Science.gov

Sample records for subsp tularensis clades

  1. Multiple Francisella tularensis Subspecies and Clades, Tularemia Outbreak, Utah

    PubMed Central

    Petersen, Jeannine M.; Carlson, Jennifer K.; Dietrich, Gabrielle; Eisen, Rebecca J.; Coombs, Jana; Janusz, Aimee M.; Summers, JoDee; Ben Beard, C.

    2008-01-01

    In July 2007, a deer fly–associated outbreak of tularemia occurred in Utah. Human infections were caused by 2 clades (A1 and A2) of Francisella tularensis subsp. tularensis. Lagomorph carcasses from the area yielded evidence of infection with A1 and A2, as well as F. tularensis subsp. holarctica. These findings indicate that multiple subspecies and clades can cause disease in a localized outbreak of tularemia. PMID:19046524

  2. Phylogeography of Francisella tularensis subsp. holarctica, Europe

    PubMed Central

    Gyuranecz, Miklós; Birdsell, Dawn N.; Splettstoesser, Wolf; Seibold, Erik; Beckstrom-Sternberg, Stephen M.; Makrai, László; Fodor, László; Fabbi, Massimo; Vicari, Nadia; Johansson, Anders; Busch, Joseph D.; Vogler, Amy J.; Keim, Paul

    2012-01-01

    Francisella tularensis subsp. holarctica isolates from Austria, Germany, Hungary, Italy, and Romania were placed into an existing phylogeographic framework. Isolates from Italy were assigned to phylogenetic group B.FTNF002–00; the other isolates, to group B.13. Most F. tularensis subsp. holarctica isolates from Europe belong to these 2 geographically segregated groups. PMID:22305204

  3. Francisella tularensis subsp. tularensis Group A.I, United States

    PubMed Central

    Birdsell, Dawn N.; Johansson, Anders; Öhrman, Caroline; Kaufman, Emily; Molins, Claudia; Pearson, Talima; Gyuranecz, Miklós; Naumann, Amber; Vogler, Amy J.; Myrtennäs, Kerstin; Larsson, Pär; Forsman, Mats; Sjödin, Andreas; Gillece, John D.; Schupp, James; Petersen, Jeannine M.; Keim, Paul

    2014-01-01

    We used whole-genome analysis and subsequent characterization of geographically diverse strains using new genetic signatures to identify distinct subgroups within Francisella tularensis subsp. tularensis group A.I: A.I.3, A.I.8, and A.I.12. These subgroups exhibit complex phylogeographic patterns within North America. The widest distribution was observed for A.I.12, which suggests an adaptive advantage. PMID:24755401

  4. Genome-Wide DNA Microarray Analysis of Francisella tularensis Strains Demonstrates Extensive Genetic Conservation within the Species but Identifies Regions That Are Unique to the Highly Virulent F. tularensis subsp. tularensis

    PubMed Central

    Broekhuijsen, Martien; Larsson, Pär; Johansson, Anders; Byström, Mona; Eriksson, Ulla; Larsson, Eva; Prior, Richard G.; Sjöstedt, Anders; Titball, Richard W.; Forsman, Mats

    2003-01-01

    Francisella tularensis is a potent pathogen and a possible bioterrorism agent. Little is known, however, to explain the molecular basis for its virulence and the distinct differences in virulence found between the four recognized subspecies, F. tularensis subsp. tularensis, F. tularensis subsp. mediasiatica, F. tularensis subsp. holarctica, and F. tularensis subsp. novicida. We developed a DNA microarray based on 1,832 clones from a shotgun library used for sequencing of the highly virulent strain F. tularensis subsp. tularensis Schu S4. This allowed a genome-wide analysis of 27 strains representing all four subspecies. Overall, the microarray analysis confirmed a limited genetic variation within the species F. tularensis, and when the strains were compared, at most 3.7% of the probes showed differential hybridization. Cluster analysis of the hybridization data revealed that the causative agents of type A and type B tularemia, i.e., F. tularensis subsp. tularensis and F. tularensis subsp. holarctica, respectively, formed distinct clusters. Despite marked differences in their virulence and geographical origin, a high degree of genomic similarity between strains of F. tularensis subsp. tularensis and F. tularensis subsp. mediasiatica was apparent. Strains from Japan clustered separately, as did strains of F. tularensis subsp. novicida. Eight regions of difference (RD) 0.6 to 11.5 kb in size, altogether comprising 21 open reading frames, were identified that distinguished strains of the moderately virulent subspecies F. tularensis subsp. holarctica and the highly virulent subspecies F. tularensis subsp. tularensis. One of these regions, RD1, allowed for the first time the development of an F. tularensis-specific PCR assay that discriminates each of the four subspecies. PMID:12843022

  5. Russian isolates enlarge the known geographic diversity of Francisella tularensis subsp. mediasiatica

    PubMed Central

    Bakhteeva, Irina; Titareva, Galina; Kopylov, Pavel; Christiany, David; Mokrievich, Alexander; Dyatlov, Ivan; Vergnaud, Gilles

    2017-01-01

    Francisella tularensis, a small Gram-negative bacterium, is capable of infecting a wide range of animals, including humans, and causes a plague-like disease called tularemia—a highly contagious disease with a high mortality rate. Because of these characteristics, F. tularensis is considered a potential agent of biological terrorism. Currently, F. tularensis is divided into four subspecies, which differ in their virulence and geographic distribution. Two of them, subsp. tularensis (primarily found in North America) and subsp. holarctica (widespread across the Northern Hemisphere), are responsible for tularemia in humans. Subsp. novicida is almost avirulent in humans. The fourth subspecies, subsp. mediasiatica, is the least studied because of its limited distribution and impact in human health. It is found only in sparsely populated regions of Central Asia. In this report, we describe the first focus of naturally circulating F. tularensis subsp. mediasiatica in Russia. We isolated and characterized 18 strains of this subspecies in the Altai region. All strains were highly virulent in mice. The virulence of subsp. mediasiatica in a vaccinated mouse model is intermediate between that of subsp. tularensis and subsp. holarctica. Based on a multiple-locus variable number tandem repeat analysis (MLVA), we show that the Altaic population of F. tularensis subsp. mediasiatica is genetically distinct from the classical Central Asian population, and probably is endemic to Southern Siberia. We propose to subdivide the mediasiatica subspecies into three phylogeographic groups, M.I, M.II and M.III. PMID:28873421

  6. Septic pneumonic tularaemia caused by Francisella tularensis subsp. holarctica biovar II.

    PubMed

    Fritzsch, Joerg; Splettstoesser, Wolf D

    2010-09-01

    This case of pneumonic tularaemia elucidates two aspects: it is believed to be the first documented case of bacteraemia caused by Francisella tularensis subsp. holarctica biovar II; furthermore, it illustrates the remission of septic pneumonic tularaemia without appropriate anti-infective therapy. A blood culture from a patient with community-acquired pneumonia was found to be positive for F. tularensis subsp. holarctica biovar II after 10 days of cultivation. Meanwhile, the patient had been treated with ceftriaxone, followed by sultamicillin and clindamycin. The patient continued suffering from fever of up to 40.7 degrees C and rising C-reactive protein (CRP) for 4 days before the fever and CRP declined. The isolated strain was later tested and found to be resistant to the antibiotics used. The present case underlines that F. tularensis subsp. holarctica infections may cause severe symptoms but mostly have a favourable outcome.

  7. Hare-to-human transmission of Francisella tularensis subsp. holarctica, Germany.

    PubMed

    Otto, Peter; Kohlmann, Rebekka; Müller, Wolfgang; Julich, Sandra; Geis, Gabriele; Gatermann, Sören G; Peters, Martin; Wolf, Peter Johannes; Karlsson, Edvin; Forsman, Mats; Myrtennäs, Kerstin; Tomaso, Herbert

    2015-01-01

    In November 2012, a group of 7 persons who participated in a hare hunt in North Rhine-Westphalia, Germany, acquired tularemia. Two F. tularensis subsp. holarctica isolates were cultivated from human and hare biopsy material. Both isolates belonged to the FTN002-00 genetic subclade (derived for single nucleotide polymorphisms B.10 and B.18), thus indicating likely hare-to-human transmission.

  8. Standardized broth microdilution antimicrobial susceptibility testing of Francisella tularensis subsp. holarctica strains from Europe and rare Francisella species.

    PubMed

    Georgi, Enrico; Schacht, Erik; Scholz, Holger C; Splettstoesser, Wolf D

    2012-10-01

    Tularaemia is a widespread zoonosis in Europe caused by Francisella tularensis subsp. holarctica. Because of a lack of standardized CLSI-approved antibiotic susceptibility data from European Francisella strains, the antibiotic susceptibilities of a selection of F. tularensis subsp. holarctica isolates originating from Germany, Austria, France, Spain and other European countries were determined. Rarely isolated species and subspecies of Francisella such as Francisella philomiragia, F. tularensis subsp. novicida and F. tularensis subsp. mediasiatica as well as the type strain of Francisella hispaniensis were included in this study. MIC data were obtained using cation-adjusted Mueller-Hinton broth with a 2% growth supplement. The broth microdilution testing system comprised 14 antibiotics, including gentamicin, streptomycin, ciprofloxacin and tetracycline. All of the 91 strains tested were susceptible to aminoglycosides, quinolones, tetracycline and chloramphenicol. The antimicrobial susceptibility of rare Francisellae was similar to the antibiotic profile of F. tularensis subsp. holarctica strains. For erythromycin, we detected two geographically distinct groups of F. tularensis subsp. holarctica isolates in western Europe. One group was resistant and the other one was susceptible. Both groups overlapped in a small region in Germany. Being performed in accordance with CLSI criteria, this study provides reliable data on antibiotic susceptibility patterns of European Francisella isolates. The standardized methodology of this study can be used for testing of suspicious colonies from clinical specimens for therapeutic guidance. Based on the results, aminoglycosides or quinolones are recommended as first-choice antibiotics for the therapy of F. hispaniensis, F. philomiragia or F. tularensis subsp. novicida infections in immunocompromised patients.

  9. Genomic Deletion Marking an Emerging Subclone of Francisella tularensis subsp. holarctica in France and the Iberian Peninsula▿ †

    PubMed Central

    Dempsey, M. P.; Dobson, M.; Zhang, C.; Zhang, M.; Lion, C.; Gutiérrez-Martín, C. B.; Iwen, P. C.; Fey, P. D.; Olson, M. E.; Niemeyer, D.; Francesconi, S.; Crawford, R.; Stanley, M.; Rhodes, J.; Wagner, D. M.; Vogler, A. J.; Birdsell, D.; Keim, P.; Johansson, A.; Hinrichs, S. H.; Benson, A. K.

    2007-01-01

    Francisella tularensis subsp. holarctica is widely disseminated in North America and the boreal and temperate regions of the Eurasian continent. Comparative genomic analyses identified a 1.59-kb genomic deletion specific to F. tularensis subsp. holarctica isolates from Spain and France. Phylogenetic analysis of strains carrying this deletion by multiple-locus variable-number tandem repeat analysis showed that the strains comprise a highly related set of genotypes, implying that these strains were recently introduced or recently emerged by clonal expansion in France and the Iberian Peninsula. PMID:17890329

  10. Comparison of bacterial culture and polymerase chain reaction (PCR) for the detection of F. tularensis subsp. holarctica in wild animals.

    PubMed

    Sting, Reinhard; Runge, Martin; Eisenberg, Tobias; Braune, Silke; Müller, Wolfgang; Otto, Peter

    2013-01-01

    Detection of the zoonotic pathogen Francisella tularensis subsp. holarctica (EF tularensis) in wild animals with culture techniques as well as polymerase chain reaction were compared and discussed on the basis of the investigation of 60 animals. The samples originated from 55 European brown hares (Lepus europaeus), two red foxes (Vulpes vulpes) and one each from a wild rabbit (Oryctolagus cuniculus), a European beaver (Castor fiber), and a lemur (Lemur catta). When comparing the growth of 28 F. tularensis isolates on the cysteine blood agar and the modified Martin-Lewis-agar used in this study, cultivation was successful for 26 isolates on both media, but for two isolates only on the cysteine blood agar. Out of 43 carcasses 19 tested positive in bacteriological culture and PCR. Two culture positive samples of tonsils originating from foxes could not be confirmed by PCR, although PCR was positive in 22 samples that missed growth of F. tularensis. Comparative studies on cultural detection of E. tularensis were performed on samples of 16 hares from lung, spleen, liver and gut and in one case with a peritoneal swab. In at least one of these localizations cultivation of the pathogen was successful. Detection rate was reduced to 94% (15 of 16 hares) considering only the results of the cultures of the lungs and spleens. For a sensitive and rapid detection of F. tularensis subsp. holarctica, the PCR is a suitable method thereby avoiding hazardous multiplying of the pathogen. However, cultivation of F. tularensis is often a prerequisite for further studies on antibiotic resistance patterns of the pathogen, molecular epidemiological and pathological analyses of tularaemia.

  11. MglA Regulates Francisella tularensis subsp. novicida (Francisella novicida) Response to Starvation and Oxidative Stress▿ †

    PubMed Central

    Guina, Tina; Radulovic, Dragan; Bahrami, Arya J.; Bolton, Diana L.; Rohmer, Laurence; Jones-Isaac, Kendan A.; Chen, Jinzy; Gallagher, Larry A.; Gallis, Byron; Ryu, Soyoung; Taylor, Greg K.; Brittnacher, Mitchell J.; Manoil, Colin; Goodlett, David R.

    2007-01-01

    MglA is a transcriptional regulator of genes that contribute to the virulence of Francisella tularensis, a highly infectious pathogen and the causative agent of tularemia. This study used a label-free shotgun proteomics method to determine the F. tularensis subsp. novicida (F. novicida) proteins that are regulated by MglA. The differences in relative protein amounts between wild-type F. novicida and the mglA mutant were derived directly from the average peptide precursor ion intensity values measured with the mass spectrometer by using a suite of mathematical algorithms. Among the proteins whose relative amounts changed in an F. novicida mglA mutant were homologs of oxidative and general stress response proteins. The F. novicida mglA mutant exhibited decreased survival during stationary-phase growth and increased susceptibility to killing by superoxide generated by the redox-cycling agent paraquat. The F. novicida mglA mutant also showed increased survival upon exposure to hydrogen peroxide, likely due to increased amounts of the catalase KatG. Our results suggested that MglA coordinates the stress response of F. tularensis and is likely essential for bacterial survival in harsh environments. PMID:17644593

  12. High-Quality Draft Genome Sequence of Francisella tularensis subsp. holarctica Strain 08T0073 Isolated from a Wild European Hare

    PubMed Central

    Thomas, Prasad; Myrtennäs, Kerstin; Forsman, Mats; Braune, Silke; Runge, Martin; Tomaso, Herbert

    2017-01-01

    ABSTRACT Here, we report a high-quality draft genome sequence of Francisella tularensis subsp. holarctica strain 08T0073, isolated from the cadaver of a wild European hare (Lepus europaeus) found near Helmstedt, Lower Saxony, Germany, in 2007. In Germany, infected hares are a major source of tularemia in humans. PMID:28336603

  13. Vaccination with a defined Francisella tularensis subsp. novicida pathogenicity island mutant (DeltaiglB) induces protective immunity against homotypic and heterotypic challenge.

    PubMed

    Cong, Yu; Yu, Jieh-Juen; Guentzel, M Neal; Berton, Michael T; Seshu, Janakiram; Klose, Karl E; Arulanandam, Bernard P

    2009-09-18

    Francisella tularensis, an intracellular Gram-negative bacterium, is the causative agent of tularemia and a potential bioweapon. Currently, there is no licensed vaccine against this organism. We have characterized the efficacy of a defined F. tularensis subsp. novicida mutant (DeltaiglB) as a live attenuated vaccine against pneumonic tularemia. Replication of the iglB mutant (KKF235) in murine macrophages was significantly lower than the wild type novicida strain U112, and exhibited an LD(50) greater than 10(6)-fold (>10(7)CFU vs <10CFU) in an intranasal challenge model. Mice immunized with KKF235 intranasally or orally induced robust antigen-specific splenic IFN-gamma recall responses, as well as the production of systemic and mucosal antibodies. Intranasal vaccination with KKF235 protected mice from subsequent homotypic challenge with U112 as well as heterotypic challenge with F. tularensis subsp. holarctica (LVS). Moreover, protected animals also exhibited minimal pathological changes compared with mock-vaccinated and challenged animals. The protection conferred by KKF235 vaccination was shown to be highly dependent on endogenous IFN-gamma production. Most significantly, oral immunization with KKF235 protected mice from a highly lethal subsp. tularensis (SCHU S4) pulmonary challenge. Collectively, these results further suggest the feasibility of using defined pathogenicity island mutants as live vaccine candidates against pneumonic tularemia.

  14. Phylogeographical pattern of Francisella tularensis in a nationwide outbreak of tularaemia in Norway, 2011.

    PubMed

    Afset, J E; Larssen, K W; Bergh, K; Larkeryd, A; Sjodin, A; Johansson, A; Forsman, M

    2015-05-14

    In 2011, a nationwide outbreak of tularaemia occurred in Norway with 180 recorded cases. It was associated with the largest peak in lemming density seen in 40 years. Francisella tularensis was isolated from 18 patients. To study the geographical distribution of F.tularensis genotypes in Norway and correlate genotype with epidemiology and clinical presentation,we performed whole genome sequencing of patient isolates. All 18 genomes from the outbreak carried genetic signatures of F. tularensis subsp. holarctica and were assigned to genetic clades using canonical single nucleotide polymorphisms. Ten isolates were assigned to major genetic clade B.6 (subclade B.7),seven to clade B.12, and one to clade B.4. The B.6 subclade B.7 was most common in southern and central Norway, while clade B.12 was evenly distributed between the southern, central and northern parts of the country. There was no association between genotype and clinical presentation of tularaemia, time of year or specimen type. We found extensive sequence similarity with F. tularensis subsp. holarctica genomes from high-endemic tularaemia areas in Sweden.Finding nearly identical genomes across large geographical distances in Norway and Sweden imply a life cycle of the bacterium without replication between the outbreaks and raise new questions about long-range migration mechanisms.

  15. Comparative Genomic Characterization of Francisella tularensis Strains Belonging to Low and High Virulence Subspecies

    PubMed Central

    Nix, Eli B.; Nano, Francis E.; Keim, Paul; Kodira, Chinnappa D.; Borowsky, Mark; Young, Sarah; Koehrsen, Michael; Engels, Reinhard; Pearson, Matthew; Howarth, Clint; Larson, Lisa; White, Jared; Alvarado, Lucia; Forsman, Mats; Bearden, Scott W.; Sjöstedt, Anders; Titball, Richard; Michell, Stephen L.; Birren, Bruce; Galagan, James

    2009-01-01

    Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella

  16. Genomic analyses of Francisella tularensis strains confirm disease transmission from drinking water sources, Turkey, 2008, 2009 and 2012.

    PubMed

    Karadenizli, A; Forsman, M; Şimşek, H; Taner, M; Öhrman, C; Myrtennäs, K; Lärkeryd, A; Johansson, A; Özdemir, L; Sjödin, A

    2015-05-28

    Waterborne epidemics of tularaemia caused by Francisella tularensis are increasingly reported in Turkey. We have used whole genome sequencing to investigate if F. tularensis isolated from patients could be traced back to drinking water sources. Tonsil swabs from 33 patients diagnosed with oropharyngeal tularaemia in three outbreaks and 140 water specimens were analysed. F. tularensis subsp. holarctica was confirmed by microagglutination and PCR in 12 patients and five water specimens. Genomic analysis of three pairs of patient and water isolates from outbreaks in Sivas, Çorum, and Kocaeli showed the isolates to belong to two new clusters of the F. tularensis B.12 genetic clade. The clusters were defined by 19 and 15 single nucleotide polymorphisms (SNPs) in a multiple alignment based on 507 F. tularensis genomes. One synonymous SNP was chosen as a new canonical SNP (canSNP) for each cluster for future use in diagnostic assays. No SNP was identified between the genomes from the patient–water pair of isolates from Kocaeli, one SNP between the pair of isolates from Sivas, whereas the pair from Çorum differed at seven SNPs. These results illustrate the power of whole genome sequencing for tracing F. tularensis patient isolates back to their environmental source.

  17. The phylogeographic pattern of Francisella tularensis in Sweden indicates a Scandinavian origin of Eurosiberian tularaemia.

    PubMed

    Karlsson, Edvin; Svensson, Kerstin; Lindgren, Petter; Byström, Mona; Sjödin, Andreas; Forsman, Mats; Johansson, Anders

    2013-02-01

    Previous studies of the causative agent of tularaemia, Francisella tularensis have identified phylogeographic patterns suggestive of environmental maintenance reservoirs. To investigate the phylogeography of tularaemia in Sweden, we selected 163 clinical isolates obtained during 1995-2009 in 10 counties and sequenced one isolate's genome to identify new genetic markers. An improved typing scheme based on two indels and nine SNPs was developed using hydrolysis or TaqMan MGB probe assays. The results showed that much of the known global genetic diversity of F. tularensis subsp. holarctica is present in Sweden. Thirteen of the 163 isolates belonged to a new genetic group that is basal to all other known members of the major genetic clade B.I, which is spread across the Eurosiberian region. One hundred and twenty-five of the 163 Swedish isolates belonged to B.I, but individual clades' frequencies differed from county to county (P < 0.001). Subsequent analyses revealed a correlation between genotype variation over time and recurrent outbreaks at specific places, supporting the 'maintenance reservoir' environmental maintenance hypothesis. Most importantly, the findings reveal the presence of diverse source populations of F. tularensis subsp. holarctica in Sweden and suggest a historical spread of the disease from Scandinavia to other parts of Eurosiberia. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Respiratory Tularemia: Francisella Tularensis and Microarray Probe Designing

    PubMed Central

    Ranjbar, Reza; Behzadi, Payam; Mammina, Caterina

    2016-01-01

    Background: Francisella tularensis (F. tularensis) is the etiological microorganism for tularemia. There are different forms of tularemia such as respiratory tularemia. Respiratory tularemia is the most severe form of tularemia with a high rate of mortality; if not treated. Therefore, traditional microbiological tools and Polymerase Chain Reaction (PCR) are not useful for a rapid, reliable, accurate, sensitive and specific diagnosis. But, DNA microarray technology does. DNA microarray technology needs to appropriate microarray probe designing. Objective: The main goal of this original article was to design suitable long oligo microarray probes for detection and identification of F. tularensis. Method: For performing this research, the complete genomes of F. tularensis subsp. tularensis FSC198, F. tularensis subsp. holarctica LVS, F. tularensis subsp. mediasiatica, F. tularensis subsp. novicida (F. novicida U112), and F. philomiragia subsp. philomiragia ATCC 25017 were studied via NCBI BLAST tool, GView and PanSeq Servers and finally the microarray probes were produced and processed via AlleleID 7.7 software and Oligoanalyzer tool, respectively. Results: In this in silico investigation, a number of long oligo microarray probes were designed for detecting and identifying F. tularensis. Among these probes, 15 probes were recognized as the best candidates for microarray chip designing. Conclusion: Calibrated microarray probes reduce the biasis of DNA microarray technology as an advanced, rapid, accurate and cost-effective molecular diagnostic tool with high specificity and sensitivity. Professional microarray probe designing provides us with much more facility and flexibility regarding preparation of a microarray diagnostic chip. PMID:28077973

  19. Respiratory Tularemia: Francisella Tularensis and Microarray Probe Designing.

    PubMed

    Ranjbar, Reza; Behzadi, Payam; Mammina, Caterina

    2016-01-01

    Francisella tularensis (F. tularensis) is the etiological microorganism for tularemia. There are different forms of tularemia such as respiratory tularemia. Respiratory tularemia is the most severe form of tularemia with a high rate of mortality; if not treated. Therefore, traditional microbiological tools and Polymerase Chain Reaction (PCR) are not useful for a rapid, reliable, accurate, sensitive and specific diagnosis. But, DNA microarray technology does. DNA microarray technology needs to appropriate microarray probe designing. The main goal of this original article was to design suitable long oligo microarray probes for detection and identification of F. tularensis. For performing this research, the complete genomes of F. tularensis subsp. tularensis FSC198, F. tularensis subsp. holarctica LVS, F. tularensis subsp. mediasiatica, F. tularensis subsp. novicida (F. novicida U112), and F. philomiragia subsp. philomiragia ATCC 25017 were studied via NCBI BLAST tool, GView and PanSeq Servers and finally the microarray probes were produced and processed via AlleleID 7.7 software and Oligoanalyzer tool, respectively. In this in silico investigation, a number of long oligo microarray probes were designed for detecting and identifying F. tularensis. Among these probes, 15 probes were recognized as the best candidates for microarray chip designing. Calibrated microarray probes reduce the biasis of DNA microarray technology as an advanced, rapid, accurate and cost-effective molecular diagnostic tool with high specificity and sensitivity. Professional microarray probe designing provides us with much more facility and flexibility regarding preparation of a microarray diagnostic chip.

  20. Targeted inactivation of francisella tularensis genes by group II introns.

    PubMed

    Rodriguez, Stephen A; Yu, Jieh-Juen; Davis, Greg; Arulanandam, Bernard P; Klose, Karl E

    2008-05-01

    Studies of the molecular mechanisms of pathogenesis of Francisella tularensis, the causative agent of tularemia, have been hampered by a lack of genetic techniques for rapid targeted gene disruption in the most virulent subspecies. Here we describe efficient targeted gene disruption in F. tularensis utilizing mobile group II introns (targetrons) specifically optimized for F. tularensis. Utilizing a targetron targeted to blaB, which encodes ampicillin resistance, we showed that the system works at high efficiency in three different subspecies: F. tularensis subsp. tularensis, F. tularensis subsp. holarctica, and "F. tularensis subsp. novicida." A targetron was also utilized to inactivate F. tularensis subsp. holarctica iglC, a gene required for virulence. The iglC gene is located within the Francisella pathogenicity island (FPI), which has been duplicated in the most virulent subspecies. Importantly, the iglC targetron targeted both copies simultaneously, resulting in a strain mutated in both iglC genes in a single step. This system will help illuminate the contributions of specific genes, and especially those within the FPI, to the pathogenesis of this poorly studied organism.

  1. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons.

    PubMed

    Borriss, Rainer; Chen, Xiao-Hua; Rueckert, Christian; Blom, Jochen; Becker, Anke; Baumgarth, Birgit; Fan, Ben; Pukall, Rüdiger; Schumann, Peter; Spröer, Cathrin; Junge, Helmut; Vater, Joachim; Pühler, Alfred; Klenk, Hans-Peter

    2011-08-01

    The whole-genome-sequenced rhizobacterium Bacillus amyloliquefaciens FZB42(T) (Chen et al., 2007) and other plant-associated strains of the genus Bacillus described as belonging to the species Bacillus amyloliquefaciens or Bacillus subtilis are used commercially to promote the growth and improve the health of crop plants. Previous investigations revealed that a group of strains represented a distinct ecotype related to B. amyloliquefaciens; however, the exact taxonomic position of this group remains elusive (Reva et al., 2004). In the present study, we demonstrated the ability of a group of Bacillus strains closely related to strain FZB42(T) to colonize Arabidopsis roots. On the basis of their phenotypic traits, the strains were similar to Bacillus amyloliquefaciens DSM 7(T) but differed considerably from this type strain in the DNA sequences of genes encoding 16S rRNA, gyrase subunit A (gyrA) and histidine kinase (cheA). Phylogenetic analysis performed with partial 16S rRNA, gyrA and cheA gene sequences revealed that the plant-associated strains of the genus Bacillus, including strain FZB42(T), formed a lineage, which could be distinguished from the cluster of strains closely related to B. amyloliquefaciens DSM 7(T). DNA-DNA hybridizations (DDH) performed with genomic DNA from strains DSM 7(T) and FZB42(T) yielded relatedness values of 63.7-71.2 %. Several methods of genomic analysis, such as direct whole-genome comparison, digital DDH and microarray-based comparative genomichybridization (M-CGH) were used as complementary tests. The group of plant-associated strains could be distinguished from strain DSM 7(T) and the type strain of B. subtilis by differences in the potential to synthesize non-ribosomal lipopeptides and polyketides. Based on the differences found in the marker gene sequences and the whole genomes of these strains, we propose two novel subspecies, designated B. amyloliquefaciens subsp. plantarum subsp. nov., with the type strain FZB42(T) ( = DSM

  2. Detection of Francisella tularensis in voles in Finland.

    PubMed

    Rossow, Heidi; Sissonen, Susanna; Koskela, Katja A; Kinnunen, Paula M; Hemmilä, Heidi; Niemimaa, Jukka; Huitu, Otso; Kuusi, Markku; Vapalahti, Olli; Henttonen, Heikki; Nikkari, Simo

    2014-03-01

    Francisella tularensis is a highly virulent intracellular bacterium causing the zoonotic disease tularemia. It recurrently causes human and animal outbreaks in northern Europe, including Finland. Although F. tularensis infects several mammal species, only rodents and lagomorphs seem to have importance in its ecology. Peak densities of rodent populations may trigger tularemia outbreaks in humans; however, it is still unclear to which extent rodents or other small mammals maintain F. tularensis in nature. The main objective of this study was to obtain information about the occurrence of F. tularensis in small mammals in Finland. We snap-trapped 547 wild small mammals representing 11 species at 14 locations around Finland during 6 years and screened them for the presence of F. tularensis DNA using PCR analysis. High copy number of F. tularensis-specific DNA was detected in tissue samples of five field voles (Microtus agrestis) originating from one location and 2 years. According to DNA sequences of the bacterial 23S ribosomal RNA gene amplified from F. tularensis-infected voles, the infecting agent belongs to the subspecies holarctica. To find out the optimal tissue for tularemia screening in voles, we compared the amounts of F. tularensis DNA in lungs, liver, spleen, and kidney of the infected animals. F. tularensis DNA was detectable in high levels in all four organs except for one animal, whose kidney was F. tularensis DNA-negative. Thus, at least liver, lung, and spleen seem suitable for F. tularensis screening in voles. Thus, liver, lung, and spleen all seem suitable for F. tularensis screening in voles. In conclusion, field voles can be heavily infected with F. tularensis subsp. holarctica and thus potentially serve as the source of infection in humans and other mammals.

  3. Detection of Francisella tularensis in Voles in Finland

    PubMed Central

    Sissonen, Susanna; Koskela, Katja A.; Kinnunen, Paula M.; Hemmilä, Heidi; Niemimaa, Jukka; Huitu, Otso; Kuusi, Markku; Vapalahti, Olli; Henttonen, Heikki; Nikkari, Simo

    2014-01-01

    Abstract Francisella tularensis is a highly virulent intracellular bacterium causing the zoonotic disease tularemia. It recurrently causes human and animal outbreaks in northern Europe, including Finland. Although F. tularensis infects several mammal species, only rodents and lagomorphs seem to have importance in its ecology. Peak densities of rodent populations may trigger tularemia outbreaks in humans; however, it is still unclear to which extent rodents or other small mammals maintain F. tularensis in nature. The main objective of this study was to obtain information about the occurrence of F. tularensis in small mammals in Finland. We snap-trapped 547 wild small mammals representing 11 species at 14 locations around Finland during 6 years and screened them for the presence of F. tularensis DNA using PCR analysis. High copy number of F. tularensis-specific DNA was detected in tissue samples of five field voles (Microtus agrestis) originating from one location and 2 years. According to DNA sequences of the bacterial 23S ribosomal RNA gene amplified from F. tularensis–infected voles, the infecting agent belongs to the subspecies holarctica. To find out the optimal tissue for tularemia screening in voles, we compared the amounts of F. tularensis DNA in lungs, liver, spleen, and kidney of the infected animals. F. tularensis DNA was detectable in high levels in all four organs except for one animal, whose kidney was F. tularensis DNA-negative. Thus, at least liver, lung, and spleen seem suitable for F. tularensis screening in voles. Thus, liver, lung, and spleen all seem suitable for F. tularensis screening in voles. In conclusion, field voles can be heavily infected with F. tularensis subsp. holarctica and thus potentially serve as the source of infection in humans and other mammals. PMID:24575824

  4. Genotyping of Francisella tularensis Strains by Pulsed-Field Gel Electrophoresis, Amplified Fragment Length Polymorphism Fingerprinting, and 16S rRNA Gene Sequencing

    PubMed Central

    García Del Blanco, N.; Dobson, M. E.; Vela, A. I.; De La Puente, V. A.; Gutiérrez, C. B.; Hadfield, T. L.; Kuhnert, P.; Frey, J.; Domínguez, L.; Rodríguez Ferri, E. F.

    2002-01-01

    We evaluated three molecular methods for identification of Francisella strains: pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphism (AFLP) analysis, and 16S rRNA gene sequencing. The analysis was performed with 54 Francisella tularensis subsp. holarctica, 5 F. tularensis subsp. tularensis, 2 F. tularensis subsp. novicida, and 1 F. philomiragia strains. On the basis of the combination of results obtained by PFGE with the restriction enzymes XhoI and BamHI, PFGE revealed seven pulsotypes, which allowed us to discriminate the strains to the subspecies level and which even allowed us to discriminate among some isolates of F. tularensis subsp. holarctica. The AFLP analysis technique produced some degree of discrimination among F. tularensis subsp. holarctica strains (one primary cluster with three major subclusters and minor variations within subclusters) when EcoRI-C and MseI-A, EcoRI-T and MseI-T, EcoRI-A and MseI-C, and EcoRI-0 and MseI-CA were used as primers. The degree of similarity among the strains was about 94%. The percent similarities of the AFLP profiles of this subspecies compared to those of F. tularensis subsp. tularensis, F. tularensis subsp. novicida, and F. philomiragia were less than 90%, about 72%, and less than 24%, respectively, thus permitting easy differentiation of this subspecies. 16S rRNA gene sequencing revealed 100% similarity for all F. tularensis subsp. holarctica isolates compared in this study. These results suggest that although limited genetic heterogeneity among F. tularensis subsp. holarctica isolates was observed, PFGE and AFLP analysis appear to be promising tools for the diagnosis of infections caused by different subspecies of F. tularensis and suitable techniques for the differentiation of individual strains. PMID:12149360

  5. German Francisella tularensis isolates from European brown hares (Lepus europaeus) reveal genetic and phenotypic diversity

    PubMed Central

    2013-01-01

    Background Tularemia is a zoonotic disease caused by Francisella tularensis that has been found in many different vertebrates. In Germany most human infections are caused by contact with infected European brown hares (Lepus europaeus). The aim of this study was to elucidate the epidemiology of tularemia in hares using phenotypic and genotypic characteristics of F. tularensis. Results Cultivation of F. tularensis subsp. holarctica bacteria from organ material was successful in 31 of 52 hares that had a positive PCR result targeting the Ft-M19 locus. 17 isolates were sensitive to erythromycin and 14 were resistant. Analysis of VNTR loci (Ft-M3, Ft-M6 and Ft-M24), INDELs (Ftind33, Ftind38, Ftind49, RD23) and SNPs (B.17, B.18, B.19, and B.20) was shown to be useful to investigate the genetic relatedness of Francisella strains in this set of strains. The 14 erythromycin resistant isolates were assigned to clade B.I, and 16 erythromycin sensitive isolates to clade B.IV and one isolate was found to belong to clade B.II. MALDI-TOF mass spectrometry (MS) was useful to discriminate strains to the subspecies level. Conclusions F. tularensis seems to be a re-emerging pathogen in Germany. The pathogen can easily be identified using PCR assays. Isolates can also be identified within one hour using MALDI-TOF MS in laboratories where specific PCR assays are not established. Further analysis of strains requires genotyping tools. The results from this study indicate a geographical segregation of the phylogenetic clade B.I and B.IV, where B.I strains localize primarily within eastern Germany and B.IV strains within western Germany. This phylogeographical pattern coincides with the distribution of biovar I (erythromycin sensitive) and biovar II (erythromycin resistance) strains. When time and costs are limiting parameters small numbers of isolates can be analysed using PCR assays combined with DNA sequencing with a focus on genetic loci that are most likely discriminatory among

  6. A 14.7 kDa protein from Francisella tularensis subsp. novicida (named FTN_1133), involved in the response to oxidative stress induced by organic peroxides, is not endowed with thiol-dependent peroxidase activity.

    PubMed

    Meireles, Diogo de Abreu; Alegria, Thiago Geronimo Pires; Alves, Simone Vidigal; Arantes, Carla Rani Rocha; Netto, Luis Eduardo Soares

    2014-01-01

    Francisella genus comprises Gram-negative facultative intracellular bacteria that are among the most infectious human pathogens. A protein of 14.7 KDa named as FTN_1133 was previously described as a novel hydroperoxide resistance protein in F. tularensis subsp. novicida, implicated in organic peroxide detoxification and virulence. Here, we describe a structural and biochemical characterization of FTN_1133. Contrary to previous assumptions, multiple amino acid sequence alignment analyses revealed that FTN_1133 does not share significant similarity with proteins of the Ohr/OsmC family or any other Cys-based, thiol dependent peroxidase, including conserved motifs around reactive cysteine residues. Circular dichroism analyses were consistent with the in silico prediction of an all-α-helix secondary structure. The pKa of its single cysteine residue, determined by a monobromobimane alkylation method, was shown to be 8.0±0.1, value that is elevated when compared with other Cys-based peroxidases, such as peroxiredoxins and Ohr/OsmC proteins. Attempts to determine a thiol peroxidase activity for FTN_1133 failed, using both dithiols (DTT, thioredoxin and lipoamide) and monothiols (glutathione or 2-mercaptoethanol) as reducing agents. Heterologous expression of FTN_1133 gene in ahpC and oxyR mutants of E. coli showed no complementation. Furthermore, analysis of FTN_1133 protein by non-reducing SDS-PAGE showed that an inter-molecular disulfide bond (not detected in Ohr proteins) can be generated under hydroperoxide treatment, but the observed rates were not comparable to those observed for other thiol-dependent peroxidases. All the biochemical and structural data taken together indicated that FTN_1133 displayed distinct characteristics from other thiol dependent peroxidases and, therefore, suggested that FTN_1133 is not directly involved in hydroperoxide detoxification.

  7. A 14.7 kDa Protein from Francisella tularensis subsp. novicida (Named FTN_1133), Involved in the Response to Oxidative Stress Induced by Organic Peroxides, Is Not Endowed with Thiol-Dependent Peroxidase Activity

    PubMed Central

    Meireles, Diogo de Abreu; Alegria, Thiago Geronimo Pires; Alves, Simone Vidigal; Arantes, Carla Rani Rocha; Netto, Luis Eduardo Soares

    2014-01-01

    Francisella genus comprises Gram-negative facultative intracellular bacteria that are among the most infectious human pathogens. A protein of 14.7 KDa named as FTN_1133 was previously described as a novel hydroperoxide resistance protein in F. tularensis subsp. novicida, implicated in organic peroxide detoxification and virulence. Here, we describe a structural and biochemical characterization of FTN_1133. Contrary to previous assumptions, multiple amino acid sequence alignment analyses revealed that FTN_1133 does not share significant similarity with proteins of the Ohr/OsmC family or any other Cys-based, thiol dependent peroxidase, including conserved motifs around reactive cysteine residues. Circular dichroism analyses were consistent with the in silico prediction of an all-α-helix secondary structure. The pKa of its single cysteine residue, determined by a monobromobimane alkylation method, was shown to be 8.0±0.1, value that is elevated when compared with other Cys-based peroxidases, such as peroxiredoxins and Ohr/OsmC proteins. Attempts to determine a thiol peroxidase activity for FTN_1133 failed, using both dithiols (DTT, thioredoxin and lipoamide) and monothiols (glutathione or 2-mercaptoethanol) as reducing agents. Heterologous expression of FTN_1133 gene in ahpC and oxyR mutants of E. coli showed no complementation. Furthermore, analysis of FTN_1133 protein by non-reducing SDS-PAGE showed that an inter-molecular disulfide bond (not detected in Ohr proteins) can be generated under hydroperoxide treatment, but the observed rates were not comparable to those observed for other thiol-dependent peroxidases. All the biochemical and structural data taken together indicated that FTN_1133 displayed distinct characteristics from other thiol dependent peroxidases and, therefore, suggested that FTN_1133 is not directly involved in hydroperoxide detoxification. PMID:24959833

  8. Francisella tularensis Molecular Typing Using Differential Insertion Sequence Amplification ▿

    PubMed Central

    Larson, Marilynn A.; Fey, Paul D.; Bartling, Amanda M.; Iwen, Peter C.; Dempsey, Michael P.; Francesconi, Stephen C.; Hinrichs, Steven H.

    2011-01-01

    Tularemia is a potentially fatal disease that is caused by the highly infectious and zoonotic pathogen Francisella tularensis. Despite the monomorphic nature of sequenced F. tularensis genomes, there is a significant degree of plasticity in the organization of genetic elements. The observed variability in these genomes is due primarily to the transposition of direct repeats and insertion sequence (IS) elements. Since current methods used to genotype F. tularensis are time-consuming and require extensive laboratory resources, IS elements were investigated as a means to subtype this organism. The unique spatial location of specific IS elements provided the basis for the development of a differential IS amplification (DISA) assay to detect and distinguish the more virulent F. tularensis subsp. tularensis (subtypes A.I and A.II) and subsp. holarctica (type B) strains from F. tularensis subsp. novicida and other near neighbors, including Francisella philomiragia and Francisella-like endosymbionts found in ticks. Amplicon sizes and sequences derived from DISA showed heterogeneity within members of the subtype A.I and A.II isolates but not the type B strains. These differences were due to a 312-bp fragment derived from the IS element ISFtu1. Analysis of wild-type F. tularensis isolates by DISA correlated with pulsed-field gel electrophoresis genotyping utilizing two different restriction endonucleases and provided rapid results with minimal sample processing. The applicability of this molecular typing assay for environmental studies was demonstrated by the accurate identification and differentiation of tick-borne F. tularensis. The described approach to IS targeting and amplification provides new capability for epidemiological investigations and characterizations of tularemia source outbreaks. PMID:21613430

  9. First indication for a functional CRISPR/Cas system in Francisella tularensis.

    PubMed

    Schunder, Eva; Rydzewski, Kerstin; Grunow, Roland; Heuner, Klaus

    2013-03-01

    Francisella tularensis is a zoonotic agent and the subspecies novicida is proposed to be a water-associated bacterium. The intracellular pathogen F. tularensis causes tularemia in humans and is known for its potential to be used as a biological threat. We analyzed the genome sequence of F. tularensis subsp. novicida U112 in silico for the presence of a putative functional CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system. CRISPR/Cas systems are known to encode an RNA-guided adaptive immunity-like system to protect bacteria against invading genetic elements like bacteriophages and plasmids. In this work, we present a first indication that F. tularensis subsp. novicida encodes a functional CRISPR/Cas defence system. Additionally, we identified various spacer DNAs homologous to a putative phage present within the genome of F. tularensis subsp. novicida-like strain 3523. CRISPR/Cas is also present in F. tularensis subsp. tularensis, holarctica, and mediasiatica, but these systems seem to be non-functional.

  10. A Francisella tularensis Pathogenicity Island Required for Intramacrophage Growth

    PubMed Central

    Nano, Francis E.; Zhang, Na; Cowley, Siobhán C.; Klose, Karl E.; Cheung, Karen K. M.; Roberts, Michael J.; Ludu, Jagjit S.; Letendre, Gregg W.; Meierovics, Anda I.; Stephens, Gwen; Elkins, Karen L.

    2004-01-01

    Francisella tularensis is a gram-negative, facultative intracellular pathogen that causes the highly infectious zoonotic disease tularemia. We have discovered a ca. 30-kb pathogenicity island of F. tularensis (FPI) that includes four large open reading frames (ORFs) of 2.5 to 3.9 kb and 13 ORFs of 1.5 kb or smaller. Previously, two small genes located near the center of the FPI were shown to be needed for intramacrophage growth. In this work we show that two of the large ORFs, located toward the ends of the FPI, are needed for virulence. Although most genes in the FPI encode proteins with amino acid sequences that are highly conserved between high- and low-virulence strains, one of the FPI genes is present in highly virulent type A F. tularensis, absent in moderately virulent type B F. tularensis, and altered in F. tularensis subsp. novicida, which is highly virulent for mice but avirulent for humans. The G+C content of a 17.7-kb stretch of the FPI is 26.6%, which is 6.6% below the average G+C content of the F. tularensis genome. This extremely low G+C content suggests that the DNA was imported from a microbe with a very low G+C-containing chromosome. PMID:15375123

  11. Molecular method for discrimination between Francisella tularensis and Francisella-like endosymbionts.

    PubMed

    Escudero, Raquel; Toledo, A; Gil, Horacio; Kovácsová, Katarina; Rodríguez-Vargas, Manuela; Jado, Isabel; García-Amil, Cristina; Lobo, Bruno; Bhide, Mangesh; Anda, Pedro

    2008-09-01

    Environmental studies on the distribution of Francisella spp. are hampered by the frequency of Francisella-like endosymbionts that can produce a misleading positive result. A new, efficient molecular method for detection of Francisella tularensis and its discrimination from Francisella-like endosymbionts, as well as two variants associated with human disease (unusual F. tularensis strain FnSp1 and F. tularensis subsp. novicida-like strain 3523), is described. The method is highly specific and sensitive, detecting up to one plasmid copy or 10 genome equivalents.

  12. Comparative Transcriptional Analyses of Francisella tularensis and Francisella novicida

    PubMed Central

    Waldo, Robert H.; Belland, Robert J.; Klose, Karl E.

    2016-01-01

    Francisella tularensis is composed of a number of subspecies with varied geographic distribution, host ranges, and virulence. In view of these marked differences, comparative functional genomics may elucidate some of the molecular mechanism(s) behind these differences. In this study a shared probe microarray was designed that could be used to compare the transcriptomes of Francisella tularensis subsp. tularensis Schu S4 (Ftt), Francisella tularensis subsp. holarctica OR960246 (Fth), Francisella tularensis subsp. holarctica LVS (LVS), and Francisella novicida U112 (Fn). To gain insight into expression differences that may be related to the differences in virulence of these subspecies, transcriptomes were measured from each strain grown in vitro under identical conditions, utilizing a shared probe microarray. The human avirulent Fn strain exhibited high levels of transcription of genes involved in general metabolism, which are pseudogenes in the human virulent Ftt and Fth strains, consistent with the process of genome decay in the virulent strains. Genes encoding an efflux system (emrA2 cluster of genes), siderophore (fsl operon), acid phosphatase, LPS synthesis, polyamine synthesis, and citrulline ureidase were all highly expressed in Ftt when compared to Fn, suggesting that some of these may contribute to the relative high virulence of Ftt. Genes expressed at a higher level in Ftt when compared to the relatively less virulent Fth included genes encoding isochorismatases, cholylglycine hydrolase, polyamine synthesis, citrulline ureidase, Type IV pilus subunit, and the Francisella Pathogenicity Island protein PdpD. Fth and LVS had very few expression differences, consistent with the derivation of LVS from Fth. This study demonstrated that a shared probe microarray designed to detect transcripts in multiple species/subspecies of Francisella enabled comparative transcriptional analyses that may highlight critical differences that underlie the relative pathogenesis of

  13. A multiplex real-time PCR assay for the detection and differentiation of Francisella tularensis subspecies.

    PubMed

    Gunnell, Mark K; Lovelace, Charity D; Satterfield, Benjamin A; Moore, Emily A; O'Neill, Kim L; Robison, Richard A

    2012-11-01

    Francisella tularensis is the aetiological agent of tularaemia, a zoonotic disease with worldwide prevalence. F. tularensis is a highly pathogenic organism and has been designated a category A biothreat agent by the Centers for Disease Control and Prevention. Tularaemia is endemic in much of the USA, Europe and parts of Asia. It is transmitted by numerous vectors and vehicles such as deer flies, ticks and rabbits. Currently, there are four recognized subspecies of F. tularensis: tularensis (type A), holarctica (type B), mediasiatica and novicida. Within the type A classification there are two subclassifications, type A.I and A.II, each with a specific geographical distribution across the USA. F. tularensis subsp. holartica (type B) is found in both the USA and Europe. Because of virulence differences among subtypes, it is important that health departments, hospitals and other government agencies are able to quickly identify each subtype. The purpose of this study was to develop a multiplex real-time PCR assay for the identification and discrimination of type A.I, type A.II, type B and novicida subspecies of F. tularensis. The assay was validated using 119 isolates of F. tularensis, three of its nearest neighbours and 14 other bacterial pathogens. This assay proved to be ~98 % successful at identifying the known subspecies of F. tularensis and could prove to be a useful tool in the characterization of this important pathogen.

  14. Phylogeography of Francisella tularensis subspecies holarctica from the country of Georgia

    PubMed Central

    2011-01-01

    Background Francisella tularensis, the causative agent of tularemia, displays subspecies-specific differences in virulence, geographic distribution, and genetic diversity. F. tularensis subsp. holarctica is widely distributed throughout the Northern Hemisphere. In Europe, F. tularensis subsp. holarctica isolates have largely been assigned to two phylogenetic groups that have specific geographic distributions. Most isolates from Western Europe are assigned to the B.Br.FTNF002-00 group, whereas most isolates from Eastern Europe are assigned to numerous lineages within the B.Br.013 group. The eastern geographic extent of the B.Br.013 group is currently unknown due to a lack of phylogenetic knowledge about populations at the European/Asian juncture and in Asia. In this study, we address this knowledge gap by describing the phylogenetic structure of F. tularensis subsp. holarctica isolates from the country of Georgia, and by placing these isolates into a global phylogeographic context. Results We identified a new genetic lineage of F. tularensis subsp. holarctica from Georgia that belongs to the B.Br.013 group. This new lineage is genetically and geographically distinct from lineages previously described from the B.Br.013 group from Central-Eastern Europe. Importantly, this new lineage is basal within the B.Br.013 group, indicating the Georgian lineage diverged before the diversification of the other known B.Br.013 lineages. Although two isolates from the Georgian lineage were collected nearby in the Ukrainian region of Crimea, all other global isolates assigned to this lineage were collected in Georgia. This restricted geographic distribution, as well as the high levels of genetic diversity within the lineage, is consistent with a relatively older origin and localized differentiation. Conclusions We identified a new lineage of F. tularensis subsp. holarctica from Georgia that appears to have an older origin than any other diversified lineages previously described from

  15. Identification of Francisella tularensis by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry: fast, reliable, robust, and cost-effective differentiation on species and subspecies levels.

