

  18. Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media.

    PubMed

    Kimoto-Nira, Hiromi; Kobayashi, Miho; Nomura, Masaru; Sasaki, Keisuke; Suzuki, Chise

    2009-05-31

    Bile resistance is one of the basic characteristics of probiotic bacteria. The aim of this study was to investigate the characteristics of bile resistance in lactococci by studying the relationship between bile resistance and cellular fatty acid composition in lactococcci grown on different media. We determined the bile resistance of 14 strains in lactose-free M17 medium supplemented with either glucose only (GM17) or lactose only (LM17). Gas chromatographic analyses of free lipids extracted from the tested strains were used for determining their fatty acid composition. A correlation analysis of all strains grown in both media revealed significant positive correlations between bile resistance and relative contents of hexadecanoic acid and octadecenoic acid, and negative correlations between bile resistance and relative contents of hexadecenoic acid and C-19 cyclopropane fatty acid. It is also a fact that the fatty acids associated with bile resistance depended on species, strain, and/or growth medium. In L. lactis subsp. cremoris strains grown in GM17 medium, the bile-resistant strains had significantly more octadecenoic acid than the bile-sensitive strains. In LM17 medium, bile-resistant strains had significantly more octadecenoic acid and significantly less C-19 cyclopropane fatty acid than the bile-sensitive strains. In L. lactis subsp. lactis strains, bile resistances of some of the tested strains were altered by growth medium. Some strains were resistant to bile in GM17 medium but sensitive to bile in LM17 medium. Some strains were resistant in both media tested. The strains grown in GM17 medium had significantly more hexadecanoic acid and octadecenoic acid, and significantly less tetradecanoic acid, octadecadienoic acid and C-19 cyclopropane fatty acid than the strains grown in LM17 medium. In conclusion, the fatty acid compositions of the bile-resistant lactococci differed from those of the bile-sensitive ones. More importantly, our data suggest that altering their fatty acid composition (i.e. increased hexadecanoic acid and octadecenoic acid and decreased hexadecenoic acid and C-19 cyclopropane fatty acid) by changing growth conditions may be a useful way to enhance their bile resistance in lactococci.

  19. Phage-resistance linked to cell heterogeneity in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1.

    PubMed

    Suárez, Viviana B; Maciel, Natalia; Guglielmotti, Daniela; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge

    2008-12-10

    The aim of this work was to study the relationship between the cell morphological heterogeneity and the phage-resistance in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1. Two morphological variants (named C and T) were isolated from this strain. Phage-resistant derivatives were isolated from them and the percentage of occurrence of confirmed phage-resistant cells was 0.001% of the total cellular population. Within these phage-resistant cell derivatives there were T (3 out of 4 total isolates) and C (1 out of 4 total isolates) variants. The study of some technological properties (e.g. proteolytic and acidifying activities) demonstrated that most of phage-resistant derivatives were not as good as the parental strain. However, for one derivative (a T variant), the technological properties were better than those of the parental strain. On the other hand, it was possible to determinate that the system of phage-resistance in the T variants was interference in adsorption step, with adsorption rates <15%. For the C variant derivative it was possible to demonstrate the presence of a restriction/modification system and, moreover, to determinate that this system could be Type I R/M.

  20. A Zn-Dependent Metallopeptidase Is Responsible for Sensitivity to LsbB, a Class II Leaderless Bacteriocin of Lactococcus lactis subsp. lactis BGMN1-5

    PubMed Central

    Uzelac, Gordana; Lozo, Jelena; Aleksandrzak-Piekarczyk, Tamara; Gabrielsen, Christina; Kristensen, Tom; Nes, Ingolf F.; Diep, Dzung B.; Topisirovic, Ljubisa

    2013-01-01

    Lactococcus lactis subsp. lactis BGMN1-5 produces a leaderless class II bacteriocin called LsbB. To identify the receptor for LsbB, a cosmid library of the LsbB-sensitive strain BGMN1-596 was constructed. About 150 cosmid clones were individually isolated and transferred to LsbB-resistant mutants of BGMN1-596. Cosmid pAZILcos/MN2, carrying a 40-kb insert, was found to restore LsbB sensitivity in LsbB-resistant mutants. Further subcloning revealed that a 1.9-kb fragment, containing only one open reading frame, was sufficient to restore sensitivity. The fragment contains the gene yvjB coding for a Zn-dependent membrane-bound metallopeptidase, suggesting that this gene may serve as the receptor for LsbB. Further support for this notion derives from several independent experiments: (i) whole-genome sequencing confirmed that all LsbB-resistant mutants contain mutations in yvjB; (ii) disruption of yvjB by direct gene knockout rendered sensitive strains BGMN1-596 and IL1403 resistant to LsbB; and (iii) most compellingly, heterologous expression of yvjB in naturally resistant strains of other species, such as Lactobacillus paracasei and Enterococcus faecalis, also rendered them sensitive to the bacteriocin. To our knowledge, this is the first time a membrane-bound peptidase gene has been shown to be involved in bacteriocin sensitivity in target cells. We also demonstrated a novel successful approach for identifying bacteriocin receptors. PMID:24123824

  1. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese

    PubMed Central

    Furtado, Danielle N.; Todorov, Svetoslav D.; Landgraf, Mariza; Destro, Maria T.; Franco, Bernadette D.G.M.

    2015-01-01

    Listeria monocytogenes is a pathogen frequently found in dairy products. Its control in fresh cheeses is difficult, due to the psychrotrophic properties and salt tolerance. Bacteriocinogenic lactic acid bacteria (LAB) with proven in vitro antilisterial activity can be an innovative technological approach but their application needs to be evaluated by means of in situ tests. In this study, a novel bacteriocinogenic Lactococcus lactis strain ( Lc . lactis DF4Mi), isolated from raw goat milk, was tested for control of growth of L. monocytogenes in artificially contaminated fresh Minas type goat cheese during storage under refrigeration. A bacteriostatic effect was achieved, and counts after 10 days were 3 log lower than in control cheeses with no added LAB. However, this effect did not differ significantly from that obtained with a non-bacteriocinogenic Lc. lactis strain. Addition of nisin (12.5 mg/kg) caused a rapid decrease in the number of viable L. monocytogenes in the cheeses, suggesting that further studies with the purified bacteriocin DF4Mi may open new possibilities for this strain as biopreservative in dairy products. PMID:26221109

  2. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance.

    PubMed

    Weidmann, Stéphanie; Maitre, Magali; Laurent, Julie; Coucheney, Françoise; Rieu, Aurélie; Guzzo, Jean

    2017-04-17

    Lactococcus lactis is a lactic acid bacterium widely used in cheese and fermented milk production. During fermentation, L. lactis is subjected to acid stress that impairs its growth. The small heat shock protein (sHsp) Lo18 from the acidophilic species Oenococcus oeni was expressed in L. lactis. This sHsp is known to play an important role in protein protection and membrane stabilization in O. oeni. The role of this sHsp could be studied in L. lactis, since no gene encoding for sHsp has been detected in this species. L. lactis subsp. cremoris strain MG1363 was transformed with the pDLhsp18 plasmid, which is derived from pDL278 and contains the hsp18 gene (encoding Lo18) and its own promoter sequence. The production of Lo18 during stress conditions was checked by immunoblotting and the cellular distribution of Lo18 in L. lactis cells after heat shock was determined. Our results clearly indicated a role for Lo18 in cytoplasmic protein protection and membrane stabilization during stress. The production of sHsp in L. lactis improved tolerance to heat and acid conditions in this species. Finally, the improvement of the L. lactis survival in milk medium thanks to Lo18 was highlighted, suggesting an interesting role of this sHsp. These findings suggest that the expression of a sHsp by a L. lactis strain results in greater resistance to stress, and, can consequently enhance the performances of industrial strains. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products.

    PubMed

    D'Aimmo, Maria Rosaria; Modesto, Monica; Biavati, Bruno

    2007-04-01

    The outlines of antibiotic resistance of some probiotic microorganisms were studied. This study was conducted with the double purpose of verifying their ability to survive if they are taken simultaneously with an antibiotic therapy and to increase the selective properties of suitable media for the isolation of samples containing mixed bacterial populations. We isolated from commercial dairy and pharmaceutical products, 34 strains declared as probiotics, belonging to the genera Bifidobacterium and Lactobacillus, and 21 strains of starter culture bacteria. All the microorganisms have been compared by electrophoresis of the soluble proteins for the purpose of identifying them. A Multiplex-PCR with genus- and species-specific primers was used to detect for Bifidobacterium animalis subsp. lactis presence. All bifidobacteria were B. animalis subsp. lactis except one Bifidobacterium longum. Sometimes the identification showed that the used strain was not the one indicated on the label. The lactobacilli were Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus delbrueckii subsp. bulgaricus. The streptococci were all Streptococcus thermophilus. The minimal inhibitory concentration (MIC) of 24 common antibiotic substances has been valued by the broth microdilution method. All tested strains were susceptible to ampicillin, bacitracin, clindamycin, dicloxacillin, erytromycin, novobiocin, penicillin G, rifampicin (MIC(90) ranging from 0.01 to 4 microg/ml); resistant to aztreonam, cycloserin, kanamycin, nalidixic acid, polymyxin B and spectinomycin (MIC(90) ranging from 64 to >1000 microg/ml). The susceptibility to cephalothin, chloramphenicol, gentamicin, lincomycin, metronidazole, neomycin, paromomycin, streptomycin, tetracycline and vancomycin was variable and depending on the species.

  4. Safety of Bifidobacterium animalis Subsp. Lactis (B. lactis) Strain BB-12-Supplemented Yogurt in Healthy Children.

    PubMed

    Tan, Tina P; Ba, Zhaoyong; Sanders, Mary E; D'Amico, Frank J; Roberts, Robert F; Smith, Keisha H; Merenstein, Daniel J

    2017-02-01

    Probiotics are live microorganisms that may provide health benefits to the individual when consumed in sufficient quantities. For studies conducted on health or disease endpoints on probiotics in the United States, the Food and Administration has required those studies to be conducted as investigational new drugs. This phase I, double-blinded, randomized, controlled safety study represents the first requirement of this pathway. The purpose of the study was to determine the safety of Bifidobacterium animalis subsp. lactis (B lactis) strain BB-12 (BB-12)-supplemented yogurt when consumed by a generally healthy group of children. The secondary aim was to assess the effect of BB-12-supplemented yogurt on the gut microbiota of the children. Sixty children ages 1 to 5 years were randomly assigned to consume 4 ounces of either BB-12-supplemented yogurt or nonsupplemented control yogurt daily for 10 days. The primary outcome was to assess safety and tolerability, as determined by the number of reported adverse events. A total of 186 nonserious adverse events were reported, with no significant differences between the control and BB-12 groups. No significant changes due to probiotic treatment were observed in the gut microbiota of the study cohort. BB-12-supplemented yogurt is safe and well-tolerated when consumed by healthy children. The present study will form the basis for future randomized clinical trials investigating the potential effects of BB-12-supplemented yogurt in different disease states.

  5. Determination of the cell wall polysaccharide and teichoic acid structures from Lactococcus lactis IL1403.

    PubMed

    Vinogradov, Evgeny; Sadovskaya, Irina; Courtin, Pascal; Kulakauskas, Saulius; Grard, Thierry; Mahony, Jennifer; van Sinderen, Douwe; Chapot-Chartier, Marie-Pierre

    2018-06-15

    In the lactic acid bacterium Lactococcus lactis, a cell wall polysaccharide (CWPS) is the bacterial receptor of the majority of infecting bacteriophages. The diversity of CWPS structures between strains explains, at least partially, the narrow host range of lactococcal phages. In the present work, we studied the polysaccharide components of the cell wall of the prototype L. lactis subsp. lactis strain IL1403. We identified a rhamnose-rich complex polysaccharide, carrying a glycerophosphate substitution, as the major component. Its structure was analyzed by 2D NMR spectroscopy, methylation analysis and MALDI-TOF MS and shown to be distinctly different from currently known lactococcal CWPS structures. It contains a linear backbone of repeated α-l-Rha disaccharide subunits, which is irregularly substituted with a trisaccharide occasionally bearing a glycerophosphate group. A poly (glycerol phosphate) teichoic acid, another important carbohydrate component of the IL1403 cell wall, was also isolated and structurally characterized. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria.

    PubMed

    Kaktcham, Pierre Marie; Temgoua, Jules-Bocamdé; Ngoufack Zambou, François; Diaz-Ruiz, Gloria; Wacher, Carmen; Pérez-Chabela, María de Lourdes

    2017-02-01

    The present study aimed to evaluate the bacterial load of water, Nile Tilapia and common Carp intestines from earthen ponds, isolate lactic acid bacteria (LAB) and assess their antimicrobial activity against fish spoilage and pathogenic bacteria. Following enumeration and isolation of microorganisms the antimicrobial activity of the LAB isolates was evaluated. Taxonomic identification of selected antagonistic LAB strains was assessed, followed by partial characterisation of their antimicrobial metabolites. Results showed that high counts (>4 log c.f.u ml -1 or 8 log c.f.u g -1 ) of total aerobic bacteria were recorded in pond waters and fish intestines. The microbiota were also found to be dominated by Salmonella spp., Vibrio spp., Staphylococcus spp. and Escherichia coli. LAB isolates (5.60%) exhibited potent direct and extracellular antimicrobial activity against the host-derived and non host-derived spoilage and pathogenic bacteria. These antagonistic isolates were identified and Lactococcus lactis subsp. lactis was found as the predominant (42.85%) specie. The strains displayed the ability to produce lactic, acetic, butyric, propionic and valeric acids. Bacteriocin-like inhibitory substances with activity against Gram-positive and Gram-negative (Vibrio spp. and Pseudomonas aeruginosa) bacteria were produced by three L. lactis subsp. lactis strains. In this study, the LAB from the microbiota of fish and pond water showed potent antimicrobial activity against fish spoilage or pathogenic bacteria from the same host or ecological niche. The studied Cameroonian aquatic niche is an ideal source of antagonistic LAB that could be appropriate as new fish biopreservatives or disease control agents in aquaculture under tropical conditions in particular or worldwide in general.

  7. Genome analysis of food-processing stressful-resistant probiotic Bifidobacterium animalis subsp. lactis BF052, and its potential application in fermented soymilk.

    PubMed

    Charnchai, Pattra; Jantama, Sirima Suvarnakuta; Jantama, Kaemwich

    2017-09-15

    In this study, Bifidobacterium animalis subsp. lactis BF052 was demonstrated the growth capability in soymilk and could be thus supplemented as a probiotic starter that employed soymilk as one of its food vehicles. The complete genome sequence of BF052 was therefore determined to understand the genetic basis of BF052 as a technological and functional probiotic starter. The whole genome sequence of BF052 consists of a circular genome of 1938 624 bp with a G+C content of 60.50%. This research highlights relevant genes involving in its adaptive responses to industrial and/or environmental stresses and utilization of α-galacto-oligosaccharides in BF052 strain compared with other representative bifidobacterial genomes. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Absolute Enumeration of Probiotic Strains Lactobacillus acidophilus NCFM® and Bifidobacterium animalis subsp. lactis Bl-04 ® via Chip-Based Digital PCR.

    PubMed

    Hansen, Sarah J Z; Morovic, Wesley; DeMeules, Martha; Stahl, Buffy; Sindelar, Connie W

    2018-01-01

    The current standard for enumeration of probiotics to obtain colony forming units by plate counts has several drawbacks: long time to results, high variability and the inability to discern between bacterial strains. Accurate probiotic cell counts are important to confirm the delivery of a clinically documented dose for its associated health benefits. A method is described using chip-based digital PCR (cdPCR) to enumerate Bifidobacterium animalis subsp. lactis Bl-04 and Lactobacillus acidophilus NCFM both as single strains and in combination. Primers and probes were designed to differentiate the target strains against other strains of the same species using known single copy, genetic differences. The assay was optimized to include propidium monoazide pre-treatment to prevent amplification of DNA associated with dead probiotic cells as well as liberation of DNA from cells with intact membranes using bead beating. The resulting assay was able to successfully enumerate each strain whether alone or in multiplex. The cdPCR method had a 4 and 5% relative standard deviation (RSD) for Bl-04 and NCFM, respectively, making it more precise than plate counts with an industry accepted RSD of 15%. cdPCR has the potential to replace traditional plate counts because of its precision, strain specificity and the ability to obtain results in a matter of hours.

  9. Safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12-supplemented yogurt in healthy adults on antibiotics: a phase I safety study.

    PubMed

    Merenstein, Daniel J; Tan, Tina P; Molokin, Aleksey; Smith, Keisha Herbin; Roberts, Robert F; Shara, Nawar M; Mete, Mihriye; Sanders, Mary Ellen; Solano-Aguilar, Gloria

    2015-01-01

    Probiotics are live microorganisms that, when administered in sufficient doses, provide health benefits on the host. The United States Food and Drug Administration (FDA) requires phase I safety studies for probiotics when the intended use of the product is as a drug. The purpose of the study was to determine the safety of Bifidobacterium animalis subsp lactis (B. lactis) strain BB-12 (BB-12)-supplemented yogurt when consumed by a generally healthy group of adults who were prescribed a 10-day course of antibiotics for a respiratory infection. Secondary aims were to assess the ability of BB-12 to affect the expression of whole blood immune markers associated with cell activation and inflammatory response. A phase I, double-blinded, randomized controlled study was conducted in compliance with FDA guidelines for an Investigational New Drug (IND). Forty participants were randomly assigned to consume 4 ounces of either BB-12 -supplemented yogurt or non-supplemented control yogurt daily for 10 d. The primary outcome was to assess safety and tolerability, assessed by the number of reported adverse events. A total of 165 non-serious adverse events were reported, with no differences between the control and BB-12 groups. When compared to the control group, B lactis fecal levels were modestly higher in the BB-12-supplemented group. In a small subset of patients, changes in whole blood expression of genes associated with regulation and activation of immune cells were detected in the BB-12-supplemented group. BB-12-supplemented yogurt is safe and well tolerated when consumed by healthy adults concurrently taking antibiotics. This study will form the basis for future randomized clinical trials investigating the potential immunomodulatory effects of BB-12-supplemented yogurt in a variety of disease states.

  10. Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria

    PubMed Central

    Whittamore, Jonathan M.; Hatch, Marguerite

    2015-01-01

    Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in vitro, including probiotic bifidobacteria, we focused on the efficiency and possible mechanisms by which bifidobacteria can infuence oxalate handling in vivo, especially in the intestines, and compared these results with the reported effects of Oxalobacter formigenes. Bifidobacterium animalis subsp. lactis DSM 10140 and B. adolescentis ATCC 15703 were administered to wild-type (WT) mice and to mice defcient in the hepatic enzyme alanine-glyoxylate aminotransferase (Agxt−/−, a mouse model of Primary Hyperoxaluria) that were fed an oxalate-supplemented diet. The administration of B. animalis subsp. lactis led to a significant decrease in urinary oxalate excretion in WT and Agxt−/− mice when compared to treatment with B. adolescent-is. Detection of B. animalis subsp. lactis in feces revealed that 3 weeks after oral gavage with the bacteria 64 % of WT mice, but only 37 % of Agxt−/− mice were colonized. Examining intestinal oxalate fuxes showed there were no significant changes to net oxalate secretion in colonized animals and were therefore not associated with the changes in urinary oxalate excretion. These results indicate that colonization with B. animalis subsp. lactis decreased urinary oxalate excretion by degrading dietary oxalate thus limiting its absorption across the intestine but it did not promote enteric oxalate excretion as reported for O. formigenes. Preventive or therapeutic administration of B. animalis subsp. lactis appears to have some potential to beneficially infuence dietary hyperoxaluria in mice. PMID:25269440

  11. Lactobacillus delbrueckii subsp. jakobsenii subsp. nov., isolated from dolo wort, an alcoholic fermented beverage in Burkina Faso.

    PubMed

    Adimpong, David B; Nielsen, Dennis S; Sørensen, Kim I; Vogensen, Finn K; Sawadogo-Lingani, Hagrétou; Derkx, Patrick M F; Jespersen, Lene

    2013-10-01

    Lactobacillus delbrueckii is divided into five subspecies based on phenotypic and genotypic differences. A novel isolate, designated ZN7a-9(T), was isolated from malted sorghum wort used for making an alcoholic beverage (dolo) in Burkina Faso. The results of 16S rRNA gene sequencing, DNA-DNA hybridization and peptidoglycan cell-wall structure type analyses indicated that it belongs to the species L. delbrueckii. The genome sequence of isolate ZN7a-9(T) was determined by Illumina-based sequencing. Multilocus sequence typing (MLST) and split-decomposition analyses were performed on seven concatenated housekeeping genes obtained from the genome sequence of strain ZN7a-9(T) together with 41 additional L. delbrueckii strains. The results of the MLST and split-decomposition analyses could not establish the exact subspecies of L. delbrueckii represented by strain ZN7a-9(T) as it clustered with L. delbrueckii strains unassigned to any of the recognized subspecies of L. delbrueckii. Strain ZN7a-9(T) additionally differed from the recognized type strains of the subspecies of L. delbrueckii with respect to its carbohydrate fermentation profile. In conclusion, the cumulative results indicate that strain ZN7a-9(T) represents a novel subspecies of L. delbrueckii closely related to Lactobacillus delbrueckii subsp. lactis and Lactobacillus delbrueckii subsp. delbrueckii for which the name Lactobacillus delbrueckii subsp. jakobsenii subsp. nov. is proposed. The type strain is ZN7a-9(T) = DSM 26046(T) = LMG 27067(T).

  12. Regulation and Adaptive Evolution of Lactose Operon Expression in Lactobacillus delbrueckii

    PubMed Central

    Lapierre, Luciane; Mollet, Beat; Germond, Jacques-Edouard

    2002-01-01

    Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis are both used in the dairy industry as homofermentative lactic acid bacteria in the production of fermented milk products. After selective pressure for the fast fermentation of milk in the manufacture of yogurts, L. delbrueckii subsp. bulgaricus loses its ability to regulate lac operon expression. A series of mutations led to the constitutive expression of the lac genes. A complex of insertion sequence (IS) elements (ISL4 inside ISL5), inserted at the border of the lac promoter, induced the loss of the palindromic structure of one of the operators likely involved in the binding of regulatory factors. A lac repressor gene was discovered downstream of the β-galactosidase gene of L. delbrueckii subsp. lactis and was shown to be inactivated by several mutations in L. delbrueckii subsp. bulgaricus. Regulatory mechanisms of the lac gene expression of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis were compared by heterologous expression in Lactococcus lactis of the two lac promoters in front of a reporter gene (β-glucuronidase) in the presence or absence of the lac repressor gene. Insertion of the complex of IS elements in the lac promoter of L. delbrueckii subsp. bulgaricus increased the promoter's activity but did not prevent repressor binding; rather, it increased the affinity of the repressor for the promoter. Inactivation of the lac repressor by mutations was then necessary to induce the constitutive expression of the lac genes in L. delbrueckii subsp. bulgaricus. PMID:11807052

  13. A qualified presumption of safety approach for the safety assessment of Grana Padano whey starters.

    PubMed

    Rossetti, Lia; Carminati, Domenico; Zago, Miriam; Giraffa, Giorgio

    2009-03-15

    A Qualified Presumption of Safety (QPS) approach was applied to dominant lactic acid bacteria (LAB) associated with Grana Padano cheese whey starters. Thirty-two strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum, and representing the overall genotypic LAB diversity associated with 24 previously collected whey starters [Rossetti, L., Fornasari, M.E., Gatti, M., Lazzi, C., Neviani, E., Giraffa, G., 2008. Grana Padano cheese whey starters: microbial composition and strain distribution. International Journal of Food Microbiology 127, 168-171], were analyzed. All L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus isolates were susceptible to four (i.e. vancomycin, gentamicin, tetracycline, and erythromycin) of the clinically most relevant antibiotics. One L. fermentum strain displayed phenotypic resistance to tetracycline (Tet(R)), with MIC of 32 microg/ml, and gentamycin (Gm(R)), with MIC of 32 microg/ml. PCR was applied to this strain to test the presence of genes tet(L), tet(M), tet(S), and aac(6')-aph(2')-Ia, which are involved in horizontal transfer of Tet(R) and Gm(R), respectively but no detectable amplification products were observed. According to QPS criteria, we conclude that Grana cheese whey starters do not present particular safety concerns.

  14. Safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12®-supplemented yogurt in healthy children

    PubMed Central

    Tan, Tina P.; Ba, Zhaoyong; Sanders, Mary Ellen; D’Amico, Frank J.; Roberts, Robert F.; Smith, Keisha Herbin; Merenstein, Daniel J.

    2016-01-01

    Objectives Probiotics are live microorganisms that may provide health benefits to the individual when consumed in sufficient quantities. For studies conducted on health or disease endpoints on probiotics in the United States, the Food and Administration (FDA) has required those studies to be conducted as investigational new drugs. This phase I, double-blinded, randomized, controlled safety study represents the first requirement of this pathway. The purpose of the study was to determine the safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12® (BB-12®)-supplemented yogurt when consumed by a generally healthy group of children. The secondary aim was to assess the effect of BB-12®-supplemented yogurt on the gut microbiota of the children. Methods Sixty children aged 1–5 years were randomly assigned to consume four ounces of either BB-12®-supplemented yogurt or non-supplemented control yogurt daily for 10 days. The primary outcome was to assess safety and tolerability, as determined by the number of reported adverse events. Results A total of 186 non-serious adverse events were reported, with no significant differences between the control and BB-12® groups. No significant changes due to probiotic treatment were observed in the gut microbiota of the study cohort. Conclusions BB-12®-supplemented yogurt is safe and well-tolerated when consumed by healthy children. This study will form the basis for future randomized clinical trials investigating the potential effects of BB-12®-supplemented yogurt in different disease states. PMID:28114246

  15. Effect of yogurt containing Bifidobacterium animalis subsp . lactis DN-173010 probiotic on dental plaque and saliva in orthodontic patients.

    PubMed

    Pinto, G S; Cenci, M S; Azevedo, M S; Epifanio, M; Jones, M H

    2014-01-01

    To assess how consumption of yogurt containing Bifidobacterium animalis subsp. lactis DN-173010 probiotic for a period of 2 weeks affects salivary and dental plaque levels of mutans streptococci and lactobacilli in patients undergoing orthodontic treatment. A crossover, double-blind, randomized and placebo-controlled clinical trial was performed with 26 volunteers. The study was divided into four periods. During periods 2 and 4, the volunteers ingested yogurt containing probiotic or control yogurt daily for 2 weeks. Periods 1 and 3 were a 1-week run-in period and 4-week washout period, respectively. Saliva and dental plaque samples were collected from each participant at the end of each period. Mutans streptococci, lactobacilli, and total cultivable microorganisms were counted. Values were compared between groups and across periods with the Wilcoxon's test. There was no difference between the yogurt containing probiotic and the control yogurt for any of the studied variables (all p > 0.05). A reduction in counts of total cultivable microorganisms was observed in dental plaque samples after ingestion of either yogurts (both p < 0.05 vs. baseline), but not in saliva (p < 0.05). Daily ingestion of yogurt with or without B. animalis subsp. lactis for a period of 2 weeks was beneficial in reducing total microbial counts in dental plaque. Therefore, no additional benefits were achieved by the use of the tested probiotic strain.

  16. Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1.

    PubMed

    Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2015-02-01

    Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 +/- 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.

  17. Cloning of the citrate permease gene of Lactococcus lactis subsp. lactis biovar diacetylactis and expression in Escherichia coli.

    PubMed Central

    Sesma, F; Gardiol, D; de Ruiz Holgado, A P; de Mendoza, D

    1990-01-01

    The citrate plasmid (Cit+ plasmid) from Lactococcus lactis subsp. lactis biovar diacetylactis was cloned into the EcoRI site of plasmid pUC18. This recombinant plasmid enabled Escherichia coli K-12 to transport and utilize citrate as a source of energy, indicating expression of the citrate permease from L. lactis biovar diacetylactis. The citrate permease was under the control of the lac promoter of pUC18. Genetic expression of the Cit+ plasmid in maxicells revealed that the plasmid encoded two polypeptides of 47 and 32 kilodaltons, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Images PMID:2117878

  18. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation.

    PubMed

    Cretenet, Marina; Le Gall, Gwenaëlle; Wegmann, Udo; Even, Sergine; Shearman, Claire; Stentz, Régis; Jeanson, Sophie

    2014-12-03

    Lactococcus lactis is the most used species in the dairy industry. Its ability to adapt to technological stresses, such as oxidative stress encountered during stirring in the first stages of the cheese-making process, is a key factor to measure its technological performance. This study aimed to understand the response to oxidative stress of Lactococcus lactis subsp. cremoris MG1363 at the transcriptional and metabolic levels in relation to acidification kinetics and growth conditions, especially at an early stage of growth. For those purposes, conditions of hyper-oxygenation were initially fixed for the fermentation. Kinetics of growth and acidification were not affected by the presence of oxygen, indicating a high resistance to oxygen of the L. lactis MG1363 strain. Its resistance was explained by an efficient consumption of oxygen within the first 4 hours of culture, leading to a drop of the redox potential. The efficient consumption of oxygen by the L. lactis MG1363 strain was supported by a coherent and early adaptation to oxygen after 1 hour of culture at both gene expression and metabolic levels. In oxygen metabolism, the over-expression of all the genes of the nrd (ribonucleotide reductases) operon or fhu (ferrichrome ABC transports) genes was particularly significant. In carbon metabolism, the presence of oxygen led to an early shift at the gene level in the pyruvate pathway towards the acetate/2,3-butanediol pathway confirmed by the kinetics of metabolite production. Finally, the MG1363 strain was no longer able to consume oxygen in the stationary growth phase, leading to a drastic loss of culturability as a consequence of cumulative stresses and the absence of gene adaptation at this stage. Combining metabolic and transcriptomic profiling, together with oxygen consumption kinetics, yielded new insights into the whole genome adaptation of L. lactis to initial oxidative stress. An early and transitional adaptation to oxidative stress was revealed for L. lactis subsp. cremoris MG1363 in the presence of initially high levels of oxygen. This enables the cells to maintain key traits that are of great importance for industry, such as rapid acidification and reduction of the redox potential of the growth media.

  19. Effect of autochthonous bacteriocin-producing Lactococcus lactis on bacterial population dynamics and growth of halotolerant bacteria in Brazilian charqui.

    PubMed

    Biscola, Vanessa; Abriouel, Hikmate; Todorov, Svetoslav Dimitrov; Capuano, Verena Sant'Anna Cabral; Gálvez, Antonio; Franco, Bernadette Dora Gombossy de Melo

    2014-12-01

    Charqui is a fermented, salted and sun-dried meat product, widely consumed in Brazil and exported to several countries. Growth of microorganisms in this product is unlikely due to reduced Aw, but halophilic and halotolerant bacteria may grow and cause spoilage. Charqui is a good source of lactic acid bacteria able to produce antimicrobial bacteriocins. In this study, an autochthonous bacteriocinogenic strain (Lactococcus lactis subsp. lactis 69), isolated from charqui, was added to the meat used for charqui manufacture and evaluated for its capability to prevent the growth of spoilage bacteria during storage up to 45 days. The influence of L. lactis 69 on the bacterial diversity during the manufacturing of the product was also studied, using denaturing gradient gel electrophoresis (DGGE). L. lactis 69 did not affect the counts and diversity of lactic acid bacteria during manufacturing and storage, but influenced negatively the populations of halotolerant microorganisms, reducing the spoilage potential. The majority of tested virulence genes was absent, evidencing the safety and potential technological application of this strain as an additional hurdle to inhibit undesirable microbial growth in this and similar fermented meat products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A General Method for Selection of α-Acetolactate Decarboxylase-Deficient Lactococcus lactis Mutants To Improve Diacetyl Formation

    PubMed Central

    Curic, Mirjana; Stuer-Lauridsen, Birgitte; Renault, Pierre; Nilsson, Dan

    1999-01-01

    The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the α-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains. PMID:10049884

  1. Molecular and biochemical characterizations of human oral lactobacilli as putative probiotic candidates.

    PubMed

    Strahinic, I; Busarcevic, M; Pavlica, D; Milasin, J; Golic, N; Topisirovic, L

    2007-04-01

    The objective of this study was to characterize the lactobacilli from the human oral cavity as a potential source of probiotic strains. Samples were collected from four different locations within the oral cavity: surface of healthy tooth, oral mucous membrane, surface of tooth decay and deep tooth decay. On the basis of morphological and biochemical properties eight categories were formed and 26 isolates were selected for further characterization. The isolates were determined as Lactobacillus sp. using primers specific for 16S rDNA. Sequencing of 16S rDNA genes and repetitive sequence-based polymerase chain reactions were used for determination to species and subspecies levels. Predominant species were Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus salivarius and Lactobacillus paracasei subsp. paracasei, while Lactobacillus acidophilus, Lactobacillus cellobiosus, Lactobacillus delbrueckii subsp. lactis and Lactobacillus gasseri were also present. The isolates Lactobacillus salivarius BGHO1, Lactobacillus fermentum BGHO36 and BGHO64, Lactobacillus gasseri BGHO89 and Lactobacillus delbrueckii subsp. lactis BGHO99 exhibited antagonistic action on the growth of Staphylococcus aureus, Enterococcus faecalis, Micrococcus flavus, Salmonella enteritidis, Streptococcus pneumoniae and Streptococcus mutans, but not on growth of Candida albicans. Moreover, the isolates L. salivarius BGHO1 and L. gasseri BGHO89 were tolerant to low pH and high concentration of bile salts. Taken together, these findings imply that L. salivarius BGHO1 and L. gasseri BGHO89 might be subjects for additional investigation as potential probiotic strains.

  2. In ovo injection of prebiotics and synbiotics affects the digestive potency of the pancreas in growing chickens.

    PubMed

    Pruszynska-Oszmalek, E; Kolodziejski, P A; Stadnicka, K; Sassek, M; Chalupka, D; Kuston, B; Nogowski, L; Mackowiak, P; Maiorano, G; Jankowski, J; Bednarczyk, M

    2015-08-01

    The purpose of the study was to examine the effect of 2 prebiotics and 2 synbiotics on the digestive potency of pancreas in 1-, 3-, 7-, 14-, 21-, and 34-day-old cockerels. Prebiotics (inulin and Bi²tos) and synbiotics (inulin + Lactococcus lactis subsp. lactis and Bi²tos + Lactococcus lactis subsp. cremoris) were injected in ovo into the air cell on the 12th d embryonic development. Their application increased the activity of amylase, lipase, and trypsin in the pancreas. The most pronounced changes were observed at the end of the investigated rearing period (d 34). The strongest stimulative effects on amylase were shown by both synbiotics, on lipase synbiotic Bi²tos + Lactococcus lactis subsp. cremoris, and on trypsin all the used prebiotics and synbiotics. Simultaneously, neither the absolute nor the relative mass of the pancreas in comparison to control group were changed. Also, the injected in ovo compounds did not cause a deterioration in the posthatching condition of the chicken liver, as determined by measurement of the activity of marker enzymes in the blood (alanine aminotransferase and aspartate aminotransferase). Treatment with the prebiotics and synbiotics did not change the feed conversion ratio but Bi²tos (galacto-oligosaccharide) and inulin (fructan) + Lactococcus lactis subsp. lactis significantly increased final BW. © 2015 Poultry Science Association Inc.

  3. Growth, nisA Gene Expression, and In Situ Activity of Novel Lactococcus lactis subsp. cremoris Costarter Culture in Commercial Hard Cheese Production.

    PubMed

    Noutsopoulos, Dimitrios; Kakouri, Athanasia; Kartezini, Eleftheria; Pappas, Dimitrios; Hatziloukas, Efstathios; Samelis, John

    2017-12-01

    This study evaluated in situ expression of the nisA gene by an indigenous, nisin A-producing (NisA+) Lactococcus lactis subsp. cremoris raw milk genotype, represented by strain M78, in traditional Greek Graviera cheeses under real factory-scale manufacturing and ripening conditions. Cheeses were produced with added a mixed thermophilic and mesophilic commercial starter culture (CSC) or with the CSC plus strain M78 (CSC+M78). Cheeses were sampled after curd cooking (day 0), fermentation of the unsalted molds for 24 h (day 1), brining (day 7), and ripening of the brined molds (14 to 15 kg each) for 30 days in a fully controlled industrial room (16.5°C; 91% relative humidity; day 37). Total RNA was directly extracted from the cheese samples, and the expression of nisA gene was evaluated by real-time reverse transcription PCR (qRT-PCR). Agar overlay and well diffusion bioassays were correspondingly used for in situ detection of the M78 NisA+ colonies in the cheese agar plates and antilisterial activity in whole-cheese slurry samples, respectively. Agar overlay assays showed good growth (>8 log CFU/g of cheese) of the NisA+ strain M78 in coculture with the CSC and vice versa. The nisA expression was detected in CSC+M78 cheese samples only, with its expression levels being the highest (16-fold increase compared with those of the control gene) on day 1, followed by significant reduction on day 7 and almost negligible expression on day 37. Based on the results, certain intrinsic and mainly implicit hurdle factors appeared to reduce growth prevalence rates and decrease nisA gene expression, as well as the nisin A-mediated antilisterial activities of the NisA+ strain M78 postfermentation. To our knowledge, this is the first report on quantitative expression of the nisA gene in a Greek cooked hard cheese during commercial manufacturing and ripening conditions by using a novel, rarely isolated, indigenous NisA+ L. lactis subsp. cremoris genotype as costarter culture.

  4. Influence of the addition of Lactobacillus acidophilus La-05, Bifidobacterium animalis subsp. lactis Bb-12 and inulin on the technological, physicochemical, microbiological and sensory features of creamy goat cheese.

    PubMed

    Barbosa, Ilsa C; Oliveira, Maria E G; Madruga, Marta S; Gullón, Beatriz; Pacheco, Maria T B; Gomes, Ana M P; Batista, Ana S M; Pintado, Maria M E; Souza, Evandro L; Queiroga, Rita C R E

    2016-10-12

    The effects of the addition of Lactobacillus acidophilus LA-05, Bifidobacterium animalis subsp. lactis BB-12 and inulin on the quality characteristics of creamy goat cheese during refrigerated storage were evaluated. The manufactured cheeses included the addition of starter culture (Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris - R-704) (CC); starter culture, L. acidophilus LA-05 and inulin (CLA); starter culture, B. lactis BB-12 and inulin (CBB); or starter culture, L. acidophilus LA-05, B. lactis BB-12 and inulin (CLB). In the synbiotic cheeses (CLA, CBB and CLB), the counts of L. acidophilus LA-05 and B. lactis BB-12 were greater than 6log CFU g -1 , the amount of inulin was greater than 6 g per 100 g, and the firmness was reduced. The cheeses evaluated had high brightness values (L*), with a predominance of yellow (b*). CC had higher contents of proteins, lipids and minerals compared to the other cheeses. There was a decrease in the amount of short-chain fatty acids (SCFAs) and an increase of medium-chain (MCFAs) and long-chain fatty acids (LCFAs) in the synbiotic cheeses compared to CC. The amount of conjugated linoleic acid increased in CLA, CBB and CLB. The highest depth of proteolysis and the greatest changes in the release of free amino acids were found in CLB. The addition of inulin and probiotics, alone or in co-culture, did not affect the cheese acceptance. Inulin and probiotics can be used together for the production of creamy goat cheese without negatively affecting the general quality characteristics of the product, and to add value because of its synbiotic potential.

  5. Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris.

    PubMed

    To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle

    2011-05-01

    Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-L-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells.

  6. Cyclopropanation of Membrane Unsaturated Fatty Acids Is Not Essential to the Acid Stress Response of Lactococcus lactis subsp. cremoris ▿

    PubMed Central

    To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle

    2011-01-01

    Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-l-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells. PMID:21421775

  7. L+-lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84.

    PubMed

    Petrov, Kaloyan; Urshev, Zoltan; Petrova, Penka

    2008-06-01

    A new Lactococcus lactis subsp. lactis B84, capable of utilizing starch as a sole carbon source and producing L(+)-lactate, was isolated from spontaneously fermented rye sourdough. Aiming at maximum lactic acid productivity, the components of the media and the cultivation conditions were varied. In MRS-starch medium (with absence of yeast and meat extracts), at 33 degrees C, agitation 200 rpm and pH 6.0 for 6 days complete starch hydrolysis occurred and 5.5 gl(-1) lactic acid were produced from 18 gl(-1) starch. The identification of strain B84 was based on genetic criteria. Amplified ribosomal DNA restriction analysis (ARDRA), PCR with species-specific primers and sequencing of the 16S rDNA proved its species affiliation. Four genes for enzymes, involved in starch degradation were detected in B84 genome: amyL, amyY, glgP and apu, coding cytoplasmic and extracellular alpha-amylases, glycogen phosphorylase and amylopullulanase, respectively. Reverse transcription PCR experiments showed that both genes, encoding alpha-amylases (amyL and amyY) were expressed into mRNAs, whereas apu and glgP were not. Amylase activity assay was performed at different pH and temperatures. The cell-bond amylase proved to be the key enzyme, involved in the starch hydrolysis with maximum activity at 45 degrees C and pH 5.4.

  8. Safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12-supplemented yogurt in healthy adults on antibiotics: a phase I safety study

    PubMed Central

    Merenstein, Daniel J; Tan, Tina P; Molokin, Aleksey; Smith, Keisha Herbin; Roberts, Robert F; Shara, Nawar M; Mete, Mihriye; Sanders, Mary Ellen; Solano-Aguilar, Gloria

    2015-01-01

    Probiotics are live microorganisms that, when administered in sufficient doses, provide health benefits on the host. The United States Food and Drug Administration (FDA) requires phase I safety studies for probiotics when the intended use of the product is as a drug. The purpose of the study was to determine the safety of Bifidobacterium animalis subsp lactis (B. lactis) strain BB-12 (BB-12)-supplemented yogurt when consumed by a generally healthy group of adults who were prescribed a 10-day course of antibiotics for a respiratory infection. Secondary aims were to assess the ability of BB-12 to affect the expression of whole blood immune markers associated with cell activation and inflammatory response. A phase I, double-blinded, randomized controlled study was conducted in compliance with FDA guidelines for an Investigational New Drug (IND). Forty participants were randomly assigned to consume 4 ounces of either BB-12 -supplemented yogurt or non-supplemented control yogurt daily for 10 d. The primary outcome was to assess safety and tolerability, assessed by the number of reported adverse events. A total of 165 non-serious adverse events were reported, with no differences between the control and BB-12 groups. When compared to the control group, B lactis fecal levels were modestly higher in the BB-12-supplemented group. In a small subset of patients, changes in whole blood expression of genes associated with regulation and activation of immune cells were detected in the BB-12-supplemented group. BB-12-supplemented yogurt is safe and well tolerated when consumed by healthy adults concurrently taking antibiotics. This study will form the basis for future randomized clinical trials investigating the potential immunomodulatory effects of BB-12-supplemented yogurt in a variety of disease states. PMID:25569274

  9. Novel Phage Group Infecting Lactobacillus delbrueckii subsp. lactis, as Revealed by Genomic and Proteomic Analysis of Bacteriophage Ldl1

    PubMed Central

    Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio

    2014-01-01

    Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 ± 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species. PMID:25501478

  10. Effects of probiotic supplementation over 5 months on routine haematology and clinical chemistry measures in healthy active adults.

    PubMed

    Cox, A J; West, N P; Horn, P L; Lehtinen, M J; Koerbin, G; Pyne, D B; Lahtinen, S J; Fricker, P A; Cripps, A W

    2014-11-01

    Use of probiotic-containing foods and probiotic supplements is increasing; however, few studies document safety and tolerability in conjunction with defined clinical end points. This paper reports the effects of 150 days of supplementation with either a single- (Bifidobacterium animalis subsp. lactis Bl-04) or a double-strain (Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07) probiotic on routine haematology and clinical chemistry measures in healthy active adults. Pre- to post-intervention changes in laboratory measures were determined and compared between supplement and placebo groups. Overall there were few differences in routine haematology and clinical chemistry measures between supplement and placebo groups post-intervention. Exceptions included plasma calcium (P=0.03) and urea (P=0.015); however, observed changes were small and within assay-specific laboratory reference ranges. These data provide evidence supporting the use of these probiotic supplements over a period of 5 months in healthy active adults without obvious safety or tolerability issues.

  11. Use of Taiwanese ropy fermented milk (TRFM) and Lactococcus lactis subsp. cremoris isolated from TRFM in manufacturing of functional low-fat cheeses.

    PubMed

    Chiang, Ming-Lun; Chen, Hsi-Chia; Wang, Sheng-Yao; Hsieh, Yueh-Ling; Chen, Ming-Ju

    2011-09-01

    The purpose of this study was to manufacture new functional low-fat cheeses using Taiwanese ropy fermented milk (TRFM) and Lactococcus lactis subsp. cremoris strains isolated from TRFM. After 28 d of ripening and storage, the viable populations of lactic acid bacteria (LAB) in the low-fat cheeses made with L. lactis subsp. cremoris TL1 (TL1), L. lactis subsp. cremoris TL4 (TL4), and TRFM still maintained above 10(8) CFU/g. The low-fat cheeses made with TL1 and TRFM showed higher moisture contents than the cheeses made with TL4, full-fat, and low-fat cheese controls. The low-fat cheeses made with TL1 and TL4 had higher customer preferential scores similar to full-fat cheese control in the sensory evaluation. Additionally, the low-fat cheeses fermented with TL1, TL4, and TRFM for 4 h had higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging and ferrous ion-chelating abilities than the cheeses fermented with the starters for 8 h, full-fat, and low-fat cheese controls. A better angiotensin-converting enzyme (ACE) inhibition activity was also observed in the low-fat cheeses made with TL1, TL4, and TRFM than that in the full-fat and low-fat cheese controls during ripening and storage period. As health-conscious consumers continue to seek low-fat alternatives in their diets, there remain strong interests for the dairy industry to develop low-fat cheeses to meet the demands. This study clearly demonstrated that the low-fat cheeses fermented with TL1 for 4 h showed a better overall acceptability and possessed antioxidative abilities and ACE inhibitory activities than other cheeses tested in this study. By improving its flavor and investigating the possible mechanisms of its functionalities in the future, this low-fat cheese might possibly be commercialized and give a positive impact on cheese consumption in the future. © 2011 Institute of Food Technologists®

  12. Isolation of a bacteriocin-producing Lactococcus lactis subsp. lactis and application to control Listeria monocytogenes in Moroccan jben.

    PubMed

    Benkerroum, N; Oubel, H; Zahar, M; Dlia, S; Filali-Maltouf, A

    2000-12-01

    Use of a bacteriocin-producing lactococcal strain to control Listeria monocytogenes in jben. A Lactococcus lactis strain isolated from lben was shown, by the spot technique, to produce a bacteriocin different from nisin. Inhibitory activity of the bacteriocin-producing strain against Listeria monocytogenes was investigated in jben, made from cow's milk fermented with the producer organism and contaminated with 104 or 107 cfu ml-1. Listeria counts were monitored during manufacture, and during conservation at room and at refrigeration temperatures. Results showed that the pathogen was reduced by 2.7 logarithmic units after 30 h of jben processing when the initial inoculum of 107 cfu ml(-1) was used. For the initial inoculum of 104 cfu ml(-1), the bacterium was completely eliminated at 24 h. Furthermore, the use of the bacteriocin-producing starter culture extended the shelf-life of jben by 5 days. In situ production of the lactococcal bacteriocin is an efficient biological means of controlling L. monocytogenes in jben and of allowing shelf-life extension. The proposed technology will essentially benefit minimally processed dairy products and those made with raw milk.

  13. Transcriptional responses in Lactococcus lactis subsp. cremoris to the changes in oxygen and redox potential during milk acidification.

    PubMed

    Larsen, N; Brøsted Werner, B; Jespersen, L

    2016-08-01

    Milk acidification and metabolic activity of the starter cultures are affected by oxygen; however, molecular factors related to the redox changes are poorly defined. The objective of the study was to investigate transcriptional responses in Lactococcus lactis subsp. cremoris CHCCO2 grown in milk to the shifts of oxygen and redox potential (Eh7 ). Transcriptomic studies were performed with the use of Illumina HiSeq 2000 mRNA sequencing and validated by the real-time quantitative PCR. In total 105 differentially expressed genes were assigned functional gene names. Most of the differentially expressed genes were detected during aerobic reduction phase. Upregulated genes were implicated in lactose utilization, glycogen biosynthesis, amino sugar metabolism, oxidation-reduction, pyrimidine biosynthesis and DNA integration processes. Genes of purine nucleotide biosynthesis and genes encoding amino acid, multidrug resistance and ion ABC transporters were mostly downregulated, while oligopeptide transporter genes were reduced during oxygen depletion and induced at minimum Eh7 . Understanding of gene responses in starter cultures to the changes of oxidation-reduction state is important for the better control and reproducibility of dairy fermentations. We applied mRNA sequencing by Illumina HiSeq 2000 to investigate gene expression profile in a dairy strain of Lactococcus lactis subsp. cremoris during milk acidification. Novelty of this study lies in linking transcriptional responses to oxygen depletion and the changes of redox potential with the fermentation kinetics and clarification of molecular factors specifically expressed in milk which might be essential for bacterial performance and the final quality of cheeses. © 2016 The Society for Applied Microbiology.

  14. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147.

    PubMed Central

    Ryan, M P; Rea, M C; Hill, C; Ross, R P

    1996-01-01

    Lactococcus lactis DPC3147, a strain isolated from an Irish kefir grain, produces a bacteriocin with a broad spectrum of inhibition. The bacteriocin produced is heat stable, particularly at a low pH, and inhibits nisin-producing (Nip+) lactococci. On the basis of the observation that the nisin structural gene (nisA) does not hybridize to DPC3147 genomic DNA, the bacteriocin produced was considered novel and designated lacticin 3147. The genetic determinants which encode lacticin 3147 are contained on a 63-kb plasmid, which was conjugally mobilized to a commercial cheese starter, L. lactis subsp. cremoris DPC4268. The resultant transconjugant, DPC4275, both produces and is immune to lacticin 3147. The ability of lacticin 3147-producing lactococci to perform as cheddar cheese starters was subsequently investigated in cheesemaking trials. Bacteriocin-producing starters (which included the transconjugant strain DPC4275) produced acid at rates similar to those of commercial strains. The level of lacticin 3147 produced in cheese remained constant over 6 months of ripening and correlated with a significant reduction in the levels of nonstarter lactic acid bacteria. Such results suggest that these starters provide a means of controlling developing microflora in ripened fermented products. PMID:8593062

  15. Cell-Wall-Bound Proteinase of Lactobacillus delbrueckii subsp. lactis ACA-DC 178: Characterization and Specificity for β-Casein

    PubMed Central

    Tsakalidou, E.; Anastasiou, R.; Vandenberghe, I.; van Beeumen, J.; Kalantzopoulos, G.

    1999-01-01

    Lactobacillus delbrueckii subsp. lactis ACA-DC 178, which was isolated from Greek Kasseri cheese, produces a cell-wall-bound proteinase. The proteinase was removed from the cell envelope by washing the cells with a Ca2+-free buffer. The crude proteinase extract shows its highest activity at pH 6.0 and 40°C. It is inhibited by phenylmethylsulfonyl fluoride, showing that the enzyme is a serine-type proteinase. Considering the substrate specificity, the enzyme is similar to the lactococcal PI-type proteinases, since it hydrolyzes β-casein mainly and α- and κ-caseins to a much lesser extent. The cell-wall-bound proteinase from L. delbrueckii subsp. lactis ACA-DC 178 liberates four main peptides from β-casein, which have been identified. PMID:10223997

  16. Proteolytic and antimicrobial activity of lactic acid bacteria grown in goat milk.

    PubMed

    Atanasova, Jivka; Moncheva, Penka; Ivanova, Iskra

    2014-11-02

    We examined 62 strains and 21 trade starter cultures from the collection of LB Bulgaricum PLC for proteolytic and antimicrobial activity of lactic acid bacteria (LAB) grown in goat milk. The aim of this study was to investigate the fermentation of caseins, α-lactalbumin and β-lactoglobulin by LAB, using the o -phthaldialdehyde (OPA) spectrophotometric assay and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The proteolysis targeted mainly caseins, especially β-casein. Whey proteins were proteolyzed, essentially β-lactoglobulin. The proteolytic activity of Lactococcus lactis l598, Streptococcus thermophilus t3D1, Dt1, Lactobacillus lactis 1043 and L. delbrueckii subsp. bulgaricus b38, b122 and b24 was notably high. The proteolysis process gave rise to medium-sized peptide populations. Most of the examined strains showed antimicrobial activity against some food pathogens, such as Escherichia coli , Staphylococcus aureus , Salmonella cholere enteridis , Listeria monocytogenes , Listeria innocua and Enterobacter aerogenes . The most active producers of antimicrobial-active peptides were strains of L. delbrueckii subsp. bulgaricus and S. thermophilus , which are of practical importance. The starter cultures containing the examined species showed high proteolytic and antimicrobial activity in skimmed goat milk. The greatest antimicrobial activity of the cultures was detected against E. aerogenes . The obtained results demonstrated the significant proteolytic potential of the examined strains in goat milk and their potential for application in the production of dairy products from goat's milk. The present results could be considered as the first data on the proteolytic capacity of strains and starter cultures in goat milk for the purposes of trade interest of LB Bulgaricum PLC.

  17. Impact of bile salt adaptation of Lactobacillus delbrueckii subsp. lactis 200 on its interaction capacity with the gut.

    PubMed

    Burns, Patricia; Reinheimer, Jorge; Vinderola, Gabriel

    2011-10-01

    In a previous work, bile-salt-resistant derivatives were obtained from non-intestinal lactobacilli. The aim of this work was to investigate the impact of bile adaptation of Lactobacillus delbrueckii subsp. lactis 200 on morphology, surface properties, in vivo interaction capacity with the gut and ability to activate the gut immune response. Electron microscopy studies, growth kinetics in the presence of bovine and porcine bile, the capacity to deconjugate bile acids, hydrophobicity, autoaggregation and co-aggregation capacities were studied for the parental strain and its bile-resistant derivative in vitro. Additionally, survival in intestinal fluid, the interaction with the gut and the immunomodulating capacities were studied in mice. Bile salt adaptation conferred upon the adapted strain a higher capacity to withstand physiological concentrations of bile salts and greater survival capacity in intestinal fluid. However, bile salt exposure reduced cell hydrophobicity, autoaggregation and adhesion capacities, resulting in reduced persistence in the intestinal lumen and delayed capacity to activate the gut immune response. Insight into the effects of bile salts upon the interaction and immunomodulating capacity of lactobacilli with the gut is provided, relating in vitro and in vivo results. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Functional cream cheese supplemented with Bifidobacterium animalis subsp. lactis DSM 10140 and Lactobacillus reuteri DSM 20016 and prebiotics.

    PubMed

    Speranza, Barbara; Campaniello, Daniela; Monacis, Noemi; Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2018-06-01

    The aim of this study was to develop a functional fresh cream cheese with Bifidobacterium animalis subsp. lactis DSM 10140 or Lactobacillus reuteri DSM 20016 and prebiotics (inulin, FOS and lactulose). The research was divided into two steps: in vitro evaluation of the effects of prebiotic compounds; validation at laboratory level with production of functional cream mini-cheeses. Prebiotics showed a protective effect: B. animalis subsp. lactis DSM 10140 cultivability on Petri dishes was positively influenced by lactulose, whereas fructooligosaccharides (FOS) were the prebiotic compounds able to prolong Lb. reuteri DSM 20016 cultivability. At 30 °C, a prolongation of the death time (more than 300 days) was observed, while the controls showed death time values about 100 days. At 45 °C, death time values increased from 32.2 (control) to 33, 35, and 38 days in the samples added with FOS, inulin and lactulose, respectively. Lactulose and FOS were chosen to be added to cream mini-cheeses inoculated with B. animalis subsp. lactis DSM 10140 and Lb. reuteri DSM 20016, respectively; the proposed functional cream cheese resulted in a product with favourable conditions for the viability of both probiotics which maintained cultivable cells above the recommended level during 28 days of storage at 4 °C with good sensory characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Thermal inactivation kinetics of Lactococcus lactis subsp. lactis bacteriophage pll98-22.

    PubMed

    Sanlibaba, Pinar; Buzrul, S; Akkoç, Nefise; Alpas, H; Akçelik, M

    2009-03-01

    Survival curves of Lactococcus lactis subsp. lactis bacteriophage pll98 inactivated by heat were obtained at seven temperature values (50-80 degrees C) in M17 broth and skim milk. Deviations from first-order kinetics in both media were observed as sigmoidal shapes in the survival curves of pll98. An empirical model with four parameters was used to define the thermal inactivation. Number of parameters of the model was reduced from four to two in order to increase the robustness of the model. The reduced model produced comparable fits to the full model. Both the survival data and the calculations done using the reduced model (time necessary to reduce the number of phage pll98 six- or seven- log10) indicated that skim milk is a more protective medium than M17 broth within the assayed temperature range.

  20. Characterization, identification and application of lactic Acid bacteria isolated from forage paddy rice silage.

    PubMed

    Ni, Kuikui; Wang, Yanping; Li, Dongxia; Cai, Yimin; Pang, Huili

    2015-01-01

    There has been growing interest to develop forage rice as a new feed resource for livestock. This study was to characterize the natural population of lactic acid bacteria (LAB) and select potentially excellent strains for paddy rice silage preparation in China. One hundred and twenty-six strains were isolated and screened from paddy rice silage prepared using a small-scale fermentation system, and ninety-nine of these isolates were considered to be LAB based on their Gram-positive and catalase-negative morphology and the production of most of their metabolic products as lactic acid. These isolates were divided into eight groups (A-H) on the basis of their morphological and biochemical characteristics. The Group A to H strains were identified as Lactobacillus (L.) plantarum subsp. plantarum (species ratio: 8.1%), L. casei (5.1%), Leuconostoc (Ln.) pseudomesenteroides (11.1%), Pediococcus (P.) pentosaceus (24.2%), Enterococcus (E.) mundtii (12.1%), Lactococcus (Lc.) garvieae (15.2%), E. faecium (9.1%) and Lc. lactis subsp. lactis (15.2%) based on sequence analyses of their 16S rRNA and recA genes. P. pentosaceus was the most abundant member of the LAB population in the paddy rice silage. A selected strain, namely L. casei R 465, was found to be able to grow under low pH conditions and to improve the silage quality with low pH and a relatively high content of lactic acid. This study demonstrated that forage paddy rice silage contains abundant LAB species and its silage can be well preserved by inoculation with LAB, and that strain R 465 can be a potentially excellent inoculant for paddy rice silage.

  1. Characterization, Identification and Application of Lactic Acid Bacteria Isolated from Forage Paddy Rice Silage

    PubMed Central

    Ni, Kuikui; Wang, Yanping; Li, Dongxia; Cai, Yimin; Pang, Huili

    2015-01-01

    There has been growing interest to develop forage rice as a new feed resource for livestock. This study was to characterize the natural population of lactic acid bacteria (LAB) and select potentially excellent strains for paddy rice silage preparation in China. One hundred and twenty-six strains were isolated and screened from paddy rice silage prepared using a small-scale fermentation system, and ninety-nine of these isolates were considered to be LAB based on their Gram-positive and catalase-negative morphology and the production of most of their metabolic products as lactic acid. These isolates were divided into eight groups (A-H) on the basis of their morphological and biochemical characteristics. The Group A to H strains were identified as Lactobacillus (L.) plantarum subsp. plantarum (species ratio: 8.1%), L. casei (5.1%), Leuconostoc (Ln.) pseudomesenteroides (11.1%), Pediococcus (P.) pentosaceus (24.2%), Enterococcus (E.) mundtii (12.1%), Lactococcus (Lc.) garvieae (15.2%), E. faecium (9.1%) and Lc. lactis subsp. lactis (15.2%) based on sequence analyses of their 16S rRNA and recA genes. P. pentosaceus was the most abundant member of the LAB population in the paddy rice silage. A selected strain, namely L. casei R 465, was found to be able to grow under low pH conditions and to improve the silage quality with low pH and a relatively high content of lactic acid. This study demonstrated that forage paddy rice silage contains abundant LAB species and its silage can be well preserved by inoculation with LAB, and that strain R 465 can be a potentially excellent inoculant for paddy rice silage. PMID:25803578

  2. Antibacterial Activities of Nisin Z Encapsulated in Liposomes or Produced In Situ by Mixed Culture during Cheddar Cheese Ripening

    PubMed Central

    Benech, R.-O.; Kheadr, E. E.; Lacroix, C.; Fliss, I.

    2002-01-01

    This study investigated both the activity of nisin Z, either encapsulated in liposomes or produced in situ by a mixed starter, against Listeria innocua, Lactococcus spp., and Lactobacillus casei subsp. casei and the distribution of nisin Z in a Cheddar cheese matrix. Nisin Z molecules were visualized using gold-labeled anti-nisin Z monoclonal antibodies and transmission electron microscopy (immune-TEM). Experimental Cheddar cheeses were made using a nisinogenic mixed starter culture, containing Lactococcus lactis subsp. lactis biovar diacetylactis UL 719 as the nisin producer and two nisin-tolerant lactococcal strains and L. casei subsp. casei as secondary flora, and ripened at 7°C for 6 months. In some trials, L. innocua was added to cheese milk at 105 to 106 CFU/ml. In 6-month-old cheeses, 90% of the initial activity of encapsulated nisin (280 ± 14 IU/g) was recovered, in contrast to only 12% for initial nisin activity produced in situ by the nisinogenic starter (300 ± 15 IU/g). During ripening, immune-TEM observations showed that encapsulated nisin was located mainly at the fat/casein interface and/or embedded in whey pockets while nisin produced by biovar diacetylactis UL 719 was uniformly distributed in the fresh cheese matrix but concentrated in the fat area as the cheeses aged. Cell membrane in lactococci appeared to be the main nisin target, while in L. casei subsp. casei and L. innocua, nisin was more commonly observed in the cytoplasm. Cell wall disruption and digestion and lysis vesicle formation were common observations among strains exposed to nisin. Immune-TEM observations suggest several modes of action for nisin Z, which may be genus and/or species specific and may include intracellular target-specific activity. It was concluded that nisin-containing liposomes can provide a powerful tool to improve nisin stability and availability in the cheese matrix. PMID:12406756

  3. Mupirocin-mucin agar for selective enumeration of Bifidobacterium bifidum.

    PubMed

    Pechar, Radko; Rada, Vojtech; Parafati, Lucia; Musilova, Sarka; Bunesova, Vera; Vlkova, Eva; Killer, Jiri; Mrazek, Jakub; Kmet, Vladimir; Svejstil, Roman

    2014-11-17

    Bifidobacterium bifidum is a bacterial species exclusively found in the human intestinal tract. This species is becoming increasingly popular as a probiotic organism added to lyophilized products. In this study, porcine mucin was used as the sole carbon source for the selective enumeration of B. bifidum in probiotic food additives. Thirty-six bifidobacterial strains were cultivated in broth with mucin. Only 13 strains of B. bifidum utilized the mucin to produce acids. B. bifidum was selectively enumerated in eight probiotic food supplements using agar (MM agar) containing mupirocin (100 mg/L) and mucin (20 g/L) as the sole carbon source. MM agar was fully selective if the B. bifidum species was presented together with Bifidobacterium animalis subsp. lactis, Bifidobacterium breve, and Bifidobacterium longum subsp. longum species and with lactic acid bacteria (lactobacilli, streptococci). Isolated strains of B. bifidum were identified using biochemical, PCR, MALDI-TOF procedures and 16S rRNA gene sequencing. The novel selective medium was also suitable for the isolation of B. bifidum strains from human fecal samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Some Technological Properties of Lactic Acid Bacteria Isolated from Dahi and Datshi, Naturally Fermented Milk Products of Bhutan

    PubMed Central

    Shangpliang, H. N. J.; Sharma, Sharmila; Rai, Ranjita; Tamang, Jyoti P.

    2017-01-01

    Dahi and datshi are common naturally fermented milk (NFM) products of Bhutan. Population of lactic acid bacteria (LAB) in dahi (pH 3.7) and datshi (pH 5.2) was 1.4 × 107 and 3.9 × 108 cfu/ml, respectively. Based on 16S rRNA gene sequencing isolates of LAB from dahi and datshi were identified as Enterococcus faecalis, E. faecium, Lactococcus lactis subsp. lactis. LAB strains were tested for some technological properties. All LAB strains except E. faecalis CH2:17 caused coagulation of milk at both 30°C for 48 h. Only E. faecium DH4:05 strain was resistant to pH 3. No significant difference (P > 0.05) of viable counts was observed in MRS broth with and without lysozyme. All LAB strains grew well in 0.3% bile showing their ability to tolerate bile salt. None of the LAB strains showed >70% hydrophobicity. This study, being the first of its microbiological analysis of the NFM of Bhutan, has opened up to an extent of research work that gives a new insight to the products. PMID:28203227

  5. Dynamics of fecal microbiota in hospitalized elderly fed probiotic LKM512 yogurt.

    PubMed

    Matsumoto, Mitsuharu; Sakamoto, Mitsuo; Benno, Yoshimi

    2009-08-01

    The comprehensive dynamics of intestinal microbiota including uncultured bacteria in response to probiotic consumption have not been well studied. The aims of this study were twofold: firstly to analyze the impact on intestinal microbiota of yogurt fermented by Bifidobacterium animalis subsp. lactis LKM512, Lactobacillus delbrueckii subsp. bulgaricus LKM1759, and Streptococcus thermophilus LKM1742 (LKM512 yogurt) and placebo fermented by these lactic acid bacterial strains without LKM512; and secondly to investigate the changes in intestinal microbiota that influence the concentration of PA, one of the beneficial metabolites produced by bacteria in the intestine. The LKM512 yogurt/placebo trial was performed in six hospitalized elderly patients (three men and three women with an average age of 80.3 years) and lasted seven weeks with the following schedule: pre-consumption for one week, LKM512 yogurt consumption for two weeks, washout period for two weeks, and placebo consumption for two weeks. The amount of ingested LKM512 yogurt or placebo was 100 g/day/individual. Fecal samples were analyzed using T-RFLP and real-time PCR. The T-RFLP patterns in five of the six volunteers were changed in a similar fashion by LKM512 yogurt consumption, although these patterns were individually changed following consumption of placebo. It was confirmed that B. animalis subsp. lactis was increased dramatically and Lactobacillus spp. tended to be decreased by LKM512 yogurt consumption. Some indigenous uncultured bacteria were increased and some decreased by LKM512 yogurt/placebo consumption. The similar changes in the intestinal microbiota of the elderly caused by consumption of the LKM512 yogurt were found to be influenced by the LKM512 strain itself, and not by the lactic acid bacteria in the yogurt. Moreover, this study suggests that the increase in intestinal PA concentrations caused by LKM512 yogurt consumption is probably dependent on the LKM512 strain colonizing the intestine.

  6. Long-term administration of pDC-Stimulative Lactococcus lactis strain decelerates senescence and prolongs the lifespan of mice.

    PubMed

    Sugimura, Tetsu; Jounai, Kenta; Ohshio, Konomi; Suzuki, Hiroaki; Kirisako, Takayoshi; Sugihara, Yoshihiko; Fujiwara, Daisuke

    2018-05-01

    The decline in immune function caused by aging increases the risk of infectious diseases, tumorigeneses and chronic inflammation, resulting in accelerating senescence. We previously reported a lactic acid bacteria, Lactococcus lactis strain Plasma (synonym of Lactococcus lactis subsp. lactis JCM 5805, Lc-Plasma), that stimulates plasmacytoid dendritic cells (pDCs), which play a crucial role in phylaxis from viral infection. In this study, we investigated the anti-aging effects of long-term oral administration of Lc-Plasma in a senescence-accelerated mouse strain, SAMP6. Mice given Lc-Plasma showed a significant improvement in survival rate at 82 weeks and a decreased senescence score as compared with control mice throughout this study. Anatomic analysis at 82 weeks revealed that the frequency of altered hepatocellular foci was significantly lower, and the incidence of other pathological findings in the liver and lungs tended to be lower in Lc-Plasma mice than in control mice. Transcription level of the IL-1β gene in lungs also tended to be lower in Lc-Plasma mice. Furthermore, the thinning of skin and age-related decrease in muscle mass were also significantly suppressed in the Lc-Plasma group as compared with the control group. Consistent with these phenotypic features, pDCs activity was significantly higher in Lc-Plasma mice than in control mice. In conclusion, long-term administration of Lc-Plasma can decelerate senescence and prolong lifespan via maintenance of the immune system due to activation of pDCs. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The use of probiotics in healthy volunteers with evacuation disorders and hard stools: a double-blind, randomized, placebo-controlled study.

    PubMed

    Del Piano, Mario; Carmagnola, Stefania; Anderloni, Andrea; Andorno, Silvano; Ballarè, Marco; Balzarini, Marco; Montino, Franco; Orsello, Marco; Pagliarulo, Michela; Sartori, Massimo; Tari, Roberto; Sforza, Filomena; Capurso, Lucio

    2010-09-01

    Evacuation disorders and hard stools are common in industrialized countries, affecting on average 12% to 17% of the adult healthy population at any age. Dietary supplementation with probiotic microorganisms may be useful in reducing the disorder. We performed a double-blind, randomized, placebo-controlled study to evaluate the effectiveness of 2 different probiotic blends, either mixed Lactobacillus plantarum LP01 (LMG P-21021) and Bifidobacterium breve BR03 (DSM 16604) or Bifidobacterium animalis subspecies lactis BS01 (LMG P-21384), in the management of evacuation disorders and intestinal discomfort. In a period of 5 years (2003 to 2008), the study involved 300 healthy volunteers (151 males and 149 females; age 24 to 71 y) with evacuation disorders and hard stools. In particular, subjects were divided into 3 groups: 80 subjects in the group A received placebo, 110 subjects in the group B received mixed L. plantarum LP01 and B. breve BR03 (2.5 x 10 colony-forming units/d of each strain), and 110 subjects in the group C received B. animalis subsp. lactis BS01 (5 x 10 colony-forming units/d) for 30 days. At the beginning of the observational study, the healthy status of volunteers was evaluated by a complete, laboratory and ultrasound study of the abdomen. The physical examination was repeated after 15 and 30 days. In particular, the main troubles typically associated with evacuation disorders and hard stools as well as abdominal bloating were considered as parameters of interest. Exclusion criteria were items of gastrointestinal diseases and antibiotics intake. Subjects treated with the mixed probiotic strains L. plantarum LP01 and B. breve BR03 or B. animalis subsp. lactis BS01 reported a significant improvement in the number of weekly bowel movements and in the main troubles associated with evacuations, particularly consistency of feces and ease of expulsion. Discomfort items such as abdominal bloating and anal itching, burning, or pain also registered a relevant improvement in the active groups receiving probiotics. The intake of an effective amount of mixed L. plantarum LP01 and B. breve BR03 or B. animalis subsp. lactis BS01 for 30 days is able to significantly relieve the evacuation disorders and hard stools, thus providing a useful tool for the management of such condition, which is particularly widespread in industrialized countries at any age.

  8. A Deficiency in Aspartate Biosynthesis in Lactococcus lactis subsp. lactis C2 Causes Slow Milk Coagulation†

    PubMed Central

    Wang, Hua; Yu, Weizhu; Coolbear, Tim; O’Sullivan, Dan; McKay, Larry L.

    1998-01-01

    A mutant of fast milk-coagulating (Fmc+) Lactococcus lactis subsp. lactis C2, designated L. lactis KB4, was identified. Although possessing the known components essential for utilizing casein as a nitrogen source, which include functional proteinase (PrtP) activity and oligopeptide, di- and tripeptide, and amino acid transport systems, KB4 exhibited a slow milk coagulation (Fmc−) phenotype. When the amino acid requirements of L. lactis C2 were compared with those of KB4 by use of a chemically defined medium, it was found that KB4 was unable to grow in the absence of aspartic acid. This aspartic acid requirement could also be met by aspartate-containing peptides. The addition of aspartic acid to milk restored the Fmc+ phenotype of KB4. KB4 was found to be defective in pyruvate carboxylase and thus was deficient in the ability to form oxaloacetate and hence aspartic acid from pyruvate and carbon dioxide. The results suggest that when lactococci are propagated in milk, aspartate derived from casein is unable to meet fully the nutritional demands of the lactococci, and they become dependent upon aspartate biosynthesis. PMID:9572935

  9. Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk-derived oligosaccharides and Bifidobacterium animalis subsp. lactis CNCM I-3446.

    PubMed

    Simeoni, Umberto; Berger, Bernard; Junick, Jana; Blaut, Michael; Pecquet, Sophie; Rezzonico, Enea; Grathwohl, Dominik; Sprenger, Norbert; Brüssow, Harald; Szajewska, Hania; Bartoli, J-M; Brevaut-Malaty, V; Borszewska-Kornacka, M; Feleszko, W; François, P; Gire, C; Leclaire, M; Maurin, J-M; Schmidt, S; Skórka, A; Squizzaro, C; Verdot, J-J

    2016-07-01

    Non-digestible milk oligosaccharides were proposed as receptor decoys for pathogens and as nutrients for beneficial gut commensals like bifidobacteria. Bovine milk contains oligosaccharides, some of which are structurally identical or similar to those found in human milk. In a controlled, randomized double-blinded clinical trial we tested the effect of feeding a formula supplemented with a mixture of bovine milk-derived oligosaccharides (BMOS) generated from whey permeate, containing galacto-oligosaccharides and 3'- and 6'-sialyllactose, and the probiotic Bifidobacterium animalis subsp. lactis (B. lactis) strain CNCM I-3446. Breastfed infants served as reference group. Compared with a non-supplemented control formula, the test formula showed a similar tolerability and supported a similar growth in healthy newborns followed for 12 weeks. The control, but not the test group, differed from the breast-fed reference group by a higher faecal pH and a significantly higher diversity of the faecal microbiota. In the test group the probiotic B. lactis increased by 100-fold in the stool and was detected in all supplemented infants. BMOS stimulated a marked shift to a bifidobacterium-dominated faecal microbiota via increases in endogenous bifidobacteria (B. longum, B. breve, B. bifidum, B. pseudocatenulatum). © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Effect of varying the salt and fat content in Cheddar cheese on aspects of the performance of a commercial starter culture preparation during ripening.

    PubMed

    Yanachkina, Palina; McCarthy, Catherine; Guinee, Tim; Wilkinson, Martin

    2016-05-02

    Production of healthier reduced-fat and reduced-salt cheeses requires careful selection of starter bacteria, as any substantial alterations to cheese composition may prompt changes in the overall performance of starters during cheese ripening. Therefore, it is important to assess the effect of compositional alterations on the individual strain response during cheese ripening for each optimised cheese matrix. In the current study, the effect of varying fat and salt levels in Cheddar cheese on the performance of a commercial Lactococcus lactis culture preparation, containing one L. lactis subsp. lactis strain and one L. lactis subsp. cremoris strain was investigated. Compositional variations in fat or salt levels did not affect overall starter viability, yet reduction of fat by 50% significantly delayed non-starter lactic acid bacteria (NSLAB) populations at the initial ripening period. In comparison to starter viability, starter autolysis, as measured by release of intracellular lactate dehydrogenase (LDH) or post-proline dipeptidyl aminopeptidase (Pep X) into cheese juices, decreased significantly with lower salt addition levels in full-fat Cheddar. Conversely, reducing fat content of cheese resulted in a significantly higher release of intracellular Pep X, and to a lesser extent intracellular LDH, into juices over ripening. Flow cytometry (FCM) indicated that the permeabilised and dead cell sub-populations were generally lower in juices from cheeses with reduced salt content, however no significant differences were observed between different salt and fat treatments. Interestingly, fat reductions by 30 and 50% in cheeses with reduced or half added salt contents appeared to balance out the effect of salt, and enhanced cell permeabilisation, cell death, and also cell autolysis in these variants. Overall, this study has highlighted that alterations in both salt and fat levels in cheese influence certain aspects of starter performance during ripening, including autolysis, permeabilisation, and intracellular enzyme release. However, it may be possible to reduce the fat and salt content of Cheddar cheese by 30 or 50%, respectively, without largely altering permeabilised and dead cell sub-populations and, in turn, the amount of released intracellular Pep X activity, such that these performance parameters are similar to those observed for control full-fat, full-salt Cheddar cheese. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mutation of the oxaloacetate decarboxylase gene of Lactococcus lactis subsp. lactis impairs the growth during citrate metabolism.

    PubMed

    Augagneur, Y; Garmyn, D; Guzzo, J

    2008-01-01

    Citrate metabolism generates metabolic energy through the generation of a membrane potential and a pH gradient. The purpose of this work was to study the influence of oxaloacetate decarboxylase in citrate metabolism and intracellular pH maintenance in relation to acidic conditions. A Lactococcus lactis oxaloacetate decarboxylase mutant [ILCitM (pFL3)] was constructed by double homologous recombination. During culture with citrate, and whatever the initial pH, the growth rate of the mutant was lower. In addition, the production of diacetyl and acetoin was altered in the mutant strain. However, our results indicated no relationship with a change in the maintenance of intracellular pH. Experiments performed on resting cells clearly showed that oxaloacetate accumulated temporarily in the supernatant of the mutant. This accumulation could be involved in the perturbations observed during citrate metabolism, as the addition of oxaloacetate in M17 medium inhibited the growth of L. lactis. The mutation of oxaloacetate decarboxylase perturbed citrate metabolism and reduced the benefits of its utilization during growth under acidic conditions. This study allows a better understanding of citrate metabolism and the role of oxaloacetate decarboxylase in the tolerance of lactic acid bacteria to acidic conditions.

  12. The effect of nisin from Lactococcus lactis subsp. lactis on refrigerated patin fillet quality

    NASA Astrophysics Data System (ADS)

    Adilla, S. N.; Utami, R.; Nursiwi, A.; Nurhartadi, E.

    2017-04-01

    The effect of nisin from Lactococcus lactis subsp. lactis with spraying method application on quality of patin fillet during refrigerated storage (4±1°C) was investigated. The quality of patin fillet based on total plate count (TPC), pH, TVB-N, and TBA values during 16 days at 4±1°C. Completely Randomized Design (CDR) was used in one factor (nisin activity) at 0 IU/ml, 500 IU/ml, 1000 IU/ml, and 2000 IU/ml. The observation was done at 0, 4th, 8th, 12th, and 16th days of storage. The result showed that variation of nisin activity significantly affected the quality of fillet according to TPC, pH, and TVB-N values, however no significant difference on the obtained of TBA value. Nisin in 500 IU/ml, 1000 IU/ml, and 2000 IU/ml could extend the shelf-life of fillet until 4th, 8th, and 12th days respectively based on standard in all parameters.

  13. Antibiotic susceptibility of bifidobacterial strains distributed in the Japanese market.

    PubMed

    Xiao, Jin-Zhong; Takahashi, Sachiko; Odamaki, Toshitaka; Yaeshima, Tomoko; Iwatsuki, Keiji

    2010-01-01

    The aim of the present study was to analyze the antibiotic susceptibility of bifidobacterial strains distributed in the Japanese market. A total of 23 strains, including probiotic isolates from foods, supplements, pharmaceuticals and reference strains of each species (or subspecies), were tested for susceptibility to 15 antibiotics by the broth microdilution method and examined for the presence of possible resistant determinants. The strains were susceptible overall to chloramphenicol, ampicillin, vancomycin and linezolid, and were intrinsically resistant to aminoglycoside group agents. Susceptibility to erythromycin, clindamycin, rifampicin, tetracycline and trimethoprim varied among the strains. All strains of Bifidobacterium animalis subsp. lactis were resistant to tetracycline and appeared to harbor tet(W) genes. No risk factor for safety was found for bifidobacterial strains distributed in the Japanese market in respect of their antimicrobial resistance, although the presence of the tet(W) gene in some strains stresses the need for future evaluation.

  14. Persistence of Escherichia coli O157:H7 in dairy fermentation systems.

    PubMed

    Dineen, S S; Takeuchi, K; Soudah, J E; Boor, K J

    1998-12-01

    We examined (i) the persistence of Escherichia coli O157:H7 as a postpasteurization contaminant in fermented dairy products; (ii) the ability of E. coli O157:H7 strains with and without the general stress regulatory protein, RpoS, to compete with commercial starter cultures in fermentation systems; and (iii) the survival of E. coli O157:H7 in the yogurt production process. In commercial products inoculated with 10(3) CFU/ml, E. coli O157:H7 was recovered for up to 12 days in yogurt (pH 4.0), 28 days in sour cream (pH 4.3), and at levels > 10(2) CFU/ml at 35 days in buttermilk (pH 4.1). For the starter culture competition trials, the relative inhibition of E. coli O157:H7 in the experimental fermentation systems was, in decreasing order, thermophilic culture mixture, Lactobacillus delbrueckii subsp. bulgaricus R110 alone, Lactococcus lactis subsp. lactis D280 alone, Lactococcus lactis subsp. cremoris D62 alone, and Streptococcus thermophilus C90 alone showing the least inhibition. Recovery of the rpoS mutant was lower than recovery of its wild-type parent by 72 h or earlier in the presence of individual starter cultures. No E. coli O157:H7 were recovered after the curd formation step in yogurt manufactured with milk inoculated with 10(5) CFU/ml. Our results show that (i) postprocessing entry of E. coli O157:H7 into fermented dairy products represents a potential health hazard; (ii) commercial starter cultures differ in their ability to reduce E. coli O157:H7 CFU numbers in fermentation systems; and (iii) the RpoS protein appears to most effectively contribute to bacterial survival in the presence of conditions that are moderately lethal to the cell.

  15. Production of Angiotensin-I-Converting-Enzyme-Inhibitory Peptides in Fermented Milks Started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4

    PubMed Central

    Gobbetti, M.; Ferranti, P.; Smacchi, E.; Goffredi, F.; Addeo, F.

    2000-01-01

    Two fermented milks containing angiotensin-I-converting-enzyme (ACE)-inhibitory peptides were produced by using selected Lactobacillus delbrueckii subsp. bulgaricus SS1 and L. lactis subsp. cremoris FT4. The pH 4.6-soluble nitrogen fraction of the two fermented milks was fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest ACE-inhibitory indexes were further purified, and the related peptides were sequenced by tandem fast atom bombardment-mass spectrometry. The most inhibitory fractions of the milk fermented by L. delbrueckii subsp. bulgaricus SS1 contained the sequences of β-casein (β-CN) fragment 6-14 (f6-14), f7-14, f73-82, f74-82, and f75-82. Those from the milk fermented by L. lactis subsp. cremoris FT4 contained the sequences of β-CN f7-14, f47-52, and f169-175 and κ-CN f155-160 and f152-160. Most of these sequences had features in common with other ACE-inhibitory peptides reported in the literature. In particular, the β-CN f47-52 sequence had high homology with that of angiotensin-II. Some of these peptides were chemically synthesized. The 50% inhibitory concentrations (IC50s) of the crude purified fractions containing the peptide mixture were very low (8.0 to 11.2 mg/liter). When the synthesized peptides were used individually, the ACE-inhibitory activity was confirmed but the IC50s increased considerably. A strengthened inhibitory effect of the peptide mixtures with respect to the activity of individual peptides was presumed. Once generated, the inhibitory peptides were resistant to further proteolysis either during dairy processing or by trypsin and chymotrypsin. PMID:10966406

  16. The Nanomechanical Properties of Lactococcus lactis Pili Are Conditioned by the Polymerized Backbone Pilin

    PubMed Central

    Castelain, Mickaël; Duviau, Marie-Pierre; Canette, Alexis; Schmitz, Philippe; Loubière, Pascal; Cocaign-Bousquet, Muriel; Piard, Jean-Christophe; Mercier-Bonin, Muriel

    2016-01-01

    Pili produced by Lactococcus lactis subsp. lactis are putative linear structures consisting of repetitive subunits of the major pilin PilB that forms the backbone, pilin PilA situated at the distal end of the pilus, and an anchoring pilin PilC that tethers the pilus to the peptidoglycan. We determined the nanomechanical properties of pili using optical-tweezers force spectroscopy. Single pili were exposed to optical forces that yielded force-versus-extension spectra fitted using the Worm-Like Chain model. Native pili subjected to a force of 0–200 pN exhibit an inextensible, but highly flexible ultrastructure, reflected by their short persistence length. We tested a panel of derived strains to understand the functional role of the different pilins. First, we found that both the major pilin PilB and sortase C organize the backbone into a full-length organelle and dictate the nanomechanical properties of the pili. Second, we found that both PilA tip pilin and PilC anchoring pilin were not essential for the nanomechanical properties of pili. However, PilC maintains the pilus on the bacterial surface and may play a crucial role in the adhesion- and biofilm-forming properties of L. lactis. PMID:27010408

  17. Lactococcus lactis subsp. lactis infection in Bester sturgeon, a cultured hybrid of Huso huso × Acipenser ruthenus, in Taiwan.

    PubMed

    Chen, Ming-Hui; Hung, Shao-Wen; Shyu, Ching-Lin; Lin, Cheng-Chung; Liu, Pan-Chen; Chang, Chen-Hsuan; Shia, Wei-Yau; Cheng, Ching-Fu; Lin, Shiun-Long; Tu, Ching-Yu; Lin, Yu-Hsing; Wang, Way-Shyan

    2012-10-01

    Approximately 5300 hybrid sturgeons with an average body weight of 600-800 g were farmed in 3 round tankers measuring 3m in diameter each containing 28,000 L of aerated groundwater. According to the owner's description, the diseased fish had anorexia, pale body color, and reddish spots on the abdomen. The morbidity and lethality rates in this outbreak were about 70% (3706/5300) and 100% (3706/3706), respectively. The clinical examination revealed enteritis, enlarged abdomen, and rapid respiration rate. The gross findings revealed a volume of about 4 mL of ascites. The histopathological examination showed multiple massive, hemorrhagic or coagulative necrotic foci in the liver and spleen. Furthermore, there was diffuse infiltration of glycogen in hepatic cells, and a few polymorphonuclear and mononuclear leucocytes were observed surrounding the spleen. Some bacterial clumps were noted around the necrotic foci. We also observed that there was moderate to severe, acute, multifocal, coagulative necrosis in the renal parenchyma, with some necrotic foci present beneath the margin of the kidney. Additionally, multifocal, coagulative necrosis was found in the pancreas. Results of microbiologic examinations, including biochemical characteristics, PCR amplification of 16S rRNA gene, sequencing and comparison, and phylogenetic analysis, revealed the pathogen of this infection was Lactococcus lactis subsp. lactis, and based on the results of an antimicrobial agent sensitivity test the bacterium was only sensitive to ampicillin and florfenicol. Additionally, results of in vivo experimental infections in hybrid tilapia showed that 1×10(8) and 1×10(9) CFU/mL of our isolate caused death in all fish and LD(50) values ranged from 10(2) to 10(5) CFU/mL. To the best of the authors' knowledge, this is the first reported case of Lactococcus lactis subsp. lactis infection in hybrid sturgeon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Listeria monocytogenes and Salmonella enterica affect the expression of nisin gene and its production by Lactococcus lactis.

    PubMed

    Abdollahi, Soosan; Ghahremani, Mohammad Hossein; Setayesh, Neda; Samadi, Nasrin

    2018-06-13

    The Lactococcus lactis is known as a probiotic bacterium and also as a producer of nisin. Nisin has been approved by related legal agencies to be used as an antimicrobial peptide in food preservation. In fact, the L. lactis is present in different food products along with other micro-organisms especially pathogenic bacteria. So, it is important to predict the behavior of nisin-producer strain in contact with other pathogens. In this regard, nisin gene expression and the level of secreted biologically active form of nisin by L. lactis subsp. lactis in modified MRS broth and whey solution in co-culture with Listeria monocytogenes or Salmonella enterica were studied. The nisin concentration was determined by microbiological assay method and the transcription level of nisin gene was assayed through quantitative reverse transcription PCR (RT-qPCR). According to our results, the highest concentration of nisin and its gene transcription level were detected in mono- and co-cultures after 16 h of incubation, concurrent with the end of L. lactis exponential phase of growth. The nisin mRNA copies in co-cultures were higher than mono-cultures only at 16 h of incubation. But, differences between nisin concentrations in mono- and co-cultures were significant at 16, 24 h and at 12, 16, 24 h of incubation in the modified MRS medium and whey solution, respectively. This incompatibility could be related to the low availability of components required for nisin precursor modification, transportation and processing in mono-cultures. Overall, the L. lactis produced more mature and active nisin when it was in contact with pathogenic bacteria. Copyright © 2018. Published by Elsevier Ltd.

  19. Serine-Aspartate Repeat Protein D Increases Staphylococcus aureus Virulence and Survival in Blood

    PubMed Central

    Uchiyama, Satoshi; Valderrama, J. Andrés; Ajayi, Clement; Sollid, Johanna U. E.; van Sorge, Nina M.; Nizet, Victor; van Strijp, Jos A. G.

    2016-01-01

    ABSTRACT Staphylococcus aureus expresses a panel of cell wall-anchored adhesins, including proteins belonging to the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) family, exemplified by the serine-aspartate repeat protein D (SdrD), which serve key roles in colonization and infection. Deletion of sdrD from S. aureus subsp. aureus strain NCTC8325-4 attenuated bacterial survival in human whole blood ex vivo, which was associated with increased killing by human neutrophils. Remarkably, SdrD was able to inhibit innate immune-mediated bacterial killing independently of other S. aureus proteins, since addition of recombinant SdrD protein and heterologous expression of SdrD in Lactococcus lactis promoted bacterial survival in human blood. SdrD contributes to bacterial virulence in vivo, since fewer S. aureus subsp. aureus NCTC8325-4 ΔsdrD bacteria than bacteria of the parent strain were recovered from blood and several organs using a murine intravenous infection model. Collectively, our findings reveal a new property of SdrD as an important key contributor to S. aureus survival and the ability to escape the innate immune system in blood. PMID:27795358

  20. A novel non-dairy beverage from durian pulp fermented with selected probiotics and yeast.

    PubMed

    Lu, Yuyun; Putra, Satya Dwi; Liu, Shao-Quan

    2018-01-16

    This study investigated the effects of sequential inoculation (Seq-I) of Bifidobacterium animalis subsp. lactis or Lactobacillus casei with yeast Williopsis saturnus on durian pulp fermentation. Seq-I of W. saturnus following B. animalis subsp. lactis did not bring about any significant differences compared to the B. animalis subsp. lactis monoculture due to the sharp early death of W. saturnus soon after inoculation. However, Seq-I of W. saturnus significantly enhanced the survival of L. casei and improved the utilization of fructose and glucose compared to L. casei monoculture. In addition, there were significant differences in the metabolism of organic acids especially for lactic acid and succinic acid. Furthermore, Seq-I produced significantly higher levels of volatile compounds including alcohols (ethanol and 2-phenylethyl alcohol) and acetate esters (2-phenylethyl acetate, isoamyl acetate and ethyl acetate), which would positively contribute to the flavour notes. Although the initial volatile sulphur compounds were reduced to trace levels after fermentation, but the durian odour still remained. This study suggests that the use of probiotics and W. saturnus to ferment durian pulp could act as a potential avenue to develop a novel non-dairy durian-based functional beverage to deliver probiotics. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. In Vitro Characterization of Lactic Acid Bacteria Isolated from Bovine Milk as Potential Probiotic Strains to Prevent Bovine Mastitis.

    PubMed

    Pellegrino, Matías S; Frola, Ignacio D; Natanael, Berardo; Gobelli, Dino; Nader-Macias, María E F; Bogni, Cristina I

    2018-01-02

    Bovine mastitis causes economic losses on dairy farms worldwide. Lactic acid bacteria (LAB) in animal health are an alternative tool to avoid antibiotic therapy on the prevention of bovine mastitis. In previous studies, 12 LAB isolated from bovine milk were selected taking into account some of the following characteristics: hydrophobicity, auto aggregative capability, inhibition of indicator pathogens, hydrogen peroxide, and capsular polysaccharide production. These LAB were considered because of their beneficial properties. In this work, we also analyzed the antimicrobial activity and the co-aggregation against mastitis causing bacteria, auto-inhibition, adhesion to bovine teat canal epithelial cells (BTCEC), and growth kinetic curves for the 12 LAB. Two of them, Lactococcus lactis subsp. lactis CRL 1655 and Lactobacillus perolens CRL 1724, were selected because they had an interesting pattern of adhesion to BTEC, the inhibition of pathogens and the co-aggregation with the 100% of the assayed pathogens. They showed a predictable difference in the PFGE genomic pattern bands. The kinetic growth of these two strains was similar between them and with the rest of the assayed LAB. The strains selected in the present study showed indispensable characteristics for their inclusion in a probiotic formulation to be used at dry-off period for the prevention of bovine mastitis.

  2. Genetic Variation of Lactobacillus delbrueckii subsp. lactis Bacteriophages Isolated from Cheese Processing Plants in Finland

    PubMed Central

    Forsman, Päivi; Alatossava, Tapani

    1991-01-01

    The genomes of four Lactobacillus delbrueckii subsp. lactis bacteriophages were characterized by restriction endonuclease mapping, Southern hybridization, and heteroduplex analysis. The phages were isolated from different cheese processing plants in Finland between 1950 and 1972. All four phages had a small isometric head and a long noncontractile tail. Two different types of genome (double-stranded DNA) organization existed among the different phages, the pac type and the cos type, corresponding to alternative types of phage DNA packaging. Three phages belonged to the pac type, and a fourth was a cos-type phage. The pac-type phages were genetically closely related. In the genomes of the pac-type phages, three putative insertion/deletions (0.7 to 0.8 kb, 1.0 kb, and 1.5 kb) and one other region (0.9 kb) containing clustered base substitutions were discovered and localized. At the phenotype level, three main differences were observed among the pac-type phages. These concerned two minor structural proteins and the efficiency of phage DNA packaging. The genomes of the pac-type phages showed only weak homology with that of the cos-type phage. Phage-related DNA, probably a defective prophage, was located in the chromosome of the host strain sensitive to the cos-type phage. This DNA exhibited homology under stringent conditions to the pac-type phages. Images PMID:16348513

  3. Genes involved in lactose catabolism and organic acid production during growth of Lactobacillus delbrueckii UFV H2b20 in skimmed milk.

    PubMed

    Do Carmo, A P; De Oliveira, M N V; Da Silva, D F; Castro, S B; Borges, A C; De Carvalho, A F; De Moraes, C A

    2012-03-01

    There are three main reasons for using lactic acid bacteria (LAB) as starter cultures in industrial food fermentation processes: food preservation due to lactic acid production; flavour formation due to a range of organic molecules derived from sugar, lipid and protein catabolism; and probiotic properties attributed to some strains of LAB, mainly of lactobacilli. The aim of this study was to identify some genes involved in lactose metabolism of the probiotic Lactobacillus delbrueckii UFV H2b20, and analyse its organic acid production during growth in skimmed milk. The following genes were identified, encoding the respective enzymes: ldh - lactate dehydrogenase, adhE - Ldb1707 acetaldehyde dehydrogenase, and ccpA-pepR1 - catabolite control protein A. It was observed that L. delbrueckii UFV H2b20 cultivated in different media has the unexpected ability to catabolyse galactose, and to produce high amounts of succinic acid, which was absent in the beginning, raising doubts about the subspecies in question. The phylogenetic analyses showed that this strain can be compared physiologically to L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis, which are able to degrade lactose and can grow in milk. L. delbrueckii UFV H2b20 sequences have grouped with L. delbrueckii subsp. bulgaricus ATCC 11842 and L. delbrueckii subsp. bulgaricus ATCC BAA-365, strengthening the classification of this probiotic strain in the NCFM group proposed by a previous study. Additionally, L. delbrueckii UFV H2b20 presented an evolutionary pattern closer to that of probiotic Lactobacillus acidophilus NCFM, corroborating the suggestion that this strain might be considered as a new and unusual subspecies among L. delbrueckii subspecies, the first one identified as a probiotic. In addition, its unusual ability to metabolise galactose, which was significantly consumed in the fermentation medium, might be exploited to produce low-browning probiotic Mozzarella cheeses, a desirable property for pizza cheeses.

  4. Metagenomic and metatranscriptomic analysis of the microbial community in Swiss-type Maasdam cheese during ripening.

    PubMed

    Duru, Ilhan Cem; Laine, Pia; Andreevskaya, Margarita; Paulin, Lars; Kananen, Soila; Tynkkynen, Soile; Auvinen, Petri; Smolander, Olli-Pekka

    2018-05-19

    In Swiss-type cheeses, characteristic nut-like and sweet flavor develops during the cheese ripening due to the metabolic activities of cheese microbiota. Temperature changes during warm and cold room ripening, and duration of ripening can significantly change the gene expression of the cheese microbiota, which can affect the flavor formation. In this study, a metagenomic and metatranscriptomic analysis of Swiss-type Maasdam cheese was performed on samples obtained during ripening in the warm and cold rooms. We reconstructed four different bacterial genomes (Lactococcus lactis, Lactobacillus rhamnosus, Lactobacillus helveticus, and Propionibacterium freudenreichii subsp. shermanii strain JS) from the Maasdam cheese to near completeness. Based on the DNA and RNA mean coverage, Lc. lactis strongly dominated (~80-90%) within the cheese microbial community. Genome annotation showed the potential for the presence of several flavor forming pathways in these species, such as production of methanethiol, free fatty acids, acetoin, diacetyl, acetate, ethanol, and propionate. Using the metatranscriptomic data, we showed that, with the exception of Lc. lactis, the central metabolism of the microbiota was downregulated during cold room ripening suggesting that fewer flavor compounds such as acetoin and propionate were produced. In contrast, Lc. lactis genes related to the central metabolism, including the vitamin biosynthesis and homolactic fermentation, were upregulated during cold room ripening. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Diversity and dynamics of lactobacilli populations during ripening of RDO Camembert cheese.

    PubMed

    Henri-Dubernet, Ségolène; Desmasures, Nathalie; Guéguen, Micheline

    2008-03-01

    The diversity and dynamics of Lactobacillus populations in traditional raw milk Camembert cheese were monitored throughout the manufacturing process in 3 dairies. Culture-dependent analysis was carried out on isolates grown on acidified de Man - Rogosa - Sharpe agar and Lactobacillus anaerobic de Man Rogosa Sharpe agar supplemented with vancomycin and bromocresol green media. The isolates were identified by polymerase chain reaction - temperature gradient gel electrophoresis (PCR-TGGE) and (or) species-specific PCR and (or) sequencing, and Lactobacillus paracasei and Lactobacillus plantarum isolates were characterized by pulsed field gel electrophoresis (PFGE). Milk and cheese were subjected to culture-independent analysis by PCR-TGGE. Presumed lactobacilli were detected by plate counts throughout the ripening process. However, molecular analysis of total DNA and DNA of isolates failed to detect Lactobacillus spp. in certain cases. The dominant species in the 3 dairies was L. paracasei. PFGE analysis revealed 21 different profiles among 39 L. paracasei isolates. Lactobacillus plantarum was the second most isolated species, but it occurred nearly exclusively in one dairy. The other species isolated were Lactobacillus parabuchneri, Lactobacillus fermentum, Lactobacillus acidophilus, Lactobacillus helveticus, a Lactobacillus psittaci/delbrueckii subsp. bulgaricus/gallinarum/crispatus group, Lactobacillus rhamnosus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, Lactobacillus brevis, Lactobacillus kefiri, and Lactobacillus perolens. Lactobacilli diversity at the strain level was high. Dynamics varied among dairies, and each cheese exhibited a specific picture of species and strains.

  6. Effect of a Synbiotic Yogurt on Levels of Fecal Bifidobacteria, Clostridia, and Enterobacteria

    PubMed Central

    Palaria, Amrita; Johnson-Kanda, Ivy

    2012-01-01

    While ingestion of synbiotic yogurts containing Bifidobacterium animalis subsp. lactis and inulin is increasing, their effect on certain microbial groups in the human intestine is unclear. To further investigate this, a large-scale, crossover-design, placebo-controlled study was utilized to evaluate the effect of a synbiotic yogurt containing B. animalis subsp. lactis Bb-12 and inulin on the human intestinal bifidobacteria, clostridia, and enterobacteria. Fecal samples were collected at 14 time points from 46 volunteers who completed the study, and changes in the intestinal bacterial levels were monitored using real-time PCR. Strain Bb-12 could not be detected in feces after 2 weeks of washout. A live/dead PCR procedure indicated that the Bb-12 strain detected in the fecal samples was alive. A significant increase (P < 0.001) in the total bifidobacterial numbers was seen in both groups of subjects during the final washout period compared to the prefeeding period. This increase in total bifidobacteria corresponded with a significant decrease (P < 0.05) in numbers of clostridia but not enterobacteria. No significant differences in numbers of bifidobacteria, clostridia, or enterobacteria were observed between the probiotic and placebo groups during any of the feeding periods. However, subgrouping subjects based on lower initial bifidobacterial numbers or higher initial clostridial numbers did show corresponding significant differences between the synbiotic yogurt and placebo groups. This was not observed for a subgroup with higher initial enterobacterial numbers. While this synbiotic yogurt can increase bifidobacterial numbers and decrease clostridial numbers (but not enterobacterial numbers) in some individuals, it cannot modulate these microbial groups in the majority of individuals. PMID:22101054

  7. Effects of the probiotic Bifidobacterium animalis subsp. lactis on the non-surgical treatment of periodontitis. A histomorphometric, microtomographic and immunohistochemical study in rats

    PubMed Central

    Ricoldi, Milla S. T.; Furlaneto, Flávia A. C.; Oliveira, Luiz F. F.; Teixeira, Gustavo C.; Pischiotini, Jéssica P.; Moreira, André L. G.; Ervolino, Edilson; de Oliveira, Maricê N.; Bogsan, Cristina S. B.; Salvador, Sérgio L.

    2017-01-01

    Lactobacillus probiotics have been investigated in periodontitis. However, the effects of the genus Bifidobacterium on periodontitis are hardly known. This study evaluated the effects of the probiotic (PROB) Bifidobacterium animalis subsp. lactis (B. lactis) HN019 as an adjunct to scaling and root planing (SRP) in rats with experimental periodontitis (EP). At baseline, 32 rats were assigned to 4 groups: C (control), PROB, EP-SRP and EP-SRP-PROB. In groups EP-SRP and EP-SRP-PROB, the mandibular first molars of the animals received a ligature. At day 14, the ligatures were removed and SRP was performed. Animals of groups PROB and EP-SRP-PROB were orally administered with 10 mL/day of 109 colony forming units of B. lactis HN019 for 15 days, starting at day 14. Animals were euthanized at day 29. Histomorphometric, microtomographic and immunohistochemical analyses were performed. Microbiological effects of B. lactis on biofilm were also evaluated. Data were statistically analyzed (ANOVA, Tukey; Kruskal-Wallis, Dunn’s; Two-tailed t-test; p<0.05). Group EP-SRP-PROB presented reduced alveolar bone resorption and attachment loss when compared with Group EP-SRP (p<0.05). Group EP-SRP-PROB showed significantly fewer osteoclasts, increased expression of anti-inflammatory cytokines and reduced expression of proinflammatory cytokines compared with Group EP-SRP (p<0.05). B. lactis promoted a higher ratio between aerobic and anaerobic bacteria in biofilm samples (p<0.05). B. lactis HN019 may have a role in the treatment of EP in rats, as an adjunct to SRP. PMID:28662142

  8. Nisin Z Production by Lactococcus lactis subsp. cremoris WA2-67 of Aquatic Origin as a Defense Mechanism to Protect Rainbow Trout (Oncorhynchus mykiss, Walbaum) Against Lactococcus garvieae.

    PubMed

    Araújo, Carlos; Muñoz-Atienza, Estefanía; Pérez-Sánchez, Tania; Poeta, Patrícia; Igrejas, Gilberto; Hernández, Pablo E; Herranz, Carmen; Ruiz-Zarzuela, Imanol; Cintas, Luis M

    2015-12-01

    Probiotics represent an alternative to chemotherapy and vaccination to control fish diseases, including lactococcosis caused by Lactococcus garvieae. The aims of this study were (i) to determine the in vitro probiotic properties of three bacteriocinogenic Lactococcus lactis subsp. cremoris of aquatic origin, (ii) to evaluate in vivo the ability of L. cremoris WA2-67 to protect rainbow trout (Oncorhynchus mykiss, Walbaum) against infection by L. garvieae, and (iii) to demonstrate the role of nisin Z (NisZ) production as an anti-infective mechanism. The three L. cremoris strains survived in freshwater at 18 °C for 7 days, withstood exposure to pH 3.0 and 10 % (v/v) rainbow trout bile, and showed different cell surface hydrophobicity (37.93-58.52 %). The wild-type NisZ-producer L. cremoris WA2-67 and its non-bacteriocinogenic mutant L. cremoris WA2-67 ∆nisZ were administered orally (10(6) CFU/g) to rainbow trout for 21 days and, subsequently, fish were challenged with L. garvieae CLG4 by the cohabitation method. The fish fed with the bacteriocinogenic strain L. cremoris WA2-67 reduced significantly (p < 0.01) the mortality (20 %) compared to the fish treated with its non-bacteriocinogenic knockout isogenic mutant (50 %) and the control (72.5 %). We demonstrated the effectiveness of L. cremoris WA2-67 to protect rainbow trout against infection with the invasive pathogen L. garvieae and the relevance of NisZ production as an anti-infective mechanism. This is the first report demonstrating the effective in vivo role of LAB bacteriocin (NisZ) production as a mechanism to protect fish against bacterial infection. Our results suggest that the wild-type NisZ-producer strain L. cremoris WA2-67 could be used in fish farming to prevent lactococcosis in rainbow trout.

  9. Mannitol production by lactic acid bacteria grown in supplemented carob syrup.

    PubMed

    Carvalheiro, Florbela; Moniz, Patrícia; Duarte, Luís C; Esteves, M Paula; Gírio, Francisco M

    2011-01-01

    Detailed kinetic and physiological characterisation of eight mannitol-producing lactic acid bacteria, Leuconostoc citreum ATCC 49370, L. mesenteroides subsp. cremoris ATCC19254, L. mesenteroides subsp. dextranicum ATCC 19255, L. ficulneum NRRL B-23447, L. fructosum NRRL B-2041, L. lactis ATCC 19256, Lactobacillus intermedius NRRL 3692 and Lb. reuteri DSM 20016, was performed using a carob-based culture medium, to evaluate their different metabolic capabilities. Cultures were thoroughly followed for 30 h to evaluate consumption of sugars, as well as production of biomass and metabolites. All strains produced mannitol at high yields (>0.70 g mannitol/g fructose) and volumetric productivities (>1.31 g/l h), and consumed fructose and glucose simultaneously, but fructose assimilation rate was always higher. The results obtained enable the studied strains to be divided mainly into two groups: one for which glucose assimilation rates were below 0.78 g/l h (strains ATCC 49370, ATCC 19256 and ATCC 19254) and the other for which they ranged between 1.41 and 1.89 g/l h (strains NRRL B-3692, NRRL B-2041, NRRL B-23447 and DSM 20016). These groups also exhibited different mannitol production rates and yields, being higher for the strains with faster glucose assimilation. Besides mannitol, all strains also produced lactic acid and acetic acid. The best performance was obtained for L. fructosum NRRL B-2041, with maximum volumetric productivity of 2.36 g/l h and the highest yield, stoichiometric conversion of fructose to mannitol.

  10. Screening of lactic acid bacteria from vacuum packaged beef for antimicrobial activity

    PubMed Central

    Oliveira, Roseane B. P.; de L. Oliveira, Afonso; Glória, M. Beatriz A.

    2008-01-01

    The objective of this study was to isolate lactic acid bacteria (LAB) from vacuum packaged beef and to investigate their antagonist activity. LAB mean counts of 5.19 log cfu/cm2 were obtained from five samples of vacuum packaged beef. Two hundred isolates were selected and screened for the inhibitory effect on five ATCC reference Lactobacillus strains. Thirty six isolates showed activity in the agar spot test against at least two of the indicator strains. However, only six cell free supernatants (CFS) from these isolates exhibited activity against the indicator strains using the well-diffusion test and conditions that eliminated the effects of organic acids and hydrogen peroxide. L. acidophilus was the most sensitive indicator tested, whereas L. plantarum and L. fermentum were the most resistant ones. Identification by MIDI system indicated that these LAB isolates were Lactococcus lactis subsp. cremoris, Pediococcus acidilactici, Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus casei GC subgroup A. The antagonistic factors produced by most of these LAB against L. acidophilus were resistant to heat treatment (100°C for 10 min) and stable over a wide pH range (4.0 to 9.0). These data suggest that these isolates could be used as promising hurdles aiming increased safety and extended shelf life of meat products. PMID:24031232

  11. Characterization of the mature cell surface proteinase of Lactobacillus delbrueckii subsp. lactis CRL 581.

    PubMed

    Villegas, Josefina M; Brown, Lucía; Savoy de Giori, Graciela; Hebert, Elvira M

    2015-05-01

    The cell envelope-associated proteinase (CEP) of Lactobacillus delbrueckii subsp. lactis CRL 581 (PrtL) has an essential role in bacterial growth, contributes to the flavor and texture development of fermented products, and can release bioactive health-beneficial peptides during milk fermentation. The genome of L. delbrueckii subsp. lactis CRL 581 possesses only one gene that encodes PrtL, which consists of 1924 amino acids and is a multidomain protein anchored to the cell via its W domain. PrtL was extracted from the cell under high ionic strength conditions using NaCl, suggesting an electrostatic interaction between the proteinase and the cell envelope. The released PrtL was purified and biochemically characterized; its activity was maximal at temperatures between 37 and 40 °C and at pH between 7 and 8. Under optimal conditions, PrtL exhibited higher affinity for succinyl-alanyl-alanyl-prolyl-phenylalanine-p-nitroanilide than for succinyl-alanyl-glutamyl-prolyl-phenylalanine-p-nitroanilide, while methoxy-succinyl-arginyl-prolyl-tyrosyl-p-nitroanilide was not degraded. A similar α- and β-casein degradation pattern was observed with the purified and the cell envelope-bound proteinase. Finally, on the basis of its specificity towards caseins and the unique combination of amino acids at residues thought to be involved in substrate specificity, PrtL can be classified as a representative of a new group of CEP.

  12. Three-phase succession of autochthonous lactic acid bacteria to reach a stable ecosystem within 7 days of natural bamboo shoot fermentation as revealed by different molecular approaches.

    PubMed

    Romi, Wahengbam; Ahmed, Giasuddin; Jeyaram, Kumaraswamy

    2015-07-01

    Microbial community structure and population dynamics during spontaneous bamboo shoot fermentation for production of 'soidon' (indigenous fermented food) in North-east India were studied using cultivation-dependent and cultivation-independent molecular approaches. Cultivation-dependent analyses (PCR-amplified ribosomal DNA restriction analysis and rRNA gene sequencing) and cultivation-independent analyses (PCR-DGGE, qPCR and Illumina amplicon sequencing) were conducted on the time series samples collected from three independent indigenous soidon fermentation batches. The current findings revealed three-phase succession of autochthonous lactic acid bacteria to attain a stable ecosystem within 7 days natural fermentation of bamboo shoots. Weissella spp. (Weissella cibaria, uncultured Weissella ghanensis) and Lactococcus lactis subsp. cremoris predominated the early phase (1-2 days) which was joined by Leuconostoc citreum during the mid-phase (3 days), while Lactobacillus brevis and Lactobacillus plantarum emerged and became dominant in the late phase (5-7 days) with concurrent disappearance of W. cibaria and L. lactis subsp. cremoris. Lactococcus lactis subsp. lactis and uncultured Lactobacillus acetotolerans were predominantly present throughout the fermentation with no visible dynamics. The above identified dominant bacterial species along with their dynamics can be effectively utilized for designing a starter culture for industrialization of soidon production. Our results showed that a more realistic view on the microbial ecology of soidon fermentation could be obtained by cultivation-dependent studies complemented with cultivation-independent molecular approaches. Moreover, the critical issues to be considered for reducing methodological biases while studying the microbial ecology of traditional food fermentation were also highlighted with this soidon fermentation model. © 2015 John Wiley & Sons Ltd.

  13. Chemical and microbiological characterisation of kefir grains.

    PubMed

    Garrote, G L; Abraham, A G; De Antoni, G L

    2001-11-01

    Chemical and microbiological composition of four Argentinean kefir grains from different sources as well as characteristics of the corresponding fermented milk were studied. Kefir grains CIDCA AGK1, AGK2 and AGK4 did not show significant differences in their chemical and microbiological composition. In contrast, protein and yeast content of AGK3 was higher than in the other grains. Although grain microflora comprised lactobacilli, lactococcus, acetic acid bacteria and yeast, we found an important difference regarding species. Lactococcus lactis subsp. lactis, Lactobacillus kefir, Lactobacillus plantarum, Acetobacter and Saccharomyces were present in all types of kefir grain. While Leuconostoc mesenteroides was only isolated from grains CIDCA AGK1 and Lactococcus lactis subsp. lactis biovar diacetylactis, Lactobacillus parakefir and Kluyveromyces marxianus were only isolated from CIDCA AGK2 grains. All grains produced acid products with pH between 3.5 and 4.0. The apparent viscosity of AGK1 fermented milk was greater than the product obtained with AGK4. All fermented milks had inhibitory power towards Escherichia coli but AGK1 and AGK2 supernatants were able to halt the bacterial growth for at least 25 h. Grain weight increment in AGK1, AGK2 and AGK3 during growth in milk did not show significant differences. Despite their fermenting activity, AGK4 grains did not increase their weight.

  14. Serine-Aspartate Repeat Protein D Increases Staphylococcus aureus Virulence and Survival in Blood.

    PubMed

    Askarian, Fatemeh; Uchiyama, Satoshi; Valderrama, J Andrés; Ajayi, Clement; Sollid, Johanna U E; van Sorge, Nina M; Nizet, Victor; van Strijp, Jos A G; Johannessen, Mona

    2017-01-01

    Staphylococcus aureus expresses a panel of cell wall-anchored adhesins, including proteins belonging to the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) family, exemplified by the serine-aspartate repeat protein D (SdrD), which serve key roles in colonization and infection. Deletion of sdrD from S. aureus subsp. aureus strain NCTC8325-4 attenuated bacterial survival in human whole blood ex vivo, which was associated with increased killing by human neutrophils. Remarkably, SdrD was able to inhibit innate immune-mediated bacterial killing independently of other S. aureus proteins, since addition of recombinant SdrD protein and heterologous expression of SdrD in Lactococcus lactis promoted bacterial survival in human blood. SdrD contributes to bacterial virulence in vivo, since fewer S. aureus subsp. aureus NCTC8325-4 ΔsdrD bacteria than bacteria of the parent strain were recovered from blood and several organs using a murine intravenous infection model. Collectively, our findings reveal a new property of SdrD as an important key contributor to S. aureus survival and the ability to escape the innate immune system in blood. Copyright © 2016 Askarian et al.

  15. Predominant genera of fecal microbiota in children with atopic dermatitis are not altered by intake of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07.

    PubMed

    Larsen, Nadja; Vogensen, Finn K; Gøbel, Rikke; Michaelsen, Kim F; Abu Al-Soud, Waleed; Sørensen, Søren J; Hansen, Lars H; Jakobsen, Mogens

    2011-03-01

    The effect of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 on the composition of the Lactobacillus group, Bifidobacterium and the total bacterial population in feces from young children with atopic dermatitis was investigated. The study included 50 children randomized to intake of one of the probiotic strain or placebo. Microbial composition was characterized by denaturing gradient gel electrophoresis, quantitative PCR and, in a subset of subjects, by pyrosequencing of the 16S rRNA gene. The core population of the Lactobacillus group was identified as Lactobacillus gasseri, Lactobacillus fermentum, Lactobacillus oris, Leuconostoc mesenteroides, while the bifidobacterial community included Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum and Bifidobacterium catenulatum. The fecal numbers of L. acidophilus and B. lactis increased significantly after intervention, indicating survival of the ingested bacteria. The levels of Bifidobacterium correlated positively (P=0.03), while the levels of the Lactobacillus group negatively (P=0.01) with improvement of atopic eczema evaluated by the Severity Scoring of Atopic Dermatitis index. This correlation was observed across the whole study cohort and not attributed to the probiotic intake. The main conclusion of the study is that administration of L. acidophilus NCFM and B. lactis Bi-07 does not affect the composition and diversity of the main bacterial populations in feces. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. One-pot synthesis of GDP-l-fucose by a four-enzyme cascade expressed in Lactococcus lactis.

    PubMed

    Li, Ling; Kim, Seul-Ah; Heo, Ji Eun; Kim, Tae-Jip; Seo, Jin-Ho; Han, Nam Soo

    2017-12-20

    GDP-l-fucose is an l-fucose donor to synthesize fucosylated compounds such as human milk oligosaccharides or Lewis antigen. In this study, we used Lactococcus lactis subsp. cremoris NZ9000 to express 4 enzymes, ManB, ManC, Gmd, and WcaG and produced GDP-l-fucose by using one-pot synthesis method with mannose-6-phosphate as substrate and the enzymes as biocatalyst. For preparation of enzyme mixture, 4 genes (manB, manC, gmd, and wcaG) cloned from Escherichia coli were transformed into L. lactis strains using pNZ8008 and the recombinant cell lysates were obtained after cultivation. When mannose-6-phosphate was used as the substrate, the consecutive reactions with ManB, ManC, Gmd, and WcaG resulted in the successful production of GDP-l-fucose (0.13mM). When GDP-d-mannose was used as the substrate, it was entirely converted to GDP-l-fucose (0.2mM; 0.12g/L) via 2 enzymatic reactions mediated by Gmd and WcaG. This is the first report of GDP-l-fucose production by using multiple enzymes expressed in lactic acid bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Isolation and characterization of probiotics from dairies

    PubMed Central

    Haghshenas, Babak; Nami, Yousef; Almasi, Ali; Abdullah, Norhafizah; Radiah, Dayang; Rosli, Rozita; Barzegari, Abolfazl; Khosroushahi, Ahmad Yari

    2017-01-01

    Background and Objectives: Probiotics are live microorganisms, which show beneficial health effects on hosts once consumed in sufficient amounts. LAB group can be isolated and characterized from traditional dairy sources. This study aimed at isolating, identifying, and in vitro characterizing (low pH/high bile salt tolerance, antibacterial activity, and antibiotic susceptibility) LAB strains from traditional Iranian dairy products. Materials and Methods: Isolated strains were identified by Gram staining, catalase assay, and 3 molecular identification methods; namely, (GTG) 5-PCR fingerprinting, ARDRA, and 16S rDNA gene sequencing. Results: A total of 19 LAB strains belonging to 4 genera (Lactococcus, Leuconostoc, Lactobacillus and Enterococcus) were identified. Conclusion: The experiments revealed that L. plantarum 15HN, L. lactis subsp. cremoris 44L and E. mundtii 50H strains, which were isolated from shiraz, cheese and shiraz, respectively, displayed a desirable tolerance to low pH and high bile salts, favorable anti-pathogen activity, and acceptable antibiotic susceptibility; hence, they could be considered as novel probiotic candidates and applied in the food industry. PMID:29238459

  18. Genetic and phenotypic features defining industrial relevant Lactococcus lactis, L. cremoris and L. lactis biovar. diacetylactis strains.

    PubMed

    Manno, Mariano Torres; Zuljan, Federico; Alarcón, Sergio; Esteban, Luis; Blancato, Victor; Espariz, Martín; Magni, Christian

    2018-06-23

    Lactococcus lactis strains constitute one of the most important starter cultures for cheese production. In this study, a genome-wide analysis was performed including 68 available genomes of L. lactis group strains showing the existence of two species (L. lactis and L. cremoris) and two biovars (L. lactis biovar. diacetylactis and L. cremoris biovar. lactis). The proposed classification scheme revealed coherency among phenotypic (through in silico and in vivo bacterial function profiling), phylogenomic (through maximum likelihood trees) and genomic (using overall genome sequence-based parameters) approaches. Strain biodiversity for the industrial biovar. diacetylactis was also analyzed, finding they are formed by at least three variants with the CC1 clonal complex as the only one distributed worldwide. These findings and methodologies will help improve the selection of L. lactis group strains for industrial use as well as facilitate the interpretation of previous or future research studies on this diverse group of bacteria. Copyright © 2018. Published by Elsevier B.V.

  19. The Impact of Storage Conditions on the Stability of Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis Bb12 in Human Milk.

    PubMed

    Mantziari, Anastasia; Aakko, Juhani; Kumar, Himanshu; Tölkkö, Satu; du Toit, Elloise; Salminen, Seppo; Isolauri, Erika; Rautava, Samuli

    2017-11-01

    Human milk is the optimal source of complete nutrition for neonates and it also guides the development of infant gut microbiota. Importantly, human milk can be supplemented with probiotics to complement the health benefits of breastfeeding. Storage of human milk for limited periods of time is often unavoidable, but little is known about the effect of different storage conditions (temperature) on the viability of the added probiotics. Therefore, in this study, we evaluated how different storage conditions affect the viability of two specific widely used probiotics, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium animalis subsp. lactis (Bb12), in human milk by culturing and quantitative polymerase chain reaction. Our results indicate that LGG and Bb12 remained stable throughout the storage period. Thus, we conclude that human milk offers an appropriate matrix for probiotic supplementation.

  20. Peptidase activity in various species of dairy thermophilic lactobacilli.

    PubMed

    Gatti, M; Fornasari, M E; Lazzi, C; Mucchetti, G; Neviani, E

    2004-01-01

    The aim of the present work was to evaluate the enzymatic potential manifested by aminopeptidase activity of different thermophilic Lactobacillus biotypes and to measure the influence of cell growth phase on enzyme expression. The activities were evaluated by the hydrolysis of beta-naphthylamide substrates for both whole and mechanically disrupted cells of L. helveticus, L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis strains, collected from both the exponential and the stationary growth phase. In general, activities were higher for cells in the exponential rather than in the stationary phase and the disrupted cells showed higher activities than the whole cells. The highest activity expressed by all strains corresponded to X-prolyl-dipeptidyl aminopeptidase while a moderate activity was observed towards Arg-betaNa, Lys-betaNa and Leu-betaNa. The lowest activity was observed for Pro-betaNa. It may be inferred that the cell structure and the cell physiology are crucial to define the level of efficiency of expression for aminopeptidase activity. The two species may be characterized by a different enzymatic system that hydrolyses N-terminal leucine. The differences of peptidase activities in L. helveticus and L. delbrueckii species acquires an importance to comprehend their role in the biochemical events occurring in cheese ripening.

  1. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118.

    PubMed

    Flynn, Sarah; van Sinderen, Douwe; Thornton, Gerardine M; Holo, Helge; Nes, Ingolf F; Collins, J Kevin

    2002-04-01

    ABP-118, a small heat-stable bacteriocin produced by Lactobacillus salivarius subsp. salivarius UCC118, a strain isolated from the ileal-caecal region of the human gastrointestinal tract, was purified to homogeneity. Using reverse genetics, a DNA fragment specifying part of ABP-118 was identified on a 10769 bp chromosomal region. Analysis of this region revealed that ABP-118 was a Class IIb two-peptide bacteriocin composed of Abp118alpha, which exhibited the antimicrobial activity, and Abp118beta, which enhanced the antimicrobial activity. The gene conferring strain UCC118 immunity to the action of ABP-118, abpIM, was identified downstream of the abp118beta gene. Located further downstream of abp118beta, several ORFs were identified whose deduced proteins resembled those of proteins involved in bacteriocin regulation and secretion. Heterologous expression of ABP-118 was achieved in Lactobacillus plantarum, Lactococcus lactis and Bacillus cereus. In addition, the abp118 locus encoded an inducing peptide, AbpIP, which was shown to play a role in the regulation of ABP-118 production. This novel bacteriocin is, to the authors' knowledge, the first to be isolated from a known human probiotic bacterium and to be characterized at the genetic level.

  2. Production of pyroglutamic acid by thermophilic lactic acid bacteria in hard-cooked mini-cheeses.

    PubMed

    Mucchetti, G; Locci, F; Massara, P; Vitale, R; Neviani, E

    2002-10-01

    Pyroglutamic acid is present in high amounts (0.5g/ 100g) in many cheese varieties-and particularly in extensively ripened Italian cheeses such as Grana Padano and Parmigiano Reggiano. An in vivo model system for cooked mini-cheese production and ripening acceleration was set up to demonstrate the ability of thermophilic lactic acid bacteria, used as a starter, to produce pyroglutamic acid (pGlu). In mini-cheeses stored at 38 and 30 degrees C for up to 45 d, all starters tested produced different amounts of pGlu. In descending order of pGlu production, the bacteria analyzed were: Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. lactis. Evidence for the presence of glutamine to pGlu cyclase activity in lactic acid bacteria was provided. Cell lysates obtained from cultures of L. helveticus, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and S. thermophilus showed the ability to cyclize glutamine to pGlu, resulting in processing yields from 1.4 to 30.3%, depending on the subspecies. Formation of pGlu from free glutamine appeared to be similar to that observed using a glutamine-glutamine dipeptide substrate. Under the experimental conditions applied, pGlu aminopeptidase activity was only detected in L. helveticus. Thus, pGlu formation in long-ripened cooked cheese may depend on the activity of thermophilic lactic acid bacteria.

  3. Genetic modification of Lactobacillus plantarum by heterologous gene integration in a not functional region of the chromosome.

    PubMed

    Rossi, Franca; Capodaglio, Alessandro; Dellaglio, Franco

    2008-08-01

    This report describes the vector-free engineering of Lactobacillus plantarum by chromosomal integration of an exogenous gene without inactivation of physiological traits. The integrative plasmid vector pP7B6 was derived from pGIP73 by replacing the cbh site, encoding the L. plantarum conjugated bile salt hydrolase, with the prophage fragment P7B6, from L. plantarum Lp80 (DSM 4229). Plasmid pP7B6NI was obtained by inserting the nisin immunity gene nisI of Lactococcus lactis subsp. lactis DSM 20729, preceded by the constitutive promoter P32 from the same strain, in a unique XbaI site of fragment P7B6 and was used to electrotransform L. plantarum Lp80. A food grade recombinant L. plantarum Lp80NI, with 480-fold higher immunity to nisin than the wild type, was derived by integration of pP7B6NI followed by the excision of pP7B6. Polymerase chain reaction tests demonstrated that the integration of nisI in the prophage region had occurred and that the erythromycin resistance marker from pP7B6 was lost. Fifteen among 31 L. plantarum strains tested hybridized with P7B6, indicating that the integration of pP7B6-derived vectors might occur in some other L. plantarum strains. This was experimentally confirmed by constructing the recombinant strain L. plantarum LZNI from the dairy isolate L. plantarum LZ (LMG 24600).

  4. Butanol is cytotoxic to Lactococcus lactis while ethanol and hexanol are cytostatic.

    PubMed

    Hviid, Anne-Mette Meisner; Ruhdal-Jensen, Peter; Kilstrup, Mogens

    2017-04-01

    Lactic acid bacteria currently used extensively by the dairy industry have a superior tolerance towards short-chain alcohols, which makes them interesting targets for use in future bio-refineries. The mechanism underlying the alcohol tolerance of lactic acid bacteria has so far received little attention. In the present study, the physiological alcohol stress response of Lactococcus lactis subsp. cremoris MG1363 towards the primary, even-chain alcohols ethanol, butanol and hexanol, was characterized. The alcohol tolerance of L. lactis was found to be comparable to those reported for highly alcohol-resistant lactic acid bacteria. Combined results from alcohol survival rate, live/dead staining, and a novel usage of the β-galactosidase assay, revealed that while high concentrations of ethanol and hexanol were cytostatic to L. lactis, high concentrations of butanol were cytotoxic, causing irreparable damages to the cell membrane.

  5. Antibiotic Susceptibility Profiles of Dairy Leuconostoc, Analysis of the Genetic Basis of Atypical Resistances and Transfer of Genes In Vitro and in a Food Matrix

    PubMed Central

    Delgado, Susana; Alegría, Ángel; Salvetti, Elisa; Felis, Giovanna E.; Mayo, Baltasar; Torriani, Sandra

    2016-01-01

    In spite of a global concern on the transfer of antibiotic resistances (AR) via the food chain, limited information exists on this issue in species of Leuconostoc and Weissella, adjunct cultures used as aroma producers in fermented foods. In this work, the minimum inhibitory concentration was determined for 16 antibiotics in 34 strains of dairy origin, belonging to Leuconostoc mesenteroides (18), Leuconostoc citreum (11), Leuconostoc lactis (2), Weissella hellenica (2), and Leuconostoc carnosum (1). Atypical resistances were found for kanamycin (17 strains), tetracycline and chloramphenicol (two strains each), and erythromycin, clindamycin, virginiamycin, ciprofloxacin, and rifampicin (one strain each). Surprisingly, L. mesenteroides subsp. mesenteroides LbE16, showed resistance to four antibiotics, kanamycin, streptomycin, tetracycline and virginiamycin. PCR analysis identified tet(S) as responsible for tetracycline resistance in LbE16, but no gene was detected in a second tetracycline-resistant strain, L. mesenteroides subsp. cremoris LbT16. In Leuconostoc mesenteroides subsp. dextranicum LbE15, erythromycin and clindamycin resistant, an erm(B) gene was amplified. Hybridization experiments proved erm(B) and tet(S) to be associated to a plasmid of ≈35 kbp and to the chromosome of LbE15 and LbE16, respectively. The complete genome sequence of LbE15 and LbE16 was used to get further insights on the makeup and genetic organization of AR genes. Genome analysis confirmed the presence and location of erm(B) and tet(S), but genes providing tetracycline resistance in LbT16 were again not identified. In the genome of the multi-resistant strain LbE16, genes that might be involved in aminoglycoside (aadE, aphA-3, sat4) and virginiamycin [vat(E)] resistance were further found. The erm(B) gene but not tet(S) was transferred from Leuconostoc to Enterococcus faecalis both under laboratory conditions and in cheese. This study contributes to the characterization of AR in the Leuconostoc-Weissella group, provides evidence of the genetic basis of atypical resistances, and demonstrates the inter-species transfer of erythromycin resistance. PMID:26726815

  6. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.

    PubMed

    Larsen, Nadja; Moslehi-Jenabian, Saloomeh; Werner, Birgit Brøsted; Jensen, Maiken Lund; Garrigues, Christel; Vogensen, Finn Kvist; Jespersen, Lene

    2016-06-02

    Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Antihypertensive and hypolipidemic effect of milk fermented by specific Lactococcus lactis strains.

    PubMed

    Rodríguez-Figueroa, J C; González-Córdova, A F; Astiazaran-García, H; Hernández-Mendoza, A; Vallejo-Cordoba, B

    2013-07-01

    The antihypertensive and hypolipidemic effects of milk fermented by specific Lactococcus lactis strains in spontaneously hypertensive rats (SHR) were investigated. The SHR were fed ad libitum milk fermented by Lc. lactis NRRL B-50571, Lc. lactis NRRL B-50572, Captopril (40mg/kg of body weight, Sigma-Aldrich Co., St. Louis, MO) or purified water for 4 wk. Results suggested that Lc. lactis fermented milks presented a significant blood pressure-lowering effect. No significant difference was noted among milk fermented by Lc. lactis NRRL B-50571 and Captopril by the second and third week of treatment. Additionally, milk fermented by Lc. lactis strains modified SHR lipid profiles. Milk fermented by Lc. lactis NRRL B-50571 and B-50572 were able to reduce plasma low-density lipoprotein cholesterol and triglyceride contents. Thus, milk fermented by Lc. lactis strains may be a coadjuvant in the reduction of hypertension and hyperlipidemia and may be used as a functional food for better cardiovascular health. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Cloning and Characterization of the Lactococcal Plasmid-Encoded Type II Restriction/Modification System, LlaDII

    PubMed Central

    Madsen, Annette; Josephsen, Jytte

    1998-01-01

    The LlaDII restriction/modification (R/M) system was found on the naturally occurring 8.9-kb plasmid pHW393 in Lactococcus lactis subsp. cremoris W39. A 2.4-kb PstI-EcoRI fragment inserted into the Escherichia coli-L. lactis shuttle vector pCI3340 conferred to L. lactis LM2301 and L. lactis SMQ86 resistance against representatives of the three most common lactococcal phage species: 936, P335, and c2. The LlaDII endonuclease was partially purified and found to recognize and cleave the sequence 5′-GC↓NGC-3′, where the arrow indicates the cleavage site. It is thus an isoschizomer of the commercially available restriction endonuclease Fnu4HI. Sequencing of the 2.4-kb PstI-EcoRI fragment revealed two open reading frames arranged tandemly and separated by a 105-bp intergenic region. The endonuclease gene of 543 bp preceded the methylase gene of 954 bp. The deduced amino acid sequence of the LlaDII R/M system showed high homology to that of its only sequenced isoschizomer, Bsp6I from Bacillus sp. strain RFL6, with 41% identity between the endonucleases and 60% identity between the methylases. The genetic organizations of the LlaDII and Bsp6I R/M systems are identical. Both methylases have two recognition sites (5′-GCGGC-3′ and 5′-GCCGC-3′) forming a putative stem-loop structure spanning part of the presumed −35 sequence and part of the intervening region between the −35 and −10 sequences. Alignment of the LlaDII and Bsp6I methylases with other m5C methylases showed that the protein primary structures possessed the same organization. PMID:9647810

  9. Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation.

    PubMed

    Flahaut, Nicolas A L; Wiersma, Anne; van de Bunt, Bert; Martens, Dirk E; Schaap, Peter J; Sijtsma, Lolke; Dos Santos, Vitor A Martins; de Vos, Willem M

    2013-10-01

    Lactococcus lactis subsp. cremoris MG1363 is a paradigm strain for lactococci used in industrial dairy fermentations. However, despite of its importance for process development, no genome-scale metabolic model has been reported thus far. Moreover, current models for other lactococci only focus on growth and sugar degradation. A metabolic model that includes nitrogen metabolism and flavor-forming pathways is instrumental for the understanding and designing new industrial applications of these lactic acid bacteria. A genome-scale, constraint-based model of the metabolism and transport in L. lactis MG1363, accounting for 518 genes, 754 reactions, and 650 metabolites, was developed and experimentally validated. Fifty-nine reactions are directly or indirectly involved in flavor formation. Flux Balance Analysis and Flux Variability Analysis were used to investigate flux distributions within the whole metabolic network. Anaerobic carbon-limited continuous cultures were used for estimating the energetic parameters. A thorough model-driven analysis showing a highly flexible nitrogen metabolism, e.g., branched-chain amino acid catabolism which coupled with the redox balance, is pivotal for the prediction of the formation of different flavor compounds. Furthermore, the model predicted the formation of volatile sulfur compounds as a result of the fermentation. These products were subsequently identified in the experimental fermentations carried out. Thus, the genome-scale metabolic model couples the carbon and nitrogen metabolism in L. lactis MG1363 with complete known catabolic pathways leading to flavor formation. The model provided valuable insights into the metabolic networks underlying flavor formation and has the potential to contribute to new developments in dairy industries and cheese-flavor research.

  10. Production and purification of staphylococcal nuclease in Lactococcus lactis using a new expression-secretion system and a pH-regulated mini-reactor

    PubMed Central

    2010-01-01

    Background Staphylococcal (or micrococcal) nuclease or thermonuclease (SNase or Nuc) is a naturally-secreted nucleic acid degrading enzyme that participates in Staphylococcus aureus spread in the infected host. Purified Nuc protein can be used as an exogenous reagent to clear cellular extracts and improve protein purification. Here, a recombinant form of Nuc was produced and secreted in a Gram-positive host, Lactococcus lactis, and purified from the culture medium. Results The gene segment corresponding to the S. aureus nuclease without its signal peptide was cloned in an expression-secretion vector. It was then fused to a lactococcal sequence encoding a signal peptide, and expressed under the control of a lactococcal promoter that is inducible by zinc starvation. An L. lactis subsp cremoris model strain (MG1363) transformed with the resulting plasmid was grown in either of two media (GM17v and CDM) that are free of animal compounds, allowing GMP (Good Manufacturing Practice) production. Induction conditions (concentration of the metal chelator EDTA and timing of addition) in small-scale pH-regulated fermentors were optimized using LacMF (Lactis Multi-Fermentor), a home-made parallel fermentation control system able to monitor 12 reactors simultaneously. Large amounts of recombinant Nuc (rNuc) were produced and secreted in both media, and rNuc was purified from GM17v medium in a single-step procedure. Conclusions In L. lactis, rNuc production and secretion were optimal after induction by 0.5 mM EDTA in small scale (200 mL) GM17v exponential phase cultures (at an OD600 of 2), leading to a maximal protein yield of 210 mg per L of culture medium. Purified rNuc was highly active, displaying a specific activity of 2000 U/mg. PMID:20492646

  11. Development and use of a selective medium for isolation of Leuconostoc spp. from vegetables and dairy products.

    PubMed Central

    Benkerroum, N; Misbah, M; Sandine, W E; Elaraki, A T

    1993-01-01

    A selective medium (LUSM medium) for the isolation of Leuconostoc spp. was developed. This medium contained 1.0% glucose, 1.0% Bacto Peptone (Difco), 0.5% yeast extract (BBL), 0.5% meat extract (Difco), 0.25% gelatin (Difco), 0.5% calcium lactate, 0.05% sorbic acid, 75 ppm of sodium azide (Sigma), 0.25% sodium acetate, 0.1% (vol/vol) Tween 80, 15% tomato juice, 30 micrograms of vancomycin (Sigma) per ml, 0.20 microgram of tetracycline (Serva) per ml, 0.5 mg of cysteine hydrochloride per ml, and 1.5% agar (Difco). LUSM medium was used successfully for isolation and enumeration of Leuconostoc spp. in dairy products and vegetables. Of 116 colony isolates obtained from fresh raw milk, curdled milk, or various vegetables, 115 were identified as members of the genus Leuconostoc. A total of 89 of these isolates were identified to species; 13.5% of the isolates were Leuconostoc cremoris, 7.9% were Leuconostoc mesenteroides subsp. mesenteroides, 11.2% were Leuconostoc mesenteroides subsp. dextranicum, 16.9% were Leuconostoc mesenteroides subsp. paramesenteroides, 10.1% were leuconostoc lactis, and 40.4% were Leuconostoc oenos. When we compared the counts obtained for two Leuconostoc strains, Leuconostoc dextranicum 181 and L. cremoris JLL8, on MRS agar and LUSM medium, we found no significant difference between the values obtained on the two media. PMID:8434926

  12. Taxonomic structure and monitoring of the dominant population of lactic acid bacteria during wheat flour sourdough type I propagation using Lactobacillus sanfranciscensis starters.

    PubMed

    Siragusa, Sonya; Di Cagno, Raffaella; Ercolini, Danilo; Minervini, Fabio; Gobbetti, Marco; De Angelis, Maria

    2009-02-01

    The structure and stability of the dominant lactic acid bacterium population were assessed during wheat flour sourdough type I propagation by using singly nine strains of Lactobacillus sanfranciscensis. Under back-slopping propagation with wheat flour type 0 F114, cell numbers of presumptive lactic acid bacteria varied slightly between and within starters. As determined by randomly amplified polymorphic DNA-PCR and restriction endonuclease analysis-pulsed-field gel electrophoresis analyses, only three (LS8, LS14, and LS44) starters dominated throughout 10 days of propagation. The others progressively decreased to less than 3 log CFU g(-1). Partial sequence analysis of the 16S rRNA and recA genes and PCR-denaturating gradient gel electrophoresis analysis using the rpoB gene allowed identification of Weissella confusa, Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus rossiae, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Pediococcus pentosaceus, and Lactobacillus spp. as the dominant species of the raw wheat flour. At the end of propagation, one autochthonous strain of L. sanfranciscensis was found in all the sourdoughs. Except for L. brevis, strains of the above species were variously found in the mature sourdoughs. Persistent starters were found in association with other biotypes of L. sanfranciscensis and with W. confusa or L. plantarum. Sourdoughs were characterized for acidification, quotient of fermentation, free amino acids, and community-level catabolic profiles by USING Biolog 96-well Eco microplates. In particular, catabolic profiles of sourdoughs containing persistent starters behaved similarly and were clearly differentiated from the others. The three persistent starters were further used for the production of sourdoughs and propagated by using another wheat flour whose lactic acid bacterium population in part differed from the previous one. Also, in this case all three starter strains persisted during propagation.

  13. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.

    PubMed

    Chen, Xiaoyan; Xu, Jingliang; Yang, Liu; Yuan, Zhenhong; Xiao, Shiyuan; Zhang, Yu; Liang, Cuiyi; He, Minchao; Guo, Ying

    2015-11-01

    Higher alcohols, longer chain alcohols, contain more than 3 carbon atoms, showed close energy advantages as gasoline, and were considered as the next generation substitution for chemical fuels. Higher alcohol biosynthesis by native microorganisms mainly needs gene expression of heterologous keto acid decarboxylase and alcohol dehydrogenases. In the present study, branched-chain α-keto acid decarboxylase gene from Lactococcus lactis subsp. lactis CICC 6246 (Kivd) and alcohol dehydrogenases gene from Zymomonas mobilis CICC 41465 (AdhB) were transformed into Escherichia coli for higher alcohol production. SDS-PAGE results showed these two proteins were expressed in the recombinant strains. The resulting strain was incubated in LB medium at 37 °C in Erlenmeyer flasks and much more 3-methyl-1-butanol (104 mg/L) than isobutanol (24 mg/L) was produced. However, in 5 g/L glucose-containing medium, the production of two alcohols was similar, 156 and 161 mg/L for C4 (isobutanol) and C5 (3-methyl-1-butanol) alcohol, respectively. Effects of fermentation factors including temperature, glucose content, and α-keto acid on alcohol production were also investigated. The increase of glucose content and the adding of α-keto acids facilitated the production of C4 and C5 alcohols. The enzyme activities of pure Kivd on α-ketoisovalerate and α-ketoisocaproate were 26.77 and 21.24 μmol min(-1) mg(-1), respectively. Due to its ability on decarboxylation of α-ketoisovalerate and α-ketoisocaproate, the recombinant E. coli strain showed potential application on isoamyl alcohol and isobutanol production.

  14. In vitro pore-forming activity of the lantibiotic nisin. Role of protonmotive force and lipid composition.

    PubMed

    Garcerá, M J; Elferink, M G; Driessen, A J; Konings, W N

    1993-03-01

    Nisin is a lantibiotic produced by some strains of Lactococcus lactis subsp. lactis. The target for nisin action is the cytoplasmic membrane of Gram-positive bacteria. Nisin dissipates the membrane potential (delta psi) and induces efflux of low-molecular-mass compounds. Evidence has been presented that a delta psi is needed for nisin action. The in vitro action of nisin was studied on liposomes loaded with the fluorophore carboxyfluorescein. Nisin-induced efflux of carboxyfluorescein was observed in the absence of a delta psi from liposomes composed of Escherichia coli lipids or dioleoylglycerophosphocholine (Ole2GroPCho) at low nisin/lipid ratios. The initial rate of carboxyfluorescein efflux is dependent on the nisin/lipid ratio and saturates at high ratios. Both delta psi (inside negative) and delta pH (inside alkaline) enhance the action of nisin, while nisin is more potent at acidic external pH values. Efficient carboxyfluorescein efflux is observed with the zwitterionic phospholipid Ole2GroPCho or mixtures of Ole2GroPCho with dioleoylglycerophosphoethanolamine and neutral glycolipids, while anionic phospholipids are strongly inhibitory. It is concluded that a delta psi is not essential, but that the total protonmotive force stimulates the action of nisin.

  15. Complete Genome Sequence of Kluyveromyces lactis Strain GG799, a Common Yeast Host for Heterologous Protein Expression

    PubMed Central

    Chuzel, Léa; Ganatra, Mehul B.; Schermerhorn, Kelly M.; Gardner, Andrew F.; Anton, Brian P.

    2017-01-01

    ABSTRACT We report the genome sequence of the dairy yeast Kluyveromyces lactis strain GG799 obtained using the Pacific Biosciences RS II platform. K. lactis strain GG799 is a common host for the expression of proteins at both laboratory and industrial scales. PMID:28751387

  16. Genome‐scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi‐strain arrays

    PubMed Central

    Siezen, Roland J.; Bayjanov, Jumamurat R.; Felis, Giovanna E.; van der Sijde, Marijke R.; Starrenburg, Marjo; Molenaar, Douwe; Wels, Michiel; van Hijum, Sacha A. F. T.; van Hylckama Vlieg, Johan E. T.

    2011-01-01

    Summary Lactococcus lactis produces lactic acid and is widely used in the manufacturing of various fermented dairy products. However, the species is also frequently isolated from non‐dairy niches, such as fermented plant material. Recently, these non‐dairy strains have gained increasing interest, as they have been described to possess flavour‐forming activities that are rarely found in dairy isolates and have diverse metabolic properties. We performed an extensive whole‐genome diversity analysis on 39 L. lactis strains, isolated from dairy and plant sources. Comparative genome hybridization analysis with multi‐strain microarrays was used to assess presence or absence of genes and gene clusters in these strains, relative to all L. lactis sequences in public databases, whereby chromosomal and plasmid‐encoded genes were computationally analysed separately. Nearly 3900 chromosomal orthologous groups (chrOGs) were defined on basis of four sequenced chromosomes of L. lactis strains (IL1403, KF147, SK11, MG1363). Of these, 1268 chrOGs are present in at least 35 strains and represent the presently known core genome of L. lactis, and 72 chrOGs appear to be unique for L. lactis. Nearly 600 and 400 chrOGs were found to be specific for either the subspecies lactis or subspecies cremoris respectively. Strain variability was found in presence or absence of gene clusters related to growth on plant substrates, such as genes involved in the consumption of arabinose, xylan, α‐galactosides and galacturonate. Further niche‐specific differences were found in gene clusters for exopolysaccharides biosynthesis, stress response (iron transport, osmotolerance) and bacterial defence mechanisms (nisin biosynthesis). Strain variability of functions encoded on known plasmids included proteolysis, lactose fermentation, citrate uptake, metal ion resistance and exopolysaccharides biosynthesis. The present study supports the view of L. lactis as a species with a very flexible genome. PMID:21338475

  17. Genotypic and technological characterization of Leuconostoc isolates to be used as adjunct starters in Manchego cheese manufacture.

    PubMed

    Nieto-Arribas, Pedro; Seseña, Susana; Poveda, Justa M; Palop, Llanos; Cabezas, Lourdes

    2010-02-01

    Twenty-seven Leuconostoc (Ln.) isolates from Manchego cheese were characterized by phenotypic and genotypic methods, and their technological abilities studied in order to test their potential use as dairy starter components. While phenotypic diversity was evaluated by studying the biochemical characteristics of technological interest (i.e. acidifying and aminopeptidase activities), genotypic diversity was evidenced by using Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR). Additional technological abilities such as lipolytic, proteolytic and autolytic activities, salt and pH tolerance and production of dextran, flavour compounds and biogenic amines, were investigated. The marked differences among strains reflected the existing biodiversity in naturally fermented products. After statistically evaluating their performance, strains C0W2, belonging to Ln. lactis, and C16W5 and N2W5, belonging to Ln. mesenteroides subsp. dextranicum, revealed the best properties to be used in mixed dairy starter cultures. This study evidences the fact that natural environments can be considered as a proper source of useful strains, for the dairy industry.

  18. Role of Antibiosis in Competition of Erwinia Strains in Potato Infection Courts

    PubMed Central

    Axelrood, Paige E.; Rella, Manuela; Schroth, Milton N.

    1988-01-01

    Erwinia carotovora subsp. betavasculorum strains produced a bactericidal antibiotic in vitro that inhibited a wide spectrum of gram-negative and gram-positive bacteria. The optimum temperature for production was 24°C, and the addition of glycerol to culture media enhanced antibiotic production. Antibiotic production by these strains in the infection court of potato was the principal determinant enabling it to gain ascendancy over competing antibiotic-sensitive Erwinia carotovora subsp. carotovora strains. There was a complete correlation between antibiotic production by E. carotovora subsp. betavasculorum in vitro and inhibition of competing E. carotovora subsp. carotovora strains in planta. Inhibition of the latter by the former was apparent after 10 h of incubation in potato tuber wounds. Population densities of sensitive E. carotovora subsp. carotovora strains in mixed potato tuber infections with E. carotovora subsp. betavasculorum were approximately 106-fold lower after 48 h of incubation than in corresponding single sensitive strain infections. E. carotovora subsp. carotovora were not inhibited in tuber infections that were incubated anaerobically. This correlated with the absence of antibiotic production during anaerobic incubation in vitro. Antibiotic-resistant strains of E. carotovora subsp. carotovora were not inhibited in planta or in vitro by E. carotovora subsp. betavasculorum. Moreover, isogenic antibiotic-negative (Ant−) mutant E. carotovora subsp. betavasculorum strains were not inhibitory to sensitive E. carotovora subsp. carotovora strains in tuber infections. PMID:16347633

  19. Molecular interaction between lipoteichoic acids and Lactobacillus delbrueckii phages depends on D-alanyl and alpha-glucose substitution of poly(glycerophosphate) backbones.

    PubMed

    Räisänen, Liisa; Draing, Christian; Pfitzenmaier, Markus; Schubert, Karin; Jaakonsaari, Tiina; von Aulock, Sonja; Hartung, Thomas; Alatossava, Tapani

    2007-06-01

    Lipoteichoic acids (LTAs) have been shown to act as bacterial counterparts to the receptor binding proteins of LL-H, LL-H host range mutant LL-H-a21, and JCL1032. Here we have used LTAs purified by hydrophobic interaction chromatography from different phage-resistant and -sensitive strains of Lactobacillus delbrueckii subsp. lactis. Nuclear magnetic resonance analyses revealed variation in the degree of alpha-glucosyl and D-alanyl substitution of the 1,3-linked poly(glycerophosphate) LTAs between the phage-sensitive and phage-resistant strains. Inactivation of phages was less effective if there was a high level of D-alanine residues in the LTA backbones. Prior incubation of the LTAs with alpha-glucose-specific lectin inhibited the LL-H phage inactivation. The overall level of decoration or the specific spatial combination of alpha-glucosyl-substituted, D-alanyl-substituted, and nonsubstituted glycerol residues may also affect phage adsorption.

  20. Molecular Interaction between Lipoteichoic Acids and Lactobacillus delbrueckii Phages Depends on d-Alanyl and α-Glucose Substitution of Poly(Glycerophosphate) Backbones▿

    PubMed Central

    Räisänen, Liisa; Draing, Christian; Pfitzenmaier, Markus; Schubert, Karin; Jaakonsaari, Tiina; von Aulock, Sonja; Hartung, Thomas; Alatossava, Tapani

    2007-01-01

    Lipoteichoic acids (LTAs) have been shown to act as bacterial counterparts to the receptor binding proteins of LL-H, LL-H host range mutant LL-H-a21, and JCL1032. Here we have used LTAs purified by hydrophobic interaction chromatography from different phage-resistant and -sensitive strains of Lactobacillus delbrueckii subsp. lactis. Nuclear magnetic resonance analyses revealed variation in the degree of α-glucosyl and d-alanyl substitution of the 1,3-linked poly(glycerophosphate) LTAs between the phage-sensitive and phage-resistant strains. Inactivation of phages was less effective if there was a high level of d-alanine residues in the LTA backbones. Prior incubation of the LTAs with α-glucose-specific lectin inhibited the LL-H phage inactivation. The overall level of decoration or the specific spatial combination of α-glucosyl-substituted, d-alanyl-substituted, and nonsubstituted glycerol residues may also affect phage adsorption. PMID:17416656

  1. Characterization of microbiota in Arapaima gigas intestine and isolation of potential probiotic bacteria.

    PubMed

    do Vale Pereira, G; da Cunha, D G; Pedreira Mourino, J L; Rodiles, A; Jaramillo-Torres, A; Merrifield, D L

    2017-11-01

    The aim of this study was to determine the intestinal microbiota of pirarucu (Arapaima gigas) in different growth stages (adult and fingerlings) and to isolate and identify potential probiotic bacteria. High-throughput sequencing analysis of the intestinal contents revealed that the majority of sequences belonged to the Proteobacteria, Fusobacteria and Firmicutes phyla. At the genus level, the greatest number of sequences belonged to Bradyrhizobium in adult fish, while Cetobacterium was the most abundant in juvenile fish. Twenty-three lactic-acid bacteria (LABs) were isolated on MRS agar from healthy juvenile fish. The isolates were tested in vitro for probiotic properties. Two isolates (identified as strains of Lactococcus lactis subsp. lactis and Enterococcus faecium) displayed antagonism against all 10 pathogens tested, were nonhaemolytic and maintained good viability for at least 3 weeks when supplemented to fish diets. The presence of a number of antibiotic resistance genes (ARGs), conferring resistance to erythromycin, tetracycline and chloramphenicol, was investigated by PCR. The absence of ARGs investigated the potential to antagonize pathogens, and favourable growth and survival characteristics indicate that these autochthonous isolates have the potential to be considered probiotics, which will be studied in future in vivo experiments. This study has demonstrated, for the first time, the normal microbiota in the A. gigas intestine during different life stages and the presence of LAB strains. It also demonstrated LAB antibiotic resistance and antagonistic behaviour against pathogens isolated from the same fish. © 2017 The Society for Applied Microbiology.

  2. Diversity of lactic acid bacteria in sian-sianzih (fermented clams), a traditional fermented food in Taiwan.

    PubMed

    Chen, Yi-sheng; Wu, Hui-chung; Li, Ya-han; Leong, Kun-hon; Pua, Xiao-hui; Weng, Ming-kai; Yanagida, Fujitoshi

    2012-01-30

    Sian-sianzih (fermented clams) is a popular traditional fermented food in Taiwan. The lactic acid bacteria (LAB) microflora in sian-sianzih have not been studied in detail. In this study, LAB from sian-sianzih were isolated, characterized and identified. A total of 186 cultures of LAB were isolated from seven sian-sianzih samples and 29 cultures were isolated from its main raw substrate: clams. The identification results revealed up to 11 distinct bacterial species belonging to five genera in sian-sianzih, and three species belonging to two genera in clams. The most common bacterial genera in sian-sianzih were Lactobacillus and Weissella, followed by Leuconostoc, Pediococcus and Lactococcus. A regional similarity in LAB, with differences in diversity, was observed in the current study. On the other hand, Lactococcus lactis subsp. lactis was the most common species found in raw clam samples. The results also suggested that greater LAB diversity could be observed in wild clams than in cultured ones. Furthermore, antibacterial activities of the isolates were determined, and one Weisella hellenica strain showed inhibitory activity against the indicator strain Lactobacilluas sakei JCM 1157(T) . A sensory assessment of seven sian-sianzih samples was also performed and the results indicated that diversity of LAB has a great effect on its aroma and taste formation. The results demonstrate that various LAB species are distributed in sian-sianzih and have a great effect on the flavor of sian-sianzih. Copyright © 2011 Society of Chemical Industry.