    PubMed

    Seibold, E; Maier, T; Kostrzewa, M; Zeman, E; Splettstoesser, W

    2010-04-01

    Francisella tularensis, the causative agent of tularemia, is a potential agent of bioterrorism. The phenotypic discrimination of closely related, but differently virulent, Francisella tularensis subspecies with phenotyping methods is difficult and time-consuming, often producing ambiguous results. As a fast and simple alternative, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was applied to 50 different strains of the genus Francisella to assess its ability to identify and discriminate between strains according to their designated species and subspecies. Reference spectra from five representative strains of Francisella philomiragia, Francisella tularensis subsp. tularensis, Francisella tularensis subsp. holarctica, Francisella tularensis subsp. mediasiatica, and Francisella tularensis subsp. novicida were established and evaluated for their capability to correctly identify Francisella species and subspecies by matching a collection of spectra from 45 blind-coded Francisella strains against a database containing the five reference spectra and 3,287 spectra from other microorganisms. As a reference method for identification of strains from the genus Francisella, 23S rRNA gene sequencing was used. All strains were correctly identified, with both methods showing perfect agreement at the species level as well as at the subspecies level. The identification of Francisella strains by MALDI-TOF MS and subsequent database matching was reproducible using biological replicates, different culture media, different cultivation times, different serial in vitro passages of the same strain, different preparation protocols, and different mass spectrometers.

  16. Molecular Immune Responses to Aerosol Challenge with Francisella tularensis in Mice Inoculated with Live Vaccine Candidates of Varying Efficacy

    PubMed Central

    Shen, Hua; Harris, Gregory; Chen, Wangxue; Sjostedt, Anders; Ryden, Patrik; Conlan, Wayne

    2010-01-01

    Background Francisella tularensis is a facultative intracellular bacterial pathogen and the etiological agent of tularemia. The subspecies F. tularensis tularensis is especially virulent for humans when inhaled and respiratory tularemia is associated with high mortality if not promptly treated. A live vaccine strain (LVS) derived from the less virulent holarctica subspecies confers incomplete protection against aerosol challenge with subsp. tularensis. Moreover, correlates of protection have not been established for LVS. Methodology/Principal Findings In the present study we compare molecular immune responses elicited by LVS and two defined deletion mutants of clinical subsp. tularensis strain, SCHU S4, that confer enhanced protection in a mouse model. BALB/c mice were immunized intradermally then challenged with an aerosol of SCHU S4 six weeks later. Changes in the levels of a selected panel of cytokines and chemokines were examined in the lungs, spleens, and sera of vaccinated and challenged mice. Mostly, increased cytokine and chemokine levels correlated with increased bacterial burden. However, after adjusting for this variable, immunization with either of the two Schu S4 mutants resulted in higher levels of several pulmonary cytokines, versus those resulting after LVS immunization, including IL-17. Moreover, treatment of mice immunized with ΔclpB with anti-IL-17 antibodies post-challenge enhanced lung infection. Conclusions/Significance This is the first report characterizing local and systemic cytokine and chemokine responses in mice immunized with vaccines with different efficacies against aerosol challenge with virulent F. tularensis subsp. tularensis. It shows that increases in the levels of most of these immunomodulators, including those known to be critical for protective immunity, do not superficially correlate with protection unless adjusted for the effects of bacterial burden. Additionally, several cytokines were selectively suppressed in the lungs

  17. Francisella tularensis Susceptibility to Antibiotics: A Comprehensive Review of the Data Obtained In vitro and in Animal Models.

    PubMed

    Caspar, Yvan; Maurin, Max

    2017-01-01

    The antibiotic classes that are recommended for tularaemia treatment are the aminoglycosides, the fluoroquinolones and the tetracyclines. However, cure rates vary between 60 and 100% depending on the antibiotic used, the time to appropriate antibiotic therapy setup and its duration, and the presence of complications, such as lymph node suppuration. Thus, antibiotic susceptibility testing (AST) of F. tularensis strains remains of primary importance for detection of the emergence of antibiotic resistances to first-line drugs, and to test new therapeutic alternatives. However, the AST methods reported in the literature were poorly standardized between studies and AST data have not been previously evaluated in a comprehensive and comparative way. The aim of the present review was to summarize experimental data on antibiotic susceptibilities of F. tularensis obtained in acellular media, cell models and animal models since the introduction of fluoroquinolones in the treatment of tularaemia in 1989. We compiled MIC data of 33 antibiotics (including aminoglycosides, fluoroquinolones, tetracyclines, macrolides, β-lactams, chloramphenicol, rifampicin, and linezolid) against 900 F. tularensis strains (504 human strains), including 107 subsp. tularensis (type A), 789 subsp. holarctica (type B) and four subsp. mediasiatica strains, using various AST methods. Specific culture media were identified or confirmed as unsuitable for AST of F. tularensis. Overall, MICs were the lowest for ciprofloxacin (≤ 0.002-0.125 mg/L) and levofloxacin, and ranged from ≤ 0.016 to 2 mg/L for gentamicin, and 0.064 to 4 mg/L for doxycycline. No resistant strain to any of these antibiotics was reported. Fluoroquinolones also exhibited a bactericidal activity against intracellular F. tularensis and lower relapse rates in animal models when compared with the bacteriostatic compound doxycycline. As expected, lower MIC values were found for macrolides against type A and biovar I type B strains

  18. Francisella tularensis Susceptibility to Antibiotics: A Comprehensive Review of the Data Obtained In vitro and in Animal Models

    PubMed Central

    Caspar, Yvan; Maurin, Max

    2017-01-01

    The antibiotic classes that are recommended for tularaemia treatment are the aminoglycosides, the fluoroquinolones and the tetracyclines. However, cure rates vary between 60 and 100% depending on the antibiotic used, the time to appropriate antibiotic therapy setup and its duration, and the presence of complications, such as lymph node suppuration. Thus, antibiotic susceptibility testing (AST) of F. tularensis strains remains of primary importance for detection of the emergence of antibiotic resistances to first-line drugs, and to test new therapeutic alternatives. However, the AST methods reported in the literature were poorly standardized between studies and AST data have not been previously evaluated in a comprehensive and comparative way. The aim of the present review was to summarize experimental data on antibiotic susceptibilities of F. tularensis obtained in acellular media, cell models and animal models since the introduction of fluoroquinolones in the treatment of tularaemia in 1989. We compiled MIC data of 33 antibiotics (including aminoglycosides, fluoroquinolones, tetracyclines, macrolides, β-lactams, chloramphenicol, rifampicin, and linezolid) against 900 F. tularensis strains (504 human strains), including 107 subsp. tularensis (type A), 789 subsp. holarctica (type B) and four subsp. mediasiatica strains, using various AST methods. Specific culture media were identified or confirmed as unsuitable for AST of F. tularensis. Overall, MICs were the lowest for ciprofloxacin (≤ 0.002–0.125 mg/L) and levofloxacin, and ranged from ≤ 0.016 to 2 mg/L for gentamicin, and 0.064 to 4 mg/L for doxycycline. No resistant strain to any of these antibiotics was reported. Fluoroquinolones also exhibited a bactericidal activity against intracellular F. tularensis and lower relapse rates in animal models when compared with the bacteriostatic compound doxycycline. As expected, lower MIC values were found for macrolides against type A and biovar I type B strains

  19. Identification of two substrates of FTS_1067 protein - An essential virulence factor of Francisella tularensis.

    PubMed

    Spidlova, Petra; Senitkova, Iva; Link, Marek; Stulik, Jiri

    2016-11-15

    Francisella tularensis is a highly virulent intracellular pathogen with the capacity to infect a variety of hosts including humans. One of the most important proteins involved in F. tularensis virulence and pathogenesis is the protein DsbA. This protein is annotated as a lipoprotein with disulfide oxidoreductase/isomerase activity. Therefore, its interactions with different substrates, including probable virulence factors, to assist in their proper folding are anticipated. We aimed to use the immunopurification approach to find DsbA (gene locus FTS_1067) interacting partners in F. tularensis subsp. holarctica strain FSC200 and compare the identified substrates with proteins which were found in our previous comparative proteome analysis. As a result of our work two FTS_1067 substrates, D-alanyl-D-alanine carboxypeptidase family protein and HlyD family secretion protein, were identified. Bacterial two-hybrid systems were further used to test their relevance in confirming FTS_1067 protein interactions.

  20. Paralogous Outer Membrane Proteins Mediate Uptake of Different Forms of Iron and Synergistically Govern Virulence in Francisella tularensis tularensis*

    PubMed Central

    Ramakrishnan, Girija; Sen, Bhaswati; Johnson, Richard

    2012-01-01

    Francisella tularensis subsp. tularensis is a highly infectious bacterium causing acute disease in mammalian hosts. Mechanisms for the acquisition of iron within the iron-limiting host environment are likely to be critical for survival of this intracellular pathogen. FslE (FTT0025) and FupA (FTT0918) are paralogous proteins that are predicted to form β-barrels in the outer membrane of virulent strain Schu S4 and are unique to Francisella species. Previous studies have implicated both FupA, initially identified as a virulence factor and FslE, encoded by the siderophore biosynthetic operon, in iron acquisition. Using single and double mutants, we demonstrated that these paralogs function in concert to promote growth under iron limitation. We used a 55Fe transport assay to demonstrate that FslE is involved in siderophore-mediated ferric iron uptake, whereas FupA facilitates high affinity ferrous iron uptake. Optimal replication within J774A.1 macrophage-like cells required at least one of these uptake systems to be functional. In a mouse model of tularemia, the ΔfupA mutant was attenuated, but the ΔfslE ΔfupA mutant was significantly more attenuated, implying that the two systems of iron acquisition function synergistically to promote virulence. These studies highlight the importance of specific iron acquisition functions, particularly that of ferrous iron, for virulence of F. tularensis in the mammalian host. PMID:22661710

  1. Medical Countermeasure Models. Volume 4. Francisella tularensis

    DTIC Science & Technology

    2013-04-12

    Levofloxacin F. tularensis is sensitive in vivo. Klimpel 2008 167 Metronidazole F. tularensis is expected to be resistant because metronidazole is...tularensis and induces immunity and production of protective antibody.” Vaccine. 26(52). 2008. 168 “Flagyl ( metronidazole ).” http://www.rxlist.com

  2. Differential ability of novel attenuated targeted deletion mutants of Francisella tularensis subspecies tularensis strain SCHU S4 to protect mice against aerosol challenge with virulent bacteria: effects of host background and route of immunization

    PubMed Central

    Conlan, J. Wayne; Shen, Hua; Golovliov, Igor; Zingmark, Carl; Oyston, Petra C.F.; Chen, Wangxue; House, Robert V.; Sjöstedt, Anders

    2009-01-01

    Francisella tularensis subspecies tularensis is a highly virulent facultative intracellular pathogen of humans and a potential biological weapon. A live vaccine strain, F. tularensis LVS, was developed more than 50 years ago by pragmatic attenuation of a strain of the less virulent holarctica subspecies. LVS was demonstrated to be highly effective in human volunteers who were exposed to intradermal challenge with fully virulent subsp. tularensis, but was less effective against aerosol exposure. LVS faces regulatory hurdles that to date have prevented its licensure for general use. Therefore, a better defined and more effective vaccine is being sought. To this end we have created gene deletion mutants in the virulent subsp. tularensis strain and tested them for their ability to elicit a protective immune response against systemic or aerosol challenge with the highly virulent wild-type subsp. tularensis strain, SCHU S4. Both oral and Intradermal (ID) primary vaccination routes were assessed in BALB/c and C3H/HeN mice as was oral boosting. One SCHU S4 mutant missing the heat shock gene, clpB, was significantly more attenuated than LVS whereas a double deletion mutant missing genes FTT0918 and capB was as attenuated as LVS. In general mice immunized with SCHU S4ΔclpB were significantly better protected against aerosol challenge than mice immunized with LVS. A single ID immunization of BALB/c mice with SCHU S4ΔclpB was at least as effective as any other regimen examined. Mice immunized with SCHU S4Δ0918ΔcapB were generally protected to a similar degree as mice immunized with LVS. A preliminary examination of immune responses to vaccination with LVS, SCHU S4ΔclpB, or SCHU S4Δ0918ΔcapB provided no obvious correlate to their relative efficacies. PMID:20018266

  3. Towards Development of Improved Serodiagnostics for Tularemia by Use of Francisella tularensis Proteome Microarrays

    PubMed Central

    Nakajima, Rie; Escudero, Raquel; Molina, Douglas M.; Rodríguez-Vargas, Manuela; Randall, Arlo; Jasinskas, Algis; Pablo, Jozelyn; Felgner, Philip L.; AuCoin, David P.; Anda, Pedro

    2016-01-01

    Tularemia in humans is caused mainly by two subspecies of the Gram-negative facultative anaerobe Francisella tularensis: F. tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B). The current serological test for tularemia is based on agglutination of whole organisms, and the reactive antigens are not well understood. Previously, we profiled the antibody responses in type A and B tularemia cases in the United States using a proteome microarray of 1,741 different proteins derived from the type A strain Schu S4. Fifteen dominant antigens able to detect antibodies to both types of infection were identified, although these were not validated in a different immunoassay format. Since type A and B subspecies are closely related, we hypothesized that Schu S4 antigens would also have utility for diagnosing type B tularemia caused by strains from other geographic locations. To test this, we probed the Schu S4 array with sera from 241 type B tularemia cases in Spain. Despite there being no type A strains in Spain, we confirmed the responses against some of the same potential serodiagnostic antigens reported previously, as well as determined the responses against additional potential serodiagnostic antigens. Five potential serodiagnostic antigens were evaluated on immunostrips, and two of these (FTT1696/GroEL and FTT0975/conserved hypothetical protein) discriminated between the Spanish tularemia cases and healthy controls. We conclude that antigens from the type A strain Schu S4 are suitable for detection of antibodies from patients with type B F. tularensis infections and that these can be used for the diagnosis of tularemia in a deployable format, such as the immunostrip. PMID:27098957

  4. Towards Development of Improved Serodiagnostics for Tularemia by Use of Francisella tularensis Proteome Microarrays.

    PubMed

    Nakajima, Rie; Escudero, Raquel; Molina, Douglas M; Rodríguez-Vargas, Manuela; Randall, Arlo; Jasinskas, Algis; Pablo, Jozelyn; Felgner, Philip L; AuCoin, David P; Anda, Pedro; Davies, D Huw

    2016-07-01

    Tularemia in humans is caused mainly by two subspecies of the Gram-negative facultative anaerobe Francisella tularensis: F. tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B). The current serological test for tularemia is based on agglutination of whole organisms, and the reactive antigens are not well understood. Previously, we profiled the antibody responses in type A and B tularemia cases in the United States using a proteome microarray of 1,741 different proteins derived from the type A strain Schu S4. Fifteen dominant antigens able to detect antibodies to both types of infection were identified, although these were not validated in a different immunoassay format. Since type A and B subspecies are closely related, we hypothesized that Schu S4 antigens would also have utility for diagnosing type B tularemia caused by strains from other geographic locations. To test this, we probed the Schu S4 array with sera from 241 type B tularemia cases in Spain. Despite there being no type A strains in Spain, we confirmed the responses against some of the same potential serodiagnostic antigens reported previously, as well as determined the responses against additional potential serodiagnostic antigens. Five potential serodiagnostic antigens were evaluated on immunostrips, and two of these (FTT1696/GroEL and FTT0975/conserved hypothetical protein) discriminated between the Spanish tularemia cases and healthy controls. We conclude that antigens from the type A strain Schu S4 are suitable for detection of antibodies from patients with type B F. tularensis infections and that these can be used for the diagnosis of tularemia in a deployable format, such as the immunostrip. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Biology of Francisella tularensis Subspecies holarctica Live Vaccine Strain in the Tick Vector Dermacentor variabilis

    PubMed Central

    Mani, Rinosh J.; Reichard, Mason V.; Morton, Rebecca J.; Kocan, Katherine M.; Clinkenbeard, Kenneth D.

    2012-01-01

    Background The γ-proteobacterium Francisella tularensis is the etiologic agent of seasonal tick-transmitted tularemia epizootics in rodents and rabbits and of incidental infections in humans. The biology of F. tularensis in its tick vectors has not been fully described, particularly with respect to its quanta and duration of colonization, tissue dissemination, and transovarial transmission. A systematic study of the colonization of Dermacentor variabilis by the F. tularensis subsp. holarctica live vaccine strain (LVS) was undertaken to better understand whether D. variabilis may serve as an inter-epizootic reservoir for F. tularensis. Methodology/Principal Findings Colony-reared larva, nymph, and adult D. variabilis were artificially fed LVS via glass capillary tubes fitted over the tick mouthparts, and the level of colonization determined by microbial culture. Larvae and nymphs were initially colonized with 8.8±0.8×101 and 1.1±0.03×103 CFU/tick, respectively. Post-molting, a significant increase in colonization of both molted nymphs and adults occurred, and LVS persisted in 42% of molted adult ticks at 126 days post-capillary tube feeding. In adult ticks, LVS initially colonized the gut, disseminated to hemolymph and salivary glands by 21 days, and persisted up to 165 days. LVS was detected in the salivary secretions of adult ticks after four days post intra-hemocoelic inoculation, and LVS recovered from salivary gland was infectious to mice with an infectious dose 50% of 3 CFU. LVS in gravid female ticks colonized via the intra-hemocoelic route disseminated to the ovaries and then to the oocytes, but the pathogen was not recovered from the subsequently-hatched larvae. Conclusions/Significance This study demonstrates that D. variabilis can be efficiently colonized with F. tularensis using artificial methods. The persistence of F. tularensis in D. variabilis suggests that this tick species may be involved in the maintenance of enzootic foci of tularemia in the

  6. Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis

    PubMed Central

    Cuccui, Jon; Thomas, Rebecca M.; Moule, Madeleine G.; D'Elia, Riccardo V.; Laws, Thomas R.; Mills, Dominic C.; Williamson, Diane; Atkins, Timothy P.; Prior, Joann L.; Wren, Brendan W.

    2013-01-01

    Glycoconjugate-based vaccines have proved to be effective at producing long-lasting protection against numerous pathogens. Here, we describe the application of bacterial protein glycan coupling technology (PGCT) to generate a novel recombinant glycoconjugate vaccine. We demonstrate the conjugation of the Francisella tularensis O-antigen to the Pseudomonas aeruginosa carrier protein exotoxin A using the Campylobacter jejuni PglB oligosaccharyltransferase. The resultant recombinant F. tularensis glycoconjugate vaccine is expressed in Escherichia coli where yields of 3 mg l−1 of culture were routinely produced in a single-step purification process. Vaccination of BALB/c mice with the purified glycoconjugate boosted IgG levels and significantly increased the time to death upon subsequent challenge with F. tularensis subsp. holarctica. PGCT allows different polysaccharide and protein combinations to be produced recombinantly and could be easily applicable for the production of diverse glycoconjugate vaccines. PMID:23697804

  7. Characterization of lethal inhalational infection with Francisella tularensis in the common marmoset (Callithrix jacchus)

    PubMed Central

    Nelson, Michelle; Lever, Mark S.; Dean, Rachel E.; Savage, Victoria L.; Salguero, F. Javier; Pearce, Peter C.; Stevens, Daniel J.; Simpson, Andrew J. H.

    2010-01-01

    The intracellular Gram-negative pathogen Francisella tularensis is the causative agent of tularaemia and is prevalent in many countries in the northern hemisphere. To determine whether the common marmoset (Callithrix jacchus) would be a suitable non-human primate model of inhalational tularaemia, a pathophysiology study was undertaken. Ten animals were challenged with ∼102 c.f.u. F. tularensis strain SCHU S4 (F. tularensis subsp. tularensis). To look for trends in the infection, pairs of animals were sacrificed at 24 h intervals between 0 and 96 h post-challenge and blood and organs were assessed for bacteriology, pathology and haematological and immunological parameters. The first indication of infection was a raised core temperature at 3 days post-challenge. This coincided with a number of other factors: a rapid increase in the number of bacteria isolated from all organs, more pronounced gross pathology and histopathology, and an increase in the immunological response. As the disease progressed, higher bacterial and cytokine levels were detected. More extensive pathology was observed, with multifocal lesions seen in the lungs, liver and spleen. Disease progression in the common marmoset appears to be consistent with human clinical and pathological features of tularaemia, indicating that this may be a suitable animal model for the investigation of novel medical interventions such as vaccines or therapeutics. PMID:20558585

  8. Francisella tularensis Subspecies holarctica, Tasmania, Australia, 2011

    PubMed Central

    Jackson, Justin; McGregor, Alistair; Cooley, Louise; Ng, Jimmy; Brown, Mitchell; Ong, Chong Wei; Darcy, Catharine

    2012-01-01

    We report a case of ulceroglandular tularemia that developed in a woman after she was bitten by a ringtail possum (Pseudocheirus peregrinus) in a forest in Tasmania, Australia. Francisella tularensis subspecies holarctica was identified. This case indicates the emergence of F. tularensis type B in the Southern Hemisphere. PMID:22931809

  9. [Vntr-genotyping of Francisella tularensis strains isolated in the former USSR territory and some European countries during epizootics in 1988 - 1989].

    PubMed

    Vodop'ianov, A S; Mishan'kin, B N; Pavlovich, N V; Vodop'ianov, S O; Suchkov, I Iu; Pichurina, N L; Arutiunov, Iu I

    2006-01-01

    Retrospective VNTR-analysis of 159 Francisella tularensis subsp. holarctica strains isolated in December 1988 - February 1989 in former USSR and some European countries was carried out. Analysis of heterogenic genotypes of strains allow to subdivide them into 30 groups of variants by individual genotypes, while cluster analysis--to subdivide them in 7 clusters with different number of compositions. The predominance of genotype C1 strains isolated on the Rostov and Archangelsk regions and the Crimea was established. F. tularensis strains isolated in winter time 1988 - 1989 in different geographic regions were supposed to be resident cultures typical for their biotope in natural focus of disease.

  10. Substructure within Salmonella enterica subsp. enterica Isolates from Australian Wildlife▿

    PubMed Central

    Parsons, Sandra K.; Bull, C. Michael; Gordon, David M.

    2011-01-01

    Multilocus sequence typing of 56 Salmonella enterica subsp. enterica strains isolated from Australian wildlife hosts was performed. The results of population assignment algorithms revealed that the 56 strains could be subdivided into two distinct clades. Strains belonging to the two clades were further distinguished phenotypically, genotypically, and with respect to host distribution. PMID:21378038

  11. An outbreak of respiratory tularemia caused by diverse clones of Francisella tularensis.

    PubMed

    Johansson, Anders; Lärkeryd, Adrian; Widerström, Micael; Mörtberg, Sara; Myrtännäs, Kerstin; Ohrman, Caroline; Birdsell, Dawn; Keim, Paul; Wagner, David M; Forsman, Mats; Larsson, Pär

    2014-12-01

    The bacterium Francisella tularensis is recognized for its virulence, infectivity, genetic homogeneity, and potential as a bioterrorism agent. Outbreaks of respiratory tularemia, caused by inhalation of this bacterium, are poorly understood. Such outbreaks are exceedingly rare, and F. tularensis is seldom recovered from clinical specimens. A localized outbreak of tularemia in Sweden was investigated. Sixty-seven humans contracted laboratory-verified respiratory tularemia. F. tularensis subspecies holarctica was isolated from the blood or pleural fluid of 10 individuals from July to September 2010. Using whole-genome sequencing and analysis of single-nucleotide polymorphisms (SNPs), outbreak isolates were compared with 110 archived global isolates. There were 757 SNPs among the genomes of the 10 outbreak isolates and the 25 most closely related archival isolates (all from Sweden/Finland). Whole genomes of outbreak isolates were >99.9% similar at the nucleotide level and clustered into 3 distinct genetic clades. Unexpectedly, high-sequence similarity grouped some outbreak and archival isolates that originated from patients from different geographic regions and up to 10 years apart. Outbreak and archival genomes frequently differed by only 1-3 of 1 585 229 examined nucleotides. The outbreak was caused by diverse clones of F. tularensis that occurred concomitantly, were widespread, and apparently persisted in the environment. Multiple independent acquisitions of F. tularensis from the environment over a short time period suggest that natural outbreaks of respiratory tularemia are triggered by environmental cues. The findings additionally caution against interpreting genome sequence identity for this pathogen as proof of a direct epidemiological link. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. An Outbreak of Respiratory Tularemia Caused by Diverse Clones of Francisella tularensis

    PubMed Central

    Johansson, Anders; Lärkeryd, Adrian; Widerström, Micael; Mörtberg, Sara; Myrtännäs, Kerstin; Öhrman, Caroline; Birdsell, Dawn; Keim, Paul; Wagner, David M.; Forsman, Mats; Larsson, Pär

    2014-01-01

    Background. The bacterium Francisella tularensis is recognized for its virulence, infectivity, genetic homogeneity, and potential as a bioterrorism agent. Outbreaks of respiratory tularemia, caused by inhalation of this bacterium, are poorly understood. Such outbreaks are exceedingly rare, and F. tularensis is seldom recovered from clinical specimens. Methods. A localized outbreak of tularemia in Sweden was investigated. Sixty-seven humans contracted laboratory-verified respiratory tularemia. F. tularensis subspecies holarctica was isolated from the blood or pleural fluid of 10 individuals from July to September 2010. Using whole-genome sequencing and analysis of single-nucleotide polymorphisms (SNPs), outbreak isolates were compared with 110 archived global isolates. Results. There were 757 SNPs among the genomes of the 10 outbreak isolates and the 25 most closely related archival isolates (all from Sweden/Finland). Whole genomes of outbreak isolates were >99.9% similar at the nucleotide level and clustered into 3 distinct genetic clades. Unexpectedly, high-sequence similarity grouped some outbreak and archival isolates that originated from patients from different geographic regions and up to 10 years apart. Outbreak and archival genomes frequently differed by only 1–3 of 1 585 229 examined nucleotides. Conclusions. The outbreak was caused by diverse clones of F. tularensis that occurred concomitantly, were widespread, and apparently persisted in the environment. Multiple independent acquisitions of F. tularensis from the environment over a short time period suggest that natural outbreaks of respiratory tularemia are triggered by environmental cues. The findings additionally caution against interpreting genome sequence identity for this pathogen as proof of a direct epidemiological link. PMID:25097081

  13. Francisella tularensis: No Evidence for Transovarial Transmission in the Tularemia Tick Vectors Dermacentor reticulatus and Ixodes ricinus

    PubMed Central

    Genchi, Marco; Prati, Paola; Vicari, Nadia; Manfredini, Andrea; Sacchi, Luciano; Clementi, Emanuela; Bandi, Claudio; Epis, Sara; Fabbi, Massimo

    2015-01-01

    Background Tularemia is a zoonosis caused by the Francisella tularensis, a highly infectious Gram-negative coccobacillus. Due to easy dissemination, multiple routes of infection, high environmental contamination and morbidity and mortality rates, Francisella is considered a potential bioterrorism threat and classified as a category A select agent by the CDC. Tick bites are among the most prevalent modes of transmission, and ticks have been indicated as a possible reservoir, although their reservoir competence has yet to be defined. Tick-borne transmission of F. tularensis was recognized in 1923, and transstadial transmission has been demonstrated in several tick species. Studies on transovarial transmission, however, have reported conflicting results. Objective The aim of this study was to evaluate the role of ticks as reservoirs for Francisella, assessing the transovarial transmission of F. tularensis subsp. holarctica in ticks, using experimentally-infected females of Dermacentor reticulatus and Ixodes ricinus. Results Transmission electron microscopy and fluorescence in situ hybridization showed F. tularensis within oocytes. However, cultures and bioassays of eggs and larvae were negative; in addition, microscopy techniques revealed bacterial degeneration/death in the oocytes. Conclusions These results suggest that bacterial death might occur in oocytes, preventing the transovarial transmission of Francisella. We can speculate that Francisella does not have a defined reservoir, but that rather various biological niches (e.g. ticks, rodents), that allow the bacterium to persist in the environment. Our results, suggesting that ticks are not competent for the bacterium vertical transmission, are congruent with this view. PMID:26244842

  14. Crystallization of a newly discovered histidine acid phosphatase from Francisella tularensis

    SciTech Connect

    Felts, Richard L.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2006-01-01

    A histidine acid phosphatase from the CDC Category A pathogen F. tularensis has been crystallized in space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 61.96, c = 210.78 Å. A 1.75 Å resolution data set was collected at Advanced Light Source beamline 4.2.2. Francisella tularensis is a highly infectious bacterial pathogen that is considered by the Centers for Disease Control and Prevention to be a potential bioterrorism weapon. Here, the crystallization of a 37.2 kDa phosphatase encoded by the genome of F. tularensis subsp. holarctica live vaccine strain is reported. This enzyme shares 41% amino-acid sequence identity with Legionella pneumophila major acid phosphatase and contains the RHGXRXP motif that is characteristic of the histidine acid phosphatase family. Large diffraction-quality crystals were grown in the presence of Tacsimate, HEPES and PEG 3350. The crystals belong to space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 61.96, c = 210.78 Å. The asymmetric unit is predicted to contain one protein molecule, with a solvent content of 53%. A 1.75 Å resolution native data set was recorded at beamline 4.2.2 of the Lawrence Berkeley National Laboratory Advanced Light Source. Molecular-replacement trials using the human prostatic acid phosphatase structure as the search model (28% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of F. tularensis histidine acid phosphatase will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  15. Targeted gene disruption in Francisella tularensis by group II introns.

    PubMed

    Rodriguez, Stephen A; Davis, Greg; Klose, Karl E

    2009-11-01

    Francisella tularensis is a highly infectious Gram-negative bacterium that is the causative agent of tularemia. Very little is known about the molecular mechanisms responsible for F. tularensis virulence, in part due to the paucity of genetic tools available for the study of F. tularensis. We have developed a gene knockout system for F. tularensis that utilizes retargeted mobile group II introns, or "targetrons". These targetrons disrupt both single and duplicated target genes at high efficiency in three different F. tularensis subspecies. Here we describe in detail the targetron-based method for insertional mutagenesis of F. tularensis genes, which should facilitate a better understanding of F. tularensis pathogenesis. Group II introns can be adapted to inactivate genes in bacteria for which few genetic tools exist, thus providing a powerful tool to study the genetic basis of bacterial pathogenesis.

  16. Environmental Monitoring and Surveillance of Rodents and Vectors for Francisella tularensis Following Outbreaks of Human Tularemia in Georgia

    PubMed Central

    Elashvili, Eka; Kracalik, Ian; Burjanadze, Irma; Datukishvili, Sophio; Chanturia, Gvantsa; Tsertsvadze, Nikoloz; Beridze, Levan; Shavishvili, Merab; Dzneladze, Archil; Grdzelidze, Marina; Imnadze, Paata; Pearson, Andrew

    2015-01-01

    Abstract Tularemia is a re-emerging bacterial zoonosis, broadly distributed across the northern hemisphere. In Georgia, there is a history of human tularemia outbreaks dating back to the 1940s. In response to outbreaks, health officials initiated long-term field surveillance and environmental monitoring. The objective of our study was to obtain information from 57 years of field surveys to identify species that play a role in the occurrence Francisella tularensis subsp. holarctica in the environment in Georgia. We collected historical data on human outbreaks, field collections, population dynamics of the common vole (Microtus arvalis), and conducted surveys on small mammals and vectors from five regions in Georgia during 1956–2012. Bacterial isolation was conducted using standard culturing techniques, and isolation rates for species were obtained for a subset of years. We used a Spearman rank correlation to test for associations between the density of the common vole and isolation rates. From 1956 through 2012, there were four recorded outbreaks of human tularemia (362 cases). A total of 465 bacterial isolates of F. tularensis subsp. holarctica were obtained from 27 species and environmental samples. The number of isolations was highest in the common vole (M. arvalis; 149 isolates; 32%) and Dermacentor marginatus ticks (132 isolates; 28%); isolation rates ranged between 0–0.91% and 0–0.47%, respectively. Population dynamics of the common vole were not correlated with the isolation rate. Given the history of tularemia re-emergence in Georgia, continued field surveys and environmental monitoring may provide an early indication of outbreak risk in humans. In conclusion, our findings provide evidence of long-standing foci of F. tularensis subsp. holarctica that are likely maintained by the common vole–tick cycle. PMID:26394283

  17. Environmental Monitoring and Surveillance of Rodents and Vectors for Francisella tularensis Following Outbreaks of Human Tularemia in Georgia.

    PubMed

    Elashvili, Eka; Kracalik, Ian; Burjanadze, Irma; Datukishvili, Sophio; Chanturia, Gvantsa; Tsertsvadze, Nikoloz; Beridze, Levan; Shavishvili, Merab; Dzneladze, Archil; Grdzelidze, Marina; Imnadze, Paata; Pearson, Andrew; Blackburn, Jason K

    2015-10-01

    Tularemia is a re-emerging bacterial zoonosis, broadly distributed across the northern hemisphere. In Georgia, there is a history of human tularemia outbreaks dating back to the 1940s. In response to outbreaks, health officials initiated long-term field surveillance and environmental monitoring. The objective of our study was to obtain information from 57 years of field surveys to identify species that play a role in the occurrence Francisella tularensis subsp. holarctica in the environment in Georgia. We collected historical data on human outbreaks, field collections, population dynamics of the common vole (Microtus arvalis), and conducted surveys on small mammals and vectors from five regions in Georgia during 1956-2012. Bacterial isolation was conducted using standard culturing techniques, and isolation rates for species were obtained for a subset of years. We used a Spearman rank correlation to test for associations between the density of the common vole and isolation rates. From 1956 through 2012, there were four recorded outbreaks of human tularemia (362 cases). A total of 465 bacterial isolates of F. tularensis subsp. holarctica were obtained from 27 species and environmental samples. The number of isolations was highest in the common vole (M. arvalis; 149 isolates; 32%) and Dermacentor marginatus ticks (132 isolates; 28%); isolation rates ranged between 0-0.91% and 0-0.47%, respectively. Population dynamics of the common vole were not correlated with the isolation rate. Given the history of tularemia re-emergence in Georgia, continued field surveys and environmental monitoring may provide an early indication of outbreak risk in humans. In conclusion, our findings provide evidence of long-standing foci of F. tularensis subsp. holarctica that are likely maintained by the common vole-tick cycle.

  18. Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea

    PubMed Central

    Lee, Dong Hwan; Kim, Jin-Beom; Lim, Jeong-A; Han, Sang-Wook; Heu, Sunggi

    2014-01-01

    The plant pathogenic bacterial genus Pectobacteirum consists of heterogeneous strains. The P. carotovorum species is a complex strain showing divergent characteristics, and a new subspecies named P. carotovorum subsp. brasiliensis has been identified recently. In this paper, we re-identified the P. carotovorum subsp. brasiliensis isolates from those classified under the subspecies carotovorum and newly isolated P. carotovorum subsp. brasiliensis strains. All isolates were able to produce plant cell-wall degrading enzymes such as pectate lyase, polygalacturonase, cellulase and protease. We used genetic and biochemical methods to examine the diversity of P. carotovorum subsp. brasiliensis isolates, and found genetic diversity within the brasiliensis subsp. isolates in Korea. The restriction fragment length polymorphism analysis based on the recA gene revealed a unique pattern for the brasiliensis subspecies. The Korean brasiliensis subsp. isolates were divided into four clades based on pulsed-field gel electrophoresis. However, correlations between clades and isolated hosts or year could not be found, suggesting that diverse brasiliensis subsp. isolates existed. PMID:25288994

  19. Live Attenuated Francisella novicida Vaccine Protects against Francisella tularensis Pulmonary Challenge in Rats and Non-human Primates

    PubMed Central

    Chu, Ping; Cunningham, Aimee L.; Yu, Jieh-Juen; Nguyen, Jesse Q.; Barker, Jeffrey R.; Lyons, C. Rick; Wilder, Julie; Valderas, Michelle; Sherwood, Robert L.; Arulanandam, Bernard P.; Klose, Karl E.

    2014-01-01

    Francisella tularensis causes the disease tularemia. Human pulmonary exposure to the most virulent form, F. tularensis subsp. tularensis (Ftt), leads to high morbidity and mortality, resulting in this bacterium being classified as a potential biothreat agent. However, a closely-related species, F. novicida, is avirulent in healthy humans. No tularemia vaccine is currently approved for human use. We demonstrate that a single dose vaccine of a live attenuated F. novicida strain (Fn iglD) protects against subsequent pulmonary challenge with Ftt using two different animal models, Fischer 344 rats and cynomolgus macaques (NHP). The Fn iglD vaccine showed protective efficacy in rats, as did a Ftt iglD vaccine, suggesting no disadvantage to utilizing the low human virulent Francisella species to induce protective immunity. Comparison of specific antibody profiles in vaccinated rat and NHP sera by proteome array identified a core set of immunodominant antigens in vaccinated animals. This is the first report of a defined live attenuated vaccine that demonstrates efficacy against pulmonary tularemia in a NHP, and indicates that the low human virulence F. novicida functions as an effective tularemia vaccine platform. PMID:25340543

  20. Structure-Function Analysis of DipA, a Francisella tularensis Virulence Factor Required for Intracellular Replication

    PubMed Central

    Chong, Audrey; Child, Robert; Wehrly, Tara D.; Rockx-Brouwer, Dedeke; Qin, Aiping; Mann, Barbara J.; Celli, Jean

    2013-01-01

    Francisella tularensis is a highly infectious bacterium whose virulence relies on its ability to rapidly reach the macrophage cytosol and extensively replicate in this compartment. We previously identified a novel Francisella virulence factor, DipA (FTT0369c), which is required for intramacrophage proliferation and survival, and virulence in mice. DipA is a 353 amino acid protein with a Sec-dependent signal peptide, four Sel1-like repeats (SLR), and a C-terminal coiled-coil (CC) domain. Here, we determined through biochemical and localization studies that DipA is a membrane-associated protein exposed on the surface of the prototypical F. tularensis subsp. tularensis strain SchuS4 during macrophage infection. Deletion and substitution mutagenesis showed that the CC domain, but not the SLR motifs, of DipA is required for surface exposure on SchuS4. Complementation of the dipA mutant with either DipA CC or SLR domain mutants did not restore intracellular growth of Francisella, indicating that proper localization and the SLR domains are required for DipA function. Co-immunoprecipitation studies revealed interactions with the Francisella outer membrane protein FopA, suggesting that DipA is part of a membrane-associated complex. Altogether, our findings indicate that DipA is positioned at the host–pathogen interface to influence the intracellular fate of this pathogen. PMID:23840797

  1. IglE Is an Outer Membrane-Associated Lipoprotein Essential for Intracellular Survival and Murine Virulence of Type A Francisella tularensis

    PubMed Central

    Robertson, Gregory T.; Child, Robert; Ingle, Christine; Celli, Jean

    2013-01-01

    IglE is a small, hypothetical protein encoded by the duplicated Francisella pathogenicity island (FPI). Inactivation of both copies of iglE rendered Francisella tularensis subsp. tularensis Schu S4 avirulent and incapable of intracellular replication, owing to an inability to escape the phagosome. This defect was fully reversed following single-copy expression of iglE in trans from attTn7 under the control of the Francisella rpsL promoter, thereby establishing that the loss of iglE, and not polar effects on downstream vgrG gene expression, was responsible for the defect. IglE is exported to the Francisella outer membrane as an ∼13.9-kDa lipoprotein, determined on the basis of a combination of selective Triton X-114 solubilization, radiolabeling with [3H]palmitic acid, and sucrose density gradient membrane partitioning studies. Lastly, a genetic screen using the iglE-null live vaccine strain resulted in the identification of key regions in the carboxyl terminus of IglE that are required for intracellular replication of Francisella tularensis in J774A.1 macrophages. Thus, IglE is essential for Francisella tularensis virulence. Our data support a model that likely includes protein-protein interactions at or near the bacterial cell surface that are unknown at present. PMID:23959721

  2. O-Linked Glycosylation of the PilA Pilin Protein of Francisella tularensis: Identification of the Endogenous Protein-Targeting Oligosaccharyltransferase and Characterization of the Native Oligosaccharide▿†

    PubMed Central

    Egge-Jacobsen, Wolfgang; Salomonsson, Emelie Näslund; Aas, Finn Erik; Forslund, Anna-Lena; Winther-Larsen, Hanne C.; Maier, Josef; Macellaro, Anna; Kuoppa, Kerstin; Oyston, Petra C. F.; Titball, Richard W.; Thomas, Rebecca M.; Forsberg, Åke; Prior, Joann L.; Koomey, Michael

    2011-01-01

    Findings from a number of studies suggest that the PilA pilin proteins may play an important role in the pathogenesis of disease caused by species within the genus Francisella. As such, a thorough understanding of PilA structure and chemistry is warranted. Here, we definitively identified the PglA protein-targeting oligosaccharyltransferase by virtue of its necessity for PilA glycosylation in Francisella tularensis and its sufficiency for PilA glycosylation in Escherichia coli. In addition, we used mass spectrometry to examine PilA affinity purified from Francisella tularensis subsp. tularensis and F. tularensis subsp. holarctica and demonstrated that the protein undergoes multisite, O-linked glycosylation with a pentasaccharide of the structure HexNac-Hex-Hex-HexNac-HexNac. Further analyses revealed microheterogeneity related to forms of the pentasaccharide carrying unusual moieties linked to the distal sugar via a phosphate bridge. Type A and type B strains of Francisella subspecies thus express an O-linked protein glycosylation system utilizing core biosynthetic and assembly pathways conserved in other members of the proteobacteria. As PglA appears to be highly conserved in Francisella species, O-linked protein glycosylation may be a feature common to members of this genus. PMID:21804002

  3. Identifying Francisella tularensis genes required for growth in host cells

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract: Francisella tularensis is a highly virulent Gram negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cel...

  4. 21 CFR 866.3280 - Francisella tularensis serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Francisella tularensis serological reagents. 866.3280 Section 866.3280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... dye (immunofluorescent reagents) used to identify Francisella tularensis directly from...

  5. Survival and Growth of Francisella tularensis in Acanthamoeba castellanii

    PubMed Central

    Abd, Hadi; Johansson, Thorsten; Golovliov, Igor; Sandström, Gunnar; Forsman, Mats

    2003-01-01

    Francisella tularensis is a highly infectious, facultative intracellular bacterium which causes epidemics of tularemia in both humans and mammals at regular intervals. The natural reservoir of the bacterium is largely unknown, although it has been speculated that protozoa may harbor it. To test this hypothesis, Acanthamoeba castellanii was cocultured with a strain of F. tularensis engineered to produce green fluorescent protein (GFP) in a nutrient-rich medium. GFP fluorescence within A. castellanii was then monitored by flow cytometry and fluorescence microscopy. In addition, extracellular bacteria were distinguished from intracellular bacteria by targeting with monoclonal antibodies. Electron microscopy was used to determine the intracellular location of F. tularensis in A. castellanii, and viable counts were obtained for both extracellular and intracellular bacteria. The results showed that many F. tularensis cells were located intracellularly in A. castellanii cells. The bacteria multiplied within intracellular vacuoles and eventually killed many of the host cells. F. tularensis was found in intact trophozoites, excreted vesicles, and cysts. Furthermore, F. tularensis grew faster in cocultures with A. castellanii than it did when grown alone in the same medium. This increase in growth was accompanied by a decrease in the number of A. castellanii cells. The interaction between F. tularensis and amoebae demonstrated in this study indicates that ubiquitous protozoa might be an important environmental reservoir for F. tularensis. PMID:12514047

  6. Nucleotide sequences specific to Francisella tularensis and methods for the detection of Francisella tularensis

    DOEpatents

    McCready, Paula M.; Radnedge, Lyndsay; Andersen, Gary L.; Ott, Linda L.; Slezak, Thomas R.; Kuczmarski, Thomas A.; Vitalis, Elizabeth A

    2009-02-24

    Described herein is the identification of nucleotide sequences specific to Francisella tularensis that serves as a marker or signature for identification of this bacterium. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  7. Nucleotide sequences specific to Francisella tularensis and methods for the detection of Francisella tularensis

    DOEpatents

    McCready, Paula M.; Radnedge, Lyndsay; Andersen, Gary L.; Ott, Linda L.; Slezak, Thomas R.; Kuczmarski, Thomas A.; Vitalis, Elizabeth A

    2007-02-06

    Described herein is the identification of nucleotide sequences specific to Francisella tularensis that serves as a marker or signature for identification of this bacterium. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  8. Campylobacter pinnipediorum sp. nov., isolated from pinnipeds, comprising Campylobacter pinnipediorum subsp. pinnipediorum subsp. nov. and Campylobacter pinnipediorum subsp. caledonicus subsp. nov.

    PubMed

    Gilbert, Maarten J; Miller, William G; Leger, Judy St; Chapman, Mary H; Timmerman, Arjen J; Duim, Birgitta; Foster, Geoffrey; Wagenaar, Jaap A

    2017-06-01

    During independent diagnostic screenings of otariid seals in California (USA) and phocid seals in Scotland (UK), Campylobacter-like isolates, which differed from the established taxa of the genus Campylobacter, were cultured from abscesses and internal organs of different seal species. A polyphasic study was undertaken to determine the taxonomic position of these six isolates. The isolates were characterized by 16S rRNA gene and AtpA sequence analysis and by conventional phenotypic testing. The whole-genome sequences were determined for all isolates, and the average nucleotide identity (ANI) was determined. The isolates formed a separate phylogenetic clade, divergent from all other taxa of the genus Campylobacter and most closely related to Campylobactermucosalis. Although all isolates showed 100 % 16S rRNA gene sequence homology, AtpA and ANI analyses indicated divergence between the otariid isolates from California and the phocid isolates from Scotland, which warrants subspecies status for each clade. The two subspecies could also be distinguished phenotypically on the basis of catalase activity. This study shows clearly that the isolates obtained from pinnipeds represent a novel species within the genus Campylobacter, for which the name Campylobacter pinnipediorum sp. nov. is proposed. Within this novel species, the Californian isolates represent a separate subspecies, for which the name C. pinnipediorum subsp. pinnipediorum subsp. nov. is proposed. The type strain for both this novel species and subspecies is RM17260T (=LMG 29472T=CCUG 69570T). The Scottish isolates represent another subspecies, for which the name C. pinnipediorum subsp. caledonicus subsp. nov. is proposed. The type strain of this subspecies is M302/10/6T (=LMG 29473T=CCUG 68650T).

  9. Signature proteins for the major clades of Cyanobacteria

    PubMed Central

    2010-01-01

    Background The phylogeny and taxonomy of cyanobacteria is currently poorly understood due to paucity of reliable markers for identification and circumscription of its major clades. Results A combination of phylogenomic and protein signature based approaches was used to characterize the major clades of cyanobacteria. Phylogenetic trees were constructed for 44 cyanobacteria based on 44 conserved proteins. In parallel, Blastp searches were carried out on each ORF in the genomes of Synechococcus WH8102, Synechocystis PCC6803, Nostoc PCC7120, Synechococcus JA-3-3Ab, Prochlorococcus MIT9215 and Prochlor. marinus subsp. marinus CCMP1375 to identify proteins that are specific for various main clades of cyanobacteria. These studies have identified 39 proteins that are specific for all (or most) cyanobacteria and large numbers of proteins for other cyanobacterial clades. The identified signature proteins include: (i) 14 proteins for a deep branching clade (Clade A) of Gloebacter violaceus and two diazotrophic Synechococcus strains (JA-3-3Ab and JA2-3-B'a); (ii) 5 proteins that are present in all other cyanobacteria except those from Clade A; (iii) 60 proteins that are specific for a clade (Clade C) consisting of various marine unicellular cyanobacteria (viz. Synechococcus and Prochlorococcus); (iv) 14 and 19 signature proteins that are specific for the Clade C Synechococcus and Prochlorococcus strains, respectively; (v) 67 proteins that are specific for the Low B/A ecotype Prochlorococcus strains, containing lower ratio of chl b/a2 and adapted to growth at high light intensities; (vi) 65 and 8 proteins that are specific for the Nostocales and Chroococcales orders, respectively; and (vii) 22 and 9 proteins that are uniquely shared by various Nostocales and Oscillatoriales orders, or by these two orders and the Chroococcales, respectively. We also describe 3 conserved indels in flavoprotein, heme oxygenase and protochlorophyllide oxidoreductase proteins that are specific for

  10. VIRULENCE AND CITRULLINE UREIDASE ACTIVITY OF PASTEURELLA TULARENSIS12

    PubMed Central

    Marchette, Nyven J.; Nicholes, Paul S.

    1961-01-01

    Marchette, Nyven J. (University of Utah, Salt Lake City), and Paul S. Nicholes. Virulence and citrulline ureidase activity of Pasteurella tularensis. J. Bacteriol. 82:26–32. 1961.—The presence of a citrulline ureidase system in Pasteurella tularensis strains of high virulence, and its absence in avirulent strains and strains of low virulence was confirmed. The presence of this system, however, was shown to be not directly related to virulence. The only wild strain of P. tularensis tested that lacked a citrulline ureidase system was isolated from a rodent. All the strains, isolated from rabbits, rabbit ticks, a human being, and a horse, that were tested possessed this system. The existence of two North American varieties of P. tularensis was postulated on the basis of virulence and citrulline ureidase activity. PMID:13766500

  11. A novel nanoprobe for the sensitive detection of Francisella tularensis.

    PubMed

    Kim, Ji-eun; Seo, Youngmin; Jeong, Yoon; Hwang, Mintai P; Hwang, Jangsun; Choo, Jaebum; Hong, Jong Wook; Jeon, Jun Ho; Rhie, Gi-eun; Choi, Jonghoon

    2015-11-15

    Francisella tularensis is a human zoonotic pathogen and the causative agent of tularemia, a severe infectious disease. Given the extreme infectivity of F. tularensis and its potential to be used as a biological warfare agent, a fast and sensitive detection method is highly desirable. Herein, we construct a novel detection platform composed of two units: (1) Magnetic beads conjugated with multiple capturing antibodies against F. tularensis for its simple and rapid separation and (2) Genetically-engineered apoferritin protein constructs conjugated with multiple quantum dots and a detection antibody against F. tularensis for the amplification of signal. We demonstrate a 10-fold increase in the sensitivity relative to traditional lateral flow devices that utilize enzyme-based detection methods. We ultimately envision the use of our novel nanoprobe detection platform in future applications that require the highly-sensitive on-site detection of high-risk pathogens.

  12. Francisella tularensis as a potential agent of bioterrorism?

    PubMed

    Maurin, Max

    2015-02-01

    Francisella tularensis is a category A bioterrorism agent. It is the etiological agent of tularemia, a zoonotic disease found throughout the northern hemisphere. The intentional spread of F. tularensis aerosols would probably lead to severe and often fatal pneumonia cases, but also secondary cases from contaminated animals and environments. We are not ready to face such a situation. No vaccine is currently available. A few antibiotics are active against F. tularensis, but strains resistant to these antibiotics could be used in the context of bioterrorism. We need new therapeutic strategies to fight against category A bioterrorism agents, including development of new drugs inhibiting F. tularensis growth and/or virulence, or enhancing the host response to infection by this pathogen.

  13. Virulence and citrulline ureidase activity of Pasteurella tularensis.

    PubMed

    MARCHETTE, N J; NICHOLES, P S

    1961-07-01

    Marchette, Nyven J. (University of Utah, Salt Lake City), and Paul S. Nicholes. Virulence and citrulline ureidase activity of Pasteurella tularensis. J. Bacteriol. 82:26-32. 1961.-The presence of a citrulline ureidase system in Pasteurella tularensis strains of high virulence, and its absence in avirulent strains and strains of low virulence was confirmed. The presence of this system, however, was shown to be not directly related to virulence. The only wild strain of P. tularensis tested that lacked a citrulline ureidase system was isolated from a rodent. All the strains, isolated from rabbits, rabbit ticks, a human being, and a horse, that were tested possessed this system. The existence of two North American varieties of P. tularensis was postulated on the basis of virulence and citrulline ureidase activity.

  14. Methods for Enhanced Culture Recovery of Francisella tularensis

    PubMed Central

    Petersen, Jeannine M.; Schriefer, Martin E.; Gage, Kenneth L.; Montenieri, John A.; Carter, Leon G.; Stanley, Miles; Chu, May C.

    2004-01-01

    Francisella tularensis is found in a wide variety of hosts and extrahost environments, making culture recovery a diagnostic challenge. Here we demonstrate improved recovery times and good sensitivity (90%) when cultures were inoculated on the site of an investigation using fresh tissues. For contaminated specimens, antibiotic supplementation of enriched cysteine heart agar blood culture medium improved recovery of F. tularensis by 81.1%. For transport of tissues, immediate freezing yielded culture recovery rates as high as 94%. PMID:15184180

  15. Clinical Characterization of Aerosolized Francisella tularensis Infection in Cynomolgus macaques

    DTIC Science & Technology

    2016-11-21

    Frederick, MD 21702, United States. Tel: +1 301-619-8495; E-mail address: aysegul.nalca.civ@mail.mil Current Address: @ Division of Animal and Food...Running Head: Aerosolized Francisella tularensis Keywords: Francisella tularensis, tularemia, aerosol, animal model Disclaimer: Opinions...tularemia, the CM was the most appropriate animal species to develop an animal model to test potential medical countermeasures against inhalational

  16. Purification and Biophysical Characterization of the CapA Membrane Protein FTT0807 from Francisella tularensis

    PubMed Central

    2015-01-01

    The capA gene (FTT0807) from Francisella tularensis subsp. tularensis SCHU S4 encodes a 44.4 kDa integral membrane protein composed of 403 amino acid residues that is part of an apparent operon that encodes at least two other membrane proteins, CapB, and CapC, which together play a critical role in the virulence and pathogenesis of this bacterium. The capA gene was overexpressed in Escherichia coli as a C-terminal His6-tagged fusion with a folding reporter green fluorescent protein (frGFP). Purification procedures using several detergents were developed for the fluorescing and membrane-bound product, yielding approximately 30 mg of pure protein per liter of bacterial culture. Dynamic light scattering indicated that CapA-frGFP was highly monodisperse, with a size that was dependent upon both the concentration and choice of detergent. Circular dichroism showed that CapA-frGFP was stable over the range of 3–9 for the pH, with approximately half of the protein having well-defined α-helical and β-sheet secondary structure. The addition of either sodium chloride or calcium chloride at concentrations producing ionic strengths above 0.1 M resulted in a small increase of the α-helical content and a corresponding decrease in the random-coil content. Secondary-structure predictions on the basis of the analysis of the sequence indicate that the CapA membrane protein has two transmembrane helices with a substantial hydrophilic domain. The hydrophilic domain is predicted to contain a long disordered region of 50–60 residues, suggesting that the increase of α-helical content at high ionic strength could arise because of electrostatic interactions involving the disordered region. CapA is shown to be an inner-membrane protein and is predicted to play a key cellular role in the assembly of polysaccharides. PMID:24593131

  17. Identification of Mechanisms for Attenuation of the FSC043 Mutant of Francisella tularensis SCHU S4

    PubMed Central

    Lindgren, Marie; Tancred, Linda; Golovliov, Igor; Conlan, Wayne; Twine, Susan M.

    2014-01-01

    Previously, we identified a spontaneous, essentially avirulent mutant, FSC043, of the highly virulent strain SCHU S4 of Francisella tularensis subsp. tularensis. We have now characterized the phenotype of the mutant and the mechanisms of its attenuation in more detail. Genetic and proteomic analyses revealed that the pdpE gene and most of the pdpC gene were very markedly downregulated and, as previously demonstrated, that the strain expressed partially deleted and fused fupA and fupB genes. FSC043 showed minimal intracellular replication and induced no cell cytotoxicity. The mutant showed delayed phagosomal escape; at 18 h, colocalization with LAMP-1 was 80%, indicating phagosomal localization, whereas the corresponding percentages for SCHU S4 and the ΔfupA mutant were <10%. However, a small subset of the FSC043-infected cells contained up to 100 bacteria with LAMP-1 colocalization of around 30%. The unusual intracellular phenotype was similar to that of the ΔpdpC and ΔpdpC ΔpdpE mutants. Complementation of FSC043 with the intact fupA and fupB genes did not affect the phenotype, whereas complementation with the pdpC and pdpE genes restored intracellular replication and led to marked virulence. Even higher virulence was observed after complementation with both double-gene constructs. After immunization with the FSC043 strain, moderate protection against respiratory challenge with the SCHU S4 strain was observed. In summary, FSC043 showed a highly unusual intracellular phenotype, and based on our findings, we hypothesize that the mutation in the pdpC gene makes an essential contribution to the phenotype. PMID:24935978

  18. Purification and biophysical characterization of the CapA membrane protein FTT0807 from Francisella tularensis.

    PubMed

    Martin-Garcia, Jose M; Hansen, Debra T; Zook, James; Loskutov, Andrey V; Robida, Mark D; Craciunescu, Felicia M; Sykes, Kathryn F; Wachter, Rebekka M; Fromme, Petra; Allen, James P

    2014-04-01

    The capA gene (FTT0807) from Francisella tularensis subsp. tularensis SCHU S4 encodes a 44.4 kDa integral membrane protein composed of 403 amino acid residues that is part of an apparent operon that encodes at least two other membrane proteins, CapB, and CapC, which together play a critical role in the virulence and pathogenesis of this bacterium. The capA gene was overexpressed in Escherichia coli as a C-terminal His6-tagged fusion with a folding reporter green fluorescent protein (frGFP). Purification procedures using several detergents were developed for the fluorescing and membrane-bound product, yielding approximately 30 mg of pure protein per liter of bacterial culture. Dynamic light scattering indicated that CapA-frGFP was highly monodisperse, with a size that was dependent upon both the concentration and choice of detergent. Circular dichroism showed that CapA-frGFP was stable over the range of 3-9 for the pH, with approximately half of the protein having well-defined α-helical and β-sheet secondary structure. The addition of either sodium chloride or calcium chloride at concentrations producing ionic strengths above 0.1 M resulted in a small increase of the α-helical content and a corresponding decrease in the random-coil content. Secondary-structure predictions on the basis of the analysis of the sequence indicate that the CapA membrane protein has two transmembrane helices with a substantial hydrophilic domain. The hydrophilic domain is predicted to contain a long disordered region of 50-60 residues, suggesting that the increase of α-helical content at high ionic strength could arise because of electrostatic interactions involving the disordered region. CapA is shown to be an inner-membrane protein and is predicted to play a key cellular role in the assembly of polysaccharides.

  19. Genome-Wide Identification of Francisella tularensis Virulence Determinants▿

    PubMed Central

    Su, Jingliang; Yang, Jun; Zhao, Daimin; Kawula, Thomas H.; Banas, Jeffrey A.; Zhang, Jing-Ren

    2007-01-01

    Francisella tularensis is a gram-negative pathogen that causes life-threatening infections in humans and has potential for use as a biological weapon. The genetic basis of the F. tularensis virulence is poorly understood. This study screened a total of 3,936 transposon mutants of the live vaccine strain for infection in a mouse model of respiratory tularemia by signature-tagged mutagenesis. We identified 341 mutants attenuated for infection in the lungs. The transposon disruptions were mapped to 95 different genes, virtually all of which are also present in the genomes of other F. tularensis strains, including human pathogenic F. tularensis strain Schu S4. A small subset of these attenuated mutants carried insertions in the genes encoding previously known virulence factors, but the majority of the identified genes have not been previously linked to F. tularensis virulence. Among these are genes encoding putative membrane proteins, proteins associated with stress responses, metabolic proteins, transporter proteins, and proteins with unknown functions. Several attenuated mutants contained disruptions in a putative capsule locus which partially resembles the poly-γ-glutamate capsule biosynthesis locus of Bacillus anthracis, the anthrax agent. Deletional mutation analysis confirmed that this locus is essential for F. tularensis virulence. PMID:17420240

  20. Identification of a Small Molecule That Modifies MglA/SspA Interaction and Impairs Intramacrophage Survival of Francisella tularensis

    PubMed Central

    Wrench, Algevis P.; Gardner, Christopher L.; Gonzalez, Claudio F.; Lorca, Graciela L.

    2013-01-01

    The transcription factors MglA and SspA of Francisella tularensis form a heterodimer complex and interact with the RNA polymerase to regulate the expression of the Francisella pathogenicity island (FPI) genes. These genes are essential for this pathogen’s virulence and survival within host cells. In this study, we used a small molecule screening to identify quinacrine as a thermal stabilizing compound for F. tularensis SCHU S4 MglA and SspA. A bacterial two-hybrid system was used to analyze the in vivo effect of quinacrine on the heterodimer complex. The results show that quinacrine affects the interaction between MglA and SspA, indicated by decreased β-galactosidase activity. Further in vitro analyses, using size exclusion chromatography, indicated that quinacrine does not disrupt the heterodimer formation, however, changes in the alpha helix content were confirmed by circular dichroism. Structure-guided site-directed mutagenesis experiments indicated that quinacrine makes contact with amino acid residues Y63 in MglA, and K97 in SspA, both located in the “cleft” of the interacting surfaces. In F. tularensis subsp. novicida, quinacrine decreased the transcription of the FPI genes, iglA, iglD, pdpD and pdpA. As a consequence, the intramacrophage survival capabilities of the bacteria were affected. These results support use of the MglA/SspA interacting surface, and quinacrine’s chemical scaffold, for the design of high affinity molecules that will function as therapeutics for the treatment of Tularemia. PMID:23372736

  1. Identification of a small molecule that modifies MglA/SspA interaction and impairs intramacrophage survival of Francisella tularensis.

    PubMed

    Wrench, Algevis P; Gardner, Christopher L; Gonzalez, Claudio F; Lorca, Graciela L

    2013-01-01

    The transcription factors MglA and SspA of Francisella tularensis form a heterodimer complex and interact with the RNA polymerase to regulate the expression of the Francisella pathogenicity island (FPI) genes. These genes are essential for this pathogen's virulence and survival within host cells. In this study, we used a small molecule screening to identify quinacrine as a thermal stabilizing compound for F. tularensis SCHU S4 MglA and SspA. A bacterial two-hybrid system was used to analyze the in vivo effect of quinacrine on the heterodimer complex. The results show that quinacrine affects the interaction between MglA and SspA, indicated by decreased β-galactosidase activity. Further in vitro analyses, using size exclusion chromatography, indicated that quinacrine does not disrupt the heterodimer formation, however, changes in the alpha helix content were confirmed by circular dichroism. Structure-guided site-directed mutagenesis experiments indicated that quinacrine makes contact with amino acid residues Y63 in MglA, and K97 in SspA, both located in the "cleft" of the interacting surfaces. In F. tularensis subsp. novicida, quinacrine decreased the transcription of the FPI genes, iglA, iglD, pdpD and pdpA. As a consequence, the intramacrophage survival capabilities of the bacteria were affected. These results support use of the MglA/SspA interacting surface, and quinacrine's chemical scaffold, for the design of high affinity molecules that will function as therapeutics for the treatment of Tularemia.

  2. Survey of Francisella tularensis in Wild Animals in Japan in Areas Where Tularemia is Endemic.

    PubMed

    Hotta, Akitoyo; Tanabayashi, Kiyoshi; Fujita, Osamu; Shindo, Junji; Park, Chu-Ho; Kudo, Noboru; Hatai, Hitoshi; Oyamada, Toshifumi; Yamamoto, Yoshie; Takano, Ai; Kawabata, Hiroki; Sharma, Neekun; Uda, Akihiko; Yamada, Akio; Morikawa, Shigeru

    2016-09-21

    Samples taken from 428 wild animals and 126 ticks, collected from a tularemia-endemic area in Japan between 2005 and 2013, were analyzed for the presence of Francisella tularensis. F. tularensis was isolated from a Japanese hare carcass whereas the samples from live animals and ticks were negative for F. tularensis by real-time PCR. Our results suggest that F. tularensis is still present in Japan although its prevalence is considerably low even in areas where tularemia is endemic.

  3. Notes from the Field: Francisella tularensis Type B Infection from a Fish Hook Injury - Minnesota, 2016.

    PubMed

    Whitten, Tory; Bjork, Jenna; Neitzel, Dave; Smith, Kirk; Sullivan, Maureen; Scheftel, Joni

    2017-02-24

    On June 27, 2016, the Minnesota Department of Health (MDH) Public Health Laboratory (PHL) was notified of a suspected Francisella tularensis isolate cultured at a hospital laboratory. The isolate was confirmed as F. tularensis type B at MDH PHL by reverse transcription-polymerase chain reaction, culture, and direct fluorescent antibody testing. Francisella tularensis subspecies tularensis (type A) and holarctica (type B) bacteria are the causative agents of tularemia.

  4. COMPARATIVE STUDIES OF FRANCISELLA TULARENSIS AND FRANCISELLA NOVICIDA

    PubMed Central

    Owen, C. R.; Buker, E. O.; Jellison, W. L.; Lackman, D. B.; Bell, J. F.

    1964-01-01

    Owen, C. R. (U.S. Public Health Service, Rocky Mountain Laboratory, Hamilton, Mont.), E. O. Buker, W. L. Jellison, D. B. Lackman, and J. F. Bell. Comparative studies of Francisella tularensis and Francisella novicida. J. Bacteriol. 87:676–683. 1964.—Comparative studies of various properties of Francisella tularensis (= Pasteurella tularensis) and F. novicida were performed. The two organisms are very similar morphologically. Growth of both was markedly enhanced by addition of cystine to media, but F. novicida is less fastidious than F. tularensis. The virulence of F. novicida for mice and cavies is lower than that of fresh isolates of F. tularensis. In complement-fixation tests, some cross-reaction occurred when rabbit antisera were used; complement-fixation tests with cavy antisera were specific. Agglutination tests with sera from both rabbits and cavies were specific. Nonliving vaccines of the two organisms (extracts, whole dead cells) conferred no cross-protection to mice; living attenuated vaccines conferred cross-protection which was more transitory than was specific protection. Passive cutaneous anaphylaxis (PCA) tests were highly specific. Absorption of antisera with homologous organisms removed all PCA reactivity, while absorption with heterologous organisms left it almost intact. Hemagglutination and hemagglutination-inhibition tests were specific. It was concluded that the two organisms are sufficiently similar to belong in the same genus but sufficiently different to be retained in separate species. Images PMID:14127585

  5. Benzimidazole-Based Antibacterial Agents Against F. tularensis

    PubMed Central

    Kumar, Kunal; Awasthi, Divya; Lee, Seung-Yub; Cummings, Jason E.; Knudson, Susan E.; Slayden, Richard A.; Ojima, Iwao

    2013-01-01

    Francisella tularensis is a highly virulent pathogenic bacterium. In order to identify novel potential antibacterial agents against F. tularensis, libraries of trisubstituted benzimidazoles were screened against F. tularensis LVS strain. In a preliminary screening assay, remarkably, 23 of 2,5,6- and 2,5,7-trisubstituted benzimidazoles showed excellent activity exhibiting greater than 90 % growth inhibition at 1 µg/mL. Among those hits, 21 compounds showed MIC90 values in the range of 0.35–48.6 µg/mL after accurate MIC determination. In ex-vivo efficacy assays, four of these compounds exhibited 2–3 Log reduction in colony forming units (CFU) per mL at concentrations of 10 and 50 µg/mL. PMID:23623254

  6. Symbiosis with Francisella tularensis provides resistance to pathogens in the silkworm

    PubMed Central

    Suzuki, Jin; Uda, Akihiko; Watanabe, Kenta; Shimizu, Takashi; Watarai, Masahisa

    2016-01-01

    Francisella tularensis, the causative agent of tularemia, is a highly virulent facultative intracellular pathogen found in a wide range of animals, including arthropods, and environments. This bacterium has been known for over 100 years, but the lifestyle of F. tularensis in natural reservoirs remains largely unknown. Thus, we established a novel natural host model for F. tularensis using the silkworm (Bombyx mori), which is an insect model for infection by pathogens. F. tularensis established a symbiosis with silkworms, and bacteria were observed in the hemolymph. After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria. These results suggest that silkworms acquire host resistance via their symbiosis with F. tularensis, which may have important fitness benefits in natural reservoirs. PMID:27507264

  7. Characterization of Francisella tularensis Outer Membrane Proteins▿ †

    PubMed Central

    Huntley, Jason F.; Conley, Patrick G.; Hagman, Kayla E.; Norgard, Michael V.

    2007-01-01

    Francisella tularensis is a gram-negative coccobacillus that is capable of causing severe, fatal disease in a number of mammalian species, including humans. Little is known about the proteins that are surface exposed on the outer membrane (OM) of F. tularensis, yet identification of such proteins is potentially fundamental to understanding the initial infection process, intracellular survival, virulence, immune evasion and, ultimately, vaccine development. To facilitate the identification of putative F. tularensis outer membrane proteins (OMPs), the genomes of both the type A strain (Schu S4) and type B strain (LVS) were subjected to six bioinformatic analyses for OMP signatures. Compilation of the bioinformatic predictions highlighted 16 putative OMPs, which were cloned and expressed for the generation of polyclonal antisera. Total membranes were extracted from both Schu S4 and LVS by spheroplasting and osmotic lysis, followed by sucrose density gradient centrifugation, which separated OMs from cytoplasmic (inner) membrane and other cellular compartments. Validation of OM separation and enrichment was confirmed by probing sucrose gradient fractions with antibodies to putative OMPs and inner membrane proteins. F. tularensis OMs typically migrated in sucrose gradients between densities of 1.17 and 1.20 g/ml, which differed from densities typically observed for other gram-negative bacteria (1.21 to 1.24 g/ml). Finally, the identities of immunogenic proteins were determined by separation on two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometric analysis. This is the first report of a direct method for F. tularensis OM isolation that, in combination with computational predictions, offers a more comprehensive approach for the characterization of F. tularensis OMPs. PMID:17114266

  8. Recombinant attenuated Listeria monocytogenes vaccine expressing Francisella tularensis IglC induces protection in mice against aerosolized Type A F. tularensis.

    PubMed

    Jia, Qingmei; Lee, Bai-Yu; Clemens, Daniel L; Bowen, Richard A; Horwitz, Marcus A

    2009-02-18

    Fransicella tularensis, the causative agent of tularemia, is in the top category (Category A) of potential agents of bioterrorism. To develop a safer vaccine against aerosolized F. tularensis, we have employed an attenuated Listeria monocytogenes, which shares with F. tularensis an intracellular and extraphagosomal lifestyle, as a delivery vehicle for F. tularensis antigens. We constructed recombinant L. monocytogenes (rLm) vaccines stably expressing seven F. tularensis proteins including IglC (rLm/iglC), and tested their immunogenicity and protective efficacy against lethal F. tularensis challenge in mice. Mice immunized intradermally with rLm/iglC developed significant cellular immune responses to F. tularensis IglC as evidenced by lymphocyte proliferation and CD4+ and CD8+ T-cell intracellular expression of interferon gamma. Moreover, mice immunized with rLm/iglC were protected against lethal challenge with F. tularensis LVS administered by the intranasal route, a route chosen to mimic airborne infection, and, most importantly, against aerosol challenge with the highly virulent Type A F. tularensis SchuS4 strain.

  9. Recombinant Attenuated Listeria monocytogenes Vaccine Expressing Francisella tularensis IglC Induces Protection in Mice Against Aerosolized Type A F. tularensis

    PubMed Central

    Jia, Qingmei; Lee, Bai-Yu; Clemens, Daniel L.; Bowen, Richard A.; Horwitz, Marcus A.

    2009-01-01

    Fransicella tularensis, the causative agent of tularemia, is in the top category (Category A) of potential agents of bioterrorism. To develop a safer vaccine against aerosolized F. tularensis, we have employed an attenuated Listeria monocytogenes, which shares with F. tularensis an intracellular and extraphagosomal lifestyle, as a delivery vehicle for F. tularensis antigens. We constructed recombinant L. monocytogenes (rLm) vaccines stably expressing 7 F. tularensis proteins including IglC (rLm/iglC), and tested their immunogenicity and protective efficacy against lethal F. tularensis challenge in mice. Mice immunized intradermally with rLm/iglC developed significant cellular immune responses to F. tularensis IglC as evidenced by lymphocyte proliferation and CD4+ and CD8+ T-cell intracellular expression of interferon gamma. Moreover, mice immunized with rLm/iglC were protected against lethal challenge with F. tularensis LVS administered by the intranasal route, a route chosen to mimic airborne infection, and, most importantly, against aerosol challenge with the highly virulent Type A F. tularensis SchuS4 strain. PMID:19126421

  10. Structure of Francisella tularensis peptidyl-tRNA hydrolase

    PubMed Central

    Clarke, Teresa E.; Romanov, Vladimir; Lam, Robert; Gothe, Scott A.; Peddi, Srinivasa R.; Razumova, Ekaterina B.; Lipman, Richard S. A.; Branstrom, Arthur A.; Chirgadze, Nickolay Y.

    2011-01-01

    The rational design of novel antibiotics for bacteria involves the identification of inhibitors for enzymes involved in essential biochemical pathways in cells. In this study, the cloning, expression, purification, crystallization and structure of the enzyme peptidyl-tRNA hydrolase from Francisella tularensis, the causative agent of tularemia, was performed. The structure of F. tularensis peptidyl-tRNA hydrolase is comparable to those of other bacterial peptidyl-tRNA hydrolases, with most residues in the active site conserved amongst the family. The resultant reagents, structural data and analyses provide essential information for the structure-based design of novel inhibitors for this class of proteins. PMID:21505237

  11. Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus

    USDA-ARS?s Scientific Manuscript database

    The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...

  12. Geographic Differentiation of Francisella Tularensis using Molecular Methods

    DTIC Science & Technology

    2006-05-01

    Medicina Veterinaria , 1998. 15: p. 418-423. 32. de la Puente-Redondo, V.A., et al., Comparison of different PCR approaches for typing of Francisella...Department of Animal Health, Facultad de Veterinaria , Leon, Spain, 4 for contribution of his entire F. tularensis strain DNA collection. I thank Dr

  13. Multiple Locus Variable Number Tandem Repeat Analysis of Francisella tularensis

    DTIC Science & Technology

    2009-10-01

    populations within Canada and worldwide would help to distinguish a natural outbreak from an intentional use situation. This would require a large...Microbiol., 27, 1601–1608. [7] Titball, R. W.; Johansson, A. and Forsman, M. (2003), Will the enigma of Francisella tularensis virulence soon be

  14. Transstadial Transmission of Francisella tularensis holarctica in Mosquitoes, Sweden

    PubMed Central

    Andersson, Ann-Christin; Bäckman, Stina; Schäfer, Martina L.; Forsman, Mats; Thelaus, Johanna

    2011-01-01

    In Sweden, human cases of tularemia caused by Francisella tularensis holarctica are assumed to be transmitted by mosquitoes, but how mosquito vectors acquire and transmit the bacterium is not clear. To determine how transmission of this bacterium occurs, mosquito larvae were collected in an area where tularemia is endemic, brought to the laboratory, and reared to adults in their original pond water. Screening of adult mosquitoes by real-time PCR demonstrated F. tularensis lpnA sequences in 14 of the 48 mosquito pools tested; lpnA sequences were demonstrated in 6 of 9 identified mosquito species. Further analysis confirmed the presence of F. tularensis holarctica–specific 30-bp deletion region sequences (FtM19inDel) in water from breeding containers and in 3 mosquito species (Aedes sticticus, Ae. vexans, and Ae. punctor) known to take blood from humans. Our results suggest that the mosquitoes that transmit F. tularensis holarctica during tularemia outbreaks acquire the bacterium already as larvae. PMID:21529386

  15. Clinically mild tularemia associated with tick-borne Francisella tularensis.

    PubMed

    Schmid, G P; Kornblatt, A N; Connors, C A; Patton, C; Carney, J; Hobbs, J; Kaufmann, A F

    1983-07-01

    Between May 9 and July 3, 1979, 12 cases of glandular or ulceroglandular tularemia occurred in residents of the Crow Indian Reservation in southcentral Montana; only 13 cases had been reported from this geographic area in the preceding 25 years. The illness was mild, characterized by fever and cervical or occipital adenopathy. Systemic symptoms were self-limited although residual lymphadenopathy was common. Francisella tularensis was isolated from ticks (Dermacentor variabilis), the suspected vector. The strains of F tularensis did not ferment glycerol and thus were identified as type B rather than the more virulent type A. None of 83 adults hospitalized in an urban area 50 miles from the reservation had agglutination titers of antibody to F tularensis of greater than or equal to 1:40 compared with eight of 77 patients at the reservation hospital (P less than 0.01). Mild tularemia in reservation residents may have gone unrecognized; similar illness due to type B F tularensis may occur elsewhere.

  16. Water as Source of Francisella tularensis Infection in Humans, Turkey

    PubMed Central

    Kilic, Selcuk; Birdsell, Dawn N.; Karagöz, Alper; Çelebi, Bekir; Bakkaloglu, Zekiye; Arikan, Muzaffer; Sahl, Jason W.; Mitchell, Cedar; Rivera, Andrew; Maltinsky, Sara; Keim, Paul; Üstek, Duran; Durmaz, Rıza

    2015-01-01

    Francisella tularensis DNA extractions and isolates from the environment and humans were genetically characterized to elucidate environmental sources that cause human tularemia in Turkey. Extensive genetic diversity consistent with genotypes from human outbreaks was identified in environmental samples and confirmed water as a source of human tularemia in Turkey. PMID:26583383

  17. Francisella tularensis endocarditis: two case reports and a literature review.

    PubMed

    Gaci, Rostane; Alauzet, Corentine; Selton-Suty, Christine; Lozniewski, Alain; Pulcini, Céline; May, Thierry; Goehringer, François

    2017-02-01

    We report the first two cases of infective endocarditis caused by Francisella tularensis in Europe (two cases have previously been reported outside Europe). We suggest clinicians should consider tularemia as a possible diagnosis in endemic regions in cases of culture-negative endocarditis.

  18. The use of Matrix-assisted laser desorption ionization-time of flight mass spectrometry in the identification of Francisella tularensis.

    PubMed

    Karatuna, Onur; Celebi, Bekir; Can, Simge; Akyar, Isin; Kilic, Selcuk

    2016-01-15

    Francisella tularensis is the cause of the zoonotic disease tularemia and is classified among highly pathogenic bacteria (HPB) due to its low infection dose and potential for airborne transmission. In the case of HBP, there is a pressing need for rapid, accurate and reliable identification. Phenotypic identification of Francisella species is inappropriate for clinical microbiology laboratories because it is time-consuming, hazardous and subject to variable interpretation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was recently evaluated as a useful tool for the rapid identification of a variety of microorganisms. In this study, we evaluated the use of MALDI-TOF MS for the rapid identification of Francisella tularensis and differentiation of its subspecies. Using national collection of Francisella isolates from the National Tularemia Reference Laboratory (Public Health Institute of Turkey, Ankara), a total of 75 clinical isolates were investigated by species and subspecies-specific polymerase chain reaction (PCR) test and MALDI-TOF MS. All isolates were originally identified as F. tularensis subsp. holarctica due to RD1 subspecies-specific PCR result. For all isolates MALDI-TOF MS provided results in concordance with subspecies-specific PCR analysis. Although PCR-based methods are effective in identifying Francisella species, they are labor-intensive and take longer periods of time to obtain the results when compared with MALDI-TOF MS. MALDI-TOF MS appeared to be a rapid, reliable and cost-effective identification technique for Francisella spp. Shorter analysis time and low cost make this an appealing new option in microbiology laboratories.

  19. The use of matrix-assisted laser desorption ionization-time of flight mass spectrometry in the identification of Francisella tularensis

    PubMed Central

    Karatuna, Onur; Çelebi, Bekir; Can, Simge; Akyar, Işın; Kiliç, Selçuk

    2016-01-01

    Francisella tularensis is the cause of the zoonotic disease tularemia and is classified among highly pathogenic bacteria (HPB) due to its low infection dose and potential for airborne transmission. In the case of HBP, there is a pressing need for rapid, accurate and reliable identification. Phenotypic identification of Francisella species is inappropriate for clinical microbiology laboratories because it is time-consuming, hazardous and subject to variable interpretation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was recently evaluated as a useful tool for the rapid identification of a variety of microorganisms. In this study, we evaluated the use of MALDI-TOF MS for the rapid identification of Francisella tularensis and differentiation of its subspecies. Using national collection of Francisella isolates from the National Tularemia Reference Laboratory (Public Health Institution of Turkey, Ankara), a total of 75 clinical isolates were investigated by species and subspecies-specific polymerase chain reaction (PCR) test and MALDI-TOF MS. All isolates were originally identified as F. tularensis subsp. holarctica according to region of difference 1 (RD1) subspecies-specific PCR results. For all isolates MALDI-TOF MS provided results in concordance with subspecies-specific PCR analysis. Although PCR-based methods are effective in identifying Francisella species, they are labor-intensive and take longer periods of time to obtain the results when compared with MALDI-TOF MS. MALDI-TOF MS appeared to be a rapid, reliable and cost-effective identification technique for Francisella spp. Shorter analysis time and low cost make this an appealing new option in microbiology laboratories. PMID:26773181

  20. Intracellular fate of Francisella tularensis within arthropod-derived cells.

    PubMed

    Santic, Marina; Akimana, Christine; Asare, Rexford; Kouokam, Joseph C; Atay, Safinur; Kwaik, Yousef Abu

    2009-06-01

    Since transmission of Francisella tularensis into the mammalian host occurs via arthropod vectors such as ticks, mosquitoes, horseflies and deerflies, recent studies have established Drosophila melanogaster as an arthropod vector model system. Nothing is known about the intracellular fate of F. tularensis within arthropod-derived cells, and the role of this host-parasite adaptation in the evolution of this pathogen to infect mammals. In this report, we explored intracellular trafficking of F. tularensis ssp. novicida in D. melanogaster-derived S2 cells. First, we show that similar to the F. tularensis ssp. holarctica-derived LVS strain, F. tularensis ssp. novicida is highly infectious, replicates exponentially within S2 cells and within adult flies, and is fatal to adult fruit flies in a dose-dependent manner, while the iglC, iglD and mglA mutants are defective. Using electron and fluorescence microscopy-based phagosome integrity assays, we show that the wild-type strain escapes into the cytosol of S2 cells within 30-60 min post infection and by 6 h, 90% were cytosolic. In contrast, approximately 40-50% of the iglC and iglD mutants escape into the cytosol by 6 h while the other subpopulation becomes enclosed within multilamellar vesicles (MLVs). Pre-treatment of S2 cells with the autophagy inhibitor methyl adenine blocks formation of the MLVs and all the vacuolar subpopulation of the iglC and iglD mutant bacteria become enclosed within single membrane-surrounded vacuoles. Endocytic trafficking studies of F. tularensis within S2 cells show transient colocalization of the bacterial phagosome with D. melanogaster LAMP2-GFP fusion but not with lysosomes pre-loaded with fluorescent dextran. Our data show that MLVs harbouring the iglC mutant acquire Lamp2 and dextran while MLVs harbouring the iglD mutant exclude these late endosomal and lysosomal markers. Our data indicate crucial differences in the role of the pathogenicity island-encoded proteins in modulating

  1. Toward an integrated system of clade names.

    PubMed

    de Queiroz, Kevin

    2007-12-01

    Although the proposition that higher taxa should correspond to clades is widely accepted, current nomenclature does not distinguish clearly between different clades in nested series. In particular, the same name is often applied to a total clade, its crown clade, and clades originating with various nodes, branches, and apomorphies in between. An integrated system of clade names is described based on categories of clades defined with respect to lineages that have survived to the present time. In this system, the most widely known names are applied to crown clades, the names of total clades are formed by adding a standard prefix to the names of the corresponding crowns, and the names of apomorphy clades describe the specific apomorphies with which they originated. Relative to traditional approaches, this integrated approach to naming clades is both more precise concerning the associations of names with particular clades and more efficient with regard to the cognitive effort required to recognize the names of corresponding crown and total clades. It also seems preferable to five alternatives that could be used to make the same distinctions. The integrated system of clade names has several advantages, including the facilitation of communication among biologists who study distantly related clades, promoting a broader conceptualization of the origins of distinctive clades of extant organisms and emphasizing the continuous nature of evolution.

  2. Amblyomma americanum as a Bridging Vector for Human Infection with Francisella tularensis

    PubMed Central

    2015-01-01

    The γ-proteobacterium Francisella tularensis causes seasonal tick-transmitted tularemia outbreaks in natural rabbit hosts and incidental infections in humans in the south-central United States. Although Dermacentor variabilis is considered a primary vector for F. tularensis, Amblyomma americanum is the most abundant tick species in this endemic region. A systematic study of F. tularensis colonization of A. americanum was undertaken to better understand its potential to serve as an overwintering reservoir for F. tularensis and as a bridging vector for human infections. Colony-reared A. americanum were artificially fed F. tularensis subspecies holarctica strain LVS via glass capillaries and colonization levels determined. Capillary-fed larva and nymph were initially infected with 104 CFU/tick which declined prior to molting for both stages, but rebounded post-molting in nymphs and persisted in 53% at 103 to 108 CFU/nymph at 168 days post-capillary feeding (longest sampling time in the study). In contrast, only 18% of adults molted from colonized nymphs maintained LVS colonization at 101 to 105 CFU/adult at 168 days post-capillary feeding (longest sampling time). For adults, LVS initially colonized the gut and disseminated to salivary glands by 24 h and had an ID50 of <5CFU in mice. Francisella tularensis infected the ovaries of gravid females, but transmission to eggs was infrequent and transovarial transmission to hatched larvae was not observed. The prolonged persistence of F. tularensis in A. americanum nymphs supports A. americanum as an overwintering reservoir for F. tularensis from which seasonal epizootics may originate; however, although the rapid dissemination of F. tularensis from gut to salivary glands in adults A. americanum is compatible with intermittent feeding adult males acting as bridging vectors for incidental F. tularensis infections of humans, acquisition of F. tularensis by adults may be unlikely based on adult feeding preference for larger

  3. Role of Glycosylation/Deglycolysation Processes in Francisella tularensis Pathogenesis.

    PubMed

    Barel, Monique; Charbit, Alain

    2017-01-01

    Francisella tularensis is able to invade, survive and replicate inside a variety of cell types. However, in vivo F. tularensis preferentially enters host macrophages where it rapidly escapes to the cytosol to avoid phagosomal stresses and to multiply to high numbers. We previously showed that human monocyte infection by F. tularensis LVS triggered deglycosylation of the glutamine transporter SLC1A5. However, this deglycosylation, specifically induced by Francisella infection, was not restricted to SLC1A5, suggesting that host protein deglycosylation processes in general might contribute to intracellular bacterial adaptation. Indeed, we later found that Francisella infection modulated the transcription of numerous glycosidase and glycosyltransferase genes in human macrophages and analysis of cell extracts revealed an important increase of N and O-protein glycosylation. In eukaryotic cells, glycosylation has significant effects on protein folding, conformation, distribution, stability, and activity and dysfunction of protein glycosylation may lead to development of diseases like cancer and pathogenesis of infectious diseases. Pathogenic bacteria have also evolved dedicated glycosylation machineries and have notably been shown to use these glycoconjugates as ligands to specifically interact with the host. In this review, we will focus on Francisella and summarize our current understanding of the importance of these post-translational modifications on its intracellular niche adaptation.

  4. [Surveillance of Francisella tularensis infection in dogs in Bratislava].

    PubMed

    Gurycová, D; Kopcok, M

    1992-03-01

    Out of 548 serologically investigated dogs from Bratislava and other regions of Slovakia and Moravia, antibodies to F. tularensis were found in 16.4% (Tabs. I, II). In all the investigated groups of dogs from the region of Bratislava the highest seroprevalence by F. tularensis was recorded in watch dogs kept on farms and in cooperatives--37.5% and in rambling dogs--20.7% (Tab. I). The highest seropositivity was found in one to three year old dogs--22.2% (Tab. III). A similar degree of seroprevalence was also observed in one to three years old police dogs which came from the endemic region of tularemia--West Slovakia (19.3%) and East Slovakia (25.6%)--Tab. IV. These facts indicate the persistence of active natural foci in these regions. Serological investigations of the relatively great number of dogs from different regions of Slovakia showed that the presence of F. tularensis antibodies in this animal species, mainly in the watch dogs group, can be taken as a convenient marker or indicator of the existence of active natural foci of tularemia and as a suitable component for surveillance of this diseases.

  5. Role of Glycosylation/Deglycolysation Processes in Francisella tularensis Pathogenesis

    PubMed Central

    Barel, Monique; Charbit, Alain

    2017-01-01

    Francisella tularensis is able to invade, survive and replicate inside a variety of cell types. However, in vivo F. tularensis preferentially enters host macrophages where it rapidly escapes to the cytosol to avoid phagosomal stresses and to multiply to high numbers. We previously showed that human monocyte infection by F. tularensis LVS triggered deglycosylation of the glutamine transporter SLC1A5. However, this deglycosylation, specifically induced by Francisella infection, was not restricted to SLC1A5, suggesting that host protein deglycosylation processes in general might contribute to intracellular bacterial adaptation. Indeed, we later found that Francisella infection modulated the transcription of numerous glycosidase and glycosyltransferase genes in human macrophages and analysis of cell extracts revealed an important increase of N and O-protein glycosylation. In eukaryotic cells, glycosylation has significant effects on protein folding, conformation, distribution, stability, and activity and dysfunction of protein glycosylation may lead to development of diseases like cancer and pathogenesis of infectious diseases. Pathogenic bacteria have also evolved dedicated glycosylation machineries and have notably been shown to use these glycoconjugates as ligands to specifically interact with the host. In this review, we will focus on Francisella and summarize our current understanding of the importance of these post-translational modifications on its intracellular niche adaptation. PMID:28377902

  6. Seroprevalence study of Francisella tularensis among hunters in Germany.

    PubMed

    Jenzora, Andrea; Jansen, Andreas; Ranisch, Heidrun; Lierz, Michael; Wichmann, Ole; Grunow, Roland

    2008-07-01

    In 2005 and 2006, Francisella tularensis unexpectedly reemerged in western Germany, when several semi-free-living marmosets (Callithrix jacchus) in a research facility died from tularemia and a group of hare hunters became infected. It is believed that hunters may have an elevated risk to be exposed to zoonotic pathogens, including F. tularensis. A previous cross-sectional study of the German population (n=6883) revealed a prevalence of 0.2%. Here, we investigated 286 sera from individuals mainly hunting in districts with emerging tularemia cases (group 1) and 84 sera from a region currently not conspicuous for tularemia (group 2). Methods included standard enzyme-linked immunosorbent assay (ELISA), Western blot analysis and indirect immunofluorescence assay. We found five out of the 286 hunters (1.7%; 95% CI 0.6-4.0%) in group 1 positive with standard ELISA and Western blot, but none in the Berlin area (group 2; 95% CI 0-0.04%). Group 1 showed an elevated risk for hunters to be seropositive for F. tularensis compared with the cross-sectional study (OR=7.7; P<0.001). This indicates a higher prevalence for tularemia in hunters of a suspected endemic region of Germany.

  7. Clavibacter michiganensis subsp. capsici subsp. nov., causing bacterial canker disease in pepper.

    PubMed

    Oh, Eom-Ji; Bae, Chungyun; Lee, Han-Beoyl; Hwang, In Sun; Lee, Hyok-In; Yea, Mi Chi; Yim, Kyu-Ock; Lee, Seungdon; Heu, Sunggi; Cha, Jae-Soon; Oh, Chang-Sik

    2016-10-01

    Clavibacter michiganensis is a Gram-stain-positive bacterium with eight subspecies. One of these subspecies is C. michiganensis subsp. michiganensis, which causes bacterial canker disease in tomato. Bacterial strains showing very similar canker disease symptoms to those of a strain originally classified as C. michiganensis have been isolated from pepper. In this paper, we reclassified strains isolated from pepper. On the basis of phylogenetic analysis with 16S rRNA gene sequences, the strains isolated from pepper were grouped in a separate clade from other subspecies of C. michiganensis. Biochemical, physiological and genetic characteristics of strain PF008T, which is the representative strain of the isolates from pepper, were examined in this study. Based on multi-locus sequence typing and other biochemical and physiological features including colony color, utilization of carbon sources and enzyme activities, strain PF008T was categorically differentiated from eight subspecies of C. michiganensis. Moreover, genome analysis showed that the DNA G+C content of strain PF008T is 73.2 %. These results indicate that PF008T is distinct from other known subspecies of C. michiganensis. Therefore, we propose a novel subspecies, C. michiganensis subsp. capsici, causing bacterial canker disease in pepper, with a type strain of PF008T (=KACC 18448T=LMG 29047T).

  8. UV-C Inactivation of Francisella tularensis Utah-112 on agar surfaces, stainless steel, and foods

    USDA-ARS?s Scientific Manuscript database

    Francisella tularensis has been identified as a microorganism of concern in the field of food security. There is currently very little information on the ability to inactivate F. tularensis on foods using non-thermal processing technologies. The ability of ultraviolet light (UV-C) to inactivate F....

  9. Large Direct Repeats Flank Genomic Rearrangements between a New Clinical Isolate of Francisella tularensis subsp. tularensis A1 and Schu S4

    DTIC Science & Technology

    2010-02-03

    Silver Spring, Maryland, United States of America, 7 Oak Ridge National Laboratory, Oak Ridge, Tennessee , United States of America Abstract Francisella...Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathoge- nicity islands. Bioinformatics

  10. Recombinase Polymerase Amplification Assay for Rapid Detection of Francisella tularensis

    PubMed Central

    Euler, Milena; Wang, Yongjie; Otto, Peter; Tomaso, Herbert; Escudero, Raquel; Anda, Pedro; Hufert, Frank T.

    2012-01-01

    Several real-time PCR approaches to develop field detection for Francisella tularensis, the infectious agent causing tularemia, have been explored. We report the development of a novel qualitative real-time isothermal recombinase polymerase amplification (RPA) assay for use on a small ESEQuant Tube Scanner device. The analytical sensitivity and specificity were tested using a plasmid standard and DNA extracts from infected rabbit tissues. The assay showed a performance comparable to real-time PCR but reduced the assay time to 10 min. The rapid RPA method has great application potential for field use or point-of-care diagnostics. PMID:22518861

  11. Recombinase polymerase amplification assay for rapid detection of Francisella tularensis.

    PubMed

    Euler, Milena; Wang, Yongjie; Otto, Peter; Tomaso, Herbert; Escudero, Raquel; Anda, Pedro; Hufert, Frank T; Weidmann, Manfred

    2012-07-01

    Several real-time PCR approaches to develop field detection for Francisella tularensis, the infectious agent causing tularemia, have been explored. We report the development of a novel qualitative real-time isothermal recombinase polymerase amplification (RPA) assay for use on a small ESEQuant Tube Scanner device. The analytical sensitivity and specificity were tested using a plasmid standard and DNA extracts from infected rabbit tissues. The assay showed a performance comparable to real-time PCR but reduced the assay time to 10 min. The rapid RPA method has great application potential for field use or point-of-care diagnostics.

  12. Interaction of Francisella tularensis bacterial cells with dynamic speckles

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega V.; Ulyanov, Sergey S.; Sazanova, Elena V.; Zudina, Irina; Zhang, Zhihong; Sibo, Zhou; Luo, Qingming

    2006-08-01

    Influence of low-coherent speckles on the colonies grows is investigated. It has been demonstrated that effects of light on the inhibition of cells (Francisella Tularensis) are caused by speckle dynamics. The regimes of illumination of cell suspension with purpose of devitalization of hazard bacteria, caused very dangerous infections, such as tularemia, are found. Mathematical model of interaction of low-coherent laser radiation with bacteria suspension has been proposed. Computer simulations of the processes of laser-cells interaction have been carried out. Role of coherence of light in the processes of laser-cell interaction is analyzed.

  13. Genetic identification of unique immunological responses in mice infected with virulent and attenuated Francisella tularensis

    PubMed Central

    Kingry, Luke C.; Troyer, Ryan M.; Marlenee, Nicole L.; Bielefeldt-Ohmann, Helle; Bowen, Richard A.; Schenkel, Alan R.; Dow, Steven W.; Slayden, Richard A.

    2010-01-01

    Francisella tularensis is a category A select agent based on its infectivity and virulence but disease mechanisms in Francisella tularensis infection remain poorly understood. Murine pulmonary models of infection were therefore employed to assess and compare dissemination and pathology and to elucidate the host immune response to infection with the highly virulent Type A F. tularensis strain Schu4 versus the less virulent Type B live vaccine strain (LVS). We found that dissemination and pathology in the spleen was significantly greater in mice infected with F. tularensis Schu4 compared to mice infected with F. tularensis LVS. Using gene expression profiling to compare the response to infection with the two F. tularensis strains, we found that there were significant differences in the expression of genes involved in the apoptosis pathway, antigen processing and presentation pathways, and inflammatory response pathways in mice infected with Schu4 when compared to LVS. These transcriptional differences coincided with marked differences in dissemination and severity of organ lesions in mice infected with the Schu4 and LVS strains. Therefore, these findings indicate that altered apoptosis, antigen presentation and production of inflammatory mediators explain the differences in pathogenicity of F. tularensis Schu4 and LVS. PMID:21070859

  14. Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth.

    PubMed

    Steele, Shaun; Brunton, Jason; Ziehr, Benjamin; Taft-Benz, Sharon; Moorman, Nathaniel; Kawula, Thomas

    2013-08-01

    Francisella tularensis is a highly virulent intracellular pathogen that invades and replicates within numerous host cell types including macrophages, hepatocytes and pneumocytes. By 24 hours post invasion, F. tularensis replicates up to 1000-fold in the cytoplasm of infected cells. To achieve such rapid intracellular proliferation, F. tularensis must scavenge large quantities of essential carbon and energy sources from the host cell while evading anti-microbial immune responses. We found that macroautophagy, a eukaryotic cell process that primarily degrades host cell proteins and organelles as well as intracellular pathogens, was induced in F. tularensis infected cells. F. tularensis not only survived macroautophagy, but optimal intracellular bacterial growth was found to require macroautophagy. Intracellular growth upon macroautophagy inhibition was rescued by supplying excess nonessential amino acids or pyruvate, demonstrating that autophagy derived nutrients provide carbon and energy sources that support F. tularensis proliferation. Furthermore, F. tularensis did not require canonical, ATG5-dependent autophagy pathway induction but instead induced an ATG5-independent autophagy pathway. ATG5-independent autophagy induction caused the degradation of cellular constituents resulting in the release of nutrients that the bacteria harvested to support bacterial replication. Canonical macroautophagy limits the growth of several different bacterial species. However, our data demonstrate that ATG5-independent macroautophagy may be beneficial to some cytoplasmic bacteria by supplying nutrients to support bacterial growth.

  15. Francisella tularensis infection in a stone marten (Martes foina) without classic pathological lesions consistent with tularemia.

    PubMed

    Origgi, Francesco C; Wu, Natacha; Pilo, Paola

    2013-07-01

    The current report describes the isolation and typing of a strain of Francisella tularensis, the causative agent of tularemia, from the spleen of a stone marten (Martes foina) showing no classic lesions consistent with the disease. The identification of this bacterium, belonging to the World Health Organization risk 3 category and considered to have a low infectious dose, could be performed only because of an ongoing project screening F. tularensis in the environment sensu lato. The findings described herein should alert diagnostic laboratories of the possible presence of F. tularensis in clinical samples in countries where tularemia is endemic even in cases with no consistent anamnesis and from unsuspected animal species.

  16. Identifying Francisella tularensis Genes Required for Growth in Host Cells

    PubMed Central

    Brunton, J.; Steele, S.; Miller, C.; Lovullo, E.; Taft-Benz, S.

    2015-01-01

    Francisella tularensis is a highly virulent Gram-negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cells, including, but not limited to, macrophages and epithelial cells. We developed a luminescence reporter system to facilitate a large-scale transposon mutagenesis screen to identify genes required for growth in macrophage and epithelial cell lines. We screened 7,454 individual mutants, 269 of which exhibited reduced intracellular growth. Transposon insertions in the 269 growth-defective strains mapped to 68 different genes. FTT_0924, a gene of unknown function but highly conserved among Francisella species, was identified in this screen to be defective for intracellular growth within both macrophage and epithelial cell lines. FTT_0924 was required for full Schu S4 virulence in a murine pulmonary infection model. The ΔFTT_0924 mutant bacterial membrane is permeable when replicating in hypotonic solution and within macrophages, resulting in strongly reduced viability. The permeability and reduced viability were rescued when the mutant was grown in a hypertonic solution, indicating that FTT_0924 is required for resisting osmotic stress. The ΔFTT_0924 mutant was also significantly more sensitive to β-lactam antibiotics than Schu S4. Taken together, the data strongly suggest that FTT_0924 is required for maintaining peptidoglycan integrity and virulence. PMID:25987704

  17. Identifying Francisella tularensis genes required for growth in host cells.

    PubMed

    Brunton, J; Steele, S; Miller, C; Lovullo, E; Taft-Benz, S; Kawula, T

    2015-08-01

    Francisella tularensis is a highly virulent Gram-negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cells, including, but not limited to, macrophages and epithelial cells. We developed a luminescence reporter system to facilitate a large-scale transposon mutagenesis screen to identify genes required for growth in macrophage and epithelial cell lines. We screened 7,454 individual mutants, 269 of which exhibited reduced intracellular growth. Transposon insertions in the 269 growth-defective strains mapped to 68 different genes. FTT_0924, a gene of unknown function but highly conserved among Francisella species, was identified in this screen to be defective for intracellular growth within both macrophage and epithelial cell lines. FTT_0924 was required for full Schu S4 virulence in a murine pulmonary infection model. The ΔFTT_0924 mutant bacterial membrane is permeable when replicating in hypotonic solution and within macrophages, resulting in strongly reduced viability. The permeability and reduced viability were rescued when the mutant was grown in a hypertonic solution, indicating that FTT_0924 is required for resisting osmotic stress. The ΔFTT_0924 mutant was also significantly more sensitive to β-lactam antibiotics than Schu S4. Taken together, the data strongly suggest that FTT_0924 is required for maintaining peptidoglycan integrity and virulence.