  3. Protective role of probiotic lactic acid bacteria against dietary fumonisin B1-induced toxicity and DNA-fragmentation in sprague-dawley rats.

    PubMed

    Khalil, Ashraf A; Abou-Gabal, Ashgan E; Abdellatef, Amira A; Khalid, Ahmed E

    2015-08-18

    The genus Fusarium, especially F. verticillioides and F. proliferatum, has been found in several agricultural products worldwide, especially in maize. Regardless the occurrence of symptoms, the presence of Fusarium in maize constitutes an imminent risk due to its ability to produce fumonisins, mycotoxins with proven carcinogenic effect on rats, swine, and equines and already classified as possible carcinogens to humans. The toxicity of incremental levels of fumonisin B1 (FB1), that is, 50, 100, and 200 mg FB1/kg diet, and the role of Lactobacillus delbrueckii subsp. lactis DSM 20076 (LL) and Pediococcus acidilactici NNRL B-5627 (PA) supplementation in counteracting the FB1 effects in intoxicated rats were monitored over a period of 4 weeks. Effects on the feed intake and body weight gain were noticed. A significant (p ≤ 0.05) increase in the level of liver and kidney functions markers and DNA fragmentation was also noticed in rat groups T100 and T200. The lactic acid bacteria (LAB) supplementation could bring back the normal serum biochemical parameters in rats fed on fumonisin B1-contaminated diets (T50 and T100) compared to FB1-treated groups. In rats of high-dosage dietary groups supplemented with LAB (T200-LL and T200-PA), the supplementation reduced the serum activity levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and creatinine by 11.3, 11.9, 32, and 20%, respectively. DNA fragmentations were observed in the rat group treated with 200 mg FB1 after 3 weeks, while fragmentation was noticed in treated groups with 100 and 200 mg FB1 after 4 weeks. No DNA fragmentation was apparent in FB1-treated rats co-administered the LL or PA strain. These results suggest that in male rats consuming diets containing FB1, there is a time- and dose-dependent increase in serum enzyme activities and DNA lesions. Moreover, Lb. delbrueckii subsp. lactis (LL) and P. acidilactici (PA) strains have a protective effect against antigenotoxicity and precancerous lesions.

  4. Licheniocin 50.2 and Bacteriocins from Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 Inhibit Biofilms of Coagulase Negative Staphylococci and Listeria monocytogenes Clinical Isolates.

    PubMed

    Cirkovic, Ivana; Bozic, Dragana D; Draganic, Veselin; Lozo, Jelena; Beric, Tanja; Kojic, Milan; Arsic, Biljana; Garalejic, Eliana; Djukic, Slobodanka; Stankovic, Slavisa

    2016-01-01

    Coagulase negative staphylococci (CoNS) and Listeria monocytogenes have important roles in pathogenesis of various genital tract infections and fatal foetomaternal infections, respectively. The aim of our study was to investigate the inhibitory effects of two novel bacteriocins on biofilms of CoNS and L. monocytogenes genital isolates. The effects of licheniocin 50.2 from Bacillus licheniformis VPS50.2 and crude extract of bacteriocins produced by Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 (BGBU1-4 crude extract) were evaluated on biofilm formation and formed biofilms of eight CoNS (four S. epidermidis, two S. hominis, one S. lugdunensis and one S. haemolyticus) and 12 L. monocytogenes genital isolates. Licheniocin 50.2 and BGBU1-4 crude extract inhibited the growth of both CoNS and L. monocytogenes isolates, with MIC values in the range between 200-400 AU/ml for licheniocin 50.2 and 400-3200 AU/ml for BGBU1-4 crude extract. Subinhibitory concentrations (1/2 × and 1/4 × MIC) of licheniocin 50.2 inhibited biofilm formation by all CoNS isolates (p < 0.05, respectively), while BGBU1-4 crude extract inhibited biofilm formation by all L. monocytogenes isolates (p < 0.01 and p < 0.05, respectively). Both bacteriocins in concentrations of 100 AU/mL and 200 AU/mL reduced the amount of 24 h old CoNS and L. monocytogenes biofilms (p < 0.05, p < 0.01, p < 0.001). This study suggests that novel bacteriocins have potential to be used for genital application, to prevent biofilm formation and/or to eradicate formed biofilms, and consequently reduce genital and neonatal infections by CoNS and L. monocytogenes.

  5. Chromosomal Diversity in Lactococcus lactis and the Origin of Dairy Starter Cultures

    PubMed Central

    Kelly, William J.; Ward, Lawrence J. H.; Leahy, Sinead C.

    2010-01-01

    A large collection of Lactococcus lactis strains, including wild-type isolates and dairy starter cultures, were screened on the basis of their phenotype and the macrorestriction patterns produced from pulsed-field gel electrophoresis (PFGE) analysis of SmaI digests of genomic DNA. Three groups of dairy starter cultures, used for different purposes in the dairy industry, and a fourth group made up of strains isolated from the environment were selected for analysis of their chromosomal diversity using the endonuclease I-CeuI. Chromosome architecture was largely conserved with each strain having six copies of the rRNA genes, and the chromosome size of individual strains ranged between 2,240 and 2,688 kb. The origin of L. lactis strains showed the greatest correlation with chromosome size, and dairy strains, particularly those with the cremoris phenotype, had smaller chromosomes than wild-type strains. Overall, this study, coupled with analysis of the sequenced L. lactis genomes, provides evidence that defined strain dairy starter cultures have arisen from plant L. lactis strains. Adaptation of these strains to the dairy environment has involved loss of functions resulting in smaller chromosomes and acquisition of genes (usually plasmid associated) that facilitate growth in milk. We conclude that dairy starter cultures generally and the industrially used cremoris and diacetylactis phenotype strains in particular comprise a specialized group of L. lactis strains that have been selected to become an essential component of industrial processes and have evolved accordingly, so that they are no longer fit to survive outside the dairy environment. PMID:20847124

  6. Anticandidal activity of cell extracts from 13 probiotic Lactobacillus strains and characterisation of lactic acid and a novel fatty acid derivative from one strain.

    PubMed

    Nyanzi, Richard; Awouafack, Maurice D; Steenkamp, Paul; Jooste, Piet J; Eloff, Jacobus N

    2014-12-01

    This study investigated the anti-Candida activity of methanol extracts from freeze-dried probiotic cells and the isolation of some constituents in the extracts. The MIC values of the probiotic methanol cell extracts against Candida albicans ranged between 1.25 and 5mg/ml after 48 h of incubation. However, Lactococcus latics subsp. lactis strain X and Lactobacillus casei strain B extracts had an MIC of 10mg/ml after 48 h of incubation. The extracts had fungistatic rather than fungicidal activity. These extracts had a much higher antifungal activity than antifungal compounds isolated from the growth medium by many other authors. This indicates that probiotics may also release antifungal compounds in their cells that could contribute to a therapeutic effect. Lactic acid (1) and 6-O-(α-D-glucopyranosyl)-1,6-di-O-pentadecanoyl-α-D-glucopyranose a novel fatty acid derivative (2) were isolated from methanol probiotic extracts and the structure of these compounds were elucidated using NMR (1 and 2D) and mass spectrometry (MS). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Proteolytic enzyme activities in Cheddar cheese juice made using lactococcal starters of differing autolytic properties.

    PubMed

    Sheehan, A; Cuinn, G O'; Fitzgerald, R J; Wilkinson, M G

    2006-04-01

    To determine proteolytic enzyme activities released in Cheddar cheese juice manufactured using lactococcal starter strains of differing autolytic properties. The activities of residual chymosin, cell envelope proteinase and a range of intracellular proteolytic enzymes were determined during the first 70 days of ripening when starter lactococci predominate the microbial flora. In general, in cell free extracts (CFE) of the strains, the majority of proteolytic activities was highest for Lactococcus lactis HP, intermediate for L. lactis AM2 and lowest for L. lactis 303. However, in cheese juice, as ripening progressed, released proteolytic activities were highest for the highly autolytic strain L. lactis AM2, intermediate for L. lactis 303 and lowest for L. lactis HP. These results indicate that strain related differences in autolysis influence proteolytic enzyme activities released into Cheddar cheese during ripening. No correlation was found between proteolytic potential of the starter strains measured in CFE prior to cheese manufacture and levels of activities released in cheese juice. The findings further support the importance of autolysis of lactococcal starters in determining the levels of proteolytic activities present in cheese during initial stages of ripening.

  8. Lactococcus lactis Metabolism and Gene Expression during Growth on Plant Tissues

    PubMed Central

    Golomb, Benjamin L.

    2014-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations. PMID:25384484

  9. Enumeration of the contaminating bacterial microbiota in unfermented pasteurized milks enriched with probiotic bacteria.

    PubMed

    Champagne, C P; Raymond, Y; Gonthier, J; Audet, P

    2009-04-01

    Pasteurized and unfermented milks supplemented with probiotic bacteria are appearing on the market. It then becomes a challenge to ascertain the undesirable contamination microbiota in the presence of a largely superior population of probiotic bacteria. A method to enumerate the contaminating microbial microbiota in such probiotic-enriched milks was developed. The probiotic cultures, Lactobacillus rhamnosus Lb-Immuni-T and Bifidobacterium animalis subsp. lactis BB-12(R), were added to a pasteurized unfermented milk to reach a minimum of 1 billion CFU per 250 mL portion, as ascertained by plating on de Man - Rogosa - Sharpe (MRS) agar in anaerobic conditions. No growth of B. animalis subsp. lactis BB-12 was noted on plate count agar (PCA) or Petrifilm plates, and the presence of this culture did not affect standard plate counts (SPC) of contaminating bacteria. However, L. rhamnosus formed colonies on PCA and Petrifilm plates. Attempts were thus made to inhibit the growth of the probiotic lactobacilli in PCA. The addition of 2% sodium phosphate (SP) or 5% glycerophosphate (GP) inhibited the growth of the lactobacilli in broths, but pin-point colonies of L. rhamnosus Lb-Immuni-T nevertheless appeared on PCA supplemented with phosphates. SPC could be obtained on PCA + 2% SP by only counting the large colonies, but this resulted in a significant (4.4 fold) underestimation of SPC values. On Petrifilm AC, at dilutions 0 to 2, all colonies were considered as being contaminants, while at dilutions 3 and 4, only large colonies were counted for SPC determinations. There was a direct correlation (R2 = 0.99) between SPC values with Petrifilm in uninoculated milks and those obtained on probiotic-enriched milks. The high correlation obtained over the 102 to 106 CFU/mL range of SPC values show that this Petrifilm method is appropriate to evaluate the microbiological quality of pasteurized milks enriched with L. rhamnosus Lb-Immuni-T and B. animalis subsp. lactis BB-12.

  10. Isolation and Identification of Lactic Acid Bacteria from Traditional Dairy Products in Baotou and Bayannur of Midwestern Inner Mongolia and q-PCR Analysis of Predominant Species

    PubMed Central

    2016-01-01

    In this study, traditional culture method and 16S rRNA gene analysis were applied to reveal the composition and diversity of lactic acid bacteria (LAB) of fermented cow milk, huruud and urum from Baotou and Bayannur of midwestern Inner Mongolia. Also, the quantitative results of dominant LAB species in three different types of dairy products from Baotou and Bayannur were gained by quantitative polymerase chain reaction (q-PCR) technology. Two hundred and two LAB strains isolated from sixty-six samples were identified and classified into four genera, namely Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, and twenty-one species and subspecies. From these isolates, Lactococcus lactis subsp. lactis (32.18%), Lactobacillus plantarum (12.38%) and Leuconosto mesenteroides (11.39%) were considered as the dominated LAB species under the condition of cultivating in MRS and M17 medium. And the q-PCR results revealed that the number of dominant species varied from samples to samples and from region to region. This study clearly shows the composition and diversity of LAB existing in fermented cow milk, huruud and urum, which could be considered as valuable resources for LAB isolation and further probiotic selection. PMID:27621691

  11. Metagenomic Analysis of Dairy Bacteriophages: Extraction Method and Pilot Study on Whey Samples Derived from Using Undefined and Defined Mesophilic Starter Cultures

    PubMed Central

    Muhammed, Musemma K.; Kot, Witold; Neve, Horst; Mahony, Jennifer; Castro-Mejía, Josué L.; Krych, Lukasz; Hansen, Lars H.; Nielsen, Dennis S.; Sørensen, Søren J.; Heller, Knut J.; van Sinderen, Douwe

    2017-01-01

    ABSTRACT Despite being potentially highly useful for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows the removal of the bulk protein from whey and milk samples with losses of less than 50% of spiked phages. The protocol was applied to extract phages from whey in order to test the notion that members of Lactococcus lactis 936 (now Sk1virus), P335, c2 (now C2virus) and Leuconostoc phage groups are the most frequently encountered in the dairy environment. The relative abundance and diversity of phages in eight and four whey mixtures from dairies using undefined mesophilic mixed-strain cultures containing Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc species (i.e., DL starter cultures) and defined cultures, respectively, were assessed. Results obtained from transmission electron microscopy and high-throughput sequence analyses revealed the dominance of Lc. lactis 936 phages (order Caudovirales, family Siphoviridae) in dairies using undefined DL starter cultures and Lc. lactis c2 phages (order Caudovirales, family Siphoviridae) in dairies using defined cultures. The 936 and Leuconostoc phages demonstrated limited diversity. Possible coinduction of temperate P335 prophages and satellite phages in one of the whey mixtures was also observed. IMPORTANCE The method optimized in this study could provide an important basis for understanding the dynamics of the phage community (abundance, development, diversity, evolution, etc.) in dairies with different sizes, locations, and production strategies. It may also enable the discovery of previously unknown phages, which is crucial for the development of rapid molecular biology-based methods for phage burden surveillance systems. The dominance of only a few phage groups in the dairy environment signifies the depth of knowledge gained over the past decades, which served as the basis for designing current phage control strategies. The presence of a correlation between phages and the type of starter cultures being used in dairies might help to improve the selection and/or design of suitable, custom, and cost-efficient phage control strategies. PMID:28754704

  12. Consumption of fermented milk product with probiotic modulates brain activity.

    PubMed

    Tillisch, Kirsten; Labus, Jennifer; Kilpatrick, Lisa; Jiang, Zhiguo; Stains, Jean; Ebrat, Bahar; Guyonnet, Denis; Legrain-Raspaud, Sophie; Trotin, Beatrice; Naliboff, Bruce; Mayer, Emeran A

    2013-06-01

    Changes in gut microbiota have been reported to alter signaling mechanisms, emotional behavior, and visceral nociceptive reflexes in rodents. However, alteration of the intestinal microbiota with antibiotics or probiotics has not been shown to produce these changes in humans. We investigated whether consumption of a fermented milk product with probiotic (FMPP) for 4 weeks by healthy women altered brain intrinsic connectivity or responses to emotional attention tasks. Healthy women with no gastrointestinal or psychiatric symptoms were randomly assigned to groups given FMPP (n = 12), a nonfermented milk product (n = 11, controls), or no intervention (n = 13) twice daily for 4 weeks. The FMPP contained Bifidobacterium animalis subsp Lactis, Streptococcus thermophiles, Lactobacillus bulgaricus, and Lactococcus lactis subsp Lactis. Participants underwent functional magnetic resonance imaging before and after the intervention to measure brain response to an emotional faces attention task and resting brain activity. Multivariate and region of interest analyses were performed. FMPP intake was associated with reduced task-related response of a distributed functional network (49% cross-block covariance; P = .004) containing affective, viscerosensory, and somatosensory cortices. Alterations in intrinsic activity of resting brain indicated that ingestion of FMPP was associated with changes in midbrain connectivity, which could explain the observed differences in activity during the task. Four-week intake of an FMPP by healthy women affected activity of brain regions that control central processing of emotion and sensation. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Construction of two Lactococcus lactis expression vectors combining the Gateway and the NIsin Controlled Expression systems.

    PubMed

    Douillard, François P; Mahony, Jennifer; Campanacci, Valérie; Cambillau, Christian; van Sinderen, Douwe

    2011-09-01

    Over the last 10 years, the NIsin Controlled Expression (NICE) system has been extensively used in the food-grade bacterium Lactococcus lactis subsp. cremoris to produce homologous and heterologous proteins for academic and biotechnological purposes. Although various L. lactis molecular tools have been developed, no expression vectors harboring the popular Gateway recombination system are currently available for this widely used cloning host. In this study, we constructed two expression vectors that combine the NICE and the Gateway recombination systems and we tested their applicability by recombining and over-expressing genes encoding structural proteins of lactococcal phages Tuc2009 and TP901-1. Over-expressed phage proteins were analyzed by immunoblotting and purified by His-tag affinity chromatography with protein productions yielding 2.8-3.7 mg/l of culture. This therefore is the first description of L. lactis NICE expression vectors which integrate the Gateway cloning technology and which are suitable for the production of sufficient amounts of proteins to facilitate subsequent structural and functional analyses. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. PCR and restriction fragment length polymorphism of a pel gene as a tool to identify Erwinia carotovora in relation to potato diseases.

    PubMed Central

    Darrasse, A; Priou, S; Kotoujansky, A; Bertheau, Y

    1994-01-01

    Using a sequenced pectate lyase-encoding gene (pel gene), we developed a PCR test for Erwinia carotovora. A set of primers allowed the amplification of a 434-bp fragment in E. carotovora strains. Among the 89 E. carotovora strains tested, only the Erwinia carotovora subsp. betavasculorum strains were not detected. A restriction fragment length polymorphism (RFLP) study was undertaken on the amplified fragment with seven endonucleases. The Sau3AI digestion pattern specifically identified the Erwinia carotovora subsp. atroseptica strains, and the whole set of data identified the Erwinia carotovora subsp. wasabiae strains. However, Erwinia carotovora subsp. carotovora and Erwinia carotovora subsp. odorifera could not be separated. Phenetic and phylogenic analyses of RFLP results showed E. carotovora subsp. atroseptica as a homogeneous group while E. carotovora subsp. carotovora and E. carotovora subsp. odorifera strains exhibited a genetic diversity that may result from a nonmonophyletic origin. The use of RFLP on amplified fragments in epidemiology and for diagnosis is discussed. Images PMID:7912502

  15. Novel angiotensin I-converting enzyme inhibitory peptides produced in fermented milk by specific wild Lactococcus lactis strains.

    PubMed

    Rodríguez-Figueroa, J C; González-Córdova, A F; Torres-Llanez, M J; Garcia, H S; Vallejo-Cordoba, B

    2012-10-01

    The ability of specific wild Lactococcus lactis strains to hydrolyze milk proteins to release angiotensin I-converting enzyme (ACE) inhibitory peptides was evaluated. The peptide profiles were obtained from the <3 kDa water-soluble extract and subsequently fractionated by reversed-phase HPLC. The fractions with the lowest half-maximal inhibitory concentration estimated values (peptide concentration necessary to inhibit ACE activity by 50%) were Lc. lactis NRRL B-50571 fraction (F)1 (0.034 ± 0.002 μg/mL; mean ± SD) and Lc. lactis NRRL B-50572B F 0005 (0.041 ± 0.003 μg/mL; mean ± SD). All peptide fractions were analyzed by reversed-phase HPLC tandem mass spectrometry. Twenty-one novel peptide sequences associated with ACE inhibitory (ACEI) activity were identified. Several novel ACEI peptides presented peptides encrypted with proven hypotensive activity. In conclusion, specific wild Lc. lactis strains were able to hydrolyze milk proteins to generate potent ACEI peptides. However, further studies are necessary to find out the relationship between Lc. lactis strain proteolytic systems and their ability to biogenerate hypotensive peptides. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Taxonomic Structure and Monitoring of the Dominant Population of Lactic Acid Bacteria during Wheat Flour Sourdough Type I Propagation Using Lactobacillus sanfranciscensis Starters▿

    PubMed Central

    Siragusa, Sonya; Di Cagno, Raffaella; Ercolini, Danilo; Minervini, Fabio; Gobbetti, Marco; De Angelis, Maria

    2009-01-01

    The structure and stability of the dominant lactic acid bacterium population were assessed during wheat flour sourdough type I propagation by using singly nine strains of Lactobacillus sanfranciscensis. Under back-slopping propagation with wheat flour type 0 F114, cell numbers of presumptive lactic acid bacteria varied slightly between and within starters. As determined by randomly amplified polymorphic DNA-PCR and restriction endonuclease analysis-pulsed-field gel electrophoresis analyses, only three (LS8, LS14, and LS44) starters dominated throughout 10 days of propagation. The others progressively decreased to less than 3 log CFU g−1. Partial sequence analysis of the 16S rRNA and recA genes and PCR-denaturating gradient gel electrophoresis analysis using the rpoB gene allowed identification of Weissella confusa, Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus rossiae, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Pediococcus pentosaceus, and Lactobacillus spp. as the dominant species of the raw wheat flour. At the end of propagation, one autochthonous strain of L. sanfranciscensis was found in all the sourdoughs. Except for L. brevis, strains of the above species were variously found in the mature sourdoughs. Persistent starters were found in association with other biotypes of L. sanfranciscensis and with W. confusa or L. plantarum. Sourdoughs were characterized for acidification, quotient of fermentation, free amino acids, and community-level catabolic profiles by USING Biolog 96-well Eco microplates. In particular, catabolic profiles of sourdoughs containing persistent starters behaved similarly and were clearly differentiated from the others. The three persistent starters were further used for the production of sourdoughs and propagated by using another wheat flour whose lactic acid bacterium population in part differed from the previous one. Also, in this case all three starter strains persisted during propagation. PMID:19088320

  17. Standardized Assay Medium To Measure Lactococcus lactis Enzyme Activities while Mimicking Intracellular Conditions

    PubMed Central

    Goel, Anisha; Santos, Filipe; de Vos, Willem M.; Teusink, Bas

    2012-01-01

    Knowledge of how the activity of enzymes is affected under in vivo conditions is essential for analyzing their regulation and constructing models that yield an integrated understanding of cell behavior. Current kinetic parameters for Lactococcus lactis are scattered through different studies and performed under different assay conditions. Furthermore, assay conditions often diverge from conditions prevailing in the intracellular environment. To establish uniform assay conditions that resemble intracellular conditions, we analyzed the intracellular composition of anaerobic glucose-limited chemostat cultures of L. lactis subsp. cremoris MG 1363. Based on this, we designed a new assay medium for enzyme activity measurements of growing cells of L. lactis, mimicking as closely as practically possible its intracellular environment. Procedures were optimized to be carried out in 96-well plates, and the reproducibility and dynamic range were checked for all enzyme activity measurements. The effects of freezing and the carryover of ammonium sulfate from the addition of coupling enzymes were also established. Activities of all 10 glycolytic and 4 fermentative enzymes were measured. Remarkably, most in vivo-like activities were lower than previously published data. Yet, the ratios of Vmax over measured in vivo fluxes were above 1. With this work, we have developed and extensively validated standard protocols for enzyme activity measurements for L. lactis. PMID:22020503

  18. Selection of a Bifidobacterium strain to complement resistant starch in a synbiotic yoghurt.

    PubMed

    Crittenden, R G; Morris, L F; Harvey, M L; Tran, L T; Mitchell, H L; Playne, M J

    2001-02-01

    To employ an in vitro screening regime to select a probiotic Bifidobacterium strain to complement resistant starch (Hi-maizetrade mark) in a synbiotic yoghurt. Of 40 Bifidobacterium isolates examined, only B. lactis Laftitrade mark B94 possessed all of the required characteristics. This isolate hydrolysed Hi-maizetrade mark, survived well in conditions simulating passage through the gastrointestinal tract and possessed technological properties suitable for yoghurt manufacture. It grew well at temperatures up to 45 degrees C, and grew to a high cell yield in an industrial growth medium. In addition to resistant starch, the organism was able to utilize a range of prebiotics including inulin, and fructo-, galacto-, soybean- and xylo-oligosaccharides. Pulse field gel electrophoresis of restriction enzyme cut chromosomal DNA revealed that B. lactis Laftitrade mark B94 was very closely related to the B. lactis Type Strain (DSM 10140), and to the commercial strains B. lactis Bb-12 and B. lactis DS 920. However, B. lactis Laftitrade mark B94 was the only one of these isolates that could hydrolyse Hi-maizetrade mark. This phenotypic difference did not appear to be due to the presence of plasmid encoded amylase. Bifidobacterium lactis Laftitrade mark B94 survived without substantial loss of viability in synbiotic yoghurt containing Hi-maizetrade mark during storage at 4 degrees C for six weeks. Bifidobacterium lactis Laftitrade mark B94 is a promising new yoghurt culture that warrants further investigation to assess its probiotic potential. In vitro screening procedures can be used to integrate complementary probiotic and prebiotic ingredients for new synbiotic functional food products.

  19. Phenotypic and genotypic diversity of dominant lactic acid bacteria isolated from traditional yoghurts produced by tribes of Iran

    PubMed Central

    RoushanZadeh, S; Eskandari, M. H.; Shekarforoush, S. S.; Hosseini, A

    2014-01-01

    Morphological, biochemical and molecular characteristics were studied to identify dominant lactic acid bacteria (LAB), isolated from traditional yoghurts produced by tribes of Iran. From 60 yoghurt samples, a total of 137 LAB isolates were determined, in which 66 and 71 were identified as lactic acid cocci and bacilli, respectively. Biochemical tests showed the occurrence of 9.76% mesophilic homofermentative, 10.98% mesophilic hetrofermentative, 26.83% thermophilic homofermentative and 47.56% mesophilic homofermentative cocci. As for lactic acid bacilli, mesophilic facultative hetrofermentative (26%); thermophilic obligate homofermentative (56%); mesophilic obligate hetrofermentative (18%) were found. Genetically the presence of the following species were verified: E. faecium; E. faecalis; E. durans; L. lactis subsp. lactis; St. thermophilus; Lb. delbruecki subsp. bulgaricus; Lb. brevis; Lb. diolivorans; Lb. helveticus; Lb. jensenii; Lb. plantarum. 9% of the Lactobacillus isolates showed incompatible results between phenotypic and genotypic characteristics. From the cocci isolates, 38.46% showed identical results between phylogenetic characteristics. The current study constitutes the first step in the designing process of LAB starter cultures, to protect the typical organoleptic characteristics of traditional yoghurt. The results could also be used to introduce new starter cultures for commercial use. PMID:27175129

  20. Purification and Characterization of an Aminopeptidase from Lactococcus lactis subsp. cremoris AM2.

    PubMed

    Neviani, E; Boquien, C Y; Monnet, V; Thanh, L P; Gripon, J C

    1989-09-01

    An aminopeptidase was purified from cell extracts of Lactococcus lactis subsp. cremoris AM2 by ion-exchange chromatography. After electrophoresis of the purified enzyme in the presence or absence of sodium dodecyl sulfate, one protein band was detected. The enzyme was a 300-kilodalton hexamer composed of identical subunits not linked by disulfide bridges. Activity was optimal at 40 degrees C and pH 7 and was inhibited by classical thiol group inhibitors. The aminopeptidase hydrolyzed naphthylamide-substituted amino acids, as well as dipeptides and tripeptides. Longer protein chains such as the B chain of insulin were hydrolyzed, but at a much slower rate. The Michaelis constant (K(m)) and the maximal rate of hydrolysis (V(max)) were, respectively, 4.5 mM and 3,600 pkat/mg for the substrate l-histidyl-beta-naphthylamide. Amino acid analysis showed that the enzyme contained low levels of hydrophobic residues. The partial N-terminal sequence of the first 19 residues of the mature enzyme was determined. Polyclonal antibodies were obtained from the purified enzyme, and after immunoblotting, there was no cross-reaction between these antibodies and other proteins in the crude extract.

  1. Influence of extracellular pH on growth, viability, cell size, acidification activity, and intracellular pH of Lactococcus lactis in batch fermentations.

    PubMed

    Hansen, Gunda; Johansen, Claus Lindvald; Marten, Gunvor; Wilmes, Jacqueline; Jespersen, Lene; Arneborg, Nils

    2016-07-01

    In this study, we investigated the influence of three extracellular pH (pHex) values (i.e., 5.5, 6.5, and 7.5) on the growth, viability, cell size, acidification activity in milk, and intracellular pH (pHi) of Lactococcus lactis subsp. lactis DGCC1212 during pH-controlled batch fermentations. A universal parameter (e.g., linked to pHi) for the description or prediction of viability, specific acidification activity, or growth behavior at a given pHex was not identified. We found viability as determined by flow cytometry to remain high during all growth phases and irrespectively of the pH set point. Furthermore, regardless of the pHex, the acidification activity per cell decreased over time which seemed to be linked to cell shrinkage. Flow cytometric pHi determination demonstrated an increase of the averaged pHi level for higher pH set points, while the pH gradient (pHi-pHex) and the extent of pHi heterogeneity decreased. Cells maintained positive pH gradients at a low pHex of 5.5 and even during substrate limitation at the more widely used pHex 6.5. Moreover, the strain proved able to grow despite small negative or even absent pH gradients at a high pHex of 7.5. The larger pHi heterogeneity at pHex 5.5 and 6.5 was associated with more stressful conditions resulting, e.g., from higher concentrations of non-dissociated lactic acid, while the low pHi heterogeneity at pHex 7.5 most probably corresponded to lower concentrations of non-dissociated lactic acid which facilitated the cells to reach the highest maximum active cell counts of the three pH set points.

  2. The Prophylactic Effect of Probiotic Enterococcus lactis IW5 against Different Human Cancer Cells

    PubMed Central

    Nami, Yousef; Haghshenas, Babak; Haghshenas, Minoo; Abdullah, Norhafizah; Yari Khosroushahi, Ahmad

    2015-01-01

    Enterococcus lactis IW5 was obtained from human gut and the potential probiotic characteristics of this organism were then evaluated. Results showed that this strain was highly resistant to low pH and high bile salt and adhered strongly to Caco-2 human epithelial colorectal cell lines. The supernatant of E. lactis IW5 strongly inhibited the growth of several pathogenic bacteria and decreased the viability of different cancer cells, such as HeLa, MCF-7, AGS, HT-29, and Caco-2. Conversely, E. lactis IW5 did not inhibit the viability of normal FHs-74 cells. This strain did not generate toxic enzymes, including β-glucosidase, β-glucuronidase, and N-acetyl-β-glucosaminidase and was highly susceptible to ampicillin, gentamycin, penicillin, vancomycin, clindamycin, sulfamethoxazol, and chloramphenicol but resistant to erythromycin and tetracyclin. This study provided evidence for the effect of E. lactis IW5 on cancer cells. Therefore, E. lactis IW5, as a bioactive therapeutics, should be subjected to other relevant tests to verify the therapeutic suitability of this strain for clinical applications. PMID:26635778

  3. Lactococcus lactis NCC 2287 alleviates food allergic manifestations in sensitized mice by reducing IL-13 expression specifically in the ileum.

    PubMed

    Zuercher, Adrian W; Weiss, Marietta; Holvoet, Sébastien; Moser, Mireille; Moussu, Hélène; van Overtvelt, Laurence; Horiot, Stéphane; Moingeon, Philippe; Nutten, Sophie; Prioult, Guénolée; Singh, Anurag; Mercenier, Annick

    2012-01-01

    Utilizing a food allergy murine model, we have investigated the intrinsic antiallergic potential of the Lactococcus lactis NCC 2287 strain. BALB/c mice were sensitized at weekly intervals with ovalbumin (OVA) plus cholera toxin (CT) by the oral route for 7 weeks. In this model, an oral challenge with a high dose of OVA at the end of the sensitization period leads to clinical symptoms. Lactococcus lactis NCC 2287 was given to mice via the drinking water during sensitization (prevention phase) or after sensitization (management phase). Lactococcus lactis NCC 2287 administration to sensitized mice strikingly reduced allergic manifestations in the management phase upon challenge, when compared to control mice. No preventive effect was observed with the strain. Lactococcus lactis NCC 2287 significantly decreased relative expression levels of the Th-2 cytokine, IL-13, and associated chemokines CCL11 (eotaxin-1) and CCL17 (TARC) in the ileum. No effect was observed in the jejunum. These results taken together designate Lactococcus lactis NCC 2287 as a candidate probiotic strain appropriate in the management of allergic symptoms.

  4. Antimicrobial susceptibilities and random amplified polymorphic DNA-PCR fingerprint characterization of Lactococcus lactis ssp. lactis and Lactococcus garvieae isolated from bovine intramammary infections.

    PubMed

    Plumed-Ferrer, C; Barberio, A; Franklin-Guild, R; Werner, B; McDonough, P; Bennett, J; Gioia, G; Rota, N; Welcome, F; Nydam, D V; Moroni, P

    2015-09-01

    In total, 181 streptococci-like bacteria isolated from intramammary infections (IMI) were submitted by a veterinary clinic to Quality Milk Production Services (QMPS, Cornell University, Ithaca, NY). The isolates were characterized by sequence analysis, and 46 Lactococcus lactis ssp. lactis and 47 Lactococcus garvieae were tested for susceptibility to 17 antibiotics. No resistant strains were found for β-lactam antibiotics widely used in clinical practice (penicillin, ampicillin, and amoxicillin), and all minimum inhibitory concentrations (MIC) were far from the resistance breakpoints. Eight strains had MIC intermediate to cefazolin. The random amplification of polymorphic DNA (RAPD)-PCR fingerprint patterns showed a slightly higher heterogeneity for Lc. lactis ssp. lactis isolates than for Lc. garvieae isolates. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Campylobacter fetus subsp. testudinum subsp. nov., isolated from humans and reptiles.

    PubMed

    Fitzgerald, Collette; Tu, Zheng Chao; Patrick, Mary; Stiles, Tracy; Lawson, Andy J; Santovenia, Monica; Gilbert, Maarten J; van Bergen, Marcel; Joyce, Kevin; Pruckler, Janet; Stroika, Steven; Duim, Birgitta; Miller, William G; Loparev, Vladimir; Sinnige, Jan C; Fields, Patricia I; Tauxe, Robert V; Blaser, Martin J; Wagenaar, Jaap A

    2014-09-01

    A polyphasic study was undertaken to determine the taxonomic position of 13 Campylobacter fetus-like strains from humans (n = 8) and reptiles (n = 5). The results of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS and genomic data from sap analysis, 16S rRNA gene and hsp60 sequence comparison, pulsed-field gel electrophoresis, amplified fragment length polymorphism analysis, DNA-DNA hybridization and whole genome sequencing demonstrated that these strains are closely related to C. fetus but clearly differentiated from recognized subspecies of C. fetus. Therefore, this unique cluster of 13 strains represents a novel subspecies within the species C. fetus, for which the name Campylobacter fetus subsp. testudinum subsp. nov. is proposed, with strain 03-427(T) ( = ATCC BAA-2539(T) = LMG 27499(T)) as the type strain. Although this novel taxon could not be differentiated from C. fetus subsp. fetus and C. fetus subsp. venerealis using conventional phenotypic tests, MALDI-TOF MS revealed the presence of multiple phenotypic biomarkers which distinguish Campylobacter fetus subsp. testudinum subsp. nov. from recognized subspecies of C. fetus.

  6. Assessing the effects of exposure to environmental stress on some functional properties of Bifidobacterium animalis ssp. lactis.

    PubMed

    Amund, O D; Ouoba, L I I; Sutherland, J P; Ghoddusi, H B

    2014-12-01

    This study assessed the effects of exposing a strain of Bifidobacterium animalis ssp. lactis to acid, bile and osmotic stresses on antagonistic properties, biofilm formation and antibiotic susceptibility/resistance profile. Exposure to each stress factor appeared to have no significant effect on the antagonism against Escherichia coli NCTC 12900 and Salmonella enterica serovar Enteritidis PT4. No suppression in biofilm formation due to exposure to stress was observed. Bile and osmotic stresses resulted in significantly higher biofilm formation. Expression of an exopolysaccharide synthesis gene, gtf 01207, was significantly higher when the B. animalis ssp. lactis strain was exposed to osmotic stress. Susceptibility of the B. animalis ssp. lactis strain to chloramphenicol, erythromycin, ampicillin and vancomycin, and resistance to tetracycline remained unchanged when exposed to each stress. The expression of a tetracycline resistance gene, tet(W), was significantly higher when exposed to each stress. These results may suggest that the potential for the B. animalis ssp. lactis strain to provide probiotic benefit, after exposure to the stressful conditions of the gastrointestinal tract, remains intact.

  7. The dominant microbial community associated with fermentation of Obushera (sorghum and millet beverages) determined by culture-dependent and culture-independent methods.

    PubMed

    Mukisa, Ivan M; Porcellato, Davide; Byaruhanga, Yusuf B; Muyanja, Charles M B K; Rudi, Knut; Langsrud, Thor; Narvhus, Judith A

    2012-11-01

    Obushera includes four fermented cereal beverages from Uganda namely: Obutoko, Enturire, Ekitiribita and Obuteire, whose microbial diversity has not hitherto been fully investigated. Knowledge of the microbial diversity and dynamics in these products is crucial for understanding their safety and development of appropriate starter cultures for controlled industrial processing. Culture-dependent and culture-independent techniques including denaturating gradient gel electrophoresis (DGGE) and mixed DNA sequencing of polymerase chain reaction (PCR) amplified ribosomal RNA genes were used to study the bacteria and yeast diversity of Obushera. The pH dropped from 6.0-4.6 to 3.5-4.0 within 1-2 days for Obutoko, Enturire and Obuteire whereas that of Ekitiribita decreased to 4.4 after 4 days. Counts of lactic acid bacteria (LAB) increased from 5.0 to 11.0 log cfug(-1) and yeasts increased from 3.4 to 7.1 log cfug(-1) while coliform counts decreased from 2.0 to <1 log cfug(-1) during four days of fermentation. LAB and yeast isolates were identified by rRNA gene sequence analysis. LAB isolates included: Enterococcus spp., Lactobacillus (Lb.) plantarum, Lb. fermentum, Lb. delbrueckii, Lactococcus lactis, Leuconostoc lactis, Streptococcus (S.) infantarius subsp. infantarius, Pediococcus pentosaceus and Weisella (W.) confusa. DGGE indicated predominance of S. gallolyticus, S. infantarius subsp. infantarius, Lb. fermentum, Lb. delbrueckii, W. confusa, Lb. reuteri, Fructobacillus spp., L. lactis and L. lactis. Yeast isolates included Clavispora lusitaniae, Cyberlindnera fabianii, Issatchenkia orientalis and Saccharomyces cerevisiae. DGGE indicated predominance of S. cerevisiae in Obutoko, Enturire and Obuteire and also detected Pichia spp. and I. orientalis in Obutoko. Obushera produced in the laboratory was initially dominated by Enterobacteriaceae and later by Lactococcus spp. Enterobacteriaceae and Bacillus spp. were also detected in Ekitiribita. Development of starters for Obushera may require combinations of LAB and S. cerevisiae for Obutoko, Enturire and Obuteire and LAB for Ekitiribita. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Microbial diversity and dynamics during the production of May bryndza cheese.

    PubMed

    Pangallo, Domenico; Saková, Nikoleta; Koreňová, Janka; Puškárová, Andrea; Kraková, Lucia; Valík, Lubomír; Kuchta, Tomáš

    2014-01-17

    Diversity and dynamics of microbial cultures were studied during the production of May bryndza cheese, a traditional Slovak cheese produced from unpasteurized ewes' milk. Quantitative culture-based data were obtained for lactobacilli, lactococci, total mesophilic aerobic counts, coliforms, E. coli, staphylococci, coagulase-positive staphylococci, yeasts, fungi and Geotrichum spp. in ewes' milk, curd produced from it and ripened for 0 - 10 days, and in bryndza cheese produced from the curd, in three consecutive batches. Diversity of prokaryotes and eukaryotes in selected stages of the production was studied by non-culture approach based on amplification of 16S rDNA and internal transcribed spacer region, coupled to denaturing gradient gel electrophoresis and sequencing. The culture-based data demonstrated an overall trend of growth of the microbial population contributing to lactic acid production and to ripening of the cheese, lactobacilli, lactococci and Geotrichum spp. growing up to densities of 10(8) CFU/g, 10(9) CFU/g and 10(5) CFU/g, respectively, in all three consecutive batches of bryndza cheese. The diversity of bacteria encompassed Acinetobacter calcoaceticus, Acinetobacter guillouiae, Acinetobacter sp., Acinetobacter johnsonii, Citrobacter braakii, Clostridium bartlettii, Corynebacterium callunae, Corynebacterium maris, Enterobacter aerogenes, Enterobacter asburiae, Enterobacter hormaechei, Enterococcus faecium, Enterococcus pallens, Escherichia coli, Haemophilus haemolyticus, Hafnia alvei, Kluyvera cryocrescens, Lactobacillus helveticus, Lactococcus garvieae, Lc. lactis subsp. cremoris, Lc. lactis subsp. lactis, "Leuconostoc garlicum", Mannheimia glucosida, Mannheimia haemolytica, Pseudomonas sp., Ps. fluorescens, "Ps. reactans", Raoultella ornithinolytica, R. terrigena, "Rothia arfidiae", Staphylococcus aureus, Staph. epidermidis, Staph. felis, Staph. pasteuri, Staph. sciuri, Staph. xylosus, Streptococcus parauberis, Str. thermophilus and Variovorax paradoxus. The diversity of yeasts and fungi encompassed Alternaria alternata, "Ascomycete sp.", Aspergillus fumigatus, Beauveria brongniartii, Candida xylopsoci, C. inconspicua, Cladosporium cladosporioides, Debaromyces hansenii, Fomes fomentarius, Galactomyces candidus, Gymnoascus reesii, Chaetomium globosum, Kluyveromyces marxianus, Metarhizium anisopliae, Penicillium aurantiogriseum, P. camemberti, P. freii, P. polonicum, P. viridicatum, Pichia kudriavzevii, Sordaria alcina, Trichosporon lactis and Yarrowia lipolytica. © 2013.

  9. Licheniocin 50.2 and Bacteriocins from Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 Inhibit Biofilms of Coagulase Negative Staphylococci and Listeria monocytogenes Clinical Isolates

    PubMed Central

    Draganic, Veselin; Lozo, Jelena; Beric, Tanja; Kojic, Milan; Arsic, Biljana; Garalejic, Eliana; Djukic, Slobodanka; Stankovic, Slavisa

    2016-01-01

    Background Coagulase negative staphylococci (CoNS) and Listeria monocytogenes have important roles in pathogenesis of various genital tract infections and fatal foetomaternal infections, respectively. The aim of our study was to investigate the inhibitory effects of two novel bacteriocins on biofilms of CoNS and L. monocytogenes genital isolates. Methods The effects of licheniocin 50.2 from Bacillus licheniformis VPS50.2 and crude extract of bacteriocins produced by Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 (BGBU1-4 crude extract) were evaluated on biofilm formation and formed biofilms of eight CoNS (four S. epidermidis, two S. hominis, one S. lugdunensis and one S. haemolyticus) and 12 L. monocytogenes genital isolates. Results Licheniocin 50.2 and BGBU1-4 crude extract inhibited the growth of both CoNS and L. monocytogenes isolates, with MIC values in the range between 200–400 AU/ml for licheniocin 50.2 and 400–3200 AU/ml for BGBU1-4 crude extract. Subinhibitory concentrations (1/2 × and 1/4 × MIC) of licheniocin 50.2 inhibited biofilm formation by all CoNS isolates (p < 0.05, respectively), while BGBU1-4 crude extract inhibited biofilm formation by all L. monocytogenes isolates (p < 0.01 and p < 0.05, respectively). Both bacteriocins in concentrations of 100 AU/mL and 200 AU/mL reduced the amount of 24 h old CoNS and L. monocytogenes biofilms (p < 0.05, p < 0.01, p < 0.001). Conclusions This study suggests that novel bacteriocins have potential to be used for genital application, to prevent biofilm formation and/or to eradicate formed biofilms, and consequently reduce genital and neonatal infections by CoNS and L. monocytogenes. PMID:27930711

  10. Expression of lycopene biosynthesis genes fused in line with Shine-Dalgarno sequences improves the stress-tolerance of Lactococcus lactis.

    PubMed

    Dong, Xiangrong; Wang, Yanping; Yang, Fengyuan; Zhao, Shanshan; Tian, Bing; Li, Tao

    2017-01-01

    Lycopene biosynthetic genes from Deinococcus radiodurans were co-expressed in Lactococcus lactis to produce lycopene and improve its tolerance to stress. Lycopene-related genes from D. radiodurans, DR1395 (crtE), DR0862 (crtB), and DR0861 (crtI), were fused in line with S hine-Dalgarno (SD) sequences and co-expressed in L. lactis. The recombinant strain produced 0.36 mg lycopene g -1  dry cell wt after 48 h fermentation. The survival rate to UV irradiation of the recombinant strain was higher than that of the non-transformed strain. The L. lactis with co-expressed genes responsible for lycopene biosynthesis from D. radiodurans produced lycopene and exhibited increased resistance to UV stress, suggesting that the recombinant strain has important application potential in food industry.

  11. Engineering of EPA/DHA omega-3 fatty acid production by Lactococcus lactis subsp. cremoris MG1363.

    PubMed

    Amiri-Jami, Mitra; Lapointe, Gisele; Griffiths, Mansel W

    2014-04-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to be of major importance in human health. Therefore, these essential polyunsaturated fatty acids have received considerable attention in both human and farm animal nutrition. Currently, fish and fish oils are the main dietary sources of EPA/DHA. To generate sustainable novel sources for EPA and DHA, the 35-kb EPA/DHA synthesis gene cluster was isolated from a marine bacterium, Shewanella baltica MAC1. To streamline the introduction of the genes into food-grade microorganisms such as lactic acid bacteria, unnecessary genes located upstream and downstream of the EPA/DHA gene cluster were deleted. Recombinant Escherichia coli harboring the 20-kb gene cluster produced 3.5- to 6.1-fold more EPA than those carrying the 35-kb DNA fragment coding for EPA/DHA synthesis. The 20-kb EPA/DHA gene cluster was cloned into a modified broad-host-range low copy number vector, pIL252m (4.7 kb, Ery) and expressed in Lactococcus lactis subsp. cremoris MG1363. Recombinant L. lactis produced DHA (1.35 ± 0.5 mg g(-1) cell dry weight) and EPA (0.12 ± 0.04 mg g(-1) cell dry weight). This is believed to be the first successful cloning and expression of EPA/DHA synthesis gene cluster in lactic acid bacteria. Our findings advance the future use of EPA/DHA-producing lactic acid bacteria in such applications as dairy starters, silage adjuncts, and animal feed supplements.

  12. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CRL871, a Folate-Producing Strain Isolated from a Northwestern Argentinian Yogurt.

    PubMed

    Laiño, Jonathan Emiliano; Hebert, Elvira María; Savoy de Giori, Graciela; LeBlanc, Jean Guy

    2015-06-25

    Lactobacillus delbrueckii subsp. bulgaricus CRL871 is the first strain of L. delbrueckii subsp. bulgaricus reported as a folate-producing strain. We report the draft genome sequence of L. delbrueckii subsp. bulgaricus CRL871 (2,063,981 bp, G+C content of 49.1%). This strain is of great biotechnological importance to the dairy industry because it constitutes an alternative to folic acid fortification. Copyright © 2015 Laiño et al.

  13. Advantageous Direct Quantification of Viable Closely Related Probiotics in Petit-Suisse Cheeses under In Vitro Gastrointestinal Conditions by Propidium Monoazide - qPCR

    PubMed Central

    Villarreal, Martha Lissete Morales; Padilha, Marina; Vieira, Antonio Diogo Silva; Franco, Bernadette Dora Gombossy de Melo; Martinez, Rafael Chacon Ruiz; Saad, Susana Marta Isay

    2013-01-01

    Species-specific Quantitative Real Time PCR (qPCR) alone and combined with the use of propidium monoazide (PMA) were used along with the plate count method to evaluate the survival of the probiotic strains Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis Bb-12, and the bacteriocinogenic and potentially probiotic strain Lactobacillus sakei subsp. sakei 2a in synbiotic (F1) and probiotic (F2) petit-suisse cheeses exposed throughout shelf-life to in vitro simulated gastrointestinal tract conditions. The three strains studied showed a reduction in their viability after the 6 h assay. Bb-12 displayed the highest survival capacity, above 72.6 and 74.6% of the initial populations, respectively, by plate count and PMA-qPCR, maintaining population levels in the range or above 6 log CFU/g. The prebiotic mix of inulin and FOS did not offer any additional protection for the strains against the simulated gastrointestinal environment. The microorganisms' populations were comparable among the three methods at the initial time of the assay, confirming the presence of mainly viable and culturable cells. However, with the intensification of the stress induced throughout the various stages of the in vitro test, the differences among the methods increased. The qPCR was not a reliable enumeration method for the quantification of intact bacterial populations, mixed with large numbers of injured and dead bacteria, as confirmed by the scanning electron microscopy results. Furthermore, bacteria plate counts were much lower (P<0.05) than with the PMA-qPCR method, suggesting the accumulation of stressed or dead microorganisms unable to form colonies. The use of PMA overcame the qPCR inability to differentiate between dead and alive cells. The combination of PMA and species-specific qPCR in this study allowed a quick and unequivocal way of enumeration of viable closely related species incorporated into probiotic and synbiotic petit-suisse cheeses and under stress conditions. PMID:24358142

  14. Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds.

    PubMed

    Wisselink, H Wouter; Mars, Astrid E; van der Meer, Pieter; Eggink, Gerrit; Hugenholtz, Jeroen

    2004-07-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance liquid chromatography and (13)C nuclear magnetic resonance analysis revealed that small amounts (<1%) of mannitol were formed by growing cells of mtlD-overexpressing LDH-deficient and phosphofructokinase-reduced strains, whereas resting cells of the LDH-deficient transformant converted 25% of glucose into mannitol. Moreover, the formed mannitol was not reutilized upon glucose depletion. Of the metabolic-engineering strategies investigated in this work, mtlD-overexpressing LDH-deficient L. lactis seemed to be the most promising strain for mannitol production.

  15. Classification of Lactococcus lactis cell envelope proteinase based on gene sequencing, peptides formed after hydrolysis of milk, and computer modeling.

    PubMed

    Børsting, M W; Qvist, K B; Brockmann, E; Vindeløv, J; Pedersen, T L; Vogensen, F K; Ardö, Y

    2015-01-01

    Lactococcus lactis strains depend on a proteolytic system for growth in milk to release essential AA from casein. The cleavage specificities of the cell envelope proteinase (CEP) can vary between strains and environments and whether the enzyme is released or bound to the cell wall. Thirty-eight Lc. lactis strains were grouped according to their CEP AA sequences and according to identified peptides after hydrolysis of milk. Finally, AA positions in the substrate binding region were suggested by the use of a new CEP template based on Streptococcus C5a CEP. Aligning the CEP AA sequences of 38 strains of Lc. lactis showed that 21 strains, which were previously classified as group d, could be subdivided into 3 groups. Independently, similar subgroupings were found based on comparison of the Lc. lactis CEP AA sequences and based on normalized quantity of identified peptides released from αS1-casein and β-casein. A model structure of Lc. lactis CEP based on the crystal structure of Streptococcus C5a CEP was used to investigate the AA positions in the substrate-binding region. New AA positions were suggested, which could be relevant for the cleavage specificity of CEP; however, these could only explain 2 out of 3 found subgroups. The third subgroup could be explained by 1 to 5 AA positions located opposite the substrate binding region. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei).

    PubMed

    Ben Braïek, Olfa; Ghomrassi, Hamdi; Cremonesi, Paola; Morandi, Stefano; Fleury, Yannick; Le Chevalier, Patrick; Hani, Khaled; Bel Hadj, Omrane; Ghrairi, Taoufik

    2017-06-01

    Screening for lactic acid bacteria (LAB) from fresh shrimp samples (Penaeus vannamei) collected from retail seafood markets in the Tunisian's coast, resulted in the isolation of an Enterococcus strain termed Q1. This strain was selected for its antagonistic activity against pathogenic bacteria such as Listeria monocytogenes, Pseudomonas aeruginosa, Lactococcus garvieae and against fungi (Aspergillus niger and Fusarium equiseti). The Q1 strain was characterised using standard morphological and biochemical tests, growth assays at different temperatures, pH and salinity. 16S rRNA, rpoA and pheS gene sequencing, as well as the 16S-23S rRNA intergenic spacer analyses, were combined to identify strain Q1 as a strain of Enterococcus lactis. The bacteriocin produced by E. lactis Q1 is thermostable, active in the pH range from 4.0 to 9.0 and has a bactericidal mode of action. The enterocin P structural gene was detected by specific PCR in strain E. lactis Q1, which is in good agreement with SDS-PAGE data of the purified bacteriocin. A lack of significant antibiotic resistance genes and virulence determinants was confirmed by specific PCRs. This work provides the first description of an enterocin P producer E. lactis strain isolated from a fresh shrimp. Based on its safety properties (absence of haemolytic activity, virulence factors and antibiotic resistance genes), this strain has the potential to be used as a natural additive or adjunct protective culture in food biopreservation and/or probiotic culture.

  17. Structural studies of the cell wall polysaccharide from Lactococcus lactis UC509.9.

    PubMed

    Vinogradov, Evgeny; Sadovskaya, Irina; Grard, Thierry; Murphy, James; Mahony, Jennifer; Chapot-Chartier, Marie-Pierre; van Sinderen, Douwe

    2018-05-22

    Lactococcus lactis is the most widely utilised starter bacterial species in dairy fermentations. The L. lactis cell envelope contains polysaccharides, which, among other known functions, serve as bacteriophage receptors. Our previous studies have highlighted the structural diversity of these so-called cell wall polysaccharides (CWPSs) among L. lactis strains that could account for the narrow host range of most lactococcal bacteriophages. In the present work, we studied the CWPS of L. lactis strain UC509.9, an Irish dairy starter strain that is host to the temperate and well-characterized P335-type phage Tuc2009. The UC509.9 CWPS structure was analyzed by methylation, deacetylation/deamination, Smith degradation and 2D NMR spectroscopy. The CWPS consists of a linear backbone composed of a tetrasaccharide repeat unit, partially substituted with a branched phosphorylated oligosaccharide having a common trisaccharide and three non-stoichiometric substitutions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Shortening of the Lactobacillus paracasei subsp. paracasei BGNJ1-64 AggLb Protein Switches Its Activity from Auto-aggregation to Biofilm Formation.

    PubMed

    Miljkovic, Marija; Bertani, Iris; Fira, Djordje; Jovcic, Branko; Novovic, Katarina; Venturi, Vittorio; Kojic, Milan

    2016-01-01

    AggLb is the largest (318.6 kDa) aggregation-promoting protein of Lactobacillus paracasei subsp. paracasei BGNJ1-64 responsible for forming large cell aggregates, which causes auto-aggregation, collagen binding and pathogen exclusion in vitro. It contains an N-terminus leader peptide, followed by six successive collagen binding domains, 20 successive repeats (CnaB-like domains) and an LPXTG sorting signal at the C-terminus for cell wall anchoring. Experimental information about the roles of the domains of AggLb is currently unknown. To define the domain that confers cell aggregation and the key domains for interactions of specific affinity between AggLb and components of the extracellular matrix, we constructed a series of variants of the aggLb gene and expressed them in Lactococcus lactis subsp. lactis BGKP1-20 using a lactococcal promoter. All of the variants contained a leader peptide, an inter collagen binding-CnaB domain region (used to raise an anti-AggLb antibody), an anchor domain and a different number of collagen binding and CnaB-like domains. The role of the collagen binding repeats of the N-terminus in auto-aggregation and binding to collagen and fibronectin was confirmed. Deletion of the collagen binding repeats II, III, and IV resulted in a loss of the strong auto-aggregation, collagen and fibronectin binding abilities whereas the biofilm formation capability was increased. The strong auto-aggregation, collagen and fibronectin binding abilities of AggLb were negatively correlated to biofilm formation.

  19. Characterization of Lipoteichoic Acids as Lactobacillus delbrueckii Phage Receptor Components

    PubMed Central

    Räisänen, Liisa; Schubert, Karin; Jaakonsaari, Tiina; Alatossava, Tapani

    2004-01-01

    Lipoteichoic acids (LTAs) were purified from Lactobacillus delbrueckii subsp. lactis ATCC 15808 and its LL-H adsorption-resistant mutant, Ads-5, by hydrophobic interaction chromatography. L. delbrueckii phages (LL-H, the LL-H host range mutant, and JCL1032) were inactivated by these poly(glycerophosphate) type of LTAs in vitro in accordance to their adsorption to intact ATCC 15808 and Ads-5 cells. PMID:15292157

  20. Emendation of Propionibacterium acnes subsp. acnes (Deiko et al. 2015) and proposal of Propionibacterium acnes type II as Propionibacterium acnes subsp. defendens subsp. nov.

    PubMed

    McDowell, Andrew; Barnard, Emma; Liu, Jared; Li, Huiying; Patrick, Sheila

    2016-12-01

    Recently, it has been proposed that strains of Propionibacterium acnes from the type III genetic division should be classified as P. acnessubsp. elongatum subsp. nov., with strains from the type I and II divisions collectively classified as P. acnessubsp. acnes subsp. nov. Under such a taxonomic re-appraisal, we believe that types I and II should also have their own separate rank of subspecies. In support of this, we describe a polyphasic taxonomic study based on the analysis of publicly available multilocus and whole-genome sequence datasets, alongside a systematic review of previously published phylogenetic, genomic, phenotypic and clinical data. Strains of types I and II form highly distinct clades on the basis of multilocus sequence analysis (MLSA) and whole-genome phylogenetic reconstructions. In silico or digital DNA-DNA similarity values also fall within the 70-80 % boundary recommended for bacterial subspecies. Furthermore, we see important differences in genome content, including the presence of an active CRISPR/Cas system in type II strains, but not type I, and evidence for increasing linkage equilibrium within the separate divisions. Key biochemical differences include positive test results for β-haemolytic, neuraminidase and sorbitol fermentation activities with type I strains, but not type II. We now propose that type I strains should be classified as P. acnessubsp. acnes subsp. nov., and type II as P. acnessubsp. defendens subsp. nov. The type strain of P. acnessubsp. acnes subsp. nov. is NCTC 737T (=ATCC 6919T=JCM 6425T=DSM 1897T=CCUG 1794T), while the type strain of P. acnessubsp. defendens subsp. nov. is ATCC 11828 (=JCM 6473=CCUG 6369).

  1. Kefir-isolated bacteria and yeasts inhibit Shigella flexneri invasion and modulate pro-inflammatory response on intestinal epithelial cells.

    PubMed

    Bolla, P A; Abraham, A G; Pérez, P F; de Los Angeles Serradell, M

    2016-02-01

    The aim of this work was to evaluate the ability of a kefir-isolated microbial mixture containing three bacterial and two yeast strains (MM) to protect intestinal epithelial cells against Shigella flexneri invasion, as well as to analyse the effect on pro-inflammatory response elicited by this pathogen. A significant decrease in S. flexneri strain 72 invasion was observed on both HT-29 and Caco-2 cells pre-incubated with MM. Pre-incubation with the individual strains Saccharomyces cerevisiae CIDCA 8112 or Lactococcus lactis subsp. lactis CIDCA 8221 also reduced the internalisation of S. flexneri into HT-29 cells although in a lesser extent than MM. Interestingly, Lactobacillus plantarum CIDCA 83114 exerted a protective effect on the invasion of Caco-2 and HT-29 cells by S. flexneri. Regarding the pro-inflammatory response on HT-29 cells, S. flexneri infection induced a significant activation of the expression of interleukin 8 (IL-8), chemokine (C-C motif) ligand 20 (CCL20) and tumour necrosis factor alpha (TNF-α) encoding genes (P<0.05), whereas incubation of cells with MM did not induce the expression of any of the mediators assessed. Interestingly, pre-incubation of HT-29 monolayer with MM produced an inhibition of S. flexneri-induced IL-8, CCL20 and TNF-α mRNA expression. In order to gain insight on the effect of MM (or the individual strains) on this pro-inflammatory response, a series of experiments using a HT-29-NF-κB-hrGFP reporter system were performed. Pre-incubation of HT-29-NF-κB-hrGFP cells with MM significantly dampened Shigella-induced activation. Our results showed that the contribution of yeast strain Kluyveromyces marxianus CIDCA 8154 seems to be crucial in the observed effect. In conclusion, results presented in this study demonstrate that pre-treatment with a microbial mixture containing bacteria and yeasts isolated from kefir, resulted in inhibition of S. flexneri internalisation into human intestinal epithelial cells, along with the inhibition of the signalling via NF-κB that in turn led to the attenuation of the inflammatory response.

  2. Lactococcus lactis NCC 2287 Alleviates Food Allergic Manifestations in Sensitized Mice by Reducing IL-13 Expression Specifically in the Ileum

    PubMed Central

    Zuercher, Adrian W.; Weiss, Marietta; Holvoet, Sébastien; Moser, Mireille; Moussu, Hélène; van Overtvelt, Laurence; Horiot, Stéphane; Moingeon, Philippe; Nutten, Sophie; Prioult, Guénolée; Singh, Anurag; Mercenier, Annick

    2012-01-01

    Objective. Utilizing a food allergy murine model, we have investigated the intrinsic antiallergic potential of the Lactococcus lactis NCC 2287 strain. Methods. BALB/c mice were sensitized at weekly intervals with ovalbumin (OVA) plus cholera toxin (CT) by the oral route for 7 weeks. In this model, an oral challenge with a high dose of OVA at the end of the sensitization period leads to clinical symptoms. Lactococcus lactis NCC 2287 was given to mice via the drinking water during sensitization (prevention phase) or after sensitization (management phase). Results. Lactococcus lactis NCC 2287 administration to sensitized mice strikingly reduced allergic manifestations in the management phase upon challenge, when compared to control mice. No preventive effect was observed with the strain. Lactococcus lactis NCC 2287 significantly decreased relative expression levels of the Th-2 cytokine, IL-13, and associated chemokines CCL11 (eotaxin-1) and CCL17 (TARC) in the ileum. No effect was observed in the jejunum. Conclusion/Significance. These results taken together designate Lactococcus lactis NCC 2287 as a candidate probiotic strain appropriate in the management of allergic symptoms. PMID:21961022

  3. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages.

    PubMed

    Joerger, R D

    2003-04-01

    Bacteriocins, antimicrobial peptides, and bacteriophage have attracted attention as potential substitutes for, or as additions to, currently used antimicrobial compounds. This publication will review research on the potential application of these alternative antimicrobial agents to poultry production and processing. Bacteriocins are proteinaceous compounds of bacterial origin that are lethal to bacteria other than the producing strain. It is assumed that some of the bacteria in the intestinal tract produce bacteriocins as a means to achieve a competitive advantage, and bacteriocin-producing bacteria might be a desirable part of competitive exclusion preparations. Purified or partially purified bacteriocins could be used as preservatives or for the reduction or elimination of certain pathogens. Currently only nisin, produced by certain strains of Lactococcus lactis subsp. lactis, has regulatory approval for use in certain foods, and its use for poultry products has been studied extensively. Exploration of the application of antimicrobial peptides from sources other than bacteria to poultry has not yet commenced to a significant extent. Evidence for the ability of chickens to produce such antimicrobial peptides has been provided, and it is likely that these peptides play an important role in the defense against various pathogens. Bacteriophages have received renewed attention as possible agents against infecting bacteria. Evidence from several trials indicates that phage therapy can be effective under certain circumstances. Numerous obstacles for the use of phage as antimicrobials for poultry or poultry products remain. Chiefly among them are the narrow host range of many phages, the issue of phage resistance, and the possibility of phage-mediated transfer of genetic material to bacterial hosts. Regulatory issues and the high cost of producing such alternative antimicrobial agents are also factors that might prevent application of these agents in the near future.

  4. Lactococcus lactis expressing either Staphylococcus aureus fibronectin-binding protein A or Listeria monocytogenes internalin A can efficiently internalize and deliver DNA in human epithelial cells.

    PubMed

    Innocentin, Silvia; Guimarães, Valeria; Miyoshi, Anderson; Azevedo, Vasco; Langella, Philippe; Chatel, Jean-Marc; Lefèvre, François

    2009-07-01

    Lactococci are noninvasive bacteria frequently used as protein delivery vectors and, more recently, as in vitro and in vivo DNA delivery vehicles. We previously showed that a functional eukaryotic enhanced green fluorescent protein (eGFP) expression plasmid vector was delivered in epithelial cells by Lactococcus lactis producing Listeria monocytogenes internalin A (L. lactis InlA(+)), but this strategy is limited in vivo to transgenic mice and guinea pigs. In this study, we compare the internalization ability of L. lactis InlA(+) and L. lactis producing either the fibronectin-binding protein A of Staphylococcus aureus (L. lactis FnBPA(+)) or its fibronectin binding domains C and D (L. lactis CD(+)). L. lactis FnBPA(+) and L. lactis InlA(+) showed comparable internalization rates in Caco-2 cells, while the internalization rate observed with L. lactis CD(+) was lower. As visualized by conventional and confocal fluorescence microscopy, large clusters of L. lactis FnBPA(+), L. lactis CD(+), and L. lactis InlA(+) were present in the cytoplasm of Caco-2 cells after internalization. Moreover, the internalization rates of Lactobacillus acidophilus NCFM and of an NCFM mutant strain with the gene coding for the fibronectin-binding protein (fbpA) inactivated were also evaluated in Caco-2 cells. Similar low internalization rates were observed for both wild-type L. acidophilus NCFM and the fbpA mutant, suggesting that commensal fibronectin binding proteins have a role in adhesion but not in invasion. L. lactis FnBPA(+), L. lactis CD(+), and L. lactis InlA(+) were then used to deliver a eukaryotic eGFP expression plasmid in Caco-2 cells: flow cytometry analysis showed that the highest percentage of green fluorescent Caco-2 cells was observed after coculture with either L. lactis FnBPA(+) or L. lactis InlA(+). Analysis of the in vivo efficiency of these invasive recombinant strains is currently in progress to validate their potential as DNA vaccine delivery vehicles.

  5. Proposal for creation of a new genus Neomicrococcus gen. nov. to accommodate Zhihengliuella aestuarii Baik et al. 2011 and Micrococcus lactis Chittpurna et al. 2011 as Neomicrococcus aestuarii comb. nov. and Neomicrococcus lactis comb. nov.

    PubMed

    Prakash, Om; Sharma, Avinash; Nimonkar, Yogesh; Shouche, Yogesh S

    2015-11-01

    Micrococcus lactis and Zhihengliuella aestuarii were described independently in 2011. Their type strains showed high levels of 16S rRNA gene sequence similarity (99.3%). Phylogenetic analysis revealed that M. lactis MCC 2278T and Z. aestuarii JCM 16166T formed a monophyletic group and showed distant relationships to other members of closely related genera such as Micrococcus, Zhihengliuella, Arthrobacter and Citricoccus. The presence of large proportions of iso-C14:0 and iso-C16:0 with small amounts of iso-C15:0 distinguished M. lactis MCC 2278T and Z. aestuarii JCM 16166T from other members of the genera Micrococcus and Zhihengliuella. Unlike other members of the genera Zhihengliuella and Micrococcus, M. lactis MCC 2278T and Z. aestuarii JCM 16166T showed growth at low concentrations of NaCl. Thus, based on distinctive phylogenetic, chemotaxonomic and physiological features of these two organisms in comparison with other members of the genera Micrococcus and Zhihengliuella, it is clear that they do not fit within the existing classification and deserve separate status. DNA-DNA hybridization between the two type strains was 63%, indicating that they represent separate species. In this study, we propose the creation of a novel genus, Neomicrococcus gen. nov., to accommodate the two species with Neomicrococcus aestuarii gen. nov., comb. nov. (type strain JCM 16166T = KCTC 19557T) as the type species. Neomicrococcus lactis comb. nov. (type strain MCC 2278T = DSM 23694T) is also proposed.

  6. Metagenomic Analysis of Dairy Bacteriophages: Extraction Method and Pilot Study on Whey Samples Derived from Using Undefined and Defined Mesophilic Starter Cultures.

    PubMed

    Muhammed, Musemma K; Kot, Witold; Neve, Horst; Mahony, Jennifer; Castro-Mejía, Josué L; Krych, Lukasz; Hansen, Lars H; Nielsen, Dennis S; Sørensen, Søren J; Heller, Knut J; van Sinderen, Douwe; Vogensen, Finn K

    2017-10-01

    Despite being potentially highly useful for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows the removal of the bulk protein from whey and milk samples with losses of less than 50% of spiked phages. The protocol was applied to extract phages from whey in order to test the notion that members of Lactococcus lactis 936 (now Sk1virus ), P335, c2 (now C2virus ) and Leuconostoc phage groups are the most frequently encountered in the dairy environment. The relative abundance and diversity of phages in eight and four whey mixtures from dairies using undefined mesophilic mixed-strain cultures containing Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc species (i.e., DL starter cultures) and defined cultures, respectively, were assessed. Results obtained from transmission electron microscopy and high-throughput sequence analyses revealed the dominance of Lc. lactis 936 phages (order Caudovirales , family Siphoviridae ) in dairies using undefined DL starter cultures and Lc. lactis c2 phages (order Caudovirales , family Siphoviridae ) in dairies using defined cultures. The 936 and Leuconostoc phages demonstrated limited diversity. Possible coinduction of temperate P335 prophages and satellite phages in one of the whey mixtures was also observed. IMPORTANCE The method optimized in this study could provide an important basis for understanding the dynamics of the phage community (abundance, development, diversity, evolution, etc.) in dairies with different sizes, locations, and production strategies. It may also enable the discovery of previously unknown phages, which is crucial for the development of rapid molecular biology-based methods for phage burden surveillance systems. The dominance of only a few phage groups in the dairy environment signifies the depth of knowledge gained over the past decades, which served as the basis for designing current phage control strategies. The presence of a correlation between phages and the type of starter cultures being used in dairies might help to improve the selection and/or design of suitable, custom, and cost-efficient phage control strategies. Copyright © 2017 American Society for Microbiology.

  7. Dissecting the taxonomic heterogeneity within Propionibacterium acnes: proposal for Propionibacterium acnes subsp. acnes subsp. nov. and Propionibacterium acnes subsp. elongatum subsp. nov.

    PubMed

    Dekio, Itaru; Culak, Renata; Misra, Raju; Gaulton, Tom; Fang, Min; Sakamoto, Mitsuo; Ohkuma, Moriya; Oshima, Kenshiro; Hattori, Masahira; Klenk, Hans-Peter; Rajendram, Dunstan; Gharbia, Saheer E; Shah, Haroun N

    2015-12-01

    Propionibacterium acnes subsp. acnes subsp. nov. and Propionibacterium acnes subsp. elongatum subsp. nov. are described. These emanate from the three known phylotypes of P. acnes, designated types I, II and III. Electron microscopy confirmed the filamentous cell shape of type III, showing a striking difference from types I/II, which were short rods. Biochemical tests indicated that, in types I/II, either the pyruvate, l-pyrrolidonyl arylamidase or d-ribose 2 test was positive, whereas all of these were negative among type III strains. Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) spectra, which profile mainly their ribosomal proteins, were different between these two groups. Surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) spectra of all phylotypes revealed a specific protein biomarker that was overexpressed in type III strains compared with types I/II only when grown aerobically. Reference strains had high whole-genome similarity between types I (>91 %) and II (>75 %), but a considerably lower level of 72 % similarity with type III. recA and gyrB sequence dendrograms confirmed the distant relatedness of type III, indicating the presence of two distinct centres of variation within the species P. acnes. On the other hand, cellular fatty acid profiles and 16S rRNA gene sequence relatedness (>99.3 %) circumscribed the species. Thus, we propose two subspecies, Propionibacterium acnes subsp. acnes subsp. nov. for types I/II and Propionibacterium acnes subsp. elongatum subsp. nov. for type III. The type strain of Propionibacterium acnes subsp. acnes is NCTC 737T ( = ATCC 6919T = JCM 6425T = DSM 1897T = CCUG 1794T), while the type strain of Propionibacterium acnes subsp. elongatum is K124T ( = NCTC 13655T = JCM 18919T).

  8. Characterization of Cinnamoyl Esterases from Different Lactobacilli and Bifidobacteria.

    PubMed

    Fritsch, Caroline; Jänsch, André; Ehrmann, Matthias A; Toelstede, Simone; Vogel, Rudi F

    2017-02-01

    A high variety of plants that are used for food production contain esterified hydroxycinnamic acids. As their free forms display several benefits, like an enhanced absorption in human intestinal tract, anti-oxidative and anti-carcinogenic effects, an improved protein solubility and reduced discoloration, the microbial ability to cleave the ester bond is highly desired. In order to examine potential fermentation strains for this purpose, six different lactic acid bacteria and one bifidobacterial strain were screened for their ability to degrade esterified hydroxycinnamic acids because these strains are commonly used for fermentation of plant-based foods. Moreover, their cinnamoyl esterase activity was examined by molecular biological analyses. The enzymes were heterologously expressed in Escherichia coli, purified and biochemically characterized. The purified esterases with a molecular mass around 27-29 kDa had their optimum predominantly between pH 7 and 8 at 20-30 °C. Bifidobacterium animalis subsp. lactis, Lactobacillus gasseri, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus fermentum displayed activities against a broad substrate range (methyl caffeate, methyl trans-p-coumarate, chlorogenic acid as well as partially ethyl ferulate). Concerning substrate affinity, reaction velocity, thermal and pH stability, Lactobacillus gasseri showed the overall best performance. The herein studied lactic acid- and bifidobacteria are promising for the production of fermented plant-based foods with an increased quality and nutritional value.

  9. Suitability of Bifidobacterium spp. and Lactobacillus plantarum as probiotics intended for fruit juices containing citrus extracts.

    PubMed

    Bevilacqua, Antonio; Campaniello, Daniela; Corbo, Maria Rosaria; Maddalena, Lucia; Sinigaglia, Milena

    2013-11-01

    A strain of Lactobacillus plantarum and 4 strains of bifidobacteria were inoculated in apple juice and in a commercial beverage labeled as "red-fruit juice," containing citrus extracts as natural preservatives; the suitability of the probiotics was evaluated in relation to their resistance to 2 kinds of citrus extracts (biocitro and lemon extract), survival in juices at 4 and 37 °C, and inhibition of Zygosaccharomyces bailii. Cell count of L. plantarum and bifidobacteria over time was fitted through the Weibull equation, for the evaluation of the first reduction time (δ), death time, and microbiological shelf life (the break-point was set to 7 log cfu/mL). Bifidobacterium animalis subsp. lactis experienced the highest δ-value (23.21 d) and death time (96.59 d) in the red-fruit juice at 4 °C, whereas L. plantarum was the most promising strain in apple juice at 37 °C. Biocitro and lemon extract did not exert a biocidal effect toward probiotics; moreover, the probiotics controlled the growth of Z. bailii and the combination of L. plantarum with 40 ppm of biocitro reduced the level of the yeast after 18 d by 2 log cfu/mL. © 2013 Institute of Food Technologists®

  10. Effects of the Essential Oil from Origanum vulgare L. on Survival of Pathogenic Bacteria and Starter Lactic Acid Bacteria in Semihard Cheese Broth and Slurry.

    PubMed

    de Souza, Geany Targino; de Carvalho, Rayssa Julliane; de Sousa, Jossana Pereira; Tavares, Josean Fechine; Schaffner, Donald; de Souza, Evandro Leite; Magnani, Marciane

    2016-02-01

    This study assessed the inhibitory effects of the essential oil from Origanum vulgare L. (OVEO) on Staphylococcus aureus, Listeria monocytogenes, and a mesophilic starter coculture composed of lactic acid bacteria (Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris) in Brazilian coalho cheese systems. The MIC of OVEO was 2.5 μl/ml against both S. aureus and L. monocytogenes and 0.6 μl/ml against the tested starter coculture. In cheese broth containing OVEO at 0.6 μl/ml, no decrease in viable cell counts (VCC) of both pathogenic bacteria was observed, whereas the initial VCC of the starter coculture decreased approximately 1.0 log CFU/ml after 24 h of exposure at 10°C. OVEO at 1.25 and 2.5 μl/ml caused reductions of up to 2.0 and 2.5 log CFU/ml in S. aureus and L. monocytogenes, respectively, after 24 h of exposure in cheese broth. At these same concentrations, OVEO caused a greater decrease of initial VCC of the starter coculture following 4 h of exposure. Higher concentrations of OVEO were required to decrease the VCC of all target bacteria in semisolid coalho cheese slurry compared with cheese broth. The VCC of Lactococcus spp. in coalho cheese slurry containing OVEO were always lower than those of pathogenic bacteria under the same conditions. These results suggest that the concentrations of OVEO used to control pathogenic bacteria in semihard cheese should be carefully evaluated because of its inhibitory effects on the growth of starter lactic acid cultures used during the production of the product.