  18. Detection of Francisella tularensis and analysis of bacterial growth in ticks in Japan.

    PubMed

    Suzuki, J; Hashino, M; Matsumoto, S; Takano, A; Kawabata, H; Takada, N; Andoh, M; Oikawa, Y; Kajita, H; Uda, A; Watanabe, K; Shimizu, T; Watarai, M

    2016-10-01

    Francisella tularensis is distributed in the Northern hemisphere and it is the bacterial agent responsible for tularaemia, a zoonotic disease. We collected 4 527 samples of DNA from ticks in Japan, which were then analysed by real-time PCR and nested PCR. Francisella DNA was detected by real-time PCR in 2·15% (45/2 093) of Ixodes ovatus, 0·66% (14/2 107) of I. persulcatus, 8·22% (6/73) of I. monospinosus and 0·72% (1/138) of Haemaphysalis flava specimens. Finally, Francisella DNA was detected by nested PCR in 42 and five samples I. ovatus and I. persulcatus, respectively, which were positive according to real-time PCR. Phylogenetic analysis showed that the sequence from I. ovatus and I. persulcatus were clustered with F. tularensis type B strains distributed in Eurasia. Microinjected live F. tularensis persisted in ticks, whereas heat-killed F. tularensis decreased. Microinjected F. tularensis hlyD mutant decreased in ticks significantly compared to parent strain, thereby suggesting that HlyD in F. tularensis contributes to the adaptation or survive of bacterial infection in ticks. Francisella tularensis has been detected in ticks, suggesting that it is a tick-borne pathogen. However, F. tularensis has not been detected in ticks in Japan since 1991. In this study, we performed a large-scale analysis of DNA isolated from ticks in Japan and detected F. tularensis by real-time polymerase chain reaction (PCR) and nested PCR. We found that F. tularensis could survive in ticks based on an experimental tick-infection model. We also identified a bacterial factor that contributes to survival in ticks. Our results suggest that ticks are candidate vectors that mediate F. tularensis infection in Japan. © 2016 The Society for Applied Microbiology.

  19. Construction and Characterization of an Attenuated Purine Auxotroph in a Francisella tularensis Live Vaccine Strain

    PubMed Central

    Pechous, Roger; Celli, Jean; Penoske, Renee; Hayes, Stanley F.; Frank, Dara W.; Zahrt, Thomas C.

    2006-01-01

    Francisella tularensis is a facultative intracellular pathogen and is the etiological agent of tularemia. It is capable of escaping from the phagosome, replicating to high numbers in the cytosol, and inducing apoptosis in macrophages of a variety of hosts. F. tularensis has received significant attention recently due to its potential use as a bioweapon. Currently, there is no licensed vaccine against F. tularensis, although a partially protective live vaccine strain (LVS) that is attenuated in humans but remains fully virulent for mice was previously developed. An F. tularensis LVS mutant deleted in the purMCD purine biosynthetic locus was constructed and partially characterized by using an allelic exchange strategy. The F. tularensis LVS ΔpurMCD mutant was auxotrophic for purines when grown in defined medium and exhibited significant attenuation in virulence when assayed in murine macrophages in vitro or in BALB/c mice. Growth and virulence defects were complemented by the addition of the purine precursor hypoxanthine or by introduction of purMCDN in trans. The F. tularensis LVS ΔpurMCD mutant escaped from the phagosome but failed to replicate in the cytosol or induce apoptotic and cytopathic responses in infected cells. Importantly, mice vaccinated with a low dose of the F. tularensis LVS ΔpurMCD mutant were fully protected against subsequent lethal challenge with the LVS parental strain. Collectively, these results suggest that F. tularensis mutants deleted in the purMCD biosynthetic locus exhibit characteristics that may warrant further investigation of their use as potential live vaccine candidates. PMID:16861631

  20. ECO-EPIZOOTIOLOGIC STUDY OF FRANCISELLA TULARENSIS, THE AGENT OF TULAREMIA, IN QUÉBEC WILDLIFE.

    PubMed

    Gabriele-Rivet, Vanessa; Ogden, Nicholas; Massé, Ariane; Antonation, Kym; Corbett, Cindi; Dibernardo, Antonia; Lindsay, L Robbin; Leighton, Patrick A; Arsenault, Julie

    2016-04-28

    In Canada, Francisella tularensis , the zoonotic bacterial agent of tularemia, affects mostly snowshoe hares ( Lepus americanus ), muskrats ( Ondatra zibethicus ), and beavers ( Castor canadensis ). Despite numerous studies, the ecologic cycle and natural reservoirs of F. tularensis are not clearly defined. We conducted a cross-sectional study to estimate the prevalence of F. tularensis in snowshoe hares, muskrats, and coyotes ( Canis latrans ) in four regions of Québec, Canada, and to describe the risk of infection in relation to host and environmental characteristics at three spatial scales. Between October 2012 and April 2013, trappers captured 345 snowshoe hares, 411 muskrats, and 385 coyotes. Blood samples were tested by microagglutination tests, and DNA extracts of liver, kidney, lung, and spleen of snowshoe hares and muskrats were tested by real-time PCR to detect past and active infection to F. tularensis , respectively. Individual host characteristics, including body condition, age, and sex, were evaluated as risk factors of infection, along with ecologic characteristics of the location of capture extracted from geographic databases. Prevalences of antibody to F. tularensis and 95% confidence intervals were 2.9% (1.4-5.1%) in coyotes, 0.6% (0.1-2.1%) in hares, and 0% (0.0-0.9%) in muskrats. Francisella tularensis DNA was not detected by real-time PCR in the pools of four organs from muskrats and hares, but F. tularensis type AI was detected during testing of the individual organs of two antibody-positive hares. Exact logistic regression analyses showed that age was a significant predictor of antibody detection in coyotes, as were the proportion of forest and the proportion of area considered as suitable habitat for hares in the environment around the location of capture of the coyotes. Our results suggest a terrestrial cycle of F. tularensis in the regions studied.

  1. CpG oligodeoxyribonucleotides protect mice from Burholderia pseudomallei but not Francisella tularensis Schu 54 aersols

    DTIC Science & Technology

    2010-01-01

    live vaccine strain (LVS), when administered before parenteral challenge. Given the potential to develop CpG ODN as a pre-treatment for multiple...1] have been successfully developed as adjuvants for a broad array of bacterial subunit vaccines and are currently undergoing multiple clinical...tularensis live vaccine strain (LVS) [3] suggest that CpG ODN may also protect against human-virulent F. tularensis Schu S4 infection. Significantly

  2. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus

    USDA-ARS?s Scientific Manuscript database

    The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...

  3. Temperature-Dependent Gentamicin Resistance of Francisella tularensis is Mediated by Uptake Modulation

    PubMed Central

    Loughman, Kathleen; Hall, Jesse; Knowlton, Samantha; Sindeldecker, Devin; Gilson, Tricia; Schmitt, Deanna M.; Birch, James W.-M.; Gajtka, Tara; Kobe, Brianna N.; Florjanczyk, Aleksandr; Ingram, Jenna; Bakshi, Chandra S.; Horzempa, Joseph

    2016-01-01

    Gentamicin (Gm) is an aminoglycoside commonly used to treat bacterial infections such as tularemia – the disease caused by Francisella tularensis. In addition to being pathogenic, F. tularensis is found in environmental niches such as soil where this bacterium likely encounters Gm producers (Micromonospora sp.). Here we show that F. tularensis exhibits increased resistance to Gm at ambient temperature (26°C) compared to mammalian body temperature (37°C). To evaluate whether F. tularensis was less permeable to Gm at 26°C, a fluorescent marker [Texas Red (Tr)] was conjugated with Gm, yielding Tr-Gm. Bacteria incubated at 26°C showed reduced fluorescence compared to those at 37°C when exposed to Tr-Gm suggesting that uptake of Gm was reduced at 26°C. Unconjugated Gm competitively inhibited uptake of Tr-Gm, demonstrating that this fluorescent compound was taken up similarly to unconjugated Gm. Lysates of F. tularensis bacteria incubated with Gm at 37°C inhibited the growth of Escherichia coli significantly more than lysates from bacteria incubated at 26°C, further indicating reduced uptake at this lower temperature. Other facultative pathogens (Listeria monocytogenes and Klebsiella pneumoniae) exhibited increased resistance to Gm at 26°C suggesting that the results generated using F. tularensis may be generalizable to diverse bacteria. Regulation of the uptake of antibiotics provides a mechanism by which facultative pathogens survive alongside antibiotic-producing microbes in nature. PMID:26858709

  4. From the Outside-In: The Francisella tularensis Envelope and Virulence

    PubMed Central

    Rowe, Hannah M.; Huntley, Jason F.

    2015-01-01

    Francisella tularensis is a highly-infectious bacterium that causes the rapid, and often lethal disease, tularemia. Many studies have been performed to identify and characterize the virulence factors that F. tularensis uses to infect a wide variety of hosts and host cell types, evade immune defenses, and induce severe disease and death. This review focuses on the virulence factors that are present in the F. tularensis envelope, including capsule, LPS, outer membrane, periplasm, inner membrane, secretion systems, and various molecules in each of aforementioned sub-compartments. Whereas, no single bacterial molecule or molecular complex single-handedly controls F. tularensis virulence, we review here how diverse bacterial systems work in conjunction to subvert the immune system, attach to and invade host cells, alter phagosome/lysosome maturation pathways, replicate in host cells without being detected, inhibit apoptosis, and induce host cell death for bacterial release and infection of adjacent cells. Given that the F. tularensis envelope is the outermost layer of the bacterium, we highlight herein how many of these molecules directly interact with the host to promote infection and disease. These and future envelope studies are important to advance our collective understanding of F. tularensis virulence mechanisms and offer targets for future vaccine development efforts. PMID:26779445

  5. Antioxidant Defenses of Francisella tularensis Modulate Macrophage Function and Production of Proinflammatory Cytokines.

    PubMed

    Rabadi, Seham M; Sanchez, Belkys C; Varanat, Mrudula; Ma, Zhuo; Catlett, Sally V; Melendez, Juan Andres; Malik, Meenakshi; Bakshi, Chandra Shekhar

    2016-03-04

    Francisella tularensis, the causative agent of a fatal human disease known as tularemia, has been used in the bioweapon programs of several countries in the past, and now it is considered a potential bioterror agent. Extreme infectivity and virulence of F. tularensis is due to its ability to evade immune detection and to suppress the host's innate immune responses. However, Francisella-encoded factors and mechanisms responsible for causing immune suppression are not completely understood. Macrophages and neutrophils generate reactive oxygen species (ROS)/reactive nitrogen species as a defense mechanism for the clearance of phagocytosed microorganisms. ROS serve a dual role; at high concentrations they act as microbicidal effector molecules that destroy intracellular pathogens, and at low concentrations they serve as secondary signaling messengers that regulate the expression of various inflammatory mediators. We hypothesized that the antioxidant defenses of F. tularensis maintain redox homeostasis in infected macrophages to prevent activation of redox-sensitive signaling components that ultimately result in suppression of pro-inflammatory cytokine production and macrophage microbicidal activity. We demonstrate that antioxidant enzymes of F. tularensis prevent the activation of redox-sensitive MAPK signaling components, NF-κB signaling, and the production of pro-inflammatory cytokines by inhibiting the accumulation of ROS in infected macrophages. We also report that F. tularensis inhibits ROS-dependent autophagy to promote its intramacrophage survival. Collectively, this study reveals novel pathogenic mechanisms adopted by F. tularensis to modulate macrophage innate immune functions to create an environment permissive for its intracellular survival and growth.

  6. Structure and Function of REP34 Implicates Carboxypeptidase Activity in Francisella tularensis Host Cell Invasion*

    PubMed Central

    Feld, Geoffrey K.; El-Etr, Sahar; Corzett, Michele H.; Hunter, Mark S.; Belhocine, Kamila; Monack, Denise M.; Frank, Matthias; Segelke, Brent W.; Rasley, Amy

    2014-01-01

    Francisella tularensis is the etiological agent of tularemia, or rabbit fever. Although F. tularensis is a recognized biothreat agent with broad and expanding geographical range, its mechanism of infection and environmental persistence remain poorly understood. Previously, we identified seven F. tularensis proteins that induce a rapid encystment phenotype (REP) in the free-living amoeba, Acanthamoeba castellanii. Encystment is essential to the pathogen's long term intracellular survival in the amoeba. Here, we characterize the cellular and molecular function of REP34, a REP protein with a mass of 34 kDa. A REP34 knock-out strain of F. tularensis has a reduced ability to both induce encystment in A. castellanii and invade human macrophages. We determined the crystal structure of REP34 to 2.05-Å resolution and demonstrate robust carboxypeptidase B-like activity for the enzyme. REP34 is a zinc-containing monomeric protein with close structural homology to the metallocarboxypeptidase family of peptidases. REP34 possesses a novel topology and substrate binding pocket that deviates from the canonical funnelin structure of carboxypeptidases, putatively resulting in a catalytic role for a conserved tyrosine and distinct S1′ recognition site. Taken together, these results identify REP34 as an active carboxypeptidase, implicate the enzyme as a potential key F. tularensis effector protein, and may help elucidate a mechanistic understanding of F. tularensis infection of phagocytic cells. PMID:25231992

  7. Enterococcus saccharolyticus subsp. taiwanensis subsp. nov., isolated from broccoli.

    PubMed

    Chen, Yi-sheng; Lin, Yu-hsuan; Pan, Shwu-fen; Ji, Si-hua; Chang, Yu-chung; Yu, Chi-rong; Liou, Min-shiuan; Wu, Hui-chung; Otoguro, Misa; Yanagida, Fujitoshi; Liao, Chen-chung; Chiu, Chi-ming; Huang, Bi-qiang

    2013-12-01

    A coccal strain isolated from fresh broccoli was initially identified as Enterococcus saccharolyticus; however, molecular identification and phenotypic traits did not support this identification. DNA-DNA hybridization with the type strain of E. saccharolyticus (76.4 % relatedness), DNA G+C content (35.7 mol%), phylogenetic analysis based on 16S rRNA, pheS and rpoA gene sequences, rep-PCR fingerprinting and profiles of cellular fatty acids, whole-cell proteins and enzyme activities, together with carbohydrate metabolism characteristics, indicated that this strain is distinct and represents a novel subspecies, for which the name Enterococcus saccharolyticus subsp. taiwanensis subsp. nov. is proposed. The type strain is 812(T) ( = NBRC 109476(T) = BCRC 80575(T)). Furthermore, we present an emended description of Enterococcus saccharolyticus and proposal of Enterococcus saccharolyticus subsp. saccharolyticus subsp. nov. (type strain ATCC 43076(T) = CCUG 27643(T) = CCUG 33311(T) = CIP 103246(T) = DSM 20726(T) = JCM 8734(T) = LMG 11427(T) = NBRC 100493(T) = NCIMB 702594(T)).

  8. Gallium Potentiates the Antibacterial Effect of Gentamicin against Francisella tularensis

    PubMed Central

    Lindgren, Helena

    2015-01-01

    The reasons why aminoglycosides are bactericidal have not been not fully elucidated, and evidence indicates that the cidal effects are at least partly dependent on iron. We demonstrate that availability of iron markedly affects the susceptibility of the facultative intracellular bacterium Francisella tularensis strain SCHU S4 to the aminoglycoside gentamicin. Specifically, the intracellular depots of iron were inversely correlated to gentamicin susceptibility, whereas the extracellular iron concentrations were directly correlated to the susceptibility. Further proof of the intimate link between iron availability and antibiotic susceptibility were the findings that a ΔfslA mutant, which is defective for siderophore-dependent uptake of ferric iron, showed enhanced gentamicin susceptibility and that a ΔfeoB mutant, which is defective for uptake of ferrous iron, displayed complete growth arrest in the presence of gentamicin. Based on the aforementioned findings, it was hypothesized that gallium could potentiate the effect of gentamicin, since gallium is sequestered by iron uptake systems. The ferrozine assay demonstrated that the presence of gallium inhibited >70% of the iron uptake. Addition of gentamicin and/or gallium to infected bone marrow-derived macrophages showed that both 100 μM gallium and 10 μg/ml of gentamicin inhibited intracellular growth of SCHU S4 and that the combined treatment acted synergistically. Moreover, treatment of F. tularensis-infected mice with gentamicin and gallium showed an additive effect. Collectively, the data demonstrate that SCHU S4 is dependent on iron to minimize the effects of gentamicin and that gallium, by inhibiting the iron uptake, potentiates the bactericidal effect of gentamicin in vitro and in vivo. PMID:26503658

  9. Gallium Potentiates the Antibacterial Effect of Gentamicin against Francisella tularensis.

    PubMed

    Lindgren, Helena; Sjöstedt, Anders

    2015-10-26

    The reasons why aminoglycosides are bactericidal have not been not fully elucidated, and evidence indicates that the cidal effects are at least partly dependent on iron. We demonstrate that availability of iron markedly affects the susceptibility of the facultative intracellular bacterium Francisella tularensis strain SCHU S4 to the aminoglycoside gentamicin. Specifically, the intracellular depots of iron were inversely correlated to gentamicin susceptibility, whereas the extracellular iron concentrations were directly correlated to the susceptibility. Further proof of the intimate link between iron availability and antibiotic susceptibility were the findings that a ΔfslA mutant, which is defective for siderophore-dependent uptake of ferric iron, showed enhanced gentamicin susceptibility and that a ΔfeoB mutant, which is defective for uptake of ferrous iron, displayed complete growth arrest in the presence of gentamicin. Based on the aforementioned findings, it was hypothesized that gallium could potentiate the effect of gentamicin, since gallium is sequestered by iron uptake systems. The ferrozine assay demonstrated that the presence of gallium inhibited >70% of the iron uptake. Addition of gentamicin and/or gallium to infected bone marrow-derived macrophages showed that both 100 μM gallium and 10 μg/ml of gentamicin inhibited intracellular growth of SCHU S4 and that the combined treatment acted synergistically. Moreover, treatment of F. tularensis-infected mice with gentamicin and gallium showed an additive effect. Collectively, the data demonstrate that SCHU S4 is dependent on iron to minimize the effects of gentamicin and that gallium, by inhibiting the iron uptake, potentiates the bactericidal effect of gentamicin in vitro and in vivo. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Small Molecule Control of Virulence Gene Expression in Francisella tularensis

    PubMed Central

    Charity, James C.; Blalock, LeeAnn T.; Costante-Hamm, Michelle M.; Kasper, Dennis L.; Dove, Simon L.

    2009-01-01

    In Francisella tularensis, the SspA protein family members MglA and SspA form a complex that associates with RNA polymerase (RNAP) to positively control the expression of virulence genes critical for the intramacrophage growth and survival of the organism. Although the association of the MglA-SspA complex with RNAP is evidently central to its role in controlling gene expression, the molecular details of how MglA and SspA exert their effects are not known. Here we show that in the live vaccine strain of F. tularensis (LVS), the MglA-SspA complex works in concert with a putative DNA-binding protein we have called PigR, together with the alarmone guanosine tetraphosphate (ppGpp), to regulate the expression of target genes. In particular, we present evidence that MglA, SspA, PigR and ppGpp regulate expression of the same set of genes, and show that mglA, sspA, pigR and ppGpp null mutants exhibit similar intramacrophage growth defects and are strongly attenuated for virulence in mice. We show further that PigR interacts directly with the MglA-SspA complex, suggesting that the central role of the MglA and SspA proteins in the control of virulence gene expression is to serve as a target for a transcription activator. Finally, we present evidence that ppGpp exerts its effects by promoting the interaction between PigR and the RNAP-associated MglA-SspA complex. Through its responsiveness to ppGpp, the contact between PigR and the MglA-SspA complex allows the integration of nutritional cues into the regulatory network governing virulence gene expression. PMID:19876386

  11. What limits the morphological disparity of clades?

    PubMed

    Oyston, Jack W; Hughes, Martin; Wagner, Peter J; Gerber, Sylvain; Wills, Matthew A

    2015-12-06

    The morphological disparity of species within major clades shows a variety of trajectory patterns through evolutionary time. However, there is a significant tendency for groups to reach their maximum disparity relatively early in their histories, even while their species richness or diversity is comparatively low. This pattern of early high-disparity suggests that there are internal constraints (e.g. developmental pleiotropy) or external restrictions (e.g. ecological competition) upon the variety of morphologies that can subsequently evolve. It has also been demonstrated that the rate of evolution of new character states decreases in most clades through time (character saturation), as does the rate of origination of novel bodyplans and higher taxa. Here, we tested whether there was a simple relationship between the level or rate of character state exhaustion and the shape of a clade's disparity profile: specifically, its centre of gravity (CG). In a sample of 93 extinct major clades, most showed some degree of exhaustion, but all continued to evolve new states up until their extinction. Projection of states/steps curves suggested that clades realized an average of 60% of their inferred maximum numbers of states. Despite a weak but significant correlation between overall levels of homoplasy and the CG of clade disparity profiles, there were no significant relationships between any of our indices of exhaustion curve shape and the clade disparity CG. Clades showing early high-disparity were no more likely to have early character saturation than those with maximum disparity late in their evolution.

  12. What limits the morphological disparity of clades?

    PubMed Central

    Oyston, Jack W.; Hughes, Martin; Wagner, Peter J.; Gerber, Sylvain; Wills, Matthew A.

    2015-01-01

    The morphological disparity of species within major clades shows a variety of trajectory patterns through evolutionary time. However, there is a significant tendency for groups to reach their maximum disparity relatively early in their histories, even while their species richness or diversity is comparatively low. This pattern of early high-disparity suggests that there are internal constraints (e.g. developmental pleiotropy) or external restrictions (e.g. ecological competition) upon the variety of morphologies that can subsequently evolve. It has also been demonstrated that the rate of evolution of new character states decreases in most clades through time (character saturation), as does the rate of origination of novel bodyplans and higher taxa. Here, we tested whether there was a simple relationship between the level or rate of character state exhaustion and the shape of a clade's disparity profile: specifically, its centre of gravity (CG). In a sample of 93 extinct major clades, most showed some degree of exhaustion, but all continued to evolve new states up until their extinction. Projection of states/steps curves suggested that clades realized an average of 60% of their inferred maximum numbers of states. Despite a weak but significant correlation between overall levels of homoplasy and the CG of clade disparity profiles, there were no significant relationships between any of our indices of exhaustion curve shape and the clade disparity CG. Clades showing early high-disparity were no more likely to have early character saturation than those with maximum disparity late in their evolution. PMID:26640649

  13. Cranial base evolution within the hominin clade

    PubMed Central

    Nevell, L; Wood, B

    2008-01-01

    The base of the cranium (i.e. the basioccipital, the sphenoid and the temporal bones) is of particular interest because it undergoes significant morphological change within the hominin clade, and because basicranial morphology features in several hominin species diagnoses. We use a parsimony analysis of published cranial and dental data to predict the cranial base morphology expected in the hypothetical last common ancestor of the Pan–Homo clade. We also predict the primitive condition of the cranial base for the hominin clade, and document the evolution of the cranial base within the major subclades within the hominin clade. This analysis suggests that cranial base morphology has continued to evolve in the hominin clade, both before and after the emergence of the genus Homo. PMID:18380865

  14. Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis

    PubMed Central

    2014-01-01

    Background Francisella isolates from patients suffering from tularemia in Germany are generally strains of the species F. tularensis subsp. holarctica. To our knowledge, no other Francisella species are known for Germany. Recently, a new Francisella species could be isolated from a water reservoir of a cooling tower in Germany. Results We identified a Francisella sp. (isolate W12-1067) whose 16S rDNA is 99% identical to the respective nucleotide sequence of the recently published strain F. guangzhouensis. The overall sequence identity of the fopA, gyrA, rpoA, groEL, sdhA and dnaK genes is only 89%, indicating that strain W12-1067 is not identical to F. guangzhouensis. W12-1067 was isolated from a water reservoir of a cooling tower of a hospital in Germany. The growth optimum of the isolate is approximately 30°C, it can grow in the presence of 4–5% NaCl (halotolerant) and is able to grow without additional cysteine within the medium. The strain was able to replicate within a mouse-derived macrophage-like cell line. The whole genome of the strain was sequenced (~1.7 mbp, 32.2% G + C content) and the draft genome was annotated. Various virulence genes common to the genus Francisella are present, but the Francisella pathogenicity island (FPI) is missing. However, another putative type-VI secretion system is present within the genome of strain W12-1067. Conclusions Isolate W12-1067 is closely related to the recently described F. guangzhouensis species and it replicates within eukaryotic host cells. Since W12-1067 exhibits a putative new type-VI secretion system and F. tularensis subsp. holarctica was found not to be the sole species in Germany, the new isolate is an interesting species to be analyzed in more detail. Further research is needed to investigate the epidemiology, ecology and pathogenicity of Francisella species present in Germany. PMID:24961323

  15. Francisella tularensis Subtype A.II Genomic Plasticity in Comparison with Subtype A.I

    PubMed Central

    Larson, Marilynn A.; Nalbantoglu, Ufuk; Sayood, Khalid; Zentz, Emily B.; Bartling, Amanda M.; Francesconi, Stephen C.; Fey, Paul D.; Dempsey, Michael P.; Hinrichs, Steven H.

    2015-01-01

    Although Francisella tularensis is considered a monomorphic intracellular pathogen, molecular genotyping and virulence studies have demonstrated important differences within the tularensis subspecies (type A). To evaluate genetic variation within type A strains, sequencing and assembly of a new subtype A.II genome was achieved for comparison to other completed F. tularensis type A genomes. In contrast with the F. tularensis A.I strains (SCHU S4, FSC198, NE061598, and TI0902), substantial genomic variation was observed between the newly sequenced F. tularensis A.II strain (WY-00W4114) and the only other publically available A.II strain (WY96-3418). Genome differences between WY-00W4114 and WY96-3418 included three major chromosomal translocations, 1580 indels, and 286 nucleotide substitutions of which 159 were observed in predicted open reading frames and 127 were located in intergenic regions. The majority of WY-00W4114 nucleotide deletions occurred in intergenic regions, whereas most of the insertions and substitutions occurred in predicted genes. Of the nucleotide substitutions, 48 (30%) were synonymous and 111 (70%) were nonsynonymous. WY-00W4114 and WY96-3418 nucleotide polymorphisms were predominantly G/C to A/T allelic mutations, with WY-00W4114 having more A+T enrichment. In addition, the A.II genomes contained a considerably higher number of intact genes and longer repetitive sequences, including transposon remnants than the A.I genomes. Together these findings support the premise that F. tularensis A.II may have a fitness advantage compared to the A.I subtype due to the higher abundance of functional genes and repeated chromosomal sequences. A better understanding of the selective forces driving F. tularensis genetic diversity and plasticity is needed. PMID:25918839

  16. Mouse model of oral infection with virulent type A Francisella tularensis.

    PubMed

    KuoLee, R; Zhao, X; Austin, J; Harris, G; Conlan, J W; Chen, W

    2007-04-01

    Francisella tularensis is a gram-negative facultative intracellular pathogen and the causative agent of tularemia. Little is known about the immunopathogenesis of oral infection with this pathogen. Here, for the first time, we examined the susceptibility of mice to intragastric inoculation with virulent type A F. tularensis and characterized the course of infection and the associated host responses. Both immunocompetent and immunodeficient mice were relatively susceptible to intragastric inoculation of type A F. tularensis with a 50% lethal dose (LD(50)) of 10(6) organisms, which was 100,000-fold higher than the LD(100) for intradermal or respiratory routes of infection. Mice deficient in gamma interferon or tumor necrosis factor receptors 1 and 2 were more susceptible than wild-type controls to oral infection with a high dose of the pathogen. After oral inoculation, F. tularensis appeared first in the mesenteric lymph nodes (MLN) and then rapidly spread to the livers and spleens, where the organism multiplied to high numbers and induced marked neutrophilic infiltration and severe tissue necrosis. Infected mice showed rapid increases in tissue cytokine mRNA expression, which peaked in the MLN at 2 days postinfection (dpi) and in the liver and spleen at 3 dpi. The levels of gamma interferon, interleukin-1beta (IL-1beta), IL-6, tumor necrosis factor alpha, macrophage inflammatory protein 1alpha, KC, interferon-inducible protein 10, and monocyte chemotactic protein 1 were elevated from day 2 postinoculation onward. Moreover, mice intradermally immunized with the live vaccine strain of F. tularensis showed little survival advantage over naive mice after oral challenge with type A F. tularensis. These results suggest that type A F. tularensis is an effective oral pathogen that can cause fatal systemic infection and could pose a public health concern, particularly to immunocompromised individuals, if ingested in contaminated water and food.

  17. Clavibacter michiganensis subsp. phaseoli subsp. nov., pathogenic in bean.

    PubMed

    González, Ana J; Trapiello, Estefanía

    2014-05-01

    A yellow Gram-reaction-positive bacterium isolated from bean seeds (Phaseolus vulgaris L.) was identified as Clavibacter michiganensis by 16S rRNA gene sequencing. Molecular methods were employed in order to identify the subspecies. Such methods included the amplification of specific sequences by PCR, 16S amplified rDNA restriction analysis (ARDRA), RFLP and multilocus sequence analysis as well as the analysis of biochemical and phenotypic traits including API 50CH and API ZYM results. The results showed that strain LPPA 982T did not represent any known subspecies of C. michiganensis. Pathogenicity tests revealed that the strain is a bean pathogen causing a newly identified bacterial disease that we name bacterial bean leaf yellowing. On the basis of these results, strain LPPA 982T is regarded as representing a novel subspecies for which the name Clavibacter michiganensis subsp. phaseoli subsp. nov. is proposed. The type strain is LPPA 982T (=CECT 8144T=LMG 27667T).

  18. The Protease Locus of Francisella tularensis LVS Is Required for Stress Tolerance and Infection in the Mammalian Host

    PubMed Central

    He, Lihong; Nair, Manoj Kumar Mohan; Chen, Yuling; Liu, Xue; Zhang, Mengyun; Hazlett, Karsten R. O.

    2016-01-01

    Francisella tularensis is the causative agent of tularemia and a category A potential agent of bioterrorism, but the pathogenic mechanisms of F. tularensis are largely unknown. Our previous transposon mutagenesis screen identified 95 lung infectivity-associated F. tularensis genes, including those encoding the Lon and ClpP proteases. The present study validates the importance of Lon and ClpP in intramacrophage growth and infection of the mammalian host by using unmarked deletion mutants of the F. tularensis live vaccine strain (LVS). Further experiments revealed that lon and clpP are also required for F. tularensis tolerance to stressful conditions. A quantitative proteomic comparison between heat-stressed LVS and the isogenic Lon-deficient mutant identified 29 putative Lon substrate proteins. The follow-up protein degradation experiments identified five substrates of the F. tularensis Lon protease (FTL578, FTL663, FTL1217, FTL1228, and FTL1957). FTL578 (ornithine cyclodeaminase), FTL663 (heat shock protein), and FTL1228 (iron-sulfur activator complex subunit SufD) have been previously described as virulence-associated factors in F. tularensis. Identification of these Lon substrates has thus provided important clues for further understanding of the F. tularensis stress response and pathogenesis. The high-throughput approach developed in this study can be used for systematic identification of the Lon substrates in other prokaryotic and eukaryotic organisms. PMID:26902724

  19. Reclassification of the larval pathogen for marine bivalves Vibrio tubiashii subsp. europaeus as Vibrio europaeus sp. nov.

    PubMed

    Dubert, Javier; Romalde, Jesús L; Spinard, Edward J; Nelson, David R; Gomez-Chiarri, Marta; Barja, Juan L

    2016-11-01

    The Orientalis clade has a relevant significance for bivalve aquaculture since it includes the pathogens Vibrio bivalvicida, Vibrio tubiashii subsp. tubiashii and Vibrio tubiashii subsp. europaeus. However, the previous taxonomic description of the subspecies of V. tubiashii shows some incongruities that should be emended. In the genomic age, the comparison between genome assemblies is the key to clarify the taxonomic position of both subspecies. With this purpose, we have tested the ability of multilocus sequence analysis based on eight housekeeping gene sequences (gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA and topA), different in silico genome-to-genome comparisons, chemotaxonomic features and phenotypic traits to reclassify the subspecies V. tubiashii subsp. europaeus within the Orientalis clade. This polyphasic approach clearly demonstrated that this subspecies is phylogenetically and phenotypically distinct from V. tubiashii and should be elevated to the rank of species as Vibrio europaeus sp. nov. This reclassification allows us to update the Orientalis clade (V. bivalvicida,V. brasiliensis, V. crosai, V. hepatarius, V. orientalis, V. sinaloensis, V. tubiashii and V. europaeus sp. nov.) and reconstruct a better phylogeny of the genus Vibrio. An emended description of V. tubiashii is provided. Finally, the proposed novel species is represented by emergent bivalve pathogens [type strain PP-638T (=CECT 8136T=DSM 27349T), PP2-843 and 07/118 T2] responsible for high mortalities in Spanish and French hatcheries.

  20. Proteomic analysis of bronchoalveolar lavage fluid proteins from mice infected with Francisella tularensis ssp novicida

    SciTech Connect

    Varnum, Susan M.; Webb-Robertson, Bobbie-Jo M.; Pounds, Joel G.; Moore, Ronald J.; Smith, Richard D.; Frevert, Charles; Skerret, Shawn J.; Wunschel, David S.

    2012-07-06

    Francisella tularensis causes the zoonosis tularemia in humans and is one of the most virulent bacterial pathogens. We utilized a global proteomic approach to characterize protein changes in bronchoalveolar lavage fluid from mice exposed to one of three organisms, F. tularensis ssp. novicida, an avirulent mutant of F. tularensis ssp. novicida (F.t. novicida-ΔmglA); and Pseudomonas aeruginosa. The composition of BALF proteins was altered following infection, including proteins involved in neutrophil activation, oxidative stress and inflammatory responses. Components of the innate immune response were induced including the acute phase response and the complement system, however the timing of their induction varied. Francisella tularensis ssp. novicida infected mice do not appear to have an effective innate immune response in the first hours of infection, however within 24 hours they show an upregulation of innate immune response proteins. This delayed response is in contrast to P. aeruginosa infected animals which show an early innate immune response. Likewise, F.t. novicida-ΔmglA infection initiates an early innate immune response, however this response is dimished by 24 hours. Finally, this study identifies several candidate biomarkers, including Chitinase 3-like-1 (CHI3L1 or YKL-40) and peroxiredoxin 1, that are associated with F. tularensis ssp. novicida but not P. aeruginosa infection.

  1. Francisella tularensis infection without lesions in gray tree squirrels (Sciurus griseus): a diagnostic challenge.

    PubMed

    Nelson, Danielle D; Haldorson, Gary J; Stanton, James B; Noh, Susan M; Bradway, Daniel S; Mansfield, Kristin G; Baszler, Timothy V

    2014-03-01

    Fifteen cases of Francisella tularensis infection (tularemia) were identified in western gray (Sciurus griseus) and eastern gray (Sciurus carolinensis) squirrels submitted to the Washington Animal Disease Diagnostic Laboratory between 2008 and 2011. All of the squirrels originated in Washington State, a geographical area with endemic tularemia in wildlife. Nine of the 15 squirrels with F. tularensis infection had gross (2/15) or microscopic (9/15) multifocal necrotizing lesions in the spleen, liver, or lymph nodes, typical of tularemia. Special stains did not reliably identify intralesional bacteria microscopically. Six of the 15 squirrels infected with F. tularensis lacked gross and microscopic lesions typical of tularemia. All 15 squirrels with F. tularensis infection were identified by polymerase chain reaction tests on the spleen, liver, or lymph node (including all 6 squirrels without typical tularemia lesions); 8 out of 9 squirrels were positive by direct fluorescent antibody test of tissues, and 5 out of 15 squirrels were positive by culture of tissues. The findings underscore the importance of considering tularemia as a possible cause of death when no lesions of tularemia can be identified at necropsy. Furthermore, the findings suggest the possibility of subclinical infections in gray squirrels, and the importance of molecular diagnostics for definitive diagnosis of F. tularensis infection in wild squirrels.

  2. Utilization of Fc receptors as a mucosal vaccine strategy against an intracellular bacterium, Francisella tularensis.

    PubMed

    Rawool, Deepak B; Bitsaktsis, Constantine; Li, Ying; Gosselin, Diane R; Lin, Yili; Kurkure, Nitin V; Metzger, Dennis W; Gosselin, Edmund J

    2008-04-15

    Numerous studies have demonstrated that targeting Ag to Fc receptors (FcR) on APCs can enhance humoral and cellular immunity. However, studies are lacking that examine both the use of FcR-targeting in generating immune protection against infectious agents and the use of FcRs in the induction of mucosal immunity. Francisella tularensis is a category A intracellular mucosal pathogen. Thus, intense efforts are underway to develop a vaccine against this organism. We hypothesized that protection against mucosal infection with F. tularensis would be significantly enhanced by targeting inactivated F. tularensis live vaccine strain (iFt) to FcRs at mucosal sites, via intranasal immunization with mAb-iFt complexes. These studies demonstrate for the first time that: 1) FcR-targeted immunogen enhances immunogen-specific IgA production and protection against subsequent infection in an IgA-dependent manner, 2) FcgammaR and neonatal FcR are crucial to this protection, and 3) inactivated F. tularensis, when targeted to FcRs, enhances protection against the highly virulent SchuS4 strain of F. tularensis, a category A biothreat agent. In summary, these studies show for the first time the use of FcRs as a highly effective vaccination strategy against a highly virulent mucosal intracellular pathogen.

  3. Mast cell TLR2 signaling is crucial for effective killing of Francisella tularensis.

    PubMed

    Rodriguez, Annette R; Yu, Jieh-Juen; Guentzel, M Neal; Navara, Christopher S; Klose, Karl E; Forsthuber, Thomas G; Chambers, James P; Berton, Michael T; Arulanandam, Bernard P

    2012-06-01

    TLR signaling is critical for early host defense against pathogens, but the contributions of mast cell TLR-mediated mechanisms and subsequent effector functions during pulmonary infection are largely unknown. We have previously demonstrated that mast cells, through the production of IL-4, effectively control Francisella tularensis replication. In this study, the highly human virulent strain of F. tularensis SCHU S4 and the live vaccine strain were used to investigate the contribution of mast cell/TLR regulation of Francisella. Mast cells required TLR2 for effective bacterial killing, regulation of the hydrolytic enzyme cathepsin L, and for coordination and trafficking of MHC class II and lysosomal-associated membrane protein 2. Infected TLR2(-/-) mast cells, in contrast to wild-type and TLR4(-/-) cells, lacked detectable IL-4 and displayed increased cell death with a 2-3 log increase of F. tularensis replication, but could be rescued with rIL-4 treatment. Importantly, MHC class II and lysosomal-associated membrane protein 2 localization with labeled F. tularensis in the lungs was greater in wild-type than in TLR2(-/-) mice. These results provide evidence for the important effector contribution of mast cells and TLR2-mediated signaling on early innate processes in the lung following pulmonary F. tularensis infection and provide additional insight into possible mechanisms by which intracellular pathogens modulate respiratory immune defenses.

  4. Genetic recombination events between sympatric Clade A and Clade C lice in Africa.

    PubMed

    Veracx, Aurélie; Boutellis, Amina; Raoult, Didier

    2013-09-01

    Human head and body lice have been classified into three phylogenetic clades (Clades A, B, and C) based on mitochondrial DNA. Based on nuclear markers (the 18S rRNA gene and the PM2 spacer), two genotypes of Clade A head and body lice, including one that is specifically African (Clade A2), have been described. In this study, we sequenced the PM2 spacer of Clade C head lice from Ethiopia and compared these sequences with sequences from previous works. Trees were drawn, and an analysis of genetic diversity based on the cytochrome b gene and the PM2 spacer was performed for African and non-African lice. In the tree drawn based on the PM2 spacer, the African and non-African lice formed separate clusters. However, Clade C lice from Ethiopia were placed within the African Clade A subcluster (Clade A2). This result suggests that recombination events have occurred between Clade A2 lice and Clade C lice, reflecting the sympatric nature of African lice. Finally, the PM2 spacer and cytochrome b gene sequences of human lice revealed a higher level of genetic diversity in Africa than in other regions.

  5. Monophosphoryl Lipid A Enhances Efficacy of a Francisella tularensis LVS-Catanionic Nanoparticle Subunit Vaccine against F. tularensis Schu S4 Challenge by Augmenting both Humoral and Cellular Immunity.

    PubMed

    Richard, Katharina; Mann, Barbara J; Qin, Aiping; Barry, Eileen M; Ernst, Robert K; Vogel, Stefanie N

    2017-03-01

    Francisella tularensis, a bacterial biothreat agent, has no approved vaccine in the United States. Previously, we showed that incorporating lysates from partially attenuated F. tularensis LVS or fully virulent F. tularensis Schu S4 strains into catanionic surfactant vesicle (V) nanoparticles (LVS-V and Schu S4-V, respectively) protected fully against F. tularensis LVS intraperitoneal (i.p.) challenge in mice. However, we achieved only partial protection against F. tularensis Schu S4 intranasal (i.n.) challenge, even when employing heterologous prime-boost immunization strategies. We now extend these findings to show that both LVS-V and Schu S4-V immunization (i.p./i.p.) elicited similarly high titers of anti-F. tularensis IgG and that the titers could be further increased by adding monophosphoryl lipid A (MPL), a nontoxic Toll-like receptor 4 (TLR4) adjuvant that is included in several U.S. FDA-approved vaccines. LVS-V+MPL immune sera also detected more F. tularensis antigens than LVS-V immune sera and, after passive transfer to naive mice, significantly delayed the time to death against F. tularensis Schu S4 subcutaneous (s.c.) but not i.n. challenge. Active immunization with LVS-V+MPL (i.p./i.p.) also increased the frequency of gamma interferon (IFN-γ)-secreting activated helper T cells, IFN-γ production, and the ability of splenocytes to control intramacrophage F. tularensis LVS replication ex vivo Active LVS-V+MPL immunization via heterologous routes (i.p./i.n.) significantly elevated IgA and IgG levels in bronchoalveolar lavage fluid and significantly enhanced protection against i.n. F. tularensis Schu S4 challenge (to ∼60%). These data represent a significant step in the development of a subunit vaccine against the highly virulent type A strains.

  6. Experimental Infection of voles with Francisella tularensis indicates their amplification role in tularemia outbreaks.

    PubMed

    Rossow, Heidi; Forbes, Kristian M; Tarkka, Eveliina; Kinnunen, Paula M; Hemmilä, Heidi; Huitu, Otso; Nikkari, Simo; Henttonen, Heikki; Kipar, Anja; Vapalahti, Olli

    2014-01-01

    Tularemia outbreaks in humans have been linked to fluctuations in rodent population density, but the mode of bacterial maintenance in nature is unclear. Here we report on an experiment to investigate the pathogenesis of Francisella tularensis infection in wild rodents, and thereby assess their potential to spread the bacterium. We infected 20 field voles (Microtus agrestis) and 12 bank voles (Myodes glareolus) with a strain of F. tularensis ssp. holarctica isolated from a human patient. Upon euthanasia or death, voles were necropsied and specimens collected for histological assessment and identification of bacteria by immunohistology and PCR. Bacterial excretion and a rapid lethal clinical course with pathological changes consistent with bacteremia and tissue necrosis were observed in infected animals. The results support a role for voles as an amplification host of F. tularensis, as excreta and, in particular, carcasses with high bacterial burden could serve as a source for environmental contamination.

  7. In Vitro Antibiotic Susceptibilities of Francisella tularensis Determined by Broth Microdilution following CLSI Methods.

    PubMed

    Heine, Henry S; Miller, Lynda; Halasohoris, Stephanie; Purcell, Bret K

    2017-09-01

    In vitro susceptibilities for 47 antibiotics were determined in 30 genetic diverse strains of Francisella tularensis by the broth microdilution method following Clinical and Laboratory Standards Institute (CLSI) methods. The F. tularensis strains demonstrated susceptibility to aminoglycosides, fluoroquinolones, and tetracyclines. There was a distinct difference in macrolide susceptibilities between A and B type strains, as has been noted previously. The establishment and comparison of antibiotic susceptibilities of a diverse but specific set of F. tularensis strains by standardized methods and the establishment of population ranges and MIC50/90 values provide reference information for assessing new antibiotic agents and a baseline to monitor any future emergence of resistance, whether natural or intentional. Copyright © 2017 American Society for Microbiology.

  8. Delayed presence of alternatively activated macrophages during a Francisella tularensis infection.

    PubMed

    D'Elia, Riccardo V; Laws, Thomas R; Núñez, Alejandro; Taylor, Christopher; Clark, Graeme C

    2015-01-01

    Francisella tularensis is an intracellular bacterium that has the ability to multiply within the macrophage. The phenotype of a macrophage can determine whether the infection is cleared or the host succumbs to disease. Previously published data has suggested that F. tularensis LVS actively induces the alternative phenotype as a survival mechanism. In these studies we demonstrate that this is not the case for the more virulent strain of F. tularensis SCHU-S4. During an intranasal mouse model of infection, immuno-histochemistry identified that iNOS positive ("classical") macrophages are present at 72 h post-infection and remain high (supported by CCL-5 release) in numbers. In contrast, arginase/FIZZ-1 positive ("alternative") cells appear later and in low numbers during the development of the disease tularemia.

  9. Experimental Infection of Voles with Francisella tularensis Indicates Their Amplification Role in Tularemia Outbreaks

    PubMed Central

    Rossow, Heidi; Forbes, Kristian M.; Tarkka, Eveliina; Kinnunen, Paula M.; Hemmilä, Heidi; Huitu, Otso; Nikkari, Simo; Henttonen, Heikki; Kipar, Anja; Vapalahti, Olli

    2014-01-01

    Tularemia outbreaks in humans have been linked to fluctuations in rodent population density, but the mode of bacterial maintenance in nature is unclear. Here we report on an experiment to investigate the pathogenesis of Francisella tularensis infection in wild rodents, and thereby assess their potential to spread the bacterium. We infected 20 field voles (Microtus agrestis) and 12 bank voles (Myodes glareolus) with a strain of F. tularensis ssp. holarctica isolated from a human patient. Upon euthanasia or death, voles were necropsied and specimens collected for histological assessment and identification of bacteria by immunohistology and PCR. Bacterial excretion and a rapid lethal clinical course with pathological changes consistent with bacteremia and tissue necrosis were observed in infected animals. The results support a role for voles as an amplification host of F. tularensis, as excreta and, in particular, carcasses with high bacterial burden could serve as a source for environmental contamination. PMID:25271640

  10. Open and compressed conformations of Francisella tularensis ClpP

    PubMed Central

    Díaz‐Sáez, Laura; Pankov, Genady

    2016-01-01

    ABSTRACT Caseinolytic proteases are large oligomeric assemblies responsible for maintaining protein homeostasis in bacteria and in so doing influence a wide range of biological processes. The functional assembly involves three chaperones together with the oligomeric caseinolytic protease catalytic subunit P (ClpP). This protease represents a potential target for therapeutic intervention in pathogenic bacteria. Here, we detail an efficient protocol for production of recombinant ClpP from Francisella tularensis, and the structural characterization of three crystal forms which grow under similar conditions. One crystal form reveals a compressed state of the ClpP tetradecamer and two forms an open state. A comparison of the two types of structure infers that differences at the enzyme active site result from a conformational change involving a highly localized disorder‐order transition of a β‐strand α‐helix combination. This transition occurs at a subunit‐subunit interface. Our study may now underpin future efforts in a structure‐based approach to target ClpP for inhibitor or activator development. Proteins 2016; 85:188–194. © 2016 Wiley Periodicals, Inc. PMID:27802578

  11. Inhibitors of Ribosome Rescue Arrest Growth of Francisella tularensis at All Stages of Intracellular Replication

    PubMed Central

    Goralski, Tyler D. P.; Dewan, Kalyan K.; Alumasa, John N.; Avanzato, Victoria; Place, David E.; Markley, Rachel L.; Katkere, Bhuvana; Rabadi, Seham M.; Bakshi, Chandra Shekhar

    2016-01-01

    Bacteria require at least one pathway to rescue ribosomes stalled at the ends of mRNAs. The primary pathway for ribosome rescue is trans-translation, which is conserved in >99% of sequenced bacterial genomes. Some species also have backup systems, such as ArfA or ArfB, which can rescue ribosomes in the absence of sufficient trans-translation activity. Small-molecule inhibitors of ribosome rescue have broad-spectrum antimicrobial activity against bacteria grown in liquid culture. These compounds were tested against the tier 1 select agent Francisella tularensis to determine if they can limit bacterial proliferation during infection of eukaryotic cells. The inhibitors KKL-10 and KKL-40 exhibited exceptional antimicrobial activity against both attenuated and fully virulent strains of F. tularensis in vitro and during ex vivo infection. Addition of KKL-10 or KKL-40 to macrophages or liver cells at any time after infection by F. tularensis prevented further bacterial proliferation. When macrophages were stimulated with the proinflammatory cytokine gamma interferon before being infected by F. tularensis, addition of KKL-10 or KKL-40 reduced intracellular bacteria by >99%, indicating that the combination of cytokine-induced stress and a nonfunctional ribosome rescue pathway is fatal to F. tularensis. Neither KKL-10 nor KKL-40 was cytotoxic to eukaryotic cells in culture. These results demonstrate that ribosome rescue is required for F. tularensis growth at all stages of its infection cycle and suggest that KKL-10 and KKL-40 are good lead compounds for antibiotic development. PMID:26953190

  12. Early Interactions of Murine Macrophages with Francisella tularensis Map to Mouse Chromosome 19

    PubMed Central

    Fink, Avner; Hassan, Musa A.; Okan, Nihal A.; Sheffer, Michal; Camejo, Ana; Saeij, Jeroen P. J.