  11. In Vitro Activity of Tea Tree Oil Vaginal Suppositories against Candida spp. and Probiotic Vaginal Microbiota.

    PubMed

    Di Vito, Maura; Mattarelli, Paola; Modesto, Monica; Girolamo, Antonietta; Ballardini, Milva; Tamburro, Annunziata; Meledandri, Marcello; Mondello, Francesca

    2015-10-01

    The aim of this work is to evaluate the in vitro microbicidal activity of vaginal suppositories (VS) containing tea tree oil (TTO-VS) towards Candida spp. and vaginal probiotics. A total of 20 Candida spp. strains, taken from patients with vaginitis and from an established type collection, including reference strains, were analysed by using the CLSI microdilution method. To study the action of VS towards the beneficial vaginal microbiota, the sensitivity of Bifidobacterium animalis subsp. lactis (DSM 10140) and Lactobacillus spp. (Lactobacillus casei R-215 and Lactobacillus acidophilus R-52) was tested. Both TTO-VS and TTO showed fungicidal activity against all strains of Candida spp. whereas placebo-VS or the Aloe gel used as controls were ineffective. The study of fractional fungicidal concentrations (FFC) showed synergistic interaction with the association between Amphotericin B and TTO (0.25 to 0.08 µg/ml, respectively) against Candida albicans. Instead, the probiotics were only affected by TTO concentration ≥ 4% v/v, while, at concentrations < 2% v/v, they remained viable. TTO-VS exhibits, in vitro, a selective fungicidal action, slightly affecting only the Bifidobacteriun animalis strain growth belonging to the vaginal microbiota. In vivo studies are needed to confirm the efficacy to prevent acute or recurrent vaginal candidiasis. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Dynamic Changes of Intracellular pH in Individual Lactic Acid Bacterium Cells in Response to a Rapid Drop in Extracellular pH

    PubMed Central

    Siegumfeldt, Henrik; Björn Rechinger, K.; Jakobsen, Mogens

    2000-01-01

    We describe the dynamics of changes in the intracellular pH (pHi) values of a number of lactic acid bacteria in response to a rapid drop in the extracellular pH (pHex). Strains of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactococcus lactis were investigated. Listeria innocua, a gram-positive, non-lactic acid bacterium, was included for comparison. The method which we used was based on fluorescence ratio imaging of single cells, and it was therefore possible to describe variations in pHi within a population. The bacteria were immobilized on a membrane filter, placed in a closed perfusion chamber, and analyzed during a rapid decrease in the pHex from 7.0 to 5.0. Under these conditions, the pHi of L. innocua remained neutral (between 7 and 8). In contrast, the pHi values of all of the strains of lactic acid bacteria investigated decreased to approximately 5.5 as the pHex was decreased. No pronounced differences were observed between cells of the same strain harvested from the exponential and stationary phases. Small differences between species were observed with regard to the initial pHi at pHex 7.0, while different kinetics of pHi regulation were observed in different species and also in different strains of S. thermophilus. PMID:10831407

  13. Complete Genome Sequence of Lactococcus lactis Strain AI06, an Endophyte of the Amazonian Açaí Palm

    PubMed Central

    de Oliveira, Viviane Matoso; de Almeida Pina, André Vicioli; Pérez-Chaparro, Paula Juliana; de Almeida, Lara Mendes; de Vasconcelos, Janaina Mota; de Oliveira, Layanna Freitas; da Silva, Daisy Elaine Andrade; Rogez, Hervé Louis Ghislain; Cretenet, Marina; Mamizuka, Elsa Masae; Nunes, Marcio Roberto Teixeira

    2014-01-01

    We report the genome, in a single chromosome, of Lactococcus lactis strain AI06, isolated from the mesocarp of the açaí fruit (Euterpe oleracea) in eastern Amazonia, Brazil. This strain is an endophyte of the açaí palm and also a component of the microbiota of the edible food product. PMID:25414513

  14. Phylogenetic Analysis and Polyphasic Characterization of Clavibacter michiganensis Strains Isolated from Tomato Seeds Reveal that Nonpathogenic Strains Are Distinct from C. michiganensis subsp. michiganensis

    PubMed Central

    Durand, Karine; Orgeur, Geoffrey; Balidas, Samuel; Fricot, Céline; Bonneau, Sophie; Quillévéré, Anne; Audusseau, Corinne; Olivier, Valérie; Grimault, Valérie; Mathis, René

    2012-01-01

    The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this “framework” with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced. PMID:23001675

  15. Phylogenetic analysis and polyphasic characterization of Clavibacter michiganensis strains isolated from tomato seeds reveal that nonpathogenic strains are distinct from C. michiganensis subsp. michiganensis.

    PubMed

    Jacques, Marie-Agnès; Durand, Karine; Orgeur, Geoffrey; Balidas, Samuel; Fricot, Céline; Bonneau, Sophie; Quillévéré, Anne; Audusseau, Corinne; Olivier, Valérie; Grimault, Valérie; Mathis, René

    2012-12-01

    The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this "framework" with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced.

  16. Molecular Characterization of Copper Resistance Genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis▿

    PubMed Central

    Behlau, Franklin; Canteros, Blanca I.; Minsavage, Gerald V.; Jones, Jeffrey B.; Graham, James H.

    2011-01-01

    Copper sprays have been widely used for control of endemic citrus canker caused by Xanthomonas citri subsp. citri in citrus-growing areas for more than 2 decades. Xanthomonas alfalfae subsp. citrumelonis populations were also exposed to frequent sprays of copper for several years as a protective measure against citrus bacterial spot (CBS) in Florida citrus nurseries. Long-term use of these bactericides has led to the development of copper-resistant (Cur) strains in both X. citri subsp. citri and X. alfalfae subsp. citrumelonis, resulting in a reduction of disease control. The objectives of this study were to characterize for the first time the genetics of copper resistance in X. citri subsp. citri and X. alfalfae subsp. citrumelonis and to compare these organisms to other Cur bacteria. Copper resistance determinants from X. citri subsp. citri strain A44(pXccCu2) from Argentina and X. alfalfae subsp. citrumelonis strain 1381(pXacCu2) from Florida were cloned and sequenced. Open reading frames (ORFs) related to the genes copL, copA, copB, copM, copG, copC, copD, and copF were identified in X. citri subsp. citri A44. The same ORFs, except copC and copD, were also present in X. alfalfae subsp. citrumelonis 1381. Transposon mutagenesis of the cloned copper resistance determinants in pXccCu2 revealed that copper resistance in X. citri subsp. citri strain A44 is mostly due to copL, copA, and copB, which are the genes in the cloned cluster with the highest nucleotide homology (≥92%) among different Cur bacteria. PMID:21515725

  17. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44.

    PubMed

    Zhang, Jian; Caiyin, Qinggele; Feng, Wenjing; Zhao, Xiuli; Qiao, Bin; Zhao, Guangrong; Qiao, Jianjun

    2016-06-16

    Traditionally, nisin was produced industrially by using Lactococcus lactis in the neutral fermentation process. However, nisin showed higher activity in the acidic environment. How to balance the pH value for bacterial normal growth and nisin activity might be the key problem. In this study, 17 acid-tolerant genes and 6 lactic acid synthetic genes were introduced in L. lactis F44, respectively. Comparing to the 2810 IU/mL nisin yield of the original strain F44, the nisin titer of the engineered strains over-expressing hdeAB, ldh and murG, increased to 3850, 3979 and 4377 IU/mL, respectively. These engineered strains showed more stable intracellular pH value during the fermentation process. Improvement of lactate production could partly provide the extra energy for the expression of acid tolerance genes during growth. Co-overexpression of hdeAB, murG, and ldh(Z) in strain F44 resulted in the nisin titer of 4913 IU/mL. The engineered strain (ABGL) could grow on plates with pH 4.2, comparing to the surviving pH 4.6 of strain F44. The fed-batch fermentation showed nisin titer of the co-expression L. lactis strain could reach 5563 IU/mL with lower pH condition and longer cultivation time. This work provides a novel strategy of constructing robust strains for use in industry process.

  18. [Enhanced nisin production by overexpression of nisin immunity gene nisI in the nisin-producing strain].

    PubMed

    Hu, Hongmei; Jiang, Like; Lin, Yuheng; Huan, Liandong; Zhong, Jin

    2010-10-01

    Our aim was to enhance nisin production by overexpression of nisin immunity gene nisI in nisin-producing strains. Nisin immunity gene nisI with a strong promoter P59 was cloned into vector pHJ201 and introduced into Lacotococcus lactis NZ9800, resulting in a recombinant strain L. lactis NZ9800/pHMI. Then the differences between the recombinant strain and the control strain L. lactis NZ9800/pHJ201 were analyzed in several aspects, including their growth curves, nisin resistance level and antibacterial activity against indicator strain Microccus flavus NCIB 8166. The overexpression of nisI had no significant difference in growth rate between recombinant strain and contrast strain. However, it promoted recombinant strain tolerance 25% higer nisin resistance level and stronger antibacterial activity against M. flavus NCIB 8166, which was increased by 32% and 25% when fermented for 6 and 8 hours, respectively. These results indicated that overexpression of nisI gene in the nisin producing strain can effectively enhance nisin resistence level and thus improve nisin production.

  19. Purification and Characterization of Suicin 65, a Novel Class I Type B Lantibiotic Produced by Streptococcus suis.

    PubMed

    Vaillancourt, Katy; LeBel, Geneviève; Frenette, Michel; Fittipaldi, Nahuel; Gottschalk, Marcelo; Grenier, Daniel

    2015-01-01

    Bacteriocins are antimicrobial peptides of bacterial origin that are considered as a promising alternative to the use of conventional antibiotics. Recently, our laboratory reported the purification and characterization of two lantibiotics, suicin 90-1330 and suicin 3908, produced by the swine pathogen and zoonotic agent Streptococcus suis (serotype 2). In this study, a novel bacteriocin produced by S. suis has been identified and characterized. The producing strain S. suis 65 (serotype 2) was found to belong to the sequence type 28, that includes strains known to be weakly or avirulent in a mouse model. The bacteriocin, whose production was only possible following growth on solid culture medium, was purified to homogeneity by cationic exchange and reversed-phase high-pressure liquid chromatography. The bacteriocin, named suicin 65, was heat, pH and protease resistant. Suicin 65 was active against all S. suis isolates tested, including antibiotic resistant strains. Amino acid sequencing of the purified bacteriocin by Edman degradation revealed the presence of modified amino acids suggesting a lantibiotic. Using the partial sequence obtained, a blast was performed against published genomes of S. suis and allowed to identify a putative lantibiotic locus in the genome of S. suis 89-1591. From this genome, primers were designed and the gene cluster involved in the production of suicin 65 by S. suis 65 was amplified by PCR. Sequence analysis revealed the presence of ten open reading frames, including a duplicate of the structural gene. The structural genes (sssA and sssA') of suicin 65 encodes a 25-amino acid residue leader peptide and a 26-amino acid residue mature peptide yielding an active bacteriocin with a deducted molecular mass of 3,005 Da. Mature suicin 65 showed a high degree of identity with class I type B lantibiotics (globular structure) produced by Streptococcus pyogenes (streptococcin FF22; 84.6%), Streptococcus macedonicus (macedocin ACA-DC 198; 84.6%), and Lactococcus lactis subsp. lactis (lacticin 481; 74.1%). Further studies will evaluate the ability of suicin 65 or the producing strain to prevent experimental S. suis infections in pigs.

  20. Purification and Characterization of Suicin 65, a Novel Class I Type B Lantibiotic Produced by Streptococcus suis

    PubMed Central

    Vaillancourt, Katy; LeBel, Geneviève; Frenette, Michel; Fittipaldi, Nahuel; Gottschalk, Marcelo; Grenier, Daniel

    2015-01-01

    Bacteriocins are antimicrobial peptides of bacterial origin that are considered as a promising alternative to the use of conventional antibiotics. Recently, our laboratory reported the purification and characterization of two lantibiotics, suicin 90–1330 and suicin 3908, produced by the swine pathogen and zoonotic agent Streptococcus suis (serotype 2). In this study, a novel bacteriocin produced by S. suis has been identified and characterized. The producing strain S. suis 65 (serotype 2) was found to belong to the sequence type 28, that includes strains known to be weakly or avirulent in a mouse model. The bacteriocin, whose production was only possible following growth on solid culture medium, was purified to homogeneity by cationic exchange and reversed-phase high-pressure liquid chromatography. The bacteriocin, named suicin 65, was heat, pH and protease resistant. Suicin 65 was active against all S. suis isolates tested, including antibiotic resistant strains. Amino acid sequencing of the purified bacteriocin by Edman degradation revealed the presence of modified amino acids suggesting a lantibiotic. Using the partial sequence obtained, a blast was performed against published genomes of S. suis and allowed to identify a putative lantibiotic locus in the genome of S. suis 89–1591. From this genome, primers were designed and the gene cluster involved in the production of suicin 65 by S. suis 65 was amplified by PCR. Sequence analysis revealed the presence of ten open reading frames, including a duplicate of the structural gene. The structural genes (sssA and sssA’) of suicin 65 encodes a 25-amino acid residue leader peptide and a 26-amino acid residue mature peptide yielding an active bacteriocin with a deducted molecular mass of 3,005 Da. Mature suicin 65 showed a high degree of identity with class I type B lantibiotics (globular structure) produced by Streptococcus pyogenes (streptococcin FF22; 84.6%), Streptococcus macedonicus (macedocin ACA-DC 198; 84.6%), and Lactococcus lactis subsp. lactis (lacticin 481; 74.1%). Further studies will evaluate the ability of suicin 65 or the producing strain to prevent experimental S. suis infections in pigs. PMID:26709705

  1. Preferential localization of Lactococcus lactis cells entrapped in a caseinate/alginate phase separated system.

    PubMed

    Léonard, Lucie; Gharsallaoui, Adem; Ouaali, Fahima; Degraeve, Pascal; Waché, Yves; Saurel, Rémi; Oulahal, Nadia

    2013-09-01

    This study aimed to entrap bioprotective lactic acid bacteria in a sodium caseinate/sodium alginate aqueous two-phase system. Phase diagram at pH=7 showed that sodium alginate and sodium caseinate were not miscible when their concentrations exceeded 1% (w/w) and 6% (w/w), respectively. The stability of the caseinate/alginate two-phase system was also checked at pH values of 6.0 and 5.5. Lactococcus lactis subsp. lactis LAB3 cells were added in a 4% (w/w) caseinate/1.5% (w/w) alginate two-phase system at pH=7. Fluorescence microscopy allowed to observe that the caseinate-rich phase formed droplets dispersed in a continuous alginate-rich phase. The distribution of bacteria in such a system was observed by epifluorescence microscopy: Lc. lactis LAB3 cells stained with Live/Dead(®) Baclight kit™ were located exclusively in the protein phase. Since zeta-potential measurements indicated that alginate, caseinate and bacterial cells all had an overall negative charge at pH 7, the preferential adhesion of LAB cells was assumed to be driven by hydrophobic effect or by depletion phenomena in such biopolymeric systems. Moreover, LAB cells viability was significantly higher in the ternary mixture obtained in the presence of both caseinate and alginate than in single alginate solution. Caseinate/alginate phase separated systems appeared thus well suited for Lc. lactis LAB3 cells entrapment. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Safety characterisation and inhibition of fungi and bacteria by a novel multiple enterocin-producing Enterococcus lactis 4CP3 strain.

    PubMed

    Ben Braïek, Olfa; Cremonesi, Paola; Morandi, Stefano; Smaoui, Slim; Hani, Khaled; Ghrairi, Taoufik

    2018-03-07

    This study aims to characterise a potential bacteriocinogenic lactic acid bacterial strain isolated from a raw pink shrimp (Palaemon serratus) and evaluate its safety aspect. The strain designated as 4CP3 was noted to display antibacterial activities (P < 0.05) against Gram-positive and Gram-negative foodborne pathogens (Listeria monocytogenes and Pseudomonas aeruginosa) and some filamentous fungi (e.g. Aspergillus niger A79). Phenotypic and molecular techniques as well as phylogenetic analysis identified the isolate 4CP3 as Enterococcus lactis. Its produced antimicrobial substance was determined as a bacteriocin that was stable over a wide range of pH (2-10) and after heating at 100 °C for 15 min. The maximum bacteriocin production was 1400 AU/ml recorded after 12 h of incubation in de Man, Rogosa and Sharpe (MRS) broth medium at 30 °C. The mode of action of the bacteriocin produced by 4CP3 strain was identified as bactericidal against L. monocytogenes EGDe 107776 and P. aeruginosa ATCC 27853. By specific PCR amplifications, E. lactis 4CP3 was shown to produce the enterocins A, B and P. To our knowledge, this feature is newly described for E. lactis strain isolated from raw shrimps. Regarding safety aspect of E. lactis 4CP3, it has been demonstrated that this strain was not haemolytic, gelatinase negative, sensitive to vancomycin, and free of common antibiotic resistance genes and virulence factors. Therefore, it may be useful as a safe natural agent in preservation of foods or as a new probiotic strain in food and feed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang, a Korean traditional fermented soybean food.

    PubMed

    Lee, Mi-Hwa; Lee, Jiyeon; Nam, Young-Do; Lee, Jong Suk; Seo, Myung-Ji; Yi, Sung-Hun

    2016-03-16

    A wild-type microorganism exhibiting antimicrobial activities was isolated from the Korean traditional fermented soybean food Chungkookjang and identified as Bacillus sp. LM7. During its stationary growth phase, the microorganism secreted an antimicrobial substance, which we partially purified using a simple two-step procedure involving ammonium sulfate precipitation and heat treatment. The partially purified antimicrobial substance, Anti-LM7, was stable over a broad pH range (4.0-9.0) and at temperatures up to 80 °C for 30 min, and was resistant to most proteolytic enzymes and maintained its activity in 30% (v/v) organic solvents. Anti-LM7 inhibited the growth of a broad range of Gram-positive bacteria, including Bacillus cereus and Listeria monocytogenes, but it did not inhibit lactic acid bacteria such as Lactobacillus plantarum and Lactococcus lactis subsp. Lactis. Moreover, unlike commercially available nisin and polymyxin B, Anti-LM7 inhibited certain fungal strains. Lastly, liquid chromatography-mass spectrometry analysis of Anti-LM7 revealed that it contained eight lipopeptides belonging to two families: four bacillomycin D and four surfactin analogs. These Bacillus sp. LM7-produced heterogeneous lipopeptides exhibiting extremely high stability and a broad antimicrobial spectrum are likely to be closely related to the antimicrobial activity of Chungkookjang, and their identification presents an opportunity for application of the peptides in environmental bioremediation, pharmaceutical, cosmetic, and food industries. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Lactobacillus delbrueckii subsp. sunkii subsp. nov., isolated from sunki, a traditional Japanese pickle.

    PubMed

    Kudo, Yuko; Oki, Kaihei; Watanabe, Koichi

    2012-11-01

    Although four strains of bacteria isolated from sunki, a traditional Japanese, non-salted pickle, were initially identified as Lactobacillus delbrueckii, the molecular and phenotypic characteristics of the strains did not match those of any of the four recognized subspecies of L. delbrueckii. Together, the results of phenotypic characterization, DNA-DNA hybridizations (in which the relatedness values between the novel strains and type strains of the recognized subspecies of L. delbrueckii were all >88.7%) and 16S rRNA gene sequence, amplified fragment length polymorphism (AFLP) and whole-cell MALDI-TOF/MS spectral pattern analyses indicated that the four novel strains represented a single, novel subspecies, for which the name Lactobacillus delbrueckii subsp. sunkii subsp. nov. is proposed. The type strain is YIT 11221(T) (=JCM 17838(T) =DSM 24966(T)).

  5. Use of murine models to detect the allergenicity of genetically modified Lactococcus lactis NZ9000/pNZPNK.

    PubMed

    Chiang, Shen-Shih; Liu, Chin-Feng; Ku, Ting-Wei; Mau, Jeng-Leun; Lin, Hsin-Tang; Pan, Tzu-Ming

    2011-04-27

    By introducing aprN into Lactococcus lactis NZ9000, the genetically modified L. lactis NZ9000/pNZPNK successfully expressed the nattokinase. The safety assessment of this novel strain was based on allergenicity of pepsin digestion stability and murine model serologic identity. Subjecting to the GM strain and host to pepsin digestion, the soluble fractions and cell debris were fast degraded completely. Feeding with ovalbumin resulted in significantly higher production of IgG1 and IgE as compared to that of L. lactis NZ9000/pNZPNK or L. lactis NZ9000. Further, the serum IgG2a level increased dose-dependently at week 2 and induced immune reaction toward Th1 pathway. Secretion of cytokines IL-4 and IL-10 fed with lactococci was significantly lower than that of the OVA group. L. lactis NZ9000/pNZPNK did not increase the proliferation of type 2 helper T cells in spleen or induce allergenicity in BALB/c mice. On the basis of the results, the new GM lactic acid bacterium is regarded as safe to use.

  6. 13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses.

    PubMed

    Azizan, Kamalrul Azlan; Ressom, Habtom W; Mendoza, Eduardo R; Baharum, Syarul Nataqain

    2017-01-01

    Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13 C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30°C, 37°C) and agitation (with and without agitation at 150 rpm). Collectively, the concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and Pearson correlation analysis ( r ) was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis' central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA) from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate carboxylate (pycA) in L. lactis , in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis . Overall, the integration of systematic analysis of amino acids and flux ratio analysis provides a systems-level understanding of how L. lactis regulates central metabolism under various conditions.

  7. rep-PCR-Mediated Genomic Fingerprinting: A Rapid and Effective Method to Identify Clavibacter michiganensis.

    PubMed

    Louws, F J; Bell, J; Medina-Mora, C M; Smart, C D; Opgenorth, D; Ishimaru, C A; Hausbeck, M K; de Bruijn, F J; Fulbright, D W

    1998-08-01

    ABSTRACT The genomic DNA fingerprinting technique known as repetitive-sequence-based polymerase chain reaction (rep-PCR) was evaluated as a tool to differentiate subspecies of Clavibacter michiganensis, with special emphasis on C. michiganensis subsp. michiganensis, the pathogen responsible for bacterial canker of tomato. DNA primers (REP, ERIC, and BOX), corresponding to conserved repetitive element motifs in the genomes of diverse bacterial species, were used to generate genomic fingerprints of C. michiganensis subsp. michiganensis, C. michiganensis subsp. sepedonicus, C. michiganensis subsp. nebraskensis, C. michiganensis subsp. tessellarius, and C. michiganensis subsp. insidiosum. The rep-PCR-generated patterns of DNA fragments observed after agarose gel electrophoresis support the current division of C. michiganensis into five subspecies. In addition, the rep-PCR fingerprints identified at least four types (A, B, C, and D) within C. michiganensis subsp. michiganensis based on limited DNA polymorphisms; the ability to differentiate individual strains may be of potential use in studies on the epidemiology and host-pathogen interactions of this organism. In addition, we have recovered from diseased tomato plants a relatively large number of naturally occurring avirulent C. michiganensis subsp. michiganensis strains with rep-PCR fingerprints identical to those of virulent C. michiganensis subsp. michiganensis strains.

  8. Differentiation of Streptococcus lactis var. maltigenes from Other Lactic Streptococci1

    PubMed Central

    Gordon, D. F.; Morgan, M. E.; Tucker, J. S.

    1963-01-01

    Strains of lactic streptococci isolated from samples of raw milk which had developed a malty aroma were subjected to the cultural, physiological, and serological tests commonly employed in the classification of streptococci. None of the strains could be differentiated from Streptococcus lactis by these tests. Resting cells of strains which produced an organoleptically detectable malty aroma when cultured in milk were usually found to possess an active α-ketoacid decarboxylase, indicating the presence of the mechanism responsible for the characteristic aroma production. This decarboxylase activity was either weak or nonexistent in the nonmalty strains, and no activity was detected in known strains of S. lactis, S. cremoris, or S. diacetilactis. The malty strains usually produced higher acidities in milk than did the nonmalty strains, and, in most instances, they developed a granular type of growth sediment in broth, as opposed to a viscid sediment. Many of them gave weakly positive Voges-Proskauer tests in glucose broth with or without added citrate and appeared to be somewhat more resistant to nisin than the nonmalty strains. PMID:13949187

  9. Description of Mycobacterium chelonae subsp. bovis subsp. nov., isolated from cattle (Bos taurus coreanae), emended description of Mycobacterium chelonae and creation of Mycobacterium chelonae subsp. chelonae subsp. nov.

    PubMed

    Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Jeon, Che Ok; Jeong, Joseph; Lee, Seon Ho; Lim, Ji-Hun; Lee, Seung-Heon; Kim, Chang Ki; Kook, Yoon-Hoh; Kim, Bum-Joon

    2017-10-01

    Three rapidly growing mycobacterial strains, QIA-37 T , QIA-40 and QIA-41, were isolated from the lymph nodes of three separate Korean native cattle, Hanwoo (Bos taurus coreanae). These strains were previously shown to be phylogenetically distinct but closely related to Mycobacterium chelonae ATCC 35752 T by taxonomic approaches targeting three genes (16S rRNA, hsp6 and rpoB) and were further characterized using a polyphasic approach in this study. The 16S rRNA gene sequences of all three strains showed 99.7 % sequence similarity with that of the M. chelonae type strain. A multilocus sequence typing analysis targeting 10 housekeeping genes, including hsp65 and rpoB, revealed a phylogenetic cluster of these strains with M. chelonae. DNA-DNA hybridization values of 78.2 % between QIA-37 T and M. chelonae indicated that it belongs to M. chelonae but is a novel subspecies distinct from M. chelonae. Phylogenetic analysis based on whole-genome sequences revealed a 95.44±0.06 % average nucleotide identity (ANI) value with M. chelonae, slightly higher than the 95.0 % ANI criterion for determining a novel species. In addition, distinct phenotypic characteristics such as positive growth at 37 °C, at which temperature M. chelonae does not grow, further support the taxonomic status of these strains as representatives of a novel subspecies of M. chelonae. Therefore, we propose an emended description of Mycobacterium chelonae, and descriptions of M. chelonae subsp. chelonae subsp. nov. and M. chelonae subsp. bovis subsp. nov. are presented; strains ATCC 35752 T (=CCUG 47445 T =CIP 104535 T =DSM 43804 T =JCM 6388 T =NCTC 946 T ) and QIA-37 T (=KCTC 39630 T =JCM 30986 T ) are the type strains of the two novel subspecies.

  10. Serratia nematodiphila sp. nov., associated symbiotically with the entomopathogenic nematode Heterorhabditidoides chongmingensis (Rhabditida: Rhabditidae).

    PubMed

    Zhang, Chong-Xing; Yang, Shou-Yun; Xu, Ming-Xu; Sun, Jie; Liu, Huan; Liu, Jing-Rui; Liu, Hui; Kan, Fei; Sun, Jing; Lai, Ren; Zhang, Ke-Yun

    2009-07-01

    A novel red-pigmented, Gram-negative, motile, fluorescent, rod-shaped strain, DZ0503SBS1(T), with a single lateral flagellum, was isolated from the intestine of the nematode Heterorhabditidoides chongmingensis. Comparative 16S rRNA gene sequence analysis indicated that the strain is a member of the genus Serratia, sharing highest sequence similarities with Serratia marcescens subsp. sakuensis JCM 11315(T) (99.8 %), S. marcescens subsp. marcescens DSM 30121(T) (99.5 %) and Serratia ureilytica LMG 22860(T) (98.3 %). Similarities between the rpoB gene sequence of strain DZ0503SBS1(T) and those of S. marcescens subsp. sakuensis JCM 11315(T), S. marcescens subsp. marcescens DSM 30121(T) and S. ureilytica LMG 22860(T) were 98.0, 97.4 and 98.3 %, respectively. DNA-DNA hybridization values of strain DZ0503SBS1(T) with S. marcescens subsp. sakuensis JCM 11315(T), S. marcescens subsp. marcescens DSM 30121(T) and S. ureilytica LMG 22860(T) were 68.2, 65.1 and 53.0 %, respectively. The major isoprenoid quinone of strain DZ0503SBS1(T) was Q-8 and the predominant fatty acids were C(16 : 0) (34.76 %), cyclo-C(17 : 0) (20.03 %) and cyclo-C(19 : 0)omega8c (17.24 %). The cyclo-C(19 : 0)omega8c content (17.24 %) was significantly different from those found in S. marcescens subsp. sakuensis JCM 11315(T) and S. marcescens subsp. marcescens DSM 30121(T). Some characteristics of strain DZ0503SBS1(T), i.e. fluorescence and its symbiotic association with nematodes, have not been reported previously in any species of the genus Serratia. Phenotypic and biochemical characteristics and molecular data show that strain DZ0503SBS1(T) represents a novel species, for which the name Serratia nematodiphila sp. nov. is proposed; the type strain is DZ0503SBS1(T) (=KCTC 22130(T) =CGMCC 1.6853(T)).

  11. Comparative Genomics of Campylobacter fetus from Reptiles and Mammals Reveals Divergent Evolution in Host-Associated Lineages

    PubMed Central

    Gilbert, Maarten J.; Miller, William G.; Yee, Emma; Zomer, Aldert L.; van der Graaf-van Bloois, Linda; Fitzgerald, Collette; Forbes, Ken J.; Méric, Guillaume; Sheppard, Samuel K.; Wagenaar, Jaap A.; Duim, Birgitta

    2016-01-01

    Campylobacter fetus currently comprises three recognized subspecies, which display distinct host association. Campylobacter fetus subsp. fetus and C. fetus subsp. venerealis are both associated with endothermic mammals, primarily ruminants, whereas C. fetus subsp. testudinum is primarily associated with ectothermic reptiles. Both C. fetus subsp. testudinum and C. fetus subsp. fetus have been associated with severe infections, often with a systemic component, in immunocompromised humans. To study the genetic factors associated with the distinct host dichotomy in C. fetus, whole-genome sequencing and comparison of mammal- and reptile-associated C. fetus was performed. The genomes of C. fetus subsp. testudinum isolated from either reptiles or humans were compared with elucidate the genetic factors associated with pathogenicity in humans. Genomic comparisons showed conservation of gene content and organization among C. fetus subspecies, but a clear distinction between mammal- and reptile-associated C. fetus was observed. Several genomic regions appeared to be subspecies specific, including a putative tricarballylate catabolism pathway, exclusively present in C. fetus subsp. testudinum strains. Within C. fetus subsp. testudinum, sapA, sapB, and sapAB type strains were observed. The recombinant locus iamABC (mlaFED) was exclusively associated with invasive C. fetus subsp. testudinum strains isolated from humans. A phylogenetic reconstruction was consistent with divergent evolution in host-associated strains and the existence of a barrier to lateral gene transfer between mammal- and reptile-associated C. fetus. Overall, this study shows that reptile-associated C. fetus subsp. testudinum is genetically divergent from mammal-associated C. fetus subspecies. PMID:27333878

  12. Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production.

    PubMed

    Bai, Dong-Mei; Zhao, Xue-Ming; Li, Xin-Gang; Xu, Shi-Min

    2004-12-20

    The effects of initial glucose concentration and calcium lactate concentration on the lactic acid production by the parent strain, Lactobacillus lactis BME5-18, were studied. The results of the experiments indicated that glucose and lactate repressed the cell growth and the lactic acid production by Lactobacillus lactis BME5-18. A L(+)-lactic acid overproducing strain, Lactobacillus lactis BME5-18M, was screened by mutagenizing the parent strain with ultraviolet (UV) light irradiation and selecting the high glucose and lactate calcium concentration repression resistant mutant. Starting with a concentration of 100g L(-1) glucose, the mutant produced 98.6 g L(-1) lactic acid after 60 h in flasks, 73.9% higher than that of the parent strain. The L(+)-lactic acid purity was 98.1% by weight based on the amount of total lactic acid. The culture of the parent strain could not be analyzed well by conventional metabolic flux analysis techniques, since some pyruvate were accumulated intracellularly. Therefore, a revised flux analysis method was proposed by introducing intracellular pyruvate pool. Further studies demonstrate that there is a high level of NADH oxidase activity (12.11 mmol mg(-1) min(-1)) in the parent strain. The molecular mechanisms of the strain improvement were proposed, i.e., the high level of NADH oxidase activity was eliminated and the uptake rate of glucose was increased from 82.1 C-mmol (g DW h)(-1) to 98.9 C-mmol (g DW h)(-1) by mutagenizing the parent strain with UV, and therefore the mutant strain converts mostly pyruvate to lactic acid with a higher productivity (1.76 g L(-1) h(-1)) than the parent strain (0.95 g L(-1) h(-1)).

  13. Promotion of Intestinal Peristalsis by Bifidobacterium spp. Capable of Hydrolysing Sennosides in Mice

    PubMed Central

    Matsumoto, Mitsuharu; Ishige, Atsushi; Yazawa, Yuka; Kondo, Manami; Muramatsu, Koji; Watanabe, Kenji

    2012-01-01

    Background While there are a variety of identifiable causes of constipation, even idiopathic constipation has different possible mechanisms. Sennosides, the main laxative constituents of Daio, an ancient Kampo medicine, are prodrugs that are converted to an active principle, rheinanthrone, by intestinal microbiota. In this study, we aimed to determine the sennoside hydrolysis ability of lactic acid bacterial strains and bifidobacteria in the intestine and to investigate their effect on intestinal peristalsis in mice. Methodology/Principal Findings A total of 88 lactic acid bacterial strains and 47 bifidobacterial strains were evaluated for their ability to hydrolyze sennosides. Our results revealed that 4 strains, all belonging to the genus Bifidobacterium, had strong sennoside hydrolysis ability, exhibiting a decrease of >70% of sennoside content. By thin-layer chromatography analysis, rheinanthrone was detected in the medium cultured with B. pseudocatenulatum LKM10070 and B. animalis subsp. lactis LKM512. The fecal sennoside contents significantly (P<0.001) decreased upon oral administration of these strains as compared with the control. Intestinal peristalsis activity was measured by the moved distance of the charcoal powder administered orally. The distance travelled by the charcoal powder in LKM512-treated mice was significantly longer than that of control (P<0.05). Intestinal microbiota were analysed by real-time PCR and terminal-restriction fragment length polymorphism. The diversity of the intestinal microbiota was reduced by kanamycin treatment and the diversity was not recovered by LKM512 treatment. Conclusion/Significance We demonstrated that intestinal peristalsis was promoted by rheinanthrone produced by hydrolysis of sennoside by strain LKM512 and LKM10070. PMID:22384059

  14. Promotion of intestinal peristalsis by Bifidobacterium spp. capable of hydrolysing sennosides in mice.

    PubMed

    Matsumoto, Mitsuharu; Ishige, Atsushi; Yazawa, Yuka; Kondo, Manami; Muramatsu, Koji; Watanabe, Kenji

    2012-01-01

    While there are a variety of identifiable causes of constipation, even idiopathic constipation has different possible mechanisms. Sennosides, the main laxative constituents of Daio, an ancient Kampo medicine, are prodrugs that are converted to an active principle, rheinanthrone, by intestinal microbiota. In this study, we aimed to determine the sennoside hydrolysis ability of lactic acid bacterial strains and bifidobacteria in the intestine and to investigate their effect on intestinal peristalsis in mice. A total of 88 lactic acid bacterial strains and 47 bifidobacterial strains were evaluated for their ability to hydrolyze sennosides. Our results revealed that 4 strains, all belonging to the genus Bifidobacterium, had strong sennoside hydrolysis ability, exhibiting a decrease of >70% of sennoside content. By thin-layer chromatography analysis, rheinanthrone was detected in the medium cultured with B. pseudocatenulatum LKM10070 and B. animalis subsp. lactis LKM512. The fecal sennoside contents significantly (P<0.001) decreased upon oral administration of these strains as compared with the control. Intestinal peristalsis activity was measured by the moved distance of the charcoal powder administered orally. The distance travelled by the charcoal powder in LKM512-treated mice was significantly longer than that of control (P<0.05). Intestinal microbiota were analysed by real-time PCR and terminal-restriction fragment length polymorphism. The diversity of the intestinal microbiota was reduced by kanamycin treatment and the diversity was not recovered by LKM512 treatment. We demonstrated that intestinal peristalsis was promoted by rheinanthrone produced by hydrolysis of sennoside by strain LKM512 and LKM10070.

  15. Probiotic Yogurt Culture Bifidobacterium Animalis Subsp. Lactis BB-12 and Lactobacillus Acidophilus LA-5 Modulate the Cytokine Secretion by Peripheral Blood Mononuclear Cells from Patients with Ulcerative Colitis.

    PubMed

    Sheikhi, A; Shakerian, M; Giti, H; Baghaeifar, M; Jafarzadeh, A; Ghaed, V; Heibor, M R; Baharifar, N; Dadafarin, Z; Bashirpour, G

    2016-06-01

    There are some evidences for the immunomodulation disorders in the response to intestinal microbiota in inflammatory bowel disease. Yogurt is a fermented milk product made with a starter culture consisting of different probiotics which could be colonized in intestine. However, the role of probiotics in the aetiopathogenesis of ulcerative colitis (UC) has not been clarified. To determine how the immune system responds to these bacteria this study was planned. Bifidobacterium lactis BB-12 (B. lactis) and Lactobacillus acidophilus LA-5 (L. acidophilus) were cultivated on MRS broth. PBMCs of 36 UC patients were separated by Ficoll-Hypaque centrifugation and co-cultured with different concentrations of UV killed bacteria in RPMI-1 640 plus 10% FCS for 48/72 h. IL-10, TGF-β, IFN-γ and TNF-α were measured in supernatant of PBMCs by ELISA. Both bacteria significantly augmented IL-10, TGF-β, IFN-γ and TNF-α compared to control (p<0.001). The secretion levels of IL-10 and TGF-β by B. lactis- compared to L. acidophilus-stimulated PBMCs were significantly higher (p<0.05, p<0.01 respectively). The secretion levels of TNF-α and IFN-γ by PBMCs after 72 h were significantly lower compared to 48 h stimulation by B. lactis (p<0.001, p<0.035 respectively). These data show that both probiotics may trigger the pro- and anti-inflammatory immune response of UC patients. It seems that IL-10/TGF-β uprising by B. lactis could be the reason of TNF-α/IFN-γ reduction. Therefore albeit B. lactis still stimulates the effector Th cells but because of more stimulatory effect on Tregs, it could be a good potential therapeutic candidate for further investigation. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Heterologous expression of Streptococcus mutans Cnm in Lactococcus lactis promotes intracellular invasion, adhesion to human cardiac tissues and virulence.

    PubMed

    Freires, Irlan A; Avilés-Reyes, Alejandro; Kitten, Todd; Simpson-Haidaris, P J; Swartz, Michael; Knight, Peter A; Rosalen, Pedro L; Lemos, José A; Abranches, Jacqueline

    2017-01-02

    In S. mutans, the expression of the surface glycoprotein Cnm mediates binding to extracellular matrix proteins, endothelial cell invasion and virulence in the Galleria mellonella invertebrate model. To further characterize Cnm as a virulence factor, the cnm gene from S. mutans strain OMZ175 was expressed in the non-pathogenic Lactococcus lactis NZ9800 using a nisin-inducible system. Despite the absence of the machinery necessary for Cnm glycosylation, Western blot and immunofluorescence microscopy analyses demonstrated that Cnm was effectively expressed and translocated to the cell wall of L. lactis. Similar to S. mutans, expression of Cnm in L. lactis enabled robust binding to collagen and laminin, invasion of human coronary artery endothelial cells and increased virulence in G. mellonella. Using an ex vivo human heart tissue colonization model, we showed that Cnm-positive strains of either S. mutans or L. lactis outcompete their Cnm-negative counterparts for tissue colonization. Finally, Cnm expression facilitated L. lactis adhesion and colonization in a rabbit model of infective endocarditis. Collectively, our results provide unequivocal evidence that binding to extracellular matrices mediated by Cnm is an important virulence attribute of S. mutans and confirm the usefulness of the L. lactis heterologous system for further characterization of bacterial virulence factors.

  17. Identification of Coccoidal Bacteria in Traditional Fermented Milk Products from Mongolia, and the Fermentation Properties of the Predominant Species, Streptococcus thermophilus

    PubMed Central

    2015-01-01

    The objective of this study was to identify the coccoidal bacteria present in 188 samples of fermented yaks’, mares’ and cows’ milk products collected from 12 different regions in Mongolia. Furthermore, we evaluated the fermentation properties of ten selected isolates of the predominant species, Streptococcus (S.) thermophiles, during the process of milk fermentation and subsequent storage of the resulting yoghurt at 4℃. Overall, 159 isolates were obtained from 188 samples using M17 agar. These isolates were presumed to be lactic acid bacteria based on their gram-positive and catalase-negative properties, and were identified to species level using 16S rRNA gene sequence analysis. These coccoid isolates were distributed in four genera and six species: Enterococcus (E.) durans, Enterococcus (E.) faecalis, Lactococcus (Lac.) subsp. lactis, Leuconostoc (Leuc.) lactis, Leuconostoc (Leuc.) mesenteroides. subsp. mesenteroides and S. thermophilus. Among these S. thermophilus was the most common species in most samples. From evaluation of the fermentation characteristics (viable counts, pH, titratable acidity [TA]) of ten selected S. thermophilus isolates we could identify four isolates (IMAU 20246, IMAU20764, IMAU20729 and IMAU20738) that were fast acid producers. IMAU20246 produced the highest concentrations of lactic acid and formic acid. These isolates have potential as starter cultures for yoghurt production. PMID:26761898

  18. The Baseplate of Lactobacillus delbrueckii Bacteriophage Ld17 Harbors a Glycerophosphodiesterase*

    PubMed Central

    Cornelissen, Anneleen; Sadovskaya, Irina; Vinogradov, Evgeny; Blangy, Stéphanie; Spinelli, Silvia; Casey, Eoghan; Mahony, Jennifer; Noben, Jean-Paul; Dal Bello, Fabio; Cambillau, Christian; van Sinderen, Douwe

    2016-01-01

    Glycerophosphodiester phosphodiesterases (GDPDs; EC 3.1.4.46) typically hydrolyze glycerophosphodiesters to sn-glycerol 3-phosphate (Gro3P) and their corresponding alcohol during patho/physiological processes in bacteria and eukaryotes. GDPD(-like) domains were identified in the structural particle of bacterial viruses (bacteriophages) specifically infecting Gram-positive bacteria. The GDPD of phage 17 (Ld17; GDPDLd17), representative of the group b Lactobacillus delbrueckii subsp. bulgaricus (Ldb)-infecting bacteriophages, was shown to hydrolyze, besides the simple glycerophosphodiester, two complex surface-associated carbohydrates of the Ldb17 cell envelope: the Gro3P decoration of the major surface polysaccharide d-galactan and the oligo(glycerol phosphate) backbone of the partially glycosylated cell wall teichoic acid, a minor Ldb17 cell envelope component. Degradation of cell wall teichoic acid occurs according to an exolytic mechanism, and Gro3P substitution is presumed to be inhibitory for GDPDLd17 activity. The presence of the GDPDLd17 homotrimer in the viral baseplate structure involved in phage-host interaction together with the dependence of native GDPD activity, adsorption, and efficiency of plating of Ca2+ ions supports a role for GDPDLd17 activity during phage adsorption and/or phage genome injection. In contrast to GDPDLd17, we could not identify any enzymatic activity for the GDPD-like domain in the neck passage structure of phage 340, a 936-type Lactococcus lactis subsp. lactis bacteriophage. PMID:27268053

  19. Bioaccessible Antioxidants in Milk Fermented by Bifidobacterium longum subsp. longum Strains

    PubMed Central

    Gagnon, Mérilie; Savard, Patricia; Rivière, Audrey; LaPointe, Gisèle

    2015-01-01

    Bifidobacterium longum subsp. longum is among the dominant species of the human gastrointestinal microbiota and could thus have potential as probiotics. New targets such as antioxidant properties have interest for beneficial effects on health. The objective of this study was to evaluate the bioaccessibility of antioxidants in milk fermented by selected B. longum subsp. longum strains during in vitro dynamic digestion. The antioxidant capacity of cell extracts from 38 strains, of which 32 belong to B. longum subsp. longum, was evaluated with the ORAC (oxygen radical absorbance capacity) method. On the basis of screening and gene sequence typing by multilocus locus sequence analysis (MLSA), five strains were chosen for fermenting reconstituted skim milk. Antioxidant capacity varied among the strains tested (P = 0.0009). Two strains of B. longum subsp. longum (CUETM 172 and 171) showed significantly higher ORAC values than the other bifidobacteria strains. However, there does not appear to be a relationship between gene sequence types and antioxidant capacity. The milk fermented by each of the five strains selected (CUETM 268, 172, 245, 247, or PRO 16-10) did not have higher initial ORAC values compared to the nonfermented milk samples. However, higher bioaccessibility of antioxidants in fermented milk (175–358%) was observed during digestion. PMID:25802836

  20. 76 FR 63298 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... thuringiensis subsp. kurstaki strain VBTS 2546 fermentation solids, spores, and insecticidal toxins at 67... ingredient: Bacillus thuringiensis subsp. kurstaki strain VBTS 2546 fermentation solids, spores, and...

  1. Fermentation and aerobic metabolism of cellodextrins by yeasts. [Candida wickerhamii; C. guiliermondii; C. molischiana; Debaryomyces polymorphus; Pichia guilliermondii; Clavispora lusitaniae; Kluyveromyces lactis; Brettanomyces claussenii; Rhodotorula minuta; Dekkera intermedia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freer, S.N.

    1991-03-01

    The fermentation and aerobic metabolism of cellodextrins by 14 yeast species or strains was monitored. When grown aerobically, Candida wickerhamii, C. guilliermondii, and C. molischiana metabolized cellodextrins of degree of polymerization 3 to 6. C. wicherhamii and C. molischiana also fermented these substrates, while C. guilliermondii fermented only cellodextrins of degree of polymerization {<=} 3. Debaryomyces polymorphus, Pichia guilliermondii, Clavispora lusitaniae, and one of two strains of Kluyveromyces lactis metabolized glucose, cellobiose, and cellotriose when grown aerobically. These yeasts also fermented these substrates, except for K. lactis, which fermented only glucose and cellobiose. The remaining species/strains tested, K. lactis, Brettanomycesmore » claussenii, Brettanomyces anomalus, Kluyveromyces dobzhanskii, Rhodotorula minuta, and Dekkera intermedia, both fermented and aerobically metabolized glucose and cellobiose. Crude enzyme preparations from all 14 yeast species or strains were tested for ability to hydrolyze cellotriose and cellotretose. Most of the yeasts produced an enzyme(s) capable of hydrolyzing cellotriose. However, with two exceptions, R. minuta and P. guilliermondii, only the yeasts that metabolized cellodextrins of degree of polymerization >3 produced an enzyme(s) that hydrolyzed cellotretose.« less

  2. Plasmid integration in a wide range of bacteria mediated by the integrase of Lactobacillus delbrueckii bacteriophage mv4.

    PubMed Central

    Auvray, F; Coddeville, M; Ritzenthaler, P; Dupont, L

    1997-01-01

    Bacteriophage mv4 is a temperate phage infecting Lactobacillus delbrueckii subsp. bulgaricus. During lysogenization, the phage integrates its genome into the host chromosome at the 3' end of a tRNA(Ser) gene through a site-specific recombination process (L. Dupont et al., J. Bacteriol., 177:586-595, 1995). A nonreplicative vector (pMC1) based on the mv4 integrative elements (attP site and integrase-coding int gene) is able to integrate into the chromosome of a wide range of bacterial hosts, including Lactobacillus plantarum, Lactobacillus casei (two strains), Lactococcus lactis subsp. cremoris, Enterococcus faecalis, and Streptococcus pneumoniae. Integrative recombination of pMC1 into the chromosomes of all of these species is dependent on the int gene product and occurs specifically at the pMC1 attP site. The isolation and sequencing of pMC1 integration sites from these bacteria showed that in lactobacilli, pMC1 integrated into the conserved tRNA(Ser) gene. In the other bacterial species where this tRNA gene is less or not conserved; secondary integration sites either in potential protein-coding regions or in intergenic DNA were used. A consensus sequence was deduced from the analysis of the different integration sites. The comparison of these sequences demonstrated the flexibility of the integrase for the bacterial integration site and suggested the importance of the trinucleotide CCT at the 5' end of the core in the strand exchange reaction. PMID:9068626

  3. Biological suppression of potato ring rot by fluorescent pseudomonads.

    PubMed Central

    de la Cruz, A R; Poplawsky, A R; Wiese, M V

    1992-01-01

    Three strains of fluorescent pseudomonads (IS-1, IS-2, and IS-3) isolated from potato underground stems with roots showed in vitro antibiosis against 30 strains of the ring rot bacterium Clavibacter michiganensis subsp. sepedonicus. On the basis of morphological and biochemical tests and fatty acid analysis, IS-1 and IS-2 were identified as Pseudomonas aureofaciens and IS-3 was identified as P. fluorescens biovar III. IS-1 was the most inhibitory to C. michiganensis subsp. sepedonicus strains in vitro, followed by IS-3 and IS-2. Suppression of ring rot by these antagonists was demonstrated in greenhouse trials with stem-cultured potato (cv. Russet Burbank) seedlings. Although each antagonist significantly reduced C. michiganensis subsp. sepedonicus populations, only IS-1 reduced infection by C. michiganensis subsp. sepedonicus. In a second experiment, treatment with IS-1 (10(9) CFU/ml) significantly reduced ring rot infection by 23.4 to 26.7% after 5 to 8 weeks. The average C. michiganensis subsp. sepedonicus population was also significantly reduced by 50 to 52%. Application of different combinations of antagonist strains was not more effective than single-strain treatment. Images PMID:1622275

  4. Growth phase-dependent proteomes of the Malaysian isolated Lactococcus lactis dairy strain M4 using label-free qualitative shotgun proteomics analysis.

    PubMed

    Yap, Theresa Wan Chen; Rabu, Amir; Abu Bakar, Farah Diba; Rahim, Raha Abdul; Mahadi, Nor Muhammad; Illias, Rosli Md; Murad, Abdul Munir Abdul

    2014-01-01

    Lactococcus lactis is the most studied mesophilic fermentative lactic acid bacterium. It is used extensively in the food industry and plays a pivotal role as a cell factory and also as vaccine delivery platforms. The proteome of the Malaysian isolated L. lactis M4 dairy strain, obtained from the milk of locally bred cows, was studied to elucidate the physiological changes occurring between the growth phases of this bacterium. In this study, ultraperformance liquid chromatography nanoflow electrospray ionization tandem mass spectrometry (UPLC- nano-ESI-MS(E)) approach was used for qualitative proteomic analysis. A total of 100 and 121 proteins were identified from the midexponential and early stationary growth phases, respectively, of the L. lactis strain M4. During the exponential phase, the most important reaction was the generation of sufficient energy, whereas, in the early stationary phase, the metabolic energy pathways decreased and the biosynthesis of proteins became more important. Thus, the metabolism of the cells shifted from energy production in the exponential phase to the synthesis of macromolecules in the stationary phase. The resultant proteomes are essential in providing an improved view of the cellular machinery of L. lactis during the transition of growth phases and hence provide insight into various biotechnological applications.

  5. Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains.

    PubMed Central

    Pelletier, C; Bouley, C; Cayuela, C; Bouttier, S; Bourlioux, P; Bellon-Fontaine, M N

    1997-01-01

    Hydrophilic and electrostatic cell surface properties of eight Lactobacillus strains were characterized by using the microbial adhesion to solvents method and microelectrophoresis, respectively. All strains appeared relatively hydrophilic. The strong microbial adhesion to chloroform, an acidic solvent, in comparison with microbial adhesion to hexadecane, an apolar n-alkane, demonstrated the particularity of lactobacilli to have an important electron donor and basic character and consequently their potential ability to generate Lewis acid-base interactions with a support. Regardless of their electrophoretic mobility (EM), strains were in general slightly negatively charged at alkaline pH. A pH-dependent behavior concerning cell surface charges was observed. The EM decreased progressively with more acidic pHs for the L. casei subsp. casei and L. paracasei subsp. paracasei strains until the isoelectric point (IEP), i.e., the pH value for which the EM is zero. On the other hand, the EM for the L. rhamnosus strains was stable from pH 8 to pH 3 to 4, at which point there was a shift near the IEP. Both L. casei subsp. casei and L. paracasei subsp. paracasei strains were characterized by an IEP of around 4, whereas L. rhamnosus strains possessed a markedly lower IEP of 2. The present study showed that the cell surface physicochemical properties of lactobacilli seem to be, at least in part and under certain experimental conditions, particular to the bacterial species. Such differences detected between species are likely to be accompanied by some particular changes in cell wall chemical composition. PMID:9143109

  6. Comparative Genomics of Campylobacter fetus from Reptiles and Mammals Reveals Divergent Evolution in Host-Associated Lineages.

    PubMed

    Gilbert, Maarten J; Miller, William G; Yee, Emma; Zomer, Aldert L; van der Graaf-van Bloois, Linda; Fitzgerald, Collette; Forbes, Ken J; Méric, Guillaume; Sheppard, Samuel K; Wagenaar, Jaap A; Duim, Birgitta

    2016-07-02

    Campylobacter fetus currently comprises three recognized subspecies, which display distinct host association. Campylobacter fetus subsp. fetus and C fetus subsp. venerealis are both associated with endothermic mammals, primarily ruminants, whereas C fetus subsp. testudinum is primarily associated with ectothermic reptiles. Both C. fetus subsp. testudinum and C. fetus subsp. fetus have been associated with severe infections, often with a systemic component, in immunocompromised humans. To study the genetic factors associated with the distinct host dichotomy in C. fetus, whole-genome sequencing and comparison of mammal- and reptile-associated C fetus was performed. The genomes of C fetus subsp. testudinum isolated from either reptiles or humans were compared with elucidate the genetic factors associated with pathogenicity in humans. Genomic comparisons showed conservation of gene content and organization among C fetus subspecies, but a clear distinction between mammal- and reptile-associated C fetus was observed. Several genomic regions appeared to be subspecies specific, including a putative tricarballylate catabolism pathway, exclusively present in C fetus subsp. testudinum strains. Within C fetus subsp. testudinum, sapA, sapB, and sapAB type strains were observed. The recombinant locus iamABC (mlaFED) was exclusively associated with invasive C fetus subsp. testudinum strains isolated from humans. A phylogenetic reconstruction was consistent with divergent evolution in host-associated strains and the existence of a barrier to lateral gene transfer between mammal- and reptile-associated C fetus Overall, this study shows that reptile-associated C fetus subsp. testudinum is genetically divergent from mammal-associated C fetus subspecies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Complete Genome Sequence of the Quality Control Strain Staphylococcus aureus subsp. aureus ATCC 25923

    PubMed Central

    Treangen, Todd J.; Maybank, Rosslyn A.; Enke, Sana; Friss, Mary Beth; Diviak, Lynn F.; Karaolis, David K. R.; Koren, Sergey; Ondov, Brian; Phillippy, Adam M.; Bergman, Nicholas H.

    2014-01-01

    Staphylococcus aureus subsp. aureus ATCC 25923 is commonly used as a control strain for susceptibility testing to antibiotics and as a quality control strain for commercial products. We present the completed genome sequence for the strain, consisting of the chromosome and a 27.5-kb plasmid. PMID:25377701

  8. Specific Detection of Clavibacter michiganensis subsp. sepedonicus by Amplification of Three Unique DNA Sequences Isolated by Subtraction Hybridization.

    PubMed

    Mills, D; Russell, B W; Hanus, J W

    1997-08-01

    ABSTRACT Three single-copy, unique DNA fragments, designated Cms50, Cms72, and Cms85, were isolated from strain CS3 of Clavibacter michiganensis subsp. sepedonicus by subtraction hybridization using driver DNA from C. michiganensis subsp. insidiosus, C. michiganensis subsp. michiganensis, and Rhodococcus facians. Radio-labeled probes made of these fragments and used in Southern blot analysis revealed each to be absolutely specific to all North American C. michiganensis subsp. sepedonicus strains tested, including plasmidless and nonmucoid strains. The probes have no homology with genomic DNA from related C. michiganensis subspecies insidiosus, michiganensis, and tessellarius, nor with DNA from 11 additional bacterial species and three unidentified strains, some of which have been previously reported to display cross-reactivity with C. michiganensis subsp. sepedonicus-specific antisera. The three fragments shared no homology, and they appeared to be separated from each other by at least 20 kbp in the CS3 genome. Internal primer sets permitted amplification of each fragment by the polymerase chain reaction (PCR) only from C. michiganensis subsp. sepedonicus DNA. In a PCR-based sensitivity assay using a primer set that amplifies Cms85, the lowest level of detection of C. michiganensis subsp. sepedonicus was 100 CFU per milliliter when cells were added to potato core fluid. Erroneous results that may arise from PCR artifacts and mutational events are, therefore, minimized by the redundancy of the primer sets, and the products should be verifiable with unique capture probes in sequence-based detection systems.

  9. Differential Substrate Usage and Metabolic Fluxes in Francisella tularensis Subspecies holarctica and Francisella novicida

    PubMed Central

    Chen, Fan; Rydzewski, Kerstin; Kutzner, Erika; Häuslein, Ina; Schunder, Eva; Wang, Xinzhe; Meighen-Berger, Kevin; Grunow, Roland; Eisenreich, Wolfgang; Heuner, Klaus

    2017-01-01

    Francisella tularensis is an intracellular pathogen for many animals causing the infectious disease, tularemia. Whereas F. tularensis subsp. holarctica is highly pathogenic for humans, F. novicida is almost avirulent for humans, but virulent for mice. In order to compare metabolic fluxes between these strains, we performed 13C-labeling experiments with F. tularensis subsp. holarctica wild type (beaver isolate), F. tularensis subsp. holarctica strain LVS, or F. novicida strain U112 in complex media containing either [U-13C6]glucose, [1,2-13C2]glucose, [U-13C3]serine, or [U-13C3]glycerol. GC/MS-based isotopolog profiling of amino acids, polysaccharide-derived glucose, free fructose, amino sugars derived from the cell wall, fatty acids, 3-hydroxybutyrate, lactate, succinate and malate revealed uptake and metabolic usage of all tracers under the experimental conditions with glucose being the major carbon source for all strains under study. The labeling patterns of the F. tularensis subsp. holarctica wild type were highly similar to those of the LVS strain, but showed remarkable differences to the labeling profiles of the metabolites from the F. novicida strain. Glucose was directly used for polysaccharide and cell wall biosynthesis with higher rates in F. tularensis subsp. holarctica or metabolized, with higher rates in F. novicida, via glycolysis and the non-oxidative pentose phosphate pathway (PPP). Catabolic turnover of glucose via gluconeogenesis was also observed. In all strains, Ala was mainly synthesized from pyruvate, although no pathway from pyruvate to Ala is annotated in the genomes of F. tularensis and F. novicida. Glycerol efficiently served as a gluconeogenetic substrate in F. novicida, but only less in the F. tularensis subsp. holarctica strains. In any of the studied strains, serine did not serve as a major substrate and was not significantly used for gluconeogenesis under the experimental conditions. Rather, it was only utilized, at low rates, in downstream metabolic processes, e.g., via acetyl-CoA in the citrate cycle and for fatty acid biosynthesis, especially in the F. tularensis subsp. holarctica strains. In summary, the data reflect differential metabolite fluxes in F. tularensis subsp. holarctica and F. novicida suggesting that the different utilization of substrates could be related to host specificity and virulence of Francisella. PMID:28680859

  10. Evaluation of the probiotic properties of new Lactobacillus and Bifidobacterium strains and their in vitro effect.

    PubMed

    Presti, I; D'Orazio, G; Labra, M; La Ferla, B; Mezzasalma, V; Bizzaro, G; Giardina, S; Michelotti, A; Tursi, F; Vassallo, M; Di Gennaro, P

    2015-07-01

    Probiotic ingestion is recommended as a preventive approach to maintain the balance of the intestinal microbiota and to enhance the human well-being. During the whole life of each individual, the gut microbiota composition could be altered by lifestyle, diet, antibiotic therapies and other stress conditions, which may lead to acute and chronic disorders. Hence, probiotics can be administered for the prevention or treatment of some disorders, including lactose malabsorption, acute diarrhoea, irritable bowel syndrome, necrotizing enterocolitis and mild forms of inflammatory bowel disease. The probiotic-mediated effect is an important issue that needs to be addressed in relation to strain-specific probiotic properties. In this work, the probiotic properties of new Lactobacillus and Bifidobacterium strains were screened, and their effects in vitro were evaluated. They were screened for probiotic properties by determining their tolerance to low pH and to bile salts, antibiotic sensitivity, antimicrobial activity and vitamin B8, B9 and B12 production, and by considering their ability to increase the antioxidant potential and to modulate the inflammatory status of systemic-miming cell lines in vitro. Three out of the examined strains presenting the most performant probiotic properties, as Lactobacillus plantarum PBS067, Lactobacillus rhamnosus PBS070 and Bifidobacterium animalis subsp. lactis PBSO75, were evaluated for their effects also on human intestinal HT-29 cell line. The obtained results support the possibility to move to another level of study, that is, the oral administration of these probiotical strains to patients with acute and chronic gut disorders, by in vivo experiments.

  11. Bifidobacterium animalis ssp. lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice.

    PubMed

    Martín, Rebeca; Laval, Laure; Chain, Florian; Miquel, Sylvie; Natividad, Jane; Cherbuy, Claire; Sokol, Harry; Verdu, Elena F; van Hylckama Vlieg, Johan; Bermudez-Humaran, Luis G; Smokvina, Tamara; Langella, Philippe

    2016-01-01

    Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability, and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations, and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4(+) lymphocyte alterations in both spleen and mesenteric lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4(+) Th1 cells) by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10). Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability.

  12. Combined chemical and physical transformation method with RbCl and sepiolite for the transformation of various bacterial species.

    PubMed

    Ren, Jun; Lee, Haram; Yoo, Seung Min; Yu, Myeong-Sang; Park, Hansoo; Na, Dokyun

    2017-04-01

    DNA transformation that delivers plasmid DNAs into bacterial cells is fundamental in genetic manipulation to engineer and study bacteria. Developed transformation methods to date are optimized to specific bacterial species for high efficiency. Thus, there is always a demand for simple and species-independent transformation methods. We herein describe the development of a chemico-physical transformation method that combines a rubidium chloride (RbCl)-based chemical method and sepiolite-based physical method, and report its use for the simple and efficient delivery of DNA into various bacterial species. Using this method, the best transformation efficiency for Escherichia coli DH5α was 4.3×10 6 CFU/μg of pUC19 plasmid, which is higher than or comparable to the reported transformation efficiencies to date. This method also allowed the introduction of plasmid DNAs into Bacillus subtilis (5.7×10 3 CFU/μg of pSEVA3b67Rb), Bacillus megaterium (2.5×10 3 CFU/μg of pSPAsp-hp), Lactococcus lactis subsp. lactis (1.0×10 2 CFU/μg of pTRKH3-ermGFP), and Lactococcus lactis subsp. cremoris (2.2×10 2 CFU/μg of pMSP3535VA). Remarkably, even when the conventional chemical and physical methods failed to generate transformed cells in Bacillus sp. and Enterococcus faecalis, E. malodoratus and E. mundtii, our combined method showed a significant transformation efficiency (2.4×10 4 , 4.5×10 2 , 2×10 1 , and 0.5×10 1 CFU/μg of plasmid DNA). Based on our results, we anticipate that our simple and efficient transformation method should prove usefulness for introducing DNA into various bacterial species without complicated optimization of parameters affecting DNA entry into the cell. Copyright © 2017. Published by Elsevier B.V.

  13. Transcriptome analysis shows activation of the arginine deiminase pathway in Lactococcus lactis as a response to ethanol stress.

    PubMed

    Díez, Lorena; Solopova, Ana; Fernández-Pérez, Rocío; González, Miriam; Tenorio, Carmen; Kuipers, Oscar P; Ruiz-Larrea, Fernanda

    2017-09-18

    This paper describes the molecular response of Lactococcus lactis NZ9700 to ethanol. This strain is a well-known nisin producer and a lactic acid bacteria (LAB) model strain. Global transcriptome profiling using DNA microarrays demonstrated a bacterial adaptive response to the presence of 2% ethanol in the culture broth and differential expression of 67 genes. The highest up-regulation was detected for those genes involved in arginine degradation through the arginine deiminase (ADI) pathway (20-40 fold up-regulation). The metabolic responses to ethanol of wild type L. lactis strains were studied and compared to those of regulator-deletion mutants MG∆argR and MG∆ahrC. The results showed that in the presence of 2% ethanol those strains with an active ADI pathway reached higher growth rates when arginine was available in the culture broth than in absence of arginine. In a chemically defined medium strains with an active ADI pathway consumed arginine and produced ornithine in the presence of 2% ethanol, hence corroborating that arginine catabolism is involved in the bacterial response to ethanol. This is the first study of the L. lactis response to ethanol stress to demonstrate the relevance of arginine catabolism for bacterial adaptation and survival in an ethanol containing medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Genome Sequence of Lactobacillus sakei subsp. sakei LS25, a Commercial Starter Culture Strain for Fermented Sausage.

    PubMed

    McLeod, Anette; Brede, Dag Anders; Rud, Ida; Axelsson, Lars

    2013-07-11

    Lactobacillus sakei is a lactic acid bacterium associated primarily with fermented meat and fish. Here, we present the draft genome sequence of L. sakei subsp. sakei strain LS25, a commercial starter culture strain for fermented sausage.

  15. Complete Genome Sequence of the Quality Control Strain Staphylococcus aureus subsp. aureus ATCC 25923.

    PubMed

    Treangen, Todd J; Maybank, Rosslyn A; Enke, Sana; Friss, Mary Beth; Diviak, Lynn F; Karaolis, David K R; Koren, Sergey; Ondov, Brian; Phillippy, Adam M; Bergman, Nicholas H; Rosovitz, M J

    2014-11-06

    Staphylococcus aureus subsp. aureus ATCC 25923 is commonly used as a control strain for susceptibility testing to antibiotics and as a quality control strain for commercial products. We present the completed genome sequence for the strain, consisting of the chromosome and a 27.5-kb plasmid. Copyright © 2014 Treangen et al.

  16. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.

    PubMed

    Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist; Jespersen, Lene

    2015-03-01

    Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study was to investigate the effect of dissolved oxygen on acidification kinetics and redox potential during milk fermentation by lactic acid bacteria (LAB). Fermentations were conducted by single strains isolated from mixed DL-starter culture, including Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and Leuconostoc mesenteroides ssp. cremoris, by the DL-starter culture, and by the type strains. High and low levels of oxygen were produced by flushing milk with oxygen or nitrogen, respectively. The kinetics of milk acidification was characterized by the maximum rate and time of acidification (Vamax and Tamax), the maximum rate and time of reduction (Vrmax and Trmax), the minimum redox potential (Eh7 final), and time of reaching Eh7 final (Trfinal). Variations in kinetic parameters were observed at both the species and strain levels. Two of the Lc. lactis ssp. lactis strains were not able to lower redox potential to negative values. Kinetic parameters of the DL-starter culture were comparable with the best acidifying and reducing strains, indicating their additive effects. Acidification curves were mostly diauxic at all oxygen levels, displaying 2 maxima of acidification rate: before (aerobic maximum) and after (anaerobic maximum) oxygen depletion. The redox potential decreased concurrently with oxygen consumption and continued to decrease at slower rate until reaching the final values, indicating involvement of both oxygen and microbiological activity in the redox state of milk. Oxygen flushing had a negative effect on reduction and acidification capacity of tested LAB. Reduction was significantly delayed at high initial oxygen, exhibiting longer Trmax, Trfinal, or both. Concurrently, anaerobic acidification rate maximum Vamax was decreased and Tamax was extended. Fermentation kinetics in nitrogen-flushed milk was not statistically different from that in untreated milk except for Lc. lactis ssp. lactis CHCC D2, which showed faster reduction time after nitrogen flushing. This study clarifies the relationship between the redox state in milk and acidification kinetics of the predominant subspecies in DL-starter cultures. This knowledge is important for dairies to ensure optimized, fast, and controlled milk fermentations, leading to greater standardization of dairy products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Improvement of DNA transfer frequency and transposon mutagenesis of Erwinia carotovora subsp. betavasculorum.

    PubMed Central

    Rella, M; Axelrood, P E; Weinhold, A R; Schroth, M N

    1989-01-01

    The production of antibiotics and their role in microbial competition under natural conditions can be readily studied by the use of transposon mutants. Several antibiotic-producing strains of Erwinia carotovora subsp. betavasculorum were unable to accept foreign DNA. A plasmid delivery system was developed, using ethyl methanesulfonate mutagenesis, which entailed isolating E. carotovora subsp. betavasculorum mutants able to accept foreign DNA and transfer it to other strains. This enabled transposon mutagenesis of a wild-type antibiotic-producing strain of E. carotovora subsp. betavasculorum. Twelve antibiotic-negative mutants were isolated, and one of these showed a reduction in antibiotic production in vitro. Many of these mutants also showed a reduction in their ability to macerate potato tissue. The mutants were classified into four genetic groups on the basis of their genetic and phenotypic characteristics, indicating that several genes are involved in antibiotic biosynthesis by E. carotovora subsp. betavasculorum. PMID:2543291

  18. Draft Genome Sequences of Three Pectobacterium Strains Causing Blackleg of Potato: P. carotovorum subsp. brasiliensis ICMP 19477, P. atrosepticum ICMP 1526, and P. carotovorum subsp. carotovorum UGC32

    PubMed Central

    Fiers, Mark W. E. J.; Lu, Ashley; Armstrong, Karen F.

    2015-01-01

    Blackleg is a disease caused by several species of Pectobacterium that results in losses to potato crops worldwide. Here, we report the draft genomes of three taxonomically and geographically distinct blackleg-causing strains of Pectobacterium: P. carotovorum subsp. brasiliensis ICMP 19477, P. atrosepticum ICMP 1526, and P. carotovorum subsp. carotovorum UGC32. Comparison of these genomes will support the identification of common traits associated with their capacity to cause blackleg. PMID:26251497

  19. Response of Leuconostoc strains against technological stress factors: Growth performance and volatile profiles.

    PubMed

    Cicotello, Joaquín; Wolf, Irma V; D'Angelo, Luisa; Guglielmotti, Daniela M; Quiberoni, Andrea; Suárez, Viviana B

    2018-08-01

    The ability of twelve strains belonging to three Leuconostoc species (Leuconostoc mesenteroides, Leuconostoc lactis and Leuconostoc pseudomesenteroides) to grow under diverse sub-lethal technological stress conditions (cold, acidic, alkaline and osmotic) was evaluated in MRS broth. Two strains, Leuconostoc lactis Ln N6 and Leuconostoc mesenteroides Ln MB7, were selected based on their growth under sub-lethal conditions, and volatile profiles in RSM (reconstituted skim milk) at optimal and under stress conditions were analyzed. Growth rates under sub-lethal conditions were strain- and not species-dependent. Volatilomes obtained from the two strains studied were rather diverse. Particularly, Ln N6 (Ln. lactis) produced more ethanol and acetic acid than Ln MB7 (Ln. mesenteroides) and higher amounts and diversity of the rest of volatile compounds as well, at all times of incubation. For the two strains studied, most of stress conditions applied diminished the amounts of ethanol and acetic acid produced and the diversity and levels of the rest of volatile compounds. These results were consequence of the different capacity of the strains to grow under each stress condition tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Expression of six peptidases from Lactobacillus helveticus in Lactococcus lactis.

    PubMed

    Luoma, S; Peltoniemi, K; Joutsjoki, V; Rantanen, T; Tamminen, M; Heikkinen, I; Palva, A

    2001-03-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.

  1. Expression of Six Peptidases from Lactobacillus helveticus in Lactococcus lactis

    PubMed Central

    Luoma, Susanna; Peltoniemi, Kirsi; Joutsjoki, Vesa; Rantanen, Terhi; Tamminen, Marja; Heikkinen, Inka; Palva, Airi

    2001-01-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration. PMID:11229915

  2. Kinetic characterization of arginine deiminase and carbamate kinase from Streptococcus pyogenes M49.

    PubMed

    Hering, Silvio; Sieg, Antje; Kreikemeyer, Bernd; Fiedler, Tomas

    2013-09-01

    Streptococcus pyogenes (group A Streptococcus, GAS) is an important human pathogen causing mild superficial infections of skin and mucous membranes, but also life-threatening systemic diseases. S. pyogenes and other prokaryotic organisms use the arginine deiminase system (ADS) for survival in acidic environments. In this study, the arginine deiminase (AD), and carbamate kinase (CK) from S. pyogenes M49 strain 591 were heterologously expressed in Escherichia coli DH5α, purified, and kinetically characterized. AD and CK from S. pyogenes M49 share high amino acid sequence similarity with the respective enzymes from Lactococcus lactis subsp. lactis IL1403 (45.6% and 53.5% identical amino acids) and Enterococcus faecalis V583 (66.8% and 66.8% identical amino acids). We found that the arginine deiminase of S. pyogenes is not allosterically regulated by the intermediates and products of the arginine degradation (e.g., ATP, citrulline, carbamoyl phosphate). The Km and Vmax values for arginine were 1.13±0.12mM (mean±SD) and 1.51±0.07μmol/min/mg protein. The carbamate kinase is inhibited by ATP but unaffected by arginine and citrulline. The Km and Vmax values for ADP were 0.72±0.08mM and 1.10±0.10μmol/min/mg protein and the Km for carbamoyl phosphate was 0.65±0.07mM. The optimum pH and temperature for both enzymes were 6.5 and 37°C, respectively. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Transcriptome analysis and related databases of Lactococcus lactis.

    PubMed

    Kuipers, Oscar P; de Jong, Anne; Baerends, Richard J S; van Hijum, Sacha A F T; Zomer, Aldert L; Karsens, Harma A; den Hengst, Chris D; Kramer, Naomi E; Buist, Girbe; Kok, Jan

    2002-08-01

    Several complete genome sequences of Lactococcus lactis and their annotations will become available in the near future, next to the already published genome sequence of L. lactis ssp. lactis IL 1403. This will allow intraspecies comparative genomics studies as well as functional genomics studies aimed at a better understanding of physiological processes and regulatory networks operating in lactococci. This paper describes the initial set-up of a DNA-microarray facility in our group, to enable transcriptome analysis of various Gram-positive bacteria, including a ssp. lactis and a ssp. cremoris strain of Lactococcus lactis. Moreover a global description will be given of the hardware and software requirements for such a set-up, highlighting the crucial integration of relevant bioinformatics tools and methods. This includes the development of MolGenIS, an information system for transcriptome data storage and retrieval, and LactococCye, a metabolic pathway/genome database of Lactococcus lactis.

  4. Whole-genome sequencing of Salmonella enterica subsp. enterica serovar Cubana strains isolated from agricultural sources

    USDA-ARS?s Scientific Manuscript database

    We report draft genomes of Salmonella enterica subsp. enterica Serovar Cubana strain CVM42234 isolated from chick feed in 2012 and Salmonella Cubana strain 76814 isolated from swine in 2004. The genome sizes are 4,975,046 and 4,936,251 base pairs, respectively....

  5. Loop-mediated amplification of the Clavibacter michiganensis subsp. michiganensis micA gene is highly specific.

    PubMed

    Yasuhara-Bell, Jarred; Kubota, Ryo; Jenkins, Daniel M; Alvarez, Anne M

    2013-12-01

    Loop-mediated amplification (LAMP) was used to specifically identify Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial canker of tomato. LAMP primers were developed to detect micA, a chromosomally stable gene that encodes a type II lantibiotic, michiganin A, which inhibits growth of other C. michiganensis subspecies. In all, 409 bacterial strains (351 C. michiganensis subsp. michiganensis and 58 non-C. michiganensis subsp. michiganensis) from a worldwide collection were tested with LAMP to determine its specificity. LAMP results were compared with genetic profiles established using polymerase chain reaction (PCR) amplification of seven genes (dnaA, ppaJ, pat-1, chpC, tomA, ppaA, and ppaC). C. michiganensis subsp. michiganensis strains produced eight distinct profiles. The LAMP reaction identified all C. michiganensis subsp. michiganensis strains and discriminated them from other C. michiganensis subspecies and non-Clavibacter bacteria. LAMP has advantages over immunodiagnostic and other molecular detection methods because of its specificity and isothermal nature, which allows for easy field application. The LAMP reaction is also not affected by as many inhibitors as PCR. This diagnostic tool has potential to provide an easy, one-step test for rapid identification of C. michiganensis subsp. michiganensis.