    2016-01-01

    ABSTRACT Differences among individuals in susceptibility to infectious diseases can be modulated by host genetics. Much of the research in this field has aimed to identify loci within the host genome that are associated with these differences. In mice, A/J (AJ) and C57BL/6J (B6) mice show differential susceptibilities to various pathogens, including the intracellular pathogen Francisella tularensis. Because macrophages are the main initial target during F. tularensis infection, we explored early interactions of macrophages from these two mouse strains with F. tularensis as well as the genetic factors underlying these interactions. Our results indicate that bacterial interactions with bone marrow-derived macrophages (BMDMs) during early stages of infection are different in the AJ and B6 strains. During these early stages, bacteria are more numerous in B6 than in AJ macrophages and display differences in trafficking and early transcriptional response within these macrophages. To determine the genetic basis for these differences, we infected BMDMs isolated from recombinant inbred (RI) mice derived from reciprocal crosses between AJ and B6, and we followed early bacterial counts within these macrophages. Quantitative trait locus (QTL) analysis revealed a locus on chromosome 19 that is associated with early differences in bacterial counts in AJ versus B6 macrophages. QTL analysis of published data that measured the differential susceptibilities of the same RI mice to an in vivo challenge with F. tularensis confirmed the F. tularensis susceptibility QTL on chromosome 19. Overall, our results show that early interactions of macrophages with F. tularensis are dependent on the macrophage genetic background. PMID:26980837

  13. Active suppression of the pulmonary immune response by Francisella tularensis Schu4.

    PubMed

    Bosio, Catharine M; Bielefeldt-Ohmann, Helle; Belisle, John T

    2007-04-01

    Francisella tularensis is an obligate, intracellular bacterium that causes acute, lethal disease following inhalation. As an intracellular pathogen F. tularensis must invade cells, replicate, and disseminate while evading host immune responses. The mechanisms by which virulent type A strains of Francisella tularensis accomplish this evasion are not understood. Francisella tularensis has been shown to target multiple cell types in the lung following aerosol infection, including dendritic cells (DC) and macrophages. We demonstrate here that one mechanism used by a virulent type A strain of F. tularensis (Schu4) to evade early detection is by the induction of overwhelming immunosuppression at the site of infection, the lung. Following infection and replication in multiple pulmonary cell types, Schu4 failed to induce the production of proinflammatory cytokines or increase the expression of MHCII or CD86 on the surface of resident DC within the first few days of disease. However, Schu4 did induce early and transient production of TGF-beta, a potent immunosuppressive cytokine. The absence of DC activation following infection could not be attributed to the apoptosis of pulmonary cells, because there were minimal differences in either annexin or cleaved caspase-3 staining in infected mice compared with that in uninfected controls. Rather, we demonstrate that Schu4 actively suppressed in vivo responses to secondary stimuli (LPS), e.g., failure to recruit granulocytes/monocytes and stimulate resident DC. Thus, unlike attenuated strains of F. tularensis, Schu4 induced broad immunosuppression within the first few days after aerosol infection. This difference may explain the increased virulence of type A strains compared with their more attenuated counterparts.

  14. Early Interactions of Murine Macrophages with Francisella tularensis Map to Mouse Chromosome 19.

    PubMed

    Fink, Avner; Hassan, Musa A; Okan, Nihal A; Sheffer, Michal; Camejo, Ana; Saeij, Jeroen P J; Kasper, Dennis L

    2016-03-15

    Differences among individuals in susceptibility to infectious diseases can be modulated by host genetics. Much of the research in this field has aimed to identify loci within the host genome that are associated with these differences. In mice, A/J (AJ) and C57BL/6J (B6) mice show differential susceptibilities to various pathogens, including the intracellular pathogen Francisella tularensis. Because macrophages are the main initial target during F. tularensis infection, we explored early interactions of macrophages from these two mouse strains with F. tularensis as well as the genetic factors underlying these interactions. Our results indicate that bacterial interactions with bone marrow-derived macrophages (BMDMs) during early stages of infection are different in the AJ and B6 strains. During these early stages, bacteria are more numerous in B6 than in AJ macrophages and display differences in trafficking and early transcriptional response within these macrophages. To determine the genetic basis for these differences, we infected BMDMs isolated from recombinant inbred (RI) mice derived from reciprocal crosses between AJ and B6, and we followed early bacterial counts within these macrophages. Quantitative trait locus (QTL) analysis revealed a locus on chromosome 19 that is associated with early differences in bacterial counts in AJ versus B6 macrophages. QTL analysis of published data that measured the differential susceptibilities of the same RI mice to an in vivo challenge with F. tularensis confirmed the F. tularensis susceptibility QTL on chromosome 19. Overall, our results show that early interactions of macrophages with F. tularensis are dependent on the macrophage genetic background. Francisella tularensis is a highly pathogenic bacterium with a very low infectious dose in humans. Some mechanisms of bacterial virulence have been elucidated, but the host genetic factors that contribute to host resistance or susceptibility are largely unknown. In this work, we

  15. Francisella tularensis detection using magnetic labels and a magnetic biosensor based on frequency mixing

    NASA Astrophysics Data System (ADS)

    Meyer, Martin H. F.; Krause, Hans-Joachim; Hartmann, Markus; Miethe, Peter; Oster, Jürgen; Keusgen, Michael

    2007-04-01

    A biosensor that uses resonant coils with a special frequency-mixing technique and magnetic beads as detectable labels has been established for the detection of Francisella tularensis, the causative agent for tularemia. The detection principle is based on a sandwich immunoassay using an anti-Ft antibody for immunofiltration immobilized to ABICAP ® polyethylene filters, and biotinylated with streptavidin-coated magnetic beads as labels. The linear detection range of this biosensor was found to be 10 4-10 6 cfu F. tularensis lipopolysaccharide (LPS) per ml. Tested sample matrices were physiological PBS buffer and rabbit serum.

  16. Keep an Ear Out for Francisella tularensis: Otomastoiditis Cases after Canyoneering.

    PubMed

    Guerpillon, Brice; Boibieux, Andre; Guenne, Clemence; Ploton, Christine; Ferry, Tristan; Maurin, Max; Forestier, Emmanuel; Dauwalder, Olivier; Manipoud, Patrick; Ltaïef-Boudrigua, Aicha; Gürkov, Robert; Vandenesch, Francois; Bouchiat, Coralie

    2016-01-01

    We report here three unusual cases of otomastoiditis due to Francisella tularensis, complicated by cervical abscesses and persistent hearing loss, plus facial paralysis for one patient. Intriguingly, the three patients had practiced canyoneering independently in the same French river, between 2009 and 2014, several days before clinical symptoms onset. The results point out that fresh water exposure may be a potential contamination route for tularemia. Besides, due to the frequent complications and sequelae, we believe that F. tularensis should be considered as a possible etiology in case of otitis media, failure of the conventional antibiotic treatment, and suspicious exposure of the bacteria.

  17. Keep an Ear Out for Francisella tularensis: Otomastoiditis Cases after Canyoneering

    PubMed Central

    Guerpillon, Brice; Boibieux, Andre; Guenne, Clemence; Ploton, Christine; Ferry, Tristan; Maurin, Max; Forestier, Emmanuel; Dauwalder, Olivier; Manipoud, Patrick; Ltaïef-Boudrigua, Aicha; Gürkov, Robert; Vandenesch, Francois; Bouchiat, Coralie

    2016-01-01

    We report here three unusual cases of otomastoiditis due to Francisella tularensis, complicated by cervical abscesses and persistent hearing loss, plus facial paralysis for one patient. Intriguingly, the three patients had practiced canyoneering independently in the same French river, between 2009 and 2014, several days before clinical symptoms onset. The results point out that fresh water exposure may be a potential contamination route for tularemia. Besides, due to the frequent complications and sequelae, we believe that F. tularensis should be considered as a possible etiology in case of otitis media, failure of the conventional antibiotic treatment, and suspicious exposure of the bacteria. PMID:26973838

  18. TaqMan Real-Time PCR Assays for Single-Nucleotide Polymorphisms Which Identify Francisella tularensis and Its Subspecies and Subpopulations

    PubMed Central

    Birdsell, Dawn N.; Vogler, Amy J.; Buchhagen, Jordan; Clare, Ashley; Kaufman, Emily; Naumann, Amber; Driebe, Elizabeth; Wagner, David M.; Keim, Paul S.

    2014-01-01

    Francisella tularensis, the etiologic agent of tularemia and a Class A Select Agent, is divided into three subspecies and multiple subpopulations that differ in virulence and geographic distribution. Given these differences, there is a need to rapidly and accurately determine if a strain is F. tularensis and, if it is, assign it to subspecies and subpopulation. We designed TaqMan real-time PCR genotyping assays using eleven single nucleotide polymorphisms (SNPs) that were potentially specific to closely related groups within the genus Francisella, including numerous subpopulations within F. tularensis species. We performed extensive validation studies to test the specificity of these SNPs to particular populations by screening the assays across a set of 565 genetically and geographically diverse F. tularensis isolates and an additional 21 genetic near-neighbor (outgroup) isolates. All eleven assays correctly determined the genetic groups of all 565 F. tularensis isolates. One assay differentiates F. tularensis, F. novicida, and F. hispaniensis from the more genetically distant F. philomiragia and Francisella-like endosymbionts. Another assay differentiates F. tularensis isolates from near neighbors. The remaining nine assays classify F. tularensis-confirmed isolates into F. tularensis subspecies and subpopulations. The genotyping accuracy of these nine assays diminished when tested on outgroup isolates (i.e. non F. tularensis), therefore a hierarchical approach of assay usage is recommended wherein the F. tularensis-specific assay is used before the nine downstream assays. Among F. tularensis isolates, all eleven assays were highly sensitive, consistently amplifying very low concentrations of DNA. Altogether, these eleven TaqMan real-time PCR assays represent a highly accurate, rapid, and sensitive means of identifying the species, subspecies, and subpopulation of any F. tularensis isolate if used in a step-wise hierarchical scheme. These assays would be very

  19. Data mining for proteins characteristic of clades

    PubMed Central

    Bern, Marshall; Goldberg, David; Lyashenko, Eugenia

    2006-01-01

    A synapomorphy is a phylogenetic character that provides evidence of shared descent. Ideally a synapomorphy is ubiquitous within the clade of related organisms and nonexistent outside the clade, implying that it arose after divergence from other extant species and before the last common ancestor of the clade. With the recent proliferation of genetic sequence data, molecular synapomorphies have assumed great importance, yet there is no convenient means to search for them over entire genomes. We have developed a new program called Conserv, which can rapidly assemble orthologous sequences and rank them by various metrics, such as degree of conservation or divergence from out-group orthologs. We have used Conserv to conduct a largescale search for molecular synapomorphies for bacterial clades. The search discovered sequences unique to clades, such as Actinobacteria, Firmicutes and γ-Proteobacteria, and shed light on several open questions, such as whether Symbiobacterium thermophilum belongs with Actinobacteria or Firmicutes. We conclude that Conserv can quickly marshall evidence relevant to evolutionary questions that would be much harder to assemble with other tools. PMID:16936320

  20. A method for functional trans-complementation of intracellular Francisella tularensis.

    PubMed

    Steele, Shaun; Taft-Benz, Sharon; Kawula, Thomas

    2014-01-01

    Francisella tularensis is a highly infectious bacterial pathogen that invades and replicates within numerous host cell types. After uptake, F. tularensis bacteria escape the phagosome, replicate within the cytosol, and suppress cytokine responses. However, the mechanisms employed by F. tularensis to thrive within host cells are mostly unknown. Potential F. tularensis mutants involved in host-pathogen interactions are typically discovered by negative selection screens for intracellular replication or virulence. Mutants that fulfill these criteria fall into two categories: mutants with intrinsic intracellular growth defects and mutants that fail to modify detrimental host cell processes. It is often difficult and time consuming to discriminate between these two possibilities. We devised a method to functionally trans-complement and thus identify mutants that fail to modify the host response. In this assay, host cells are consistently and reproducibly infected with two different F. tularensis strains by physically tethering the bacteria to antibody-coated beads. To examine the efficacy of this protocol, we tested phagosomal escape, cytokine suppression, and intracellular replication for F. tularensis ΔripA and ΔpdpC. ΔripA has an intracellular growth defect that is likely due to an intrinsic defect and fails to suppress IL-1β secretion. In the co-infection model, ΔripA was unable to replicate in the host cell when wild-type bacteria infected the same cell, but cytokine suppression was rescued. Therefore, ΔripA intracellular growth is due to an intrinsic bacterial defect while cytokine secretion results from a failed host-pathogen interaction. Likewise, ΔpdpC is deficient for phagosomal escape, intracellular survival and suppression of IL-1β secretion. Wild-type bacteria that entered through the same phagosome as ΔpdpC rescued all of these phenotypes, indicating that ΔpdpC failed to properly manipulate the host. In summary, functional trans

  1. Optimal swab processing recovery method for detection of bioterrorism-related Francisella tularensis by real-time PCR.

    PubMed

    Walker, Roblena E; Petersen, Jeannine M; Stephens, Kenyatta W; Dauphin, Leslie A

    2010-10-01

    Francisella tularensis, the etiological agent of tularemia, is regarded as a potential bioterrorism agent. The advent of bioterrorism has heightened awareness of the need for validated methods for processing environmental samples. In this study we determined the optimal method for processing environmental swabs for the recovery and subsequent detection of F. tularensis by the use of real-time PCR assays. Four swab processing recovery methods were compared: heat, sonication, vortexing, and the Swab Extraction Tube System (SETS). These methods were evaluated using cotton, foam, polyester and rayon swabs spiked with six pathogenic strains of F. tularensis. Real-time PCR analysis using a multi-target 5'nuclease assay for F. tularensis showed that the use of the SETS method resulted in the best limit of detection when evaluated using multiple strains of F. tularensis. We demonstrated also that the efficiency of F. tularensis recovery from swab specimens was not equivalent for all swab processing methodologies and, thus, that this variable can affect real-time PCR assay sensitivity. The effectiveness of the SETS method was independent of the automated DNA extraction method and real-time PCR platforms used. In conclusion, diagnostic laboratories can now potentially incorporate the SETS method into specimen processing protocols for the rapid and efficient detection of F. tularensis by real-time PCR during laboratory bioterrorism-related investigations.

  2. Evidence that clade A and clade B head lice live in sympatry and recombine in Algeria.

    PubMed

    Boutellis, A; Bitam, I; Fekir, K; Mana, N; Raoult, D

    2015-03-01

    Pediculus humanus L. (Psocodea: Pediculidae) can be characterized into three deeply divergent lineages (clades) based on mitochondrial DNA. Clade A consists of both head lice and clothing lice and is distributed worldwide. Clade B consists of head lice only and is mainly found in North and Central America, and in western Europe and Australia. Clade C, which consists only of head lice, is found in Ethiopia, Nepal and Senegal. Twenty-six head lice collected from pupils at different elementary schools in two localities in Algiers (Algeria) were analysed using molecular methods for genotyping lice (cytochrome b and the multi-spacer typing (MST) method. For the first time, we found clade B head lice in Africa living in sympatry with clade A head lice. The phylogenetic analysis of the concatenated sequences of these populations of head lice showed that clade A and clade B head lice had recombined, suggesting that interbreeding occurs when lice live in sympatry. © 2014 The Royal Entomological Society.

  3. Identification of Mycobacterium avium subsp. hominissuis Isolated From Drinking Water

    EPA Science Inventory

    Mycobacterium avium (MA) is divided into four subspecies based primarily on host-range and consists of MA subsp. avium (birds), MA subsp. silvaticum (wood pigeons), MA subsp. paratuberculosis (broad, poorly-defined host range), and the recently described MA subsp. hominissuis (hu...

  4. Identification of Mycobacterium avium subsp. hominissuis Isolated From Drinking Water

    EPA Science Inventory

    Mycobacterium avium (MA) is divided into four subspecies based primarily on host-range and consists of MA subsp. avium (birds), MA subsp. silvaticum (wood pigeons), MA subsp. paratuberculosis (broad, poorly-defined host range), and the recently described MA subsp. hominissuis (hu...

  5. Rapid Countermeasure Discovery against Francisella tularensis Based on a Metabolic Network Reconstruction

    DTIC Science & Technology

    2013-05-21

    tularensis lipopolysaccharide biosyn- thesis, components integral to assembling a functional outer membrane . Compound 24, identified through...database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res 37: D455–458. 55. Langer G, Cohen SX, Lamzin VS, Perrakis A (2008

  6. Transcriptome analysis of human immune responses following Live Vaccine Strain (LVS) Francisella Tularensis vaccination

    PubMed Central

    Fuller, Claudette L.; Brittingham, Katherine C.; Porter, Mark W.; Hepburn, Matthew J.; Petitt, Patricia L.; Pittman, Phillip R.; Bavari, Sina

    2007-01-01

    The live vaccine strain (LVS) of Francisella tularensis is the only vaccine against tularemia available for humans, yet its mechanism of protection remains unclear. We probed human immunological responses to LVS vaccination with transcriptome analysis using PBMC samples from volunteers at timepoints pre- and post-vaccination. Gene modulation was highly uniform across all time points, implying commonality of vaccine responses. Principal components analysis revealed three highly distinct principal groupings: pre-vaccination (−144 h), early (+18 and +48 h), and late post-vaccination (+192 and +336 h). The most significant changes in gene expression occurred at early post-vaccination timepoints (≤48 h), specifically in the induction of pro-inflammatory- and innate immunity-related genes. Evidence supporting modulation of innate effector function, specifically antigen processing and presentation by dendritic cells, was especially apparent. Our data indicate that the LVS strain of F. tularensis invokes a strong early response upon vaccination. This pattern of gene regulation may provide insightful information regarding both vaccine efficacy and immunopathogenesis that may provide insight into infection with virulent strains of F. tularensis. Additionally, we obtained valuable information that should prove useful in evaluation of vaccine lots as well as efficacy testing of new anti- F. tularensis vaccines. PMID:17349694

  7. Inactivation of F.tularensis Utah-112 on food and food contact surfaces by ultraviolet light

    USDA-ARS?s Scientific Manuscript database

    Francisella tularensis is the causative agent of tularemia, a plague-like illness that affects animals and humans, and has caused large illness pandemics in the last century. It has also been used as a biological warfare agent, and tularemia can be contracted through consumption of contaminated food...

  8. Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis.

    PubMed

    Alkhuder, Khaled; Meibom, Karin L; Dubail, Iharilalao; Dupuis, Marion; Charbit, Alain

    2009-01-01

    Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. Its ability to multiply and survive in macrophages is critical for its virulence. By screening a bank of HimarFT transposon mutants of the F. tularensis live vaccine strain (LVS) to isolate intracellular growth-deficient mutants, we selected one mutant in a gene encoding a putative gamma-glutamyl transpeptidase (GGT). This gene (FTL_0766) was hence designated ggt. The mutant strain showed impaired intracellular multiplication and was strongly attenuated for virulence in mice. Here we present evidence that the GGT activity of F. tularensis allows utilization of glutathione (GSH, gamma-glutamyl-cysteinyl-glycine) and gamma-glutamyl-cysteine dipeptide as cysteine sources to ensure intracellular growth. This is the first demonstration of the essential role of a nutrient acquisition system in the intracellular multiplication of F. tularensis. GSH is the most abundant source of cysteine in the host cytosol. Thus, the capacity this intracellular bacterial pathogen has evolved to utilize the available GSH, as a source of cysteine in the host cytosol, constitutes a paradigm of bacteria-host adaptation.

  9. Density-Dependent Prevalence of Francisella tularensis in Fluctuating Vole Populations, Northwestern Spain

    PubMed Central

    Rodríguez-Pastor, Ruth; Escudero, Raquel; Vidal, Dolors; Mougeot, François; Arroyo, Beatriz; Lambin, Xavier; Vila-Coro, Ave Maria; Rodríguez-Moreno, Isabel; Anda, Pedro

    2017-01-01

    Tularemia in humans in northwestern Spain is associated with increases in vole populations. Prevalence of infection with Francisella tularensis in common voles increased to 33% during a vole population fluctuation. This finding confirms that voles are spillover agents for zoonotic outbreaks. Ecologic interactions associated with tularemia prevention should be considered. PMID:28726608

  10. Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains

    PubMed Central

    Rohmer, Laurence; Fong, Christine; Abmayr, Simone; Wasnick, Michael; Larson Freeman, Theodore J; Radey, Matthew; Guina, Tina; Svensson, Kerstin; Hayden, Hillary S; Jacobs, Michael; Gallagher, Larry A; Manoil, Colin; Ernst, Robert K; Drees, Becky; Buckley, Danielle; Haugen, Eric; Bovee, Donald; Zhou, Yang; Chang, Jean; Levy, Ruth; Lim, Regina; Gillett, Will; Guenthener, Don; Kang, Allison; Shaffer, Scott A; Taylor, Greg; Chen, Jinzhi; Gallis, Byron; D'Argenio, David A; Forsman, Mats; Olson, Maynard V; Goodlett, David R; Kaul, Rajinder; Miller, Samuel I; Brittnacher, Mitchell J

    2007-01-01

    Background Francisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans. Results Comparison of the genomes of human pathogenic Francisella strains with the genome of U112 identifies genes specific to the human pathogenic strains and reveals pseudogenes that previously were unidentified. In addition, this analysis provides a coarse chronology of the evolutionary events that took place during the emergence of the human pathogenic strains. Genomic rearrangements at the level of insertion sequences (IS elements), point mutations, and small indels took place in the human pathogenic strains during and after differentiation from the nonpathogenic strain, resulting in gene inactivation. Conclusion The chronology of events suggests a substantial role for genetic drift in the formation of pseudogenes in Francisella genomes. Mutations that occurred early in the evolution, however, might have been fixed in the population either because of evolutionary bottlenecks or because they were pathoadaptive (beneficial in the context of infection). Because the structure of Francisella genomes is similar to that of the genomes of other emerging or highly pathogenic bacteria, this evolutionary scenario may be shared by pathogens from other species. PMID:17550600

  11. [Real time PCR hybridization for the rapid and specific identification of Francisella tularensis].

    PubMed

    Bielawska-Drózd, Agata; Niemcewicz, Marcin; Gaweł, Jerzy; Bartoszcze, Michał; Graniak, Grzegorz; Joniec, Justyna; Kołodziej, Marcin

    2010-01-01

    Tularemia is highly infectious and fatal zoonotic disease caused by Gram negative bacteria Francisella tularensis. The necessity to undergo medical treatment in early phase of illness in humans and possibility of making use of bacterial aerosol by terrorists in an attack create an urgent need to implement a rapid and effective method which enables to identify the agent. In our study two primers FopA F/R and hybridization probes FopA S1/S2 designed from fopA gene sequence, were tested for their potential applicability to identify F. tularensis. In this research 50 strains of F. tularensis were used and the test gave positive results. Reaction specificity was confirmed by using of non-Francisella tularensis bacterial species. The results obtained in the real-time PCR reaction with primers Tul4 F/R and hybridization probes Tul4 S1/S2, designed from tul4 gene, were comparable to the results from previous experiment with fopA - primers set. Investigation of fopA and tul4 primers and hybridization probes properties revealed characteristic Tm (melting temperature) value of the products--61 degrees C and 60 degrees C, respectively. Detection sensitivity was remarkably higher when fopA primers set was used 1 fg/microl, and for tul4 primers set, minimal detectable concentration is 10 fg/microl.

  12. Chemical synthesis and immunological evaluation of the inner core oligosaccharide of Francisella tularensis.

    PubMed

    Boltje, Thomas J; Zhong, Wei; Park, Jin; Wolfert, Margreet A; Chen, Wangxue; Boons, Geert-Jan

    2012-08-29

    Francisella tularensis, which is a Gram negative bacterium that causes tularemia, has been classified by the Center for Disease Control and Prevention (CDC) as a category A bioweapon. The development of vaccines, immunotherapeutics, and diagnostics for F. tularensis requires a detailed knowledge of the saccharide structures that can be recognized by protective antibodies. We have synthesized the inner core region of the lipopolysaccharide (LPS) of F. tularensis to probe antigenic responses elicited by a live and subunit vaccine. The successful preparation of the target compound relied on the use of a disaccharide which was modified by the orthogonal protecting groups diethylisopropylsilyl (DEIPS), 2-naphthylmethyl (Nap), allyl ether (All), and levulinoyl (Lev) ester. The ability to remove the protecting groups in different orders made it possible to establish the optimal glycosylations sequence to prepare a highly crowded 1,2,3-cis configured branching point. A variety of different methods were exploited to control anomeric selectivities of the glycosylations. A comparison of the (1)H NMR spectra of isolated material and the synthetic derivative confirmed the reported structural assignment of the inner core oligosaccharide of F. tularensis . The observation that immunizations with LPS lead to antibody responses to the inner core saccharides provides an impetus to further explore this compound as a vaccine candidate.

  13. Phylogenetic analysis of the lux operon distinguishes two evolutionarily distinct clades of Photobacterium leiognathi.

    PubMed

    Ast, Jennifer C; Dunlap, Paul V

    2004-05-01

    The luminous marine bacterium Photobacterium mandapamensis was synonymized several years ago with Photobacterium leiognathi based on a high degree of phenotypic and genetic similarity. To test the possibility that P. leiognathi as now formulated, however, actually contains two distinct bacterial groups reflecting the earlier identification of P. mandapamensis and P. leiognathi as separate species, we compared P. leiognathi strains isolated from light-organ symbiosis with leiognathid fishes (i.e., ATCC 25521(T), ATCC 25587, lequu.1.1 and lleuc.1.1) with strains from seawater originally described as P. mandapamensis and later synonymized as P. leiognathi (i.e., ATCC 27561(T) and ATCC 33981) and certain strains initially identified as P. leiognathi (i.e., PL-721, PL-741, 554). Analysis of the 16S rRNA and gyrB genes did not resolve distinct clades, affirming a close relationship among these strains. However, strains ATCC 27561(T), ATCC 33981, PL-721, PL-741 and 554 were found to bear a luxF gene in the lux operon ( luxABFE), whereas ATCC 25521(T), ATCC 25587, lequu.1.1 and lleuc.1.1 lack this gene ( luxABE). Phylogenetic analysis of the luxAB(F)E region confirmed this distinction. Furthermore, ATCC 27561(T), ATCC 33981, PL-721, PL-741 and 554 all produced a higher level of luminescence on high-salt medium, as previously described for PL-721, whereas ATCC 25521(T), ATCC 25587, lequu.1.1 and lleuc.1.1 all produced a higher level of luminescence on low-salt medium, a characteristic of P. leiognathi from leiognathid fish light organs. These results demonstrate that P. leiognathi contains two evolutionarily and phenotypically distinct clades, P. leiognathi subsp. leiognathi (strains ATCC 25521(T), ATCC 25587, lequu.1.1 and lleuc.1.1), and P. leiognathi subsp. mandapamensis (strains ATCC 27561(T), ATCC 33981, PL-721, PL-741 and 554).

  14. Symbiodinium Clade Affects Coral Skeletal Isotopic Ratio

    NASA Astrophysics Data System (ADS)

    Carilli, J.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2011-12-01

    The influence of different physiologies of Symbiodinium dinoflagellate symbiont clades on the skeletal chemistry of associated coral hosts has not previously been investigated. This is an important issue because coral skeletons are routinely used for tropical paleoclimatic reconstructions. We analyzed coral skeletal samples collected simultaneously from neighboring colonies off Belize and found that those harboring different clades of Symbiodinium displayed significantly different skeletal oxygen isotopic compositions. We also found evidence for mean shifts in skeletal oxygen isotopic composition after coral bleaching (the loss and potential exchange of symbionts) in two of four longer coral cores from the Mesoamerican Reef, though all experienced similar climatic conditions. Thus, we suggest that symbiont clade identity leaves a signature in the coral skeletal archive and that this influence must be considered for quantitative environmental reconstruction. In addition, we suggest that the skeletal isotopic signature may be used to identify changes in the dominant symbiont clade that have occurred in the past, to identify how common and widespread this phenomenon is--a potential adaptation to climate change.

  15. Evolutionary Ecology of the Marine Roseobacter Clade

    PubMed Central

    Luo, Haiwei

    2014-01-01

    SUMMARY Members of the Roseobacter clade are equipped with a tremendous diversity of metabolic capabilities, which in part explains their success in so many different marine habitats. Ideas on how this diversity evolved and is maintained are reviewed, focusing on recent evolutionary studies exploring the timing and mechanisms of Roseobacter ecological diversification. PMID:25428935

  16. Nucleolin, a Shuttle Protein Promoting Infection of Human Monocytes by Francisella tularensis

    PubMed Central

    Barel, Monique; Meibom, Karin; Charbit, Alain

    2010-01-01

    Background Francisella tularensis is a highly virulent facultative intracellular bacterium, disseminating in vivo mainly within host mononuclear phagocytes. After entry into macrophages, F. tularensis initially resides in a phagosomal compartment, whose maturation is then arrested. Bacteria escape rapidly into the cytoplasm, where they replicate freely. We recently demonstrated that nucleolin, an eukaryotic protein able to traffic from the nucleus to the cell surface, acted as a surface receptor for F. tularensis LVS on human monocyte-like THP-1 cells. Methodology/Principal Findings Here, we followed the fate of nucleolin once F. tularensis has been endocytosed. We first confirmed by siRNA silencing experiments that expression of nucleolin protein was essential for binding of LVS on human macrophage-type THP-1 cells. We then showed that nucleolin co-localized with intracellular bacteria in the phagosomal compartment. Strikingly, in that compartment, nucleolin also co-localized with LAMP-1, a late endosomal marker. Co-immunoprecipation assays further demonstrated an interaction of nucleolin with LAMP-1. Co-localization of nucleolin with LVS was no longer detectable at 24 h when bacteria were multiplying in the cytoplasm. In contrast, with an iglC mutant of LVS, which remains trapped into the phagosomal compartment, or with inert particles, nucleolin/bacteria co-localization remained almost constant. Conclusions/Significance We herein confirm the importance of nucleolin expression for LVS binding and its specificity as nucleolin is not involved in binding of another intracellular pathogen as L. monocytogenes or an inert particle. Association of nucleolin with F. tularensis during infection continues intracellularly after endocytosis of the bacteria. The present work therefore unravels for the first time the presence of nucleolin in the phagosomal compartment of macrophages. PMID:21152024

  17. Contribution of citrulline ureidase to Francisella tularensis strain Schu S4 pathogenesis.

    PubMed

    Mahawar, Manish; Kirimanjeswara, Girish S; Metzger, Dennis W; Bakshi, Chandra Shekhar

    2009-08-01

    The citrulline ureidase (CTU) activity has been shown to be associated with highly virulent Francisella tularensis strains, including Schu S4, while it is absent in avirulent or less virulent strains. A definitive role of the ctu gene in virulence and pathogenesis of F. tularensis Schu S4 has not been assessed; thus, an understanding of the significance of this phenotype is long overdue. CTU is a carbon-nitrogen hydrolase encoded by the citrulline ureidase (ctu) gene (FTT0435) on the F. tularensis Schu S4 genome. In the present study, we evaluated the contribution of the ctu gene in the virulence of category A agent F. tularensis Schu S4 by generating a nonpolar deletion mutant, the Deltactu mutant. The deletion of the ctu gene resulted in loss of CTU activity, which was restored by transcomplementing the ctu gene. The Deltactu mutant did not exhibit any growth defect under acellular growth conditions; however, it was impaired for intramacrophage growth in resting as well as gamma interferon-stimulated macrophages. The Deltactu mutant was further tested for its virulence attributes in a mouse model of respiratory tularemia. Mice infected intranasally with the Deltactu mutant showed significantly reduced bacterial burden in the lungs, liver, and spleen compared to wild-type (WT) Schu S4-infected mice. The reduced bacterial burden in mice infected with the Deltactu mutant was also associated with significantly lower histopathological scores in the lungs. Mice infected with the Deltactu mutant succumbed to infection, but they survived longer and showed significantly extended median time to death compared to that shown by WT Schu S4-infected mice. To conclude, this study demonstrates that ctu contributes to intracellular survival, in vivo growth, and pathogenesis. However, ctu is not an absolute requirement for the virulence of F. tularensis Schu S4 in mice.

  18. Thermal resistance of Francisella tularensis in infant formula and fruit juices.

    PubMed

    Day, J B; Trujillo, S; Hao, Y Y D; Whiting, R C

    2008-11-01

    Francisella tularensis is a gram-negative bacterium that can cause gastrointestinal or oropharyngeal tularemia from ingestion of contaminated food or water. Despite the potential for accidental or intentional contamination of foods with F. tularensis, little information exists on the thermal stability of this organism in food matrices. In the present study, the thermal resistance of the live vaccine strain of F. tularensis in four food products (liquid infant formula, apple juice, mango juice, and orange juice) was investigated. D-values ranged from 12 s (57.5 degrees C) to 580 s (50 degrees C) in infant formula with a z-value of 4.37 degrees C. D-values in apple juice ranged from 8 s (57.5 degrees C) to 59 s (50 degrees C) with a z-value of 9.17 degrees C. The live vaccine strain did not survive at temperatures above 55 degrees C in mango juice and orange juice (>6-log inactivation). D-values at 55 to 47.5 degrees C were 15 to 59 s in mango juice and 16 to 105 s in orange juice with z-values of 9.28 and 12.30 degrees C, respectively. These results indicate that current pasteurization parameters used for destroying common foodborne bacterial pathogens are adequate for eliminating F. tularensis in the four foods tested. This study is the first to determine thermal inactivation of F. tularensis in specific foods and will permit comparisons with the thermal inactivation data of other more traditional foodborne pathogens.

  19. PATHOGENESIS AND IMMUNE RESPONSES OF FRANCISELLA TULARENSIS STRAINS IN WILD-CAUGHT COTTONTAIL RABBITS (SYLVILAGUS SPP.).

    PubMed

    Brown, Vienna R; Adney, Danielle R; Bielefeldt-Ohmann, Helle; Gordy, Paul W; Felix, Todd A; Olea-Popelka, Francisco J; Bowen, Richard A

    2015-07-01

    Francisella tularensis is a highly virulent, zoonotic bacterium that causes significant natural disease and is of concern as an organism for bioterrorism. Serologic testing of wildlife is frequently used to monitor spatial patterns of infection and to quantify exposure. Cottontail rabbits (Sylvilagus spp.) are a natural reservoir for F. tularensis in the US, although very little work has been done experimentally to determine how these animals respond to infection; thus, information gathered from field samples can be difficult to interpret. We characterized clinical disease, bacteremia, pathology, and antibody kinetics of North American cottontail rabbits experimentally infected with five strains of F. tularensis. Rabbits were infected with four field strains, including MA00-2987 (type A1b), WY96-3418 (type A2), KY99-3387, and OR96-0246 (type B), and with SchuS4 (type A1a), a widely used, virulent laboratory strain. Infection with the different strains of the bacterium resulted in varied patterns of clinical disease, gross pathology, and histopathology. Each of the type A strains were highly virulent, with rabbits succumbing to infection 3-13 d after infection. At necropsy, numerous microabscesses were observed in the livers and spleens of most rabbits, associated with high bacterial organ burdens. In contrast, most rabbits infected with type B strains developed mild fever and became lethargic, but the disease was infrequently lethal. Those rabbits infected with type B strains that survived past 14 d developed a robust humoral immune response, and F. tularensis was not isolated from liver, spleen, or lung of those animals. Understanding F. tularensis infection in a natural reservoir species can guide serosurveillance and generate new insights into environmental maintenance of this pathogen.

  20. Nasal Acai Polysaccharides Potentiate Innate Immunity to Protect against Pulmonary Francisella tularensis and Burkholderia pseudomallei Infections

    PubMed Central

    Skyberg, Jerod A.; Rollins, MaryClare F.; Holderness, Jeff S.; Marlenee, Nicole L.; Schepetkin, Igor A.; Goodyear, Andrew; Dow, Steven W.; Jutila, Mark A.; Pascual, David W.

    2012-01-01

    Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F. tularensis and B. pseudomallei infections. In vitro, Acai PS impaired replication of Francisella in primary human macrophages co-cultured with autologous NK cells via augmentation of NK cell IFN-γ. Furthermore, Acai PS administered nasally before or after infection protected mice against type A F. tularensis aerosol challenge with survival rates up to 80%, and protection was still observed, albeit reduced, when mice were treated two days post-infection. Nasal Acai PS administration augmented intracellular expression of IFN-γ by NK cells in the lungs of F. tularensis-infected mice, and neutralization of IFN-γ ablated the protective effect of Acai PS. Likewise, nasal Acai PS treatment conferred protection against pulmonary infection with B. pseudomallei strain 1026b. Acai PS dramatically reduced the replication of B. pseudomallei in the lung and blocked bacterial dissemination to the spleen and liver. Nasal administration of Acai PS enhanced IFN-γ responses by NK and γδ T cells in the lungs, while neutralization of IFN-γ totally abrogated the protective effect of Acai PS against pulmonary B. pseudomallei infection. Collectively, these results demonstrate Acai PS is a potent innate immune agonist that can resolve F. tularensis and B. pseudomallei infections, suggesting this innate immune agonist has broad-spectrum activity against virulent intracellular pathogens. PMID:22438809

  1. Susceptibility of immunodeficient mice to aerosol and systemic infection with virulent strains of Francisella tularensis.

    PubMed

    Chen, Wangxue; KuoLee, Rhonda; Shen, Hua; Conlan, J Wayne

    2004-06-01

    Previous studies have shown that IFN-gamma, TNF-alpha and NOS-2, but not B cells, are crucial for host defense against primary systemic infection with the attenuated live vaccine strain (LVS) of Francisella tularensis. In this study, we examined the importance of these and additional immune components in host resistance against infection with virulent strains of F. tularensis initiated by systemic and airborne routes. Wild-type (WT) mice and mice deficient in IFN-gamma, TNFR1R2, NOS-2, or B cells were equally susceptible to low dose ( approximately 10 colony forming units) aerosol or intradermal challenge with virulent type B F. tularensis, and succumbed to the infection between days 6 and 8 post-inoculation. Quantitative bacteriology showed that IFN-gamma-/- and B cell-/- mice consistently harbored up to one log(10) more bacteria in their lungs, spleens and livers than WT mice at day 5 post aerosol exposure. Surprisingly, however, compared to other strains of KO mice and WT control mice, IFN-gamma-/- mice showed only mild liver damage as assessed by histopathology and liver function tests. Additional experiments established that even mice with broad immunodeficiency (SCID, neutropenic, splenectomized or thymectomized mice and mice treated with corticosteroid) were no more susceptible to aerosol-initiated infection with virulent type B or type A F. tularensis than immunosufficient control mice. Combined, our results indicate that, unlike LVS, normal type A and type B F. tularensis strains are so extremely virulent that even immunocompetent mice are virtually defenseless to low dose aerosol and intradermal challenges with them.

  2. Inactivation of Yersinia pseudotuberculosis 197 and Francisella tularensis LVS in beverages by high pressure processing.

    PubMed

    Schlesser, Joseph E; Parisi, Brian

    2009-01-01

    In 2003, the U.S. Department of Health and Human Services announced a new research program to develop technologies and strategies to prevent and minimize potential food safety and security threats. The threat of terrorist attacks against the nation's food supplies has created the need to study microorganisms not typically associated with foodborne illness. High-pressure processing has been proposed as a treatment to reduce Yersinia pestis and Francisella tularensis LVS levels in beverages. The objectives of this work were to determine the pressure resistance of Y. pseudotuberculosis 197 (surrogate for Y. pestis) and F. tularensis LVS (vaccine strain). For each bacterium, samples of ultrahigh-temperature pasteurized skim milk and pasteurized reduced-acid orange juice (pH ca. 4.2) were inoculated at a minimum level of 5 log CFU/ml. Ten-milliliter samples of the inoculated product were vacuum sealed in polyester pouches and subjected to pressures of 300 and 500 MPa for holding times ranging from 30 s to 6 min. One set of trials was performed at an initial temperature of 10 degrees C and another at 25 degrees C. Processed samples were immediately plated and enumerated. A pressure treatment of 300 MPa at 25 degrees C for less than 6 min was not sufficient to achieve a 5-log reduction of Y. pseudotuberculosis 197 or F. tularensis LVS in milk. However, a pressure treatment of 500 MPa was effective at hold times as low as 30 s. Overall, F. tularensis LVS demonstrated less pressure resistance than Y. pseudotuberculosis 197. Based on these findings, a high-pressure process designed to inactivate 5 log CFU of Y. pseudotuberculosis 197 per ml and F. tularensis LVS in orange juice or milk should be set at or above 500 MPa with a hold time of 2 min or greater.

  3. Iron Acquisition in Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Wang, Joyce; Moolji, Jalal; Dufort, Alex; Staffa, Alfredo; Domenech, Pilar; Reed, Michael B.

    2015-01-01

    ABSTRACT Mycobacterium avium subsp. paratuberculosis is a host-adapted pathogen that evolved from the environmental bacterium M. avium subsp. hominissuis through gene loss and gene acquisition. Growth of M. avium subsp. paratuberculosis in the laboratory is enhanced by supplementation of the media with the iron-binding siderophore mycobactin J. Here we examined the production of mycobactins by related organisms and searched for an alternative iron uptake system in M. avium subsp. paratuberculosis. Through thin-layer chromatography and radiolabeled iron-uptake studies, we showed that M. avium subsp. paratuberculosis is impaired for both mycobactin synthesis and iron acquisition. Consistent with these observations, we identified several mutations, including deletions, in M. avium subsp. paratuberculosis genes coding for mycobactin synthesis. Using a transposon-mediated mutagenesis screen conditional on growth without myobactin, we identified a potential mycobactin-independent iron uptake system on a M. avium subsp. paratuberculosis-specific genomic island, LSPP15. We obtained a transposon (Tn) mutant with a disruption in the LSPP15 gene MAP3776c for targeted study. The mutant manifests increased iron uptake as well as intracellular iron content, with genes downstream of the transposon insertion (MAP3775c to MAP3772c [MAP3775-2c]) upregulated as the result of a polar effect. As an independent confirmation, we observed the same iron uptake phenotypes by overexpressing MAP3775-2c in wild-type M. avium subsp. paratuberculosis. These data indicate that the horizontally acquired LSPP15 genes contribute to iron acquisition by M. avium subsp. paratuberculosis, potentially allowing the subsequent loss of siderophore production by this pathogen. IMPORTANCE Many microbes are able to scavenge iron from their surroundings by producing iron-chelating siderophores. One exception is Mycobacterium avium subsp. paratuberculosis, a fastidious, slow-growing animal pathogen whose growth

  4. Sensitive Detection of Francisella tularensis Directly from Whole Blood by Use of the GeneXpert System

    PubMed Central

    Banada, Padmapriya P.; Deshpande, Srinidhi; Chakravorty, Soumitesh; Russo, Riccardo; Occi, James; Meister, Gabriel; Jones, Kelly J.; Gelhaus, Carl H.; Valderas, Michelle W.; Jones, Martin; Connell, Nancy

    2016-01-01

    ABSTRACT Francisella tularensis is a potential bioterrorism agent that is highly infectious at very low doses. Diagnosis of tularemia by blood culture and nucleic acid-based diagnostic tests is insufficiently sensitive. Here, we demonstrate a highly sensitive F. tularensis assay that incorporates sample processing and detection into a single cartridge suitable for point-of-care detection. The assay limit of detection (LOD) and dynamic range were determined in a filter-based cartridge run on the GeneXpert system. F. tularensis DNA in buffer or CFU of F. tularensis was spiked into human or macaque blood. To simulate detection in human disease, the assay was tested on blood drawn from macaques infected with F. tularensis Schu S4 at daily intervals. Assay detection was compared to that with a conventional quantitative PCR (qPCR) assay and blood culture. The assay LOD was 0.1 genome equivalents (GE) per reaction and 10 CFU/ml F. tularensis in both human and macaque blood. In infected macaques, the assay detected F. tularensis on days 1 to 4 postinfection in 21%, 17%, 60%, and 83% of macaques, respectively, compared to conventional qPCR positivity rates of 0%, 0%, 30%, and 100% and CFU detection of blood culture at 0%, 0%, 0%, and 10% positive, respectively. Assay specificity was 100%. The new cartridge-based assay can rapidly detect F. tularensis in bloodstream infections directly in whole blood at the early stages of infection with a sensitivity that is superior to that of other methods. The simplicity of the automated testing procedures may make this test suitable for rapid point-of-care detection. PMID:27847371

  5. Sensitive Detection of Francisella tularensis Directly from Whole Blood by Use of the GeneXpert System.

    PubMed

    Banada, Padmapriya P; Deshpande, Srinidhi; Chakravorty, Soumitesh; Russo, Riccardo; Occi, James; Meister, Gabriel; Jones, Kelly J; Gelhaus, Carl H; Valderas, Michelle W; Jones, Martin; Connell, Nancy; Alland, David

    2017-01-01

    Francisella tularensis is a potential bioterrorism agent that is highly infectious at very low doses. Diagnosis of tularemia by blood culture and nucleic acid-based diagnostic tests is insufficiently sensitive. Here, we demonstrate a highly sensitive F. tularensis assay that incorporates sample processing and detection into a single cartridge suitable for point-of-care detection. The assay limit of detection (LOD) and dynamic range were determined in a filter-based cartridge run on the GeneXpert system. F. tularensis DNA in buffer or CFU of F. tularensis was spiked into human or macaque blood. To simulate detection in human disease, the assay was tested on blood drawn from macaques infected with F. tularensis Schu S4 at daily intervals. Assay detection was compared to that with a conventional quantitative PCR (qPCR) assay and blood culture. The assay LOD was 0.1 genome equivalents (GE) per reaction and 10 CFU/ml F. tularensis in both human and macaque blood. In infected macaques, the assay detected F. tularensis on days 1 to 4 postinfection in 21%, 17%, 60%, and 83% of macaques, respectively, compared to conventional qPCR positivity rates of 0%, 0%, 30%, and 100% and CFU detection of blood culture at 0%, 0%, 0%, and 10% positive, respectively. Assay specificity was 100%. The new cartridge-based assay can rapidly detect F. tularensis in bloodstream infections directly in whole blood at the early stages of infection with a sensitivity that is superior to that of other methods. The simplicity of the automated testing procedures may make this test suitable for rapid point-of-care detection. Copyright © 2016 American Society for Microbiology.

  6. Protective B-cell epitopes of Francisella tularensis O-polysaccharide in a mouse model of respiratory tularaemia

    PubMed Central

    Lu, Zhaohua; Madico, Guillermo; Roche, Marly I; Wang, Qi; Hui, Julia H; Perkins, Hillary M; Zaia, Joseph; Costello, Catherine E; Sharon, Jacqueline

    2012-01-01

    Antibodies to the lipopolysaccharide (LPS) of Francisella tularensis have been shown to be protective against respiratory tularaemia in mouse models, and we have previously described mouse monoclonal antibodies (mAbs) to non-overlapping terminal and internal epitopes of the F. tularensis LPS O-polysaccharide (OAg). In the current study, we used F. tularensis LPS oligosaccharides of defined OAg repeat length as molecular rulers in competition ELISA to demonstrate that the epitope targeted by the terminal OAg-binding mAb FB11 is contained within one tetrasaccharide repeat whereas the epitope targeted by the internal OAg-binding mAb Ab52 spans two tetrasaccharide repeats. Both mAbs conferred survival to BALB/c mice infected intranasally with the F. tularensis type B live vaccine strain and prolonged survival of BALB/c mice infected intranasally with the highly virulent F. tularensis type A strain SchuS4. The protective effects correlated with reduced bacterial burden in mAb-treated infected mice. These results indicate that an oligosaccharide with two OAg tetrasaccharide repeats covers both terminal and internal protective OAg epitopes, which may inform the design of vaccines for tularaemia. Furthermore, the FB11 and Ab52 mAbs could serve as reporters to monitor the response of vaccine recipients to protective B-cell epitopes of F. tularensis OAg. PMID:22486311

  7. Protective B-cell epitopes of Francisella tularensis O-polysaccharide in a mouse model of respiratory tularaemia.

    PubMed

    Lu, Zhaohua; Madico, Guillermo; Roche, Marly I; Wang, Qi; Hui, Julia H; Perkins, Hillary M; Zaia, Joseph; Costello, Catherine E; Sharon, Jacqueline

    2012-07-01

    Antibodies to the lipopolysaccharide (LPS) of Francisella tularensis have been shown to be protective against respiratory tularaemia in mouse models, and we have previously described mouse monoclonal antibodies (mAbs) to non-overlapping terminal and internal epitopes of the F. tularensis LPS O-polysaccharide (OAg). In the current study, we used F. tularensis LPS oligosaccharides of defined OAg repeat length as molecular rulers in competition ELISA to demonstrate that the epitope targeted by the terminal OAg-binding mAb FB11 is contained within one tetrasaccharide repeat whereas the epitope targeted by the internal OAg-binding mAb Ab52 spans two tetrasaccharide repeats. Both mAbs conferred survival to BALB/c mice infected intranasally with the F. tularensis type B live vaccine strain and prolonged survival of BALB/c mice infected intranasally with the highly virulent F. tularensis type A strain SchuS4. The protective effects correlated with reduced bacterial burden in mAb-treated infected mice. These results indicate that an oligosaccharide with two OAg tetrasaccharide repeats covers both terminal and internal protective OAg epitopes, which may inform the design of vaccines for tularaemia. Furthermore, the FB11 and Ab52 mAbs could serve as reporters to monitor the response of vaccine recipients to protective B-cell epitopes of F. tularensis OAg. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  8. Molecular Characterization of Copper Resistance Genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis▿

    PubMed Central

    Behlau, Franklin; Canteros, Blanca I.; Minsavage, Gerald V.; Jones, Jeffrey B.; Graham, James H.

    2011-01-01

    Copper sprays have been widely used for control of endemic citrus canker caused by Xanthomonas citri subsp. citri in citrus-growing areas for more than 2 decades. Xanthomonas alfalfae subsp. citrumelonis populations were also exposed to frequent sprays of copper for several years as a protective measure against citrus bacterial spot (CBS) in Florida citrus nurseries. Long-term use of these bactericides has led to the development of copper-resistant (Cur) strains in both X. citri subsp. citri and X. alfalfae subsp. citrumelonis, resulting in a reduction of disease control. The objectives of this study were to characterize for the first time the genetics of copper resistance in X. citri subsp. citri and X. alfalfae subsp. citrumelonis and to compare these organisms to other Cur bacteria. Copper resistance determinants from X. citri subsp. citri strain A44(pXccCu2) from Argentina and X. alfalfae subsp. citrumelonis strain 1381(pXacCu2) from Florida were cloned and sequenced. Open reading frames (ORFs) related to the genes copL, copA, copB, copM, copG, copC, copD, and copF were identified in X. citri subsp. citri A44. The same ORFs, except copC and copD, were also present in X. alfalfae subsp. citrumelonis 1381. Transposon mutagenesis of the cloned copper resistance determinants in pXccCu2 revealed that copper resistance in X. citri subsp. citri strain A44 is mostly due to copL, copA, and copB, which are the genes in the cloned cluster with the highest nucleotide homology (≥92%) among different Cur bacteria. PMID:21515725

  9. Herbivory increases diversification across insect clades.

    PubMed

    Wiens, John J; Lapoint, Richard T; Whiteman, Noah K

    2015-09-24

    Insects contain more than half of all living species, but the causes of their remarkable diversity remain poorly understood. Many authors have suggested that herbivory has accelerated diversification in many insect clades. However, others have questioned the role of herbivory in insect diversification. Here, we test the relationships between herbivory and insect diversification across multiple scales. We find a strong, positive relationship between herbivory and diversification among insect orders. However, herbivory explains less variation in diversification within some orders (Diptera, Hemiptera) or shows no significant relationship with diversification in others (Coleoptera, Hymenoptera, Orthoptera). Thus, we support the overall importance of herbivory for insect diversification, but also show that its impacts can vary across scales and clades. In summary, our results illuminate the causes of species richness patterns in a group containing most living species, and show the importance of ecological impacts on diversification in explaining the diversity of life.

  10. Herbivory increases diversification across insect clades

    PubMed Central

    Wiens, John J.; Lapoint, Richard T.; Whiteman, Noah K.

    2015-01-01

    Insects contain more than half of all living species, but the causes of their remarkable diversity remain poorly understood. Many authors have suggested that herbivory has accelerated diversification in many insect clades. However, others have questioned the role of herbivory in insect diversification. Here, we test the relationships between herbivory and insect diversification across multiple scales. We find a strong, positive relationship between herbivory and diversification among insect orders. However, herbivory explains less variation in diversification within some orders (Diptera, Hemiptera) or shows no significant relationship with diversification in others (Coleoptera, Hymenoptera, Orthoptera). Thus, we support the overall importance of herbivory for insect diversification, but also show that its impacts can vary across scales and clades. In summary, our results illuminate the causes of species richness patterns in a group containing most living species, and show the importance of ecological impacts on diversification in explaining the diversity of life. PMID:26399434

  11. Francisella tularensis type A strains cause the rapid encystment of Acanthamoeba castellanii and survive in amoebal cysts for three weeks postinfection.

    PubMed

    El-Etr, Sahar H; Margolis, Jeffrey J; Monack, Denise; Robison, Richard A; Cohen, Marissa; Moore, Emily; Rasley, Amy

    2009-12-01

    Francisella tularensis, the causative agent of the zoonotic disease tularemia, has recently gained increased attention due to the emergence of tularemia in geographical areas where the disease has been previously unknown and to the organism's potential as a bioterrorism agent. Although F. tularensis has an extremely broad host range, the bacterial reservoir in nature has not been conclusively identified. In this study, the ability of virulent F. tularensis strains to survive and replicate in the amoeba Acanthamoeba castellanii was explored. We observe that A. castellanii trophozoites rapidly encyst in response to F. tularensis infection and that this rapid encystment phenotype is caused by factor(s) secreted by amoebae and/or F. tularensis into the coculture medium. Further, our results indicate that in contrast to the live vaccine strain LVS, virulent strains of F. tularensis can survive in A. castellanii cysts for at least 3 weeks postinfection and that the induction of rapid amoeba encystment is essential for survival. In addition, our data indicate that pathogenic F. tularensis strains block lysosomal fusion in A. castellanii. Taken together, these data suggest that interactions between F. tularensis strains and amoebae may play a role in the environmental persistence of F. tularensis.

  12. Francisella tularensis type A Strains Cause the Rapid Encystment of Acanthamoeba castellanii and Survive in Amoebal Cysts for Three Weeks post Infection

    SciTech Connect

    El-Etr, S H; Margolis, J; Monack, D; Robison, R; Cohen, M; Moore, E; Rasley, A

    2009-07-28

    Francisella tularensis, the causative agent of the zoonotic disease tularemia, has recently gained increased attention due to the emergence of tularemia in geographical areas where the disease has been previously unknown, and the organism's potential as a bioterrorism agent. Although F. tularensis has an extremely broad host range, the bacterial reservoir in nature has not been conclusively identified. In this study, the ability of virulent F. tularensis strains to survive and replicate in the amoeba Acanthamoeba castellanii was explored. We observe that A. castellanii trophozoites rapidly encyst in response to F. tularensis infection and that this rapid encystment phenotype (REP) is caused by factor(s) secreted by amoebae and/or F. tularensis into the co-culture media. Further, our results indicate that in contrast to LVS, virulent strains of F. tularensis can survive in A. castellanii cysts for at least 3 weeks post infection and that induction of rapid amoeba encystment is essential for survival. In addition, our data indicate that pathogenic F. tularensis strains block lysosomal fusion in A. castellanii. Taken together, these data suggest that the interactions between F. tularensis strains and amoeba may play a role in the environmental persistence of F. tularensis.

  13. Photonic Biosensor Assays to Detect and Distinguish Subspecies of Francisella tularensis

    PubMed Central

    Cooper, Kristie L.; Bandara, Aloka B.; Wang, Yunmiao; Wang, Anbo; Inzana, Thomas J.

    2011-01-01

    The application of photonic biosensor assays to diagnose the category-A select agent Francisella tularensis was investigated. Both interferometric and long period fiber grating sensing structures were successfully demonstrated; both these sensors are capable of detecting the optical changes induced by either immunological binding or DNA hybridization. Detection was made possible by the attachment of DNA probes or immunoglobulins (IgG) directly to the fiber surface via layer-by-layer electrostatic self-assembly. An optical fiber biosensor was tested using a standard transmission mode long period fiber grating of length 15 mm and period 260 μm, and coated with the IgG fraction of antiserum to F. tularensis. The IgG was deposited onto the optical fiber surface in a nanostructured film, and the resulting refractive index change was measured using spectroscopic ellipsometry. The presence of F. tularensis was detected from the decrease of peak wavelength caused by binding of specific antigen. Detection and differentiation of F. tularensis subspecies tularensis (type A strain TI0902) and subspecies holarctica (type B strain LVS) was further accomplished using a single-mode multi-cavity fiber Fabry-Perot interferometric sensor. These sensors were prepared by depositing seven polymer bilayers onto the fiber tip followed by attaching one of two DNA probes: (a) a 101-bp probe from the yhhW gene unique to type-A strains, or (b) a 117-bp probe of the lpnA gene, common to both type-A and type-B strains. The yhhW probe was reactive with the type-A, but not the type-B strain. Probe lpnA was reactive with both type-A and type-B strains. Nanogram quantities of the target DNA could be detected, highlighting the sensitivity of this method for DNA detection without the use of PCR. The DNA probe reacted with 100% homologous target DNA, but did not react with sequences containing 2-bp mismatches, indicating the high specificity of the assay. These assays will fill an important void that

  14. Pullulanase Is Necessary for the Efficient Intracellular Growth of Francisella tularensis

    PubMed Central

    Takimoto, Kazuhiro; Deyu, Tian; Koyama, Yuuki; Park, Eun-sil; Fujita, Osamu; Hotta, Akitoyo; Morikawa, Shigeru

    2016-01-01

    Pullulanase, an enzyme that catalyzes the hydrolysis of polysaccharides, has been identified in a broad range of organisms, including bacteria, yeasts, fungi, and animals. The pullulanase (pulB; FTT_0412c) of F. tularensis subspecies tularensis Schu S4 is considered to be a homologue of the type I pullulanase (pulA) of the other Francisella subspecies. The significance of Francisella pullulanase has been obscure until now. In the present study, we characterized a recombinant PulB of F. tularensis SCHU P9, which was expressed as a his-tagged protein in Escherichia coli. The recombinant PulB was confirmed to be a type I pullulanase by its enzymatic activity in vitro. A pulB gene knockout mutant of F. tularensis SCHU P9 (ΔpulB) was constructed using the TargeTron Knockout system and plasmid pKEK1140 to clarify the function of PulB during the growth of F. tularensis in macrophages. The intracellular growth of the ΔpulB mutant in murine macrophage J774.1 cells was significantly reduced compared with that of the parental strain SCHU P9. Expression of PulB in ΔpulB, using an expression plasmid, resulted in the complementation of the reduced growth in macrophages, suggesting that PulB is necessary for the efficient growth of F. tularensis in macrophages. To assess the role of PulB in virulence, the knockout and parent bacterial strains were used to infect C57BL/6J mice. Histopathological analyses showed that tissues from ΔpulB-infected mice showed milder lesions compared to those from SCHU P9-infected mice. However, all mice infected with SCHU P9 and ΔpulB showed the similar levels of bacterial loads in their tissues. The results suggest that PulB plays a significant role in bacterial growth within murine macrophage but does not contribute to bacterial virulence in vivo. PMID:27448164

  15. Molecular Epidemiology of Mycobacterium avium subsp. paratuberculosis Isolates Recovered from Wild Animal Species

    PubMed Central

    Motiwala, Alifiya S.; Amonsin, Alongkorn; Strother, Megan; Manning, Elizabeth J. B.; Kapur, Vivek; Sreevatsan, Srinand

    2004-01-01

    Mycobacterial isolates were obtained by radiometric culture from 33 different species of captive or free-ranging animals (n = 106) and environmental sources (n = 3) from six geographic zones within the United States. The identities of all 109 isolates were confirmed by using mycobactin J dependence and characterization of five well-defined molecular markers, including two integration loci of IS900 (loci L1 and L9), one Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis)-specific sequence (locus 251), and one M. avium subsp. avium-specific marker (IS1245), as well as hsp65 and IS1311 restriction endonuclease analyses. Seventy-six acid-fast isolates were identified as M. paratuberculosis, 15 were identified as belonging to the M. avium-M. intracellulare complex (but not M. paratuberculosis), and the remaining 18 were identified as mycobacteria outside the M. avium-M. intracellulare complex. Fingerprinting by multiplex PCR for IS900 integration loci clustered 67 of the 76 M. paratuberculosis strains into a single clade (designated clade A18) and had a Simpson's diversity index (D) of 0.53. In contrast, sequence-based characterization of a recently identified M. paratuberculosis short sequence repeat (SSR) region enabled the differentiation of the M. paratuberculosis isolates in clade A18 into seven distinct alleles (D = 0.75). The analysis revealed eight subtypes among the 33 species of animals, suggesting the interspecies transmission of specific strains. Taken together, the results of our analyses demonstrate that SSR analysis enables the genetic characterization of M. paratuberculosis isolates from different host species and provide evidence for the host specificity of some M. paratuberculosis strains as well as sharing of strains between wild and domesticated animal species. PMID:15071028

  16. Simultaneous real-time PCR detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis.

    PubMed

    Skottman, T; Piiparinen, H; Hyytiäinen, H; Myllys, V; Skurnik, M; Nikkari, S

    2007-03-01

    This report describes the development of in-house real-time PCR assays using minor groove binding probes for simultaneous detection of the Bacillus anthracis pag and cap genes, the Francisella tularensis 23 KDa gene, as well as the Yersinia pestis pla gene. The sensitivities of these assays were at least 1 fg, except for the assay targeting the Bacillus anthracis cap gene, which showed a sensitivity of 10 fg when total DNA was used as a template in a serial dilution. The clinical value of the Bacillus anthracis- and Francisella tularensis-specific assays was demonstrated by successful amplification of DNA from cases of cow anthrax and hare tularemia, respectively. No cross-reactivity between these species-specific assays or with 39 other bacterial species was noted. These assays may provide a rapid tool for the simultaneous detection and identification of the three category A bacterial species listed as biological threats by the Centers for Disease Control and Prevention.

  17. Molecular Evolution of Mycoplasma capricolum subsp. capripneumoniae Strains, Based on Polymorphisms in the 16S rRNA Genes

    PubMed Central

    Pettersson, Bertil; Bölske, Göran; Thiaucourt, François; Uhlén, Mathias; Johansson, Karl-Erik

    1998-01-01

    Mycoplasma capricolum subsp. capripneumoniae belongs to the so-called Mycoplasma mycoides cluster and is the causal agent of contagious caprine pleuropneumonia (CCPP). All members of the M. mycoides cluster have two rRNA operons. The sequences of the 16S rRNA genes of both rRNA operons from 20 strains of M. capricolum subsp. capripneumoniae of different geographical origins in Africa and Asia were determined. Nucleotide differences which were present in only one of the two operons (polymorphisms) were detected in 24 positions. The polymorphisms were not randomly distributed in the 16S rRNA genes, and some of them were found in regions of low evolutionary variability. Interestingly, 11 polymorphisms were found in all the M. capricolum subsp. capripneumoniae strains, thus defining a putative ancestor. A sequence length difference between the 16S rRNA genes in a poly(A) region and 12 additional polymorphisms were found in only one or some of the strains. A phylogenetic tree was constructed by comparative analysis of the polymorphisms, and this tree revealed two distinct lines of descent. The nucleotide substitution rate of strains within line II was up to 50% higher than within line I. A tree was also constructed from individual operonal 16S rRNA sequences, and the sequences of the two operons were found to form two distinct clades. The topologies of both clades were strikingly similar, which supports the use of 16S rRNA sequence data from homologous operons for phylogenetic studies. The strain-specific polymorphism patterns of the 16S rRNA genes of M. capricolum subsp. capripneumoniae may be used as epidemiological markers for CCPP. PMID:9573185

  18. Modulation of virulence factors in Francisella tularensis determines human macrophage responses

    PubMed Central

    Carlson, Paul E.; Carroll, James A.; O’Dee, Dawn M.; Nau, Gerard J.

    2009-01-01

    Francisella tularensis, the causative agent of tularemia and Category A biodefense agent, is known to replicate within host macrophages, though the pathogenesis of this organism is incompletely understood. We have isolated a variant of F. tularensis Live Vaccine Strain (LVS) based on colony morphology and its effect on macrophages. Human monocyte-derived macrophages produced more tumor necrosis factor α (TNFα), interleukin (IL)-1β, IL-6, and IL-12 p40 following exposure to the variant, designated the activating variant (ACV). The immunoreactivity of the lipopolysaccharide (LPS) from both LVS and ACV was comparable to the previously described blue variant and was distinct from the gray variant of LVS. We found, however, the soluble protein fractions of LVS and ACV differed. Further investigation using two-dimensional gel electrophoresis demonstrated higher levels of several proteins in the parental LVS isolate. The differentially-expressed proteins featured several associated with virulence in F. tularensis and other pathogens, including intracellular growth locus C (IglC), a σ54 modulation protein family member (YhbH), and aconitase. ACV reverted to the LVS phenotype, indicated by low cytokine induction and high IglC expression, after growth in a chemically-defined media. These data provide evidence that the levels of virulence factors in F. tularensis are modulated based on culture conditions and that this modulation impacts host responses. This work provides a basis for investigation of Francisella virulence factor regulation and the identification of additional factors, co-regulated with IglC, that affect macrophage responses. PMID:17369012

  19. GroEL and Lipopolysaccharide from Francisella tularensis Live Vaccine Strain Synergistically Activate Human Macrophages ▿

    PubMed Central

    Noah, Courtney E.; Malik, Meenakshi; Bublitz, DeAnna C.; Camenares, Devin; Sellati, Timothy J.; Benach, Jorge L.; Furie, Martha B.

    2010-01-01

    Francisella tularensis, the causative agent of tularemia, interacts with host cells of innate immunity in an atypical manner. For most Gram-negative bacteria, the release of lipopolysaccharide (LPS) from their outer membranes stimulates an inflammatory response. When LPS from the attenuated live vaccine strain (LVS) or the highly virulent Schu S4 strain of F. tularensis was incubated with human umbilical vein endothelial cells, neither species of LPS induced expression of the adhesion molecule E-selectin or secretion of the chemokine CCL2. Moreover, a high concentration (10 μg/ml) of LVS or Schu S4 LPS was required to stimulate production of CCL2 by human monocyte-derived macrophages (huMDM). A screen for alternative proinflammatory factors of F. tularensis LVS identified the heat shock protein GroEL as a potential candidate. Recombinant LVS GroEL at a concentration of 10 μg/ml elicited secretion of CXCL8 and CCL2 by huMDM through a TLR4-dependent mechanism. When 1 μg of LVS GroEL/ml was added to an equivalent amount of LVS LPS, the two components synergistically activated the huMDM to produce CXCL8. Schu S4 GroEL was less stimulatory than LVS GroEL and showed a lesser degree of synergy when combined with Schu S4 LPS. These findings suggest that the intrinsically low proinflammatory activity of F. tularensis LPS may be increased in the infected human host through interactions with other components of the bacterium. PMID:20123721

  20. Use of temperature for standardizing the progression of Francisella tularensis in mice.

    PubMed

    Molins, Claudia R; Delorey, Mark J; Young, John W; Yockey, Brook M; Belisle, John T; Schriefer, Martin E; Petersen, Jeannine M

    2012-01-01

    The study of infectious agents, their pathogenesis, the host response and the evaluation of newly developed countermeasures often requires the use of a living system. Murine models are frequently used to undertake such investigations with the caveat that non-biased measurements to assess the progression of infection are underutilized. Instead, murine models predominantly rely on symptomology exhibited by the animal to evaluate the state of the animal's health and to determine when euthanasia should be performed. In this study, we used subcutaneous temperature as a non-subjective measurement to follow and compare infection in mice inoculated with Francisella tularensis, a Gram-negative pathogen that produces an acute and fatal illness in mice. A reproducible temperature pattern defined by three temperature phases (normal, febrile and hypothermic) was identified in all mice infected with F. tularensis, regardless of the infecting strain. More importantly and for the first time a non-subjective, ethical, and easily determined surrogate endpoint for death based on a temperature, termed drop point, was identified and validated with statistical models. In comparative survival curve analyses for F. tularensis strains with differing virulence, the drop point temperature yielded the same results as those obtained using observed time to death. Incorporation of temperature measurements to evaluate F. tularensis was standardized based on statistical models to provide a new level of robustness for comparative analyses in mice. These findings should be generally applicable to other pathogens that produce acute febrile disease in animal models and offers an important tool for understanding and following the infection process.

  1. [Maldi-tof ms analysis for yersinia pestis, vibrio cholera, and francisella tularensis identification].

    PubMed

    Afanas'ev, M V; Mironova, L V; Balakhonov, S V

    2015-01-01

    Numerous studies showed that a new technology for the clinical microbiology laboratories, Matrix-Assisted Laser Desorption Ionization--Time of Flight Mass Spectrometry (MALDI-ToF MS), allows fast, accurate, and effective identification of most clinically relevant microorganisms to be implemented. In the present review, we discuss applications of this approach for identification and typing of extremely dangerous pathogens--Yersinia pestis, Vibrio cholera, and Francisella tularensis, including the advantages and disadvantages of the method, sample preparation and biosafety problems.

  2. Isolation of Francisella tularensis and Yersinia pestis from Blood Cultures by Plasma Purification and Immunomagnetic Separation Accelerates Antibiotic Susceptibility Determination

    PubMed Central

    Aloni-Grinstein, Ronit; Schuster, Ofir; Yitzhaki, Shmuel; Aftalion, Moshe; Maoz, Sharon; Steinberger-Levy, Ida; Ber, Raphael

    2017-01-01

    The early symptoms of tularemia and plague, which are caused by Francisella tularensis and Yersinia pestis infection, respectively, are common to other illnesses, resulting in a low index of suspicion among clinicians. Moreover, because these diseases can be treated only with antibiotics, rapid isolation of the bacteria and antibiotic susceptibility testing (AST) are preferable. Blood cultures of patients may serve as a source for bacteria isolation. However, due to the slow growth rates of F. tularensis and Y. pestis on solid media, isolation by plating blood culture samples on proper agar plates may require several days. Thus, improving the isolation procedure prior to antibiotic susceptibility determination is a major clinically relevant need. In this study, we developed a rapid, selective procedure for the isolation of F. tularensis and Y. pestis from blood cultures. We examined drop-plating and plasma purification followed by immunomagnetic separation (IMS) as alternative isolation methods. We determined that replacing the classical isolation method with drop-plating is advantageous with respect to time at the expense of specificity. Hence, we also examined isolation by IMS. Sub-localization of F. tularensis within blood cultures of infected mice has revealed that the majority of the bacteria are located within the extracellular fraction, in the plasma. Y. pestis also resides within the plasma. Therefore, the plasma fraction was isolated from blood cultures and subjected to an IMS procedure using polyclonal anti-F. tularensis live vaccine strain (LVS) or anti-Y. pestis antibodies conjugated to 50-nm nano-beads. The time required to reach an inoculum of sufficient bacteria for AST was shortest when using the plasma and IMSs for both bacteria, saving up to 2 days of incubation for F. tularensis and 1 day for Y. pestis. Our isolation procedure provides a proof of concept for the clinical relevance of rapid isolation for AST from F. tularensis- and Y. pestis

  3. Leucobacter musarum subsp. musarum sp. nov., subsp. nov., Leucobacter musarum subsp. japonicus subsp. nov., and Leucobacter celer subsp. astrifaciens subsp. nov., three nematopathogenic bacteria isolated from Caenorhabditis, with an emended description of Leucobacter celer

    PubMed Central

    Hodgkin, Jonathan

    2015-01-01

    Three Gram-stain-positive, irregular-rod-shaped, non-motile, non-spore-forming bacteria were isolated from nematodes collected from Santa Antao, Cabo Verde (CBX151T, CBX152T) and Kakegawa, Japan (CBX130T). Based on 16S rRNA gene sequence similarity, strains CBX130T, CBX151T and CBX152T were shown to belong to the genus Leucobacter. This affiliation was supported by chemotaxonomic data (2,4-diaminobutyric acid in the cell wall; major respiratory quinones MK-10 and MK-11; major polar lipids phosphatidylglycerol and diphosphatidylglycerol; major fatty acids anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0). Strains CBX130T and CBX152T were found to share salient characteristics. Based on morphological, physiological, chemotaxonomic and biochemical analysis, strain CBX152T represents a novel species of the genus Leucobacter, for which the name Leucobacter musarum sp. nov. (type strain CBX152T = DSM 27160T = CIP 110721T) is proposed. Two subspecies of Leucobacter musarum sp. nov. are proposed: Leucobacter musarum sp. nov. subsp. musarum subsp. nov. (type strain CBX152T = DSM 27160T = CIP 110721T) and Leucobacter musarum sp. nov. subsp. japonicus subsp. nov. (type strain CBX130T = DSM 27158T = CIP 110719T). The third novel strain, CBX151T, showed genetic similarities with Leucobacter celer NAL101T indicating that these strains belong to the same species. Based on morphological, physiological, chemotaxonomic and biochemical differences it is proposed to split the species Leucobacter celer into two novel subspecies, Leucobacter celer subsp. celer subsp. nov. (type strain NAL101T = KACC 14220T = JCM 16465T) and Leucobacter celer subsp. astrifaciens subsp. nov. (type strain CBX151T = DSM 27159T = CIP 110720T), and to emend the description of Leucobacter celer Shin et al. 2011. PMID:26275616

  4. Natural History of Francisella tularensis in Aerosol-Challenged BALB/c Mice.

    PubMed

    Heine, Henry S; Chuvala, Lara; Riggins, Renaldo; Cirz, Ryan; Cass, Robert; Louie, Arnold; Drusano, G L

    2016-01-11

    The objective of this study was to evaluate the natural history and pathogenesis of Francisella tularensis in a murine model of inhalational tularemia with the SchuS4 strain. Before the efficacy of antimicrobials could be assessed in this model, further model development was required to determine the optimal time to start therapy. This study helped define the time course of infection after aerosol challenge by quantifying the presence of bacteria in lung, blood, and spleen at multiple harvest points. In this study, mice were infected via a targeted inhaled dose of 100 50% lethal doses (LD50s) (LD50 = 300 CFU) of F. tularensis by whole-body aerosol. At 1, 24, 36, 48, 60, 72, 75, 78, 81, 84, 87, and 90 h postchallenge, groups of 15 animals were sacrificed and blood, lung, and splenic tissue samples were harvested, homogenized, plated, and incubated to evaluate the bacterial load in those tissues. It was determined that of the 3 sample types harvested, splenic tissue provided the most consistent bacterial counts, which steadily increased with the progressing infection. Further, it was determined that lung samples from all (15/15) animals were positive for infection at 75 h postaerosolization and that 14/15 animals had positive splenic tissue counts. Bacterial levels in blood were not predictive of treatment initiation. For future therapeutic evaluation studies in this model using F. tularensis (SchuS4), it was determined that therapy should be initiated at 75 h postchallenge and validated by spleen involvement.

  5. Francisella tularensis antioxidants harness reactive oxygen species to restrict macrophage signaling and cytokine production.

    PubMed

    Melillo, Amanda A; Bakshi, Chandra Shekhar; Melendez, J Andrés

    2010-09-03

    Francisella tularensis is the etiologic agent of the highly infectious animal and human disease tularemia. Its extreme infectivity and virulence are associated with its ability to evade immune detection, which we now link to its robust reactive oxygen species-scavenging capacity. Infection of primary human monocyte-derived macrophages with virulent F. tularensis SchuS4 prevented proinflammatory cytokine production in the presence or absence of IFN-gamma compared with infection with the attenuated live vaccine strain. SchuS4 infection also blocked signals required for macrophage cytokine production, including Akt phosphorylation, IkappaB alpha degradation, and NF-kappaB nuclear localization and activation. Concomitant with SchuS4-mediated suppression of Akt phosphorylation was an increase in the levels of the Akt antagonist PTEN. Moreover, SchuS4 prevented the H(2)O(2)-dependent oxidative inactivation of PTEN compared with a virulent live vaccine strain. Mutation of catalase (katG) sensitized F. tularensis to H(2)O(2) and enhanced PTEN oxidation, Akt phosphorylation, NF-kappaB activation, and inflammatory cytokine production. Together, these findings suggest a novel role for bacterial antioxidants in restricting macrophage activation through their ability to preserve phosphatases that temper kinase signaling and proinflammatory cytokine production.

  6. Increased susceptibility of IgA-deficient mice to pulmonary Francisella tularensis live vaccine strain infection.

    PubMed

    Furuya, Yoichi; Kirimanjeswara, Girish S; Roberts, Sean; Metzger, Dennis W

    2013-09-01

    Francisella tularensis, the causative agent of tularemia, is most deadly in the pneumonic form; therefore, mucosal immunity is an important first line of defense against this pathogen. We have now evaluated the lethality of primary F. tularensis live vaccine strain (LVS) pulmonary infection in mice that are defective in IgA (IgA(-/-) mice), the predominant mucosal Ig isotype. The results showed that IgA(-/-) mice were more susceptible than IgA(+/+) mice to intranasal F. tularensis LVS infection, despite developing higher levels of LVS-specific total, IgG, and IgM antibodies in the bronchoalveolar lavage specimens following infection. In addition, the absence of IgA resulted in a significant increase in bacterial loads and reduced survival. Interestingly, IgA(-/-) mice had lower pulmonary gamma interferon (IFN-γ) levels and decreased numbers of IFN-γ-secreting CD4(+) and CD8(+) T cells in the lung on day 9 postinfection compared to IgA(+/+) mice. Furthermore, IgA(-/-) mice displayed reduced interleukin 12 (IL-12) levels at early time points, and supplementing IgA(-/-) mice with IL-12 prior to LVS challenge induced IFN-γ production by NK cells and rescued them from mortality. Thus, IgA(-/-) mice are highly susceptible to primary pulmonary LVS infections not only because of IgA deficiency but also because of reduced IFN-γ responses.

  7. Francisella tularensis Antioxidants Harness Reactive Oxygen Species to Restrict Macrophage Signaling and Cytokine Production*

    PubMed Central

    Melillo, Amanda A.; Bakshi, Chandra Shekhar; Melendez, J. Andrés

    2010-01-01

    Francisella tularensis is the etiologic agent of the highly infectious animal and human disease tularemia. Its extreme infectivity and virulence are associated with its ability to evade immune detection, which we now link to its robust reactive oxygen species-scavenging capacity. Infection of primary human monocyte-derived macrophages with virulent F. tularensis SchuS4 prevented proinflammatory cytokine production in the presence or absence of IFN-γ compared with infection with the attenuated live vaccine strain. SchuS4 infection also blocked signals required for macrophage cytokine production, including Akt phosphorylation, IκBα degradation, and NF-κB nuclear localization and activation. Concomitant with SchuS4-mediated suppression of Akt phosphorylation was an increase in the levels of the Akt antagonist PTEN. Moreover, SchuS4 prevented the H2O2-dependent oxidative inactivation of PTEN compared with a virulent live vaccine strain. Mutation of catalase (katG) sensitized F. tularensis to H2O2 and enhanced PTEN oxidation, Akt phosphorylation, NF-κB activation, and inflammatory cytokine production. Together, these findings suggest a novel role for bacterial antioxidants in restricting macrophage activation through their ability to preserve phosphatases that temper kinase signaling and proinflammatory cytokine production. PMID:20558723

  8. Decontamination of a hospital room using gaseous chlorine dioxide: Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    PubMed

    Lowe, John J; Gibbs, Shawn G; Iwen, Peter C; Smith, Philip W; Hewlett, Angela L

    2013-01-01

    This study assessed the efficacy of gaseous chlorine dioxide for inactivation of Bacillus anthracis, Francisella tularensis, and Yersinia pestis in a hospital patient care suite. Spore and vegetative cells of Bacillus anthracis Sterne 34F2, spores of Bacillus atrophaeus ATCC 9372 and vegetative cells of both Francisella tularensis ATCC 6223 and Yersinia pestis A1122 were exposed to gaseous chlorine dioxide in a patient care suite. Organism inactivation was then assessed by log reduction in viable organisms postexposure to chlorine dioxide gas compared to non-exposed control organism. Hospital room decontamination protocols utilizing chlorine dioxide gas concentrations of 377 to 385 ppm maintained to exposures of 767 ppm-hours with 65% relative humidity consistently achieved complete inactivation of B. anthracis and B. atrophaeus spores, as well as vegetative cells of B. anthracis, F. tularensis, and Y. pestis. Decrease in exposure (ppm-hours) and relative humidity (<65%) or restricting airflow reduced inactivation but achieved >8 log reductions in organisms. Up to 10-log reductions were achieved in a hospital room with limited impact on adjacent areas, indicating chlorine dioxide concentrations needed for decontamination of highly concentrated (>6 logs) organisms can be achieved throughout a hospital room. This study translates laboratory chlorine dioxide fumigation studies applied in a complex clinical environment.

  9. Natural History of Francisella tularensis in Aerosol-Challenged BALB/c Mice

    PubMed Central

    Chuvala, Lara; Riggins, Renaldo; Cirz, Ryan; Cass, Robert; Louie, Arnold; Drusano, G. L.

    2016-01-01

    The objective of this study was to evaluate the natural history and pathogenesis of Francisella tularensis in a murine model of inhalational tularemia with the SchuS4 strain. Before the efficacy of antimicrobials could be assessed in this model, further model development was required to determine the optimal time to start therapy. This study helped define the time course of infection after aerosol challenge by quantifying the presence of bacteria in lung, blood, and spleen at multiple harvest points. In this study, mice were infected via a targeted inhaled dose of 100 50% lethal doses (LD50s) (LD50 = 300 CFU) of F. tularensis by whole-body aerosol. At 1, 24, 36, 48, 60, 72, 75, 78, 81, 84, 87, and 90 h postchallenge, groups of 15 animals were sacrificed and blood, lung, and splenic tissue samples were harvested, homogenized, plated, and incubated to evaluate the bacterial load in those tissues. It was determined that of the 3 sample types harvested, splenic tissue provided the most consistent bacterial counts, which steadily increased with the progressing infection. Further, it was determined that lung samples from all (15/15) animals were positive for infection at 75 h postaerosolization and that 14/15 animals had positive splenic tissue counts. Bacterial levels in blood were not predictive of treatment initiation. For future therapeutic evaluation studies in this model using F. tularensis (SchuS4), it was determined that therapy should be initiated at 75 h postchallenge and validated by spleen involvement. PMID:26824958

  10. The Natural History of Pneumonic Tularemia in Female Fischer 344 Rats after Inhalational Exposure to Aerosolized Francisella tularensis Subspecies tularensis Strain SCHU S4.

    PubMed

    Hutt, Julie A; Lovchik, Julie A; Dekonenko, Alexander; Hahn, Andrew C; Wu, Terry H

    2017-02-01

    The inbred Fischer 344 rat is being evaluated for testing novel vaccines and therapeutics against pneumonic tularemia. Although primary pneumonic tularemia in humans typically occurs by inhalation of aerosolized bacteria, the rat model has relied on intratracheal inoculation of organisms because of safety and equipment issues. We now report the natural history of pneumonic tularemia in female Fischer 344 rats after nose-only inhalational exposure to lethal doses of aerosolized Francisella tularensis subspecies tularensis, strain SCHU S4. Our results are consistent with initial uptake of aerosolized SCHU S4 from the nasal cavity, lungs, and possibly the gastrointestinal tract. Bacteremia with hematogenous dissemination was first detected 2 days after exposure. Shortly thereafter, the infected rats exhibited fever, tachypnea, and hypertension that persisted for 24 to 36 hours and then rapidly decreased as animals succumbed to infection between days 5 and 8 after exposure. Tachycardia was observed briefly, but only after the core body temperature and blood pressure began to decrease as the animals were near death. Initial neutrophilic and histiocytic inflammation in affected tissues became progressively more fibrinous and necrotizing over time. At death, as many as 10(10) colony-forming units were found in the lungs, spleen, and liver. Death was attributed to sepsis and disseminated intravascular coagulation. Overall, the pathogenesis of pneumonic tularemia in the female F344 rat model appears to replicate the disease in humans. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Natural killer and CD8 T cells dominate the response by human peripheral blood mononuclear cells to inactivated Francisella tularensis live vaccine strain.

    PubMed

    Gosselin, Edmund J; Gosselin, Diane R; Lotz, Steven A

    2005-10-01

    Francisella tularensis is a category A biothreat agent, and as a result, it has recently generated much research interest. F. tularensis live vaccine strain (LVS) is an attenuated form of the virulent F. tularensis organism and has previously been used as a vaccine. However, because of safety concerns, it is no longer approved for this purpose. Thus, the use of inactivated organisms is preferable for vaccine purposes. Although many studies have been performed that examine human peripheral blood mononuclear cells (PBMC), and in particular CD4 T cells, responses to inactivated F. tularensis, there has been no study identifying the individual human cell populations within a mixed PBMC population that respond to this organism. We sought to address this deficit. Our results indicate that natural killer and CD8 T cells comprise the majority of cells responding to F. tularensis LVS. In addition, data suggest CD8 T cell responses are maximal when antibiotic-treated organisms are used and are minimal when formaldehyde-fixed organisms are used. Given the belief that CD8 T cells can play an important role in protection against F. tularensis infection, these studies have direct relevance to the development of F. tularensis vaccines that use inactivated organisms. In addition, important new knowledge is added to our understanding of the human immune response to F. tularensis LVS.

  12. Homology among divergent Paleozoic tetrapod clades.

    PubMed

    Carroll, R L

    1999-01-01

    A stringent definition of homology is necessary to establish phylogenetic relationships among Paleozoic amphibians. Many derived characters exhibited by divergent clades of Carboniferous lepospondyls resemble those achieved convergently among Cenozoic squamates that have elongate bodies and reduced limbs, and by lineages of modern amphibians that have undergone miniaturization. Incongruent character distribution, poorly resolved cladograms and functionally improbable character transformations determined by phylogenetic analysis suggest that convergence was also common among Paleozoic amphibians with a skull length under 3 cm, including lepospondyls, early amniotes and the putative ancestors of modern amphibians. For this reason, it is injudicious to equate apparent synapomorphy (perceived common presence of a particular derived character in two putative sister-taxa) with strict homology of phylogenetic origin. Identification of homology by the similarity of structure, anatomical position and pattern of development is insufficient to establish the synapomorphy of bone and limb loss or precocial ossification of vertebral centra, which are common among small Paleozoic amphibians. The only way in which synapomorphies can be established definitively is through the discovery and recognition of the trait in question in basal members of each of the clades under study, and in their immediate common ancestors.

  13. Detection of Francisella tularensis-Specific Antibodies in Patients with Tularemia by a Novel Competitive Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Sharma, Neekun; Hotta, Akitoyo; Yamamoto, Yoshie; Fujita, Osamu; Uda, Akihiko; Morikawa, Shigeru; Yamada, Akio

    2013-01-01

    A novel competitive enzyme-linked immunosorbent assay (cELISA) was developed and evaluated for detection of antibodies against Francisella tularensis in humans. The assay is based on the ability of serum antibodies to inhibit the binding of monoclonal antibodies (MAbs) directed against F. tularensis lipopolysaccharide antigens. The assay was evaluated using serum samples of tularemia patients, inactivated F. tularensis-immunized rabbits, and F. tularensis-infected mice. Antibodies against F. tularensis were successfully detected in serum samples of tularemia patients as well as the immunized and infected animals. The cELISA method was compared to indirect ELISA (iELISA) and the commonly used microagglutination test (MA) using serum samples of 19 tularemia patients and 50 healthy individuals. The sensitivity and specificity of cELISA were 93.9 and 96.1%, respectively, in comparison to the iELISA. MA was less sensitive than cELISA with a sensitivity and specificity of only 81.8 and 98.0%, respectively. A high degree of correlation (R2 = 0.8226) was observed between cELISA and iELISA results. The novel cELISA developed in this study appears to be highly sensitive and specific for serodiagnosis of human tularemia. The potential of the MAb-based cELISA to be used in both human and animal samples emphasizes its usefulness for serological survey of tularemia among multiple animal species. PMID:23114700

  14. Candida albicans: genotyping methods and clade related phenotypic characteristics

    PubMed Central

    Lyon, Juliana P.; Moraes, Karen C.M.; Moreira, Leonardo M.; Aimbire, Flávio; de Resende, Maria Aparecida

    2010-01-01

    Several molecular methods, such as Southern blotting hybridization, Multilocus Sequence Typing, and DNA microsatellite analysis, have been employed to genotype Candida albicans. The genotype analysis allows to group strains in clades, that is, a group composed of one ancestor and its descendants. These genotype studies demonstrate that clades distribution is influenced by geographic area as well as that antifungal resistance is associated with particular clades. These findings suggested that C. albicans reproduces mainly in a clonal manner, with certain degree of DNA microevolution. Additionally, virulence factors and site of isolation have also been associated with clade specificity. The present article is a brief review about the methods used for Candida genotyping and the correlated clade systems established. Special emphasis is given to Ca3 hybridization, MLST, and Microsatellites. The present work is also focused on the phenotypic and physiological traits associated with Candida clades. PMID:24031564

  15. Campylobacter fetus subsp. testudinum subsp. nov., isolated from humans and reptiles.

    PubMed

    Fitzgerald, Collette; Tu, Zheng Chao; Patrick, Mary; Stiles, Tracy; Lawson, Andy J; Santovenia, Monica; Gilbert, Maarten J; van Bergen, Marcel; Joyce, Kevin; Pruckler, Janet; Stroika, Steven; Duim, Birgitta; Miller, William G; Loparev, Vladimir; Sinnige, Jan C; Fields, Patricia I; Tauxe, Robert V; Blaser, Martin J; Wagenaar, Jaap A

    2014-09-01

    A polyphasic study was undertaken to determine the taxonomic position of 13 Campylobacter fetus-like strains from humans (n = 8) and reptiles (n = 5). The results of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS and genomic data from sap analysis, 16S rRNA gene and hsp60 sequence comparison, pulsed-field gel electrophoresis, amplified fragment length polymorphism analysis, DNA-DNA hybridization and whole genome sequencing demonstrated that these strains are closely related to C. fetus but clearly differentiated from recognized subspecies of C. fetus. Therefore, this unique cluster of 13 strains represents a novel subspecies within the species C. fetus, for which the name Campylobacter fetus subsp. testudinum subsp. nov. is proposed, with strain 03-427(T) ( = ATCC BAA-2539(T) = LMG 27499(T)) as the type strain. Although this novel taxon could not be differentiated from C. fetus subsp. fetus and C. fetus subsp. venerealis using conventional phenotypic tests, MALDI-TOF MS revealed the presence of multiple phenotypic biomarkers which distinguish Campylobacter fetus subsp. testudinum subsp. nov. from recognized subspecies of C. fetus.

  16. Outer membrane vesicle-associated lipase FtlA enhances cellular invasion and virulence in Francisella tularensis LVS.

    PubMed

    Chen, Fei; Cui, Guolin; Wang, Shuxia; Nair, Manoj Kumar Mohan; He, Lihong; Qi, Xinyi; Han, Xiangmin; Zhang, Hanqi; Zhang, Jing-Ren; Su, Jingliang

    2017-07-26

    Francisella tularensis is a highly infectious intracellular pathogen that infects a wide range of host species and causes fatal pneumonic tularemia in humans. ftlA was identified as a potential virulence determinant of the F. tularensis live vaccine strain (LVS) in our previous transposon screen, but its function remained undefined. Here, we show that an unmarked deletion mutant of ftlA was avirulent in a pneumonia mouse model with a severely impaired capacity to infect host cells. Consistent with its sequence homology with GDSL lipase/esterase family proteins, the FtlA protein displayed lipolytic activity in both E. coli and F. tularensis with a preference for relatively short carbon-chain substrates. FtlA thus represents the first F. tularensis lipase to promote bacterial infection of host cells and in vivo fitness. As a cytoplasmic protein, we found that FtlA was secreted into the extracellular environment as a component of outer membrane vesicles (OMVs). Further confocal microscopy analysis revealed that the FtlA-containing OMVs isolated from F. tularensis LVS attached to the host cell membrane. Finally, the OMV-associated FtlA protein complemented the genetic deficiency of the ΔftlA mutant in terms of host cell infection when OMVs purified from the parent strain were co-incubated with the mutant bacteria. These lines of evidence strongly suggest that the FtlA lipase promotes F. tularensis adhesion and internalization by modifying bacterial and/or host molecule(s) when it is secreted as a component of OMVs.

  17. Needle-Free Delivery of Acetalated Dextran-Encapsulated AR-12 Protects Mice from Francisella tularensis Lethal Challenge

    PubMed Central

    Hoang, Ky V.; Curry, Heather; Collier, Michael A.; Borteh, Hassan; Bachelder, Eric M.; Schlesinger, Larry S.; Gunn, John S.

    2016-01-01

    Francisella tularensis causes tularemia and is a potential biothreat. Given the limited antibiotics for treating tularemia and the possible use of antibiotic-resistant strains as a biowarfare agent, new antibacterial agents are needed. AR-12 is an FDA-approved investigational new drug (IND) compound that induces autophagy and has shown host-directed, broad-spectrum activity in vitro against Salmonella enterica serovar Typhimurium and F. tularensis. We have shown that AR-12 encapsulated within acetalated dextran (Ace-DEX) microparticles (AR-12/MPs) significantly reduces host cell cytotoxicity compared to that with free AR-12, while retaining the ability to control S. Typhimurium within infected human macrophages. In the present study, the toxicity and efficacy of AR-12/MPs in controlling virulent type A F. tularensis SchuS4 infection were examined in vitro and in vivo. No significant toxicity of blank MPs or AR-12/MPs was observed in lung histology sections when the formulations were given intranasally to uninfected mice. In histology sections from the lungs of intranasally infected mice treated with the formulations, increased macrophage infiltration was observed for AR-12/MPs, with or without suboptimal gentamicin treatment, but not for blank MPs, soluble AR-12, or suboptimal gentamicin alone. AR-12/MPs dramatically reduced the burden of F. tularensis in infected human macrophages, in a manner similar to that of free AR-12. However, in vivo, AR-12/MPs significantly enhanced the survival of F. tularensis SchuS4-infected mice compared to that seen with free AR-12. In combination with suboptimal gentamicin treatment, AR-12/MPs further improved the survival of F. tularensis SchuS4-infected mice. These studies provide support for Ace-DEX-encapsulated AR-12 as a promising new therapeutic agent for tularemia. PMID:26787696

  18. Streptococcus equi subsp. zooepidemicus meningitis in Peru.

    PubMed

    Mori, Nicanor; Guevara, Jose M; Tilley, Drake H; Briceno, Jesus A; Zunt, Joseph R; Montano, Silvia M

    2013-02-01

    A 59-year-old man with a history of fever, unsteadiness, hemiparesis, motor aphasia and consciousness disturbance was hospitalized for Streptococcus equi subsp. zooepidemicus meningitis. He denied contact with farm animals, but had a practice of consuming unpasteurized goats' cheese from an uncertain source.

  19. Streptococcus equi subsp. zooepidemicus meningitis in Peru

    PubMed Central

    Guevara, Jose M.; Tilley, Drake H.; Briceno, Jesus A.; Zunt, Joseph R.; Montano, Silvia M.

    2013-01-01

    A 59-year-old man with a history of fever, unsteadiness, hemiparesis, motor aphasia and consciousness disturbance was hospitalized for Streptococcus equi subsp. zooepidemicus meningitis. He denied contact with farm animals, but had a practice of consuming unpasteurized goats’ cheese from an uncertain source. PMID:23105024

  20. Legionella pneumophila serogroup Lansing 3 isolated from a patient with fatal pneumonia, and descriptions of L. pneumophila subsp. pneumophila subsp. nov., L. pneumophila subsp. fraseri subsp. nov., and L. pneumophila subsp. pascullei subsp. nov.

    PubMed Central

    Brenner, D J; Steigerwalt, A G; Epple, P; Bibb, W F; McKinney, R M; Starnes, R W; Colville, J M; Selander, R K; Edelstein, P H; Moss, C W

    1988-01-01

    Previous DNA relatedness and enzyme electrophoretic mobility studies indicated heterogeneity among strains of Legionella pneumophila serogroups 1, 4, 5, and Lansing 3 (a new, as yet unnumbered serogroup). In this study 60 L. pneumophila strains were studied by DNA hybridization (hydroxyapatite method) to assess their genomic relatedness. These strains were also studied biochemically and serologically to determine whether they formed one or more phenotypic groups. DNA relatedness studies identified three groups. DNA group 1 contained the type strain Philadelphia 1 and strains from serogroups 1 through 14 of L. pneumophila. The average relatedness of DNA group 1 strains was 88% at 60 degrees C with 1.1% divergence in related sequences and 85% at 75 degrees C. DNA group 2 contained strain Los Angeles 1, the reference strain of serogroup 4, and strains of serogroups 1, 4, 5, and Lansing 3, an unnumbered serogroup. Average relatedness of DNA group 2 strains was 84% at 60 degrees C with 0.7% divergence and 87% at 75 degrees C. Reciprocal relatedness of DNA groups 1 and 2 was approximately 67% at 60 degrees C with 6.0% divergence and 48% at 75 degrees C. DNA group 3 strains were in serogroup 5. They were 98% related at 60 degrees C with 0.5% divergence and 97% related at 75 degrees C. Reciprocal relatedness of DNA group 3 and DNA group 1 was approximately 74% at 60 degrees C with 5.3% divergence and 43% at 75 degrees C, and reciprocal relatedness of DNA groups 3 and 2 was 66% at 60 degrees C with 5.7% divergence and 55% at 75 degrees C. The DNA groups could not be separated biochemically or serologically or by cell wall fatty acid and isoprenoid quinone composition. Three subspecies of L. pneumophila are proposed to accommodate the three DNA groups: L. pneumophila subsp. pneumophila subsp. nov. for DNA group 1, L. pneumophila subsp. fraseri subsp. nov. for DNA group 2, and pneumophila subsp. pascullei subsp. nov. for DNA group 3. PMID:3053773

  1. Identification of intrinsically metronidazole-resistant clades of Gardnerella vaginalis.

    PubMed

    Schuyler, Jessica A; Mordechai, Eli; Adelson, Martin E; Sobel, Jack D; Gygax, Scott E; Hilbert, David W

    2016-01-01

    Gardnerella vaginalis is associated with bacterial vaginosis (BV), the most common cause of vaginal discharge. Metronidazole is a front-line therapy for BV, and treatment failure and recurrent disease are common problems. Whole-genome sequencing studies have revealed that G. vaginalis has a population structure that consists of 4 clades: clades 1 and 3 are associated with BV, whereas clades 2 and 4 are not. To determine if metronidazole susceptibility is associated with population structure, we analyzed 87 clinical isolates and found that metronidazole resistance (MIC ≥32 μg/mL) was highly associated with clade (P<0.0001), as 14/14 clade 3 isolates (100%) and 22/22 clade 4 isolates (100%) exhibited resistance, compared to only 16/37 clade 1 isolates (35%) and 1/14 clade 2 isolates (7.1%). The identification of intrinsically metronidazole-resistant G. vaginalis clades will facilitate future studies on the relationship between metronidazole resistance and BV treatment failure. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Two new species of Lactarius associated with Alnus acuminata subsp. arguta in Mexico.

    PubMed

    Montoya, Leticia; Bandala, Victor M; Garay, Edith

    2014-01-01

    In pure stands of Alnus acuminata subsp. arguta trees from Sierra Norte de Puebla (central Mexico) two undescribed ectomycorrhizal species of Lactarius were discovered. Distinction of the two new species is based on morphological characters and supported with phylogenetic analyses of the nuclear ribosomal DNA ITS region and part of the gene that encodes for the second largest subunit of RNA polymerase II (rpb2). The phylogenies inferred recovered the two species in different clades strongly supported by posterior probabilities and bootstrap values. The new Lactarius species are recognized as part of the assemblage of ectomycorrhizal fungi associated with Alnus acuminata. Information about these taxa includes the morphological variation achieved along 16 monitories 2010-2013. Descriptions are provided. They are accompanied by photos including SEM photomicrographs of basidiospores and information on differences between them and other related taxa from Europe and the United States.

  3. Nonrandom Distribution of Vector Ticks (Dermacentor variabilis) Infected by Francisella tularensis

    PubMed Central

    Goethert, Heidi K.; Telford, Sam R.

    2009-01-01

    The island of Martha's Vineyard, Massachusetts, is the site of a sustained outbreak of tularemia due to Francisella tularensis tularensis. Dog ticks, Dermacentor variabilis, appear to be critical in the perpetuation of the agent there. Tularemia has long been characterized as an agent of natural focality, stably persisting in characteristic sites of transmission, but this suggestion has never been rigorously tested. Accordingly, we sought to identify a natural focus of transmission of the agent of tularemia by mapping the distribution of PCR-positive ticks. From 2004 to 2007, questing D. variabilis were collected from 85 individual waypoints along a 1.5 km transect in a field site on Martha's Vineyard. The positions of PCR-positive ticks were then mapped using ArcGIS. Cluster analysis identified an area approximately 290 meters in diameter, 9 waypoints, that was significantly more likely to yield PCR-positive ticks (relative risk 3.3, P = 0.001) than the rest of the field site. Genotyping of F. tularensis using variable number tandem repeat (VNTR) analysis on PCR-positive ticks yielded 13 different haplotypes, the vast majority of which was one dominant haplotype. Positive ticks collected in the cluster were 3.4 times (relative risk = 3.4, P<0.0001) more likely to have an uncommon haplotype than those collected elsewhere from the transect. We conclude that we have identified a microfocus where the agent of tularemia stably perpetuates and that this area is where genetic diversity is generated. PMID:19247435

  4. Long-range dispersal moved Francisella tularensis into Western Europe from the East

    PubMed Central

    Dwibedi, Chinmay; Birdsell, Dawn; Lärkeryd, Adrian; Myrtennäs, Kerstin; Öhrman, Caroline; Nilsson, Elin; Karlsson, Edvin; Hochhalter, Christian; Rivera, Andrew; Maltinsky, Sara; Bayer, Brittany; Keim, Paul; Scholz, Holger C.; Tomaso, Herbert; Wittwer, Matthias; Beuret, Christian; Schuerch, Nadia; Pilo, Paola; Hernández Pérez, Marta; Rodriguez-Lazaro, David; Escudero, Raquel; Anda, Pedro; Forsman, Mats; Wagner, David M.; Larsson, Pär

    2016-01-01

    For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and biological properties of Francisella tularensis, the bacterium causing tularemia. We whole-genome sequenced 67 strains and characterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains (n=205) belonged to a monophyletic population of recent ancestry not found outside Western Europe. Most strains (n=195) throughout the study area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expansion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west. The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have interacted to generate genetic diversity within this species. PMID:28348839

  5. Unique substrates secreted by the type VI secretion system of Francisella tularensis during intramacrophage infection.