  6. Natural DNA transformation is functional in Lactococcus lactis ssp. cremoris KW2.

    PubMed

    David, Blandine; Radziejwoski, Amandine; Toussaint, Frédéric; Fontaine, Laetitia; Henry de Frahan, Marie; Patout, Cédric; van Dillen, Sabine; Boyaval, Patrick; Horvath, Philippe; Fremaux, Christophe; Hols, Pascal

    2017-06-16

    Lactococcus lactis is one of the most commonly used lactic acid bacteria in the dairy industry. Activation of competence for natural DNA transformation in this species would greatly improve the selection of novel strains with desired genetic traits. Here, we investigated the activation of natural transformation in L. lactis ssp. cremoris KW2, a strain of plant origin whose genome encodes the master competence regulator ComX and the complete set of proteins usually required for natural transformation. In the absence of knowledge about competence regulation in this species, we constitutively overproduced ComX in a reporter strain of late competence phase activation and showed, by transcriptomic analyses, a ComX-dependent induction of all key competence genes. We further demonstrated that natural DNA transformation is functional in this strain and requires the competence DNA uptake machinery. Since constitutive ComX overproduction is unstable, we alternatively expressed comX under the control of an endogenous xylose-inducible promoter. This regulated system was used to successfully inactivate the adaptor protein MecA and subunits of the Clp proteolytic complex, which were previously shown to be involved in ComX degradation in streptococci. In the presence of a low amount of ComX, the deletion of mecA , clpC , or clpP genes markedly increased the activation of the late competence phase and transformability. Altogether, our results report the functionality of natural DNA transformation in L. lactis and pave the way for the identification of signaling mechanisms that trigger the competence state in this species. IMPORTANCE Lactococcus lactis is a lactic acid bacterium of major importance, which is used as a starter species for milk fermentation, a host for heterologous protein production, and a delivery platform for therapeutic molecules. Here, we report the functionality of natural transformation in L. lactis ssp. cremoris KW2 by the overproduction of the master competence regulator ComX. The developed procedure enables a flexible approach to modify the chromosome with single point mutation, sequence insertion, or sequence replacement. These results represent an important step for the genetic engineering of L. lactis that will facilitate the design of strains optimized for industrial applications. This will also help to discover natural regulatory mechanisms controlling competence in the genus Lactococcus . Copyright © 2017 American Society for Microbiology.

  7. The secreted L-arabinose isomerase displays anti-hyperglycemic effects in mice.

    PubMed

    Rhimi, Moez; Bermudez-Humaran, Luis G; Huang, Yuan; Boudebbouze, Samira; Gaci, Nadia; Garnier, Alexandrine; Gratadoux, Jean-Jacques; Mkaouar, Héla; Langella, Philippe; Maguin, Emmanuelle

    2015-12-21

    The L-arabinose isomerase is an intracellular enzyme which converts L-arabinose into L-ribulose in living systems and D-galactose into D-tagatose in industrial processes and at industrial scales. D-tagatose is a natural ketohexose with potential uses in pharmaceutical and food industries. The D-galactose isomerization reaction is thermodynamically equilibrated, and leads to secondary subproducts at high pH. Therefore, an attractive L-arabinose isomerase should be thermoactive and acidotolerant with high catalytic efficiency. While many reports focused on the set out of a low cost process for the industrial production of D-tagatose, these procedures remain costly. When compared to intracellular enzymes, the production of extracellular ones constitutes an interesting strategy to increase the suitability of the biocatalysts. The L-arabinose isomerase (L-AI) from Lactobacillus sakei was expressed in Lactococcus lactis in fusion with the signal peptide of usp45 (SP(Usp45)). The L-AI protein and activity were detected only in the supernatant of the induced cultures of the recombinant L. lactis demonstrating the secretion in the medium of the intracellular L. sakei L-AI in an active form. Moreover, we showed an improvement in the enzyme secretion using either (1) L. lactis strains deficient for their two major proteases, ClpP and HtrA, or (2) an enhancer of protein secretion in L. lactis fused to the recombinant L-AI with the SP(Usp45). Th L-AI enzyme secreted by the recombinant L. lactis strains or produced intracellularly in E. coli, showed the same functional properties than the native enzyme. Furthermore, when mice are fed with the L. lactis strain secreting the L-AI and galactose, tagatose was produced in vivo and reduced the glycemia index. We report for the first time the secretion of the intracellular L-arabinose isomerase in the supernatant of food grade L. lactis cultures with hardly display other secreted proteins. The secreted L-AI originated from the food grade L. sakei 23 K was active and showed the same catalytic and structural properties as the intracellular enzyme. The L. lactis strains secreting the L-arabinose isomerase has the ability to produce D-tagatose in vivo and conferred an anti-hyperglycemic effect to mice.

  8. Development of a rapid SNP-typing assay to differentiate Bifidobacterium animalis ssp. lactis strains used in probiotic-supplemented dairy products.

    PubMed

    Lomonaco, Sara; Furumoto, Emily J; Loquasto, Joseph R; Morra, Patrizia; Grassi, Ausilia; Roberts, Robert F

    2015-02-01

    Identification at the genus, species, and strain levels is desirable when a probiotic microorganism is added to foods. Strains of Bifidobacterium animalis ssp. lactis (BAL) are commonly used worldwide in dairy products supplemented with probiotic strains. However, strain discrimination is difficult because of the high degree of genome identity (99.975%) between different genomes of this subspecies. Typing of monomorphic species can be carried out efficiently by targeting informative single nucleotide polymorphisms (SNP). Findings from a previous study analyzing both reference and commercial strains of BAL identified SNP that could be used to discriminate common strains into 8 groups. This paper describes development of a minisequencing assay based on the primer extension reaction (PER) targeting multiple SNP that can allow strain differentiation of BAL. Based on previous data, 6 informative SNP were selected for further testing, and a multiplex preliminary PCR was optimized to amplify the DNA regions containing the selected SNP. Extension primers (EP) annealing immediately adjacent to the selected SNP were developed and tested in simplex and multiplex PER to evaluate their performance. Twenty-five strains belonging to 9 distinct genomic clusters of B. animalis ssp. lactis were selected and analyzed using the developed minisequencing assay, simultaneously targeting the 6 selected SNP. Fragment analysis was subsequently carried out in duplicate and demonstrated that the assay yielded 8 specific profiles separating the most commonly used commercial strains. This novel multiplex PER approach provides a simple, rapid, flexible SNP-based subtyping method for proper characterization and identification of commercial probiotic strains of BAL from fermented dairy products. To assess the usefulness of this method, DNA was extracted from yogurt manufactured with and without the addition of B. animalis ssp. lactis BB-12. Extracted DNA was then subjected to the minisequencing protocol, resulting in a SNP profile matching the profile for the strain BB-12. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis

    PubMed Central

    Dijkstra, Annereinou R.; Alkema, Wynand; Starrenburg, Marjo J. C.; van Hijum, Sacha A. F. T.; Bron, Peter A.

    2016-01-01

    Recently, we demonstrated that fermentation conditions have a strong impact on subsequent survival of Lactococcus lactis strain MG1363 during heat and oxidative stress, two important parameters during spray drying. Moreover, employment of a transcriptome-phenotype matching approach revealed groups of genes associated with robustness towards heat and/or oxidative stress. To investigate if other strains have similar or distinct transcriptome signatures for robustness, we applied an identical transcriptome-robustness phenotype matching approach on the L. lactis strains IL1403, KF147 and SK11, which have previously been demonstrated to display highly diverse robustness phenotypes. These strains were subjected to an identical fermentation regime as was performed earlier for strain MG1363 and consisted of twelve conditions, varying in the level of salt and/or oxygen, as well as fermentation temperature and pH. In the exponential phase of growth, cells were harvested for transcriptome analysis and assessment of heat and oxidative stress survival phenotypes. The variation in fermentation conditions resulted in differences in heat and oxidative stress survival of up to five 10-log units. Effects of the fermentation conditions on stress survival of the L. lactis strains were typically strain-dependent, although the fermentation conditions had mainly similar effects on the growth characteristics of the different strains. By association of the transcriptomes and robustness phenotypes highly strain-specific transcriptome signatures for robustness towards heat and oxidative stress were identified, indicating that multiple mechanisms exist to increase robustness and, as a consequence, robustness of each strain requires individual optimization. However, a relatively small overlap in the transcriptome responses of the strains was also identified and this generic transcriptome signature included genes previously associated with stress (ctsR and lplL) and novel genes, including nanE and genes encoding transport proteins. The transcript levels of these genes can function as indicators of robustness and could aid in selection of fermentation parameters, potentially resulting in more optimal robustness during spray drying. PMID:27973578

  10. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices.

    PubMed

    Bringel, Françoise; Castioni, Anna; Olukoya, Daniel K; Felis, Giovanna E; Torriani, Sandra; Dellaglio, Franco

    2005-07-01

    Fourteen strains isolated from vegetable sources and identified as belonging to Lactobacillus plantarum presented an atypical pattern of amplification with a species-specific multiplex-PCR assay. Phylogenetic analysis of two protein-encoding genes, recA (encoding the recombinase A protein) and cpn60 (encoding the GroEL chaperonin), as well as phenotypic and genomic traits revealed a homogeneous group of very closely related strains for which subspecies status is proposed, with the name Lactobacillus plantarum subsp. argentoratensis. The type strain is DKO 22(T) (=CIP 108320(T)=DSM 16365(T)).

  11. Derivation of Mutants of Erwinia carotovora subsp. betavasculorum Deficient in Export of Pectolytic Enzymes with Potential for Biological Control of Potato Soft Rot

    PubMed Central

    Costa, José M.; Loper, Joyce E.

    1994-01-01

    Erwinia carotovora subsp. betavasculorum Ecb168 produces an antibiotic(s) that suppresses growth of the related bacterium Erwinia carotovora subsp. carotovora in culture and in wounds of potato tubers. Strain Ecb168 also produces and secretes pectolytic enzymes and causes a vascular necrosis and root rot of sugar beet. Genes (out) involved in secretion of pectolytic enzymes by Ecb168 were localized to two HindIII fragments (8.5 and 10.5 kb) of Ecb168 genomic DNA by hybridization to the cloned out region of E. carotovora subsp. carotovora and by complementation of Out- mutants of E. carotovora subsp. carotovora. Out- mutants of Ecb168, which did not secrete pectate lyase into the culture medium, were obtained when deletions internal to either HindIII fragment were introduced into the genome of Ecb168 through marker exchange mutagenesis. Out- mutants of Ecb168 were complemented to the Out+ phenotype by introduction of the corresponding cloned HindIII fragment. Out- mutants of Ecb168 were less virulent than the Out+ parental strain on potato tubers. Strain Ecb168 and Out- derivatives inhibited the growth of E. carotovora subsp. carotovora in culture, indicating that the uncharacterized antibiotic(s) responsible for antagonism was exported through an out-independent mechanism. Strain Ecb168 and Out- derivatives reduced the establishment of large populations of E. carotovora subsp. carotovora in wounds of potato tubers and suppressed tuber soft rot caused by E. carotovora subsp. carotovora. PMID:16349316

  12. Analysis of volatile compounds produced by 2 strains of Lactococcus lactis isolated from leben (Tunisian fermented milk) using solid-phase microextraction-gas chromatography.

    PubMed

    Ziadi, M; Wathelet, J P; Marlier, M; Hamdi, M; Thonart, P

    2008-08-01

    The volatile compounds that characterize Leben during fermentation with 2 Lactococcus lactis strains (SLT6 and SLT10) in flasks, in a 100-L fermentor, and during storage at 4 degrees C, were investigated and compared to those from commercial Leben. Volatile compounds from Leben were concentrated by a Carboxen-PDMS fiber and analyzed by GC-MS. These compounds include acids, alcohols, aldehydes, ketones, sulfur compounds, and hydrocarbons. Commercial Leben presented a poor volatile profile compared to the laboratory-made Leben. The mixed culture of 2 Lactococcus lactis strains resulted in higher volatile compound formation than the single strain culture. The GC volatile profiles of Leben produced in flask and in the 100-L fermentor were similar. Changes in volatile compounds were observed during storage at 4 degrees C. The effect of culture conditions on production of volatiles by SLT6 strain was studied. Aeration (0.1 mL/min) and agitation enhanced the production of diacetyl, acetoin, 3-methylbutanal, and 3-methylbutanol. Fermentation at pH 5 had no effect on volatile production.

  13. Micrococcus lactis sp. nov., isolated from dairy industry waste.

    PubMed

    Chittpurna; Singh, Pradip K; Verma, Dipti; Pinnaka, Anil Kumar; Mayilraj, Shanmugam; Korpole, Suresh

    2011-12-01

    A Gram-positive, yellow-pigmented, actinobacterial strain, DW152(T), was isolated from a dairy industry effluent treatment plant. 16S rRNA gene sequence analysis indicated that strain DW152(T) exhibited low similarity with many species with validly published names belonging to the genera Micrococcus and Arthrobacter. However, phenotypic properties including chemotaxonomic markers affiliated strain DW152(T) to the genus Micrococcus. Strain DW152(T) had ai-C(15:0) and i-C(15:0) as major cellular fatty acids, and MK-8(H(2)) as the major menaquinone. The cell-wall peptidoglycan of strain DW152(T) had l-lysine as the diagnostic amino acid and the type was A4α. The DNA G+C content of strain DW152(T) was 68.0 mol%. In 16S rRNA gene sequence analysis, strain DW152(T) exhibited significant similarity with Micrococcus terreus NBRC 104258(T), but the mean value of DNA-DNA relatedness between these strains was only 42.3%. Moreover, strain DW152(T) differed in biochemical and chemotaxonomic characteristics from M. terreus and other species of the genus Micrococcus. Based on the above differences, we conclude that strain DW152(T) should be treated as a novel species of the genus Micrococcus, for which the name Micrococcus lactis sp. nov. is proposed. The type strain of Micrococcus lactis sp. nov. is DW152(T) (=MTCC10523(T) =DSM 23694(T)).

  14. Clavibacter michiganensis subsp. phaseoli subsp. nov., pathogenic in bean.

    PubMed

    González, Ana J; Trapiello, Estefanía

    2014-05-01

    A yellow Gram-reaction-positive bacterium isolated from bean seeds (Phaseolus vulgaris L.) was identified as Clavibacter michiganensis by 16S rRNA gene sequencing. Molecular methods were employed in order to identify the subspecies. Such methods included the amplification of specific sequences by PCR, 16S amplified rDNA restriction analysis (ARDRA), RFLP and multilocus sequence analysis as well as the analysis of biochemical and phenotypic traits including API 50CH and API ZYM results. The results showed that strain LPPA 982T did not represent any known subspecies of C. michiganensis. Pathogenicity tests revealed that the strain is a bean pathogen causing a newly identified bacterial disease that we name bacterial bean leaf yellowing. On the basis of these results, strain LPPA 982T is regarded as representing a novel subspecies for which the name Clavibacter michiganensis subsp. phaseoli subsp. nov. is proposed. The type strain is LPPA 982T (=CECT 8144T=LMG 27667T).

  15. Common genomic features of Campylobacter jejuni subsp. doylei strains distinguish them from C. jejuni subsp. jejuni

    PubMed Central

    Parker, Craig T; Miller, William G; Horn, Sharon T; Lastovica, Albert J

    2007-01-01

    Background Campylobacter jejuni has been divided into two subspecies: C. jejuni subsp. jejuni (Cjj) and C. jejuni subsp. doylei (Cjd). Nearly all of the C. jejuni strains isolated are Cjj; nevertheless, although Cjd strains are isolated infrequently, they differ from Cjj in two key aspects: they are obtained primarily from human clinical samples and are associated often with bacteremia, in addition to gastroenteritis. In this study, we utilized multilocus sequence typing (MLST) and a DNA microarray-based comparative genomic indexing (CGI) approach to examine the genomic diversity and gene content of Cjd strains. Results A geographically diverse collection of eight Cjd strains was examined by MLST and determined to be phylogenetically distinct from Cjj strains. Microarray-based CGI approach also supported this. We were able to demonstrate that Cjd strains exhibited divergence from Cjj strains NCTC 11168 and RM1221 in many of the intraspecies hypervariable regions. Moreover, multiple metabolic, transport and virulence functions (e.g. cytolethal distending toxin) were shown to be absent in the Cjd strains examined. Conclusion Our data demonstrate that Cjd are phylogenetically distinct from Cjj strains. Using the CGI approach, we identified subsets of absent genes from amongst the C. jejuni genes that provide clues as to the potential evolutionary origin and unusual pathogenicity of Cjd. PMID:17535437

  16. Interaction between 2,4-Diacetylphloroglucinol- and Hydrogen Cyanide-Producing Pseudomonas brassicacearum LBUM300 and Clavibacter michiganensis subsp. michiganensis in the Tomato Rhizosphere

    PubMed Central

    Paulin, Mélanie M.; Novinscak, Amy; Lanteigne, Carine; Gadkar, Vijay J.

    2017-01-01

    ABSTRACT We have previously demonstrated that inoculation of tomato plants with 2,4-diacetylphloroglucinol (DAPG)- and hydrogen cyanide (HCN)-producing Pseudomonas brassicacearum LBUM300 could significantly reduce bacterial canker symptoms caused by Clavibacter michiganensis subsp. michiganensis. In this study, in order to better characterize the population dynamics of LBUM300 in the rhizosphere of tomato plants, we characterized the role played by DAPG and HCN production by LBUM300 on rhizosphere colonization of healthy and C. michiganensis subsp. michiganensis-infected tomato plants. The impact of C. michiganensis subsp. michiganensis presence on the expression of DAPG and HCN biosynthetic genes in the rhizosphere was also examined. In planta assays were performed using combinations of C. michiganensis subsp. michiganensis and wild-type LBUM300 or DAPG (LBUM300ΔphlD) or HCN (LBUM300ΔhcnC) isogenic mutant strains. Populations of LBUM300 and phlD and hcnC gene expression levels were quantified in rhizosphere soil at several time points up to 264 h postinoculation using culture-independent quantitative PCR (qPCR) and reverse transcriptase quantitative PCR (RT-qPCR) TaqMan assays, respectively. The presence of C. michiganensis subsp. michiganensis significantly increased rhizospheric populations of LBUM300. In C. michiganensis subsp. michiganensis-infected tomato rhizospheres, the populations of wild-type LBUM300 and strain LBUM300ΔhcnC, both producing DAPG, were significantly higher than the population of strain LBUM300ΔphlD. A significant upregulation of phlD expression was observed in the presence of C. michiganensis subsp. michiganensis, while hcnC expression was only slightly increased in the mutant strain LBUM300ΔphlD when C. michiganensis subsp. michiganensis was present. Additionally, biofilm production was found to be significantly reduced in strain LBUM300ΔphlD compared to the wild-type and LBUM300ΔhcnC strains. IMPORTANCE The results of this study suggest that C. michiganensis subsp. michiganensis infection of tomato plants contributes to increasing rhizospheric populations of LBUM300, a biocontrol agent, as well as the overexpression of the DAPG biosynthetic operon in this bacterium. The increasing rhizospheric populations of LBUM300 represent one of the key factors in controlling C. michiganensis subsp. michiganensis in tomato plants, as DAPG-producing bacteria have shown the ability to decrease bacterial canker symptoms in tomato plants. PMID:28432096

  17. Influence of oregano essential oil on traditional Argentinean cheese elaboration: Effect on lactic starter cultures.

    PubMed

    Marcial, Guillermo E; Gerez, Carla L; de Kairuz, Martha Nuñez; Araoz, Victoria Coll; Schuff, Carola; de Valdez, Graciela Font

    The aim of this work is to study the oregano essential oil (OEO) composition from Northwestern Argentinean regions and to evaluate its effect on the lactic starter cultures. The oregano used, Origanum vulgare var hirtum, was obtained from Andalgalá, Catamarca. The essential oil presented high amounts of α-terpinene (10%), γ-terpinene (15.1%), terpinen-4-ol (15.5%) and thymol (13.0%) as the main components. No negative effect on growth or metabolic activity of lactic acid bacteria Streptococcus thermophilus CRL 728 and CRL 813, Lactobacillus delbrueckii subsp. bulgaricus CRL 656 and CRL 468, and Lactococcus lactis subsp. lactis CRL 597 up to the maximum concentration (200μg/g) assayed was observed. No differences in the organoleptic characteristics of semi-hard cheeses flavored with oregano essential oil (200μg/g) and homemade cheeses flavored with oregano leaves were found. With respect to the microbiological quality of the products, neither enterobacteria nor mold and yeast were detected during ripening in essential-oil flavored cheese compared to control cheese (enterobacteria 2×10 3 UFC/g) and cheese flavored with oregano leaves (mold/yeast 4×10 4 CFU/g). Our results showed that the use of oregano essential oil and lactic starter culture considerably improved cheese quality. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. The Baseplate of Lactobacillus delbrueckii Bacteriophage Ld17 Harbors a Glycerophosphodiesterase.

    PubMed

    Cornelissen, Anneleen; Sadovskaya, Irina; Vinogradov, Evgeny; Blangy, Stéphanie; Spinelli, Silvia; Casey, Eoghan; Mahony, Jennifer; Noben, Jean-Paul; Dal Bello, Fabio; Cambillau, Christian; van Sinderen, Douwe

    2016-08-05

    Glycerophosphodiester phosphodiesterases (GDPDs; EC 3.1.4.46) typically hydrolyze glycerophosphodiesters to sn-glycerol 3-phosphate (Gro3P) and their corresponding alcohol during patho/physiological processes in bacteria and eukaryotes. GDPD(-like) domains were identified in the structural particle of bacterial viruses (bacteriophages) specifically infecting Gram-positive bacteria. The GDPD of phage 17 (Ld17; GDPDLd17), representative of the group b Lactobacillus delbrueckii subsp. bulgaricus (Ldb)-infecting bacteriophages, was shown to hydrolyze, besides the simple glycerophosphodiester, two complex surface-associated carbohydrates of the Ldb17 cell envelope: the Gro3P decoration of the major surface polysaccharide d-galactan and the oligo(glycerol phosphate) backbone of the partially glycosylated cell wall teichoic acid, a minor Ldb17 cell envelope component. Degradation of cell wall teichoic acid occurs according to an exolytic mechanism, and Gro3P substitution is presumed to be inhibitory for GDPDLd17 activity. The presence of the GDPDLd17 homotrimer in the viral baseplate structure involved in phage-host interaction together with the dependence of native GDPD activity, adsorption, and efficiency of plating of Ca(2+) ions supports a role for GDPDLd17 activity during phage adsorption and/or phage genome injection. In contrast to GDPDLd17, we could not identify any enzymatic activity for the GDPD-like domain in the neck passage structure of phage 340, a 936-type Lactococcus lactis subsp. lactis bacteriophage. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Regulation of the production of extracellular pectinase, cellulase, and protease in the soft rot bacterium Erwinia carotovora subsp. carotovora: evidence that aepH of E. carotovora subsp. carotovora 71 activates gene expression in E. carotovora subsp. carotovora, E. carotovora subsp. atroseptica, and Escherichia coli.

    PubMed Central

    Murata, H; Chatterjee, A; Liu, Y; Chatterjee, A K

    1994-01-01

    The production of pectolytic enzymes (pectate lyase [Pel] and polygalacturonase [Peh]), cellulase (Cel), and protease (Prt) is activated in the soft rot bacterium Erwinia carotovora subsp. carotovora by aepA (activator of extracellular protein production) and celery extract (Y. Liu, H. Murata, A. Chatterjee, and A. K. Chatterjee, Mol. Plant-Microbe Interact. 6:299-308, 1993). We recently isolated a new class of mutants of strain E. carotovora subsp. carotovora 71 which overproduces Pel, Peh, Cel, and Prt. From the overproducing strain AC5034, we identified an activator locus, designated aepH*, which stimulated Pel, Peh, Cel, and Prt production in E. carotovora subsp. carotovora 71 or its derivatives. The nucleotide sequence of the aepH* DNA segment revealed an open reading frame of 141 bp that could encode a small (5.45-kDa) highly basic (pI 11.7) protein of 47 amino acid residues. Analyses of deletions and MudI insertions indicated that the activator function required the 508-bp DNA segment which contains this open reading frame. The wild-type locus, aepH+, is localized within a DNA segment upstream of aepA. An AepH- strain constructed by exchanging aepH+ with aepH*::MudI was deficient in Pel, Peh, Cel, and Prt production; exoenzyme production was restored upon the introduction of a plasmid carrying aepH+ or aepH*. Plasmids carrying either aepH+ or aepH* activated the production of Pel-1, Peh-1, and Cel in Escherichia coli HB101 carrying the cognate genes. The aepH effect in E. coli was due to the activation of transcription, as indicated by assays of pel-1 and peh-1 mRNAs. The aepH+ and aepH* plasmids also stimulated Pel, Peh, Cel, and Prt production in other wild-type E. carotovora subsp. carotovora strains as well as in E. carotovora subsp. atroseptica. Although the stimulatory effect was generally more pronounced with aepH* than with aepH+, the extent of activation in the wild-type strains depended upon the bacterial strain and the growth medium. Southern blot hybridization revealed the presence of aepH homologs in E. carotovora subsp. carotovora and E. carotovora subsp. atroseptica, and provided physical evidence for linkage between aepA and aepH homologs in genomes of these bacteria. We conclude that aepH-mediated activation of exoprotein gene expression is a feature common to most strains of E. carotovora. Images PMID:7944360

  20. Desulfovibrio oceani subsp. oceani sp. nov., subsp. nov. and Desulfovibrio oceani subsp. galateae subsp. nov., novel sulfate-reducing bacteria isolated from the oxygen minimum zone off the coast of Peru.

    PubMed

    Finster, Kai W; Kjeldsen, Kasper U

    2010-03-01

    Two deltaproteobacterial sulfate reducers, designated strain I.8.1(T) and I.9.1(T), were isolated from the oxygen minimum zone water column off the coast of Peru at 400 and 500 m water depth. The strains were Gram-negative, vibrio-shaped and motile. Both strains were psychrotolerant, grew optimally at 20 degrees C at pH 7.0-8.0 and at 2.5-3.5% NaCl (w/v). The strains grew by utilizing hydrogen/acetate, C(3-4) fatty acids, amino acids and glycerol as electron acceptors for sulfate reduction. Fumarate, lactate and pyruvate supported fermentative growth. Sulfate, sulfite, thiosulfate and taurin supported growth as electron acceptors. Both strains were catalase-positive and highly oxygen-tolerant, surviving 24 days of exposure to atmospheric concentrations. MK6 was the only respiratory quinone. The most prominent cellular fatty acid was iso-17:1-omega9c (18%) for strain I.8.1(T) and iso-17:0-omega9c (14%) for strain I.9.1(T). The G+C contents of their genomic DNA were 45-46 mol%. Phylogenetic analysis of 16S rRNA and dsrAB gene sequences showed that both strains belong to the genus Desulfovibrio. Desulfovibrio acrylicus DSM 10141(T) and Desulfovibrio marinisediminis JCM 14577(T) represented their closest validly described relatives with pairwise 16S rRNA gene sequence identities of 98-99%. The level of DNA-DNA hybridization between strains I.8.1(T) and I.9.1(T) was 30-38%. The two strains shared 10-26% DNA-DNA relatedness with D. acrylicus. Based on a polyphasic investigation it is proposed that strains I.8.1(T) and I.9.1(T) represent a novel species for which the name Desulfovibrio oceani sp. nov. is proposed with the two subspecies D. oceani subsp. oceani (type strain, I.8.1(T) = DSM 21390(T) = JCM 15970(T)) and D. oceani subsp. galateae (type strain, I.9.1(T) = DSM 21391(T) = JCM 15971(T)).

  1. Complete genome sequence of salmonella enterica subsp. enterica Serovar Thompson Strain RM6836

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica subsp. enterica serovar Thompson (S. Thompson) strain RM6836 was isolated from lettuce in 2002. We report the complete sequence and annotation of the genome of S. Thompson strain RM6836. This is the first reported complete genome sequence for S. Thompson and will provide a point ...

  2. Homologous Recombination and Xylella fastidiosa Host-Pathogen Associations in South America.

    PubMed

    Coletta-Filho, Helvécio D; Francisco, Carolina S; Lopes, João R S; Muller, Christiane; Almeida, Rodrigo P P

    2017-03-01

    Homologous recombination affects the evolution of bacteria such as Xylella fastidiosa, a naturally competent plant pathogen that requires insect vectors for dispersal. This bacterial species is taxonomically divided into subspecies, with phylogenetic clusters within subspecies that are host specific. One subspecies, pauca, is primarily limited to South America, with the exception of recently reported strains in Europe and Costa Rica. Despite the economic importance of X. fastidiosa subsp. pauca in South America, little is known about its genetic diversity. Multilocus sequence typing (MLST) has previously identified six sequence types (ST) among plant samples collected in Brazil (both subsp. pauca and multiplex). Here, we report on a survey of X. fastidiosa genetic diversity (MLST based) performed in six regions in Brazil and two in Argentina, by sampling five different plant species. In addition to the six previously reported ST, seven new subsp. pauca and two new subsp. multiplex ST were identified. The presence of subsp. multiplex in South America is considered to be the consequence of a single introduction from its native range in North America more than 80 years ago. Different phylogenetic approaches clustered the South American ST into four groups, with strains infecting citrus (subsp. pauca); coffee and olive (subsp. pauca); coffee, hibiscus, and plum (subsp. pauca); and plum (subsp. multiplex). In areas where these different genetic clusters occurred sympatrically, we found evidence of homologous recombination in the form of bidirectional allelic exchange between subspp. pauca and multiplex. In fact, the only strain of subsp. pauca isolated from a plum host had an allele that originated from subsp. multiplex. These signatures of bidirectional homologous recombination between endemic and introduced ST indicate that gene flow occurs in short evolutionary time frames in X. fastidiosa, despite the ecological isolation (i.e., host plant species) of genotypes.

  3. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808

    PubMed Central

    Munsch-Alatossava, Patricia; Alatossava, Tapani

    2013-01-01

    The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed. PMID:24400001

  4. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808.

    PubMed

    Munsch-Alatossava, Patricia; Alatossava, Tapani

    2013-12-24

    The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed.

  5. Clavibacter michiganensis subsp. capsici subsp. nov., causing bacterial canker disease in pepper.

    PubMed

    Oh, Eom-Ji; Bae, Chungyun; Lee, Han-Beoyl; Hwang, In Sun; Lee, Hyok-In; Yea, Mi Chi; Yim, Kyu-Ock; Lee, Seungdon; Heu, Sunggi; Cha, Jae-Soon; Oh, Chang-Sik

    2016-10-01

    Clavibacter michiganensis is a Gram-stain-positive bacterium with eight subspecies. One of these subspecies is C. michiganensis subsp. michiganensis, which causes bacterial canker disease in tomato. Bacterial strains showing very similar canker disease symptoms to those of a strain originally classified as C. michiganensis have been isolated from pepper. In this paper, we reclassified strains isolated from pepper. On the basis of phylogenetic analysis with 16S rRNA gene sequences, the strains isolated from pepper were grouped in a separate clade from other subspecies of C. michiganensis. Biochemical, physiological and genetic characteristics of strain PF008T, which is the representative strain of the isolates from pepper, were examined in this study. Based on multi-locus sequence typing and other biochemical and physiological features including colony color, utilization of carbon sources and enzyme activities, strain PF008T was categorically differentiated from eight subspecies of C. michiganensis. Moreover, genome analysis showed that the DNA G+C content of strain PF008T is 73.2 %. These results indicate that PF008T is distinct from other known subspecies of C. michiganensis. Therefore, we propose a novel subspecies, C. michiganensis subsp. capsici, causing bacterial canker disease in pepper, with a type strain of PF008T (=KACC 18448T=LMG 29047T).

  6. Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis.

    PubMed

    Borrero, Juan; Jiménez, Juan J; Gútiez, Loreto; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2011-01-01

    Replacement of the signal peptide (SP) of the bacteriocins enterocin P (EntP) and hiracin JM79 (HirJM79), produced by Enterococcus faecium P13 and Enterococcus hirae DCH5, respectively, by the signal peptide of Usp45 (SP(usp45)), the major Sec-dependent protein secreted by Lactococcus lactis, permits the production, secretion, and functional expression of EntP and HirJM79 by L. lactis. Chimeric genes encoding the SP(usp45) fused to either mature EntP (entP), with or without the immunity gene (entiP) or to mature HirJM79 (hirJM79), with or without the immunity gene (hiriJM79), were cloned into the expression vector pMG36c, carrying the P(32) constitutive promoter, and into pNZ8048 under control of the inducible PnisA promoter. The production of EntP and HirJM79 by most of the L. lactis recombinant strains was 1.5- to 3.7-fold higher and up to 3.6-fold higher than by the E. faecium P13 and E. hirae DCH5 control strains, respectively. However, the specific antimicrobial activity of the recombinant EntP was 1.1- to 6.2-fold higher than that produced by E. faecium P13, while that of the HirJM79 was a 40% to an 89% of that produced by E. hirae DCH5. Chimeras of SP(usp45) fused to mature EntP or HirJM79 drive the production and secretion of these bacteriocins in L. lactis in the absence of specific immunity and secretion proteins. The supernatants of the recombinant L. lactis NZ9000 strains, producers of EntP, showed a much higher antimicrobial activity against Listeria spp. than that of the recombinant L. lactis NZ9000 derivatives, producers of HirJM79.

  7. Carpoglyphus lactis (Acari: Astigmata) from various dried fruits differed in associated micro-organisms.

    PubMed

    Hubert, J; Nesvorná, M; Kopecký, J; Ságová-Marečková, M; Poltronieri, P

    2015-02-01

    Carpoglyphus lactis is a stored product mite infesting saccharide-rich stored commodities including dried fruits, wine, beer, milk products, jams and honey. The association with micro-organisms can improve the survival of mites on dried fruits. The microbial communities associated with C. lactis were studied in specimens originating from the packages of dried apricot, plums and figs and compared to the laboratory strain reared on house dust mite diet (HDMd). Clone libraries of bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) region were constructed and analysed by operational taxonomic unit (OTU) approach. The 16S rRNA gene libraries differed among the compared diets. The sequences classified to the genera Leuconostoc, Elizabethkingia, Ewingella, Erwinia, Bacillus and Serratia were prevailing in mites sampled from the dried fruits. The ITS library showed smaller differences between the laboratory strain on HDMd and the isolates from dried fruits packages, with the exception of the mite strain from dried plums. The population growth was used as an indirect indicator of fitness and decreased in the order from yeast diet to HDMd and dried fruits. The treatment and pretreatment of mites by antibiotics did not reveal the presence of antagonistic bacteria which might slow down the C. lactis population growth. The shifts of the microbial community in the gut of C. lactis were induced by the diet changes. The identified yeasts and bacteria are suggested as the main food source of stored product mites on dried fruits. The study describes the adaptation of C. lactis to feeding on dried fruits including the interaction with micro-organisms. We also identified potentially pathogenic bacteria carried by the mites to dried fruits for human consumption. © 2014 The Society for Applied Microbiology.

  8. Influence of Technological Treatments on the Functionality of Bifidobacterium lactis INL1, a Breast Milk-Derived Probiotic.

    PubMed

    Zacarías, María Florencia; Souza, Tassia Costa; Zaburlín, Natalia; Carmona Cara, Denise; Reinheimer, Jorge; Nicoli, Jacques; Vinderola, Gabriel

    2017-10-01

    The aim of this study is to evaluate the influence of the technological processing on the functionality of the human breast milk probiotic strain Bifidobacterium lactis INL1. In vitro antagonistic activity of B. lactis INL1 was detected for Gram-positive and Gram-negative pathogens. B. lactis INL1 was administered to mice as fresh (F), frozen (Z), spray-dried (S), or lyophilized (L) culture. Immune parameters (IgA, IL-10, and IFN-γ) were determined and histological analysis was performed to assess functionality and protection capacity against Salmonella. In BALB/c mice, F and S cultures induced an increase in the number of IgA-producing cells in the small intestine and IL-10 levels were increased for L culture in the large intestine. In Swiss mice, B. lactis INL1 increased secretory-IgA levels in the small intestine before and after Salmonella infection, both as F or dehydrated culture. Also, an attenuation of damage in the intestinal epithelium and less inflammatory infiltrates were observed in animals that received F and S cultures, whereas in liver only F showed some effect. The anti-inflammatory effect was confirmed in both tissues by myeloperoxidase activity and by IFN-γ levels in the intestinal content. B. lactis INL1 showed inhibitory activity against pathogens and confirmed its probiotic potential in animal models. Technological processing of the probiotic strain affected its functionality. This work provides evidence about the influence of technology on the functionality of probiotics, which may help probiotics and functional food manufacturers to take processing into consideration when assessing the functionality of new strains. © 2017 Institute of Food Technologists®.

  9. Beneficial effect of Lactococcus lactis NCC 2287 in a murine model of eosinophilic esophagitis.

    PubMed

    Holvoet, S; Doucet-Ladevèze, R; Perrot, M; Barretto, C; Nutten, S; Blanchard, C

    2016-12-01

    Eosinophilic esophagitis (EoE) is a severe inflammatory disease of the esophagus which is characterized histologically by an eosinophilic infiltration into the esophageal tissue. The efficacy of probiotics in the context of atopic diseases has been well investigated but, to date, there has been no study which has evaluated probiotic effects on EoE inflammation. This study sought to identify a probiotic which improves esophageal inflammation in experimental EoE. Two candidate probiotics, Lactococcus lactis NCC 2287 and Bifidobacterium lactis NCC 2818, were tested in a murine model of EoE elicited by epicutaneous sensitization with Aspergillus fumigatus protein extract. Administration of bacterial strains in drinking water was used, respectively, as a preventive or treatment measure, or continuously throughout the study. Inflammatory parameters were assessed in the esophagus, skin, and lungs after allergen challenge. In this EoE model, supplementation with L. lactis NCC 2287 significantly decreased esophageal and bronchoalveolar eosinophilia but only when given as a therapeutic treatment. No significant effect on eosinophilia was observed when NCC 2287 was given as a preventive or a continuous intervention. NCC 2287 supplementation had no significant effect on immunoglobulin levels, skin symptom scores, or on transepidermal water loss. Supplementation with another probiotic, B. lactis NCC 2818, had no significant effect on esophageal eosinophilia. We identified a L. lactis strain, able to attenuate esophageal eosinophilic inflammation in a preclinical model of EoE. This effect is strain specific and depends on the timing and duration of bacterial supplementation. Confirmation of these observations in human clinical trials is warranted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Draft genome sequence of Xylella fastidiosa subsp. fastidiosa strain Stag’s Leap

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa subsp. fastidiosa causes Pierce’s disease of grapevine. Presented here is the draft genome sequence of the Stag’s Leap strain, previously used in pathogenicity/virulence assays to evaluate grapevine germplasm bearing Pierce’s disease....

  11. Proteomic characterization of the acid tolerance response in Lactobacillus delbrueckii subsp. bulgaricus CAUH1 and functional identification of a novel acid stress-related transcriptional regulator Ldb0677.

    PubMed

    Zhai, Zhengyuan; Douillard, François P; An, Haoran; Wang, Guohong; Guo, Xinghua; Luo, Yunbo; Hao, Yanling

    2014-06-01

    To overcome the deleterious effects of acid stress, Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) elicits an adaptive response to acid stress. In this study, proteomics approach complemented by transcriptional analysis revealed some cellular changes in L. bulgaricus CAUH1 during acid adaptation. We observed an increase of glycolysis-associated proteins, promoting an optimal utilization of carbohydrates. Also, rerouting of the pyruvate metabolism to fatty acid biosynthesis was observed, indicating a possible modification of the cell membrane rigidity and impermeability. In addition, expression of ribosomal protein S1 (RpsA) was repressed; however, the expression of EF-Tu, EF-G and TypA was up-regulated at both protein and transcript levels. This suggests a reduction of protein synthesis in response to acid stress along with possible enhancement of the translational accuracy and protein folding. It is noteworthy that the putative transcriptional regulator Ldb0677 was 1.84-fold up-regulated. Heterologous expression of Ldb0677 was shown to significantly enhance acid resistance in host strain Lactococcus lactis. To clarify its role in transcriptional regulation network, the DNA-binding specificity of Ldb0677 was determined using bacterial one-hybrid and electrophoretic mobility shift assay. The identification of a binding motif (SSTAGACR) present in the promoter regions of 22 genes indicates that it might function as a major regulator in acid stress response in L. bulgaricus. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Identification, Cloning, and Characterization of a Lactococcus lactis Branched-Chain α-Keto Acid Decarboxylase Involved in Flavor Formation

    PubMed Central

    Smit, Bart A.; van Hylckama Vlieg, Johan E. T.; Engels, Wim J. M.; Meijer, Laura; Wouters, Jan T. M.; Smit, Gerrit

    2005-01-01

    The biochemical pathway for formation of branched-chain aldehydes, which are important flavor compounds derived from proteins in fermented dairy products, consists of a protease, peptidases, a transaminase, and a branched-chain α-keto acid decarboxylase (KdcA). The activity of the latter enzyme has been found only in a limited number of Lactococcus lactis strains. By using a random mutagenesis approach, the gene encoding KdcA in L. lactis B1157 was identified. The gene for this enzyme is highly homologous to the gene annotated ipd, which encodes a putative indole pyruvate decarboxylase, in L. lactis IL1403. Strain IL1403 does not produce KdcA, which could be explained by a 270-nucleotide deletion at the 3′ terminus of the ipd gene encoding a truncated nonfunctional decarboxylase. The kdcA gene was overexpressed in L. lactis for further characterization of the decarboxylase enzyme. Of all of the potential substrates tested, the highest activity was observed with branched-chain α-keto acids. Moreover, the enzyme activity was hardly affected by high salinity, and optimal activity was found at pH 6.3, indicating that the enzyme might be active under cheese ripening conditions. PMID:15640202

  13. Staphylococcus petrasii subsp. pragensis subsp. nov., occurring in human clinical material.

    PubMed

    Švec, Pavel; De Bel, Annelies; Sedláček, Ivo; Petráš, Petr; Gelbíčová, Tereza; Černohlávková, Jitka; Mašlanˇová, Ivana; Cnockaert, Margo; Varbanovová, Ivana; Echahidi, Fedoua; Vandamme, Peter; Pantuček, Roman

    2015-07-01

    Seven coagulase-negative, oxidase-negative and novobiocin-susceptible staphylococci assigned tentatively as Staphylococcus petrasii were investigated in this study in order to elucidate their taxonomic position. All strains were initially shown to form a genetically homogeneous group separated from remaining species of the genus Staphylococcus by using a repetitive sequence-based PCR fingerprinting with the (GTG)5 primer. Phylogenetic analysis based on 16S rRNA gene, hsp60, rpoB, dnaJ, gap and tuf sequences showed that the group is closely related to Staphylococcus petrasii but separated from the three hitherto known subspecies, S. petrasii subsp. petrasii, S. petrasii subsp. croceilyticus and S. petrasii subsp. jettensis. Further investigation using automated ribotyping, MALDI-TOF mass spectrometry, fatty acid methyl ester analysis, DNA-DNA hybridization and extensive biotyping confirmed that the analysed group represents a novel subspecies within S. petrasii, for which the name Staphylococcus petrasii subsp. pragensis subsp. nov. is proposed. The type strain is NRL/St 12/356(T) ( = CCM 8529(T) = LMG 28327(T)).

  14. Use of the alr gene as a food-grade selection marker in lactic acid bacteria.

    PubMed

    Bron, Peter A; Benchimol, Marcos G; Lambert, Jolanda; Palumbo, Emmanuelle; Deghorain, Marie; Delcour, Jean; De Vos, Willem M; Kleerebezem, Michiel; Hols, Pascal

    2002-11-01

    Both Lactococcus lactis and Lactobacillus plantarum contain a single alr gene, encoding an alanine racemase (EC 5.1.1.1), which catalyzes the interconversion of D-alanine and L-alanine. The alr genes of these lactic acid bacteria were investigated for their application as food-grade selection markers in a heterologous complementation approach. Since isogenic mutants of both species carrying an alr deletion (Deltaalr) showed auxotrophy for D-alanine, plasmids carrying a heterologous alr were constructed and could be selected, since they complemented D-alanine auxotrophy in the L. plantarum Deltaalr and L. lactis Deltaalr strains. Selection was found to be highly stringent, and plasmids were stably maintained over 200 generations of culturing. Moreover, the plasmids carrying the heterologous alr genes could be stably maintained in wild-type strains of L. plantarum and L. lactis by selection for resistance to D-cycloserine, a competitive inhibitor of Alr (600 and 200 micro g/ml, respectively). In addition, a plasmid carrying the L. plantarum alr gene under control of the regulated nisA promoter was constructed to demonstrate that D-cycloserine resistance of L. lactis is linearly correlated to the alr expression level. Finally, the L. lactis alr gene controlled by the nisA promoter, together with the nisin-regulatory genes nisRK, were integrated into the chromosome of L. plantarum Deltaalr. The resulting strain could grow in the absence of D-alanine only when expression of the alr gene was induced with nisin.

  15. Requirement of Autolytic Activity for Bacteriocin-Induced Lysis

    PubMed Central

    Martínez-Cuesta, M. Carmen; Kok, Jan; Herranz, Elisabet; Peláez, Carmen; Requena, Teresa; Buist, Girbe

    2000-01-01

    The bacteriocin produced by Lactococcus lactis IFPL105 is bactericidal against several Lactococcus and Lactobacillus strains. Addition of the bacteriocin to exponential-growth-phase cells resulted in all cases in bacteriolysis. The bacteriolytic response of the strains was not related to differences in sensitivity to the bacteriocin and was strongly reduced in the presence of autolysin inhibitors (Co2+ and sodium dodecyl sulfate). When L. lactis MG1363 and its derivative deficient in the production of the major autolysin AcmA (MG1363acmAΔ1) were incubated with the bacteriocin, the latter did not lyse and no intracellular proteins were released into the medium. Incubation of cell wall fragments of L. lactis MG1363, or of L. lactis MG1363acmAΔ1 to which extracellular AcmA was added, in the presence or absence of the bacteriocin had no effect on the speed of cell wall degradation. This result indicates that the bacteriocin does not degrade cell walls, nor does it directly activate the autolysin AcmA. The autolysin was also responsible for the observed lysis of L. lactis MG1363 cells during incubation with nisin or the mixture of lactococcins A, B, and M. The results presented here show that lysis of L. lactis after addition of the bacteriocins is caused by the resulting cell damage, which promotes uncontrolled degradation of the cell walls by AcmA. PMID:10919766

  16. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods.

    PubMed

    Song, Yuqin; Sun, Zhihong; Guo, Chenyi; Wu, Yarong; Liu, Wenjun; Yu, Jie; Menghe, Bilige; Yang, Ruifu; Zhang, Heping

    2016-03-04

    Lactobacillus delbrueckii subsp. bulgaricus is one of the most widely used starter culture strains in industrial fermented dairy manufacture. It is also common in naturally fermented dairy foods made using traditional methods. The subsp. bulgaricus strains found in naturally fermented foods may be useful for improving current industrial starter cultures; however, little is known regarding its genetic diversity and population structure. Here, a collection of 298 L. delbrueckii strains from naturally fermented products in Mongolia, Russia, and West China was analyzed by multi-locus sequence typing based on eight conserved genes. The 251 confirmed subsp. bulgaricus strains produced 106 unique sequence types, the majority of which were assigned to five clonal complexes (CCs). The geographical distribution of CCs was uneven, with CC1 dominated by Mongolian and Russian isolates, and CC2-CC5 isolates exclusively from Xinjiang, China. Population structure analysis suggested six lineages, L1-L6, with various homologous recombination rates. Although L2-L5 were mainly restricted within specific regions, strains belonging to L1 and L6 were observed in diverse regions, suggesting historical transmission events. These results greatly enhance our knowledge of the population diversity of subsp. bulgaricus strains, and suggest that strains from CC1 and L4 may be useful as starter strains in industrial fermentation.

  17. Bis-indolic compounds as potential new therapeutic alternatives for tularaemia

    PubMed Central

    Caspar, Yvan; Sutera, Vivien; Boisset, Sandrine; Denis, Jean-Noël; Maurin, Max

    2014-01-01

    Francisella tularensis is the etiological agent of tularaemia and a CDC class A biological threat agent. Few antibiotic classes are currently useful in treating tularaemia, including the aminoglycosides gentamicin and streptomycin, fluoroquinolones, and tetracyclines. However, treatment failures and relapses remain frequent and F. tularensis strains resistant to antibiotics have been easily selected in vitro. In this study, we evaluated the activity of new synthetic bis-indole derivatives against this pathogen. Minimum inhibitory concentrations (MICs) of four compounds (dcm01 to dcm04) were determined for the reference strains F. tularensis subsp. holarctica LVS NCTC10857, F. tularensis subsp. novicida CIP56.12 and F. philomiragia ATCC25015, and for 41 clinical strains of F. tularensis subsp. holarctica isolated in France. Minimal bactericidal concentrations (MBCs) were determined for the dcm02 and dcm04 compounds for the LVS and two clinical strains. Killing curves were also determined for the same three strains exposed to dcm04. All tested bis-indole compounds were bacteriostatic against F. tularensis subsp. holarctica strains, with a MIC90 of 8 μg/mL for dcm01, dcm02, and dcm03, and 2 μg/mL for dcm04. Only one strain was resistant to both dcm01 and dcm03, with MICs > 32 μg/mL. In contrast, F. tularensis subsp. novicida was resistant to all derivatives and F. philomiragia was only susceptible to dcm02 and dcm04, with MICs of 16 and 4 μg/mL, respectively. MBC and killing curve experiments revealed significant bactericidal activity (i.e., 3-log reduction of the bacterial inoculum) of the dcm02 and dcm04 compounds only for the LVS strain. In conclusion, we have identified novel synthetic bis-indole compounds that are active against F. tularensis subsp. holarctica. They may be drug candidates for the development of new therapeutic alternatives for tularaemia treatment. Their further characterization is needed, especially identification of their bacterial targets. PMID:24579066

  18. Bis-indolic compounds as potential new therapeutic alternatives for tularaemia.

    PubMed

    Caspar, Yvan; Sutera, Vivien; Boisset, Sandrine; Denis, Jean-Noël; Maurin, Max

    2014-01-01

    Francisella tularensis is the etiological agent of tularaemia and a CDC class A biological threat agent. Few antibiotic classes are currently useful in treating tularaemia, including the aminoglycosides gentamicin and streptomycin, fluoroquinolones, and tetracyclines. However, treatment failures and relapses remain frequent and F. tularensis strains resistant to antibiotics have been easily selected in vitro. In this study, we evaluated the activity of new synthetic bis-indole derivatives against this pathogen. Minimum inhibitory concentrations (MICs) of four compounds (dcm01 to dcm04) were determined for the reference strains F. tularensis subsp. holarctica LVS NCTC10857, F. tularensis subsp. novicida CIP56.12 and F. philomiragia ATCC25015, and for 41 clinical strains of F. tularensis subsp. holarctica isolated in France. Minimal bactericidal concentrations (MBCs) were determined for the dcm02 and dcm04 compounds for the LVS and two clinical strains. Killing curves were also determined for the same three strains exposed to dcm04. All tested bis-indole compounds were bacteriostatic against F. tularensis subsp. holarctica strains, with a MIC90 of 8 μg/mL for dcm01, dcm02, and dcm03, and 2 μg/mL for dcm04. Only one strain was resistant to both dcm01 and dcm03, with MICs > 32 μg/mL. In contrast, F. tularensis subsp. novicida was resistant to all derivatives and F. philomiragia was only susceptible to dcm02 and dcm04, with MICs of 16 and 4 μg/mL, respectively. MBC and killing curve experiments revealed significant bactericidal activity (i.e., 3-log reduction of the bacterial inoculum) of the dcm02 and dcm04 compounds only for the LVS strain. In conclusion, we have identified novel synthetic bis-indole compounds that are active against F. tularensis subsp. holarctica. They may be drug candidates for the development of new therapeutic alternatives for tularaemia treatment. Their further characterization is needed, especially identification of their bacterial targets.

  19. Purification and partial characterization of bacteriocin produced by Lactococcus lactis ssp. lactis LL171.

    PubMed

    Kumari, Archana; Akkoç, Nefise; Akçelik, Mustafa

    2012-04-01

    Lactic acid bacteria (LAB) are possessing ability to synthesize antimicrobial compounds (like bacteriocin) during their growth. In this regard, novel bacteriocin compound secreting capability of LAB isolated from Tulum Cheese in Turkey was demonstrated. The synthesized bacteriocin was purified by ammonium sulphate precipitation, dialysis and gel filtration. The molecular weight (≈3.4 kDa) of obtained bacteriocin was confirmed by SDS-PAGE, which revealed single peptide band. Molecular identification of LAB strain isolated from Tulum Cheese was conducted using 16S rDNA gene sequencing as Lactococcus lactis ssp. lactis LL171. The amino acid sequences (KKIDTRTGKTMEKTEKKIELSLKNMKTAT) of the bacteriocin from Lactococcus lactis ssp. lactis LL171 was found unique and novel than reported bacteriocins. Further, the bacteriocin was possessed the thermostable property and active at wide range of pH values from 1 to 11. Thus, bacteriocin reported in this study has the potential applications property as food preservative agent.

  20. The genome sequence of 'Mycobacterium massiliense' strain CIP 108297 suggests the independent taxonomic status of the Mycobacterium abscessus complex at the subspecies level.

    PubMed

    Cho, Yong-Joon; Yi, Hana; Chun, Jongsik; Cho, Sang-Nae; Daley, Charles L; Koh, Won-Jung; Shin, Sung Jae

    2013-01-01

    Members of the Mycobacterium abscessus complex are rapidly growing mycobacteria that are emerging as human pathogens. The M. abscessus complex was previously composed of three species, namely M. abscessus sensu stricto, 'M. massiliense', and 'M. bolletii'. In 2011, 'M. massiliense' and 'M. bolletii' were united and reclassified as a single subspecies within M. abscessus: M. abscessus subsp. bolletii. However, the placement of 'M. massiliense' within the boundary of M. abscessus subsp. bolletii remains highly controversial with regard to clinical aspects. In this study, we revisited the taxonomic status of members of the M. abscessus complex based on comparative analysis of the whole-genome sequences of 53 strains. The genome sequence of the previous type strain of 'Mycobacterium massiliense' (CIP 108297) was determined using next-generation sequencing. The genome tree based on average nucleotide identity (ANI) values supported the differentiation of 'M. bolletii' and 'M. massiliense' at the subspecies level. The genome tree also clearly illustrated that 'M. bolletii' and 'M. massiliense' form a distinct phylogenetic clade within the radiation of the M. abscessus complex. The genomic distances observed in this study suggest that the current M. abscessus subsp. bolletii taxon should be divided into two subspecies, M. abscessus subsp. massiliense subsp. nov. and M. abscessus subsp. bolletii, to correspondingly accommodate the previously known 'M. massiliense' and 'M. bolletii' strains.

  1. [Identification and phylogenetic analysis of one strain of Lactobacillus delbrueckii subsp. bulgaricus separated from yoghourt].

    PubMed

    Wang, Chuan; Zhang, Chaowu; Pei, Xiaofang; Liu, Hengchuan

    2007-11-01

    For being further applied and studied, one strain of Lactobacillus delbrueckii subsp. bulgaricus (wch9901) separated from yoghourt which had been identified by phenotype characteristic analysis was identified by 16S rDNA and phylogenetic analyzed. The 16S rDNA of wch9901 was amplified with the genomic DNA of wch9901 as template, and the conservative sequences of the 16S rDNA as primers. Inserted 16S rDNA amplified into clonal vector pGEM-T under the function of T4 DNA ligase to construct recombined plasmid pGEM-wch9901 16S rDNA. The recombined plasmid was identified by restriction enzyme digestion, and the eligible plasmid was presented to sequencing company for DNA sequencing. Nucleic acid sequence was blast in GenBank and phylogenetic tree was constructed using neighbor-joining method of distance methods by Mega3.1 soft. Results of blastn showed that the homology of 16S rDNA of wch9901 with the 16S rDNA of Lactobacillus delbrueckii subsp. bulgaricus strains was higher than 96%. On the phylogenetic tree, wch9901 formed a separate branch and located between Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch and another evolution branch which was composed of Lactobacillus delbrueckii subsp. bulgaricus DL2 evolution cluster and Lactobacillus delbrueckii subsp. bulgaricus JSQ evolution cluster. The distance between wch9901 evolution branch and Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch was the closest. wch9901 belonged to Lactobacillus delbrueckii subsp. bulgaricus. wch9901 showed the closest evolution relationship to Lactobacillus delbrueckii subsp. bulgaricus LGM2.

  2. Production of spent mushroom substrate hydrolysates useful for cultivation of Lactococcus lactis by dilute sulfuric acid, cellulase and xylanase treatment.

    PubMed

    Qiao, Jian-Jun; Zhang, Yan-Fei; Sun, Li-Fan; Liu, Wei-Wei; Zhu, Hong-Ji; Zhang, Zhijun

    2011-09-01

    Spent mushroom substrate (SMS) was treated with dilute sulfuric acid followed by cellulase and xylanase treatment to produce hydrolysates that could be used as the basis for media for the production of value added products. A L9 (3(4)) orthogonal experiment was performed to optimize the acid treatment process. Pretreatment with 6% (w/w) dilute sulfuric acid at 120°C for 120 min provided the highest reducing sugar yield of 267.57 g/kg SMS. No furfural was detected in the hydrolysates. Exposure to 20PFU of cellulase and 200 XU of xylanase per gram of pretreated SMS at 40°C resulted in the release of 79.85 g/kg or reducing sugars per kg acid pretreated SMS. The dilute sulfuric acid could be recycled to process fresh SMS four times. SMS hydrolysates neutralized with ammonium hydroxide, sodium hydroxide, or calcium hydroxide could be used as the carbon source for cultivation of Lactococcus lactis subsp. lactis W28 and a cell density of 2.9×10(11)CFU/mL could be obtained. The results provide a foundation for the development of value-added products based on SMS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice

    PubMed Central

    Wang, Jingjing; Tang, Huang; Zhang, Chenhong; Zhao, Yufeng; Derrien, Muriel; Rocher, Emilie; van-Hylckama Vlieg, Johan ET; Strissel, Katherine; Zhao, Liping; Obin, Martin; Shen, Jian

    2015-01-01

    Structural disruption of gut microbiota and associated inflammation are considered important etiological factors in high fat diet (HFD)-induced metabolic syndrome (MS). Three candidate probiotic strains, Lactobacillus paracasei CNCM I-4270 (LC), L. rhamnosus I-3690 (LR) and Bifidobacterium animalis subsp. lactis I-2494 (BA), were individually administered to HFD-fed mice (108 cells day−1) for 12 weeks. Each strain attenuated weight gain and macrophage infiltration into epididymal adipose tissue and markedly improved glucose–insulin homeostasis and hepatic steatosis. Weighted UniFrac principal coordinate analysis based on 454 pyrosequencing of fecal bacterial 16S rRNA genes showed that the probiotic strains shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean mice fed a normal (chow) diet. Redundancy analysis revealed that abundances of 83 operational taxonomic units (OTUs) were altered by probiotics. Forty-nine altered OTUs were significantly correlated with one or more host MS parameters and were designated ‘functionally relevant phylotypes'. Thirteen of the 15 functionally relevant OTUs that were negatively correlated with MS phenotypes were promoted, and 26 of the 34 functionally relevant OTUs that were positively correlated with MS were reduced by at least one of the probiotics, but each strain changed a distinct set of functionally relevant OTUs. LC and LR increased cecal acetate but did not affect circulating lipopolysaccharide-binding protein; in contrast, BA did not increase acetate but significantly decreased adipose and hepatic tumor necrosis factor-α gene expression. These results suggest that Lactobacillus and Bifidobacterium differentially attenuate obesity comorbidities in part through strain-specific impacts on MS-associated phylotypes of gut microbiota in mice. PMID:24936764

  4. Probiotics for respiratory tract infections in children attending day care centers-a systematic review.

    PubMed

    Laursen, Rikke Pilmann; Hojsak, Iva

    2018-05-12

    Probiotics have been suggested to have a preventive effect on respiratory tract infections (RTIs), but limited evidence exist on strain-specific effects. The main aim of this systematic review and meta-analysis was to evaluate strain-specific probiotic effects on RTIs in children attending day care. We included 15 RCTs with 5121 children in day care settings (aged 3 months to 7 years), but due to high diversity in reported outcomes, different number of RCTs were available for evaluated outcomes. Twelve RCTs (n = 4527) reported results which could be compared in at least one outcome of the meta-analysis. Compared to placebo, Lactobacillus rhamnosus GG (LGG) significantly reduced duration of RTIs (three RCTs, n = 1295, mean difference - 0.78 days, 95% confidence interval (CI) - 1.46; - 0.09), whereas no effect was found on other evaluated outcomes. Based on the results from two studies (n = 343), Bifidobacterium animalis subsp. lactis BB-12 showed no effect on duration of RTIs or on absence from day care. Meta-analyses on other strains or their combination were not possible due to limited data and different outcome measures. LGG is modestly effective in decreasing the duration of RTIs. More RCTs investigating specific probiotic strains or their combinations in prevention of RTIs are needed. What is known: • Previously published systematic reviews have suggested that probiotics may have a preventive effect on respiratory infections, but limited data exist on strain specific effects. What is new: • This systematic review showed that use of Lactobacillus rhamnosus GG modestly reduces the duration of respiratory tract infections.

  5. Complete genomic sequences of two salmonella enterica subsp. enterica serogroup C2 (O:6,8) strains from central California

    USDA-ARS?s Scientific Manuscript database

    Salmonella enteric subsp. enterica strains RM11060, serotype 6,8:d:-, and RM11065, serotype 6,8:-:e,n,z15, were isolated from environmental sampling in Central California in 2009. We report the complete genome sequences and annotation of these two strains. These genomic sequences are distinct and wi...

  6. Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov., a thermophilic bacterium isolated from a hot spring in Batman.

    PubMed

    Gul-Guven, Reyhan; Guven, Kemal; Poli, Annarita; Nicolaus, Barbara

    2008-12-01

    A new thermophilic spore-forming strain KG8(T) was isolated from the mud of Taslidere hot spring in Batman. Strain KG8(T) was aerobe, Gram-positive, rod-shaped, motile, occurring in pairs or filamentous. Growth was observed from 35-65 degrees C (optimum 55 degrees C) and at pH 5.5-9.5 (optimum pH 7.5). It was capable of utilizing starch, growth was observed until 3% NaCl (w/v) and it was positive for nitrate reduction. On the basis of 16S rRNA gene sequence similarity, strain KG8(T) was shown to be related most closely to Anoxybacillus species. Chemotaxonomic data (major isoprenoid quinone-menaquinone-7; major fatty acid-iso-C15:0 and iso-C17:0) supported the affiliation of strain KG8(T) to the genus Anoxybacillus. The results of DNA-DNA hybridization, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain KG8(T). Based on these results we propose assigning a novel subspecies of Anoxybacillus kamchatkensis, to be named Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov. with the type strain KG8(T) (DSM 18475(T)=CIP 109280(T)).

  7. Toxicity of Food-Grade TiO2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging.

    PubMed

    Radziwill-Bienkowska, Joanna M; Talbot, Pauline; Kamphuis, Jasper B J; Robert, Véronique; Cartier, Christel; Fourquaux, Isabelle; Lentzen, Esther; Audinot, Jean-Nicolas; Jamme, Frédéric; Réfrégiers, Matthieu; Bardowski, Jacek K; Langella, Philippe; Kowalczyk, Magdalena; Houdeau, Eric; Thomas, Muriel; Mercier-Bonin, Muriel

    2018-01-01

    Titanium dioxide (TiO 2 ) is commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, a risk of intestinal barrier disruption, including dysbiosis of the gut microbiota, is increasingly suspected because of the presence of a nano-sized fraction in this additive. We hypothesized that food-grade E171 and Aeroxyde P25 (identical to the NM-105 OECD reference nanomaterial in the European Union Joint Research Centre) interact with both commensal intestinal bacteria and transient food-borne bacteria under non-UV-irradiated conditions. Based on differences in their physicochemical properties, we expect a difference in their respective effects. To test these hypotheses, we chose a panel of eight Gram-positive/Gram-negative bacterial strains, isolated from different biotopes and belonging to the species Escherichia coli , Lactobacillus rhamnosus , Lactococcus lactis (subsp. lactis and cremoris ), Streptococcus thermophilus , and Lactobacillus sakei . Bacterial cells were exposed to food-grade E171 vs. P25 in vitro and the interactions were explored with innovative (nano)imaging methods. The ability of bacteria to trap TiO 2 was demonstrated using synchrotron UV fluorescence imaging with single cell resolution. Subsequent alterations in the growth profiles were shown, notably for the transient food-borne L. lactis and the commensal intestinal E. coli in contact with food-grade TiO 2 . However, for both species, the reduction in cell cultivability remained moderate, and the morphological and ultrastructural damages, observed with electron microscopy, were restricted to a small number of cells. E. coli exposed to food-grade TiO 2 showed some internalization of TiO 2 (7% of cells), observed with high-resolution nano-secondary ion mass spectrometry (Nano-SIMS) chemical imaging. Taken together, these data show that E171 may be trapped by commensal and transient food-borne bacteria within the gut. In return, it may induce some physiological alterations in the most sensitive species, with a putative impact on gut microbiota composition and functioning, especially after chronic exposure.

  8. Toxicity of Food-Grade TiO2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging

    PubMed Central

    Radziwill-Bienkowska, Joanna M.; Talbot, Pauline; Kamphuis, Jasper B. J.; Robert, Véronique; Cartier, Christel; Fourquaux, Isabelle; Lentzen, Esther; Audinot, Jean-Nicolas; Jamme, Frédéric; Réfrégiers, Matthieu; Bardowski, Jacek K.; Langella, Philippe; Kowalczyk, Magdalena; Houdeau, Eric; Thomas, Muriel; Mercier-Bonin, Muriel

    2018-01-01

    Titanium dioxide (TiO2) is commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, a risk of intestinal barrier disruption, including dysbiosis of the gut microbiota, is increasingly suspected because of the presence of a nano-sized fraction in this additive. We hypothesized that food-grade E171 and Aeroxyde P25 (identical to the NM-105 OECD reference nanomaterial in the European Union Joint Research Centre) interact with both commensal intestinal bacteria and transient food-borne bacteria under non-UV-irradiated conditions. Based on differences in their physicochemical properties, we expect a difference in their respective effects. To test these hypotheses, we chose a panel of eight Gram-positive/Gram-negative bacterial strains, isolated from different biotopes and belonging to the species Escherichia coli, Lactobacillus rhamnosus, Lactococcus lactis (subsp. lactis and cremoris), Streptococcus thermophilus, and Lactobacillus sakei. Bacterial cells were exposed to food-grade E171 vs. P25 in vitro and the interactions were explored with innovative (nano)imaging methods. The ability of bacteria to trap TiO2 was demonstrated using synchrotron UV fluorescence imaging with single cell resolution. Subsequent alterations in the growth profiles were shown, notably for the transient food-borne L. lactis and the commensal intestinal E. coli in contact with food-grade TiO2. However, for both species, the reduction in cell cultivability remained moderate, and the morphological and ultrastructural damages, observed with electron microscopy, were restricted to a small number of cells. E. coli exposed to food-grade TiO2 showed some internalization of TiO2 (7% of cells), observed with high-resolution nano-secondary ion mass spectrometry (Nano-SIMS) chemical imaging. Taken together, these data show that E171 may be trapped by commensal and transient food-borne bacteria within the gut. In return, it may induce some physiological alterations in the most sensitive species, with a putative impact on gut microbiota composition and functioning, especially after chronic exposure. PMID:29740421

  9. Biological characteristics and probiotic effect of Leuconostoc lactis strain isolated from the intestine of black porgy fish

    PubMed Central

    Zhang, Wei; Liu, Mingqi; Dai, Xianjun

    2013-01-01

    A strain of lactic acid bacteria, Leuconostoc lactis, was isolated from the intestinal tract of black porgy, Sparus macrocephalus, and identified by conventional biochemical characteristics and 16S rDNA gene sequence analysis. The isolated strain had the ability of bile tolerance and resistance to low pH, and survived well in the trypsinase and pepsin solution. But the highly concentrated dose of trypsinase and pepsin affect the viability of the isolated strain. The isolate was resistant to several antibiotics, including Cephalothin, Ceftriaxone, Imipenem and Tobramycin. The isolate could auto-aggregate itself and coaggregate with other bacteria in vitro. The autoaggregation percentage increased to 23.29% after 20 h of incubation. The percentage of coaggregation were respectively 31.21%, 29.44%, 10.74%, 16.49%, 24.36%, 24.41% and 20.99% for Vibrio parahaemolyticus, Listeria monocytogenes, Escherichia coli O157, Salmonella typhimurium, Shigella, Staphylococcus aureus and Proteusbacillus vulgaris after 20 h incubation of a mixed suspension. The supernatant of the strain inhibited the growth of several pathogens, such as V.parahaemolyticus, Vibrio harveyi, Vibrio alginolyticus, Staphylococcus aureus, Escherichia coli O157, Salmonella typhimurium, Bacillus subtilis, Proteusbacillus vulgaris and Shigella. These results indicated that the isolate, Leuconostoc lactis, might be an attractive candidate for perspectival strain for probiotics in marine aquaculture. PMID:24516418

  10. The investigation of probiotic potential of lactic acid bacteria isolated from traditional Mongolian dairy products.

    PubMed

    Takeda, Shiro; Yamasaki, Keiko; Takeshita, Masahiko; Kikuchi, Yukiharu; Tsend-Ayush, Chuluunbat; Dashnyam, Bumbein; Ahhmed, Abdulatef M; Kawahara, Satoshi; Muguruma, Michio

    2011-08-01

    The aims of this study were to investigate the diversity of lactic acid bacteria (LAB) isolated from traditional Mongolian dairy products, and to estimate the probiotic potential of the isolated strains. We collected 66 samples of the traditional Mongolian dairy products tarag (n = 45), airag (n = 7), aaruul (n = 8), byasulag (n = 1) and eezgii (n = 5), from which 543 LAB strains were isolated and identified based on 16S ribosomal DNA sequence. The predominant species of those products were Lactobacillus (L.) delbrueckii ssp. bulgaricus, L. helveticus, L. fermentum, L. delbrueckii ssp. lactis and Lactococcus lactis ssp. lactis. However, we could not detect any LAB strains from eezgii. All LAB isolates were screened for tolerance to low pH and to bile acid, gas production from glucose, and adherence to Caco-2 cells. In vitro, we found 10 strains possess probiotic properties, and almost identified them as L. plantarum or L. paracasei subspecies, based on 16S ribosomal DNA and carbohydrate fermentation pattern. These strains were differentiated from each other individually by randomly amplified polymorphic DNA analysis. Additionally, it was notable that 6/10 strains were isolated from camel milk tarag from the Dornogovi province. 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  11. A Food-Grade Cloning System for Industrial Strains of Lactococcus lactis

    PubMed Central

    Sørensen, Kim I.; Larsen, Rasmus; Kibenich, Annette; Junge, Mette P.; Johansen, Eric

    2000-01-01

    We have previously reported the construction of a food-grade cloning vector for Lactococcus using the ochre suppressor, supB, as the selective marker. This vector, pFG1, causes only a slight growth inhibition in the laboratory strain MG1363 but is unstable in the industrial strains tested. As supB suppresses both amber and ochre stop codons, which are present in 82% of all known lactococcal genes, this undesirable finding may result from the accumulation of elongated mistranslated polypeptides. Here, we report the development of a new food-grade cloning vector, pFG200, which is suitable for overexpressing a variety of genes in industrial strains of Lactococcus lactis. The vector uses an amber suppressor, supD, as selectable marker and consists entirely of Lactococcus DNA, with the exception of a small polylinker region. Using suppressible pyrimidine auxotrophs, selection and maintenance are efficient in any pyrimidine-free medium including milk. Importantly, the presence of this vector in a variety of industrial strains has no significant effect on the growth rate or the rate of acidification in milk, making this an ideal system for food-grade modification of industrially relevant L. lactis strains. The usefulness of this system is demonstrated by overexpressing the pepN gene in a number of industrial backgrounds. PMID:10742196

  12. Safety, potential biotechnological and probiotic properties of bacteriocinogenic Enterococcus lactis strains isolated from raw shrimps.

    PubMed

    Ben Braïek, Olfa; Morandi, Stefano; Cremonesi, Paola; Smaoui, Slim; Hani, Khaled; Ghrairi, Taoufik

    2018-04-01

    The aims of this study are to isolate new bacteriocinogenic lactic acid bacterial strains from white (Penaeus vannamei) and pink (Palaemon serratus) raw shrimps and evaluate their technological and probiotic potentialities. Seven strains were selected, among fifty active isolates, as producing interesting antimicrobial activity. Identified as Enterococcus lactis, these isolates were able to produce enterocins A, B and/or P. The safety aspect, assessed by microbiological and molecular tests, demonstrated that the strains were susceptible to relevant antibiotics such as vancomycin, negative for haemolysin and gelatinase activities, and did not harbour virulence and antibiotic resistance genes. The assessment of potential probiotic and technological properties showed a low or no lipolytic activity, moderate milk-acidifying ability, high reducing power, proteolytic activity and tolerance to bile (P < 0.05) and good autoaggregation and coaggregation capacities. Two strains designated as CQ and C43 exhibiting high enzymatic activities and bile salt hydrolase activity were found to display high survival under simulated in vitro oral cavity and gastrointestinal tract conditions caused by presence of lysozyme, pepsin, pancreatin, bile salts and acidic pH. This study highlights safe Enterococcus lactis strains with great technological and probiotic potentials for future application as new starter, adjunct, protective or probiotic cultures in food industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Genomic Diversity of Erwinia carotovora subsp. carotovora and Its Correlation with Virulence

    PubMed Central

    Yap, Mee-Ngan; Barak, Jeri D.; Charkowski, Amy O.

    2004-01-01

    We used genetic and biochemical methods to examine the genomic diversity of the enterobacterial plant pathogen Erwinia carotovora subsp. carotovora. The results obtained with each method showed that E. carotovora subsp. carotovora strains isolated from one ecological niche, potato plants, are surprisingly diverse compared to related pathogens. A comparison of 23 partial mdh sequences revealed a maximum pairwise difference of 10.49% and an average pairwise difference of 2.13%, values which are much greater than the maximum variation (1.81%) and average variation (0.75%) previously reported for Escherichia coli. Pulsed-field gel electrophoresis analysis of I-CeuI-digested genomic DNA revealed seven rrn operons in all E. carotovora subsp. carotovora strains examined except strain WPP17, which had only six copies. We identified 26 I-CeuI restriction fragment length polymorphism patterns and observed significant polymorphism in fragment sizes ranging from 100 to 450 kb for all strains. We detected large plasmids in two strains, including the model strain E. carotovora subsp. carotovora 71. The two least virulent strains had an unusual chromosomal structure, suggesting that a particular pulsotype is correlated with virulence. To compare chromosomal organization of multiple enterobacterial genomes, several genes were mapped onto I-CeuI fragments. We identified portions of the genome that appear to be conserved across enterobacteria and portions that have undergone genome rearrangements. We found that the least virulent strain, WPP17, failed to oxidize cellobiose and was missing several hrp and hrc genes. The unexpected variability among isolates obtained from clonal hosts in one region and in one season suggests that factors other than the host plant, potato, drive the evolution of this common environmental bacterium and key plant pathogen. PMID:15128563

  14. Identification of Lactococcus-Specific Bacteriocins Produced by Lactococcal Isolates, and the Discovery of a Novel Bacteriocin, Lactococcin Z.

    PubMed

    Ishibashi, Naoki; Seto, Hiromi; Koga, Shoko; Zendo, Takeshi; Sonomoto, Kenji

    2015-09-01

    Lactic acid bacteria that produce Lactococcus-specific bacteriocins were isolated and identified as Lactococcus lactis from fresh corn or lettuce. Among them, four isolates were identified as lactococcin Q producers. Seven isolates showed antimicrobial activity against a lactococcin Q producer, L. lactis QU 4, as well as against nisin Z and lacticin Q producers belonging to L. lactis. Strain QU 7 was selected as a standard strain and showed no cross-immunity to lactococcin Q or other lactococcal bacteriocins. The bacteriocin produced by strain QU 7 was purified in three chromatographic steps, and its molecular mass was determined to be 5041.35 Da. The amino acid sequence analysis revealed that it is a novel class IId bacteriocin, referred to as lactococcin Z. It consisted of 45 amino acid residues. The lczA gene encoding the prepeptide of lactococcin Z showed homology to lactococcins A, B, and M. Thus, this report demonstrates a new example of Lactococcus-specific bacteriocins.

  15. [Resistance of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ to reactive oxygen species].

    PubMed

    Zhang, Shuwen; Lv, Jiaping; Menghe, Bilige; Zhang, Heping; Zhang, Liyu; Song, Jinhui; Wang, Zhifei

    2009-02-01

    We evaluated antioxidative effect of two antioxidative strains, isolated from the traditional fermented dairy products. Both intact cells and cell-free extract of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ were used to study the inhibited effect of linoleic acid peroxidation, the ability of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide anion radical,the ability of tolerancing hydrogen peroxide and the chelating capacity of ferrous ion and reducting activity. Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ demonstrated highest inhibition on linoleic acid peroxidation by 62.95% and 66.16%, respectively. The cell-free extract showed excellent scavenging superoxide anion and hydroxyl radicals activity. However, the intact cells of Lactobacillus delbrueckii subsp. bulgaricus LJJ scavenging superoxide and hydroxyl radicals capacity were not detected. The intact cells of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ on 1,1-diphenyl-2-picrylhydrazyl radical scavenging ability and chelating ferrous ion capacity were superior to cell-free extract. The highest reduced activety was equivalent to 305 micromol/L and 294 micromol/L L-cysteine. Two latobacilli strains had good antioxidant capacity. As potential probiotics, it can be used in future.