    PubMed

    Bröms, Jeanette E; Meyer, Lena; Sun, Kun; Lavander, Moa; Sjöstedt, Anders

    2012-01-01

    Gram-negative bacteria have evolved sophisticated secretion machineries specialized for the secretion of macromolecules important for their life cycles. The Type VI secretion system (T6SS) is the most widely spread bacterial secretion machinery and is encoded by large, variable gene clusters, often found to be essential for virulence. The latter is true for the atypical T6SS encoded by the Francisella pathogenicity island (FPI) of the highly pathogenic, intracellular bacterium Francisella tularensis. We here undertook a comprehensive analysis of the intramacrophage secretion of the 17 FPI proteins of the live vaccine strain, LVS, of F. tularensis. All were expressed as fusions to the TEM β-lactamase and cleavage of the fluorescent substrate CCF2-AM, a direct consequence of the delivery of the proteins into the macrophage cytosol, was followed over time. The FPI proteins IglE, IglC, VgrG, IglI, PdpE, PdpA, IglJ and IglF were all secreted, which was dependent on the core components DotU, VgrG, and IglC, as well as IglG. In contrast, the method was not directly applicable on F. novicida U112, since it showed very intense native β-lactamase secretion due to FTN_1072. Its role was proven by ectopic expression in trans in LVS. We did not observe secretion of any of the LVS substrates VgrG, IglJ, IglF or IglI, when tested in a FTN_1072 deficient strain of F. novicida, whereas IglE, IglC, PdpA and even more so PdpE were all secreted. This suggests that there may be fundamental differences in the T6S mechanism among the Francisella subspecies. The findings further corroborate the unusual nature of the T6SS of F. tularensis since almost all of the identified substrates are unique to the species.

  6. Unique Substrates Secreted by the Type VI Secretion System of Francisella tularensis during Intramacrophage Infection

    PubMed Central

    Bröms, Jeanette E.; Sjöstedt, Anders

    2012-01-01

    Gram-negative bacteria have evolved sophisticated secretion machineries specialized for the secretion of macromolecules important for their life cycles. The Type VI secretion system (T6SS) is the most widely spread bacterial secretion machinery and is encoded by large, variable gene clusters, often found to be essential for virulence. The latter is true for the atypical T6SS encoded by the Francisella pathogenicity island (FPI) of the highly pathogenic, intracellular bacterium Francisella tularensis. We here undertook a comprehensive analysis of the intramacrophage secretion of the 17 FPI proteins of the live vaccine strain, LVS, of F. tularensis. All were expressed as fusions to the TEM β-lactamase and cleavage of the fluorescent substrate CCF2-AM, a direct consequence of the delivery of the proteins into the macrophage cytosol, was followed over time. The FPI proteins IglE, IglC, VgrG, IglI, PdpE, PdpA, IglJ and IglF were all secreted, which was dependent on the core components DotU, VgrG, and IglC, as well as IglG. In contrast, the method was not directly applicable on F. novicida U112, since it showed very intense native β-lactamase secretion due to FTN_1072. Its role was proven by ectopic expression in trans in LVS. We did not observe secretion of any of the LVS substrates VgrG, IglJ, IglF or IglI, when tested in a FTN_1072 deficient strain of F. novicida, whereas IglE, IglC, PdpA and even more so PdpE were all secreted. This suggests that there may be fundamental differences in the T6S mechanism among the Francisella subspecies. The findings further corroborate the unusual nature of the T6SS of F. tularensis since almost all of the identified substrates are unique to the species. PMID:23185631

  7. Long-range dispersal moved Francisella tularensis into Western Europe from the East.

    PubMed

    Dwibedi, Chinmay; Birdsell, Dawn; Lärkeryd, Adrian; Myrtennäs, Kerstin; Öhrman, Caroline; Nilsson, Elin; Karlsson, Edvin; Hochhalter, Christian; Rivera, Andrew; Maltinsky, Sara; Bayer, Brittany; Keim, Paul; Scholz, Holger C; Tomaso, Herbert; Wittwer, Matthias; Beuret, Christian; Schuerch, Nadia; Pilo, Paola; Hernández Pérez, Marta; Rodriguez-Lazaro, David; Escudero, Raquel; Anda, Pedro; Forsman, Mats; Wagner, David M; Larsson, Pär; Johansson, Anders

    2016-12-01

    For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and biological properties of Francisella tularensis, the bacterium causing tularemia. We whole-genome sequenced 67 strains and characterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains (n=205) belonged to a monophyletic population of recent ancestry not found outside Western Europe. Most strains (n=195) throughout the study area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expansion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west. The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have interacted to generate genetic diversity within this species.

  8. Aged mice display an altered pulmonary host response to Francisella tularensis live vaccine strain (LVS) infections

    PubMed Central

    CA, Mares; SS, Ojeda; Q, Li; EG, Morris; JJ, Coalson; JM, Teale

    2012-01-01

    Aging is a complex phenomenon that has been shown to affect many organ systems including the innate and adaptive immune systems. The current study was designed to examine the potential effect of immunosenescence on the pulmonary immune response using a Francisella tularensis live vaccine strain (LVS) inhalation infection model. F. tularensis is a gram-negative intracellular pathogen that can cause a severe pneumonia.In this study both young (8-12 week old) and aged (20-24 month old) mice were infected intranasally with LVS. Lung tissues from young and aged mice were used to assess pathology, recruitment of immune cell types and cytokine expression levels at various times post infection. Bacterial burdens were also assessed. Interestingly, the lungs of aged animals harbored fewer organisms at early time points of infection (day 1, day 3) compared with their younger counterparts. In addition, only aged animals displayed small perivascular aggregates at these early time points that appeared mostly mononuclear in nature. However, the kinetics of infiltrating polymorphonuclear neutrophils (PMNs) and increased cytokine levels measured in the bronchial alveolar lavage fluid (BALF) were delayed in infected aged animals relative to young infected animals with neutrophils appearing at day 5 post infection (PI) in the aged animals as opposed to day 3 PI in the young infected animals. Also evident were alterations in the ratios of mononuclear to PMNs at distinct post infection times. The above evidence indicates that aged mice elicit an altered immune response in the lung to respiratory Francisella tularensis LVS infections compared to their younger counterparts. PMID:19825409

  9. Automated microfluidically controlled electrochemical biosensor for the rapid and highly sensitive detection of Francisella tularensis.

    PubMed

    Dulay, Samuel B; Gransee, Rainer; Julich, Sandra; Tomaso, Herbert; O'Sullivan, Ciara K

    2014-09-15

    Tularemia is a highly infectious zoonotic disease caused by a Gram-negative coccoid rod bacterium, Francisella tularensis. Tularemia is considered as a life-threatening potential biological warfare agent due to its high virulence, transmission, mortality and simplicity of cultivation. In the work reported here, different electrochemical immunosensor formats for the detection of whole F. tularensis bacteria were developed and their performance compared. An anti-Francisella antibody (FB11) was used for the detection that recognises the lipopolysaccharide found in the outer membrane of the bacteria. In the first approach, gold-supported self-assembled monolayers of a carboxyl terminated bipodal alkanethiol were used to covalently cross-link with the FB11 antibody. In an alternative second approach F(ab) fragments of the FB11 antibody were generated and directly chemisorbed onto the gold electrode surface. The second approach resulted in an increased capture efficiency and higher sensitivity. Detection limits of 4.5 ng/mL for the lipopolysaccharide antigen and 31 bacteria/mL for the F. tularensis bacteria were achieved. Having demonstrated the functionality of the immunosensor, an electrode array was functionalised with the antibody fragment and integrated with microfluidics and housed in a tester set-up that facilitated complete automation of the assay. The only end-user intervention is sample addition, requiring less than one-minute hands-on time. The use of the automated microfluidic set-up not only required much lower reagent volumes but also the required incubation time was considerably reduced and a notable increase of 3-fold in assay sensitivity was achieved with a total assay time from sample addition to read-out of less than 20 min.

  10. Rapid Countermeasure Discovery against Francisella tularensis Based on a Metabolic Network Reconstruction

    PubMed Central

    Chaudhury, Sidhartha; Abdulhameed, Mohamed Diwan M.; Singh, Narender; Tawa, Gregory J.; D’haeseleer, Patrik M.; Zemla, Adam T.; Navid, Ali; Zhou, Carol E.; Franklin, Matthew C.; Cheung, Jonah; Rudolph, Michael J.; Love, James; Graf, John F.; Rozak, David A.; Dankmeyer, Jennifer L.; Amemiya, Kei; Daefler, Simon; Wallqvist, Anders

    2013-01-01

    In the future, we may be faced with the need to provide treatment for an emergent biological threat against which existing vaccines and drugs have limited efficacy or availability. To prepare for this eventuality, our objective was to use a metabolic network-based approach to rapidly identify potential drug targets and prospectively screen and validate novel small-molecule antimicrobials. Our target organism was the fully virulent Francisella tularensis subspecies tularensis Schu S4 strain, a highly infectious intracellular pathogen that is the causative agent of tularemia and is classified as a category A biological agent by the Centers for Disease Control and Prevention. We proceeded with a staggered computational and experimental workflow that used a strain-specific metabolic network model, homology modeling and X-ray crystallography of protein targets, and ligand- and structure-based drug design. Selected compounds were subsequently filtered based on physiological-based pharmacokinetic modeling, and we selected a final set of 40 compounds for experimental validation of antimicrobial activity. We began screening these compounds in whole bacterial cell-based assays in biosafety level 3 facilities in the 20th week of the study and completed the screens within 12 weeks. Six compounds showed significant growth inhibition of F. tularensis, and we determined their respective minimum inhibitory concentrations and mammalian cell cytotoxicities. The most promising compound had a low molecular weight, was non-toxic, and abolished bacterial growth at 13 µM, with putative activity against pantetheine-phosphate adenylyltransferase, an enzyme involved in the biosynthesis of coenzyme A, encoded by gene coaD. The novel antimicrobial compounds identified in this study serve as starting points for lead optimization, animal testing, and drug development against tularemia. Our integrated in silico/in vitro approach had an overall 15% success rate in terms of active versus tested

  11. Insights to Genetic Characterization Tools for Epidemiological Tracking of Francisella tularensis in Sweden

    PubMed Central

    Wahab, Tara; Birdsell, Dawn N.; Hjertqvist, Marika; Mitchell, Cedar L.; Wagner, David M.; Keim, Paul S.; Hedenström, Ingela; Löfdahl, Sven

    2014-01-01

    Tularaemia, caused by the bacterium Francisella tularensis, is endemic in Sweden and is poorly understood. The aim of this study was to evaluate the effectiveness of three different genetic typing systems to link a genetic type to the source and place of tularemia infection in Sweden. Canonical single nucleotide polymorphisms (canSNPs), MLVA including five variable number of tandem repeat loci and PmeI-PFGE were tested on 127 F. tularensis positive specimens collected from Swedish case-patients. All three typing methods identified two major genetic groups with near-perfect agreement. Higher genetic resolution was obtained with canSNP and MLVA compared to PFGE; F. tularensis samples were first assigned into ten phylogroups based on canSNPs followed by 33 unique MLVA types. Phylogroups were geographically analysed to reveal complex phylogeographic patterns in Sweden. The extensive phylogenetic diversity found within individual counties posed a challenge to linking specific genetic types with specific geographic locations. Despite this, a single phylogroup (B.22), defined by a SNP marker specific to a lone Swedish sequenced strain, did link genetic type with a likely geographic place. This result suggests that SNP markers, highly specific to a particular reference genome, may be found most frequently among samples recovered from the same location where the reference genome originated. This insight compels us to consider whole-genome sequencing (WGS) as the appropriate tool for effectively linking specific genetic type to geography. Comparing the WGS of an unknown sample to WGS databases of archived Swedish strains maximizes the likelihood of revealing those rare geographically informative SNPs. PMID:25401326

  12. Mouse Models of Aerosol-Acquired Tularemia Caused by Francisella tularensis Types A and B

    PubMed Central

    Fritz, David L; England, Marilyn J; Miller, Lynda; Waag, David M

    2014-01-01

    After preliminary assessment of virulence in AKR/J, DBA/1, BALB/c, and C57BL/6 mice, we investigated histopathologic changes in BALB/c and C57BL/6 mice infected with type A (strain SCHU S4) or type B (strain 425) Francisella tularensis by aerosol exposure. In mice exposed to type A infection, changes in histologic presentation were not apparent until day 3 after infection, when pyogranulomatous inflammation was detected in spleens and livers of BALB/c mice, and in lungs and spleens of C57BL/6 mice. Histopathologic changes were most severe and widespread in both mouse strains on day 5 after infection and seemed to completely resolve within 22 d of challenge. BALB/c mice were more resistant than C57BL/6 mice in lethal-dose calculations, but C57BL/6 mice cleared the infection more rapidly. Mice similarly challenged with type B F. tularensis also developed histopathologic signs of infection beginning on day 3. The most severe changes were noted on day 8 and were characterized by granulomatous or pyogranulomatous infiltrations of the lungs. Unlike type A infection, lesions due to type B did not resolve over time and remained 3 wk after infection. In type B, but not type A, infection we noted extensive inflammation of the heart muscle. Although no microorganisms were found in tissues of type A survivors beyond 9 d after infection, mice surviving strain 425 infection had a low level of residual infection at 3 wk after challenge. The histopathologic presentation of tularemia caused by F. tularensis types A and B in BALB/c and C57BL/6 mice bears distinct similarities to tularemia in humans. PMID:25402174

  13. Phylogenetic Analysis and Polyphasic Characterization of Clavibacter michiganensis Strains Isolated from Tomato Seeds Reveal that Nonpathogenic Strains Are Distinct from C. michiganensis subsp. michiganensis

    PubMed Central

    Durand, Karine; Orgeur, Geoffrey; Balidas, Samuel; Fricot, Céline; Bonneau, Sophie; Quillévéré, Anne; Audusseau, Corinne; Olivier, Valérie; Grimault, Valérie; Mathis, René

    2012-01-01

    The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this “framework” with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced. PMID:23001675

  14. Phylogenetic analysis and polyphasic characterization of Clavibacter michiganensis strains isolated from tomato seeds reveal that nonpathogenic strains are distinct from C. michiganensis subsp. michiganensis.

    PubMed

    Jacques, Marie-Agnès; Durand, Karine; Orgeur, Geoffrey; Balidas, Samuel; Fricot, Céline; Bonneau, Sophie; Quillévéré, Anne; Audusseau, Corinne; Olivier, Valérie; Grimault, Valérie; Mathis, René

    2012-12-01

    The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this "framework" with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced.

  15. Bacillus anthracis, Francisella tularensis and Yersinia pestis. The most important bacterial warfare agents - review.

    PubMed

    Pohanka, M; Skládal, P

    2009-01-01

    There are three most important bacterial causative agents of serious infections that could be misused for warfare purposes: Bacillus anthracis (the causative agent of anthrax) is the most frequently mentioned one; however, Fracisella tularensis (causing tularemia) and Yersinia pestis (the causative agent of plague) are further bacterial agents enlisted by Centers for Disease Control and Prevention into the category A of potential biological weapons. This review intends to summarize basic information about these bacterial agents. Military aspects of their pathogenesis and the detection techniques suitable for field use are discussed.

  16. Francisella tularensis Catalase Restricts Immune Function by Impairing TRPM2 Channel Activity.

    PubMed

    Shakerley, Nicole L; Chandrasekaran, Akshaya; Trebak, Mohamed; Miller, Barbara A; Melendez, J Andrés

    2016-02-19

    As an innate defense mechanism, macrophages produce reactive oxygen species that weaken pathogens and serve as secondary messengers involved in immune function. The Gram-negative bacterium Francisella tularensis utilizes its antioxidant armature to limit the host immune response, but the mechanism behind this suppression is not defined. Here we establish that F. tularensis limits Ca(2+) entry in macrophages, thereby limiting actin reorganization and IL-6 production in a redox-dependent fashion. Wild type (live vaccine strain) or catalase-deficient F. tularensis (ΔkatG) show distinct profiles in their H2O2 scavenging rates, 1 and 0.015 pm/s, respectively. Murine alveolar macrophages infected with ΔkatG display abnormally high basal intracellular Ca(2+) concentration that did not increase further in response to H2O2. Additionally, ΔkatG-infected macrophages displayed limited Ca(2+) influx in response to ionomycin, as a result of ionophore H2O2 sensitivity. Exogenously added H2O2 or H2O2 generated by ΔkatG likely oxidizes ionomycin and alters its ability to transport Ca(2+). Basal increases in cytosolic Ca(2+) and insensitivity to H2O2-mediated Ca(2+) entry in ΔkatG-infected cells are reversed by the Ca(2+) channel inhibitors 2-aminoethyl diphenylborinate and SKF-96365. 2-Aminoethyl diphenylborinate but not SKF-96365 abrogated ΔkatG-dependent increases in macrophage actin remodeling and IL-6 secretion, suggesting a role for H2O2-mediated Ca(2+) entry through the transient receptor potential melastatin 2 (TRPM2) channel in macrophages. Indeed, increases in basal Ca(2+), actin polymerization, and IL-6 production are reversed in TRPM2-null macrophages infected with ΔkatG. Together, our findings provide compelling evidence that F. tularensis catalase restricts reactive oxygen species to temper macrophage TRPM2-mediated Ca(2+) signaling and limit host immune function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Ubiquitous Promoter-Localization of Essential Virulence Regulators in Francisella tularensis

    PubMed Central

    Ramsey, Kathryn M.; Osborne, Melisa L.; Vvedenskaya, Irina O.; Su, Cathy; Nickels, Bryce E.; Dove, Simon L.

    2015-01-01

    Francisella tularensis is a Gram-negative bacterium whose ability to replicate within macrophages and cause disease is strictly dependent upon the coordinate activities of three transcription regulators called MglA, SspA, and PigR. MglA and SspA form a complex that associates with RNA polymerase (RNAP), whereas PigR is a putative DNA-binding protein that functions by contacting the MglA-SspA complex. Most transcription activators that bind the DNA are thought to occupy only those promoters whose activities they regulate. Here we show using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-Seq) that PigR, MglA, and SspA are found at virtually all promoters in F. tularensis and not just those of regulated genes. Furthermore, we find that the ability of PigR to associate with promoters is dependent upon the presence of MglA, suggesting that interaction with the RNAP-associated MglA-SspA complex is what directs PigR to promoters in F. tularensis. Finally, we present evidence that the ability of PigR (and thus MglA and SspA) to positively control the expression of genes is dictated by a specific 7 base pair sequence element that is present in the promoters of regulated genes. The three principal regulators of virulence gene expression in F. tularensis therefore function in a non-classical manner with PigR interacting with the RNAP-associated MglA-SspA complex at the majority of promoters but only activating transcription from those that contain a specific sequence element. Our findings reveal how transcription factors can exert regulatory effects at a restricted set of promoters despite being associated with most or all. This distinction between occupancy and regulatory effect uncovered by our data may be relevant to the study of RNAP-associated transcription regulators in other pathogenic bacteria. PMID:25830507

  18. Clusters versus affinity-based approaches in F. tularensis whole genome search of CTL epitopes.

    PubMed

    Zvi, Anat; Rotem, Shahar; Cohen, Ofer; Shafferman, Avigdor

    2012-01-01

    Deciphering the cellular immunome of a bacterial pathogen is challenging due to the enormous number of putative peptidic determinants. State-of-the-art prediction methods developed in recent years enable to significantly reduce the number of peptides to be screened, yet the number of remaining candidates for experimental evaluation is still in the range of ten-thousands, even for a limited coverage of MHC alleles. We have recently established a resource-efficient approach for down selection of candidates and enrichment of true positives, based on selection of predicted MHC binders located in high density "hotspots" of putative epitopes. This cluster-based approach was applied to an unbiased, whole genome search of Francisella tularensis CTL epitopes and was shown to yield a 17-25 fold higher level of responders as compared to randomly selected predicted epitopes tested in Kb/Db C57BL/6 mice. In the present study, we further evaluate the cluster-based approach (down to a lower density range) and compare this approach to the classical affinity-based approach by testing putative CTL epitopes with predicted IC(50) values of <10 nM. We demonstrate that while the percent of responders achieved by both approaches is similar, the profile of responders is different, and the predicted binding affinity of most responders in the cluster-based approach is relatively low (geometric mean of 170 nM), rendering the two approaches complimentary. The cluster-based approach is further validated in BALB/c F. tularensis immunized mice belonging to another allelic restriction (Kd/Dd) group. To date, the cluster-based approach yielded over 200 novel F. tularensis peptides eliciting a cellular response, all were verified as MHC class I binders, thereby substantially increasing the F. tularensis dataset of known CTL epitopes. The generality and power of the high density cluster-based approach suggest that it can be a valuable tool for identification of novel CTLs in proteomes of other

  19. Nitrous Oxide Reduction Kinetics Distinguish Bacteria Harboring Clade I NosZ from Those Harboring Clade II NosZ

    PubMed Central

    Nissen, Silke; Park, Doyoung; Sanford, Robert A.

    2016-01-01

    ABSTRACT Bacteria capable of reduction of nitrous oxide (N2O) to N2 separate into clade I and clade II organisms on the basis of nos operon structures and nosZ sequence features. To explore the possible ecological consequences of distinct nos clusters, the growth of bacterial isolates with either clade I (Pseudomonas stutzeri strain DCP-Ps1, Shewanella loihica strain PV-4) or clade II (Dechloromonas aromatica strain RCB, Anaeromyxobacter dehalogenans strain 2CP-C) nosZ with N2O was examined. Growth curves did not reveal trends distinguishing the clade I and clade II organisms tested; however, the growth yields of clade II organisms exceeded those of clade I organisms by 1.5- to 1.8-fold. Further, whole-cell half-saturation constants (Kss) for N2O distinguished clade I from clade II organisms. The apparent Ks values of 0.324 ± 0.078 μM for D. aromatica and 1.34 ± 0.35 μM for A. dehalogenans were significantly lower than the values measured for P. stutzeri (35.5 ± 9.3 μM) and S. loihica (7.07 ± 1.13 μM). Genome sequencing demonstrated that Dechloromonas denitrificans possessed a clade II nosZ gene, and a measured Ks of 1.01 ± 0.18 μM for N2O was consistent with the values determined for the other clade II organisms tested. These observations provide a plausible mechanistic basis for why the relative activity of bacteria with clade I nos operons compared to that of bacteria with clade II nos operons may control N2O emissions and determine a soil's N2O sink capacity. IMPORTANCE Anthropogenic activities, in particular fertilizer application for agricultural production, increase N2O emissions to the atmosphere. N2O is a strong greenhouse gas with ozone destruction potential, and there is concern that nitrogen may become the major driver of climate change. Microbial N2O reductase (NosZ) catalyzes N2O reduction to environmentally benign dinitrogen gas and represents the major N2O sink process. The observation that bacterial groups with clade I nosZ versus those

  20. Evidence of Sympatry of Clade A and Clade B Head Lice in a Pre-Columbian Chilean Mummy from Camarones

    PubMed Central

    Boutellis, Amina; Drali, Rezak; Rivera, Mario A.; Mumcuoglu, Kosta Y.; Raoult, Didier

    2013-01-01

    Three different lineages of head lice are known to parasitize humans. Clade A, which is currently worldwide in distribution, was previously demonstrated to be present in the Americas before the time of Columbus. The two other types of head lice are geographically restricted to America and Australia for clade B and to Africa and Asia for clade C. In this study, we tested two operculated nits from a 4,000-year-old Chilean mummy of Camarones for the presence of the partial Cytb mitochondrial gene (270 bp). Our finding shows that clade B head lice were present in America before the arrival of the European colonists. PMID:24204678

  1. Evidence of sympatry of clade a and clade B head lice in a pre-Columbian Chilean mummy from Camarones.

    PubMed

    Boutellis, Amina; Drali, Rezak; Rivera, Mario A; Mumcuoglu, Kosta Y; Raoult, Didier

    2013-01-01

    Three different lineages of head lice are known to parasitize humans. Clade A, which is currently worldwide in distribution, was previously demonstrated to be present in the Americas before the time of Columbus. The two other types of head lice are geographically restricted to America and Australia for clade B and to Africa and Asia for clade C. In this study, we tested two operculated nits from a 4,000-year-old Chilean mummy of Camarones for the presence of the partial Cytb mitochondrial gene (270 bp). Our finding shows that clade B head lice were present in America before the arrival of the European colonists.

  2. The first closed genome sequence of Campylobacter fetus subsp. venerealis biovar intermedius

    USDA-ARS?s Scientific Manuscript database

    Campylobacter fetus venerealis biovar intermedius is a variant of Campylobacter fetus subsp. venerealis, the causative agent of Bovine Genital Campylobacteriosis. In contrast to Campylobacter fetus subsp. venerealis which is restricted to the genital tract of cattle, Campylobacter fetus subsp. vener...

  3. Bioproducts from diverse phylogenetic clades of Aureobasidium pullulans

    USDA-ARS?s Scientific Manuscript database

    More than 90 isolates of the fungus A. pullulans from tropical and temperate climates were classified into 13 phylogenetic clades using multilocus sequence analyses (ITS, IGS, BT2, RPB2, and EF-1a). Tropical isolates appeared to exhibit the greatest genetic diversity. Representatives of each clade...

  4. The Longibrachiatum Clade of Trichoderma: a revision with new species

    USDA-ARS?s Scientific Manuscript database

    The Longibrachiatum Clade of Trichoderma is revised. Eight new species are described (T. aethiopicum, T. capillare, T. flagellatum, T. gillesii, T. gracile, T. pinnatum, T. saturnisporopsis, T. solani). The twenty-one species known to belong to the Longibrachiatum Clade are included in a synoptic ke...

  5. An easy, simple inexpensive test for the specific detection of Pectobacterium carotovorum subsp. carotovorum based on sequence analysis of the pmrA gene

    PubMed Central

    2013-01-01

    Background The species Pectobacterium carotovorum includes a diverse subspecies of bacteria that cause disease on a wide variety of plants. In Morocco, approximately 95% of the P. carotovorum isolates from potato plants with tuber soft rot are P. carotovorum subsp. carotovorum. However, identification of this pathogen is not always related to visual disease symptoms. This is especially true when different pathogen cause similar diseases on potato, citing as an example, P. carotovorum, P. atrosepticum and P. wasabiae. Numerous conventional methods were used to characterize Pectobacterium spp., including biochemical assays, specific PCR-based tests, and construction of phylogenetic trees by using gene sequences. In this study, an alternative method is presented using a gene linked to pathogenicity, in order to allow accuracy at subspecies level. The pmrA gene (response regulator) has been used for identification and analysis of the relationships among twenty nine Pectobacterium carotovorum subsp. carotovorum and other Pectobacterium subspecies. Results Phylogenetic analyses of pmrA sequences compared to ERIC-PCR and 16S rDNA sequencing, demonstrated that there is considerable genetic diversity in P. carotovorum subsp. carotovorum strains, which can be divided into two distinct groups within the same clade. Conclusions pmrA sequence analysis is likely to be a reliable tool to identify the subspecies Pectobacterium carotovorum subsp. carotovorum and estimate their genetic diversity. PMID:23890050

  6. Major clades of Agaricales: a multilocus phylogenetic overview.

    PubMed

    Matheny, P Brandon; Curtis, Judd M; Hofstetter, Valérie; Aime, M Catherine; Moncalvo, Jean-Marc; Ge, Zai-Wei; Slot, Jason C; Ammirati, Joseph F; Baroni, Timothy J; Bougher, Neale L; Hughes, Karen W; Lodge, D Jean; Kerrigan, Richard W; Seidl, Michelle T; Aanen, Duur K; DeNitis, Matthew; Daniele, Graciela M; Desjardin, Dennis E; Kropp, Bradley R; Norvell, Lorelei L; Parker, Andrew; Vellinga, Else C; Vilgalys, Rytas; Hibbett, David S

    2006-01-01

    An overview of the phylogeny of the Agaricales is presented based on a multilocus analysis of a six-gene region supermatrix. Bayesian analyses of 5611 nucleotide characters of rpb1, rpb1-intron 2, rpb2 and 18S, 25S, and 5.8S ribosomal RNA genes recovered six major clades, which are recognized informally and labeled the Agaricoid, Tricholomatoid, Marasmioid, Pluteoid, Hygrophoroid and Plicaturopsidoid clades. Each clade is discussed in terms of key morphological and ecological traits. At least 11 origins of the ectomycorrhizal habit appear to have evolved in the Agaricales, with possibly as many as nine origins in the Agaricoid plus Tricholomatoid clade alone. A family-based phylogenetic classification is sketched for the Agaricales, in which 30 families, four unplaced tribes and two informally named clades are recognized.

  7. Staphylococcus petrasii subsp. pragensis subsp. nov., occurring in human clinical material.

    PubMed

    Švec, Pavel; De Bel, Annelies; Sedláček, Ivo; Petráš, Petr; Gelbíčová, Tereza; Černohlávková, Jitka; Mašlanˇová, Ivana; Cnockaert, Margo; Varbanovová, Ivana; Echahidi, Fedoua; Vandamme, Peter; Pantuček, Roman

    2015-07-01

    Seven coagulase-negative, oxidase-negative and novobiocin-susceptible staphylococci assigned tentatively as Staphylococcus petrasii were investigated in this study in order to elucidate their taxonomic position. All strains were initially shown to form a genetically homogeneous group separated from remaining species of the genus Staphylococcus by using a repetitive sequence-based PCR fingerprinting with the (GTG)5 primer. Phylogenetic analysis based on 16S rRNA gene, hsp60, rpoB, dnaJ, gap and tuf sequences showed that the group is closely related to Staphylococcus petrasii but separated from the three hitherto known subspecies, S. petrasii subsp. petrasii, S. petrasii subsp. croceilyticus and S. petrasii subsp. jettensis. Further investigation using automated ribotyping, MALDI-TOF mass spectrometry, fatty acid methyl ester analysis, DNA-DNA hybridization and extensive biotyping confirmed that the analysed group represents a novel subspecies within S. petrasii, for which the name Staphylococcus petrasii subsp. pragensis subsp. nov. is proposed. The type strain is NRL/St 12/356(T) ( = CCM 8529(T) = LMG 28327(T)).

  8. CpG Oligodeoxyribonucleotides Protect Mice from Burkholderia Pseudomallei but not Francisella Tularensis Schu S4 Aerosols

    DTIC Science & Technology

    2010-01-01

    David A Rozak1*, Herbert C Gelhaus1,3, Mark Smith2, Mojgan Zadeh1,4, Louis Huzella2, David Waag1, Jeffrey J Adamovicz1,5 Abstract Studies have shown...tularensis LPS, and contributes to F. novicida murine pathogenesis. Microbes and infection/ Institut Pasteur 2003, 5(5):397-403. 12. Forsman M, Sandstrom G

  9. Sensitivity of Francisella tularensis to ultrapure water and deoxycholate: implications for bacterial intracellular growth assay in macrophages

    PubMed Central

    Chalabaev, Sabina; Anderson, Christine A.; Onderdonk, Andrew B.; Kasper, Dennis L.

    2011-01-01

    The ability of Francisella tularensis to replicate in macrophages is critical for its pathogenesis, therefore intracellular growth assays are important tools for assessing virulence. We show that two lysis solutions commonly used in these assays, deionized water and deoxycholate in PBS, lead to highly inaccurate measurements of intracellular bacterial survival. PMID:21420447

  10. Novel engineered cationic antimicrobial peptides display broad-spectrum activity against Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei.

    PubMed

    Abdelbaqi, Suha; Deslouches, Berthony; Steckbeck, Jonathan; Montelaro, Ronald; Reed, Douglas S

    2016-02-01

    Broad-spectrum antimicrobials are needed to effectively treat patients infected in the event of a pandemic or intentional release of a pathogen prior to confirmation of the pathogen's identity. Engineered cationic antimicrobial peptides (eCAPs) display activity against a number of bacterial pathogens including multi-drug-resistant strains. Two lead eCAPs, WLBU2 and WR12, were compared with human cathelicidin (LL-37) against three highly pathogenic bacteria: Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei. Both WLBU2 and WR12 demonstrated bactericidal activity greater than that of LL-37, particularly against F. tularensis and Y. pestis. Only WLBU2 had bactericidal activity against B. pseudomallei. WLBU2, WR12 and LL-37 were all able to inhibit the growth of the three bacteria in vitro. Because these bacteria can be facultative intracellular pathogens, preferentially infecting macrophages and dendritic cells, we evaluated the activity of WLBU2 against F. tularensis in an ex vivo infection model with J774 cells, a mouse macrophage cell line. In that model WLBU2 was able to achieve greater than 50% killing of F. tularensis at a concentration of 12.5 μM. These data show the therapeutic potential of eCAPs, particularly WLBU2, as a broad-spectrum antimicrobial for treating highly pathogenic bacterial infections.

  11. NMR Structure of Francisella tularensis Virulence Determinant Reveals Structural Homology to Bet v1 Allergen Proteins.

    PubMed

    Zook, James; Mo, Gina; Sisco, Nicholas J; Craciunescu, Felicia M; Hansen, Debra T; Baravati, Bobby; Cherry, Brian R; Sykes, Kathryn; Wachter, Rebekka; Van Horn, Wade D; Fromme, Petra

    2015-06-02

    Tularemia is a potentially fatal bacterial infection caused by Francisella tularensis, and is endemic to North America and many parts of northern Europe and Asia. The outer membrane lipoprotein, Flpp3, has been identified as a virulence determinant as well as a potential subunit template for vaccine development. Here we present the first structure for the soluble domain of Flpp3 from the highly infectious Type A SCHU S4 strain, derived through high-resolution solution nuclear magnetic resonance (NMR) spectroscopy; the first structure of a lipoprotein from the genus Francisella. The Flpp3 structure demonstrates a globular protein with an electrostatically polarized surface containing an internal cavity-a putative binding site based on the structurally homologous Bet v1 protein family of allergens. NMR-based relaxation studies suggest loop regions that potentially modulate access to the internal cavity. The Flpp3 structure may add to the understanding of F. tularensis virulence and contribute to the development of effective vaccines.

  12. Characterization of Francisella tularensis Schu S4 defined mutants as live-attenuated vaccine candidates.

    PubMed

    Santiago, Araceli E; Mann, Barbara J; Qin, Aiping; Cunningham, Aimee L; Cole, Leah E; Grassel, Christen; Vogel, Stefanie N; Levine, Myron M; Barry, Eileen M

    2015-08-01

    Francisella tularensis (Ft), the etiological agent of tularemia and a Tier 1 select agent, has been previously weaponized and remains a high priority for vaccine development. Ft tularensis (type A) and Ft holarctica (type B) cause most human disease. We selected six attenuating genes from the live vaccine strain (LVS; type B), F. novicida and other intracellular bacteria: FTT0507, FTT0584, FTT0742, FTT1019c (guaA), FTT1043 (mip) and FTT1317c (guaB) and created unmarked deletion mutants of each in the highly human virulent Ft strain Schu S4 (Type A) background. FTT0507, FTT0584, FTT0742 and FTT1043 Schu S4 mutants were not attenuated for virulence in vitro or in vivo. In contrast, Schu S4 gua mutants were unable to replicate in murine macrophages and were attenuated in vivo, with an i.n. LD50 > 10(5) CFU in C57BL/6 mice. However, the gua mutants failed to protect mice against lethal challenge with WT Schu S4, despite demonstrating partial protection in rabbits in a previous study. These results contrast with the highly protective capacity of LVS gua mutants against a lethal LVS challenge in mice, and underscore differences between these strains and the animal models in which they are evaluated, and therefore have important implications for vaccine development.

  13. Antibacterial Activity of Alkyl Gallates against Xanthomonas citri subsp. citri

    PubMed Central

    Silva, I. C.; Regasini, L. O.; Petrônio, M. S.; Silva, D. H. S.; Bolzani, V. S.; Belasque, J.; Sacramento, L. V. S.

    2013-01-01

    The plant-pathogenic bacterium Xanthomonas citri subsp. citri is the causal agent of Asiatic citrus canker, a serious disease that affects all the cultivars of citrus in subtropical citrus-producing areas worldwide. There is no curative treatment for citrus canker; thus, the eradication of infected plants constitutes the only effective control of the spread of X. citri subsp. citri. Since the eradication program in the state of São Paulo, Brazil, is under threat, there is a clear risk of X. citri subsp. citri becoming endemic in the main orange-producing area in the world. Here we evaluated the potential use of alkyl gallates to prevent X. citri subsp. citri growth. These esters displayed a potent anti-X. citri subsp. citri activity similar to that of kanamycin (positive control), as evaluated by the resazurin microtiter assay (REMA). The treatment of X. citri subsp. citri cells with these compounds induced altered cell morphology, and investigations of the possible intracellular targets using X. citri subsp. citri strains labeled for the septum and centromere pointed to a common target involved in chromosome segregation and cell division. Finally, the artificial inoculation of citrus with X. citri subsp. citri cells pretreated with alkyl gallates showed that the bacterium loses the ability to colonize its host, which indicates the potential of these esters to protect citrus plants against X. citri subsp. citri infection. PMID:23104804

  14. Description of Mycobacterium chelonae subsp. bovis subsp. nov., isolated from cattle (Bos taurus coreanae), emended description of Mycobacterium chelonae and creation of Mycobacterium chelonae subsp. chelonae subsp. nov.

    PubMed

    Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Jeon, Che Ok; Jeong, Joseph; Lee, Seon Ho; Lim, Ji-Hun; Lee, Seung-Heon; Kim, Chang Ki; Kook, Yoon-Hoh; Kim, Bum-Joon

    2017-09-12

    Three rapidly growing mycobacterial strains, QIA-37T, QIA-40 and QIA-41, were isolated from the lymph nodes of three separate Korean native cattle, Hanwoo (Bos taurus coreanae). These strains were previously shown to be phylogenetically distinct but closely related to Mycobacterium chelonae ATCC 35752T by taxonomic approaches targeting three genes (16S rRNA, hsp6 and rpoB) and were further characterized using a polyphasic approach in this study. The 16S rRNA gene sequences of all three strains showed 99.7 % sequence similarity with that of the M. chelonae type strain. A multilocus sequence typing analysis targeting 10 housekeeping genes, including hsp65 and rpoB, revealed a phylogenetic cluster of these strains with M. chelonae. DNA-DNA hybridization values of 78.2 % between QIA-37T and M. chelonae indicated that it belongs to M. chelonae but is a novel subspecies distinct from M. chelonae. Phylogenetic analysis based on whole-genome sequences revealed a 95.44±0.06 % average nucleotide identity (ANI) value with M. chelonae, slightly higher than the 95.0 % ANI criterion for determining a novel species. In addition, distinct phenotypic characteristics such as positive growth at 37 °C, at which temperature M. chelonae does not grow, further support the taxonomic status of these strains as representatives of a novel subspecies of M. chelonae. Therefore, we propose an emended description of Mycobacterium chelonae, and descriptions of M. chelonae subsp. chelonae subsp. nov. and M. chelonae subsp. bovis subsp. nov. are presented; strains ATCC 35752T(=CCUG 47445T=CIP 104535T=DSM 43804T=JCM 6388T=NCTC 946T) and QIA-37T (=KCTC 39630T=JCM 30986T) are the type strains of the two novel subspecies.

  15. Fragrance components of Platanthera bifolia subsp. osca.

    PubMed

    D'Auria, Maurizio; Lorenz, Richard; Racioppi, Rocco; Romano, Vito Antonio

    2017-02-10

    SPME-GC-MS analysis of the scent of Platanthera bifolia subsp. osca collected during the night showed as main components lilac alcohols B, C and D and lilac aldehydes A, B and C. Other significant chemical components were linalool and caryophyllene. Some differences were found in comparison with previously reported analyses of the scent of P. bifolia and Platanthera chlorantha. The most important difference found was in the composition of the ester fraction.

  16. An Improved Vaccine for Prevention of Respiratory Tularemia Caused by Francisella tularensis SchuS4 Strain

    PubMed Central

    Bakshi, Chandra Shekhar; Malik, Meenakshi; Mahawar, Manish; Kirimanjeswara, Girish S.; Hazlett, Karsten R. O.; Palmer, Lance E.; Furie, Martha B.; Singh, Rajendra; Melendez, J. Andres; Sellati, Timothy J.; Metzger, Dennis W.

    2008-01-01

    Vaccination of mice with Francisella tularensis live vaccine strain (LVS) mutants described so far have failed to induce protection in C57BL/6 mice against challenge with the virulent strain F. tularensis SchuS4. We previously have reported that a mutant of F. tularensis LVS deficient in iron superoxide dismutase (sodBFt) is hypersensitive to oxidative stress and attenuated for virulence in mice. Herein, we evaluated the efficacy of this mutant as a vaccine candidate against respiratory tularemia caused by F. tularensis SchuS4. C57BL/6 mice were vaccinated intranasally (i.n.) with the sodBFt mutant and challenged i.n. with lethal doses of F. tularensis SchuS4. The level of protection against SchuS4 challenge was higher in sodBFt vaccinated group as compared to the LVS vaccinated mice. SodBFt vaccinated mice following SchuS4 challenge exhibited significantly reduced bacterial burden in lungs, liver and spleen, regulated production of pro-inflammatory cytokines and less severe histopathological lesions compared to the LVS vaccinated mice. The sodBFt vaccination induced a potent humoral immune response and protection against SchuS4 required both CD4 and CD8 T cells in the vaccinated mice. SodBFt mutants revealed upregulated levels of chaperonine proteins DnaK, GroEL and Bfr that have been shown to be important for generation of a potent immune response against Francisella infection. Collectively, this study describes an improved live vaccine candidate against respiratory tularemia that has an attenuated virulence and enhanced protective efficacy than the LVS. PMID:18692537

  17. Serosurveillance for Francisella tularensis among wild animals in Japan using a newly developed competitive enzyme-linked immunosorbent assay.

    PubMed

    Sharma, Neekun; Hotta, Akitoyo; Yamamoto, Yoshie; Uda, Akihiko; Fujita, Osamu; Mizoguchi, Toshio; Shindo, Junji; Park, Chun-Ho; Kudo, Noboru; Hatai, Hitoshi; Oyamada, Toshifumi; Yamada, Akio; Morikawa, Shigeru; Tanabayashi, Kiyoshi

    2014-04-01

    Tularemia, a highly infectious zoonotic disease caused by Francisella tularensis, occurs sporadically in Japan. However, little is known about the prevalence of the disease in wild animals. A total of 632 samples obtained from 150 Japanese black bears, 142 Japanese hares, 120 small rodents, 97 rats, 53 raptors, 26 Japanese monkeys, 21 Japanese raccoon dogs, 20 masked palm civets, and three Japanese red foxes between 2002 and 2010 were investigated for the presence of antibodies to F. tularensis by competitive enzyme-linked immunosorbent assay (cELISA) and the commonly used microagglutination (MA) test. Seropositive cELISA and MA results were obtained in 23 and 18 Japanese black bears, three and two Japanese raccoon dogs, and two and one small rodents, respectively. All MA-positive samples (n=21) were also positive by cELISA. Six of seven samples that were only positive by cELISA were confirmed to be antibody-positive by western blot analysis. These findings suggest that cELISA is a highly sensitive and useful test for serosurveillance of tularemia among various species of wild animals. Because this is the first study to detect F. tularensis-seropositive Japanese raccoon dogs, these could join Japanese black bears as sentinel animals for tularemia in the wild in Japan. Further continuous serosurveillance for F. tularensis in various species of wild animals using appropriate methods such as cELISA is important to assess the risks of human exposure and to improve our understanding of the ecology of F. tularensis in the wild.

  18. Generation of a Convalescent Model of Virulent Francisella tularensis Infection for Assessment of Host Requirements for Survival of Tularemia

    PubMed Central

    Crane, Deborah D.; Scott, Dana P.; Bosio, Catharine M.

    2012-01-01

    Francisella tularensis is a facultative intracellular bacterium and the causative agent of tularemia. Development of novel vaccines and therapeutics for tularemia has been hampered by the lack of understanding of which immune components are required to survive infection. Defining these requirements for protection against virulent F. tularensis, such as strain SchuS4, has been difficult since experimentally infected animals typically die within 5 days after exposure to as few as 10 bacteria. Such a short mean time to death typically precludes development, and therefore assessment, of immune responses directed against virulent F. tularensis. To enable identification of the components of the immune system that are required for survival of virulent F. tularensis, we developed a convalescent model of tularemia in C57Bl/6 mice using low dose antibiotic therapy in which the host immune response is ultimately responsible for clearance of the bacterium. Using this model we demonstrate αβTCR+ cells, γδTCR+ cells, and B cells are necessary to survive primary SchuS4 infection. Analysis of mice deficient in specific soluble mediators shows that IL-12p40 and IL-12p35 are essential for survival of SchuS4 infection. We also show that IFN-γ is required for survival of SchuS4 infection since mice lacking IFN-γR succumb to disease during the course of antibiotic therapy. Finally, we found that both CD4+ and CD8+ cells are the primary producers of IFN-γand that γδTCR+ cells and NK cells make a minimal contribution toward production of this cytokine throughout infection. Together these data provide a novel model that identifies key cells and cytokines required for survival or exacerbation of infection with virulent F. tularensis and provides evidence that this model will be a useful tool for better understanding the dynamics of tularemia infection. PMID:22428026

  19. Cell-mediated and humoral immune responses induced by scarification vaccination of human volunteers with a new lot of the live vaccine strain of Francisella tularensis.

    PubMed

    Waag, D M; Galloway, A; Sandstrom, G; Bolt, C R; England, M J; Nelson, G O; Williams, J C

    1992-09-01

    Tularemia is a disease caused by the facultative intracellular bacterium Francisella tularensis. We evaluated a new lot of live F. tularensis vaccine for its immunogenicity in human volunteers. Scarification vaccination induced humoral and cell-mediated immune responses. Indications of a positive immune response after vaccination included an increase in specific antibody levels, which were measured by enzyme-linked immunosorbent and immunoblot assays, and the ability of peripheral blood lymphocytes to respond to whole F. tularensis bacteria as recall antigens. Vaccination caused a significant rise (P less than 0.05) in immunoglobulin A (IgA), IgG, and IgM titers. Lymphocyte stimulation indices were significantly increased (P less than 0.01) in vaccinees 14 days after vaccination. These data verify that this new lot of live F. tularensis vaccine is immunogenic.

  20. Cell-mediated and humoral immune responses induced by scarification vaccination of human volunteers with a new lot of the live vaccine strain of Francisella tularensis.

    PubMed Central

    Waag, D M; Galloway, A; Sandstrom, G; Bolt, C R; England, M J; Nelson, G O; Williams, J C

    1992-01-01

    Tularemia is a disease caused by the facultative intracellular bacterium Francisella tularensis. We evaluated a new lot of live F. tularensis vaccine for its immunogenicity in human volunteers. Scarification vaccination induced humoral and cell-mediated immune responses. Indications of a positive immune response after vaccination included an increase in specific antibody levels, which were measured by enzyme-linked immunosorbent and immunoblot assays, and the ability of peripheral blood lymphocytes to respond to whole F. tularensis bacteria as recall antigens. Vaccination caused a significant rise (P less than 0.05) in immunoglobulin A (IgA), IgG, and IgM titers. Lymphocyte stimulation indices were significantly increased (P less than 0.01) in vaccinees 14 days after vaccination. These data verify that this new lot of live F. tularensis vaccine is immunogenic. Images PMID:1400988

  1. Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis.

    PubMed

    Horzempa, Joseph; Carlson, Paul E; O'Dee, Dawn M; Shanks, Robert M Q; Nau, Gerard J

    2008-10-08

    After infecting a mammalian host, the facultative intracellular bacterium, Francisella tularensis, encounters an elevated environmental temperature. We hypothesized that this temperature change may regulate genes essential for infection. Microarray analysis of F. tularensis LVS shifted from 26 degrees C (environmental) to 37 degrees C (mammalian) showed approximately 11% of this bacterium's genes were differentially-regulated. Importantly, 40% of the protein-coding genes that were induced at 37 degrees C have been previously implicated in virulence or intracellular growth of Francisella in other studies, associating the bacterial response to this temperature shift with pathogenesis. Forty-four percent of the genes induced at 37 degrees C encode proteins of unknown function, suggesting novel Francisella virulence traits are regulated by mammalian temperature. To explore this possibility, we generated two mutants of loci induced at 37 degrees C [FTL_1581 and FTL_1664 (deoB)]. The FTL_1581 mutant was attenuated in a chicken embryo infection model, which was likely attributable to a defect in survival within macrophages. FTL_1581 encodes a novel hypothetical protein that we suggest naming temperature-induced, virulence-associated locus A, tivA. Interestingly, the deoB mutant showed diminished entry into mammalian cells compared to wild-type LVS, including primary human macrophages and dendritic cells, the macrophage-like RAW 264.7 line, and non-phagocytic HEK-293 cells. This is the first study identifying a Francisella gene that contributes to uptake into both phagocytic and non-phagocytic host cells. Our results provide new insight into mechanisms of Francisella virulence regulation and pathogenesis. F. tularensis LVS undergoes considerable gene expression changes in response to mammalian body temperature. This temperature shift is important for the regulation of genes that are critical for the pathogenesis of Francisella. Importantly, the compilation of temperature

  2. Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis

    PubMed Central

    Horzempa, Joseph; Carlson, Paul E; O'Dee, Dawn M; Shanks, Robert MQ; Nau, Gerard J

    2008-01-01

    Background After infecting a mammalian host, the facultative intracellular bacterium, Francisella tularensis, encounters an elevated environmental temperature. We hypothesized that this temperature change may regulate genes essential for infection. Results Microarray analysis of F. tularensis LVS shifted from 26°C (environmental) to 37°C (mammalian) showed ~11% of this bacterium's genes were differentially-regulated. Importantly, 40% of the protein-coding genes that were induced at 37°C have been previously implicated in virulence or intracellular growth of Francisella in other studies, associating the bacterial response to this temperature shift with pathogenesis. Forty-four percent of the genes induced at 37°C encode proteins of unknown function, suggesting novel Francisella virulence traits are regulated by mammalian temperature. To explore this possibility, we generated two mutants of loci induced at 37°C [FTL_1581 and FTL_1664 (deoB)]. The FTL_1581 mutant was attenuated in a chicken embryo infection model, which was likely attributable to a defect in survival within macrophages. FTL_1581 encodes a novel hypothetical protein that we suggest naming temperature-induced, virulence-associated locus A, tivA. Interestingly, the deoB mutant showed diminished entry into mammalian cells compared to wild-type LVS, including primary human macrophages and dendritic cells, the macrophage-like RAW 264.7 line, and non-phagocytic HEK-293 cells. This is the first study identifying a Francisella gene that contributes to uptake into both phagocytic and non-phagocytic host cells. Conclusion Our results provide new insight into mechanisms of Francisella virulence regulation and pathogenesis. F. tularensis LVS undergoes considerable gene expression changes in response to mammalian body temperature. This temperature shift is important for the regulation of genes that are critical for the pathogenesis of Francisella. Importantly, the compilation of temperature-regulated genes

  3. Chemical composition of essential oils of Anthemis secundiramea Biv. subsp. secundiramea (Asteraceae) collected wild in Sicily and their activity on micro-organisms affecting historical art craft.