  16. Draft Genome Sequences of 18 Salmonella enterica subsp. enterica Serovar Oranienburg Strains Isolated from Rivers in Northwestern Mexico

    PubMed Central

    Casteñeda-Ruelas, Gloria M.; Carreón-Gaxiola, César; Castelán-Sánchez, Hugo G.; Acatzi-Silva, Abraham; Romero-Martínez, Salvador; García-Molina, Alejandra

    2017-01-01

    ABSTRACT Salmonella enterica subsp. enterica serovar Oranienburg is recognized as a foodborne pathogen widely distributed in the environment. Here, we report 18 draft genomes of S. Oranienburg strains isolated from rivers in the northwestern region of Mexico. PMID:28280020

  17. Seed-associated subspecies of the genus Clavibacter are clearly distinguishable from Clavibacter michiganensis subsp. michiganensis.

    PubMed

    Yasuhara-Bell, Jarred; Alvarez, Anne M

    2015-03-01

    The genus Clavibacter contains one recognized species, Clavibacter michiganensis. Clavibacter michiganensis is subdivided into subspecies based on host specificity and bacteriological characteristics, with Clavibacter michiganensis subsp. michiganensis causing bacterial canker of tomato. Clavibacter michiganensis subsp. michiganensis is often spread through contaminated seed leading to outbreaks of bacterial canker in tomato production areas worldwide. The frequent occurrence of non-pathogenic Clavibacter michiganensis subsp. michiganensis-like bacteria (CMB) is a concern for seed producers because Clavibacter michiganensis subsp. michiganensis is a quarantine organism and detection of a non-pathogenic variant may result in destruction of an otherwise healthy seed lot. A thorough biological and genetic characterization of these seed-associated CMB strains was performed using standard biochemical tests, cell wall analyses, metabolic profiling using Biolog, and single-gene and multilocus sequence analyses. Combined, these tests revealed two distinct populations of seed-associated members of the genus Clavibacter that differed from each other, as well as from all other described subspecies of Clavibacter michiganensis. DNA-DNA hybridization values are 70 % or higher, justifying placement into the single recognized species, C. michiganensis, but other analyses justify separate subspecies designations. Additionally, strains belonging to the genus Clavibacter isolated from pepper also represent a distinct population and warrant separate subspecies designation. On the basis of these data we propose subspecies designations for separate non-pathogenic subpopulations of Clavibacter michiganensis: Clavibacter michiganensis subsp. californiensis subsp. nov. and Clavibacter michiganensis subsp. chilensis subsp. nov. for seed-associated strains represented by C55(T) ( = ATCC BAA-2691(T) = CFBP 8216(T)) and ZUM3936(T) ( = ATCC BAA-2690(T) = CFBP 8217(T)), respectively. Recognition of separate subspecies is essential for improved international seed testing operations. © 2015 IUMS.

  18. Effect of sublethal preculturing on the survival of probiotics and metabolite formation in set-yoghurt.

    PubMed

    Settachaimongkon, Sarn; van Valenberg, Hein J F; Winata, Vera; Wang, Xiaoxi; Nout, M J Robert; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J

    2015-08-01

    The objective of this study was to investigate the effect of preculturing of Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB12 under sublethal stress conditions on their survival and metabolite formation in set-yoghurt. Prior to co-cultivation with yoghurt starters in milk, the two probiotic strains were precultured under sublethal stress conditions (combinations of elevated NaCl and low pH) in a batch fermentor. The activity of sublethally precultured probiotics was evaluated during fermentation and refrigerated storage by monitoring bacterial population dynamics, milk acidification and changes in volatile and non-volatile metabolite profiles of set-yoghurt. The results demonstrated adaptive stress responses of the two probiotic strains resulting in their viability improvement without adverse influence on milk acidification. A complementary metabolomic approach using SPME-GC/MS and (1)H-NMR resulted in the identification of 35 volatiles and 43 non-volatile polar metabolites, respectively. Principal component analysis revealed substantial impact of the activity of sublethally precultured probiotics on metabolite formation demonstrated by distinctive volatile and non-volatile metabolite profiles of set-yoghurt. Changes in relative abundance of various aroma compounds suggest that incorporation of stress-adapted probiotics considerably influences the organoleptic quality of product. This study provides new information on the application of stress-adapted probiotics in an actual food-carrier environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods

    PubMed Central

    Song, Yuqin; Sun, Zhihong; Guo, Chenyi; Wu, Yarong; Liu, Wenjun; Yu, Jie; Menghe, Bilige; Yang, Ruifu; Zhang, Heping

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus is one of the most widely used starter culture strains in industrial fermented dairy manufacture. It is also common in naturally fermented dairy foods made using traditional methods. The subsp. bulgaricus strains found in naturally fermented foods may be useful for improving current industrial starter cultures; however, little is known regarding its genetic diversity and population structure. Here, a collection of 298 L. delbrueckii strains from naturally fermented products in Mongolia, Russia, and West China was analyzed by multi-locus sequence typing based on eight conserved genes. The 251 confirmed subsp. bulgaricus strains produced 106 unique sequence types, the majority of which were assigned to five clonal complexes (CCs). The geographical distribution of CCs was uneven, with CC1 dominated by Mongolian and Russian isolates, and CC2–CC5 isolates exclusively from Xinjiang, China. Population structure analysis suggested six lineages, L1–L6, with various homologous recombination rates. Although L2–L5 were mainly restricted within specific regions, strains belonging to L1 and L6 were observed in diverse regions, suggesting historical transmission events. These results greatly enhance our knowledge of the population diversity of subsp. bulgaricus strains, and suggest that strains from CC1 and L4 may be useful as starter strains in industrial fermentation. PMID:26940047

  20. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid.

    PubMed

    Song, Li; Cui, Hongyu; Tang, Lijie; Qiao, Xinyuan; Liu, Min; Jiang, Yanping; Cui, Wen; Li, Yijing

    2014-07-01

    Integration plasmids are often used in constructing chromosomal mutations, as it enables the alternation of genes at any location by integration or replacement. Food-grade integration vectors can integrate into the host genome without introducing any selectable markers or residual bases, and the recombination often happens in non-coding region. In this study we used the temperature-sensitive pWV01 replicon to construct 2 chloramphenicol-resistant integration plasmids (pGBHC32-upp) containing the uracil phosphoribosyl transferase (upp) gene as a counterselective marker for Lactobacillus casei (L. casei) ATCC393 and Lactococcus lactis (L. lactis) MG1363. We then ligated the designed homologous arms to the pGBHC32-upp plasmids to allow their integration to the bacterial chromosome, and selected upp deletion mutants of L. casei ATCC393 and L. lactis MG1363 in the presence of 5-fluorouracil (5-FU). Analysis of genetic stability, growth curve, carbon utilization and scanning electronic microscopy showed that, except for 5-FU resistance, there were no significant differences between the wild type and mutant lactic acid bacteria. The integration system and the upp deletion strains could be used in the insertion or deletion of genes at any location of the chromosome of both L. casei ATCC 393 and L. lactis MG1363, and the homologous recombination would not introduce any selectable markers or residual bases. These mutant strains can be further investigated for heterologous protein expression and construction of a live mucosal vaccine carrier. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Factors Affecting Exocellular Polysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus Grown in a Chemically Defined Medium†

    PubMed Central

    Petry, Sandrine; Furlan, Sylviane; Crepeau, Marie-Jeanne; Cerning, Jutta; Desmazeaud, Michel

    2000-01-01

    We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production. PMID:10919802

  2. Aeromonas hydrophila subsp. dhakensis Isolated from Feces, Water and Fish in Mediterranean Spain

    PubMed Central

    Esteve, Consuelo; Alcaide, Elena; Blasco, María Dolores

    2012-01-01

    Eight Aeromonas hydrophila-like arabinose-negative isolates from diverse sources (i.e., river freshwater, cooling-system water pond, diseased wild European eels, and human stools) sampled in Valencia (Spain) during 2004–2005, were characterized by 16S rRNA gene sequencing and extensive biochemical testing along with reference strains of most Aeromonas species. These isolates and all reference strains of A. hydrophila subsp. dhakensis and A. aquariorum showed a 16S rRNA sequence similarity of 99.8–100%, and they all shared an identical phenotype. This matched exactly with that of A. hydrophila subsp. dhakensis since all strains displayed positive responses to the Voges-Prokauer test and to the use of dl-lactate. This is the first report of A. hydrophila subsp. dhakensis recovered from environmental samples, and further, from its original isolation in India during 1993–1994. This was accurately identified and segregated from other clinical aeromonads (A. hydrophila subsp. hydrophila, A. caviae, A. veronii biovars veronii and sobria, A. trota, A. schubertii and A. jandaei) by using biochemical key tests. The API 20 E profile for all strains included in A. hydrophila subsp. dhakensis was 7047125. The prevalence of this species in Spanish sources was higher for water (9.4%) than for feces (6%) or eels (1.3%). Isolates recovered as pure cultures from diseased eels were moderately virulent (LD50 of 3.3×106 CFU fish−1) to challenged eels in experimental trials. They were all resistant to ticarcillin, amoxicillin-clavuranic acid, cefoxitin, and imipenem, regardless of its source. Our data point to A. hydrophila subsp. dhakensis as an emerging pathogen for humans and fish in temperate countries. PMID:22472298

  3. Novel Antibacterial Activity of Lactococcus Lactis Subspecies Lactis Z11 Isolated from Zabady

    PubMed Central

    Enan, Gamal; Abdel-Shafi, Seham; Ouda, Sahar; Negm, Sally

    2013-01-01

    The purpose of this study was to select and characterize a probiotic bacterium with distinctive antimicrobial activities. In this respect, Lactococcus lactis subspecies lactis Z11 (L. lactis Z11) isolated from Zabady (Arabian yoghurt) inhibited other strains of lactic acid bacteria and some food-born pathogens including Listeria monocytogenes, Bacillus cereus and staphylococcus aureus. The inhibitory activity of cell free supernatant (CFS) of L. lactis Z11 isolated from zabady was lost by proteolytic enzymes, heat resistant. Consequently, the active substance(s) of CFS was characterized as a bacteriocin. This bacteriocin has been shown to consist of protein but has no lipidic or glucidic moieties in its active molecule. Its activity was stable in the pH range 2.0 to 7.0 and was not affected by organic solvents. The L. lactis Z11 bacteriocin was produced in CFS throughout the mide to the late exponential phase of growth of the producer organism and maximum bacteriocin production was obtained at initial pH 6.5 at incubation temperature of about 30°C. PMID:24151453

  4. Long-Term Transcriptomic Effects of Prebiotics and Synbiotics Delivered In Ovo in Broiler Chickens.

    PubMed

    Slawinska, Anna; Plowiec, Arkadiusz; Siwek, Maria; Jaroszewski, Marcin; Bednarczyk, Marek

    2016-01-01

    In ovo delivery of prebiotics and synbiotics in chickens allows for the development of intestinal microflora prior to hatching, which boosts their robustness. The goal of this study was to determine the transcriptomic profile of the spleen (S), cecal tonsils (CT), and large intestine (LI) of adult chickens injected with prebiotics and synbiotics in ovo. On day 12 of embryo development, incubating eggs were injected with prebiotics: inulin alone (P1) or in combination with Lactococcus lactis subsp. lactis IBB2955 (S1), galactooligosaccharides (GOS) alone (P2) or in combination with Lactococcus lactis subsp. cremoris IBB477 (S2); control group (C) was mock injected with physiological saline. Gene expression analysis was conducted using an Affymetrix Chicken Gene 1.1 ST Array Strip. Most of the differentially expressed genes (DEG) were detected in the cecal tonsils of P2 (378 DEG), and were assigned to gene ontology categories: lymphocyte proliferation, activation and differentiation, and cytokine production. Ingenuity pathway analysis of the DEG (CT of P2) indicated the inhibition of humoral and cellular immune responses, e.g., role of NFAT in regulation of immune responses, phagocytosis, production of nitric oxide, NF-κB, IL-8, and CXCR4 signaling. The DEG with the highest up-regulation from S1 and P2 were involved in gene expression (PAPOLA, RPL27A, RPLP1, and RPS29) from P1 and P2 in transport (BEST4, SLC9A3, and SLC13A2), metabolism (OGT, ALPP, CA4, and CA7), signaling (FGG, G3BP2, UBB, G3BP2, CACNA1G, and ATP6V0A4), and immune responses (MSMB, LGALS3, CABIN1, CXCR5, PAX5, and TNFRSF14). Two DEG influencing the complement system (SERPING1 and MIR1674) were down-regulated in P2 and S1. In conclusion, GOS injected in ovo provided the most potent stimulation of the host transcriptome. This is likely due to its strong bifidogenic effect, which triggers proliferation of indigenous embryonic microflora in ovo, and indirectly influences gene expression regulation in host tissues, especially cecal tonsils.

  5. Effect of in ovo-delivered prebiotics and synbiotics on the morphology and specific immune cell composition in the gut-associated lymphoid tissue.

    PubMed

    Madej, J P; Bednarczyk, M

    2016-01-01

    The purpose of this study was to examine how pre- and synbiotic administration in ovo into the air chamber at d 12 of egg incubation influenced the specific immune cell composition and distribution in the ileum, cecal tonsils (CT) and bursa of Fabricius of broilers. The experiment was performed on 800 hatching eggs of the meat-type chickens (Ross 308). Hatching eggs were treated with: prebiotic, consisting of inulin (Pre1) or Bi(2)tos(®) (Pre2); symbiotic, composed of inulin and Lactococcus lactis subsp. lactis IBB SL1 (Syn1) or Bi(2)tos and Lactococcus lactis subsp. cremoris IBB SC1 (Syn2); or physiological saline as a control group. Seven chickens from each treatment group were randomly selected on , 1, 7, and 21 after hatch for tissue collection. Ileum, cecal tonsil and bursa of Fabricius samples were immunohistochemically stained and the proportions of Bu-1(+), CD3(+), CD4(+), CD8α(+) and TCRγδ(+) cells were estimated. It was indicated that the pre- and synbiotics do not adversely affect the development of the GALT of the chicken. The temporary decrease in B-cell number in bursa on d 7 after hatch suggested an increased colonization rate of the peripheral lymphoid organs by these cells after Pre1, Pre2, and Syn2 treatment. In CT at d 7 after hatch more potent colonization of the GALT by T cells was observed in all pre- and synbiotic treated groups and by B cells in both synbiotic-treated groups than those in respective controls. Then, on d 21 in both synbiotic-treated groups, an increase in T-cell number in ileum was also noticed with faster colonization of the CT by B cells. In 21-day-old chickens, both synbiotics exerted stronger stimulatory effect on the GALT colonization by T cells then prebiotics respectively. Similarly, the colonization by B cells was more pronounced in the Syn2 than in the Pre2 group. The data obtained in this study indicated that prebiotics and particularly synbiotics administrated in ovo stimulated GALT development after hatch. © 2015 Poultry Science Association Inc.

  6. Long-Term Transcriptomic Effects of Prebiotics and Synbiotics Delivered In Ovo in Broiler Chickens

    PubMed Central

    Slawinska, Anna; Plowiec, Arkadiusz; Siwek, Maria; Jaroszewski, Marcin; Bednarczyk, Marek

    2016-01-01

    In ovo delivery of prebiotics and synbiotics in chickens allows for the development of intestinal microflora prior to hatching, which boosts their robustness. The goal of this study was to determine the transcriptomic profile of the spleen (S), cecal tonsils (CT), and large intestine (LI) of adult chickens injected with prebiotics and synbiotics in ovo. On day 12 of embryo development, incubating eggs were injected with prebiotics: inulin alone (P1) or in combination with Lactococcus lactis subsp. lactis IBB2955 (S1), galactooligosaccharides (GOS) alone (P2) or in combination with Lactococcus lactis subsp. cremoris IBB477 (S2); control group (C) was mock injected with physiological saline. Gene expression analysis was conducted using an Affymetrix Chicken Gene 1.1 ST Array Strip. Most of the differentially expressed genes (DEG) were detected in the cecal tonsils of P2 (378 DEG), and were assigned to gene ontology categories: lymphocyte proliferation, activation and differentiation, and cytokine production. Ingenuity pathway analysis of the DEG (CT of P2) indicated the inhibition of humoral and cellular immune responses, e.g., role of NFAT in regulation of immune responses, phagocytosis, production of nitric oxide, NF-κB, IL-8, and CXCR4 signaling. The DEG with the highest up-regulation from S1 and P2 were involved in gene expression (PAPOLA, RPL27A, RPLP1, and RPS29) from P1 and P2 in transport (BEST4, SLC9A3, and SLC13A2), metabolism (OGT, ALPP, CA4, and CA7), signaling (FGG, G3BP2, UBB, G3BP2, CACNA1G, and ATP6V0A4), and immune responses (MSMB, LGALS3, CABIN1, CXCR5, PAX5, and TNFRSF14). Two DEG influencing the complement system (SERPING1 and MIR1674) were down-regulated in P2 and S1. In conclusion, GOS injected in ovo provided the most potent stimulation of the host transcriptome. This is likely due to its strong bifidogenic effect, which triggers proliferation of indigenous embryonic microflora in ovo, and indirectly influences gene expression regulation in host tissues, especially cecal tonsils. PMID:28002487

  7. Nisin-Producing Lactococcus lactis Strains Isolated from Human Milk

    PubMed Central

    Beasley, Shea S.; Saris, Per E. J.

    2004-01-01

    Characterization by partial 16S rRNA gene sequencing, ribotyping, and green fluorescent protein-based nisin bioassay revealed that 6 of 20 human milk samples contained nisin-producing Lactococcus lactis bacteria. This suggests that the history of humans consuming nisin is older than the tradition of consuming fermented milk products. PMID:15294850

  8. Cloning and functional expression of the mitochondrial alternative oxidase gene (aox1) of Aspergillus niger in Lactococcus lactis and its induction by oxidizing conditions.

    PubMed

    Papagianni, Maria; Avramidis, Nicholaos

    2012-01-05

    Lactococcus lactis is a widely used food bacterium mainly known for its fermentation metabolism. An important, and for long time overlooked, trait of this species is its ability to perform respiratory metabolism in the presence of heme and under aerobic conditions. There is no evidence however for the presence of an alternative respiration pathway and AOX activity. In this study, a cDNA fragment encoding the mitochondrial alternative oxidase, the enzyme responsible for alternative respiration, from a citric acid producing Aspergillus niger strain was cloned and expressed in L. lactis as a host strain. Expression of aox1 conferred on this organism cyanide-resistant and salicylhydroxamate-sensitive growth. Bioreactor cultures under fully aerobic conditions of the transformed L. lactis showed that the alternative respiratory pathway operates and improves significantly the microorganism's response to oxidizing stress conditions as it enhances biomass production, suppresses lactate formation, and leads to accumulation of large amounts of nisin. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Use of Potential Probiotic Lactic Acid Bacteria (LAB) Biofilms for the Control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 Biofilms Formation

    PubMed Central

    Gómez, Natacha C.; Ramiro, Juan M. P.; Quecan, Beatriz X. V.; de Melo Franco, Bernadette D. G.

    2016-01-01

    Use of probiotic biofilms can be an alternative approach for reducing the formation of pathogenic biofilms in food industries. The aims of this study were (i) to evaluate the probiotic properties of bacteriocinogenic (Lactococcus lactis VB69, L. lactis VB94, Lactobacillus sakei MBSa1, and Lactobacillus curvatus MBSa3) and non-bacteriocinogenic (L. lactis 368, Lactobacillus helveticus 354, Lactobacillus casei 40, and Weissela viridescens 113) lactic acid bacteria (LAB) isolated from Brazilian’s foods and (ii) to develop protective biofilms with these strains and test them for exclusion of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium. LAB were tested for survival in acid and bile salt conditions, surface properties, biosurfactant production, β-galactosidase and gelatinase activity, antibiotic resistance and presence of virulence genes. Most strains survived exposure to pH 2 and 4% bile salts. The highest percentages of auto-aggregation were obtained after 24 h of incubation. Sixty-seven percentage auto-aggregation value was observed in W. viridescens 113 and Lactobacillus curvatus MBSa3 exhibited the highest co-aggregation (69% with Listeria monocytogenes and 74.6% with E. coli O157:H7), while the lowest co-aggregation was exhibited by W. viridescens 113 (53.4% with Listeria monocytogenes and 38% with E. coli O157:H7). Tests for hemolytic activity, bacterial cell adherence with xylene, and drop collapse confirmed the biosurfactant-producing ability of most strains. Only one strain (L. lactis 368) produced β-galactosidase. All strains were negative for virulence genes cob, ccf, cylLL, cylLs, cyllM, cylB, cylA and efaAfs and gelatinase production. The antibiotic susceptibility tests indicated that the MIC for ciprofloxacin, clindamycin, gentamicin, kanamycin, and streptomycin did not exceed the epidemiological cut-off suggested by the European Food Safety Authority. Some strains were resistant to one or more antibiotics and resistance to antibiotics was species and strain dependent. In the protective biofilm assays, strains L. lactis 368 (bac-), Lactobacillus curvatus MBSa3 (bac+), and Lactobacillus sakei MBSa1 (bac+) resulted in more than six log reductions in the pathogens counts when compared to the controls. This effect could not be attributed to bacteriocin production. These results suggest that these potential probiotic strains can be used as alternatives for control of biofilm formation by pathogenic bacteria in the food industry, without conferring a risk to the consumers. PMID:27375584

  10. Complete genome sequence of Polynucleobacter necessarius subsp. asymbioticus type strain (QLW-P1DMWA-1T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meincke, Linda; Copeland, A; Lapidus, Alla L.

    2012-01-01

    Polynucleobacter necessarius subsp. asymbioticus Hahn et al. 2009 is one of currently two subspecies of P. necessarius. While P. necessarius subsp. asymbioticus is a free-living bacterium, the closely related second subspecies, P. necessarius subsp. necessarius is an obligate endosymbiont living in the cytoplasm of freshwater ciliates of the genus Euplotes aediculatus. The two P. necessarius subspecies were the closest thus far reported phylogenetic neighbors that differ in their lifestyle as obligately free-living vs. obligate endosymbiontic, and they are the only members of the genus Polynucleobacter with completely sequenced genomes. The genome-sequenced strain represents a group of closely related strains notmore » distinguishable by 16S rRNA, 16S-23S ITS or glnA sequences, which is persistent in the home habitat of the strain and frequently contributes > 10% of total bacterial numbers in water samples of the habitat. The 2,159,490 bp long chromosome with a total of 2,088 protein-coding and 48 RNA genes was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program 2006.« less

  11. Mechanism of Citrate Metabolism by an Oxaloacetate Decarboxylase-Deficient Mutant of Lactococcus lactis IL1403 ▿

    PubMed Central

    Pudlik, Agata M.; Lolkema, Juke S.

    2011-01-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706–714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of l-lactate, indicating exchange between oxaloacetate and l-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate. PMID:21665973

  12. Mechanism of citrate metabolism by an oxaloacetate decarboxylase-deficient mutant of Lactococcus lactis IL1403.

    PubMed

    Pudlik, Agata M; Lolkema, Juke S

    2011-08-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706-714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of L-lactate, indicating exchange between oxaloacetate and L-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate.

  13. Phenotypic, Genotypic, and Antimicrobial Characteristics of Streptococcus halichoeri Isolates from Humans, Proposal To Rename Streptococcus halichoeri as Streptococcus halichoeri subsp. halichoeri, and Description of Streptococcus halichoeri subsp. hominis subsp. nov., a Bacterium Associated with Human Clinical Infections.

    PubMed

    Shewmaker, P L; Whitney, A M; Humrighouse, B W

    2016-03-01

    Phenotypic, genotypic, and antimicrobial characteristics of six phenotypically distinct human clinical isolates that most closely resembled the type strain of Streptococcus halichoeri isolated from a seal are presented. Sequencing of the 16S rRNA, rpoB, sodA, and recN genes; comparative whole-genome analysis; conventional biochemical and Rapid ID 32 Strep identification methods; and antimicrobial susceptibility testing were performed on the human isolates, the type strain of S. halichoeri, and type strains of closely related species. The six human clinical isolates were biochemically indistinguishable from each other and showed 100% 16S rRNA, rpoB, sodA, and recN gene sequence similarity. Comparative 16S rRNA gene sequencing analysis revealed 98.6% similarity to S. halichoeri CCUG 48324(T), 97.9% similarity to S. canis ATCC 43496(T), and 97.8% similarity to S. ictaluri ATCC BAA-1300(T). A 3,530-bp fragment of the rpoB gene was 98.8% similar to the S. halichoeri type strain, 84.6% to the S. canis type strain, and 83.8% to the S. ictaluri type strain. The S. halichoeri type strain and the human clinical isolates were susceptible to the antimicrobials tested based on CLSI guidelines for Streptococcus species viridans group with the exception of tetracycline and erythromycin. The human isolates were phenotypically distinct from the type strain isolated from a seal; comparative whole-genome sequence analysis confirmed that the human isolates were S. halichoeri. On the basis of these results, a novel subspecies, Streptococcus halichoeri subsp. hominis, is proposed for the human isolates and Streptococcus halichoeri subsp. halichoeri is proposed for the gray seal isolates. The type strain of the novel subspecies is SS1844(T) = CCUG 67100(T) = LMG 28801(T). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Probiotic Properties of Leuconostoc mesenteroides Isolated from Aguamiel of Agave salmiana.

    PubMed

    Diana, Castro-Rodríguez; Humberto, Hernández-Sánchez; Jorge, Yáñez Fernández

    2015-06-01

    Four lactic acid bacteria, Leuconostoc mesenteroides subsp. mesenteroides, were isolated from aguamiel the sap obtained from Agave salmiana from México and identified by 16S rRNA gene sequence analysis. The probiotic potential of these strains was evaluated and compared with a commercial probiotic (Lactobacillus plantarum 299v) from human origin. All the strains survived the in vitro gastrointestinal simulation conditions: the stomach simulation (3 h, pH 2, 37 °C) and the intestinal simulation (4 h, bile salts 0.5%, 37 °C). All the strains showed a strong hydrophilic character with n-hexadecane and chloroform assays, and all the strains showed a mucin adhesion rate similar to that of L. plantarum 299v. The strains of L. mesenteroides subsp. mesenteroides exhibited similar antimicrobial activity against some pathogens in comparison with L. plantarum 299v. Some antibiotics inhibited the growth of the strains. L. mesenteroides subsp. mesenteroides exhibited in vitro probiotic potential, and it could be better characterized through future in vivo tests.

  15. Hydrolysis of Sequenced β-Casein Peptides Provides New Insight into Peptidase Activity from Thermophilic Lactic Acid Bacteria and Highlights Intrinsic Resistance of Phosphopeptides

    PubMed Central

    Deutsch, Stéphanie-Marie; Molle, Daniel; Gagnaire, Valérie; Piot, Michel; Atlan, Danièle; Lortal, Sylvie

    2000-01-01

    The peptidases of thermophilic lactic acid bacteria have a key role in the proteolysis of Swiss cheeses during warm room ripening. To compare their peptidase activities toward a dairy substrate, a tryptic/chymotryptic hydrolysate of purified β-casein was used. Thirty-four peptides from 3 to 35 amino acids, including three phosphorylated peptides, constitute the β-casein hydrolysate, as shown by tandem mass spectrometry. Cell extracts prepared from Lactobacillus helveticus ITG LH1, ITG LH77, and CNRZ 32, Lactobacillus delbrueckii subsp. lactis ITG LL14 and ITG LL51, L. delbrueckii subsp. bulgaricus CNRZ 397 and NCDO 1489, and Streptococcus thermophilus CNRZ 385, CIP 102303, and TA 060 were standardized in protein. The peptidase activities were assessed with the β-casein hydrolysate as the substrate at pH 5.5 and 24°C (conditions of warm room ripening) by (i) free amino acid release, (ii) reverse-phase chromatography, and (iii) identification of undigested peptides by mass spectrometry. Regardless of strain, L. helveticus was the most efficient in hydrolyzing β-casein peptides. Interestingly, cell extracts of S. thermophilus were not able to release a significant level of free proline from the β-casein hydrolysate, which was consistent with the identification of numerous dipeptides containing proline. With the three lactic acid bacteria tested, the phosphorylated peptides remained undigested or weakly hydrolyzed indicating their high intrinsic resistance to peptidase activities. Finally, several sets of peptides differing by a single amino acid in a C-terminal position revealed the presence of at least one carboxypeptidase in the cell extracts of these species. PMID:11097915

  16. Yeast Kluyveromyces lactis as host for expression of the bacterial lipase: cloning and adaptation of the new lipase gene from Serratia sp.

    PubMed

    Šiekštelė, Rimantas; Veteikytė, Aušra; Tvaska, Bronius; Matijošytė, Inga

    2015-10-01

    Many microbial lipases have been successfully expressed in yeasts, but not in industrially attractive Kluyveromyces lactis, which among other benefits can be cultivated on a medium supplemented with whey--cheap and easily available industrial waste. A new bacterial lipase from Serratia sp. was isolated and for the first time expressed into the yeast Kluyveromyces lactis by heterologous protein expression system based on a strong promoter of Kluyveromyces marxianus triosephosphate isomerase gene and signal peptide of Kluyveromyces marxianus endopolygalacturonase gene. In addition, the bacterial lipase gene was synthesized de novo by taking into account a codon usage bias optimal for K. lactis and was expressed into the yeast K. lactis also. Both resulting strains were characterized by high output level of the target protein secreted extracellularly. Secreted lipases were characterized for activity and stability.

  17. Identification of a cell epitope that is globally conserved among outer membrane proteins (OMPs) OMP7, OMP8, and OMP9 of anaplasma marginale strains and with OMP7 from the A. marginale subsp. centrale vaccine strain

    USDA-ARS?s Scientific Manuscript database

    Within the protective outer membrane fraction of Anaplasma marginale, several vaccine candidates have emerged, including a family of outer membrane proteins (OMPs) 7-9, which share sequence identity with each other and with the single protein OMP7 in the vaccine strain A. marginale subsp. centrale. ...

  18. Aeromonas salmonicida subsp. salmonicida strains isolated from Chinese freshwater fish contain a novel genomic island and possible regional-specific mobile genetic elements profiles.

    PubMed

    Long, Meng; Nielsen, Tue K; Leisner, Jørgen J; Hansen, Lars H; Shen, Zhi X; Zhang, Qian Q; Li, Aihua

    2016-09-01

    Two strains of Aeromonas salmonicida, YK and BG, were isolated from largemouth bronze gudgeon and northern whitefish in China, and identified as A. salmonicida subsp. salmonicida based on phylogenetic analysis of vapA and 16S rRNA gene sequences. YK and BG originated from freshwater fish, one of which belonged to the cyprinid family, and the strains showed a difference in virulence. Subsequently, we performed whole genome sequencing of the strains, and comparison of their genomic sequences to the genome of the A449 reference strain revealed various genomic rearrangements, including a new variant of the genomic island AsaGEI in BG, designated as AsaGEI2c This is the first report on a GEI of A. salmonicida strain from China. Furthermore, both YK and BG strains contained a Tn7 transposon inserted at the same position in the chromosome. Finally, IS-dependent rearrangements on pAsa5 are deemed likely to have occurred, with omission of the resD gene in both strains as well as omission of genes related to the IncF conjugal transfer system in the YK isolate. This study demonstrates that A. salmonicida subsp. salmonicida can infect non-salmonids (cyprinids) in addition to salmonids, and that AsaGEI2c might be useful as a geographical indicator of Chinese A. salmonicida subsp. salmonicida isolates. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Identification of Francisella tularensis by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry: fast, reliable, robust, and cost-effective differentiation on species and subspecies levels.

    PubMed

    Seibold, E; Maier, T; Kostrzewa, M; Zeman, E; Splettstoesser, W

    2010-04-01

    Francisella tularensis, the causative agent of tularemia, is a potential agent of bioterrorism. The phenotypic discrimination of closely related, but differently virulent, Francisella tularensis subspecies with phenotyping methods is difficult and time-consuming, often producing ambiguous results. As a fast and simple alternative, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was applied to 50 different strains of the genus Francisella to assess its ability to identify and discriminate between strains according to their designated species and subspecies. Reference spectra from five representative strains of Francisella philomiragia, Francisella tularensis subsp. tularensis, Francisella tularensis subsp. holarctica, Francisella tularensis subsp. mediasiatica, and Francisella tularensis subsp. novicida were established and evaluated for their capability to correctly identify Francisella species and subspecies by matching a collection of spectra from 45 blind-coded Francisella strains against a database containing the five reference spectra and 3,287 spectra from other microorganisms. As a reference method for identification of strains from the genus Francisella, 23S rRNA gene sequencing was used. All strains were correctly identified, with both methods showing perfect agreement at the species level as well as at the subspecies level. The identification of Francisella strains by MALDI-TOF MS and subsequent database matching was reproducible using biological replicates, different culture media, different cultivation times, different serial in vitro passages of the same strain, different preparation protocols, and different mass spectrometers.

  20. Immunopathological evaluation of recombinant mycobacterial antigen Hsp65 expressed in Lactococcus lactis as a novel vaccine candidate

    PubMed Central

    Herrera Ramírez, J. C.; De la Mora, A. Ch.; De la Mora Valle, A.; Lopez-Valencia, G.; Hurtado, R. M. B.; Rentería Evangelista, T. B.; Rodríguez Castillo, J. L.; Rodríguez Gardea, A.; Gómez Gómez, S. D.; Medina-Basulto, G. E.

    2017-01-01

    Bovine tuberculosis (TBB) is a zoonotic disease distributed worldwide and is of great importance for public health and the livestock industry. Several experimental vaccines against this disease have been evaluated in recent years, yielding varying results. An example is the Bacillus Calmette-Guérin (BCG) vaccine, which has been used extensively in humans and tested in cattle showing mixed results related to protection (0-80%) against Mycobacterium bovis. In this study, we used the food-grade bacterium Lactococcus lactis as an expression system for production of mycobacterial protein Hsp65. For this purpose, the construction of a replicable plasmid in strain NZ9000 L. lactis (pVElepr) was conducted, which expressed the Mycobacterium leprae Hsp65 antigen, and was recognized by traded anti-Hsp65 antibodies. The strain NZ9000-pVElepr was applied to calves that were negative to tuberculin test and the immune response was monitored. The results showed that immune response was not significantly increased in calves with NZ9000-pVElepr with respect to control groups, and no injury was observed in any lung or lymph of the calves. Finally, this study suggest that the recombinant NZ9000 strain of L. lactis may protect against the development of M. bovis infection, although studies with longer exposure to this pathogen are necessary to conclude the matter. PMID:29163649

  1. The complete and fully assembled genome sequence of Aeromonas salmonicida subsp. pectinolytica and its comparative analysis with other Aeromonas species: investigation of the mobilome in environmental and pathogenic strains.

    PubMed

    Pfeiffer, Friedhelm; Zamora-Lagos, Maria-Antonia; Blettinger, Martin; Yeroslaviz, Assa; Dahl, Andreas; Gruber, Stephan; Habermann, Bianca H

    2018-01-05

    Due to the predominant usage of short-read sequencing to date, most bacterial genome sequences reported in the last years remain at the draft level. This precludes certain types of analyses, such as the in-depth analysis of genome plasticity. Here we report the finalized genome sequence of the environmental strain Aeromonas salmonicida subsp. pectinolytica 34mel, for which only a draft genome with 253 contigs is currently available. Successful completion of the transposon-rich genome critically depended on the PacBio long read sequencing technology. Using finalized genome sequences of A. salmonicida subsp. pectinolytica and other Aeromonads, we report the detailed analysis of the transposon composition of these bacterial species. Mobilome evolution is exemplified by a complex transposon, which has shifted from pathogenicity-related to environmental-related gene content in A. salmonicida subsp. pectinolytica 34mel. Obtaining the complete, circular genome of A. salmonicida subsp. pectinolytica allowed us to perform an in-depth analysis of its mobilome. We demonstrate the mobilome-dependent evolution of this strain's genetic profile from pathogenic to environmental.

  2. Genome Sequence of the Rice-Pathogenic Bacterium Acidovorax avenae subsp. avenae RS-1 ▿

    PubMed Central

    Xie, Guan-Lin; Zhang, Guo-Qing; Liu, He; Lou, Miao-Miao; Tian, Wen-Xiao; Li, Bin; Zhou, Xue-Ping; Zhu, Bo; Jin, Gu-Lei

    2011-01-01

    Acidovorax avenae subsp. avenae is a phytobacterium which is the causative agent of several plant diseases with economic significance. Here, we present the draft genome sequence of strain RS-1, which was isolated from rice shoots in a rice field in China. This strain can cause bacterial stripe of rice. PMID:21742879

  3. Draft Genome Sequences of 18 Salmonella enterica subsp. enterica Serovar Oranienburg Strains Isolated from Rivers in Northwestern Mexico.

    PubMed

    Casteñeda-Ruelas, Gloria M; Carreón-Gaxiola, César; Castelán-Sánchez, Hugo G; Acatzi-Silva, Abraham; Romero-Martínez, Salvador; García-Molina, Alejandra; Jiménez-Edeza, Maribel

    2017-03-09

    Salmonella enterica subsp. enterica serovar Oranienburg is recognized as a foodborne pathogen widely distributed in the environment. Here, we report 18 draft genomes of S  Oranienburg strains isolated from rivers in the northwestern region of Mexico. Copyright © 2017 Casteñeda-Ruelas et al.

  4. Isolation of Bartonella henselae, Bartonella koehlerae subsp. koehlerae, Bartonella koehlerae subsp. bothieri and a new subspecies of B. koehlerae from free-ranging lions (Panthera leo) from South Africa, cheetahs (Acinonyx jubatus) from Namibia and captive cheetahs from California.

    PubMed

    Molia, S; Kasten, R W; Stuckey, M J; Boulouis, H J; Allen, J; Borgo, G M; Koehler, J E; Chang, C C; Chomel, B B

    2016-11-01

    Bartonellae are blood- and vector-borne Gram-negative bacteria, recognized as emerging pathogens. Whole-blood samples were collected from 58 free-ranging lions (Panthera leo) in South Africa and 17 cheetahs (Acinonyx jubatus) from Namibia. Blood samples were also collected from 11 cheetahs (more than once for some of them) at the San Diego Wildlife Safari Park. Bacteria were isolated from the blood of three (5%) lions, one (6%) Namibian cheetah and eight (73%) cheetahs from California. The lion Bartonella isolates were identified as B. henselae (two isolates) and B. koehlerae subsp. koehlerae. The Namibian cheetah strain was close but distinct from isolates from North American wild felids and clustered between B. henselae and B. koehlerae. It should be considered as a new subspecies of B. koehlerae. All the Californian semi-captive cheetah isolates were different from B. henselae or B. koehlerae subsp. koehlerae and from the Namibian cheetah isolate. They were also distinct from the strains isolated from Californian mountain lions (Felis concolor) and clustered with strains of B. koehlerae subsp. bothieri isolated from free-ranging bobcats (Lynx rufus) in California. Therefore, it is likely that these captive cheetahs became infected by an indigenous strain for which bobcats are the natural reservoir.

  5. Development and evaluation of an efficient heterologous gene knock-in reporter system in Lactococcus lactis.

    PubMed

    Lu, Yifei; Yan, Hongxiang; Deng, Jiezhong; Huang, Zhigang; Jin, Xurui; Yu, Yanlan; Hu, Qiwen; Hu, Fuquan; Wang, Jing

    2017-09-18

    Lactococcus lactis is a food grade probiotics and widely used to express heterologous proteins. Generally, target genes are knocked into the L. lactis genome through double-crossover recombination to express heterologous proteins stably. However, creating marker-less heterologous genes knocked-in clones is laborious. In this study, an efficient heterologous gene knock-in reporter system was developed in L. lactis NZ9000. Our knock-in reporter system consists of a temperature-sensitive plasmid pJW and a recombinant L. lactis strain named NZB. The pJW contains homologous arms, and was constructed to knock-in heterologous genes at a fixed locus of NZ9000 genome. lacZ (β-galactosidase) gene was knocked into the chromosome of NZ9000 as a counter-selective marker through the plasmid pJW to generate NZB. The engineered NZB strain formed blue colonies on X-Gal plate. The desired double-crossover mutants formed white colonies distinctive from the predominantly blue colonies (parental and plasmid-integrated clones) when the embedded lacZ was replaced with the target heterologous genes carried by pJW in NZB. By using the system, the heterologous gene knocked-in clones are screened by colony phenotype change rather than by checking colonies individually. Our new knock-in reporter system provides an efficient method to create heterologous genes knocked-in clones.

  6. Mapping of the chromosome of bacteria Erwinia carotovora subsp. atroseptica 3-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaichik, E.A.; Pesnyakevich, A.G.

    1995-07-01

    Two Hfr-like donor strains of bacteria Erwinia carotovora subsp. atroseptica (Eca) 3-2 were developed by integration into the chromosome of the conjugative plasmid R471a via homology with transposon Tn9. Using these and two donor strains created earlier, we constructed the genetic map of a fragment of the chromosome of strain Eca 3-2. The location of 14 loci is shown in this map. 15 refs., 3 figs., 1 tab.

  7. Comparative Genomic Analyses of Clavibacter michiganensis subsp. insidiosus and Pathogenicity on Medicago truncatula.

    PubMed

    Lu, You; Ishimaru, Carol A; Glazebrook, Jane; Samac, Deborah A

    2018-02-01

    Clavibacter michiganensis is the most economically important gram-positive bacterial plant pathogen, with subspecies that cause serious diseases of maize, wheat, tomato, potato, and alfalfa. Much less is known about pathogenesis involving gram-positive plant pathogens than is known for gram-negative bacteria. Comparative genome analyses of C. michiganensis subspecies affecting tomato, potato, and maize have provided insights on pathogenicity. In this study, we identified strains of C. michiganensis subsp. insidiosus with contrasting pathogenicity on three accessions of the model legume Medicago truncatula. We generated complete genome sequences for two strains and compared these to a previously sequenced strain and genome sequences of four other subspecies. The three C. michiganensis subsp. insidiosus strains varied in gene content due to genome rearrangements, most likely facilitated by insertion elements, and plasmid number, which varied from one to three depending on strain. The core C. michiganensis genome consisted of 1,917 genes, with 379 genes unique to C. michiganensis subsp. insidiosus. An operon for synthesis of the extracellular blue pigment indigoidine, enzymes for pectin degradation, and an operon for inositol metabolism are among the unique features. Secreted serine proteases belonging to both the pat-1 and ppa families were present but highly diverged from those in other subspecies.

  8. Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia.

    PubMed

    Yu, J; Wang, W H; Menghe, B L G; Jiri, M T; Wang, H M; Liu, W J; Bao, Q H; Lu, Q; Zhang, J C; Wang, F; Xu, H Y; Sun, T S; Zhang, H P

    2011-07-01

    Spontaneous milk fermentation has a long history in Mongolia, and beneficial microorganisms have been handed down from one generation to the next for use in fermented dairy products. The objective of this study was to investigate the diversity of lactic acid bacteria (LAB) communities in fermented yak, mare, goat, and cow milk products by analyzing 189 samples collected from 13 different regions in Mongolia. The LAB counts in these samples varied from 3.41 to 9.03 log cfu/mL. Fermented yak and mare milks had almost identical mean numbers of LAB, which were significantly higher than those in fermented goat milk but slightly lower than those in fermented cow milk. In total, 668 isolates were obtained from these samples using de Man, Rogosa, and Sharpe agar and M17 agar. Each isolate was considered to be presumptive LAB based on gram-positive and catalase-negative properties, and was identified at the species level by 16S rRNA gene sequencing, multiplex PCR assay, and restriction fragment length polymorphism analysis. All isolates from Mongolian dairy products were accurately identified as Enterococcus faecalis (1 strain), Enterococcus durans (3 strains), Lactobacillus brevis (3 strains), Lactobacillus buchneri (2 strains), Lactobacillus casei (16 strains), Lactobacillus delbrueckii ssp. bulgaricus (142 strains), Lactobacillus diolivorans (17 strains), Lactobacillus fermentum (42 strains), Lactobacillus helveticus (183 strains), Lactobacillus kefiri (6 strains), Lactobacillus plantarum ssp. plantarum (7 strains), Lactococcus lactis ssp. lactis (7 strains), Leuconostoc lactis (22 strains), Leuconostoc mesenteroides (21 strains), Streptococcus thermophilus (195 strains), and Weissella cibaria (1 strain). The predominant LAB were Strep. thermophilus and Lb. helveticus, which were isolated from all sampling sites. The results demonstrate that traditional fermented dairy products from different regions of Mongolia have complex compositions of LAB species. Such diversity of LAB provides useful information for further studies of probiotic strain selection and starter culture design, with regard to the industrial production of traditional fermented milk. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Proposal to rename Carnobacterium inhibens as Carnobacterium inhibens subsp. inhibens subsp. nov. and description of Carnobacterium inhibens subsp. gilichinskyi subsp. nov., a psychrotolerant bacterium isolated from Siberian permafrost.

    PubMed

    Nicholson, Wayne L; Zhalnina, Kateryna; de Oliveira, Rafael R; Triplett, Eric W

    2015-02-01

    A novel, psychrotolerant facultative anaerobe, strain WN1359(T), was isolated from a permafrost borehole sample collected at the right bank of the Kolyma River in Siberia, Russia. Gram-positive-staining, non-motile, rod-shaped cells were observed with sizes of 1-2 µm long and 0.4-0.5 µm wide. Growth occurred in the range of pH 5.8-9.0 with optimal growth at pH 7.8-8.6 (pH optimum 8.2). The novel isolate grew at temperatures from 0-37 °C and optimal growth occurred at 25 °C. The novel isolate does not require NaCl; growth was observed between 0 and 8.8 % (1.5 M) NaCl with optimal growth at 0.5 % (w/v) NaCl. The isolate was a catalase-negative, facultatively anaerobic chemo-organoheterotroph that used sugars but not several single amino acids or dipeptides as substrates. The major metabolic end-product was lactic acid in the ratio of 86 % l-lactate : 14 % d-lactate. Strain WN1359(T) was sensitive to ampicillin, chloramphenicol, fusidic acid, lincomycin, monocycline, rifampicin, rifamycin SV, spectinomycin, streptomycin, troleandomycin and vancomycin, and resistant to nalidixic acid and aztreonam. The fatty acid content was predominantly unsaturated (70.2 %), branched-chain unsaturated (11.7 %) and saturated (12.5 %). The DNA G+C content was 35.3 mol% by whole genome sequence analysis. 16S rRNA gene sequence analysis showed 98.7 % sequence identity between strain WN1359(T) and Carnobacterium inhibens. Genome relatedness was computed using both Genome-to-Genome Distance Analysis (GGDA) and Average Nucleotide Identity (ANI), which both strongly supported strain WN1359(T) belonging to the species C. inhibens. On the basis of these results, the permafrost isolate WN1359(T) represents a novel subspecies of C. inhibens, for which the name Carnobacterium inhibens subsp. gilichinskyi subsp. nov. is proposed. The type strain is WN1359(T) ( = ATCC BAA-2557(T) = DSM 27470(T)). The subspecies Carnobacterium inhibens subsp. inhibens subsp. nov. is created automatically. An emended description of C. inhibens is also provided. © 2015 IUMS.

  10. An ATP Binding Cassette Transporter Mediates the Uptake of α-(1,6)-Linked Dietary Oligosaccharides in Bifidobacterium and Correlates with Competitive Growth on These Substrates*

    PubMed Central

    Fredslund, Folmer; Vujičić Žagar, Andreja; Andersen, Thomas Lars; Svensson, Birte; Slotboom, Dirk Jan

    2016-01-01

    The molecular details and impact of oligosaccharide uptake by distinct human gut microbiota (HGM) are currently not well understood. Non-digestible dietary galacto- and gluco-α-(1,6)-oligosaccharides from legumes and starch, respectively, are preferentially fermented by mainly bifidobacteria and lactobacilli in the human gut. Here we show that the solute binding protein (BlG16BP) associated with an ATP binding cassette (ABC) transporter from the probiotic Bifidobacterium animalis subsp. lactis Bl-04 binds α-(1,6)-linked glucosides and galactosides of varying size, linkage, and monosaccharide composition with preference for the trisaccharides raffinose and panose. This preference is also reflected in the α-(1,6)-galactoside uptake profile of the bacterium. Structures of BlG16BP in complex with raffinose and panose revealed the basis for the remarkable ligand binding plasticity of BlG16BP, which recognizes the non-reducing α-(1,6)-diglycoside in its ligands. BlG16BP homologues occur predominantly in bifidobacteria and a few Firmicutes but lack in other HGMs. Among seven bifidobacterial taxa, only those possessing this transporter displayed growth on α-(1,6)-glycosides. Competition assays revealed that the dominant HGM commensal Bacteroides ovatus was out-competed by B. animalis subsp. lactis Bl-04 in mixed cultures growing on raffinose, the preferred ligand for the BlG16BP. By comparison, B. ovatus mono-cultures grew very efficiently on this trisaccharide. These findings suggest that the ABC-mediated uptake of raffinose provides an important competitive advantage, particularly against dominant Bacteroides that lack glycan-specific ABC-transporters. This novel insight highlights the role of glycan transport in defining the metabolic specialization of gut bacteria. PMID:27502277

  11. Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3.

    PubMed

    Douillard, François P; Mora, Diego; Eijlander, Robyn T; Wels, Michiel; de Vos, Willem M

    2018-01-01

    Several probiotic-marketed formulations available for the consumers contain live lactic acid bacteria and/or bifidobacteria. The multispecies product commercialized as VSL#3 has been used for treating various gastro-intestinal disorders. However, like many other products, the bacterial strains present in VSL#3 have only been characterized to a limited extent and their efficacy as well as their predicted mode of action remain unclear, preventing further applications or comparative studies. In this work, the genomes of all eight bacterial strains present in VSL#3 were sequenced and characterized, to advance insights into the possible mode of action of this product and also to serve as a basis for future work and trials. Phylogenetic and genomic data analysis allowed us to identify the 7 species present in the VSL#3 product as specified by the manufacturer. The 8 strains present belong to the species Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus helveticus, Bifidobacterium breve and B. animalis subsp. lactis (two distinct strains). Comparative genomics revealed that the draft genomes of the S. thermophilus and L. helveticus strains were predicted to encode most of the defence systems such as restriction modification and CRISPR-Cas systems. Genes associated with a variety of potential probiotic functions were also identified. Thus, in the three Bifidobacterium spp., gene clusters were predicted to encode tight adherence pili, known to promote bacteria-host interaction and intestinal barrier integrity, and to impact host cell development. Various repertoires of putative signalling proteins were predicted to be encoded by the genomes of the Lactobacillus spp., i.e. surface layer proteins, LPXTG-containing proteins, or sortase-dependent pili that may interact with the intestinal mucosa and dendritic cells. Taken altogether, the individual genomic characterization of the strains present in the VSL#3 product confirmed the product specifications, determined its coding capacity as well as identified potential probiotic functions.

  12. Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3

    PubMed Central

    Mora, Diego; Eijlander, Robyn T.; Wels, Michiel; de Vos, Willem M.

    2018-01-01

    Several probiotic-marketed formulations available for the consumers contain live lactic acid bacteria and/or bifidobacteria. The multispecies product commercialized as VSL#3 has been used for treating various gastro-intestinal disorders. However, like many other products, the bacterial strains present in VSL#3 have only been characterized to a limited extent and their efficacy as well as their predicted mode of action remain unclear, preventing further applications or comparative studies. In this work, the genomes of all eight bacterial strains present in VSL#3 were sequenced and characterized, to advance insights into the possible mode of action of this product and also to serve as a basis for future work and trials. Phylogenetic and genomic data analysis allowed us to identify the 7 species present in the VSL#3 product as specified by the manufacturer. The 8 strains present belong to the species Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus helveticus, Bifidobacterium breve and B. animalis subsp. lactis (two distinct strains). Comparative genomics revealed that the draft genomes of the S. thermophilus and L. helveticus strains were predicted to encode most of the defence systems such as restriction modification and CRISPR-Cas systems. Genes associated with a variety of potential probiotic functions were also identified. Thus, in the three Bifidobacterium spp., gene clusters were predicted to encode tight adherence pili, known to promote bacteria-host interaction and intestinal barrier integrity, and to impact host cell development. Various repertoires of putative signalling proteins were predicted to be encoded by the genomes of the Lactobacillus spp., i.e. surface layer proteins, LPXTG-containing proteins, or sortase-dependent pili that may interact with the intestinal mucosa and dendritic cells. Taken altogether, the individual genomic characterization of the strains present in the VSL#3 product confirmed the product specifications, determined its coding capacity as well as identified potential probiotic functions. PMID:29451876

  13. Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Infantis Strain SPE101, Isolated from a Chronic Human Infection

    PubMed Central

    Iriarte, Andrés; Giner-Lamia, Joaquín; Betancor, Laura; Astocondor, Lizeth; Cestero, Juan J.; Ochoa, Theresa; García, Coralith; Puente, José L.; Chabalgoity, José A.

    2017-01-01

    ABSTRACT We report a 4.99-Mb draft genome sequence of Salmonella enterica subsp. enterica serovar Infantis strain SPE101, isolated from feces of a 5-month-old breast-fed female showing diarrhea associated with severe dehydration and malnutrition. The infection prolonged for 6 months despite antibiotic treatment. PMID:28729277

  14. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus

    USDA-ARS?s Scientific Manuscript database

    The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...

  15. Complete Whole-Genome Sequence of Salmonella enterica subsp. enterica Serovar Java NCTC5706.

    PubMed

    Fazal, Mohammed-Abbas; Alexander, Sarah; Burnett, Edward; Deheer-Graham, Ana; Oliver, Karen; Holroyd, Nancy; Parkhill, Julian; Russell, Julie E

    2016-11-03

    Salmonellae are a significant cause of morbidity and mortality globally. Here, we report the first complete genome sequence for Salmonella enterica subsp. enterica serovar Java strain NCTC5706. This strain is of historical significance, having been isolated in the pre-antibiotic era and was deposited into the National Collection of Type Cultures in 1939. © Crown copyright 2016.

  16. Complete genomic sequence of Campylobacter jejuni subsp. jejuni HS:19 strain RM1285 that was isolated from packaged chicken

    USDA-ARS?s Scientific Manuscript database

    Poultry products serve as the main source of Campylobacter jejuni subsp. jejuni (Cjj) infections in humans. Cjj infections are a leading cause of foodborne gastroenteritis and are a prevalent antecedent to Guillain-Barré syndrome (GBS). This study describes the genome of Cjj HS:19 strain RM1285 isol...

  17. Genome Sequence of Streptococcus phocae subsp. salmonis Strain C-4T, Isolated from Atlantic Salmon (Salmo salar)

    PubMed Central

    Suarez, Rudy; Lazo, Eduardo; Bravo, Diego; Llegues, Katerina O.; Romalde, Jesús L.; Godoy, Marcos G.

    2014-01-01

    Streptococcus phocae subsp. salmonis is a fish pathogen that has an important impact on the Chilean salmon industry. Here, we report the genome sequence of the type strain C-4T isolated from Atlantic salmon (Salmo salar), showing a number of interesting features and genes related to its possible virulence factors. PMID:25502668

  18. From field to fermentation: the origins of Lactococcus lactis and its domestication to the dairy environment.

    PubMed

    Cavanagh, Daniel; Fitzgerald, Gerald F; McAuliffe, Olivia

    2015-05-01

    Lactococcus lactis is an organism of substantial economic importance, used extensively in the production of fermented foods and widely held to have evolved from plant strains. The domestication of this organism to the milk environment is associated with genome reduction and gene decay, and the acquisition of specific genes involved in protein and lactose utilisation by horizontal gene transfer. In recent years, numerous studies have focused on uncovering the physiology and molecular biology of lactococcal strains from the wider environment for exploitation in the dairy industry. This in turn has facilitated comparative genome analysis of lactococci from different environments and provided insight into the natural phenotypic and genetic diversity of L. lactis. This diversity may be exploited in dairy fermentations to develop products with improved quality and sensory attributes. In this review, we discuss the classification of L. lactis and the problems that arise with phenotype/genotype designation. We also discuss the adaptation of non-dairy lactococci to milk, the traits associated with this adaptation and the potential application of non-dairy lactococci to dairy fermentations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Establishment of Three Francisella Infections in Zebrafish Embryos at Different Temperatures

    PubMed Central

    Brudal, Espen; Ulanova, Lilia S.; O. Lampe, Elisabeth; Rishovd, Anne-Lise; Winther-Larsen, Hanne C.

    2014-01-01

    Francisella spp. are facultative intracellular pathogens identified in increasingly diverse hosts, including mammals. F. noatunensis subsp. orientalis and F. noatunensis subsp. noatunensis infect fish inhabiting warm and cold waters, respectively, while F. tularensis subsp. novicida is highly infectious for mice and has been widely used as a model for the human pathogen F. tularensis. Here, we established zebrafish embryo infection models of fluorescently labeled F. noatunensis subsp. noatunensis, F. noatunensis subsp. orientalis, and F. tularensis subsp. novicida at 22, 28, and 32°C, respectively. All infections led to significant bacterial growth, as shown by reverse transcription-quantitative PCR (RT-qPCR), and to a robust proinflammatory immune response, dominated by increased transcription of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). F. noatunensis subsp. orientalis was the most virulent, F. noatunensis subsp. noatunensis caused chronic infection, and F. tularensis subsp. novicida showed moderate virulence and led to formation of relatively small granuloma-like structures. The use of transgenic zebrafish strains with enhanced green fluorescent protein (EGFP)-labeled immune cells revealed their detailed interactions with Francisella species. All three strains entered preferentially into macrophages, which eventually assembled into granuloma-like structures. Entry into neutrophils was also observed, though the efficiency of this event depended on the route of infection. The results demonstrate the usefulness of the zebrafish embryo model for studying infections caused by different Francisella species at a wide range of temperatures and highlight their interactions with immune cells. PMID:24614659

  20. Use of biochemical kinetic data to determine strain relatedness among Salmonella enterica subsp. enterica isolates.

    PubMed

    de la Torre, E; Tello, M; Mateu, E M; Torre, E

    2005-11-01

    Classical biotyping characterizes strains by creating biotype profiles that consider only positive and negative results for a predefined set of biochemical tests. This method allows Salmonella subspecies to be distinguished but does not allow serotypes and phage types to be distinguished. The objective of this study was to determine the relatedness of isolates belonging to distinct Salmonella enterica subsp. enterica serotypes by using a refined biotyping process that considers the kinetics at which biochemical reactions take place. Using a Vitek GNI+ card for the identification of gram-negative organisms, we determined the biochemical kinetic reactions (28 biochemical tests) of 135 Salmonella enterica subsp. enterica strains of pig origin collected in Spain from 1997 to 2002 (59 Salmonella serotype Typhimurium strains, 25 Salmonella serotype Typhimurium monophasic variant strains, 25 Salmonella serotype Anatum strains, 12 Salmonella serotype Tilburg strains, 7 Salmonella serotype Virchow strains, 6 Salmonella serotype Choleraesuis strains, and 1 Salmonella enterica serotype 4,5,12:-:- strain). The results were expressed as the colorimetric and turbidimetric changes (in percent) and were used to enhance the classical biotype profile by adding kinetic categories. A hierarchical cluster analysis was performed by using the enhanced profiles and resulted in 14 clusters. Six major clusters grouped 94% of all isolates with a similarity of > or =95% within any given cluster, and eight clusters contained a single isolate. The six major clusters grouped not only serotypes of the same type but also phenotypic serotype variations into individual clusters. This suggests that metabolic kinetic reaction data from the biochemical tests commonly used for classic Salmonella enterica subsp. enterica biotyping can possibly be used to determine the relatedness between isolates in an easy and timely manner.

  1. Multilocus sequence type system for the plant pathogen Xylella fastidiosa and relative contributions of recombination and point mutation to clonal diversity.

    PubMed

    Scally, Mark; Schuenzel, Erin L; Stouthamer, Richard; Nunney, Leonard

    2005-12-01

    Multilocus sequence typing (MLST) identifies and groups bacterial strains based on DNA sequence data from (typically) seven housekeeping genes. MLST has also been employed to estimate the relative contributions of recombination and point mutation to clonal divergence. We applied MLST to the plant pathogen Xylella fastidiosa using an initial set of sequences for 10 loci (9.3 kb) of 25 strains from five different host plants, grapevine (PD strains), oleander (OLS strains), oak (OAK strains), almond (ALS strains), and peach (PP strains). An eBURST analysis identified six clonal complexes using the grouping criterion that each member must be identical to at least one other member at 7 or more of the 10 loci. These clonal complexes corresponded to previously identified phylogenetic clades; clonal complex 1 (CC1) (all PD strains plus two ALS strains) and CC2 (OLS strains) defined the X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi clades, while CC3 (ALS strains), CC4 (OAK strains), and CC5 (PP strains) were subclades of X. fastidiosa subsp. multiplex. CC6 (ALS strains) identified an X. fastidiosa subsp. multiplex-like group characterized by a high frequency of intersubspecific recombination. Compared to the recombination rate in other bacterial species, the recombination rate in X. fastidiosa is relatively low. Recombination between different alleles was estimated to give rise to 76% of the nucleotide changes and 31% of the allelic changes observed. The housekeeping loci holC, nuoL, leuA, gltT, cysG, petC, and lacF were chosen to form the basis of a public database for typing X. fastidiosa (www.mlst.net). These loci identified the same six clonal complexes using the strain grouping criterion of identity at five or more loci with at least one other member.

  2. Genome sequencing identifies Listeria fleischmannii subsp. coloradonensis subsp. nov., isolated from a ranch.

    PubMed

    den Bakker, Henk C; Manuel, Clyde S; Fortes, Esther D; Wiedmann, Martin; Nightingale, Kendra K

    2013-09-01

    Twenty Listeria-like isolates were obtained from environmental samples collected on a cattle ranch in northern Colorado; all of these isolates were found to share an identical partial sigB sequence, suggesting close relatedness. The isolates were similar to members of the genus Listeria in that they were Gram-stain-positive, short rods, oxidase-negative and catalase-positive; the isolates were similar to Listeria fleischmannii because they were non-motile at 25 °C. 16S rRNA gene sequencing for representative isolates and whole genome sequencing for one isolate was performed. The genome of the type strain of Listeria fleischmannii (strain LU2006-1(T)) was also sequenced. The draft genomes were very similar in size and the average MUMmer nucleotide identity across 91% of the genomes was 95.16%. Genome sequence data were used to design primers for a six-gene multi-locus sequence analysis (MLSA) scheme. Phylogenies based on (i) the near-complete 16S rRNA gene, (ii) 31 core genes and (iii) six housekeeping genes illustrated the close relationship of these Listeria-like isolates to Listeria fleischmannii LU2006-1(T). Sufficient genetic divergence of the Listeria-like isolates from the type strain of Listeria fleischmannii and differing phenotypic characteristics warrant these isolates to be classified as members of a distinct infraspecific taxon, for which the name Listeria fleischmannii subsp. coloradonensis subsp. nov. is proposed. The type strain is TTU M1-001(T) ( =BAA-2414(T) =DSM 25391(T)). The isolates of Listeria fleischmannii subsp. coloradonensis subsp. nov. differ from the nominate subspecies by the inability to utilize melezitose, turanose and sucrose, and the ability to utilize inositol. The results also demonstrate the utility of whole genome sequencing to facilitate identification of novel taxa within a well-described genus. The genomes of both subspecies of Listeria fleischmannii contained putative enhancin genes; the Listeria fleischmannii subsp. coloradonensis subsp. nov. genome also encoded a putative mosquitocidal toxin. The presence of these genes suggests possible adaptation to an insect host, and further studies are needed to probe niche adaptation of Listeria fleischmannii.

  3. Development of a Multilocus Sequence Typing (MLST) scheme for Treponema pallidum subsp. pertenue: Application to yaws in Lihir Island, Papua New Guinea

    PubMed Central

    Godornes, Charmie; Giacani, Lorenzo; Barry, Alyssa E.; Mitja, Oriol

    2017-01-01

    Background Yaws is a neglected tropical disease, caused by Treponema pallidum subsp. pertenue. The disease causes chronic lesions, primarily in young children living in remote villages in tropical climates. As part of a global yaws eradication campaign initiated by the World Health Organization, we sought to develop and evaluate a molecular typing method to distinguish different strains of T. pallidum subsp. pertenue for disease control and epidemiological purposes. Methods and principal findings Published genome sequences of strains of T. pallidum subsp. pertenue and pallidum were compared to identify polymorphic genetic loci among the strains. DNA from a number of existing historical Treponema isolates, as well as a subset of samples from yaws patients collected in Lihir Island, Papua New Guinea, were analyzed using these targets. From these data, three genes (tp0548, tp0136 and tp0326) were ultimately selected to give a high discriminating capability among the T. pallidum subsp. pertenue samples tested. Intragenic regions of these three target genes were then selected to enhance the discriminating capability of the typing scheme using short readily amplifiable loci. This 3-gene multilocus sequence typing (MLST) method was applied to existing historical human yaws strains, the Fribourg-Blanc simian isolate, and DNA from 194 lesion swabs from yaws patients on Lihir Island, Papua New Guinea. Among all samples tested, fourteen molecular types were identified, seven of which were found in patient samples and seven among historical isolates or DNA. Three types (JG8, TD6, and SE7) were predominant on Lihir Island. Conclusions This MLST approach allows molecular typing and differentiation of yaws strains. This method could be a useful tool to complement epidemiological studies in regions where T. pallidum subsp. pertenue is prevalent with the overall goals of improving our understanding of yaws transmission dynamics and helping the yaws eradication campaign to succeed. PMID:29281641

  4. Human Treponema pallidum 11q/j isolate belongs to subsp. endemicum but contains two loci with a sequence in TP0548 and TP0488 similar to subsp. pertenue and subsp. pallidum, respectively

    PubMed Central

    Mikalová, Lenka; Strouhal, Michal; Oppelt, Jan; Grange, Philippe Alain; Janier, Michel; Benhaddou, Nadjet; Dupin, Nicolas; Šmajs, David

    2017-01-01

    Background Treponema pallidum subsp. endemicum (TEN) is the causative agent of endemic syphilis (bejel). An unusual human TEN 11q/j isolate was obtained from a syphilis-like primary genital lesion from a patient that returned to France from Pakistan. Methodology/Principal findings The TEN 11q/j isolate was characterized using nested PCR followed by Sanger sequencing and/or direct Illumina sequencing. Altogether, 44 chromosomal regions were analyzed. Overall, the 11q/j isolate clustered with TEN strains Bosnia A and Iraq B as expected from previous TEN classification of the 11q/j isolate. However, the 11q/j sequence in a 505 bp-long region at the TP0488 locus was similar to Treponema pallidum subsp. pallidum (TPA) strains, but not to TEN Bosnia A and Iraq B sequences, suggesting a recombination event at this locus. Similarly, the 11q/j sequence in a 613 bp-long region at the TP0548 locus was similar to Treponema pallidum subsp. pertenue (TPE) strains, but not to TEN sequences. Conclusions/Significance A detailed analysis of two recombinant loci found in the 11q/j clinical isolate revealed that the recombination event occurred just once, in the TP0488, with the donor sequence originating from a TPA strain. Since TEN Bosnia A and Iraq B were found to contain TPA-like sequences at the TP0548 locus, the recombination at TP0548 took place in a treponeme that was an ancestor to both TEN Bosnia A and Iraq B. The sequence of 11q/j isolate in TP0548 represents an ancestral TEN sequence that is similar to yaws-causing treponemes. In addition to the importance of the 11q/j isolate for reconstruction of the TEN phylogeny, this case emphasizes the possible role of TEN strains in development of syphilis-like lesions. PMID:28263990

  5. Expression of bacteriocin LsbB is dependent on a transcription terminator.

    PubMed

    Uzelac, Gordana; Miljkovic, Marija; Lozo, Jelena; Radulovic, Zorica; Tosic, Natasa; Kojic, Milan

    2015-10-01

    The production of LsbB, leaderless class II bacteriocin, is encoded by genes (lsbB and lmrB) located on plasmid pMN5 in Lactococcus lactis BGMN1-5. Heterologous expression of the lsbB gene using the pAZIL vector (pAZIL-lsbB) in L. lactis subsp. cremoris MG7284 resulted in a significant reduction (more than 30 times) of bacteriocin LsbB expression. Subcloning and deletion experiments with plasmid pMN5 revealed that full expression of LsbB requires the presence of a complete transcription terminator located downstream of the lsbB gene. RNA stability analysis revealed that the presence of a transcription terminator increased the RNA stability by three times and the expression of LsbB by 30 times. The study of the influence of transcription terminator on the expression of other bacteriocin genes (lcnB, for lactococcin B production) indicated that this translational terminator likely functions in a lsbB-specific manner rather than in a general manner. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Metagenomics workflow analysis of endophytic bacteria from oil palm fruits

    NASA Astrophysics Data System (ADS)

    Tanjung, Z. A.; Aditama, R.; Sudania, W. M.; Utomo, C.; Liwang, T.

    2017-05-01

    Next-Generation Sequencing (NGS) has become a powerful sequencing tool for microbial study especially to lead the establishment of the field area of metagenomics. This study described a workflow to analyze metagenomics data of a Sequence Read Archive (SRA) file under accession ERP004286 deposited by University of Sao Paulo. It was a direct sequencing data generated by 454 pyrosequencing platform originated from oil palm fruits endophytic bacteria which were cultured using oil-palm enriched medium. This workflow used SortMeRNA to split ribosomal reads sequence, Newbler (GS Assembler and GS Mapper) to assemble and map reads into genome reference, BLAST package to identify and annotate contigs sequence, and QualiMap for statistical analysis. Eight bacterial species were identified in this study. Enterobacter cloacae was the most abundant species followed by Citrobacter koseri, Seratia marcescens, Latococcus lactis subsp. lactis, Klebsiella pneumoniae, Citrobacter amalonaticus, Achromobacter xylosoxidans, and Pseudomonas sp. respectively. All of these species have been reported as endophyte bacteria in various plant species and each has potential as plant growth promoting bacteria or another application in agricultural industries.

  7. Specific Identification and Targeted Characterization of Bifidobacterium lactis from Different Environmental Isolates by a Combined Multiplex-PCR Approach

    PubMed Central

    Ventura, Marco; Reniero, Roberto; Zink, Ralf

    2001-01-01

    The species Bifidobacterium lactis, with its main representative strain Bb12 (DSM 10140), is a yoghurt isolate used as a probiotic strain and is commercially applied in different types of yoghurts and infant formulas. In order to ensure the genetic identity and safety of this bacterial isolate, species- and strain-specific molecular tools for genetic fingerprinting must be available to identify isolated bifidobacteria or lactic acid bacteria from, e.g., various clinical environments of relevance in medical microbiology. Two opposing rRNA gene-targeted primers have been developed for specific detection of this microorganism by PCR. The specificity of this approach was evaluated and verified with DNA samples isolated from single and mixed cultures of bifidobacteria and lactobacilli (48 isolates, including the type strains of 29 Bifidobacterium and 9 Lactobacillus species). Furthermore, we performed a Multiplex-PCR using oligonucleotide primers targeting a specific region of the 16S rRNA gene for the genus Bifidobacterium and a conserved eubacterial 16S rDNA sequence. The specificity and sensitivity of this detection with a pure culture of B. lactis were, respectively, 100 bacteria/ml after 25 cycles of PCR and 1 to 10 bacteria/ml after a 50-cycle nested-PCR approach. PMID:11375192

  8. Bioprocessing of some agro-industrial residues for endoglucanase production by the new subsp.; Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J

    PubMed Central

    El-Naggar, Noura El-Ahmady; Abdelwahed, Nayera A.M.; Saber, Wesam I.A.; Mohamed, Asem A.

    2014-01-01

    The use of low cost agro-industrial residues for the production of industrial enzymes is one of the ways to reduce significantly production costs. Cellulase producing actinomycetes were isolated from soil and decayed agricultural wastes. Among them, a potential culture, strain NEAE-J, was selected and identified on the basis of morphological, cultural, physiological and chemotaxonomic properties, together with 16S rDNA sequence. It is proposed that strain NEAE-J should be included in the species Streptomyces albogriseolus as a representative of a novel sub-species, Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J and sequencing product was deposited in the GenBank database under accession number JN229412. This organism was tested for its ability to produce endoglucanase and release reducing sugars from agro-industrial residues as substrates. Sugarcane bagasse was the most suitable substrate for endoglucanase production. Effects of process variables, namely incubation time, temperature, initial pH and nitrogen source on production of endoglucanase by submerged fermentation using Streptomyces albogriseolus subsp. cellulolyticus have been studied. Accordingly optimum conditions have been determined. Incubation temperature of 30 °C after 6 days, pH of 6.5, 1% sugarcane bagasse as carbon source and peptone as nitrogen source were found to be the optimum for endoglucanase production. Optimization of the process parameters resulted in about 2.6 fold increase in the endoglucanase activity. Therefore, Streptomyces albogriseolus subsp. cellulolyticus coud be potential microorganism for the intended application. PMID:25242966

  9. Lactococcus lactis expressing food-grade β-galactosidase alleviates lactose intolerance symptoms in post-weaning Balb/c mice.

    PubMed

    Li, Jingjie; Zhang, Wen; Wang, Chuan; Yu, Qian; Dai, Ruirui; Pei, Xiaofang

    2012-12-01

    The endogenous β-galactosidase expressed in intestinal microbes is demonstrated to help humans in lactose usage, and treatment associated with the promotion of beneficial microorganism in the gut is correlated with lactose tolerance. From this point, a kind of recombinant live β-galactosidase delivery system using food-grade protein expression techniques and selected probiotics as vehicle was promoted by us for the purpose of application in lactose intolerance subjects. Previously, a recombinant Lactococcus lactis MG1363 strain expressing food-grade β-galactosidase, the L. lactis MG1363/FGZW, was successfully constructed and evaluated in vitro. This study was conducted to in vivo evaluate its efficacy on alleviating lactose intolerance symptoms in post-weaning Balb/c mice, which were orally administered with 1 × 10⁶ CFU or 1 × 10⁸ CFU of L. lactis MG1363/FGZW daily for 4 weeks before lactose challenge. In comparison with naïve mice, the mice administered with L. lactis MG1363/FGZW showed significant alleviation of diarrhea symptoms in less total feces weight within 6 h post-challenge and suppressed intestinal motility after lactose challenge, although there was no significant increase of β-galactosidase activity in small intestine. The alleviation also correlated with higher species abundance, more Bifidobacterium colonization, and stronger colonization resistance in mice intestinal microflora. Therefore, this recombinant L. lactis strain effectively alleviated diarrhea symptom induced by lactose uptake in lactose intolerance model mice with the probable mechanism of promotion of lactic acid bacteria to differentiate and predominantly colonize in gut microbial community, thus making it a promising probiotic for lactose intolerance subjects.

  10. Effects in the use of a genetically engineered strain of Lactococcus lactis delivering in situ IL-10 as a therapy to treat low-grade colon inflammation.

    PubMed

    Martín, Rebeca; Chain, Florian; Miquel, Sylvie; Natividad, Jane M; Sokol, Harry; Verdu, Elena F; Langella, Philippe; Bermúdez-Humarán, Luis G

    2014-01-01

    Irritable bowel syndrome (IBS) is a gastrointestinal disorder characterized by chronic abdominal pain, discomfort, and bloating. Interestingly, there is now evidence of the presence of a low-grade inflammatory status in many IBS patients, including histopathological and mucosal cytokine levels in the colon, as well as the presence of IBS-like symptoms in quiescent inflammatory bowel disease (IBD). The use of a genetically engineered food-grade bacterium, such as Lactococcus lactis, secreting the anti-inflammatory cytokine IL-10 has been proven by many pre-clinical studies to be a successful therapy to treat colon inflammation. In this study, we first reproduced the recovery-recurrence periods observed in IBS-patients in a new chronic model characterized by 2 episodes of DiNitro-BenzeneSulfonic-acid (DNBS)-challenge and we tested the effects of a recombinant strain of L. lactis secreting IL-10 under a Stress-Inducible Controlled Expression (SICE) system. In vivo gut permeability, colonic serotonin levels, cytokine profiles, and spleen cell populations were then measured as readouts of a low-grade inflammation. In addition, since there is increasing evidence that gut microbiota tightly regulates gut barrier function, tight junction proteins were also measured by qRT-PCR after administration of recombinant L. lactis in DNBS-treated mice. Strikingly, oral administration of L. lactis secreting active IL-10 in mice resulted in significant protective effects in terms of permeability, immune activation, and gut-function parameters. Although genetically engineered bacteria are, for now, used only as a "proof-of-concept," our study validates the interest in the use of the novel SICE system in L. lactis to express therapeutic molecules, such as IL-10, locally at mucosal surfaces.

  11. Effects in the use of a genetically engineered strain of Lactococcus lactis delivering in situ IL-10 as a therapy to treat low-grade colon inflammation

    PubMed Central

    Martín, Rebeca; Martín, Rebeca; Chain, Florian; Chain, Florian; Miquel, Sylvie; Miquel, Sylvie; Natividad, Jane M; Natividad, Jane M; Sokol, Harry; Sokol, Harry; Verdu, Elena F; Verdu, Elena F; Langella, Philippe; Langella, Philippe; Bermúdez-Humarán, Luis G; Bermúdez-Humarán, Luis G

    2014-01-01

    Irritable bowel syndrome (IBS) is a gastrointestinal disorder characterized by chronic abdominal pain, discomfort, and bloating. Interestingly, there is now evidence of the presence of a low-grade inflammatory status in many IBS patients, including histopathological and mucosal cytokine levels in the colon, as well as the presence of IBS-like symptoms in quiescent inflammatory bowel disease (IBD). The use of a genetically engineered food-grade bacterium, such as Lactococcus lactis, secreting the anti-inflammatory cytokine IL-10 has been proven by many pre-clinical studies to be a successful therapy to treat colon inflammation. In this study, we first reproduced the recovery-recurrence periods observed in IBS-patients in a new chronic model characterized by 2 episodes of DiNitro-BenzeneSulfonic-acid (DNBS)-challenge and we tested the effects of a recombinant strain of L. lactis secreting IL-10 under a Stress-Inducible Controlled Expression (SICE) system. In vivo gut permeability, colonic serotonin levels, cytokine profiles, and spleen cell populations were then measured as readouts of a low-grade inflammation. In addition, since there is increasing evidence that gut microbiota tightly regulates gut barrier function, tight junction proteins were also measured by qRT-PCR after administration of recombinant L. lactis in DNBS-treated mice. Strikingly, oral administration of L. lactis secreting active IL-10 in mice resulted in significant protective effects in terms of permeability, immune activation, and gut-function parameters. Although genetically engineered bacteria are, for now, used only as a “proof-of-concept,” our study validates the interest in the use of the novel SICE system in L. lactis to express therapeutic molecules, such as IL-10, locally at mucosal surfaces. PMID:24732667

  12. Draft Genome Sequences of 20 Salmonella enterica subsp. enterica Serovar Typhimurium Strains Isolated from Swine in Santa Catarina, Brazil.

    PubMed

    Seribelli, Amanda Aparecida; Frazão, Miliane Rodrigues; Gonzales, Júlia Cunha; Cao, Guojie; Leon, Maria Sanchez; Kich, Jalusa Deon; Allard, Marc William; Falcão, Juliana Pfrimer

    2018-04-19

    Salmonellosis is a disease with a high incidence worldwide, and Salmonella enterica subsp. enterica serovar Typhimurium is one of the most clinically important serovars. We report here the draft genome sequences of 20 S. Typhimurium strains isolated from swine in Santa Catarina, Brazil. These draft genomes will improve our understanding of S. Typhimurium in Brazil.

  13. De Novo whole genome sequence of Xylella fastidiosa subsp. multiplex strain BB01 from blueberry in Georgia, USA

    USDA-ARS?s Scientific Manuscript database

    This study reports a de novo assembled draft genome sequence of Xylella fastidiosa subsp. multiplex strain BB01 causing blueberry bacterial leaf scorch in Georgia, USA. The BB01 genome is 2,517,579 bp with a G+C content of 51.8% and 2,943 open reading frames (ORFs) and 48 RNA genes....

  14. Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Infantis Strain SPE101, Isolated from a Chronic Human Infection.

    PubMed

    Iriarte, Andrés; Giner-Lamia, Joaquín; Silva, Claudia; Betancor, Laura; Astocondor, Lizeth; Cestero, Juan J; Ochoa, Theresa; García, Coralith; Puente, José L; Chabalgoity, José A; García-Del Portillo, Francisco

    2017-07-20

    We report a 4.99-Mb draft genome sequence of Salmonella enterica subsp. enterica serovar Infantis strain SPE101, isolated from feces of a 5-month-old breast-fed female showing diarrhea associated with severe dehydration and malnutrition. The infection prolonged for 6 months despite antibiotic treatment. Copyright © 2017 Iriarte et al.

  15. Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid

    PubMed Central

    Zhai, Zhengyuan; An, Haoran; Wang, Guohong; Luo, Yunbo; Hao, Yanling

    2015-01-01

    Lactobacillus delbrueckii subsp. bulgaricus develops acid tolerance response when subjected to acid stress conditions, such as the induction of enzymes associated with carbohydrate metabolism. In this study, pyk gene encoding pyruvate kinase was over-expressed in heterologous host Lactococcus lactis NZ9000, and SDS-PAGE analysis revealed the successful expression of this gene in NZ9000. The survival rate of Pyk-overproducing strain was 45-fold higher than the control under acid stress condition (pH 4.0). In order to determine the transcription factor (TF) which regulates the expression of pyk by bacterial one-hybrid, we constructed a TF library including 65 TFs of L. bulgaricus. Western blotting indicated that TFs in this library could be successfully expressed in host strains. Subsequently, the promoter of pfk-pyk operon in L. bulgaricus was identified by 5′-RACE PCR. The bait plasmid pH3U3-p01 carrying the deletion fragment of pfk-pyk promoter captured catabolite control protein A (CcpA) which could regulate the expression of pyk by binding to a putative catabolite-responsive element (5′-TGTAAGCCCTAACA-3′) upstream the -35 region. Real-time qPCR analysis revealed the transcription of pyk was positively regulated by CcpA. This is the first report about identifying the TF of pyk in L. bulgaricus, which will provide new insight into the regulatory network. PMID:26581248

  16. Construction of a lactose-assimilating strain of baker's yeast.

    PubMed

    Adam, A C; Prieto, J A; Rubio-Texeira, M; Polaina, J

    1999-09-30

    A recombinant strain of baker's yeast has been constructed which can assimilate lactose efficiently. This strain has been designed to allow its propagation in whey, the byproduct resulting from cheese-making. The ability to metabolize lactose is conferred by the functional expression of two genes from Kluyveromyces lactis, LAC12 and LAC4, which encode a lactose permease and a beta-galactosidase, respectively. To make the recombinant strain more acceptable for its use in bread-making, the genetic transformation of the host baker's yeast was carried out with linear fragments of DNA of defined sequence, carrying as the only heterologous material the coding regions of the two K. lactis genes. Growth of the new strain on cheese whey affected neither the quality of bread nor the yeast gassing power. The significance of the newly developed strain is two-fold: it affords a cheap alternative to the procedure generally used for the propagation of baker's yeast, and it offers a profitable use for cheese whey. Copyright 1999 John Wiley & Sons, Ltd.

  17. Versatile Cas9-Driven Subpopulation Selection Toolbox for Lactococcus lactis.

    PubMed

    van der Els, Simon; James, Jennelle K; Kleerebezem, Michiel; Bron, Peter A

    2018-04-15

    CRISPR-Cas9 technology has been exploited for the removal or replacement of genetic elements in a wide range of prokaryotes and eukaryotes. Here, we describe the extension of the Cas9 application toolbox to the industrially important dairy species Lactococcus lactis The Cas9 expression vector pLABTarget, encoding the Streptocccus pyogenes Cas9 under the control of a constitutive promoter, was constructed, allowing plug and play introduction of short guide RNA (sgRNA) sequences to target specific genetic loci. Introduction of a pepN -targeting derivative of pLABTarget into L. lactis strain MG1363 led to a strong reduction in the number of transformants obtained, which did not occur in a pepN deletion derivative of the same strain, demonstrating the specificity and lethality of the Cas9-mediated double-strand breaks in the lactococcal chromosome. Moreover, the same pLABTarget derivative allowed the selection of a pepN deletion subpopulation from its corresponding single-crossover plasmid integrant precursor, accelerating the construction and selection of gene-specific deletion derivatives in L. lactis Finally, pLABTarget, which contained sgRNAs designed to target mobile genetic elements, allowed the effective curing of plasmids, prophages, and integrative conjugative elements (ICEs). These results establish that pLABTarget enables the effective exploitation of Cas9 targeting in L. lactis , while the broad-host-range vector used suggests that this toolbox could readily be expanded to other Gram-positive bacteria. IMPORTANCE Mobile genetic elements in Lactococcus lactis and other lactic acid bacteria (LAB) play an important role in dairy fermentation, having both positive and detrimental effects during the production of fermented dairy products. The pLABTarget vector offers an efficient cloning platform for Cas9 application in lactic acid bacteria. Targeting Cas9 toward mobile genetic elements enabled their effective curing, which is of particular interest in the context of potentially problematic prophages present in a strain. Moreover, Cas9 targeting of other mobile genetic elements enables the deciphering of their contribution to dairy fermentation processes and further establishment of their importance for product characteristics. Copyright © 2018 American Society for Microbiology.

  18. Isolation of Bartonella henselae and Two New Bartonella Subspecies, Bartonella koehlerae Subspecies boulouisii subsp. nov. and Bartonella koehlerae Subspecies bothieri subsp. nov. from Free-Ranging Californian Mountain Lions and Bobcats

    PubMed Central

    Chomel, Bruno B.; Molia, Sophie; Kasten, Rickie W.; Borgo, Gina M.; Stuckey, Matthew J.; Maruyama, Soichi; Chang, Chao-chin; Haddad, Nadia; Koehler, Jane E.

    2016-01-01

    Domestic cats are the natural reservoir of Bartonella henselae, B. clarridgeiae and B. koehlerae. To determine the role of wild felids in the epidemiology of Bartonella infections, blood was collected from 14 free-ranging California mountain lions (Puma concolor) and 19 bobcats (Lynx rufus). Bartonella spp. were isolated from four (29%) mountain lions and seven (37%) bobcats. These isolates were characterized using growth characteristics, biochemical reactions, molecular techniques, including PCR-RFLP of selected genes or interspacer region, pulsed-field gel electrophoresis (PFGE), partial sequencing of several genes, and DNA-DNA hybridization. Two isolates were identical to B. henselae genotype II. All other isolates were distinguished from B. henselae and B. koehlerae by PCR-RFLP of the gltA gene using endonucleases HhaI, TaqI and AciI, with the latter two discriminating between the mountain lion and the bobcat isolates. These two novel isolates displayed specific PFGE profiles distinct from B. henselae, B. koehlerae and B. clarridgeiae. Sequences of amplified gene fragments from the three mountain lion and six bobcat isolates were closely related to, but distinct from, B. henselae and B. koehlerae. Finally, DNA-DNA hybridization studies demonstrated that the mountain lion and bobcat strains are most closely related to B. koehlerae. We propose naming the mountain lion isolates B. koehlerae subsp. boulouisii subsp. nov. (type strain: L-42-94), and the bobcat isolates B. koehlerae subsp. bothieri subsp. nov. (type strain: L-17-96), and to emend B. koehlerae as B. koehlerae subsp. koehlerae. The mode of transmission and the zoonotic potential of these new Bartonella subspecies remain to be determined. PMID:26981874

  19. Complete Genome Sequence of Campylobacter fetus subsp. venerealis Biovar Intermedius, Isolated from the Prepuce of a Bull

    PubMed Central

    Iraola, Gregorio; Pérez, Ruben; Naya, Hugo; Paolicchi, Fernando; Harris, David; Lawley, Trevor D.; Rego, Natalia; Hernández, Martín; Calleros, Lucía; Carretto, Luis; Velilla, Alejandra; Morsella, Claudia; Méndez, Alejandra

    2013-01-01

    Campylobacter fetus subsp. venerealis is the causative agent of bovine genital campylobacteriosis, a sexually transmitted disease distributed worldwide. Campylobacter fetus subsp. venerealis biovar Intermedius strains differ in their biochemical behavior and are prevalent in some countries. We report the first genome sequence for this biovar, isolated from bull prepuce. PMID:23908278

  20. Whole genome sequence analysis indicates recent diversification of mammal-associated Campylobacter fetus and implicates a genetic factor associated with H2S production

    USDA-ARS?s Scientific Manuscript database

    Campylobacter fetus can cause disease in both humans and animals. C. fetus has been divided into three subspecies: C. fetus subsp. fetus (Cff), C. fetus subsp. venerealis (Cfv) and C. fetus subsp. testudinum. Subspecies identification of C. fetus strains is crucial in the control of Bovine Genital C...

  1. Complete Genome Sequence of the Yogurt Isolate Lactobacillus delbrueckii subsp. bulgaricus ACA-DC 87.

    PubMed

    Alexandraki, Voula; Kazou, Maria; Pot, Bruno; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2017-08-24

    Lactobacillus delbrueckii subsp. bulgaricus is widely used in the production of yogurt and cheese. In this study, we present the complete genome sequence of L. delbrueckii subsp. bulgaricus ACA-DC 87 isolated from traditional Greek yogurt. Whole-genome analysis may reveal desirable technological traits of the strain for dairy fermentations. Copyright © 2017 Alexandraki et al.

  2. Biofilm Formation and Morphotypes of Salmonella enterica subsp.arizonae Differs from Those of Other Salmonella enterica Subspecies in Isolates from Poultry Houses.

    PubMed

    Lamas, A; Fernandez-No, I C; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-07-01

    Salmonella serovars are responsible for foodborne diseases around the world. The ability to form biofilms allows microorganisms to survive in the environment. In this study, 73 Salmonella strains, belonging to four different subspecies, were isolated from poultry houses and foodstuffs and tested. Biofilm formation was measured at four different temperatures and two nutrient concentrations. Morphotypes and cellulose production were evaluated at three different temperatures. The presence of several genes related to biofilm production was also examined. All strains and subspecies of Salmonella had the ability to form biofilms, and 46.57% of strains produced biofilms under all conditions tested. Biofilm formation was strain dependent and varied according to the conditions. This is the first study to analyze biofilm formation in a wide number of Salmonella enterica subsp. arizonae strains, and no direct relationship between the high prevalence of Salmonella enterica subsp. arizonae strains and their ability to form biofilm was established. Morphotypes and cellulose production varied as the temperature changed, with 20°C being the optimum temperature for expression of the red, dry, and rough morphotype and cellulose. Salmonella enterica subsp. arizonae, whose morphotype is poorly studied, only showed a smooth and white morphotype and lacked the csgD and gcpA genes that are implicated in biofilm production. Thus, Salmonella biofilm formation under different environmental conditions is a public health problem because it can survive and advance through the food chain to reach the consumer.

  3. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt.

    PubMed

    Settachaimongkon, Sarn; Nout, M J Robert; Antunes Fernandes, Elsa C; Hettinga, Kasper A; Vervoort, Jacques M; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J; van Valenberg, Hein J F

    2014-05-02

    Proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus is one of the key factors that determine the fermentation process and final quality of yoghurt. In this study, the interaction between different proteolytic strains of S. thermophilus and L. delbrueckii subsp. bulgaricus was investigated in terms of microbial growth, acidification and changes in the biochemical composition of milk during set-yoghurt fermentation. A complementary metabolomics approach was applied for global characterization of volatile and non-volatile polar metabolite profiles of yoghurt associated with proteolytic activity of the individual strains in the starter cultures. The results demonstrated that only non-proteolytic S. thermophilus (Prt-) strain performed proto-cooperation with L. delbrueckii subsp. bulgaricus. The proto-cooperation resulted in significant higher populations of the two species, faster milk acidification, significant abundance of aroma volatiles and non-volatile metabolites desirable for a good organoleptic quality of yoghurt. Headspace SPME-GC/MS and (1)H NMR resulted in the identification of 35 volatiles and 43 non-volatile polar metabolites, respectively. Furthermore, multivariate statistical analysis allows discriminating set-yoghurts fermented by different types of starter cultures according to their metabolite profiles. Our finding underlines that selection of suitable strain combinations in yoghurt starters is important for achieving the best technological performance regarding the quality of product. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Novel genomic tools for specific and real-time detection of biothreat and frequently encountered foodborne pathogens.

    PubMed

    Woubit, Abdela; Yehualaeshet, Teshome; Habtemariam, Tsegaye; Samuel, Temesgen

    2012-04-01

    The bacterial genera Escherichia, Salmonella, Shigella, Vibrio, Yersinia, and Francisella include important food safety and biothreat agents. By extensive mining of the whole genome and protein databases of diverse, closely and distantly related bacterial species and strains, we have identified novel genome regions, which we utilized to develop a rapid detection platform for these pathogens. The specific genomic targets we have identified to design the primers in Francisella tularensis subsp. tularensis, F. tularensis subsp. novicida, Shigella dysenteriae, Salmonella enterica serovar Typhimurium, Vibrio cholerae, Yersinia pestis, and Yersinia pseudotuberculosis contained either known genes or putative proteins. Primer sets were designed from the target regions for use in real-time PCR assays to detect specific biothreat pathogens at species or strain levels. The primer sets were first tested by in silico PCR against whole-genome sequences of different species, subspecies, or strains and then by in vitro PCR against genomic DNA preparations from 23 strains representing six biothreat agents (Escherichia coli O157:H7 strain EDL 933, Shigella dysenteriae, S. enterica serovar Typhi, F. tularensis subsp. tularensis, V. cholerae, and Y. pestis) and six foodborne pathogens (Salmonella Typhimurium, Salmonella Saintpaul, Shigella sonnei, F. tularensis subsp. novicida, Vibrio parahaemolyticus, and Y. pseudotuberculosis). Each pathogen was specifically identifiable at the genus and species levels. Sensitivity assays performed with purified DNA showed the lowest detection limit of 128 fg of DNA/μl for F. tularensis subsp. tularensis. A preliminary test to detect Shigella organisms in a milk matrix also enabled the detection of 6 to 60 CFU/ml. These new tools could ultimately be used to develop platforms to simultaneously detect these pathogens.

  5. Bioluminescence imaging of Clavibacter michiganensis subsp. michiganensis infection of tomato seeds and plants.

    PubMed

    Xu, Xiulan; Miller, Sally A; Baysal-Gurel, Fulya; Gartemann, Karl-Heinz; Eichenlaub, Rudolf; Rajashekara, Gireesh

    2010-06-01

    Clavibacter michiganensis subsp. michiganensis is a Gram-positive bacterium that causes wilting and cankers, leading to severe economic losses in commercial tomato production worldwide. The disease is transmitted from infected seeds to seedlings and mechanically from plant to plant during seedling production, grafting, pruning, and harvesting. Because of the lack of tools for genetic manipulation, very little is known regarding the mechanisms of seed and seedling infection and movement of C. michiganensis subsp. michiganensis in grafted plants, two focal points for application of bacterial canker control measures in tomato. To facilitate studies on the C. michiganensis subsp. michiganensis movement in tomato seed and grafted plants, we isolated a bioluminescent C. michiganensis subsp. michiganensis strain using the modified Tn1409 containing a promoterless lux reporter. A total of 19 bioluminescent C. michiganensis subsp. michiganensis mutants were obtained. All mutants tested induced a hypersensitive response in Mirabilis jalapa and caused wilting of tomato plants. Real-time colonization studies of germinating seeds using a virulent, stable, constitutively bioluminescent strain, BL-Cmm17, showed that C. michiganensis subsp. michiganensis aggregated on hypocotyls and cotyledons at an early stage of germination. In grafted seedlings in which either the rootstock or scion was exposed to BL-Cmm17 via a contaminated grafting knife, bacteria were translocated in both directions from the graft union at higher inoculum doses. These results emphasize the use of bioluminescent C. michiganensis subsp. michiganensis to help better elucidate the C. michiganensis subsp. michiganensis-tomato plant interactions. Further, we demonstrated the broader applicability of this tool by successful transformation of C. michiganensis subsp. nebraskensis with Tn1409::lux. Thus, our approach would be highly useful to understand the pathogenesis of diseases caused by other subspecies of the agriculturally important C. michiganensis.

  6. Bioluminescence Imaging of Clavibacter michiganensis subsp. michiganensis Infection of Tomato Seeds and Plants ▿

    PubMed Central

    Xu, Xiulan; Miller, Sally A.; Baysal-Gurel, Fulya; Gartemann, Karl-Heinz; Eichenlaub, Rudolf; Rajashekara, Gireesh

    2010-01-01

    Clavibacter michiganensis subsp. michiganensis is a Gram-positive bacterium that causes wilting and cankers, leading to severe economic losses in commercial tomato production worldwide. The disease is transmitted from infected seeds to seedlings and mechanically from plant to plant during seedling production, grafting, pruning, and harvesting. Because of the lack of tools for genetic manipulation, very little is known regarding the mechanisms of seed and seedling infection and movement of C. michiganensis subsp. michiganensis in grafted plants, two focal points for application of bacterial canker control measures in tomato. To facilitate studies on the C. michiganensis subsp. michiganensis movement in tomato seed and grafted plants, we isolated a bioluminescent C. michiganensis subsp. michiganensis strain using the modified Tn1409 containing a promoterless lux reporter. A total of 19 bioluminescent C. michiganensis subsp. michiganensis mutants were obtained. All mutants tested induced a hypersensitive response in Mirabilis jalapa and caused wilting of tomato plants. Real-time colonization studies of germinating seeds using a virulent, stable, constitutively bioluminescent strain, BL-Cmm17, showed that C. michiganensis subsp. michiganensis aggregated on hypocotyls and cotyledons at an early stage of germination. In grafted seedlings in which either the rootstock or scion was exposed to BL-Cmm17 via a contaminated grafting knife, bacteria were translocated in both directions from the graft union at higher inoculum doses. These results emphasize the use of bioluminescent C. michiganensis subsp. michiganensis to help better elucidate the C. michiganensis subsp. michiganensis-tomato plant interactions. Further, we demonstrated the broader applicability of this tool by successful transformation of C. michiganensis subsp. nebraskensis with Tn1409::lux. Thus, our approach would be highly useful to understand the pathogenesis of diseases caused by other subspecies of the agriculturally important C. michiganensis. PMID:20400561

  7. Classification of Culturable Bifidobacterial Population from Colonic Samples of Wild Pigs (Sus scrofa) Based on Three Molecular Genetic Methods.

    PubMed

    Pechar, Radko; Killer, Jiří; Mekadim, Chahrazed; Geigerová, Martina; Rada, Vojtěch

    2017-11-01

    Occurrence of bifidobacteria, known as health-promoting probiotic microorganisms, in the digestive tract of wild pigs (Sus scrofa) has not been examined yet. One hundred forty-nine fructose-6-phosphate phosphoketolase positive bacterial strains were isolated from colonic content of twenty-two individuals of wild pigs originated from four localities in the Czechia. Based on PCR-DGGE technique targeting the variable V3 region of the 16S rRNA genes, strains were initially differentiated into four groups represented by: (i) probably a new Bifidobacterium species (89 strains), (ii) B. boum/B. thermophilum/B. thermacidophilum subsp. porcinum/B. thermacidophilum subsp. thermacidophilum (sub)species (49 strains), (iii) Pseudoscardovia suis (7 strains), and (iv) B. pseudolongum subsp. globosum/B. pseudolongum subsp. pseudolongum (4 strains), respectively. Given the fact that DGGE technique did not allow to differentiate the representatives of thermophilic bifidobacteria and B. pseudolongum subspecies, strains were further classified by the 16S rRNA and thrS gene sequences. Primers targeting the variable regions of the latter gene were designed to be applicable in identification and phylogeny of Bifidobacteriaceae family. The 16S rRNA-derived phylogenetic study classified members of the first group into five subgroups in a separated cluster of thermophilic bifidobacteria. Comparable results were obtained by the thrS-derived phylogenetic analysis. Remarkably, variability among thrS sequences was higher compared with 16S rRNA gene sequences. Overall, molecular genetic techniques application allowed to identify a new Bifidobacterium phylotype which is predominant in the digestive tract of examined wild pigs.

  8. The Host Genotype and Environment Affect Strain Types of Bifidobacterium longum subsp. longum Inhabiting the Intestinal Tracts of Twins.

    PubMed

    Zhang, Min; Hang, Xiaomin; Tan, Jing; Yang, Hong

    2015-07-01

    To investigate the influences of host genotype and environment on Bifidobacterium longum subsp. longum inhabiting human intestines at the strain level, six pairs of twins, divided into two groups (children and adults), were recruited. Each group consisted of two monozygotic (MZ) twin pairs and one dizygotic (DZ) twin pair. Child twins had been living together from birth, while adult twins had been living separately for 5 to 10 years. A total of 345 B. longum subsp. longum isolates obtained from 60 fecal samples from these twins were analyzed by multilocus sequence typing (MLST), and 35 sequence types (STs) were finally acquired. Comparison of strains within and between the twin pairs showed that no strains with identical STs were observed between unrelated individuals or within adult DZ twin pairs. Eight STs were found to be monophyletic, existing within MZ twins and child DZ twins. The similarity of strain types within child cotwins was significantly higher than that within adult cotwins, which indicated that environment was one of the important determinants in B. longum subsp. longum strain types inhabiting human intestines. However, although these differences between MZ and DZ twins were observed, it is still difficult to reach an exact conclusion about the impact of host genotype. This is mainly because of the limited number of subjects tested in the present study and the lack of strain types tracing in the same twin pairs from birth until adulthood. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Proposal to reclassify Roseivirga ehrenbergii (Nedashkovskaya et al., 2008) as Roseivirga seohaensis comb. nov., description of Roseivirga seohaensis subsp. aquiponti subsp. nov. and emendation of the genus Roseivirga.

    PubMed

    Selvaratnam, Chitra; Thevarajoo, Suganthi; Goh, Kian Mau; Chan, Kok-Gan; Chong, Chun Shiong

    2016-12-01

    The genus Roseivirga currently includes five species: Roseivirga ehrenbergii, R. echinicomitans, R. spongicola, R. marina and R. maritima. Marinicola seohaensis SW-152T was renamed as Roseivirgaseohaensis SW-152T and then reclassified again as a later heterotypic synonym of R. ehrenbergii KMM 6017T. In this study, based on average nucleotide identity and digital DNA-DNA hybridization values obtained from in silico methods, together with fatty acid analyses and biochemical tests, we propose to reclassify R. ehrenbergii SW-152 as Roseivirga seohaensis comb. nov. (type strain SW-152T=KCTC 1231T=JCM 12600T). In this work, a Gram-negative, rod-shaped, aerobic and pink-pigmented strain designated as D-25T was isolated from seawater (Desaru Beach, Johor, Malaysia). The 16S rRNA gene analysis revealed that strain D-25T was related to the genus Roseivirga. Strain D-25T was found most closely related to R. seohaensis SW-152T based on average nucleotide identity and digital DNA-DNA hybridization values, phenotypic and chemotaxonomic analyses, indicating that these strains belong to the same species. Thus, it is proposed to split the species R.oseivirga seohaensis into two novel subspecies, Roseivirga seohaensissubsp. seohaensis subsp. nov. (type strain SW-152T=KCTC 12312T=JCM 12600T) and Roseivirga seohaensissubsp. aquiponti subsp. nov. (type strain D-25T=KCTC 42709T=DSM 101709T) and to emend the description of the genus Roseivirga.

  10. Some Factors Influencing Acid Production by an Oxytetracycline-Resistant Strain of Streptococcus lactis1

    PubMed Central

    Mikolajcik, E. M.; Harper, W. J.; Gould, I. A.

    1963-01-01

    Induction of oxytetracycline resistance in a strain of Streptococcus lactis caused this organism to display reduced acid production, salt tolerance, pyruvate synthesis, growth at alkaline pH, and a loss in ability to produce ammonia from arginine. α-Ketoglutaric and oxaloacetic acids were found to accumulate in the growth medium of resistant cells, in contrast to none in the medium of susceptible cells. No free arginine could be detected in the intracellular fraction of resistant cells, but arginine was present in the intracellular fraction of susceptible cells and decreased in concentration upon the addition of oxytetracycline to the growth medium. Depressed acid production in milk by the oxytetracycline resistant strain is evidently a consequence of the inability of this organism to metabolize arginine effectively. PMID:14063784

  11. Complete genome sequence of a ciprofloxacin resistant Salmonella enterica subsp. enterica serovar Kentucky sequence of a ciprofloxacin strain, PU131, isolated from a human patient in Washington State.

    USDA-ARS?s Scientific Manuscript database

    A ciprofloxacin resistant (CipR) Salmonella enterica subsp. enterica serovar Kentucky ST198 has rapidly and extensively disseminated globally to become a major food-safety and public health concern. Here, we report a complete genome sequence of a CipR S. Kentucky ST198 strain PU131 isolated from a ...

  12. Genome Sequence of Streptococcus phocae subsp. salmonis Strain C-4T, Isolated from Atlantic Salmon (Salmo salar).

    PubMed

    Avendaño-Herrera, Ruben; Suarez, Rudy; Lazo, Eduardo; Bravo, Diego; Llegues, Katerina O; Romalde, Jesús L; Godoy, Marcos G

    2014-12-11

    Streptococcus phocae subsp. salmonis is a fish pathogen that has an important impact on the Chilean salmon industry. Here, we report the genome sequence of the type strain C-4(T) isolated from Atlantic salmon (Salmo salar), showing a number of interesting features and genes related to its possible virulence factors. Copyright © 2014 Avendaño-Herrera et al.

  13. Casein Hydrolysates by Lactobacillus brevis and Lactococcus lactis Proteases: Peptide Profile Discriminates Strain-Dependent Enzyme Specificity.

    PubMed

    Bounouala, Fatima Zohra; Roudj, Salima; Karam, Nour-Eddine; Recio, Isidra; Miralles, Beatriz

    2017-10-25

    Casein from ovine and bovine milk were hydrolyzed with two extracellular protease preparations from Lactobacillus brevis and Lactococcus lactis. The hydrolysates were analyzed by HPLC-MS/MS for peptide identification. A strain-dependent peptide profile could be observed, regardless of the casein origin, and the specificity of these two proteases could be computationally ascribed. The cleavage pattern yielding phenylalanine, leucine, or tyrosine at C-terminal appeared both at L. lactis and Lb. brevis hydrolysates. However, the cleavage C-terminal to lysine was favored with Lb. brevis protease. The hydrolysates showed ACE-inhibitory activity with IC 50 in the 16-70 μg/mL range. Ovine casein hydrolysates yielded greater ACE-inhibitory activity. Previously described antihypertensive and opioid peptides were found in these ovine and bovine casein hydrolysates and prediction of the antihypertensive activity of the sequences based on quantitative structure and activity relationship (QSAR) was performed. This approach might represent a useful classification tool regarding health-related properties prior to further purification.

  14. Effect of growth conditions on production of rhamnose-containing cell wall and capsular polysaccharides by strains of Lactobacillus casei subsp. rhamnosus.

    PubMed

    Wicken, A J; Ayres, A; Campbell, L K; Knox, K W

    1983-01-01

    Strains of Lactobacillus casei subsp. rhamnosus possessing two cell wall polysaccharides, a hexosamine-containing H-polysaccharide and a rhamnose-containing R-polysaccharide, were examined for the effect of growth conditions on the production of these two components. In strain NCTC 6375, R- and H-polysaccharides accounted for an estimated 44 and 20%, respectively, of the cell wall for organisms grown in batch culture with glucose as the carbohydrate source. Growth on fructose-containing media reduced the amount of R-polysaccharide by approximately 50% without affecting the amount of H-polysaccharide. Subculture of fructose-grown organisms in glucose restored the original proportions of the two polysaccharides. Galactose- and sucrose-grown cells behaved similarly to glucose-grown cells with respect to polysaccharide production, whereas growth in rhamnose or ribose showed values close to those for fructose-grown cells. Continuous culture of strain NCTC 6375 for more than 100 generations showed a gradual and irreversible reduction of the R-polysaccharide to less than 5% of the cell wall and an increase of the H-polysaccharide to 40% of the cell wall. Other type culture strains of L. casei subsp. rhamnosus, NCIB 7473 and ATCC 7469, behaved similarly in batch and continuous culture. In contrast, strains of L. casei subsp. rhamnosus isolated at the Institute of Dental Research showed phenotypic stability with respect to the relative proportions of R- and H-polysaccharides in both batch and continuous culture. Changes in polysaccharide composition of type culture strains were also mirrored in changes in the immunogenicity of the two components and resistance to the rate of enzymic lysis of whole organisms. For L. casei subsp. rhamnosus strain NCTC 10302 the R-polysaccharide is present entirely as capsular material. The amount of R-polysaccharide produced was also markedly dependent on the carbohydrate component of the medium in batch culture and both dilution rate and nature of the limiting carbohydrate in continuous culture, varying over a 10-fold range, whereas the cell wall H-polysaccharide remained constant.

  15. Effect of growth conditions on production of rhamnose-containing cell wall and capsular polysaccharides by strains of Lactobacillus casei subsp. rhamnosus.

    PubMed Central

    Wicken, A J; Ayres, A; Campbell, L K; Knox, K W

    1983-01-01

    Strains of Lactobacillus casei subsp. rhamnosus possessing two cell wall polysaccharides, a hexosamine-containing H-polysaccharide and a rhamnose-containing R-polysaccharide, were examined for the effect of growth conditions on the production of these two components. In strain NCTC 6375, R- and H-polysaccharides accounted for an estimated 44 and 20%, respectively, of the cell wall for organisms grown in batch culture with glucose as the carbohydrate source. Growth on fructose-containing media reduced the amount of R-polysaccharide by approximately 50% without affecting the amount of H-polysaccharide. Subculture of fructose-grown organisms in glucose restored the original proportions of the two polysaccharides. Galactose- and sucrose-grown cells behaved similarly to glucose-grown cells with respect to polysaccharide production, whereas growth in rhamnose or ribose showed values close to those for fructose-grown cells. Continuous culture of strain NCTC 6375 for more than 100 generations showed a gradual and irreversible reduction of the R-polysaccharide to less than 5% of the cell wall and an increase of the H-polysaccharide to 40% of the cell wall. Other type culture strains of L. casei subsp. rhamnosus, NCIB 7473 and ATCC 7469, behaved similarly in batch and continuous culture. In contrast, strains of L. casei subsp. rhamnosus isolated at the Institute of Dental Research showed phenotypic stability with respect to the relative proportions of R- and H-polysaccharides in both batch and continuous culture. Changes in polysaccharide composition of type culture strains were also mirrored in changes in the immunogenicity of the two components and resistance to the rate of enzymic lysis of whole organisms. For L. casei subsp. rhamnosus strain NCTC 10302 the R-polysaccharide is present entirely as capsular material. The amount of R-polysaccharide produced was also markedly dependent on the carbohydrate component of the medium in batch culture and both dilution rate and nature of the limiting carbohydrate in continuous culture, varying over a 10-fold range, whereas the cell wall H-polysaccharide remained constant. PMID:6401290

  16. Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close Streptomyces strains.

    PubMed

    Komaki, Hisayuki; Sakurai, Kenta; Hosoyama, Akira; Kimura, Akane; Igarashi, Yasuhiro; Tamura, Tomohiko

    2018-05-02

    To identify the species of butyrolactol-producing Streptomyces strain TP-A0882, whole genome-sequencing of three type strains in a close taxonomic relationship was performed. In silico DNA-DNA hybridization using the genome sequences suggested that Streptomyces sp. TP-A0882 is classified as Streptomyces diastaticus subsp. ardesiacus. Strain TP-A0882, S. diastaticus subsp. ardesiacus NBRC 15402 T , Streptomyces coelicoflavus NBRC 15399 T , and Streptomyces rubrogriseus NBRC 15455 T harbor at least 14, 14, 10, and 12 biosynthetic gene clusters (BGCs), respectively, coding for nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). All 14 gene clusters were shared by S. diastaticus subsp. ardesiacus strains TP-A0882 and NBRC 15402 T , while only four gene clusters were shared by the three distinct species. Although BGCs for bacteriocin, ectoine, indole, melanine, siderophores such as deferrioxamine, terpenes such as albaflavenone, hopene, carotenoid and geosmin are shared by the three species, many BGCs for secondary metabolites such as butyrolactone, lantipeptides, oligosaccharide, some terpenes are species-specific. These results indicate the possibility that strains belonging to the same species possess the same set of secondary metabolite-biosynthetic pathways, whereas strains belonging to distinct species have species-specific pathways, in addition to some common pathways, even if the strains are taxonomically close.

  17. Improved bioethanol production in an engineered Kluyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI1

    PubMed Central

    González-Siso, María Isabel; Touriño, Alba; Vizoso, Ángel; Pereira-Rodríguez, Ángel; Rodríguez-Belmonte, Esther; Becerra, Manuel; Cerdán, María Esperanza

    2015-01-01

    In this paper, we report the metabolic engineering of the respiratory yeast Kluyveromyces lactis by construction and characterization of a null mutant (Δklndi1) in the single gene encoding a mitochondrial alternative internal dehydrogenase. Isolated mitochondria of the Δklndi1 mutant show unaffected rate of oxidation of exogenous NADH, but no oxidation of matrix NADH; this confirms that KlNdi1p is the only internal NADH dehydrogenase in K. lactis mitochondria. Permeabilized cells of the Δklndi1 mutant do not show oxidation of matrix NADH, which suggests that shuttle systems to transfer the NADH from mitochondrial matrix to cytosol, for being oxidized by external dehydrogenases, are not functional. The Δklndi1 mutation decreases the chronological life span in absence of nutrients. The expression of KlNDI1 is increased by glutathione reductase depletion. The Δklndi1 mutation shifts the K. lactis metabolism from respiratory to fermentative: the Δklndi1 strain shows reduced respiration rate and increased ethanol production from glucose, while it does not grow in non-fermentable carbon sources such as lactate. The biotechnological benefit of the Δklndi1 mutant for bioethanol production from waste cheese whey lactose was proved. PMID:25186243

  18. Serological and genetic examination of some nontypical Streptococcus mutans strains.

    PubMed

    Coykendall, A L; Bratthall, D; O'Connor, K; Dvarskas, R A

    1976-09-01

    Thirty-four strains of Streptococcus mutans whose antigenic or genetic positions were unclear or unknown with respect to the serological scheme of Bratthall (1970) and Perch et al. (1974), or the genetic (deoxyribonucleic acid base sequence homology) scheme of Coykendall were analyzed to clarify their relationship to previously well-characterized strains. Strain OMZ175 of the "new" serotype f was genetically homologous with strains of S. mutans subsp. mutans. Strains of the "new" serotype g were homologous with serotype d strains (S. mutans subsp. sobrinus). Strains isolated from wild rats constituted a new genetic group but carried the c antigen. Thus, strains within a "genospecies" (subspecies) of S. mutans may not always carry a unique or characteristic antigen. We suggest that the existence of multiple serotypes within subspecies represents antigenic variation and adaptations to hosts.

  19. Isolation of Vibrio tapetis from two native fish species (Genypterus chilensis and Paralichthys adspersus) reared in Chile and description of Vibrio tapetis subsp. quintayensis subsp. nov.

    PubMed

    Levican, Arturo; Lasa, Aide; Irgang, Rute; Romalde, Jesús L; Poblete-Morales, Matías; Avendaño-Herrera, Ruben

    2017-04-01

    A group of seven Chilean isolates presumptively belonging to Vibrio tapetis was isolated from diseased fine flounders (Paralichthys adspersus) and red conger eel (Genypterus chilensis) experimentally reared in Quintay (Chile). All isolates were confirmed as members of V. tapetis on the basis of matrix-assisted laser desorption ionization time-of-flight MS, 16S rRNA gene sequencing, DNA-DNA hybridization values and G+C content. The ERIC-PCR and REP-PCR patterns were homogeneous among those isolates recovered from the same host (red conger or fine flounders), but distinct from the type strains V. tapetis subsp. tapetis CECT 4600T and V. tapetis subsp. britannicus CECT 8161T. On the basis of atpA, rpoA, rpoD, recA and pyrH gene sequence similarities (99.7-100 %) and clustering in the phylogenetic trees, the red conger isolates (Q20, Q047, Q48 and Q50) were confirmed as representing V. tapetis subsp. tapetis. However, they differed from V. tapetis subsp. tapetis CECT 4600T in their lipase, alpha quimiotripsin and non-acid phosphatase production. On the other hand, the fine flounder isolates (QL-9T, QL-35 and QL-41) showed rpoD, recA and pyrH gene sequence similarities ranging from 91.6 to 97.7 % with the type strains of the two V. tapetis subspecies (CECT 4600T and CECT 8161T) and consistently clustered together as an independent phylogenetic line within V. tapetis. Moreover, they could be differentiated phenotypically from strains CECT 4600T and CECT 8161T by nine and three different biochemical tests, respectively. In conclusion, the presence of V. tapetis in diseased red conger eel and fine flounder was demonstrated, extending the known host range and geographical location for this pathogen. Furthermore, this study demonstrates that the three isolates from fine flounder represent a novel subdivision within V. tapetis, for which the name V. tapetis subsp. quintayensis subsp. nov. is proposed and with QL-9T (=CECT 8851T=LMG 28759T) as the type strain. Although QL-9T was isolated from kidney of diseased fine flounder specimens, the challenge assays showed that it was non-pathogenic for this species.

  20. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism.

    PubMed Central

    Crow, V L; Davey, G P; Pearce, L E; Thomas, T D

    1983-01-01

    The three enzymes of the D-tagatose 6-phosphate pathway (galactose 6-phosphate isomerase, D-tagatose 6-phosphate kinase, and tagatose 1,6-diphosphate aldolase) were absent in lactose-negative (Lac-) derivatives of Streptococcus lactis C10, H1, and 133 grown on galactose. The lactose phosphoenolpyruvate-dependent phosphotransferase system and phospho-beta-galactosidase activities were also absent in Lac- derivatives of strains H1 and 133 and were low (possibly absent) in C10 Lac-. In all three Lac- derivatives, low galactose phosphotransferase system activity was found. On galactose, Lac- derivatives grew more slowly (presumably using the Leloir pathway) than the wild-type strains and accumulated high intracellular concentrations of galactose 6-phosphate (up to 49 mM); no intracellular tagatose 1,6-diphosphate was detected. The data suggest that the Lac phenotype is plasmid linked in the three strains studied, with the evidence being more substantial for strain H1. A Lac- derivative of H1 contained a single plasmid (33 megadaltons) which was absent from the Lac- mutant. We suggest that the genes linked to the lactose plasmid in S. lactis are more numerous than previously envisaged, coding for all of the enzymes involved in lactose metabolism from initial transport to the formation of triose phosphates via the D-tagatose 6-phosphate pathway. Images PMID:6294064

  1. Draft Genome Sequences of Two Novel Salmonella enterica subsp. enterica Strains Isolated from Low-Moisture Foods with Applications in Food Safety Research.

    PubMed

    Radford, Devon R; Leon-Velarde, Carlos G; Chen, Shu; Hamidi Oskouei, Amir M; Balamurugan, Sampathkumar

    2018-03-29

    The genomes of two strains of Salmonella enterica subsp. enterica serovar Cubana and serovar Muenchen, isolated from dry hazelnuts and chia seeds, respectively, were sequenced using the Illumina MiSeq platform, assembled de novo using the overlap-layout-consensus method, and aligned to their respective most identical sequence genome scaffolds using MUMMER and BLAST searches. Copyright © 2018 Radford et al.

  2. Bacteriocin-like inhibitory activities of seven Lactobacillus delbrueckii subsp. bulgaricus strains against antibiotic susceptible and resistant Helicobacter pylori strains.

    PubMed

    Boyanova, L; Gergova, G; Markovska, R; Yordanov, D; Mitov, I

    2017-12-01

    The aim of the study was to detect anti-Helicobacter pylori activity of seven Lactobacillus delbrueckii subsp. bulgaricus (GLB) strains by four cell-free supernatant (CFS) types. Activity of non-neutralized and non-heat-treated (CFSs1), non-neutralized and heat-treated (CFSs2), pH neutralized, catalase-treated and non-heat-treated (CFSs3), or neutralized, catalase- and heat-treated (CFSs4) CFSs against 18 H. pylori strains (11 of which with antibiotic resistance) was evaluated. All GLB strains produced bacteriocin-like inhibitory substances (BLISs), the neutralized CFSs of two GLB strains inhibited >81% of test strains and those of four GLB strains were active against >71% of antibiotic resistant strains. Two H. pylori strains were BLIS resistant. The heating did not reduce the CFS activity. Briefly, all GLB strains evaluated produced heat-stable BLISs, although GLB and H. pylori strain susceptibility patterns exhibited differences. Bacteriocin-like inhibitory substance activity can be an advantage for the probiotic choice for H. pylori infection control. In this study, anti-Helicobacter pylori activity of seven Lactobacillus delbrueckii subsp. bulgaricus (GLB) strains was evaluated by four cell-free supernatant (CFS) types. The GLB strains produced heat-stable bacteriocin-like inhibitory substances (BLISs) with a strong anti-H. pylori activity and some neutralized, catalase- and heat-treated CFSs inhibited >83% of the test strains. Bacteriocin-like inhibitory substance production of GLB strains can render them valuable probiotics in the control of H. pylori infection. © 2017 The Society for Applied Microbiology.

  3. Fate of Mycobacterium avium subsp. paratuberculosis in Swiss hard and semihard cheese manufactured from raw milk.

    PubMed

    Spahr, U; Schafroth, K

    2001-09-01

    Raw milk was artificially contaminated with declumped cells of Mycobacterium avium subsp. paratuberculosis at a concentration of 10(4) to 10(5) CFU/ml and was used to manufacture model hard (Swiss Emmentaler) and semihard (Swiss Tisliter) cheese. Two different strains of M. avium subsp. paratuberculosis were tested, and for each strain, two model hard and semihard cheeses were produced. The survival of M. avium subsp. paratuberculosis cells was monitored over a ripening period of 120 days by plating out homogenized cheese samples onto 7H10-PANTA agar. In both the hard and the semihard cheeses, counts decreased steadily but slowly during cheese ripening. Nevertheless, viable cells could still be detected in 120-day cheese. D values were calculated at 27.8 days for hard and 45.5 days for semihard cheese. The most important factors responsible for the death of M. avium subsp. paratuberculosis in cheese were the temperatures applied during cheese manufacture and the low pH at the early stages of cheese ripening. Since the ripening period for these raw milk cheeses lasts at least 90 to 120 days, the D values found indicate that 10(3) to 10(4) cells of M. avium subsp. paratuberculosis per g will be inactivated.

  4. Fate of Mycobacterium avium subsp. paratuberculosis in Swiss Hard and Semihard Cheese Manufactured from Raw Milk

    PubMed Central

    Spahr, U.; Schafroth, K.

    2001-01-01

    Raw milk was artificially contaminated with declumped cells of Mycobacterium avium subsp. paratuberculosis at a concentration of 104 to 105 CFU/ml and was used to manufacture model hard (Swiss Emmentaler) and semihard (Swiss Tisliter) cheese. Two different strains of M. avium subsp. paratuberculosis were tested, and for each strain, two model hard and semihard cheeses were produced. The survival of M. avium subsp. paratuberculosis cells was monitored over a ripening period of 120 days by plating out homogenized cheese samples onto 7H10-PANTA agar. In both the hard and the semihard cheeses, counts decreased steadily but slowly during cheese ripening. Nevertheless, viable cells could still be detected in 120-day cheese. D values were calculated at 27.8 days for hard and 45.5 days for semihard cheese. The most important factors responsible for the death of M. avium subsp. paratuberculosis in cheese were the temperatures applied during cheese manufacture and the low pH at the early stages of cheese ripening. Since the ripening period for these raw milk cheeses lasts at least 90 to 120 days, the D values found indicate that 103 to 104 cells of M. avium subsp. paratuberculosis per g will be inactivated. PMID:11526024

  5. Bovine mastitis prevention: humoral and cellular response of dairy cows inoculated with lactic acid bacteria at the dry-off period.

    PubMed

    Pellegrino, M; Berardo, N; Giraudo, J; Nader-Macías, M E F; Bogni, C

    2017-08-24

    The use of lactic acid bacteria (LAB) in animal feed, constitute an alternative tool for bovine mastitis prevention. Previously, two LAB strains were isolated from bovine milk and selected for their probiotics properties. So far, immune response of inoculating LAB in bovine udders at dry-off period has not been investigated. The immunoglobulin isotype levels and memory cell proliferation in blood and milk of animals inoculated with Lactobacillus lactis subsp. lactis CRL1655 and Lactobacillus perolens CRL1724 at dry-off period was studied. Ten animals were inoculated intramammarily with 10 6 cells of each LAB (IG) and 2 animals used as control (NIG). Milk and blood samples were taken before inoculation and 1, 2, 4, 6, 12 and 24 h and 7 and 14 days after inoculation. Somatic cell count (SCC) in milk, the presence of bovine mastitis pathogens, the levels of antibodies and lymphocyte proliferation were determined. In the IG, the SCC was <250,000 cells/ml up to 4 h after intramammary inoculation. Six and 12 h after inoculation, the SCC increased up to 600,000 and 2,000,000 cells/ml, respectively. In the NIG, the SCC reached the maximum value 7 days after inoculation. Microbiological analysis showed that all samples were negative for major bovine mastitis pathogens after 24-48 h of incubation. In general, LAB inoculation increased the amount of IgG isotypes in blood and milk, and these antibodies were able to recognise Staphylococcus aureus epitopes. Lymphocytes proliferation was significantly higher in the IG at all time points assayed, following LAB or S. aureus stimulation. The lymphocytes of animals inoculated with LAB do not react in vitro to the presence of S. aureus antigen.. The results showed that probiotic microorganisms could be a natural and effective alternative in the prevention of bovine mastitis at dry-off period and act as immunomodulatory stimulating local and systemic defence lines.

  6. Complete genome sequence of Campylobacter fetus subsp. testudinum type strain 03-427T

    USDA-ARS?s Scientific Manuscript database

    Campylobacter fetus subsp. testudinum has been isolated from reptiles and humans. This Campylobacter subspecies is genetically distinct from other C. fetus subspecies. Here we present the first whole genome sequence for this C. fetus subspecies....

  7. Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii.

    PubMed

    Santos Rocha, Clarissa; Gomes-Santos, Ana Cristina; Garcias Moreira, Thais; de Azevedo, Marcela; Diniz Luerce, Tessalia; Mariadassou, Mahendra; Longaray Delamare, Ana Paula; Langella, Philippe; Maguin, Emmanuelle; Azevedo, Vasco; Caetano de Faria, Ana Maria; Miyoshi, Anderson; van de Guchte, Maarten

    2014-01-01

    Several probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD), showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp. lactis CNRZ327 (Lb CNRZ327), also possesses anti-inflammatory effects in vitro and in vivo, demonstrating that common dairy bacteria may be useful in the treatment or prevention of IBD. Here, we studied the mechanisms underlying the protective effects of Lb CNRZ327 in vivo, in a mouse dextran sodium sulfate (DSS) colitis model. During colitis, Lb CNRZ327 modulated the production of TGF-β, IL-6, and IL-12 in colonic tissue and of TGF-β and IL-6 in the spleen, and caused an expansion of CD4+Foxp3+ regulatory T cells in the cecal lymph nodes. Moreover, a strong tendency to CD4+Foxp3+ expansion was also observed in the spleen. The results of this study for the first time show that orally administered dairy lactobacilli can not only modulate mucosal but also systemic immune responses and constitute an effective treatment of IBD.

  8. Multilocus sequence typing of Lactococcus lactis from naturally fermented milk foods in ethnic minority areas of China.

    PubMed

    Xu, Haiyan; Sun, Zhihong; Liu, Wenjun; Yu, Jie; Song, Yuqin; Lv, Qiang; Zhang, Jiachao; Shao, Yuyu; Menghe, Bilige; Zhang, Heping

    2014-05-01

    To determine the genetic diversity and phylogenetic relationships among Lactococcus lactis isolates, 197 strains isolated from naturally homemade yogurt in 9 ethnic minority areas of 6 provinces of China were subjected to multilocus sequence typing (MLST). The MLST analysis was performed using internal fragment sequences of 12 housekeeping genes (carB, clpX, dnaA, groEL, murC, murE, pepN, pepX, pyrG, recA, rpoB, and pheS). Six (dnaA) to 8 (murC) different alleles were detected for these genes, which ranged from 33.62 (clpX) to 41.95% (recA) GC (guanine-cytosine) content. The nucleotide diversity (π) ranged from 0.00362 (murE) to 0.08439 (carB). Despite this limited allelic diversity, the allele combinations of each strain revealed 72 different sequence types, which denoted significant genotypic diversity. The dN/dS ratios (where dS is the number of synonymous substitutions per synonymous site, and dN is the number of nonsynonymous substitutions per nonsynonymous site) were lower than 1, suggesting potential negative selection for these genes. The standardized index of association of the alleles IA(S)=0.3038 supported the clonality of Lc. lactis, but the presence of network structure revealed by the split decomposition analysis of the concatenated sequence was strong evidence for intraspecies recombination. Therefore, this suggests that recombination contributed to the evolution of Lc. lactis. A minimum spanning tree analysis of the 197 isolates identified 14 clonal complexes and 23 singletons. Phylogenetic trees were constructed based on the sequence types, using the minimum evolution algorithm, and on the concatenated sequence (6,192 bp), using the unweighted pair-group method with arithmetic mean, and these trees indicated that the evolution of our Lc. lactis population was correlated with geographic origin. Taken together, our results demonstrated that MLST could provide a better understanding of Lc. lactis genome evolution, as well as useful information for future studies on global Lc. lactis structure and genetic evolution, which will lay the foundation for screening Lc. lactis as starter cultures in fermented dairy products. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Oceanobacillus neutriphilus sp. nov., isolated from activated sludge in a bioreactor.

    PubMed

    Yang, Jun-Yi; Huo, Ying-Yi; Xu, Xue-Wei; Meng, Fan-Xu; Wu, Min; Wang, Chun-Sheng

    2010-10-01

    A Gram-stain-positive, neutrophilic, rod-shaped bacterium, strain A1g(T), was isolated from activated sludge of a bioreactor and was subjected to a polyphasic taxonomic characterization. The isolate grew in the presence of 0-17.0 % (w/v) NaCl and at pH 6.0-9.0; optimum growth was observed in the presence of 3.0-5.0 % (w/v) NaCl and at pH 7.0. Strain A1g(T) was motile, formed cream-coloured colonies, was catalase- and oxidase-positive and was able to hydrolyse aesculin, Tween 40 and Tween 60. Chemotaxonomic analysis revealed menaquinone-7 as the predominant respiratory quinone and anteiso-C₁₅:₀, anteiso-C₁₇:₀, iso-C₁₆:₀ and iso-C₁₅:₀ as major fatty acids. The genomic DNA G+C content of strain A1g(T) was 36.3 mol%. Comparative 16S rRNA gene sequence analysis revealed that the new isolate belonged to the genus Oceanobacillus and exhibited closest phylogenetic affinity to the type strains of Oceanobacillus oncorhynchi subsp. incaldanensis (97.9 % similarity) and O. oncorhynchi subsp. oncorhynchi (97.5 %), but less than 97 % sequence similarity with respect to the type strains of other recognized Oceanobacillus species. Levels of DNA-DNA relatedness between strain A1g(T) and reference strains O. oncorhynchi subsp. incaldanensis DSM 16557(T), O. oncorhynchi subsp. oncorhynchi JCM 12661(T) and Oceanobacillus iheyensis DSM 14371(T) were 29, 45 and 38 %, respectively. On the basis of phenotypic and genotypic data, strain A1g(T) is considered to represent a novel species of the genus Oceanobacillus, for which the name Oceanobacillus neutriphilus sp. nov. is proposed. The type strain is A1g(T) (=CGMCC 1.7693(T) =JCM 15776(T)).

  10. Draft Genome Sequence for ICMP 5702, the Type Strain of Pectobacterium carotovorum subsp. carotovorum That Causes Soft Rot Disease on Potato

    PubMed Central

    Lu, Ashley; Armstrong, Karen F.

    2015-01-01

    Pectobacterium species are economically important bacteria that cause soft rotting of potato tubers in the field and in storage. Here, we report the draft genome sequence of the type strain for P. carotovorum subsp. carotovorum, ICMP 5702 (ATCC 15713). The genome sequence of ICMP 5702 will provide an important reference for future phylogenomic and taxonomic studies of the phytopathogenic Enterobacteriaceae. PMID:26251498

  11. Stimulation of indigenous lactobacilli by fermented milk prepared with probiotic bacterium, Lactobacillus delbrueckii subsp. bulgaricus strain 2038, in the pigs.

    PubMed

    Ohashi, Yuji; Tokunaga, Makoto; Taketomo, Naoki; Ushida, Kazunari

    2007-02-01

    The aim of this study was to evaluate the effect of feeding yoghurt, prepared with Lactobacillus delbrueckii subsp. bulgaricus strain 2038, on indigenous lactobacilli in the pig cecum. Three female pigs fistulated at the cecum were fed 250 g of this yoghurt that contained over 10(11) colony-forming units of L. delbrueckii subsp. bulgaricus strain 2038 with their daily meal for 2 wk. The relative abundance and the composition of cecal lactobacilli was monitored by analysis of bacterial 16S rDNA with real time PCR and amplified bacterial rDNA restriction analysis using Lactobacillus-group specific primers, respectively, for 2 wk prior to, at the end of 2 wk of and 2 wk after the administration of this yoghurt. The relative abundance of lactobacilli was significantly increased by feeding yoghurt (p<0.01), although the bacterial 16S rDNA matching L. delbrueckii subsp. bulgaricus strain 2038 was not detected by amplified bacterial rDNA restriction analysis during this study. The number of operational taxonomic units (OTUs) detected was increased with feeding of the yoghurt in all pigs. At the same time, the estimated cell number of each OTU was increased with feeding of the yoghurt. It is demonstrated that continuous consumption of the probiotic lactobacilli will stimulate the growth of some indigenous lactobacilli and alter the composition of the lactobacilli.

  12. Composition and potency characterization of Mycobacterium avium subsp. paratuberculosis purified protein derivatives

    USDA-ARS?s Scientific Manuscript database

    Mycobacterium avium subsp. paratuberculosis (MAP) purified protein derivatives (PPDs) are immunologic reagents prepared from cultured filtrates of the type strain ATCC 19698. Traditional production consists of floating culture incubation at 37oC, organism inactivation by autoclaving, coarse filtrat...

  13. Detection of Goss's Wilt Pathogen Clavibacter michiganensis subsp. nebraskensis in Maize by Loop-Mediated Amplification.

    PubMed

    Yasuhara-Bell, Jarred; de Silva, Asoka; Heuchelin, Scott A; Chaky, Jennifer L; Alvarez, Anne M

    2016-03-01

    The Goss's wilt pathogen, Clavibacter michiganensis subsp. nebraskensis, can cause considerable losses in maize (Zea mays) production. Diagnosis of Goss's wilt currently is based on symptomology and identification of C. michiganensis subsp. nebraskensis, following isolation on a semiselective medium and/or serological testing. In an effort to provide a more efficient identification method, a loop-mediated amplification (LAMP) assay was developed to detect the tripartite ATP-independent periplasmic (TRAP)-type C4-dicarboxylate transport system large permease component and tested using strains of C. michiganensis subsp. nebraskensis, all other C. michiganensis subspecies and several genera of nontarget bacteria. Only strains of C. michiganensis subsp. nebraskensis reacted positively with the LAMP assay. The LAMP assay was then used to identify bacterial isolates from diseased maize. 16S rDNA and dnaA sequence analyses were used to confirm the identity of the maize isolates and validate assay specificity. The Cmm ImmunoStrip assay was included as a presumptive identification test of C. michiganensis subsp. nebraskensis at the species level. The Cmn-LAMP assay was further tested using symptomatic leaf tissue. The Cmn-LAMP assay was run in a hand-held real-time monitoring device (SMART-DART) and performed equally to in-lab quantitative polymerase chain reaction equipment. The Cmn-LAMP assay accurately identified C. michiganensis subsp. nebraskensis and has potential as a field test. The targeted sequence also has potential application in other molecular detection platforms.

  14. Effect of Three Factors in Cheese Production (pH, Salt, and Heat) on Mycobacterium avium subsp. paratuberculosis Viability

    PubMed Central

    Sung, Nackmoon; Collins, Michael T.

    2000-01-01

    Low pH and salt are two factors contributing to the inactivation of bacterial pathogens during a 60-day curing period for cheese. The kinetics of inactivation for Mycobacterium avium subsp. paratuberculosis strains ATCC 19698 and Dominic were measured at 20°C under different pH and NaCl conditions commonly used in processing cheese. The corresponding D values (decimal reduction times; the time required to kill 1 log10 concentration of bacteria) were measured. Also measured were the D values for heat-treated and nonheated M. avium subsp. paratuberculosis in 50 mM acetate buffer (pH 5.0, 2% [wt/vol] NaCl) and a soft white Hispanic-style cheese (pH 6.0, 2% [wt/vol] NaCl). Samples were removed at various intervals until no viable cells were detected using the radiometric culture method (BACTEC) for enumeration of M. avium subsp. paratuberculosis. NaCl had little or no effect on the inactivation of M. avium subsp. paratuberculosis, and increasing NaCl concentrations were not associated with decreasing D values (faster killing) in the acetate buffer. Lower pHs, however, were significantly correlated with decreasing D values of M. avium subsp. paratuberculosis in the acetate buffer. The D values for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese were higher than those predicted by studies done in acetate buffer. The heat-treated M. avium subsp. paratuberculosis strains had lower D values than the nonheated cells (faster killing) both in the acetate buffer (pH 5, 2% [wt/vol] NaCl) and in the soft white cheese. The D value for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese (36.5 days) suggests that heat treatment of raw milk coupled with a 60-day curing period will inactivate about 103 cells of M. avium subsp. paratuberculosis per ml. PMID:10742208

  15. Culture Phenotypes of Genomically and Geographically Diverse Mycobacterium avium subsp. paratuberculosis Isolates from Different Hosts▿

    PubMed Central

    Whittington, Richard J.; Marsh, Ian B.; Saunders, Vanessa; Grant, Irene R.; Juste, Ramon; Sevilla, Iker A.; Manning, Elizabeth J. B.; Whitlock, Robert H.

    2011-01-01

    Mycobacterium avium subsp. paratuberculosis causes paratuberculosis (Johne's disease) in ruminants in most countries. Historical data suggest substantial differences in culturability of M. avium subsp. paratuberculosis isolates from small ruminants and cattle; however, a systematic comparison of culture media and isolates from different countries and hosts has not been undertaken. Here, 35 field isolates from the United States, Spain, Northern Ireland, and Australia were propagated in Bactec 12B medium and Middlebrook 7H10 agar, genomically characterized, and subcultured to Lowenstein-Jensen (LJ), Herrold's egg yolk (HEY), modified Middlebrook 7H10, Middlebrook 7H11, and Watson-Reid (WR) agars, all with and without mycobactin J and some with sodium pyruvate. Fourteen genotypes of M. avium subsp. paratuberculosis were represented as determined by BstEII IS900 and IS1311 restriction fragment length polymorphism analysis. There was no correlation between genotype and overall culturability, although most S strains tended to grow poorly on HEY agar. Pyruvate was inhibitory to some isolates. All strains grew on modified Middlebrook 7H10 agar but more slowly and less prolifically on LJ agar. Mycobactin J was required for growth on all media except 7H11 agar, but growth was improved by the addition of mycobactin J to 7H11 agar. WR agar supported the growth of few isolates. The differences in growth of M. avium subsp. paratuberculosis that have historically been reported in diverse settings have been strongly influenced by the type of culture medium used. When an optimal culture medium, such as modified Middlebrook 7H10 agar, is used, very little difference between the growth phenotypes of diverse strains of M. avium subsp. paratuberculosis was observed. This optimal medium is recommended to remove bias in the isolation and cultivation of M. avium subsp. paratuberculosis. PMID:21430104

  16. Factors affecting isolation and identification of Mycobacterium avium subsp. paratuberculosis from fecal and tissue samples in a liquid culture system.

    PubMed

    Whittington, Richard J

    2009-03-01

    Culture of Mycobacterium avium subsp. paratuberculosis is the definitive diagnostic test for Johne's disease, a chronic granulomatous enteropathy of animals. Compared to solid media, the identification of all strains of the organism in liquid media can be more difficult because the appearance of colonies and mycobactin dependence are not observable, and the growth of other organisms needs to be distinguished, commonly by PCR. Factors affecting the isolation rate of S strains and the contamination rate in modified Middlebrook 7H9 broth (Bactec 12B) and 7H10 agar were studied using 11,598 fecal samples and 2,577 tissue samples from sheep from 1,421 farms over 10 years. Minimization of contamination in Bactec cultures required the avoidance of the carryover of fecal particles from the first sedimentation step in the double-incubation centrifugation method, and contamination was reduced significantly by incubating the sample in a solution containing vancomycin, amphotericin B, and nalidixic acid for 3 days compared to 2 days. The growth of irrelevant microorganisms confounded the identification of M. avium subsp. paratuberculosis in liquid culture by inhibiting IS900 PCR and in solid medium culture by inhibiting the growth of M. avium subsp. paratuberculosis or obscuring colonies. The contamination of samples was clustered in certain laboratory submissions and was reduced by including ampicillin in Bactec medium without affecting the odds of isolation of M. avium subsp. paratuberculosis. The long-term contamination rate for fecal cultures was about 7%, and that for tissue cultures was <0.2%. Liquid medium was more sensitive than solid medium culture for M. avium subsp. paratuberculosis. The applicability of these findings for C strains is discussed.

  17. Re-evaluation of the taxonomy of the Mitis group of the genus Streptococcus based on whole genome phylogenetic analyses, and proposed reclassification of Streptococcus dentisani as Streptococcus oralis subsp. dentisani comb. nov., Streptococcus tigurinus as Streptococcus oralis subsp. tigurinus comb. nov., and Streptococcus oligofermentans as a later synonym of Streptococcus cristatus.

    PubMed

    Jensen, Anders; Scholz, Christian F P; Kilian, Mogens

    2016-11-01

    The Mitis group of the genus Streptococcus currently comprises 20 species with validly published names, including the pathogen S. pneumoniae. They have been the subject of much taxonomic confusion, due to phenotypic overlap and genetic heterogeneity, which has hampered a full appreciation of their clinical significance. The purpose of this study was to critically re-examine the taxonomy of the Mitis group using 195 publicly available genomes, including designated type strains for phylogenetic analyses based on core genomes, multilocus sequences and 16S rRNA gene sequences, combined with estimates of average nucleotide identity (ANI) and in silico and in vitro analyses of specific phenotypic characteristics. Our core genomic phylogenetic analyses revealed distinct clades that, to some extent, and from the clustering of type strains represent known species. However, many of the genomes have been incorrectly identified adding to the current confusion. Furthermore, our data show that 16S rRNA gene sequences and ANI are unsuitable for identifying and circumscribing new species of the Mitis group of the genus Streptococci. Based on the clustering patterns resulting from core genome phylogenetic analysis, we conclude that S. oligofermentans is a later synonym of S. cristatus. The recently described strains of the species Streptococcus dentisani includes one previously referred to as 'S. mitis biovar 2'. Together with S. oralis, S. dentisani and S. tigurinus form subclusters within a coherent phylogenetic clade. We propose that the species S. oralis consists of three subspecies: S. oralis subsp. oralis subsp. nov., S. oralis subsp. tigurinus comb. nov., and S. oralis subsp. dentisani comb. nov.

  18. In Vitro Assessment of the Probiotic Potential of Lactococcus lactis LMG 7930 against Ruminant Mastitis-Causing Pathogens.

    PubMed

    Armas, Federica; Camperio, Cristina; Marianelli, Cinzia

    2017-01-01

    Mastitis in dairy ruminants is considered to be the most expensive disease to farmers worldwide. Recently, the intramammary infusion of lactic acid bacteria has emerged as a potential new alternative to antibiotics for preventing and treating bovine mastitis. In this study we have investigated in vitro the probiotic potential of Lactococcus lactis LMG 7930, a food-grade and nisin-producing strain, against mastitis-causing pathogens. We have characterized its carbohydrate fermentation and antibiotic susceptibility profiles, cell surface properties and antimicrobial activity, as well as its capabilities to adhere to and inhibit the invasion of pathogens into the bovine mammary epithelial cell line BME-UV1d. We found that L. lactis LMG 7930 was sensitive to tested drugs, according to the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), and showed an improved carbohydrate fermentation capacity compared to starter strains. Moreover, the strain exhibited antagonistic properties towards many of the pathogens tested. It presented medium surface hydrophobicity, a low basic property and no electron acceptor capability. It showed low auto-aggregation and no co-aggregation abilities towards any of the tested pathogens. The strain was one of the most adhesive to bovine mammary epithelial cells among tested bacteria, but its internalisation was low. The strain did not affect significantly pathogen invasion; however, a trend to decrease internalization of some pathogens tested was observed. In conclusion, our results suggest that this strain might be a promising candidate for the development of new strategies of mastitis control in ruminants. Future investigations are needed to evaluate its safety and efficacy under field conditions.

  19. In Vitro Assessment of the Probiotic Potential of Lactococcus lactis LMG 7930 against Ruminant Mastitis-Causing Pathogens

    PubMed Central

    Armas, Federica; Camperio, Cristina

    2017-01-01

    Mastitis in dairy ruminants is considered to be the most expensive disease to farmers worldwide. Recently, the intramammary infusion of lactic acid bacteria has emerged as a potential new alternative to antibiotics for preventing and treating bovine mastitis. In this study we have investigated in vitro the probiotic potential of Lactococcus lactis LMG 7930, a food-grade and nisin-producing strain, against mastitis-causing pathogens. We have characterized its carbohydrate fermentation and antibiotic susceptibility profiles, cell surface properties and antimicrobial activity, as well as its capabilities to adhere to and inhibit the invasion of pathogens into the bovine mammary epithelial cell line BME-UV1d. We found that L. lactis LMG 7930 was sensitive to tested drugs, according to the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), and showed an improved carbohydrate fermentation capacity compared to starter strains. Moreover, the strain exhibited antagonistic properties towards many of the pathogens tested. It presented medium surface hydrophobicity, a low basic property and no electron acceptor capability. It showed low auto-aggregation and no co-aggregation abilities towards any of the tested pathogens. The strain was one of the most adhesive to bovine mammary epithelial cells among tested bacteria, but its internalisation was low. The strain did not affect significantly pathogen invasion; however, a trend to decrease internalization of some pathogens tested was observed. In conclusion, our results suggest that this strain might be a promising candidate for the development of new strategies of mastitis control in ruminants. Future investigations are needed to evaluate its safety and efficacy under field conditions. PMID:28068371

  20. High Yields of 2,3-Butanediol and Mannitol in Lactococcus lactis through Engineering of NAD+ Cofactor Recycling ▿ †

    PubMed Central

    Gaspar, Paula; Neves, Ana Rute; Gasson, Michael J.; Shearman, Claire A.; Santos, Helena

    2011-01-01

    Manipulation of NADH-dependent steps, and particularly disruption of the las-located lactate dehydrogenase (ldh) gene in Lactococcus lactis, is common to engineering strategies envisaging the accumulation of reduced end products other than lactate. Reverse transcription-PCR experiments revealed that three out of the four genes assigned to lactate dehydrogenase in the genome of L. lactis, i.e., the ldh, ldhB, and ldhX genes, were expressed in the parental strain MG1363. Given that genetic redundancy is often a major cause of metabolic instability in engineered strains, we set out to develop a genetically stable lactococcal host tuned for the production of reduced compounds. Therefore, the ldhB and ldhX genes were sequentially deleted in L. lactis FI10089, a strain with a deletion of the ldh gene. The single, double, and triple mutants, FI10089, FI10089ΔldhB, and FI10089ΔldhBΔldhX, showed similar growth profiles and displayed mixed-acid fermentation, ethanol being the main reduced end product. Hence, the alcohol dehydrogenase-encoding gene, the adhE gene, was inactivated in FI10089, but the resulting strain reverted to homolactic fermentation due to induction of the ldhB gene. The three lactate dehydrogenase-deficient mutants were selected as a background for the production of mannitol and 2,3-butanediol. Pathways for the biosynthesis of these compounds were overexpressed under the control of a nisin promoter, and the constructs were analyzed with respect to growth parameters and product yields under anaerobiosis. Glucose was efficiently channeled to mannitol (maximal yield, 42%) or to 2,3-butanediol (maximal yield, 67%). The theoretical yield for 2,3-butanediol was achieved. We show that FI10089ΔldhB is a valuable basis for engineering strategies aiming at the production of reduced compounds. PMID:21841021

  1. Reclassification of Lactobacillus kefirgranum Takizawa et al. 1994 as Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov. and emended description of L. kefiranofaciens Fujisawa et al. 1988.

    PubMed

    Vancanneyt, M; Mengaud, J; Cleenwerck, I; Vanhonacker, K; Hoste, B; Dawyndt, P; Degivry, M C; Ringuet, D; Janssens, D; Swings, J

    2004-03-01

    Fourteen homofermentative lactic acid bacteria that were isolated from kefir grains and kefir fermented milks were assigned to either Lactobacillus kefiranofaciens or Lactobacillus kefirgranum, based on their characteristic morphotypes, phenotypic features and SDS-PAGE profiles of whole-cell proteins. Further genotypic analyses on representative strains from both taxa demonstrated that L. kefiranofaciens and L. kefirgranum share 100 % 16S rDNA sequence similarity and belong phylogenetically to the Lactobacillus acidophilus species group. DNA-DNA binding values of >79 % and analogous DNA G+C contents of 37-38 mol% showed that the strains studied belonged to one species: L. kefirgranum is a later synonym of L. kefiranofaciens. An emended description is proposed for L. kefiranofaciens. Due to the specific morphological and biochemical characteristics of these taxa in kefir grain formation, it is proposed that L. kefirgranum should be reclassified as L. kefiranofaciens subsp. kefirgranum subsp. nov.

  2. Genetic analysis of a novel Xylella fastidiosa subspecies found in the southwestern United States.

    PubMed

    Randall, Jennifer J; Goldberg, Natalie P; Kemp, John D; Radionenko, Maxim; French, Jason M; Olsen, Mary W; Hanson, Stephen F

    2009-09-01

    Xylella fastidiosa, the causal agent of several scorch diseases, is associated with leaf scorch symptoms in Chitalpa tashkentensis, a common ornamental landscape plant used throughout the southwestern United States. For a number of years, many chitalpa trees in southern New Mexico and Arizona exhibited leaf scorch symptoms, and the results from a regional survey show that chitalpa trees from New Mexico, Arizona, and California are frequently infected with X. fastidiosa. Phylogenetic analysis of multiple loci was used to compare the X. fastidiosa infecting chitalpa strains from New Mexico, Arizona, and trees imported into New Mexico nurseries with previously reported X. fastidiosa strains. Loci analyzed included the 16S ribosome, 16S-23S ribosomal intergenic spacer region, gyrase-B, simple sequence repeat sequences, X. fastidiosa-specific sequences, and the virulence-associated protein (VapD). This analysis indicates that the X. fastidiosa isolates associated with infected chitalpa trees in the Southwest are a highly related group that is distinct from the four previously defined taxons X. fastidiosa subsp. fastidiosa (piercei), X. fastidiosa subsp. multiplex, X. fastidiosa subsp. sandyi, and X. fastidiosa subsp. pauca. Therefore, the classification proposed for this new subspecies is X. fastidiosa subsp. tashke.

  3. Geobacter sulfurreducens subsp. ethanolicus, subsp. nov., an ethanol-utilizing dissimilatory Fe(III)-reducing bacterium from a lotus field.

    PubMed

    Viulu, Samson; Nakamura, Kohei; Kojima, Akihiro; Yoshiyasu, Yuki; Saitou, Sakiko; Takamizawa, Kazuhiro

    2013-01-01

    An ethanol-utilizing Fe(III)-reducing bacterial strain, OSK2A(T), was isolated from a lotus field in Aichi, Japan. Phylogenetic analysis of the 16S rRNA gene sequences of OSK2A(T) and related strains placed it within Geobacter sulfurreducens PCA(T). Strain OSK2A(T) was shown to be a Gram-negative, motile, rod-shaped bacterium, strictly anaerobic, 0.76-1.65 µm long and 0.28-0.45 μm wide. Its growth occurred at 20-40℃, pH 6.0-8.1, and it tolerated up to 1% NaCl. The G+C content of the genomic DNA was 61.2 mol% and DNA-DNA hybridization value with Geobacter sulfurreducens PCA(T) was 60.7%. The major respiratory quinone was MK-8. The major fatty acids were 16:1 ω7c, 16:0, 14:0, 15:0 iso, 16:1 ω5c, and 18:1 ω7c. Strain OSK2A(T) could utilize H2, ethanol, acetate, lactate, pyruvate, and formate as substrates with Fe(III)-citrate as electron acceptor. Amorphous Fe(III) hydroxide, Fe(III)-NTA, fumarate, malate, and elemental sulfur were utilized as electron acceptors with either acetate or ethanol as substrates. Results obtained from physiological, DNA-DNA hybridization, and chemotaxonomic tests support genotypic and phenotypic differentiation of strain OSK2A(T) from its closest relative. The isolate is assigned as a novel subspecies with the name Geobacter sulfurreducens subsp. ethanolicus, subsp. nov. (type strain OSK2A(T)=DSMZ 26126(T)=JCM 18752(T)).

  4. In Vitro Inhibition of Klebsiella pneumoniae by Lactobacillus delbrueckii Subsp. delbrueckii LDD01 (DSM 22106): An Innovative Strategy to Possibly Counteract Such Infections in Humans?

    PubMed

    Mogna, Luca; Deidda, Francesca; Nicola, Stefania; Amoruso, Angela; Del Piano, Mario; Mogna, Giovanni

    To determine the in vitro antimicrobial activity of selected Lactobacillus strains isolated from the feces of healthy humans against Klebsiella pneumoniae. Klebsiella is ubiquitous in nature and may colonize the skin, the pharynx, or the gastrointestinal tract of humans. Despite the widespread use of antibiotic molecules with a broad spectrum in hospitalized patients, an increased overall load of klebsiellae as well as the subsequent development of multidrug-resistant strains able to synthesize extended-spectrum beta-lactamase have been registered. These strains are particularly virulent, express capsular-type K55, and have a considerable ability to propagate. The 4 strains Lactobacillus paracasei LPC01 (CNCM I-1390), Lactobacillus rhamnosus LR04 (DSM 16605), Bifidobacterium longum B2274 (DSM 24707), and Lactobacillus delbrueckii subsp. delbrueckii LDD01 (DSM 22106) were tested. The analysis was performed using both a disc-diffusion assay and the broth-dilution procedure, also including an evaluation of the supernatants obtained from a fresh broth culture of each bacterium. L. delbrueckii subsp. delbrueckii LDD01 demonstrated the best inhibitory results among all the tested strains. The antibacterial activity of the supernatant was retained even after treatment with α-amylase and neutralization with NaOH 1N, thus suggesting the protein structure of the inhibitory molecule. In contrast, it was completely lost after treatment with proteinase K. Overall results suggest that the inhibitory effect of L. delbrueckii subsp. delbrueckii LDD01 should be attributed to the production of a bacteriocin. This strain may be prospectively useful for strengthening probiotic formulations and possibly counteract infections by K. pneumoniae in humans.

  5. Engineering Trehalose Synthesis in Lactococcus lactis for Improved Stress Tolerance ▿ †

    PubMed Central

    Carvalho, Ana Lúcia; Cardoso, Filipa S.; Bohn, Andreas; Neves, Ana Rute; Santos, Helena

    2011-01-01

    Trehalose accumulation is a common cell defense strategy against a variety of stressful conditions. In particular, our team detected high levels of trehalose in Propionibacterium freudenreichii in response to acid stress, a result that led to the idea that endowing Lactococcus lactis with the capacity to synthesize trehalose could improve the acid tolerance of this organism. To this end, we took advantage of the endogenous genes involved in the trehalose catabolic pathway of L. lactis, i.e., trePP and pgmB, encoding trehalose 6-phosphate phosphorylase and β-phosphoglucomutase, respectively, which enabled the synthesis of trehalose 6-phosphate. Given that L. lactis lacks trehalose 6-phosphate phosphatase, the respective gene, otsB, from the food-grade organism P. freudenreichii was used to provide the required activity. The trehalose yield was approximately 15% in resting cells and in mid-exponential-phase cells grown without pH control. The intracellular concentration of trehalose reached maximal values of approximately 170 mM, but at least 67% of the trehalose produced was found in the growth medium. The viability of mutant and control strains was examined after exposure to heat, cold or acid shock, and freeze-drying. The trehalose-producing strains showed improved tolerance (5- to 10-fold-higher survivability) to acid (pH 3) and cold shock (4°C); there was also a strong improvement in cell survival in response to heat shock (45°C), and no protection was rendered against dehydration. The insight provided by this work may help the design of food-grade strains optimized for the dairy industry as well as for oral drug delivery. PMID:21515730

  6. Molecular cloning of the plasma membrane H(+)-ATPase from Kluyveromyces lactis: a single nucleotide substitution in the gene confers ethidium bromide resistance and deficiency in K+ uptake.

    PubMed Central

    Miranda, M; Ramírez, J; Peña, A; Coria, R

    1995-01-01

    A Kluyveromyces lactis strain resistant to ethidium bromide and deficient in potassium uptake was isolated. Studies on the proton-pumping activity of the mutant strain showed that a decreased H(+)-ATPase specific activity was responsible for the observed phenotypes. The putative K. lactis PMA1 gene encoding the plasma membrane H(+)-ATPase was cloned by its ability to relieve the potassium transport defect of this mutant and by reversing its resistance to ethidium bromide. Its deduced amino acid sequence predicts a protein 899 residues long that is structurally colinear in its full length to H(+)-ATPases cloned from different yeasts, except for the presence of a variable N-terminal domain. By PCR-mediated amplification, we identified a transition from G to A that rendered the substitution of the fully conserved methionine at position 699 by isoleucine. We attribute to this amino acid change the low capacity of the mutant H(+)-ATPase to pump out protons. PMID:7730265

  7. Oral vaccine of Lactococcus lactis harbouring pandemic H1N1 2009 haemagglutinin1 and nisP anchor fusion protein elevates anti-HA1 sIgA levels in mice.

    PubMed

    Joan, Stella Siaw Xiu; Pui-Fong, Jee; Song, Adelene Ai-Lian; Chang, Li-Yen; Yusoff, Khatijah; AbuBakar, Sazaly; Rahim, Raha Abdul

    2016-05-01

    An oral lactococcal-based vaccine which haboured the haemagglutinin1 (HA1) antigen fused to nisP anchor protein for the purpose of surface displaying the HA1 antigen was developed against H1N1 virus. Recombinant L. lactis strains expressed HA1-nisP fusion proteins when induced with nisin, as confirmed through western blotting. However, immunofluorescense did not detect any surface-displayed proteins, suggesting that the protein was either unsuccessfully translocated or improperly displayed. Despite this, oral administration of recombinant L. lactis strains to BALB/c mice revealed that significant levels of anti-HA1 sIgA antibodies were detected in mice fecal suspension samples of mice group NZ9000 (pNZ:HN) when compared to the negative control NZ9000 (pNZ8048) group. Specific anti-HA1 sIgA antibodies were locally produced and live recombinant lactococcal vaccine was able to elicit humoral response of BALB/c mice despite unsuccessful surface display of the HA1 epitope.

  8. [Design of primers to DNA of lactic acid bacteria].

    PubMed

    Lashchevskiĭ, V V; Kovalenko, N K

    2003-01-01

    Primers LP1-LP2 to the gene 16S rRNA have been developed, which permit to differentiate lactic acid bacteria: Lactobacillus plantarum, L. delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus. The strain-specific and species-specific differentiations are possible under different annealing temperature. Additional fragments, which are synthesized outside the framework of gene 16S rRNA reading, provide for the strain-specific type of differentiation, and the fragment F864 read in the gene 16S rRNA permits identifying L. plantarum.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.; Chassy, B.M.; Egan, W.

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of (/sup 14/C)lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same.more » During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution /sup 31/P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM.« less

  10. Unusual Outbreak of Clinical Mastitis in Dairy Sheep Caused by Streptococcus equi subsp. zooepidemicus

    PubMed Central

    Las Heras, Alfonso; Vela, Ana I.; Fernández, Elena; Legaz, Emilio; Domínguez, Lucas; Fernández-Garayzábal, Jose F.

    2002-01-01

    This work describes an outbreak of clinical mastitis affecting 13 of 58 lactating ewes due to Streptococcus equi subsp. zooepidemicus. S. equi subsp. zooepidemicus was isolated in pure culture from all milk samples. All the clinical isolates had identical biochemical profiles and antimicrobial susceptibility patterns and also exhibited indistinguishable macrorestriction patterns by pulsed-field gel electrophoresis, indicating that all cases of mastitis were produced by a single strain. PMID:11880454

  11. A mouse mastitis model to study the effects of the intramammary infusion of a food-grade Lactococcus lactis strain.

    PubMed

    Camperio, Cristina; Armas, Federica; Biasibetti, Elena; Frassanito, Paolo; Giovannelli, Carlo; Spuria, Liliana; D'Agostino, Claudia; Tait, Sabrina; Capucchio, Maria Teresa; Marianelli, Cinzia

    2017-01-01

    Lactococcus lactis is one of the most important microorganisms in the dairy industry and has "generally recognized as safe" (GRAS) status. L. lactis belongs to the group of lactic acid bacteria (LAB) and is encountered in a wide range of environments. Recently, the use of the intramammary infusion of a live culture of LAB has been investigated as a new antibiotic alternative for treating mastitis in dairy ruminants. Controversial results are described in literature regarding its efficacy and safety. In this study we conducted in-depth investigation of the mammary gland immune response induced by intramammary inoculum of a live culture of L. lactis LMG 7930 using the mouse mastitis model. Overnight cultures either of L. lactis (≈ 107 CFU) or of the mastitis pathogens Staphylococcus chromogenes (≈ 105 CFU) or S. aureus (≈ 102 CFU/ml) were injected into the mouse inguinal glands. A double injection, consisting of S. chromogenes first and then L. lactis, was also investigated. Bacterial recovery from the gland and inflammatory cell infiltration were assessed. L. lactis-treated and control glands were analysed for proinflammatory cytokine production. Microbiological results showed that L. lactis was able to survive in the mammary gland 24 h post infection, as were the mastitis pathogens S. chromogenes and S. aureus. L. lactis reduced S. chromogenes survival in the glands and increased its own survival ability by coexisting with the pathogen. Histology showed that L. lactis-treated glands presented variable histological features, ranging from undamaged tissue with no inflammatory cell infiltrate to severe PMN infiltrate with focal areas of tissue damage. S. aureus-treated glands showed the most severe histological grade of inflammation despite the fact that the inoculum size was the smallest. In contrast, most S. chromogenes-treated glands showed normal structures with no infiltration or lesions. Significant increases in IL-1β and TNF-α levels were also found in L. lactis-inoculated glands. The above findings seem to suggest that food-grade L. lactis at a high-inoculum dose such as an overnight culture may elicit a suppurative inflammatory response in the mammary gland, thus becoming a potential mastitis-causing pathogen. Because of the unpredictable potential of L. lactis in acting as a potential mastitis pathogen, this organism cannot be considered a safe treatment for bovine mastitis.

  12. A mouse mastitis model to study the effects of the intramammary infusion of a food-grade Lactococcus lactis strain

    PubMed Central

    Biasibetti, Elena; Frassanito, Paolo; Giovannelli, Carlo; Spuria, Liliana; D’Agostino, Claudia; Tait, Sabrina; Capucchio, Maria Teresa

    2017-01-01

    Lactococcus lactis is one of the most important microorganisms in the dairy industry and has “generally recognized as safe” (GRAS) status. L. lactis belongs to the group of lactic acid bacteria (LAB) and is encountered in a wide range of environments. Recently, the use of the intramammary infusion of a live culture of LAB has been investigated as a new antibiotic alternative for treating mastitis in dairy ruminants. Controversial results are described in literature regarding its efficacy and safety. In this study we conducted in-depth investigation of the mammary gland immune response induced by intramammary inoculum of a live culture of L. lactis LMG 7930 using the mouse mastitis model. Overnight cultures either of L. lactis (≈ 107 CFU) or of the mastitis pathogens Staphylococcus chromogenes (≈ 105 CFU) or S. aureus (≈ 102 CFU/ml) were injected into the mouse inguinal glands. A double injection, consisting of S. chromogenes first and then L. lactis, was also investigated. Bacterial recovery from the gland and inflammatory cell infiltration were assessed. L. lactis-treated and control glands were analysed for proinflammatory cytokine production. Microbiological results showed that L. lactis was able to survive in the mammary gland 24 h post infection, as were the mastitis pathogens S. chromogenes and S. aureus. L. lactis reduced S. chromogenes survival in the glands and increased its own survival ability by coexisting with the pathogen. Histology showed that L. lactis-treated glands presented variable histological features, ranging from undamaged tissue with no inflammatory cell infiltrate to severe PMN infiltrate with focal areas of tissue damage. S. aureus-treated glands showed the most severe histological grade of inflammation despite the fact that the inoculum size was the smallest. In contrast, most S. chromogenes-treated glands showed normal structures with no infiltration or lesions. Significant increases in IL-1β and TNF-α levels were also found in L. lactis-inoculated glands. The above findings seem to suggest that food-grade L. lactis at a high-inoculum dose such as an overnight culture may elicit a suppurative inflammatory response in the mammary gland, thus becoming a potential mastitis-causing pathogen. Because of the unpredictable potential of L. lactis in acting as a potential mastitis pathogen, this organism cannot be considered a safe treatment for bovine mastitis. PMID:28873396

  13. Enhancing the Sweetness of Yoghurt through Metabolic Remodeling of Carbohydrate Metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus

    PubMed Central

    Sørensen, Kim I.; Curic-Bawden, Mirjana; Junge, Mette P.; Janzen, Thomas

    2016-01-01

    ABSTRACT Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus are used in the fermentation of milk to produce yoghurt. These species normally metabolize only the glucose moiety of lactose, secreting galactose and producing lactic acid as the main metabolic end product. We used multiple serial selection steps to isolate spontaneous mutants of industrial strains of S. thermophilus and L. delbrueckii subsp. bulgaricus that secreted glucose rather than galactose when utilizing lactose as a carbon source. Sequencing revealed that the S. thermophilus strains had mutations in the galKTEM promoter, the glucokinase gene, and genes encoding elements of the glucose/mannose phosphotransferase system (PTS). These strains metabolize galactose but are unable to phosphorylate glucose internally or via the PTS. The L. delbrueckii subsp. bulgaricus mutants had mutations in genes of the glucose/mannose PTS and in the pyruvate kinase gene. These strains cannot grow on exogenous glucose but are proficient at metabolizing internal glucose released from lactose by β-galactosidase. The resulting strains can be combined to ferment milk, producing yoghurt with no detectable lactose, moderate levels of galactose, and high levels of glucose. Since glucose tastes considerably sweeter than either lactose or galactose, the sweetness of the yoghurt is perceptibly enhanced. These strains were produced without the use of recombinant DNA technology and can be used for the industrial production of yoghurt with enhanced intrinsic sweetness and low residual levels of lactose. IMPORTANCE Based on a good understanding of the physiology of the lactic acid bacteria Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, we were able, by selecting spontaneously occurring mutants, to change dramatically the metabolic products secreted into the growth medium. These mutants consume substantially more of the lactose, metabolize some of the galactose, and secrete the remaining galactose and most of the glucose back into the milk. This allows production of yoghurt with very low lactose levels and enhanced natural sweetness, because humans perceive glucose as sweeter than either lactose or galactose. PMID:27107115

  14. Enhancing the Sweetness of Yoghurt through Metabolic Remodeling of Carbohydrate Metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Sørensen, Kim I; Curic-Bawden, Mirjana; Junge, Mette P; Janzen, Thomas; Johansen, Eric

    2016-06-15

    Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus are used in the fermentation of milk to produce yoghurt. These species normally metabolize only the glucose moiety of lactose, secreting galactose and producing lactic acid as the main metabolic end product. We used multiple serial selection steps to isolate spontaneous mutants of industrial strains of S. thermophilus and L. delbrueckii subsp. bulgaricus that secreted glucose rather than galactose when utilizing lactose as a carbon source. Sequencing revealed that the S. thermophilus strains had mutations in the galKTEM promoter, the glucokinase gene, and genes encoding elements of the glucose/mannose phosphotransferase system (PTS). These strains metabolize galactose but are unable to phosphorylate glucose internally or via the PTS. The L. delbrueckii subsp. bulgaricus mutants had mutations in genes of the glucose/mannose PTS and in the pyruvate kinase gene. These strains cannot grow on exogenous glucose but are proficient at metabolizing internal glucose released from lactose by β-galactosidase. The resulting strains can be combined to ferment milk, producing yoghurt with no detectable lactose, moderate levels of galactose, and high levels of glucose. Since glucose tastes considerably sweeter than either lactose or galactose, the sweetness of the yoghurt is perceptibly enhanced. These strains were produced without the use of recombinant DNA technology and can be used for the industrial production of yoghurt with enhanced intrinsic sweetness and low residual levels of lactose. Based on a good understanding of the physiology of the lactic acid bacteria Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, we were able, by selecting spontaneously occurring mutants, to change dramatically the metabolic products secreted into the growth medium. These mutants consume substantially more of the lactose, metabolize some of the galactose, and secrete the remaining galactose and most of the glucose back into the milk. This allows production of yoghurt with very low lactose levels and enhanced natural sweetness, because humans perceive glucose as sweeter than either lactose or galactose. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Comparative Sequence Analysis of Plasmids from Lactobacillus delbrueckii and Construction of a Shuttle Cloning Vector▿

    PubMed Central

    Lee, Ju-Hoon; Halgerson, Jamie S.; Kim, Jeong-Hwan; O'Sullivan, Daniel J.

    2007-01-01

    While plasmids are very commonly associated with the majority of the lactic acid bacteria, they are only very rarely associated with Lactobacillus delbrueckii, with only four characterized to date. In this study, the complete sequence of a native plasmid, pDOJ1, from a strain of Lactobacillus delbrueckii subsp. bulgaricus was determined. It consisted of a circular DNA molecule of 6,220 bp with a G+C content of 44.6% and a characteristic ori and encoded six open reading frames (ORFs), of which functions could be predicted for three—a mobilization (Mob) protein, a transposase, and a fused primase-helicase replication protein. Comparative analysis of pDOJ1 and the other available L. delbrueckii plasmids (pLBB1, pJBL2, pN42, and pLL1212) revealed a very similar organization and amino acid identities between 85 and 98% for the putative proteins of all six predicted ORFs from pDOJ1, reflecting a common origin for L. delbrueckii plasmids. Analysis of the fused primase-helicase replication gene found a similar fused organization only in the theta replicating group B plasmids from Streptococcus thermophilus. This observation and the ability of the replicon to function in S. thermophilus support the idea that the origin of plasmids in L. delbrueckii was likely from S. thermophilus. This may reflect the close association of these two species in dairy fermentations, particularly yogurt production. As no vector based on plasmid replicons from L. delbrueckii has previously been constructed, an Escherichia coli-L. delbrueckii shuttle cloning vector, pDOJ4, was constructed from pDOJ1, the p15A ori, the chloramphenicol resistance gene of pCI372, and the lacZ polylinker from pUC18. This cloning vector was successfully introduced into E. coli, L. delbrueckii subsp. bulgaricus, S. thermophilus, and Lactococcus lactis. This shuttle cloning vector provides a new tool for molecular analysis of Lactobacillus delbrueckii and other lactic acid bacteria. PMID:17526779

  16. Strain improvement of Lactobacillus lactis for D-lactic acid production.

    PubMed

    Joshi, D S; Singhvi, M S; Khire, J M; Gokhale, D V

    2010-04-01

    Three mutants, isolated by repeated UV mutagenesis of Lactobacillus lactis NCIM 2368, produced increased D: -lactic acid concentrations. These mutants were compared with the wild type using 100 g hydrolyzed cane sugar/l in the fermentation medium. One mutant, RM2-24, produced 81 g lactic acid/l which was over three times that of the wild type. The highest D: -lactic acid (110 g/l) in batch fermentation was obtained with 150 g cane sugar/l with a 73% lactic acid yield. The mutant utilizes cellobiose efficiently, converting it into D-lactic acid suggesting the presence of cellobiase. Thus, this strain could be used to obtain D-lactic acid from cellulosic materials that are pre-hydrolyzed with cellulase.

  17. First description of atypical furunculosis in freshwater farmed Atlantic salmon, Salmo salar L., in Chile.

    PubMed

    Godoy, M; Gherardelli, V; Heisinger, A; Fernández, J; Olmos, P; Ovalle, L; Ilardi, P; Avendaño-Herrera, R

    2010-05-01

    We report the first isolation, identification and characterization of a group of Chilean strains of atypical Aeromonas salmonicida isolated from freshwater farmed Atlantic salmon, Salmo salar. Affected fish showed superficial ulcers and pale liver with or without petechial haemorrhages. Outbreaks of the disease occurred in two farms in the south of Chile about 2200 km apart. Five strains were isolated in pure culture and identified by serological assays and immunofluorescence tests as belonging to Aeromonas salmonicida. Although the bacterial isolates were phenotypically homogeneous, minor differences with the reference strain A. salmonicida subsp. salmonicida ATCC 33658 were noted. Three specific primer sets and partial 16S rRNA gene sequencing allowed the identification of the Chilean isolates as atypical A. salmonicida, with A. salmonicida subsp. achromogenes and A. salmonicida subsp. masoucida as their closest relatives (100% sequence similarity). Molecular typing indicated that the atypical isolates belong to two genetic groups that were associated with the geographical origin.

  18. Consumption of Bifidobacterium animalis subsp. lactis BB-12 in yogurt reduced expression of TLR-2 on peripheral blood-derived monocytes and pro-inflammatory cytokine secretion in young adults.

    PubMed

    Meng, Huicui; Ba, Zhaoyong; Lee, Yujin; Peng, Jiayu; Lin, Junli; Fleming, Jennifer A; Furumoto, Emily J; Roberts, Robert F; Kris-Etherton, Penny M; Rogers, Connie J

    2017-03-01

    Probiotic bacteria modulate immune parameters and inflammatory outcomes. Emerging evidence demonstrates that the matrix used to deliver probiotics may influence the efficacy of probiotic interventions in vivo. The aims of the current study were to evaluate (1) the effect of one species, Bifidobacterium animalis subsp. lactis BB-12 at a dose of log10 ± 0.5 CFUs/day on immune responses in a randomized, partially blinded, 4-period crossover, free-living study, and (2) whether the immune response to BB-12 differed depending on the delivery matrix. Healthy adults (n = 30) aged 18-40 years were recruited and received four treatments in a random order: (A) yogurt smoothie alone; smoothie with BB-12 added (B) before or (C) after yogurt fermentation, or (D) BB-12 given in capsule form. At baseline and after each 4-week treatment, peripheral blood mononuclear cells (PBMCs) were isolated, and functional and phenotypic marker expression was assessed. BB-12 interacted with peripheral myeloid cells via Toll-like receptor 2 (TLR-2). The percentage of CD14 + HLA-DR + cells in peripheral blood was increased in male participants by all yogurt-containing treatments compared to baseline (p = 0.0356). Participants who consumed yogurt smoothie with BB-12 added post-fermentation had significantly lower expression of TLR-2 on CD14 + HLA-DR + cells (p = 0.0186) and reduction in TNF-α secretion from BB-12- (p = 0.0490) or LPS-stimulated (p = 0.0387) PBMCs compared to baseline. These findings not only demonstrate a potential anti-inflammatory effect of BB-12 in healthy adults, but also indicate that the delivery matrix influences the immunomodulatory properties of BB-12.

  19. Genetic diversity of clinical Mycobacterium avium subsp. hominissuis and Mycobacterium intracellulare isolates causing pulmonary diseases recovered from different geographical regions.

    PubMed

    Ichikawa, Kazuya; van Ingen, Jakko; Koh, Won-Jung; Wagner, Dirk; Salfinger, Max; Inagaki, Takayuki; Uchiya, Kei-Ichi; Nakagawa, Taku; Ogawa, Kenji; Yamada, Kiyofumi; Yagi, Tetsuya

    2015-12-01

    Mycobacterium avium complex (MAC) infections are increasing annually in many countries. MAC strains are the most common nontuberculous mycobacterial pathogens isolated from respiratory samples and predominantly consist of two species, Mycobacterium avium and Mycobacterium intracellulare. The aim of this study was to analyze the molecular epidemiology and genetic backgrounds of clinical MAC isolates collected from The Netherlands, Germany, United States, Korea and Japan. Variable numbers of tandem repeats (VNTR) analysis was used to examine the genetic relatedness of clinical isolates of M. avium subsp. hominissuis (n=261) and M. intracellulare (n=116). Minimum spanning tree and unweighted pair group method using arithmetic averages analyses based on the VNTR data indicated that M. avium subsp. hominissuis isolates from Japan shared a high degree of genetic relatedness with Korean isolates, but not with isolates from Europe or the United States, whereas M. intracellulare isolates did not show any specific clustering by geographic origin. The findings from the present study indicate that strains of M. avium subsp. hominissuis, but not M. intracellulare, exhibit geographical differences in genetic diversity and imply that MAC strains may have different sources, routes of transmission and perhaps clinical manifestations. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. On the microbiological profile of traditional Portuguese sourdough.

    PubMed

    Rocha, J M; Malcata, F X

    1999-12-01

    Traditional manufacture of bread from maize has been noted to play important roles from both economic and social standpoints; however, enforcement of increasingly strict hygiene standards requires thorough knowledge of the adventitious microbiota of the departing dough. To this goal, sourdough as well as maize and rye flours from several geographic locations and in two different periods within the agricultural year were assayed for their microbiota in sequential steps of quantification and identification. More than 400 strains were isolated and taxonomic differentiation between them was via Biomerieux API galleries (375 of which were successfully identified) following preliminary biochemical and morphological screening. The dominant groups were yeasts and lactic acid bacteria (LAB). The most frequently isolated yeasts were Saccharomyces cerevisiae and Candida pelliculosa. The most frequently isolated LAB were (heterofermentative) Leuconostoc spp. and (homofermentative) Lactobacillus spp.; L. brevis, L. curvatus, and L. lactis ssp. lactis were the dominant species for the Lactobacillus genera; Lactococcus lactis ssp. lactis for lactococci; Enterococcus casseliflavus, E. durans, and E. faecium for enterococci; and Streptococcus constellantus and S. equinus for streptococci.

  1. Respiration-dependent utilization of sugars in yeasts: a determinant role for sugar transporters.

    PubMed

    Goffrini, Paola; Ferrero, Iliana; Donnini, Claudia

    2002-01-01

    In many yeast species, including Kluyveromyces lactis, growth on certain sugars (such as galactose, raffinose, and maltose) occurs only under respiratory conditions. If respiration is blocked by inhibitors, mutation, or anaerobiosis, growth does not take place. This apparent dependence on respiration for the utilization of certain sugars has often been suspected to be associated with the mechanism of the sugar uptake step. We hypothesized that in many yeast species, the permease activities for these sugars are not sufficient to ensure the high substrate flow that is necessary for fermentative growth. By introducing additional sugar permease genes, we have obtained K. lactis strains that were capable of growing on galactose and raffinose in the absence of respiration. High dosages of both the permease and maltase genes were indeed necessary for K. lactis cells to grow on maltose in the absence of respiration. These results strongly suggest that the sugar uptake step is the major bottleneck in the fermentative assimilation of certain sugars in K. lactis and probably in many other yeasts.

  2. Subcutaneous or oral immunization of mice with Lactococcus lactis expressing F4 fimbrial adhesin FaeG.

    PubMed

    Liu, Shujie; Li, Yongming; Xu, Ziwei; Wang, Yicheng

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrhea in neonatal and postweaning piglets. Fimbrial adhesion of ETEC has been considered an important colonization factor with antigenicity. To safely and effectively deliver the F4 (K88) fimbrial adhesin FaeG to the immune system, we have previously constructed the secretory expression vector pNZ8112-faeG, and FaeG was produced in cytoplasmic form in Lactococcus lactis. In this work, BALB/c mice were immunized with recombinant L. lactis to further determine the immunogenicity of recombinant FaeG (rFaeG) via the subcutaneous or oral route. Subcutaneous immunization in mice with recombinant L. lactis induced a significant increase in the F4-specific serum IgG titer and the number of antibody-secreting cells (ASCs) in the spleen. Oral immunization of mice with recombinant L. lactis induced mucosal and systemic F4-specific immune responses and increased the number of ASCs in the spleen, mesenteric lymph nodes and Peyer's patches. High-dose (2.8 × 10(11) CFU) recombinant strains and adjuvant cholera toxin B subunit enhanced specific mucosal immune responses. The results suggest the feasibility of delivering rFaeG expressed in L. lactis to the immune system in order to induce an F4-specific immune response.

  3. Genomics, evolution, and molecular epidemiology of the Streptococcus bovis/Streptococcus equinus complex (SBSEC).

    PubMed

    Jans, Christoph; Meile, Leo; Lacroix, Christophe; Stevens, Marc J A

    2015-07-01

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) is a group of human and animal derived streptococci that are commensals (rumen and gastrointestinal tract), opportunistic pathogens or food fermentation associates. The classification of SBSEC has undergone massive changes and currently comprises 7 (sub)species grouped into four branches based on sequences identities: the Streptococcus gallolyticus, the Streptococcus equinus, the Streptococcus infantarius and the Streptococcus alactolyticus branch. In animals, SBSEC are causative agents for ruminal acidosis, potentially laminitis and infective endocarditis (IE). In humans, a strong association was established between bacteraemia, IE and colorectal cancer. Especially the SBSEC-species S. gallolyticus subsp. gallolyticus is an emerging pathogen for IE and prosthetic joint infections. S. gallolyticus subsp. pasteurianus and the S. infantarius branch are further associated with biliary and urinary tract infections. Knowledge on pathogenic mechanisms is so far limited to colonization factors such as pili and biofilm formation. Certain strain variants of S. gallolyticus subsp. macedonicus and S. infantarius subsp. infantarius are associated with traditional dairy and plant-based food fermentations and display traits suggesting safety. However, due to their close relationship to virulent strains, their use in food fermentation has to be critically assessed. Additionally, implementing accurate and up-to-date taxonomy is critical to enable appropriate treatment of patients and risk assessment of species and strains via recently developed multilocus sequence typing schemes to enable comparative global epidemiology. Comparative genomics revealed that SBSEC strains harbour genomics islands (GI) that seem acquired from other streptococci by horizontal gene transfer. In case of virulent strains these GI frequently encode putative virulence factors, in strains from food fermentation the GI encode functions that are pivotal for strain performance during fermentation. Comparative genomics is a powerful tool to identify acquired pathogenic functions, but there is still an urgent need for more physiological and epidemiological data to understand SBSEC-specific traits. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Role of RpoS in virulence and stress tolerance of the plant pathogen Erwinia carotovora subsp. carotovora.

    PubMed

    Andersson, R A; Kõiv, V; Norman-Setterblad, C; Pirhonen, M

    1999-12-01

    The plant-pathogenic bacterium Erwinia carotovora subsp. carotovora causes plant disease mainly through a number of extracellular plant-cell-wall-degrading enzymes. In this study, the ability of an rpoS mutant of the Er. carotovora subsp. carotovora strain SCC3193 to infect plants and withstand environmental stress was characterized. This mutant was found to be sensitive to osmotic and oxidative stresses in vitro and to be deficient in glycogen accumulation. The production of extracellular enzymes in vitro was similar in the mutant and in the wild-type strains. However, the rpoS mutant caused more severe symptoms than the wild-type strain on tobacco plants and also produced more extracellular enzymes in planta, but did not grow to higher cell density in planta compared to the wild-type strain. When tested on plants with reduced catalase activities, which show higher levels of reactive oxygen species, the rpoS mutant was found to cause lower symptom levels and to have impaired growth. In addition, the mutant was unable to compete with the wild-type strain in planta and in vitro. These results suggest that a functional rpoS gene is needed mainly for survival in a competitive environment and during stress conditions, and not for effective infection of plants.

  5. Characterization and purification of a bacteriocin from Lactobacillus paracasei subsp. paracasei BMK2005, an intestinal isolate active against multidrug-resistant pathogens.

    PubMed

    Bendjeddou, Kamel; Fons, Michel; Strocker, Pierre; Sadoun, Djamila

    2012-04-01

    A strain of Lactobacillus paracasei subsp. paracasei BMK2005 isolated from healthy infant faeces has shown a remarkable antibacterial activity against 32 bacterial pathogenic strains of human clinical isolates. Among them, 13 strains belonging to species of Escherichia coli, Citrobacter freundii, Citrobacter diversus, Klebsiella oxytoca, Enterobacter cloacae and Pseudomonas aeruginosa were resistant to Cefotaxime (CTX) and Ceftazidime (CAZ), and 4 strains of Staphylococcus aureus were resistant to Methicillin (MRSA). This antibacterial activity was attributed to a bacteriocin designated as Paracaseicin A. It was heat-stable up to 120°C for 5 min and active within the pH range of 2-5. Its activity was lost when treated with proteases, which reveals its proteinaceous nature. This bacteriocin was successfully purified only by two steps of reversed phase chromatography. Its molecular mass, determined by mass spectrometry analysis, was 2,462.5 Da. To our knowledge, the present study is the first report on characterization and purification of a bacteriocin, produced by a L. paracasei subsp. paracasei strain exhibiting an antibacterial activity against various multidrug-resistant species of Gram-positive and Gram-negative bacteria, which reveals its potential for use in prevention or treatment of infections caused by multidrug-resistant species especially in cases of antibiotics-associated diarrhea (AAD).

  6. Environmental Survival of Mycobacterium avium subsp. paratuberculosis in Different Climatic Zones of Eastern Australia

    PubMed Central

    Begg, Douglas J.; Dhand, Navneet K.; Watt, Bruce; Whittington, Richard J.

    2014-01-01

    The duration of survival of both the S and C strains of Mycobacterium avium subsp. paratuberculosis in feces was quantified in contrasting climatic zones of New South Wales, Australia, and detailed environmental temperature data were collected. Known concentrations of S and C strains in feces placed on soil in polystyrene boxes were exposed to the environment with or without the provision of shade (70%) at Bathurst, Armidale, Condobolin, and Broken Hill, and subsamples taken every 2 weeks were cultured for the presence of M. avium subsp. paratuberculosis. The duration of survival ranged from a minimum of 1 week to a maximum of 16 weeks, and the provision of 70% shade was the most important factor in extending the survival time. The hazard of death for exposed compared to shaded samples was 20 and 9 times higher for the S and C strains, respectively. Site did not affect the survival of the C strain, but for the S strain, the hazard of death was 2.3 times higher at the two arid zone sites (Broken Hill and Condobolin) than at the two temperate zone sites (Bathurst and Armidale). Temperature measurements revealed maximum temperatures exceeding 60°C and large daily temperature ranges at the soil surface, particularly in exposed boxes. PMID:24463974

  7. Conjugative plasmid in Corynebacterium flaccumfaciens subsp. oortii that confers resistance to arsenite, arsenate, and antimony(III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrick, C.A.; Haskins, W.P.; Vidaver, A.K.

    1984-07-01

    Gene transfer systems for phytopathogenic corynebacteria have not been reported previously. In this paper a conjugative 46-megadalton plasmid (pDG101) found in Corynebacterium flaccumfaciens subsp. oorii CO101 is described that mediates resistance to arsenite, arsenate, and antimony(III). Transfer of the plasmid from CO101 to four other strains from the C. flaccumfaciens group occurred between cells immobilized on nitrocellulose filters or on agar surfaces. Transconjugant strains expressed the same levels of metal resistance as the donor strain and were able to act as donor strains in subsequent matings. The physical presence of the plasmid was detected by agarose gel electrophoresis. Arsenite-sensitive derivativesmore » of the donor and transconjugant strains were obtained after heat treatment; these were cured of pDG101.« less

  8. Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis.

    PubMed

    Barboza-Corona, J Eleazar; Vázquez-Acosta, Herminia; Bideshi, Dennis K; Salcedo-Hernández, Rubén

    2007-02-01

    Bacteriocins are antimicrobial peptides synthesized and secreted by bacteria and could potentially be used as natural food preservatives. Here, we report the production of bacteriocin-like inhibitor substances (Bt-BLIS) by five Mexican strains of Bacillus thuringiensis. Bacillus thuringiensis subsp. morrisoni (LBIT 269), B. thuringiensis subsp. kurstaki (LBIT 287), B. thuringiensis subsp kenyae (LBIT 404), B. thuringiensis subsp. entomocidus (LBIT 420) and B. thuringiensis subsp. tolworthi (LBIT 524) produced proteinaceous Bt-BLIS with high levels of activity against Bacillus cereus and other gram-positive bacteria. Although none was active against the gram-negative bacteria, Escherichia coli, Shigella species and Pseudomonas aeruginosa, the five Bt-BLIS demonstrated antimicrobial activity against Vibrio cholerae, the etiologic agent of cholera. Biochemical and biophysical studies demonstrated that the five Bt-BLIS could be categorized into two groups, those produced by LBIT 269 and 287 (Group A) and LBIT 404, 420, 524 (Group B), based on relative time of peptide synthesis, distinctive bacterial target specificity and stability in a wide range of temperatures and pH. Because of their stability and bactericidal activities against B. cereus and V. cholerae agents of emetic, diarrheal and lethal syndromes in humans, these Bt-BLIS could potentially be used as biodegradable preservatives in the food industry.

  9. Genetic diversity of Streptococcus equi subsp. zooepidemicus and doxycycline resistance in kennelled dogs.

    PubMed

    Chalker, Victoria J; Waller, Andrew; Webb, Katy; Spearing, Emma; Crosse, Patricia; Brownlie, Joe; Erles, Kerstin

    2012-06-01

    The genetic diversity and antibiotic resistance profiles of 38 Streptococcus equi subsp. zooepidemicus isolates were determined from a kennelled canine population during two outbreaks of hemorrhagic pneumonia (1999 to 2002 and 2007 to 2010). Analysis of the szp gene hypervariable region and the 16S-23S rRNA intergenic spacer region and multilocus sequence typing (MLST) indicated a predominant tetO-positive, doxycycline-resistant ST-10 strain during 1999 to 2002 and a predominant tetM-positive doxycycline-resistant ST-62 strain during 2007 to 2010.

  10. Genetic Diversity of Streptococcus equi subsp. zooepidemicus and Doxycycline Resistance in Kennelled Dogs

    PubMed Central

    Chalker, Victoria J.; Waller, Andrew; Webb, Katy; Spearing, Emma; Crosse, Patricia; Brownlie, Joe

    2012-01-01

    The genetic diversity and antibiotic resistance profiles of 38 Streptococcus equi subsp. zooepidemicus isolates were determined from a kennelled canine population during two outbreaks of hemorrhagic pneumonia (1999 to 2002 and 2007 to 2010). Analysis of the szp gene hypervariable region and the 16S-23S rRNA intergenic spacer region and multilocus sequence typing (MLST) indicated a predominant tetO-positive, doxycycline-resistant ST-10 strain during 1999 to 2002 and a predominant tetM-positive doxycycline-resistant ST-62 strain during 2007 to 2010. PMID:22495558

  11. New Coffee Plant-Infecting Xylella fastidiosa Variants Derived via Homologous Recombination

    PubMed Central

    Denancé, Nicolas; Legendre, Bruno; Morel, Emmanuelle; Briand, Martial; Mississipi, Stelly; Durand, Karine; Olivier, Valérie; Portier, Perrine; Poliakoff, Françoise; Crouzillat, Dominique

    2015-01-01

    Xylella fastidiosa is a xylem-limited phytopathogenic bacterium endemic to the Americas that has recently emerged in Asia and Europe. Although this bacterium is classified as a quarantine organism in the European Union, importation of plant material from contaminated areas and latent infection in asymptomatic plants have engendered its inevitable introduction. In 2012, four coffee plants (Coffea arabica and Coffea canephora) with leaf scorch symptoms growing in a confined greenhouse were detected and intercepted in France. After identification of the causal agent, this outbreak was eradicated. Three X. fastidiosa strains were isolated from these plants, confirming a preliminary identification based on immunology. The strains were characterized by multiplex PCR and by multilocus sequence analysis/typing (MLSA-MLST) based on seven housekeeping genes. One strain, CFBP 8073, isolated from C. canephora imported from Mexico, was assigned to X. fastidiosa subsp. fastidiosa/X. fastidiosa subsp. sandyi. This strain harbors a novel sequence type (ST) with novel alleles at two loci. The two other strains, CFBP 8072 and CFBP 8074, isolated from Coffea arabica imported from Ecuador, were allocated to X. fastidiosa subsp. pauca. These two strains shared a novel ST with novel alleles at two loci. These MLST profiles showed evidence of recombination events. We provide genome sequences for CFBP 8072 and CFBP 8073 strains. Comparative genomic analyses of these two genome sequences with publicly available X. fastidiosa genomes, including the Italian strain CoDiRO, confirmed these phylogenetic positions and provided candidate alleles for coffee plant adaptation. This study demonstrates the global diversity of X. fastidiosa and highlights the diversity of strains isolated from coffee plants. PMID:26712553

  12. Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo.

    PubMed

    Hughes, Amanda L; Rando, Oliver J

    2015-07-14

    Packaging of genomic DNA into nucleosomes is nearly universally conserved in eukaryotes, and many features of the nucleosome landscape are quite conserved. Nonetheless, quantitative aspects of nucleosome packaging differ between species because, for example, the average length of linker DNA between nucleosomes can differ significantly even between closely related species. We recently showed that the difference in nucleosome spacing between two Hemiascomycete species-Saccharomyces cerevisiae and Kluyveromyces lactis-is established by trans-acting factors rather than being encoded in cis in the DNA sequence. Here, we generated several S. cerevisiae strains in which endogenous copies of candidate nucleosome spacing factors are deleted and replaced with the orthologous factors from K. lactis. We find no change in nucleosome spacing in such strains in which H1 or Isw1 complexes are swapped. In contrast, the K. lactis gene encoding the ATP-dependent remodeler Chd1 was found to direct longer internucleosomal spacing in S. cerevisiae, establishing that this remodeler is partially responsible for the relatively long internucleosomal spacing observed in K. lactis. By analyzing several chimeric proteins, we find that sequence differences that contribute to the spacing activity of this remodeler are dispersed throughout the coding sequence, but that the strongest spacing effect is linked to the understudied N-terminal end of Chd1. Taken together, our data find a role for sequence evolution of a chromatin remodeler in establishing quantitative aspects of the chromatin landscape in a species-specific manner. Copyright © 2015 Hughes and Rando.

  13. Phase behavior of casein micelles/exocellular polysaccharide mixtures: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Tuinier, R.; de Kruif, C. G.

    1999-05-01

    Dispersions of casein micelles and an exocellular polysaccharide (EPS), obtained from Lactococcus lactis subsp. cremoris NIZO B40 EPS, show a phase separation. The phase separation is of the colloidal gas-liquid type. We have determined a phase diagram that describes the separation of skim milk with EPS into a casein-micelle rich phase and an EPS rich phase. We compare the phase diagram with those calculated from theories developed by Vrij, and by Lekkerkerker and co-workers, showing that the experimental phase boundary can be predicted quite well. From dynamic light scattering measurements of the self-diffusion of the casein micelles in the presence of EPS the spinodal could be located and it corresponds with the experimental phase boundary.

  14. Sequence analysis of the lactococcal plasmid pNP40: a mobile replicon for coping with environmental hazards.

    PubMed

    O'Driscoll, Jonathan; Glynn, Frances; Fitzgerald, Gerald F; van Sinderen, Douwe

    2006-09-01

    The conjugative lactococcal plasmid pNP40, identified in Lactococcus lactis subsp. diacetylactis DRC3, possesses a potent complement of bacteriophage resistance systems, which has stimulated its application as a fitness-improving, food-grade genetic element for industrial starter cultures. The complete sequence of this plasmid allowed the mapping of previously known functions including replication, conjugation, bacteriocin resistance, heavy metal tolerance, and bacteriophage resistance. In addition, functions for cold shock adaptation and DNA damage repair were identified, further confirming pNP40's contribution to environmental stress protection. A plasmid cointegration event appears to have been part of the evolution of pNP40, resulting in a "stockpiling" of bacteriophage resistance systems.

  15. Genome sequences of Salmonella enterica subsp. Kentucky ST152 isolated from dairy cows in the United States

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica subsp. enterica serovar Kentucky is frequently isolated from dairy cows in the United States, but is an infrequent cause of human salmonellosis. To investigate the genomic features of S. Kentucky strains isolated from these animals, genomes of eight isolates were sequenced and ad...

  16. Production and Evaluation of an Improved Mycobacterium avium subsp. paratuberculosis Purified Protein Derivative for Use in In-Vivo and In-Vitro Diagnostic Testing

    USDA-ARS?s Scientific Manuscript database

    Purified protein derivatives (PPD’s) were prepared from the cultured filtrate of Mycobacterium avium subsp. paratuberculosis (MAP) ATCC strain 19698. Production of PPD has historically been problematic for maintaining optimal floating cultures yielding defined immunogenic components. To obtain mor...

  17. Complete genomic sequence of campylobacter jejuni subsp. jejuni HS:19 penner reference strain

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni subsp. jejuni (Cjj) infections are a leading cause of foodborne gastroenteritis and the most prevalent antecedent to Guillain-Barré syndrome (GBS). Capsular type Penner HS:19 is among several capsule types shown to be markers for GBS. This study describes the genome of Cjj HS:19...

  18. [The occurrence of campylobacter fetus subsp. jejuni and Salmonella bacteria in some wild birds (author's transl)].

    PubMed

    Rosef, O

    1981-12-01

    An investigation was carried out into the occurrence of Campylobacter fetus subsp. jejuni and Salmonella species in some wild birds. A total of 129 birds was examined, consisting of 71 pigeons, 54 seagulls, three crows and one raven. Campylobacter bacteria were isolated from 32 birds (24.8%), of which three were pigeons, 27 seagulls and two were crows. Of the 27 Campylobacter strains isolated from seagulls, four had the biochemical characteristics of the NARTC biotype described by Skirrow and Benjamin, seven were grouped as Campylobacter coli biotype and 16 as the biotype of Campylobacter jejuni. All the strains isolated from crows and pigeons had the biochemical characteristics of Campylobacter jejuni biotypes. Salmonella bacteria were isolated from the intestinal contents of two of the 54 seagulls (3.7%), and were identified serologically as Salmonella indiana and Salmonella typhimurium. One seagull was found to be a carrier of both Campylobacter fetus subsp. jejuni and Salmonella typhimurium. A correlation could not be demonstrated between the occurrence of Salmonella bacteria and Campylobacter fetus subsp. jejuni.

  19. Lactobacillus delbrueckii subsp. bulgaricus CRL 454 cleaves allergenic peptides of β-lactoglobulin.

    PubMed

    Pescuma, Micaela; Hébert, Elvira M; Haertlé, Thomas; Chobert, Jean-Marc; Mozzi, Fernanda; Font de Valdez, Graciela

    2015-03-01

    Whey, a cheese by-product used as a food additive, is produced worldwide at 40.7 million tons per year. β-Lactoglobulin (BLG), the main whey protein, is poorly digested and is highly allergenic. We aimed to study the contribution of Lactobacillus delbrueckii subsp. bulgaricus CRL 454 to BLG digestion and to analyse its ability to degrade the main allergenic sequences of this protein. Pre-hydrolysis of BLG by L. delbrueckii subsp. bulgaricus CRL 454 increases digestion of BLG assayed by an in vitro simulated gastrointestinal system. Moreover, peptides from hydrolysis of the allergenic sequences V41-K60, Y102-R124, C121-L140 and L149-I162 were found when BLG was hydrolysed by this strain. Interestingly, peptides possessing antioxidant, ACE inhibitory, antimicrobial and immuno-modulating properties were found in BLG degraded by both the Lactobacillus strain and digestive enzymes. To conclude, pre-hydrolysis of BLG by L. delbrueckii subsp. bulgaricus CRL 454 has a positive effect on BLG digestion and could diminish allergenic reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Specific 16S ribosomal RNA targeted oligonucleotide probe against Clavibacter michiganensis subsp. sepedonicus.

    PubMed

    Mirza, M S; Rademaker, J L; Janse, J D; Akkermans, A D

    1993-11-01

    In this article we report on the polymerase chain reaction amplification of a partial 16S rRNA gene from the plant pathogenic bacterium Clavibacter michiganensis subsp. sepedonicus. A partial sequence (about 400 base pairs) of the gene was determined that covered two variable regions important for oligonucleotide probe development. A specific 24mer oligonucleotide probe targeted against the V6 region of 16S rRNA was designed. Specificity of the probe was determined using dot blot hybridization. Under stringent conditions (60 degrees C), the probe hybridized with all 16 Cl. michiganensis subsp. sepedonicus strains tested. Hybridization did not occur with 32 plant pathogenic and saprophytic bacteria used as controls under the same conditions. Under less stringent conditions (55 degrees C) the related Clavibacter michiganensis subsp. insidiosus, Clavibacter michiganensis subsp. nebraskensis, and Clavibacter michiganensis subsp. tesselarius also showed hybridization. At even lower stringency (40 degrees C), all Cl. michiganensis subspecies tested including Clavibacter michiganensis subsp. michiganensis showed hybridization signal, suggesting that under these conditions the probe may be used as a species-specific probe for Cl. michiganensis.

  1. Contribution of type IV pili to the virulence of Aeromonas salmonicida subsp. salmonicida in Atlantic salmon (Salmo salar L.).

    PubMed

    Boyd, Jessica M; Dacanay, Andrew; Knickle, Leah C; Touhami, Ahmed; Brown, Laura L; Jericho, Manfred H; Johnson, Stewart C; Reith, Michael

    2008-04-01

    Aeromonas salmonicida subsp. salmonicida, a bacterial pathogen of Atlantic salmon, has no visible pili, yet its genome contains genes for three type IV pilus systems. One system, Tap, is similar to the Pseudomonas aeruginosa Pil system, and a second, Flp, resembles the Actinobacillus actinomycetemcomitans Flp pilus, while the third has homology to the mannose-sensitive hemagglutinin pilus of Vibrio cholerae. The latter system is likely nonfunctional since eight genes, including the gene encoding the main pilin subunit, are deleted compared with the orthologous V. cholerae locus. The first two systems were characterized to investigate their expression and role in pathogenesis. The pili of A. salmonicida subsp. salmonicida were imaged using atomic force microscopy and Tap- and Flp-overexpressing strains. The Tap pili appeared to be polar, while the Flp pili appeared to be peritrichous. Strains deficient in tap and/or flp were used in live bacterial challenges of Atlantic salmon, which showed that the Tap pilus made a moderate contribution to virulence, while the Flp pilus made little or no contribution. Delivery of the tap mutant by immersion resulted in reduced cumulative morbidity compared with the cumulative morbidity observed with the wild-type strain; however, delivery by intraperitoneal injection resulted in cumulative morbidity similar to that of the wild type. Unlike the pili of other piliated bacterial pathogens, A. salmonicida subsp. salmonicida type IV pili are not absolutely required for virulence in Atlantic salmon. Significant differences in the behavior of the two mutant strains indicated that the two pilus systems are not redundant.

  2. Variability of bacterial biofilms of the "tina" wood vats used in the ragusano cheese-making process.

    PubMed

    Licitra, G; Ogier, J C; Parayre, S; Pediliggieri, C; Carnemolla, T M; Falentin, H; Madec, M N; Carpino, S; Lortal, S

    2007-11-01

    Ragusano cheese is a "protected denomination of origin" cheese made in the Hyblean region of Sicily from raw milk using traditional wooden tools, without starter. To explore the Ragusano bacterial ecosystem, molecular fingerprinting was conducted at different times during the ripening and biofilms from the wooden vats called "tinas" were investigated. Raw milks collected at two farm sites, one on the mountain and one at sea level, were processed to produce Ragusano cheese. Raw milk, curd before and after cooking, curd at stretching time (cheese 0 time), and cheese samples (4 and 7 months) were analyzed by PCR-temporal temperature gel electrophoresis (PCR-TTGE) and by classical enumeration microbiology. With the use of universal primers, PCR-TTGE revealed many differences between the raw milk profiles, but also notable common bands identified as Streptococcus thermophilus, Lactobacillus lactis, Lactobacillus delbrueckii, and Enterococcus faecium. After the stretching, TTGE profiles revealed three to five dominant species only through the entire process of ripening. In the biofilms of the two tinas used, one to five species were detected, S. thermophilus being predominant in both. Biofilms from five other tinas were also analyzed by PCR-TTGE, PCR-denaturating gradient gel electrophoresis, specific PCR tests, and sequencing, confirming the predominance of lactic acid bacteria (S. thermophilus, L. lactis, and L. delbrueckii subsp. lactis) and the presence of a few high-GC-content species, like coryneform bacteria. The spontaneous acidification of raw milks before and after contact with the five tinas was followed in two independent experiments. The lag period before acidification can be up to 5 h, depending on the raw milk and the specific tina, highlighting the complexity of this natural inoculation system.

  3. Evaluation of bacterial communities belonging to natural whey starters for Grana Padano cheese by length heterogeneity-PCR.

    PubMed

    Lazzi, C; Rossetti, L; Zago, M; Neviani, E; Giraffa, G

    2004-01-01

    To detect bacteria present in controlled dairy ecosystems with defined composition by length-heterogeneity (LH)-PCR. LH-PCR allows to distinguish different organisms on the basis of natural variations in the length of 16S rRNA gene sequences. LH-PCR was applied to depict population structure of the lactic acid bacteria (LAB) species recoverable from Grana Padano cheese whey starters. Typical bacterial species present in the LAB community were evidenced and well discriminated. Small differences in species composition, e.g. the frequent finding of Streptococcus thermophilus and the constant presence of thermophilic lactobacilli (Lactobacillus helveticus, Lact. delbrueckii subsp. lactis/bulgaricus and Lact. fermentum) were reliably highlighted. Specificity of LH-PCR was confirmed by species-specific PCR from total DNA of the cultures. LH-PCR is a useful tool to monitor microbial composition and population dynamics in dairy starter cultures. When present, non-dominant bacterial species present in the whey starters, such as Strep. thermophilus, can easily be visualized and characterized without isolating and cultivating single strains. A similar approach can be applied to more complex dairy ecosystems such as milk or cheese curd. Community members and differences in population structure of controlled dairy ecosystems such as whey starters for hard cheeses can be evaluated and compared in a relative easy, fast, reliable and highly reproducible way.

  4. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology.

    PubMed

    Yu, Hyung-Seok; Lee, Na-Kyoung; Jeon, Hye-Lin; Eom, Su Jin; Yoo, Mi-Young; Lim, Sang-Dong; Paik, Hyun-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products.

  5. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology

    PubMed Central

    Yoo, Mi-Young; Lim, Sang-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products. PMID:27433115

  6. Evaluation of Fluoretec-M for detection of oral strains of Bacteroides asaccharolyticus and Bacteroides melaninogenicus.

    PubMed Central

    Mouton, C; Hammond, P; Slots, J; Genco, R J

    1980-01-01

    Fluoretec-M is a polyvalent conjugate used in direct fluorescent-antibody staining for identification of the Bacteroides asaccharolyticus-Bacteroides melaninogenicus group. The Fluoretec-M reagent detected all oral and nonoral test strains of B. melaninogaenicus subsp. intermedius, all test strains of B. melaninogenicus subsp. melaninogenicus, and the nonoral strains of B. asaccharolyticus. However, the Fluoretec-M polyvalent reagent and the monovalent conjugates which constitute Fluoretec-M did not detect the oral strains B. asaccharolyticus. The use of Fluoretec-M can therefore generate false-negative results in studies of specimens from oral cavity and from nonoral sites in which an infection with B. asacacharolyticus of oral origin may have taken place. It is suggested that antibodies reactive with the oral antigenic type of B. asaccharolyticus be included in the preparative procedure of the Fluoretec-M reagent. PMID:6107305

  7. Two Isoforms of Yersinia pestis Plasminogen Activator Pla: Intraspecies Distribution, Intrinsic Disorder Propensity, and Contribution to Virulence.

    PubMed

    Dentovskaya, Svetlana V; Platonov, Mikhail E; Svetoch, Tat'yana E; Kopylov, Pavel Kh; Kombarova, Tat'yana I; Ivanov, Sergey A; Shaikhutdinova, Rima Z; Kolombet, Lyubov' V; Chauhan, Sadhana; Ablamunits, Vitaly G; Motin, Vladimir L; Uversky, Vladimir N; Anisimov, Andrey P

    2016-01-01

    It has been shown previously that several endemic Y. pestis isolates with limited virulence contained the I259 isoform of the outer membrane protease Pla, while the epidemic highly virulent strains possessed only the T259 Pla isoform. Our sequence analysis of the pla gene from 118 Y. pestis subsp. microtus strains revealed that the I259 isoform was present exclusively in the endemic strains providing a convictive evidence of more ancestral origin of this isoform. Analysis of the effects of the I259T polymorphism on the intrinsic disorder propensity of Pla revealed that the I259T mutation slightly increases the intrinsic disorder propensity of the C-terminal tail of Pla and makes this protein slightly more prone for disorder-based protein-protein interactions, suggesting that the T259 Pla could be functionally more active than the I259 Pla. This assumption was proven experimentally by assessing the coagulase and fibrinolytic activities of the two Pla isoforms in human plasma, as well as in a direct fluorometric assay with the Pla peptide substrate. The virulence testing of Pla-negative or expressing the I259 and T259 Pla isoforms Y. pestis subsp. microtus and subsp. pestis strains did not reveal any significant difference in LD50 values and dose-dependent survival assays between them by using a subcutaneous route of challenge of mice and guinea pigs or intradermal challenge of mice. However, a significant decrease in time-to-death was observed in animals infected with the epidemic T259 Pla-producing strains as compared to the parent Pla-negative variants. Survival curves of the endemic I259 Pla+ strains fit between them, but significant difference in mean time to death post infection between the Pla-strains and their I259 Pla+ variants could be seen only in the isogenic set of subsp. pestis strains. These findings suggest an essential role for the outer membrane protease Pla evolution in Y. pestis bubonic infection exacerbation that is necessary for intensification of epidemic process from endemic natural focality with sporadic cases in men to rapidly expanding epizootics followed by human epidemic outbreaks, local epidemics or even pandemics.

  8. Two Isoforms of Yersinia pestis Plasminogen Activator Pla: Intraspecies Distribution, Intrinsic Disorder Propensity, and Contribution to Virulence

    PubMed Central

    Dentovskaya, Svetlana V.; Platonov, Mikhail E.; Svetoch, Tat’yana E.; Kopylov, Pavel Kh.; Kombarova, Tat’yana I.; Ivanov, Sergey A.; Shaikhutdinova, Rima Z.; Kolombet, Lyubov’ V.; Chauhan, Sadhana; Ablamunits, Vitaly G.; Motin, Vladimir L.; Uversky, Vladimir N.

    2016-01-01

    It has been shown previously that several endemic Y. pestis isolates with limited virulence contained the I259 isoform of the outer membrane protease Pla, while the epidemic highly virulent strains possessed only the T259 Pla isoform. Our sequence analysis of the pla gene from 118 Y. pestis subsp. microtus strains revealed that the I259 isoform was present exclusively in the endemic strains providing a convictive evidence of more ancestral origin of this isoform. Analysis of the effects of the I259T polymorphism on the intrinsic disorder propensity of Pla revealed that the I259T mutation slightly increases the intrinsic disorder propensity of the C-terminal tail of Pla and makes this protein slightly more prone for disorder-based protein-protein interactions, suggesting that the T259 Pla could be functionally more active than the I259 Pla. This assumption was proven experimentally by assessing the coagulase and fibrinolytic activities of the two Pla isoforms in human plasma, as well as in a direct fluorometric assay with the Pla peptide substrate. The virulence testing of Pla-negative or expressing the I259 and T259 Pla isoforms Y. pestis subsp. microtus and subsp. pestis strains did not reveal any significant difference in LD50 values and dose-dependent survival assays between them by using a subcutaneous route of challenge of mice and guinea pigs or intradermal challenge of mice. However, a significant decrease in time-to-death was observed in animals infected with the epidemic T259 Pla-producing strains as compared to the parent Pla-negative variants. Survival curves of the endemic I259 Pla+ strains fit between them, but significant difference in mean time to death post infection between the Pla−strains and their I259 Pla+ variants could be seen only in the isogenic set of subsp. pestis strains. These findings suggest an essential role for the outer membrane protease Pla evolution in Y. pestis bubonic infection exacerbation that is necessary for intensification of epidemic process from endemic natural focality with sporadic cases in men to rapidly expanding epizootics followed by human epidemic outbreaks, local epidemics or even pandemics. PMID:27936190

  9. Screening in a Lactobacillus delbrueckii subsp. bulgaricus collection to select a strain able to survive to the human intestinal tract.

    PubMed

    Vázquez, Clotilde; Botella-Carretero, José I; García-Albiach, Raimundo; Pozuelo, María J; Rodríguez-Baños, Mercedes; Baquero, Fernando; Baltadjieva, María A; del Campo, Rosa

    2013-01-01

    Genetic diversity and resistance of Lactobacillus bulgaricus sbsp. delbrueckii collection with 100 isolates from different home-made yogurt in rural Bulgarian areas were determined. The strain K98 was the most resistant to bile salts and low pH. Survival and effects on short chain fatty acids production were tested in 20 healthy volunteers. High genetic diversity was observed in the L. bulgaricus collection by RAPD, whereas the ability of tolerate high deoxycholic acid concentrations, and different acid pHs was variable. The strain K98 was selected and used to prepare a homemade yogurt which was administered to 20 healthy volunteers (500 ml/day during 15d). A basal faecal sample and another after yogurt intake were recovered. DGGE experiments, using both universal and Lactic Acid Bacteria (LAB) primers, demonstrated no significant changes in the qualitative composition of gut microbiota. A band corresponding to L. bulgaricus was observed in all 20 samples. Viable L. bulgaricus K98 strain was only recovered in one volunteer. After yogurt intake we found an increase of LAB and Clostridium perfringens, and a decrease of Bacteroides- Prevotella-Porphyromonas. In addition, increases of acetic, butyric and 2-hydroxy-butyric acids in faeces were detected. Genetic diversity of L. delbrueckii subsp. bulgaricus especie is high We have isolated a probiotic resistant strain to bile and high acidity, L. delbrueckii subsp. bulgaricus-K98. Qualitative and quantitative changes in the intestinal microbiota are found after ingestion of a homemade yogurt containing this strain, with a concomitant increase in faecal SCFA. Our findings support the interest in developing further studies providing different amounts of L. delbrueckii subsp. bulgaricus-K98, and should evaluate its clinical effects in human disease. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  10. Utilization of Condensed Distillers Solubles as Nutrient Supplement for Production of Nisin and Lactic Acid from Whey

    NASA Astrophysics Data System (ADS)

    Liu, Chuanbin; Hu, Bo; Chen, Shulin; Glass, Richard W.

    The major challenge associated with the rapid growth of the ethanol industry is the usage of the coproducts, i.e., condensed distillers solubles (CDS) and distillers dried grains, which are currently sold as animal feed supplements. As the growth of the livestock industries remains flat, alternative usage of these coproducts is urgently needed. CDS is obtained after the removal of ethanol by distillation from the yeast fermentation of a grain or a grain mixture by condensing the thin stillage fraction to semisolid. In this work, CDS was first characterized and yeast biomass was proven to be the major component of CDS. CDS contained 7.50% crude protein but with only 42% of that protein being water soluble. Then, CDS was applied as a nutrient supplement for simultaneous production of nisin and lactic acid by Lactococcus lactis subsp. lactis (ATCC 11454). Although CDS was able to support bacteria growth and nisin production, a strong inhibition was observed when CDS was overdosed. This may be caused by the existence of the major ethanol fermentation byproducts, especially lactate and acetate, in CDS. In the final step, the CDS based medium composition for nisin and lactic acid production was optimized using response surface methodology.

  11. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts.

    PubMed

    Ou, Mark S; Mohammed, Nazimuddin; Ingram, L O; Shanmugam, K T

    2009-05-01

    Ethanol production from lignocellulosic biomass depends on simultaneous saccharification of cellulose to glucose by fungal cellulases and fermentation of glucose to ethanol by microbial biocatalysts (SSF). The cost of cellulase enzymes represents a significant challenge for the commercial conversion of lignocellulosic biomass into renewable chemicals such as ethanol and monomers for plastics. The cellulase concentration for optimum SSF of crystalline cellulose with fungal enzymes and a moderate thermophile, Bacillus coagulans, was determined to be about 7.5 FPU g(-1) cellulose. This is about three times lower than the amount of cellulase required for SSF with Saccharomyces cerevisiae, Zymomonas mobilis, or Lactococcus lactis subsp. lactis whose growth and fermentation temperature optimum is significantly lower than that of the fungal cellulase activity. In addition, B. coagulans also converted about 80% of the theoretical yield of products from 40 g/L of crystalline cellulose in about 48 h of SSF with 10 FPU g(-1) cellulose while yeast, during the same period, only produced about 50% of the highest yield produced at end of 7 days of SSF. These results show that a match in the temperature optima for cellulase activity and fermentation is essential for decreasing the cost of cellulase in cellulosic ethanol production.

  12. Comparison of 16S ribosomal RNA genes in Clavibacter michiganensis subspecies with other coryneform bacteria.

    PubMed

    Li, X; De Boer, S H

    1995-10-01

    Nearly complete sequences (97-99%) of the 16S rRNA genes were determined for type strains of Clavibacter michiganensis subsp. michiganensis, Clavibacter michiganensis subsp. insidiosus, Clavibacter michiganensis subsp. sepedonicus, and Clavibacter michiganensis subsp. nebraskensis. The four subspecies had less than 1% dissimilarity in their 16S rRNA genes. Comparative studies indicated that the C. michiganensis subsp. shared relatively high homology with the 16S rRNA gene of Clavibacter xyli. Further comparison with representatives of other Gram-positive coryneform and related bacteria with high G+C% values showed that this group of bacteria was subdivided into three clusters. One cluster consisted of the Clavibacter michiganensis subsp., Clavibacter xyli, Arthrobacter globiformis, Arthrobacter simplex, and Frankia sp.; another cluster consisted of members of the corynebacteria-mycobacteria-nocardia (CMN) group of Mycobacteriaceae including Tsukamurella paurometabolum; and Propionibacterium freudenreichii alone formed a unique cluster, which was remote from other coryneform bacteria analyzed. The three clusters may reflect a systematic rank higher than the genus level among these bacteria.

  13. Acid or erythromycin stress significantly improves transformation efficiency through regulating expression of DNA binding proteins in Lactococcus lactis F44.

    PubMed

    Wang, Binbin; Zhang, Huawei; Liang, Dongmei; Hao, Panlong; Li, Yanni; Qiao, Jianjun

    2017-12-01

    Lactococcus lactis is a gram-positive bacterium used extensively in the dairy industry and food fermentation, and its biological characteristics are usually improved through genetic manipulation. However, poor transformation efficiency was the main restriction factor for the construction of engineered strains. In this study, the transformation efficiency of L. lactis F44 showed a 56.1-fold increase in acid condition (pH 5.0); meanwhile, erythromycin stress (0.04 μg/mL) promoted the transformation efficiency more significantly (76.9-fold). Notably, the transformation efficiency of F44e (L. lactis F44 harboring empty pLEB124) increased up to 149.1-fold under the synergistic stresses of acid and erythromycin. In addition, the gene expression of some DNA binding proteins (DprA, RadA, RadC, RecA, RecQ, and SsbA) changed correspondingly. Especially for radA, 25.1-fold improvement was detected when F44e was exposed to pH 5.0. Overexpression of some DNA binding proteins could improve the transformation efficiency. The results suggested that acid or erythromycin stress could improve the transformation efficiency of L. lactis through regulating gene expression of DNA binding proteins. We have proposed a simple but promising strategy for improving the transformation efficiency of L. lactis and other hard-transformed microorganisms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Manipulation for plasmid elimination by transforming synthetic competitors diversifies lactococcus lactis starters applicable to food products.

    PubMed

    Kobayashi, Miho; Nomura, Masaru; Kimoto, Hiromi

    2007-11-01

    This study was designed selectively to eliminate a theta-plasmid from Lactococcus lactis strains by transforming synthetic competitors. A shuttle vector for Escherichia coli and L. lactis, pDB1, was constructed by ligating a partial replicon of pDR1-1B, which is a 7.3 kb theta-plasmid in L. lactis DRC1, with an erythromycin resistance gene into pBluescript II KS(+). This versatile vector was used to construct competitors to common lactococcal theta-plasmids. pDB1 contains the 5' half of the replication origin and the 3' region of repB of pDR1-1B, but lacks the 1.1-kb region normally found between these two segments. A set of primers, Pv3 and Pv4, was designed to amplify the 1.1-kb middle parts of the general theta-replicons of lactococcal plasmids. When the PCR products were cloned into the Nru I and Xho I sites of pDB1, synthetic replicons were constructed and replication activity was restored. A number of theta-plasmids in L. lactis ssp. lactis and cremoris were eliminated selectively by transforming the synthetic competitors. These competitors were easily eliminated by subculture for a short time in the absence of selection. The resulting variants contained no exogenous DNA and are suitable for food products, since part of the phenotype was altered without altering other plasmids indispensable for fermentation.

  15. Evaluation of technological properties of Enterococcus faecium CECT 8849, a strain isolated from human milk, for the dairy industry.

    PubMed

    Cárdenas, Nivia; Arroyo, Rebeca; Calzada, Javier; Peirotén, Ángela; Medina, Margarita; Rodríguez, Juan Miguel; Fernández, Leonides

    2016-09-01

    In this work, a variety of biochemical properties of Enterococcus faecium CECT 8849, which had been isolated from breast milk, were analyzed. Its acidifying capacity and proteolytic activity were low but, in contrast, remarkable peptidase and esterase activities were observed. Ethanol and 3-hydroxy-2-butanone were the most abundant volatile compounds found in experimental model cheese manufactured with E. faecium CECT 8849. This strain inhibited the growth of several Listeria monocytogenes and Listeria innocua strains in vitro. Enterocin A and B structural genes were detected in E. faecium CECT 8849. Model fermented milk and cheeses were manufactured from milk inoculated or not with L. innocua CECT 8848 (2.5-3 log10 colony forming units mL(-1)) using E. faecium CECT 8849 or Lactococcus lactis ESI 153 as starter cultures. Although E. faecium CECT 8849 controlled Listeria growth in both dairy models, it led to lower reduction in Listeria counts when compared with L. lactis ESI 153.

  16. Trimming of two major type 1 diabetes driving antigens, GAD65 and IA-2, allows for successful expression in Lactococcus lactis.

    PubMed

    Robert, S; Van Huynegem, K; Gysemans, C; Mathieu, C; Rottiers, P; Steidler, L

    2015-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease characterised by excessive immune reactions against auto-antigens of pancreatic β-cells. Restoring auto-antigen tolerance remains the superior therapeutic strategy. Oral auto-antigen administration uses the tolerogenic nature of the gut-associated immune system to induce antigen-specific tolerance. However, due to gastric degradation, proper mucosal product delivery often imposes a challenge. Recombinant Lactococcus lactis have proven to be effective and safe carriers for gastrointestinal delivery of therapeutic products: L. lactis secreting diabetes-associated auto-antigens in combination with interleukin (IL)-10 have demonstrated therapeutic efficacy in a well-defined mouse model for T1D. Here, we describe the construction of recombinant L. lactis secreting the 65 kDa isoform of glutamic acid decarboxylase (GAD65) and tyrosine phosphatase-like protein ICA512 (IA-2), two major T1D-related auto-antigens. Attempts to secrete full size human GAD65 and IA-2 protein by L. lactis were unsuccessful. Trimming of GAD65 and IA-2 was investigated to optimise antigen secretion while maintaining sufficient bacterial growth. GAD65370-575 and IA-2635-979 showed to be efficiently secreted by recombinant L. lactis. Antigen secretion was verified by immunoblotting. Plasmid-derived GAD65 and IA-2 expression was combined in single strains with human IL-10 expression, a desired combination to allow tolerance induction. This study reports the generation of recombinant L. lactis secreting two major diabetes-related auto-antigens: human GAD65 and IA-2, by themselves or combined with the anti-inflammatory cytokine human IL-10. Prohibitive sequence obstacles hampering antigen secretion were resolved by trimming the full size proteins.

  17. Respiration-Dependent Utilization of Sugars in Yeasts: a Determinant Role for Sugar Transporters

    PubMed Central

    Goffrini, Paola; Ferrero, Iliana; Donnini, Claudia

    2002-01-01

    In many yeast species, including Kluyveromyces lactis, growth on certain sugars (such as galactose, raffinose, and maltose) occurs only under respiratory conditions. If respiration is blocked by inhibitors, mutation, or anaerobiosis, growth does not take place. This apparent dependence on respiration for the utilization of certain sugars has often been suspected to be associated with the mechanism of the sugar uptake step. We hypothesized that in many yeast species, the permease activities for these sugars are not sufficient to ensure the high substrate flow that is necessary for fermentative growth. By introducing additional sugar permease genes, we have obtained K. lactis strains that were capable of growing on galactose and raffinose in the absence of respiration. High dosages of both the permease and maltase genes were indeed necessary for K. lactis cells to grow on maltose in the absence of respiration. These results strongly suggest that the sugar uptake step is the major bottleneck in the fermentative assimilation of certain sugars in K. lactis and probably in many other yeasts. PMID:11751819

  18. Comprehensive Insights in the Mycobacterium avium subsp. paratuberculosis Genome Using New WGS Data of Sheep Strain JIII-386 from Germany

    PubMed Central

    Möbius, Petra; Hölzer, Martin; Felder, Marius; Nordsiek, Gabriele; Groth, Marco; Köhler, Heike; Reichwald, Kathrin; Platzer, Matthias; Marz, Manja

    2015-01-01

    Mycobacterium avium (M. a.) subsp. paratuberculosis (MAP)—the etiologic agent of Johne’s disease—affects cattle, sheep, and other ruminants worldwide. To decipher phenotypic differences among sheep and cattle strains (belonging to MAP-S [Type-I/III], respectively, MAP-C [Type-II]), comparative genome analysis needs data from diverse isolates originating from different geographic regions of the world. This study presents the so far best assembled genome of a MAP-S-strain: Sheep isolate JIII-386 from Germany. One newly sequenced cattle isolate (JII-1961, Germany), four published MAP strains of MAP-C and MAP-S from the United States and Australia, and M. a. subsp. hominissuis (MAH) strain 104 were used for assembly improvement and comparisons. All genomes were annotated by BacProt and results compared with NCBI (National Center for Biotechnology Information) annotation. Corresponding protein-coding sequences (CDSs) were detected, but also CDSs that were exclusively determined by either NCBI or BacProt. A new Shine–Dalgarno sequence motif (5′-AGCTGG-3′) was extracted. Novel CDSs including PE-PGRS family protein genes and about 80 noncoding RNAs exhibiting high sequence conservation are presented. Previously found genetic differences between MAP-types are partially revised. Four of ten assumed MAP-S-specific large sequence polymorphism regions (LSPSs) are still present in MAP-C strains; new LSPSs were identified. Independently of the regional origin of the strains, the number of individual CDSs and single nucleotide variants confirms the strong similarity of MAP-C strains and shows higher diversity among MAP-S strains. This study gives ambiguous results regarding the hypothesis that MAP-S is the evolutionary intermediate between MAH and MAP-C, but it clearly shows a higher similarity of MAP to MAH than to Mycobacterium intracellulare. PMID:26384038

  19. New Coffee Plant-Infecting Xylella fastidiosa Variants Derived via Homologous Recombination.

    PubMed

    Jacques, Marie-Agnès; Denancé, Nicolas; Legendre, Bruno; Morel, Emmanuelle; Briand, Martial; Mississipi, Stelly; Durand, Karine; Olivier, Valérie; Portier, Perrine; Poliakoff, Françoise; Crouzillat, Dominique

    2015-12-28

    Xylella fastidiosa is a xylem-limited phytopathogenic bacterium endemic to the Americas that has recently emerged in Asia and Europe. Although this bacterium is classified as a quarantine organism in the European Union, importation of plant material from contaminated areas and latent infection in asymptomatic plants have engendered its inevitable introduction. In 2012, four coffee plants (Coffea arabica and Coffea canephora) with leaf scorch symptoms growing in a confined greenhouse were detected and intercepted in France. After identification of the causal agent, this outbreak was eradicated. Three X. fastidiosa strains were isolated from these plants, confirming a preliminary identification based on immunology. The strains were characterized by multiplex PCR and by multilocus sequence analysis/typing (MLSA-MLST) based on seven housekeeping genes. One strain, CFBP 8073, isolated from C. canephora imported from Mexico, was assigned to X. fastidiosa subsp. fastidiosa/X. fastidiosa subsp. sandyi. This strain harbors a novel sequence type (ST) with novel alleles at two loci. The two other strains, CFBP 8072 and CFBP 8074, isolated from Coffea arabica imported from Ecuador, were allocated to X. fastidiosa subsp. pauca. These two strains shared a novel ST with novel alleles at two loci. These MLST profiles showed evidence of recombination events. We provide genome sequences for CFBP 8072 and CFBP 8073 strains. Comparative genomic analyses of these two genome sequences with publicly available X. fastidiosa genomes, including the Italian strain CoDiRO, confirmed these phylogenetic positions and provided candidate alleles for coffee plant adaptation. This study demonstrates the global diversity of X. fastidiosa and highlights the diversity of strains isolated from coffee plants. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Phylogenomics of Brazilian epidemic isolates of Mycobacterium abscessus subsp. bolletii reveals relationships of global outbreak strains

    PubMed Central

    Davidson, Rebecca M.; Hasan, Nabeeh A.; de Moura, Vinicius Calado Nogueira; Duarte, Rafael Silva; Jackson, Mary; Strong, Michael

    2013-01-01

    Rapidly growing, non-tuberculous mycobacteria (NTM) in the Mycobacterium abscessus (MAB) species are emerging pathogens that cause various diseases including skin and respiratory infections. The species has undergone recent taxonomic nomenclature refinement, and is currently recognized as two subspecies, M. abscessus subsp. abscessus (MAB-A) and M. abscessus subsp. bolletii (MAB-B). The recently reported outbreaks of MAB-B in surgical patients in Brazil from 2004 to 2009 and in cystic fibrosis patients in the United Kingdom (UK) in 2006 to 2012 underscore the need to investigate the genetic diversity of clinical MAB strains. To this end, we sequenced the genomes of two Brazilian MAB-B epidemic isolates (CRM-0019 and CRM-0020) derived from an outbreak of skin infections in Rio de Janeiro, two unrelated MAB strains from patients with pulmonary infections in the United States (US) (NJH8 and NJH11) and one type MAB-B strain (CCUG 48898) and compared them to 25 publically available genomes of globally diverse MAB strains. Genome-wide analyses of 27,598 core genome single nucleotide polymorphisms (SNPs) revealed that the two Brazilian derived CRM strains are nearly indistinguishable from one another and are more closely related to UK outbreak isolates infecting CF patients than to strains from the US, Malaysia or France. Comparative genomic analyses of six closely related outbreak strains revealed geographic-specific large-scale insertion/deletion variation that corresponds to bacteriophage insertions and recombination hotspots. Our study integrates new genome sequence data with existing genomic information to explore the global diversity of infectious M. abscessus isolates and to compare clinically relevant outbreak strains from different continents. PMID:24055961

Top