    PubMed

    Casiglia, Simona; Bruno, Maurizio; Senatore, Felice; Rosselli, Sergio

    2016-04-04

    In the present study, the chemical composition of the essential oil from the aerial parts of Anthemis secundiramea Biv. subsp. secundiramea L. collected in Sicily was evaluated by GC and gas chromatography-mass spectrometry. The main components of A. secundiramea were (Z)-lyratyl acetate (14.6%), (Z)-chrysanthenyl acetate (9.9%), (Z)-chrysanthenol (8.7%) and (E)-chrysanthenyl acetate (7.7%). The comparing with other studied oils of genus Anthemis belonging to the same clade is discussed. Antibacterial and antifungal activities against some micro-organisms infesting historical art craft, were also determined.

  4. FmvB: A Francisella tularensis Magnesium-Responsive Outer Membrane Protein that Plays a Role in Virulence

    PubMed Central

    Wu, Xiaojun; Ren, Guoping; Gunning, William T.; Weaver, David A.; Kalinoski, Andrea L.; Khuder, Sadik A.; Huntley, Jason F.

    2016-01-01

    Francisella tularensis is the causative agent of the lethal disease tularemia. Despite decades of research, little is understood about why F. tularensis is so virulent. Bacterial outer membrane proteins (OMPs) are involved in various virulence processes, including protein secretion, host cell attachment, and intracellular survival. Many pathogenic bacteria require metals for intracellular survival and OMPs often play important roles in metal uptake. Previous studies identified three F. tularensis OMPs that play roles in iron acquisition. In this study, we examined two previously uncharacterized proteins, FTT0267 (named fmvA, for Francisella metal and virulence) and FTT0602c (fmvB), which are homologs of the previously studied F. tularensis iron acquisition genes and are predicted OMPs. To study the potential roles of FmvA and FmvB in metal acquisition and virulence, we first examined fmvA and fmvB expression following pulmonary infection of mice, finding that fmvB was upregulated up to 5-fold during F. tularensis infection of mice. Despite sequence homology to previously-characterized iron-acquisition genes, FmvA and FmvB do not appear to be involved iron uptake, as neither fmvA nor fmvB were upregulated in iron-limiting media and neither ΔfmvA nor ΔfmvB exhibited growth defects in iron limitation. However, when other metals were examined in this study, magnesium-limitation significantly induced fmvB expression, ΔfmvB was found to express significantly higher levels of lipopolysaccharide (LPS) in magnesium-limiting medium, and increased numbers of surface protrusions were observed on ΔfmvB in magnesium-limiting medium, compared to wild-type F. tularensis grown in magnesium-limiting medium. RNA sequencing analysis of ΔfmvB revealed the potential mechanism for increased LPS expression, as LPS synthesis genes kdtA and wbtA were significantly upregulated in ΔfmvB, compared with wild-type F. tularensis. To provide further evidence for the potential role of FmvB in

  5. Seroprevalence for Coxiella burnetii, Francisella tularensis, Brucella abortus and Brucella melitensis in Austrian adults: a cross-sectional survey among military personnel and civilians.

    PubMed

    Tobudic, Selma; Nedomansky, Klara; Poeppl, Wolfgang; Müller, Maria; Faas, Angelus; Mooseder, Gerhard; Allerberger, Franz; Stanek, Gerold; Burgmann, Heinz

    2014-04-01

    The prevalence of Coxiella burnetii, Francisella tularensis, Brucella abortus, and Brucella melitensis infections in Austria and the exposure risk of military personnel were assessed in an exploratory nationwide cross-sectional seroprevalence survey in 526 healthy adult individuals, 222 of which were soldiers and 304 were civilians. Screening for IgA/IgG antibodies to C. burnetii (Phase I) and IgG/IgM antibodies to C. burnetii (Phase II), and to F. tularensis was done with commercial enzyme-linked immunosorbent assays. To detect antibodies against B. abortus and B. melitensis, an in-house complement fixation test was used. Overall, 11 individuals (2.0%) showed antibodies to C. burnetii, 3 individuals (0.5%) were seropositive for F. tularensis, and one (0.3%) individual was borderline positive. All individuals positive or borderline for F. tularensis tested negative for antibodies against C. burnetii. All individuals tested negative for antibodies against B. melitensis/B. abortus. There were no significant differences between the seroprevalence of C. burnetii and F. tularensis among military personnel and civilians. Our data demonstrate serological evidence of a low rate of exposure to C. burnetii and F. tularensis among the Austrian adult population and military personnel.

  6. EmrA1 Membrane Fusion Protein of Francisella tularensis LVS is required for Resistance to Oxidative Stress, Intramacrophage Survival and Virulence in Mice

    PubMed Central

    Ma, Zhuo; Banik, Sukalyani; Rane, Harshita; Mora, Vanessa T.; Rabadi, Seham M.; Doyle, Christopher R.; Thanassi, David G.; Bakshi, Chandra Shekhar; Malik, Meenakshi

    2014-01-01

    Francisella tularensis is a Category A Biodefense agent that causes a fatal human disease known as tularemia. The pathogenicity of F. tularensis depends on its ability to persist inside host immune cells primarily by resisting an attack from host-generated reactive oxygen and nitrogen species (ROS/RNS). Based on the ability of F. tularensis to resist high ROS/RNS levels, we have hypothesized that additional unknown factors act in conjunction with known antioxidant defenses to render ROS resistance. By screening a transposon insertion library of F. tularensis LVS in the presence of hydrogen peroxide, we have identified an oxidant sensitive mutant in putative EmrA1 (FTL_0687) secretion protein. The results demonstrate that the emrA1 mutant is highly sensitive to oxidants and several antimicrobial agents, and exhibits diminished intramacrophage growth that can be restored to wild type F. tularensis LVS levels either by transcomplementation, inhibition of ROS generation, or infection in NADPH oxidase deficient (gp91Phox−/−) macrophages. The emrA1 mutant is attenuated for virulence, which is restored by infection in gp91Phox−/− mice. Further, EmrA1 contributes to oxidative stress resistance by affecting secretion of Francisella antioxidant enzymes SodB and KatG. This study exposes unique links between transporter activity and the antioxidant defense mechanisms of F. tularensis. PMID:24397487

  7. The hominin fossil record: taxa, grades and clades.

    PubMed

    Wood, Bernard; Lonergan, Nicholas

    2008-04-01

    This paper begins by reviewing the fossil evidence for human evolution. It presents summaries of each of the taxa recognized in a relatively speciose hominin taxonomy. These taxa are grouped in grades, namely possible and probable hominins, archaic hominins, megadont archaic hominins, transitional hominins, pre-modern Homo and anatomically modern Homo. The second part of this contribution considers some of the controversies that surround hominin taxonomy and systematics. The first is the vexed question of how you tell an early hominin from an early panin, or from taxa belonging to an extinct clade closely related to the Pan-Homo clade. Secondly, we consider how many species should be recognized within the hominin fossil record, and review the philosophies and methods used to identify taxa within the hominin fossil record. Thirdly, we examine how relationships within the hominin clade are investigated, including descriptions of the methods used to break down an integrated structure into tractable analytical units, and then how cladograms are generated and compared. We then review the internal structure of the hominin clade, including the problem of how many subclades should be recognized within the hominin clade, and we examine the reliability of hominin cladistic hypotheses. The last part of the paper reviews the concepts of a genus, including the criteria that should be used for recognizing genera within the hominin clade.

  8. The hominin fossil record: taxa, grades and clades

    PubMed Central

    Wood, Bernard; Lonergan, Nicholas

    2008-01-01

    This paper begins by reviewing the fossil evidence for human evolution. It presents summaries of each of the taxa recognized in a relatively speciose hominin taxonomy. These taxa are grouped in grades, namely possible and probable hominins, archaic hominins, megadont archaic hominins, transitional hominins, pre-modern Homo and anatomically modern Homo. The second part of this contribution considers some of the controversies that surround hominin taxonomy and systematics. The first is the vexed question of how you tell an early hominin from an early panin, or from taxa belonging to an extinct clade closely related to the Pan-Homo clade. Secondly, we consider how many species should be recognized within the hominin fossil record, and review the philosophies and methods used to identify taxa within the hominin fossil record. Thirdly, we examine how relationships within the hominin clade are investigated, including descriptions of the methods used to break down an integrated structure into tractable analytical units, and then how cladograms are generated and compared. We then review the internal structure of the hominin clade, including the problem of how many subclades should be recognized within the hominin clade, and we examine the reliability of hominin cladistic hypotheses. The last part of the paper reviews the concepts of a genus, including the criteria that should be used for recognizing genera within the hominin clade. PMID:18380861

  9. Characterization of Prochlorococcus clades from iron-depleted oceanic regions

    PubMed Central

    Rusch, Douglas B.; Martiny, Adam C.; Dupont, Christopher L.; Halpern, Aaron L.; Venter, J. Craig

    2010-01-01

    Prochlorococcus describes a diverse and abundant genus of marine photosynthetic microbes. It is primarily found in oligotrophic waters across the globe and plays a crucial role in energy and nutrient cycling in the ocean ecosystem. The abundance, global distribution, and availability of isolates make Prochlorococcus a model system for understanding marine microbial diversity and biogeochemical cycling. Analysis of 73 metagenomic samples from the Global Ocean Sampling expedition acquired in the Atlantic, Pacific, and Indian Oceans revealed the presence of two uncharacterized Prochlorococcus clades. A phylogenetic analysis using six different genetic markers places the clades close to known lineages adapted to high-light environments. The two uncharacterized clades consistently cooccur and dominate the surface waters of high-temperature, macronutrient-replete, and low-iron regions of the Eastern Equatorial Pacific upwelling and the tropical Indian Ocean. They are genetically distinct from each other and other high-light Prochlorococcus isolates and likely define a previously unrecognized ecotype. Our detailed genomic analysis indicates that these clades comprise organisms that are adapted to iron-depleted environments by reducing their iron quota through the loss of several iron-containing proteins that likely function as electron sinks in the photosynthetic pathway in other Prochlorococcus clades from high-light environments. The presence and inferred physiology of these clades may explain why Prochlorococcus populations from iron-depleted regions do not respond to iron fertilization experiments and further expand our understanding of how phytoplankton adapt to variations in nutrient availability in the ocean. PMID:20733077

  10. Hymenochaetales: a molecular phylogeny for the hymenochaetoid clade.

    PubMed

    Larsson, Karl-Henrik; Parmasto, Erast; Fischer, Michael; Langer, Ewald; Nakasone, Karen K; Redhead, Scott A

    2006-01-01

    The hymenochaetoid clade is dominated by wood-decaying species previously classified in the artificial families Corticiaceae, Polyporaceae and Stereaceae. The majority of these species cause a white rot. The polypore Bridgeoporus and several corticicoid species with inconspicuous basidiomata live in association with brown-rotted wood, but their nutritional strategy is not known. Mycorrhizal habit is reported for Coltricia perennis but needs confirmttion. A surprising element in the hymenochaetoid clade is a group of small white to brightly pigmented agarics earlier classified in Omphalina. They form a subclade together with some similarly colored stipitate stereoid and corticioid species. Several are associated with living mosses or one-celled green algae. Hyphoderma pratermissum and some related corticioid species have specialized organs for trapping and killing nematodes as a source of nitrogen. There are no unequivocal morphological synapomorphies known for the hymenochaetoid clade. However almost all species examined ultrastructurally have dolipore septa with continuous parenthesomes while perforate parenthesomes is the normal condition for other homobasidiomycete clades. The agaricoid Hymenochaetales have not been examined. Within Hymenochaetales the Hymenochaetaceae forms a distinct clade but unfortunately all morphological characters supporting Hymenochaetaceae also are found in species outside the clade. Other subclades recovered by the molecular phylogenetic analyses are less uniform, and the overall resolution within the nuclear LSU tree presented here is still unsatisfactory.

  11. Characterization of Prochlorococcus clades from iron-depleted oceanic regions.

    PubMed

    Rusch, Douglas B; Martiny, Adam C; Dupont, Christopher L; Halpern, Aaron L; Venter, J Craig

    2010-09-14

    Prochlorococcus describes a diverse and abundant genus of marine photosynthetic microbes. It is primarily found in oligotrophic waters across the globe and plays a crucial role in energy and nutrient cycling in the ocean ecosystem. The abundance, global distribution, and availability of isolates make Prochlorococcus a model system for understanding marine microbial diversity and biogeochemical cycling. Analysis of 73 metagenomic samples from the Global Ocean Sampling expedition acquired in the Atlantic, Pacific, and Indian Oceans revealed the presence of two uncharacterized Prochlorococcus clades. A phylogenetic analysis using six different genetic markers places the clades close to known lineages adapted to high-light environments. The two uncharacterized clades consistently cooccur and dominate the surface waters of high-temperature, macronutrient-replete, and low-iron regions of the Eastern Equatorial Pacific upwelling and the tropical Indian Ocean. They are genetically distinct from each other and other high-light Prochlorococcus isolates and likely define a previously unrecognized ecotype. Our detailed genomic analysis indicates that these clades comprise organisms that are adapted to iron-depleted environments by reducing their iron quota through the loss of several iron-containing proteins that likely function as electron sinks in the photosynthetic pathway in other Prochlorococcus clades from high-light environments. The presence and inferred physiology of these clades may explain why Prochlorococcus populations from iron-depleted regions do not respond to iron fertilization experiments and further expand our understanding of how phytoplankton adapt to variations in nutrient availability in the ocean.

  12. Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease.

    PubMed Central

    Hollis, D G; Weaver, R E; Steigerwalt, A G; Wenger, J D; Moss, C W; Brenner, D J

    1989-01-01

    Over a 12-year period, 16 human strains of a gram-negative, catalase-positive, halophilic, aerobic, nonmotile, small coccoid bacterium were received for identification. On the bases of biochemical characteristics and cellular fatty acid profiles, 14 of these strains were similar to the "Philomiragia" bacterium (Yersinia philomiragia, species incertae sedis). Additional characteristics were growth on Thayer-Martin agar but no growth or sparse, delayed growth on MacConkey agar; oxidase positive; acid production, often weak and delayed, from D-glucose, sucrose, and maltose; urease negative; no reduction of nitrates; and H2S produced but often delayed in triple sugar iron agar. Both the human isolates and the "Philomiragia" bacterium contained C10:0, C14:0, C16:0, C18:1 omega 9c, C18:0, 3-OH C18:0, C22:0, and C24:1 as major cellular fatty acids and ubiquinone eight (Q8) as the major isoprenoid quinone. These cellular acids in these relative amounts have been found previously only in Francisella tularensis and Francisella novicida, suggesting a relationship between the "Philomiragia" bacterium and Francisella species. Of the 14 human "Philomiragia"-like isolates, 9 were from blood, 3 were from lung biopsies or pleural fluid, and one each was from peritoneal fluid and cerebrospinal fluid. DNA relatedness studies (hydroxyapatite method, 50 and 65 degrees C) showed that these 14 strains were a single group that was the same species as the "Philomiragia" bacterium. Two other human strains were oxidase negative and H2S negative. They formed a single DNA relatedness group that was indistinguishable from the type strains of both F. tularensis and F. novicida. DNA relatedness of "Philomiragia" bacterium type and other strains to strains of F. novicida and F. tularensis, including the type strains, was 35 to 46%. One of the two F. novicida- and F. tularensis-like strains was isolated from blood, and the other was isolated from a cervical lymph node. On the basis of these

  13. Electrochemiluminescence (ECL) immunosensor for detection of Francisella tularensis on screen-printed gold electrode array.

    PubMed

    Spehar-Délèze, Anna-Maria; Julich, Sandra; Gransee, Rainer; Tomaso, Herbert; Dulay, Samuel B; O'Sullivan, Ciara K

    2016-10-01

    An electrochemiluminescence (ECL) immunosensor for the rapid detection of the Francisella tularensis pathogen using whole antibodies or antibody fragments as capture biomolecule is described. A sandwich immunoassay was used with either lipopolysaccharide (LPS) or the whole inactivated bacterial cell (LVS) as a target, while Ru(bpy)3 (2+)-encapsulated silicate nanoparticles were linked to the secondary antibody and used as ECL labels. The assay was performed in a fluidic chip housed in a custom-built black box incorporating electronics, optics and fluidics. The obtained limit of detection for LPS was 0.4 ng/mL, while for the LVS it was 70 and 45 bacteria/mL when the capturing molecule was the whole antibody and the antibody F(ab) fragment, respectively.

  14. Complete genome sequences of Campylobacter hyointestinalis subsp. hyointestinalis strain LMG9260 and Campylobacter hyointestinalis subsp. lawsonii strain LMG15993

    USDA-ARS?s Scientific Manuscript database

    Campylobacter hyointestinalis is isolated primarily from ruminants and swine, but is also occasionally isolated from humans. C. hyointestinalis is currently divided into two subspecies: subsps. hyointestinalis and lawsonii. This study describes the first closed whole-genome sequences of the subsp. h...

  15. Detection of Francisella tularensis within infected mouse tissues by using a hand-held PCR thermocycler.

    PubMed

    Emanuel, Peter A; Bell, Ryan; Dang, Jessica L; McClanahan, Rebecca; David, John C; Burgess, Robert J; Thompson, Joseph; Collins, Lisa; Hadfield, Ted

    2003-02-01

    The diagnosis of human cases of tularemia often relies upon the demonstration of an antibody response to Francisella tularensis or the direct culturing of the bacteria from the patient. Antibody response is not detectable until 2 weeks or more after infection, and culturing requires special media and suspicion of tularemia. In addition, handling live Francisella poses a risk to laboratory personnel due to the highly infectious nature of this pathogen. In an effort to develop a rapid diagnostic assay for tularemia, we investigated the use of TaqMan 5' hydrolysis fluorogenic PCR to detect the organism in tissues of infected mice. Mice were infected to produce respiratory tularemia. The fopA and tul4 genes of F. tularensis were amplified from infected spleen, lung, liver, and kidney tissues sampled over a 5-day period. The samples were analyzed using the laboratory-based Applied Biosystems International 7900 and the Smiths Detection-Edgewood BioSeeq, a hand-held portable fluorescence thermocycler designed for use in the field. A comparison of culturing and PCR for detection of bacteria in infected tissues shows that culturing was more sensitive than PCR. However, the results for culture take 72 h, whereas PCR results were available within 4 h. PCR was able to detect infection in all the tissues tested. Lung tissue showed the earliest response at 2 days when tested with the ABI 7900 and in 3 days when tested with the BioSeeq. The results were in agreement between the ABI 7900 and the BioSeeq when presented with the same sample. Template preparation may account for the loss of sensitivity compared to culturing techniques. The hand-held BioSeeq thermocycler shows promise as an expedient means of forward diagnosis of infection in the field.

  16. Biochemical and structural characterization of polyphosphate kinase 2 from the intracellular pathogen Francisella tularensis

    PubMed Central

    Batten, Laura E.; Parnell, Alice E.; Wells, Neil J.; Murch, Amber L.; Oyston, Petra C. F.; Roach, Peter L.

    2015-01-01

    The metabolism of polyphosphate is important for the virulence of a wide range of pathogenic bacteria and the enzymes of polyphosphate metabolism have been proposed as an anti-bacterial target. In the intracellular pathogen Francisella tularensis, the product of the gene FTT1564 has been identified as a polyphosphate kinase from the polyphosphate kinase 2 (PPK2) family. The isogenic deletion mutant was defective for intracellular growth in macrophages and was attenuated in mice, indicating an important role for polyphosphate in the virulence of Francisella. Herein, we report the biochemical and structural characterization of F. tularensis polyphosphate kinase (FtPPK2) with a view to characterizing the enzyme as a novel target for inhibitors. Using an HPLC-based activity assay, the substrate specificity of FtPPK2 was found to include purine but not pyrimidine nts. The activity was also measured using 31P-NMR. FtPPK2 has been crystallized and the structure determined to 2.23 Å (1 Å=0.1 nm) resolution. The structure consists of a six-stranded parallel β-sheet surrounded by 12 α-helices, with a high degree of similarity to other members of the PPK2 family and the thymidylate kinase superfamily. Residues proposed to be important for substrate binding and catalysis have been identified in the structure, including a lid-loop and the conserved Walker A and B motifs. The ΔFTT1564 strain showed significantly increased sensitivity to a range of antibiotics in a manner independent of the mode of action of the antibiotic. This combination of biochemical, structural and microbiological data provide a sound foundation for future studies targeting the development of PPK2 small molecule inhibitors. PMID:26582818

  17. Growth conditions and environmental factors impact aerosolization but not virulence of Francisella tularensis infection in mice

    PubMed Central

    Faith, Seth A.; Smith, Le'Kneitah P.; Swatland, Angela S.; Reed, Douglas S.

    2012-01-01

    In refining methodology to develop a mouse model for inhalation of Francisella tularensis, it was noted that both relative humidity and growth media impacted the aerosol concentration of the live vaccine strain (LVS) of F. tularensis. A relative humidity of less than 55% had a negative impact on the spray factor, the ratio between the concentration of LVS in the aerosol and the nebulizer. The spray factor was significantly higher for LVS grown in brain heart infusion (BHI) broth than LVS grown in Mueller–Hinton broth (MHb) or Chamberlain's chemically defined medium (CCDM). The variability between aerosol exposures was also considerably less with BHI. LVS grown in BHI survived desiccation far longer than MHb-grown or CCDM-grown LVS (~70% at 20 min for BHI compared to <50% for MHb and CCDM). Removal of the capsule by hypertonic treatment impacted the spray factor for CCDM-grown LVS or MHb-grown LVS but not BHI-grown LVS, suggesting the choice of culture media altered the adherence of the capsule to the cell membrane. The choice of growth media did not impact the LD50 of LVS but the LD99 of BHI-grown LVS was 1 log lower than that for MHb-grown LVS or CCDM-grown LVS. Splenomegaly was prominent in mice that succumbed to MHb- and BHI-grown LVS but not CCDM-grown LVS. Environmental factors and growth conditions should be evaluated when developing new animal models for aerosol infection, particularly for vegetative bacterial pathogens. PMID:23087911

  18. Large Scale Structural Rearrangement of a Serine Hydrolase from Francisella tularensis Facilitates Catalysis*

    PubMed Central

    Filippova, Ekaterina V.; Weston, Leigh A.; Kuhn, Misty L.; Geissler, Brett; Gehring, Alexandra M.; Armoush, Nicola; Adkins, Chinessa T.; Minasov, George; Dubrovska, Ievgeniia; Shuvalova, Ludmilla; Winsor, James R.; Lavis, Luke D.; Satchell, Karla J. F.; Becker, Daniel P.; Anderson, Wayne F.; Johnson, R. Jeremy

    2013-01-01

    Tularemia is a deadly, febrile disease caused by infection by the Gram-negative bacterium, Francisella tularensis. Members of the ubiquitous serine hydrolase protein family are among current targets to treat diverse bacterial infections. Herein we present a structural and functional study of a novel bacterial carboxylesterase (FTT258) from F. tularensis, a homologue of human acyl protein thioesterase (hAPT1). The structure of FTT258 has been determined in multiple forms, and unexpectedly large conformational changes of a peripheral flexible loop occur in the presence of a mechanistic cyclobutanone ligand. The concomitant changes in this hydrophobic loop and the newly exposed hydrophobic substrate binding pocket suggest that the observed structural changes are essential to the biological function and catalytic activity of FTT258. Using diverse substrate libraries, site-directed mutagenesis, and liposome binding assays, we determined the importance of these structural changes to the catalytic activity and membrane binding activity of FTT258. Residues within the newly exposed hydrophobic binding pocket and within the peripheral flexible loop proved essential to the hydrolytic activity of FTT258, indicating that structural rearrangement is required for catalytic activity. Both FTT258 and hAPT1 also showed significant association with liposomes designed to mimic bacterial or human membranes, respectively, even though similar structural rearrangements for hAPT1 have not been reported. The necessity for acyl protein thioesterases to have maximal catalytic activity near the membrane surface suggests that these conformational changes in the protein may dually regulate catalytic activity and membrane association in bacterial and human homologues. PMID:23430251

  19. Update on Streptococcus equi subsp equi infections.

    PubMed

    Mallicote, Martha

    2015-04-01

    There are few diseases that ignite as much fervor among horse owners as strangles. Streptococcus equi subsp equi (strangles) infections frequently require the treating veterinarian to manage not only the clinical cases but also the biosecurity and provision of information to all involved parties. Although the disease is typically characterized by low mortality and high morbidity, restrictions of horse movement that result from appropriate quarantine procedures often frustrate the involved parties. The aims of this article are to provide clinically relevant information for diagnosis, treatment, and biosecurity management of strangles infection.

  20. Alkaloids from Narcissus angustifolius subsp. transcarpathicus (Amaryllidaceae).

    PubMed

    Labraña, Josep; Machocho, Alex King'ori; Kricsfalusy, Vladimir; Brun, Reto; Codina, Carles; Viladomat, Francesc; Bastida, Jaume

    2002-08-01

    Seven alkaloids have been isolated from fresh bulbs of Narcissus angustifolius subsp. transcarpathicus (Amaryllidaceae). Nangustine, reported here for the first time, is the first 5,11-methanomorphanthridine alkaloid with a C-3/C-4 substitution. The structure and stereochemistry of this new alkaloid, as well as those previously known, have been determined by physical and spectroscopic methods. Spectroscopic data of pancracine have been completed. The in vitro assay activity against the parasitic protozoa Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum was carried out with the compounds nangustine and pancracine.

  1. Proposal to rename Carnobacterium inhibens as Carnobacterium inhibens subsp. inhibens subsp. nov. and description of Carnobacterium inhibens subsp. gilichinskyi subsp. nov., a psychrotolerant bacterium isolated from Siberian permafrost.

    PubMed

    Nicholson, Wayne L; Zhalnina, Kateryna; de Oliveira, Rafael R; Triplett, Eric W

    2015-02-01

    A novel, psychrotolerant facultative anaerobe, strain WN1359(T), was isolated from a permafrost borehole sample collected at the right bank of the Kolyma River in Siberia, Russia. Gram-positive-staining, non-motile, rod-shaped cells were observed with sizes of 1-2 µm long and 0.4-0.5 µm wide. Growth occurred in the range of pH 5.8-9.0 with optimal growth at pH 7.8-8.6 (pH optimum 8.2). The novel isolate grew at temperatures from 0-37 °C and optimal growth occurred at 25 °C. The novel isolate does not require NaCl; growth was observed between 0 and 8.8 % (1.5 M) NaCl with optimal growth at 0.5 % (w/v) NaCl. The isolate was a catalase-negative, facultatively anaerobic chemo-organoheterotroph that used sugars but not several single amino acids or dipeptides as substrates. The major metabolic end-product was lactic acid in the ratio of 86 % l-lactate : 14 % d-lactate. Strain WN1359(T) was sensitive to ampicillin, chloramphenicol, fusidic acid, lincomycin, monocycline, rifampicin, rifamycin SV, spectinomycin, streptomycin, troleandomycin and vancomycin, and resistant to nalidixic acid and aztreonam. The fatty acid content was predominantly unsaturated (70.2 %), branched-chain unsaturated (11.7 %) and saturated (12.5 %). The DNA G+C content was 35.3 mol% by whole genome sequence analysis. 16S rRNA gene sequence analysis showed 98.7 % sequence identity between strain WN1359(T) and Carnobacterium inhibens. Genome relatedness was computed using both Genome-to-Genome Distance Analysis (GGDA) and Average Nucleotide Identity (ANI), which both strongly supported strain WN1359(T) belonging to the species C. inhibens. On the basis of these results, the permafrost isolate WN1359(T) represents a novel subspecies of C. inhibens, for which the name Carnobacterium inhibens subsp. gilichinskyi subsp. nov. is proposed. The type strain is WN1359(T) ( = ATCC BAA-2557(T) = DSM 27470(T)). The subspecies Carnobacterium inhibens subsp. inhibens subsp. nov. is created automatically. An

  2. Flavonoids from Aconitum napellus subsp. neomontanum.

    PubMed

    Fico, G; Braca, A; De Tommasi, N; Tomè, F; Morelli, I

    2001-06-01

    Three flavonol glycosides quercetin 7-O-(6-trans-caffeoyl)-beta-glucopyranosyl-(1-->3)-alpha-rhamnopyranoside-3-O-beta-glucopyranoside (1), kaempferol 7-O-(6-trans-caffeoyl)-beta-glucopyranosyl-(1-->3)-alpha-rhamnopyranoside-3-O-beta-glucopyranoside (2), and kaempferol 7-O-(6-trans-p-coumaroyl)-beta-glucopyranosyl-(1-->3)-alpha-rhamnopyranoside-3-O-beta-glucopyranoside (3), together with the known beta-3,4-dihydroxyphenethyl beta-glucopyranoside, were isolated from the flowers of Aconitum napellus subsp. neomontanum. Their structures were elucidated by spectroscopic methods, including 2D NMR spectral techniques.

  3. Re-evaluation of the taxonomy of the Mitis group of the genus Streptococcus based on whole genome phylogenetic analyses, and proposed reclassification of Streptococcus dentisani as Streptococcus oralis subsp. dentisani comb. nov., Streptococcus tigurinus as Streptococcus oralis subsp. tigurinus comb. nov., and Streptococcus oligofermentans as a later synonym of Streptococcus cristatus.

    PubMed

    Jensen, Anders; Scholz, Christian F P; Kilian, Mogens

    2016-11-01

    The Mitis group of the genus Streptococcus currently comprises 20 species with validly published names, including the pathogen S. pneumoniae. They have been the subject of much taxonomic confusion, due to phenotypic overlap and genetic heterogeneity, which has hampered a full appreciation of their clinical significance. The purpose of this study was to critically re-examine the taxonomy of the Mitis group using 195 publicly available genomes, including designated type strains for phylogenetic analyses based on core genomes, multilocus sequences and 16S rRNA gene sequences, combined with estimates of average nucleotide identity (ANI) and in silico and in vitro analyses of specific phenotypic characteristics. Our core genomic phylogenetic analyses revealed distinct clades that, to some extent, and from the clustering of type strains represent known species. However, many of the genomes have been incorrectly identified adding to the current confusion. Furthermore, our data show that 16S rRNA gene sequences and ANI are unsuitable for identifying and circumscribing new species of the Mitis group of the genus Streptococci. Based on the clustering patterns resulting from core genome phylogenetic analysis, we conclude that S. oligofermentans is a later synonym of S. cristatus. The recently described strains of the species Streptococcus dentisani includes one previously referred to as 'S. mitis biovar 2'. Together with S. oralis, S. dentisani and S. tigurinus form subclusters within a coherent phylogenetic clade. We propose that the species S. oralis consists of three subspecies: S. oralis subsp. oralis subsp. nov., S. oralis subsp. tigurinus comb. nov., and S. oralis subsp. dentisani comb. nov.

  4. Clades reach highest morphological disparity early in their evolution

    NASA Astrophysics Data System (ADS)

    Hughes, Martin; Gerber, Sylvain; Albion Wills, Matthew

    2013-08-01

    There are few putative macroevolutionary trends or rules that withstand scrutiny. Here, we test and verify the purported tendency for animal clades to reach their maximum morphological variety relatively early in their evolutionary histories (early high disparity). We present a meta-analysis of 98 metazoan clades radiating throughout the Phanerozoic. The disparity profiles of groups through time are summarized in terms of their center of gravity (CG), with values above and below 0.50 indicating top- and bottom-heaviness, respectively. Clades that terminate at one of the "big five" mass extinction events tend to have truncated trajectories, with a significantly top-heavy CG distribution overall. The remaining 63 clades show the opposite tendency, with a significantly bottom-heavy mean CG (relatively early high disparity). Resampling tests are used to identify groups with a CG significantly above or below 0.50; clades not terminating at a mass extinction are three times more likely to be significantly bottom-heavy than top-heavy. Overall, there is no clear temporal trend in disparity profile shapes from the Cambrian to the Recent, and early high disparity is the predominant pattern throughout the Phanerozoic. Our results do not allow us to distinguish between ecological and developmental explanations for this phenomenon. To the extent that ecology has a role, however, the paucity of bottom-heavy clades radiating in the immediate wake of mass extinctions suggests that early high disparity more probably results from the evolution of key apomorphies at the base of clades rather than from physical drivers or catastrophic ecospace clearing.

  5. Why should we investigate the morphological disparity of plant clades?

    PubMed Central

    Oyston, Jack W.; Hughes, Martin; Gerber, Sylvain; Wills, Matthew A.

    2016-01-01

    Background Disparity refers to the morphological variation in a sample of taxa, and is distinct from diversity or taxonomic richness. Diversity and disparity are fundamentally decoupled; many groups attain high levels of disparity early in their evolution, while diversity is still comparatively low. Diversity may subsequently increase even in the face of static or declining disparity by increasingly fine sub-division of morphological ‘design’ space (morphospace). Many animal clades reached high levels of disparity early in their evolution, but there have been few comparable studies of plant clades, despite their profound ecological and evolutionary importance. This study offers a prospective and some preliminary macroevolutionary analyses. Methods Classical morphometric methods are most suitable when there is reasonable conservation of form, but lose traction where morphological differences become greater (e.g. in comparisons across higher taxa). Discrete character matrices offer one means to compare a greater diversity of forms. This study explores morphospaces derived from eight discrete data sets for major plant clades, and discusses their macroevolutionary implications. Key Results Most of the plant clades in this study show initial, high levels of disparity that approach or attain the maximum levels reached subsequently. These plant clades are characterized by an initial phase of evolution during which most regions of their empirical morphospaces are colonized. Angiosperms, palms, pines and ferns show remarkably little variation in disparity through time. Conifers furnish the most marked exception, appearing at relatively low disparity in the latest Carboniferous, before expanding incrementally with the radiation of successive, tightly clustered constituent sub-clades. Conclusions Many cladistic data sets can be repurposed for investigating the morphological disparity of plant clades through time, and offer insights that are complementary to more focused

  6. Clades reach highest morphological disparity early in their evolution

    PubMed Central

    Hughes, Martin; Gerber, Sylvain; Wills, Matthew Albion

    2013-01-01

    There are few putative macroevolutionary trends or rules that withstand scrutiny. Here, we test and verify the purported tendency for animal clades to reach their maximum morphological variety relatively early in their evolutionary histories (early high disparity). We present a meta-analysis of 98 metazoan clades radiating throughout the Phanerozoic. The disparity profiles of groups through time are summarized in terms of their center of gravity (CG), with values above and below 0.50 indicating top- and bottom-heaviness, respectively. Clades that terminate at one of the “big five” mass extinction events tend to have truncated trajectories, with a significantly top-heavy CG distribution overall. The remaining 63 clades show the opposite tendency, with a significantly bottom-heavy mean CG (relatively early high disparity). Resampling tests are used to identify groups with a CG significantly above or below 0.50; clades not terminating at a mass extinction are three times more likely to be significantly bottom-heavy than top-heavy. Overall, there is no clear temporal trend in disparity profile shapes from the Cambrian to the Recent, and early high disparity is the predominant pattern throughout the Phanerozoic. Our results do not allow us to distinguish between ecological and developmental explanations for this phenomenon. To the extent that ecology has a role, however, the paucity of bottom-heavy clades radiating in the immediate wake of mass extinctions suggests that early high disparity more probably results from the evolution of key apomorphies at the base of clades rather than from physical drivers or catastrophic ecospace clearing. PMID:23884651

  7. About three cases of ulceroglandular tularemia, is this the re-emergence of Francisella tularensis in Belgium?

    PubMed

    Dupont, E; Van Eeckhoudt, S; Thissen, X; Ausselet, N; Fretin, D; Stefanescu, I; Glupczynski, Y; Delaere, B

    2015-10-01

    Tularemia is a zoonosis caused by Francisella tularensis that can be transmitted by several ways to human being and cause different clinical manifestations. We report three clinical cases of tularemia with ulceroglandular presentation in young males acquired during outdoor activities in Southern Belgium. Confirmation of the diagnosis was established by serology. Only three cases of tularemia have been reported in Belgium between 1950 and 2012 by the National Reference Laboratory CODA-CERVA (Ref Lab CODA-CERVA) but re-emergence of tularemia is established in several European countries and F. tularensis is also well known to be present in animal reservoirs and vectors in Belgium. The diagnosis of tularemia has to be considered in case of suggestive clinical presentation associated with epidemiological risk factors.

  8. Comparison of Five Commercial DNA Extraction Kits for the Recovery of Francisella Tularensis DNA from Spiked Soil Samples

    DTIC Science & Technology

    2007-01-01

    locate/ymcprComparison of five commercial DNA extraction kits for the recovery of Francisella tularensis DNA from spiked soil samples Chris A...The organism is known to persist in water or mud for long periods of time and Francisella-specific DNA has been identified from water and soil . To...Therefore, methods must be established to efficiently extract Francisella-specific DNA from the soil and be able to eliminate potential PCR

  9. Live Vaccine Strain Francisella tularensis is Detectable at the Inoculation Site but Not in Blood after Vaccination Against Tularemia

    DTIC Science & Technology

    2006-08-10

    transmission have been observed. The vaccine is administered by scarification and forms a small lesion, mimicking a very mild case of ulcer- oglandular...plied to the skin surface with scarification , in a similar manner to the vaccinia (smallpox) vaccine, with subsequent develop- ment of cutaneous lesions...No previous study has made use of multiple diagnostic platforms to detect the presence of LVS F. tularensis at the scarification site or in the

  10. Anti-Francisella tularensis DNA Aptamers Detect Tularemia Antigen from Different Subspecies by Aptamer-Linked Immobilized Sorbent Assay

    DTIC Science & Technology

    2006-01-01

    Bartonella henselae . Moreover, there is no binding observed either to pure chicken albumin or chicken lysozyme. Thus, it appears that this novel...isolated from a cat in Houston, TX, USA. Bartonella henselae (ATCC Number 49882) was purchased from American Type Culture Collection, Manassas, VA, USA...tularensis (SCHU 4) were used in the ELISA. Bartonella henselae , chicken albumin and chicken lysozyme were used as negative controls. Dot Blot Analysis

  11. Serosurveillance for Francisella tularensis Among Wild Animals in Japan Using a Newly Developed Competitive Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Sharma, Neekun; Hotta, Akitoyo; Yamamoto, Yoshie; Uda, Akihiko; Fujita, Osamu; Mizoguchi, Toshio; Shindo, Junji; Park, Chun-Ho; Kudo, Noboru; Hatai, Hitoshi; Oyamada, Toshifumi; Yamada, Akio; Morikawa, Shigeru

    2014-01-01

    Abstract Tularemia, a highly infectious zoonotic disease caused by Francisella tularensis, occurs sporadically in Japan. However, little is known about the prevalence of the disease in wild animals. A total of 632 samples obtained from 150 Japanese black bears, 142 Japanese hares, 120 small rodents, 97 rats, 53 raptors, 26 Japanese monkeys, 21 Japanese raccoon dogs, 20 masked palm civets, and three Japanese red foxes between 2002 and 2010 were investigated for the presence of antibodies to F. tularensis by competitive enzyme-linked immunosorbent assay (cELISA) and the commonly used microagglutination (MA) test. Seropositive cELISA and MA results were obtained in 23 and 18 Japanese black bears, three and two Japanese raccoon dogs, and two and one small rodents, respectively. All MA-positive samples (n=21) were also positive by cELISA. Six of seven samples that were only positive by cELISA were confirmed to be antibody-positive by western blot analysis. These findings suggest that cELISA is a highly sensitive and useful test for serosurveillance of tularemia among various species of wild animals. Because this is the first study to detect F. tularensis–seropositive Japanese raccoon dogs, these could join Japanese black bears as sentinel animals for tularemia in the wild in Japan. Further continuous serosurveillance for F. tularensis in various species of wild animals using appropriate methods such as cELISA is important to assess the risks of human exposure and to improve our understanding of the ecology of F. tularensis in the wild. PMID:24689989

  12. Adaptation of Francisella tularensis to the mammalian environment is governed by cues which can be mimicked in vitro.

    PubMed

    Hazlett, Karsten R O; Caldon, Seth D; McArthur, Debbie G; Cirillo, Kerry A; Kirimanjeswara, Girish S; Magguilli, Micheal L; Malik, Meenakshi; Shah, Aaloki; Broderick, Scott; Golovliov, Igor; Metzger, Dennis W; Rajan, Krishna; Sellati, Timothy J; Loegering, Daniel J

    2008-10-01

    The intracellular bacterium Francisella tularensis survives in mammals, arthropods, and freshwater amoeba. It was previously established that the conventional media used for in vitro propagation of this microbe do not yield bacteria that mimic those harvested from infected mammals; whether these in vitro-cultivated bacteria resemble arthropod- or amoeba-adapted Francisella is unknown. As a foundation for our goal of identifying F. tularensis outer membrane proteins which are expressed during mammalian infection, we first sought to identify in vitro cultivation conditions that induce the bacterium's infection-derived phenotype. We compared Francisella LVS grown in brain heart infusion broth (BHI; a standard microbiological medium rarely used in Francisella research) to that grown in Mueller-Hinton broth (MHB; the most widely used F. tularensis medium, used here as a negative control) and macrophages (a natural host cell, used here as a positive control). BHI- and macrophage-grown F. tularensis cells showed similar expression of MglA-dependent and MglA-independent proteins; expression of the MglA-dependent proteins was repressed by the supraphysiological levels of free amino acids present in MHB. We observed that during macrophage infection, protein expression by intracellular bacteria differed from that by extracellular bacteria; BHI-grown bacteria mirrored the latter, while MHB-grown bacteria resembled neither. Naïve macrophages responding to BHI- and macrophage-grown bacteria produced markedly lower levels of proinflammatory mediators than those in cells exposed to MHB-grown bacteria. In contrast to MHB-grown bacteria, BHI-grown bacteria showed minimal delay during intracellular replication. Cumulatively, our findings provide compelling evidence that growth in BHI yields bacteria which recapitulate the phenotype of Francisella organisms that have emerged from macrophages.

  13. Needle-Free Delivery of Acetalated Dextran-Encapsulated AR-12 Protects Mice from Francisella tularensis Lethal Challenge.

    PubMed

    Hoang, Ky V; Curry, Heather; Collier, Michael A; Borteh, Hassan; Bachelder, Eric M; Schlesinger, Larry S; Gunn, John S; Ainslie, Kristy M

    2016-04-01

    Francisella tularensiscauses tularemia and is a potential biothreat. Given the limited antibiotics for treating tularemia and the possible use of antibiotic-resistant strains as a biowarfare agent, new antibacterial agents are needed. AR-12 is an FDA-approved investigational new drug (IND) compound that induces autophagy and has shown host-directed, broad-spectrum activityin vitroagainstSalmonella entericaserovar Typhimurium andF. tularensis We have shown that AR-12 encapsulated within acetalated dextran (Ace-DEX) microparticles (AR-12/MPs) significantly reduces host cell cytotoxicity compared to that with free AR-12, while retaining the ability to controlS.Typhimurium within infected human macrophages. In the present study, the toxicity and efficacy of AR-12/MPs in controlling virulent type AF. tularensisSchuS4 infection were examinedin vitroandin vivo No significant toxicity of blank MPs or AR-12/MPs was observed in lung histology sections when the formulations were given intranasally to uninfected mice. In histology sections from the lungs of intranasally infected mice treated with the formulations, increased macrophage infiltration was observed for AR-12/MPs, with or without suboptimal gentamicin treatment, but not for blank MPs, soluble AR-12, or suboptimal gentamicin alone. AR-12/MPs dramatically reduced the burden ofF. tularensisin infected human macrophages, in a manner similar to that of free AR-12. However,in vivo, AR-12/MPs significantly enhanced the survival ofF. tularensisSchuS4-infected mice compared to that seen with free AR-12. In combination with suboptimal gentamicin treatment, AR-12/MPs further improved the survival ofF. tularensisSchuS4-infected mice. These studies provide support for Ace-DEX-encapsulated AR-12 as a promising new therapeutic agent for tularemia. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Genome sequencing identifies Listeria fleischmannii subsp. coloradonensis subsp. nov., isolated from a ranch.

    PubMed

    den Bakker, Henk C; Manuel, Clyde S; Fortes, Esther D; Wiedmann, Martin; Nightingale, Kendra K

    2013-09-01

    Twenty Listeria-like isolates were obtained from environmental samples collected on a cattle ranch in northern Colorado; all of these isolates were found to share an identical partial sigB sequence, suggesting close relatedness. The isolates were similar to members of the genus Listeria in that they were Gram-stain-positive, short rods, oxidase-negative and catalase-positive; the isolates were similar to Listeria fleischmannii because they were non-motile at 25 °C. 16S rRNA gene sequencing for representative isolates and whole genome sequencing for one isolate was performed. The genome of the type strain of Listeria fleischmannii (strain LU2006-1(T)) was also sequenced. The draft genomes were very similar in size and the average MUMmer nucleotide identity across 91% of the genomes was 95.16%. Genome sequence data were used to design primers for a six-gene multi-locus sequence analysis (MLSA) scheme. Phylogenies based on (i) the near-complete 16S rRNA gene, (ii) 31 core genes and (iii) six housekeeping genes illustrated the close relationship of these Listeria-like isolates to Listeria fleischmannii LU2006-1(T). Sufficient genetic divergence of the Listeria-like isolates from the type strain of Listeria fleischmannii and differing phenotypic characteristics warrant these isolates to be classified as members of a distinct infraspecific taxon, for which the name Listeria fleischmannii subsp. coloradonensis subsp. nov. is proposed. The type strain is TTU M1-001(T) ( =BAA-2414(T) =DSM 25391(T)). The isolates of Listeria fleischmannii subsp. coloradonensis subsp. nov. differ from the nominate subspecies by the inability to utilize melezitose, turanose and sucrose, and the ability to utilize inositol. The results also demonstrate the utility of whole genome sequencing to facilitate identification of novel taxa within a well-described genus. The genomes of both subspecies of Listeria fleischmannii contained putative enhancin genes; the Listeria fleischmannii subsp

  15. Lack of OxyR and KatG Results in Extreme Susceptibility of Francisella tularensis LVS to Oxidative Stress and Marked Attenuation In vivo

    PubMed Central

    Honn, Marie; Lindgren, Helena; Bharath, Gurram K.; Sjöstedt, Anders

    2017-01-01

    Francisella tularensis is an intracellular bacterium and as such is expected to encounter a continuous attack by reactive oxygen species (ROS) in its intracellular habitat and efficiently coping with oxidative stress is therefore essential for its survival. The oxidative stress response system of F. tularensis is complex and includes multiple antioxidant enzymes and pathways, including the transcriptional regulator OxyR and the H2O2-decomposing enzyme catalase, encoded by katG. The latter is regulated by OxyR. A deletion of either of these genes, however, does not severely compromise the virulence of F. tularensis and we hypothesized that if the bacterium would be deficient of both catalase and OxyR, then the oxidative defense and virulence of F. tularensis would become severely hampered. To test this hypothesis, we generated a double deletion mutant, ΔoxyR/ΔkatG, of F. tularensis LVS and compared its phenotype to the parental LVS strain and the corresponding single deletion mutants. In accordance with the hypothesis, ΔoxyR/ΔkatG was distinctly more susceptible than ΔoxyR and ΔkatG to H2O2, ONOO−, and O2-, moreover, it hardly grew in mouse-derived BMDM or in mice, whereas ΔkatG and ΔoxyR grew as well as F. tularensis LVS in BMDM and exhibited only slight attenuation in mice. Altogether, the results demonstrate the importance of catalase and OxyR for a robust oxidative stress defense system and that they act cooperatively. The lack of both functions render F. tularensis severely crippled to handle oxidative stress and also much attenuated for intracellular growth and virulence. PMID:28174696

  16. Antigen-specific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge

    PubMed Central

    Cole, Leah E.; Yang, Yang; Elkins, Karen L.; Fernandez, Ellen T.; Qureshi, Nilofer; Shlomchik, Mark J.; Herzenberg, Leonard A.; Herzenberg, Leonore A.; Vogel, Stefanie N.

    2009-01-01

    Francisella tularensis (Ft), a Gram-negative intracellular bacterium, is the etiologic agent of tularemia. Infection of mice with <10 Ft Live Vaccine Strain (Ft LVS) organisms i.p. causes a lethal infection that resembles human tularemia. Here, we show that immunization with as little as 0.1 ng Ft LVS lipopolysaccharide (Ft-LPS), but not Ft lipid A, generates a rapid antibody response that protects wild-type (WT) mice against lethal Ft LVS challenge. Protection is not induced in Ft-LPS-immunized B cell-deficient mice (μMT or JhD), male xid mice, or Ig transgenic mice that produce a single IgH (not reactive with Ft-LPS). Focusing on the cellular mechanisms that underlie this protective response, we show that Ft-LPS specifically stimulates proliferation of B-1a lymphocytes that bind fluorochrome-labeled Ft-LPS and the differentiation of these cells to plasma cells that secrete antibodies specific for Ft-LPS. This exclusively B-1a antibody response is equivalent in WT, T-deficient (TCRαβ−/−, TCRγδ−/−), and Toll-like receptor 4 (TLR4)-deficient (TLR4−/−) mice and thus is not dependent on T cells or typical inflammatory processes. Serum antibody levels peak ≈5 days after Ft-LPS immunization and persist at low levels for months. Thus, immunization with Ft-LPS activates a rare population of antigen-specific B-1a cells to produce a persistent T-independent antibody response that provides long-term protection against lethal Ft LVS infection. These data support the possibility of creating effective, minimally invasive vaccines that can provide effective protection against pathogen invasion. PMID:19251656

  17. Genetic engineering of Francisella tularensis LVS for use as a novel live vaccine platform against Pseudomonas aeruginosa infections.

    PubMed

    Robinson, Cory M; Kobe, Brianna N; Schmitt, Deanna M; Phair, Brian; Gilson, Tricia; Jung, Joo-Yong; Roberts, Lawton; Liao, Jialin; Camerlengo, Chelsea; Chang, Brandon; Davis, Mackenzie; Figurski, Leah; Sindeldecker, Devin; Horzempa, Joseph

    2015-01-01

    Francisella tularensis LVS (Live Vaccine Strain) is an attenuated bacterium that has been used as a live vaccine. Patients immunized with this organism show a very long-term memory response (over 30 years post vaccination) evidenced by the presence of indicators of robust cell-mediated immunity. Because F. tularensis LVS is such a potent vaccine, we hypothesized that this organism would be an effective vaccine platform. First, we sought to determine if we could genetically modify this strain to produce protective antigens of a heterologous pathogen. Currently, there is not a licensed vaccine against the important opportunistic bacterial pathogen, Pseudomonas aeruginosa. Because many P. aeruginosa strains are also drug resistant, the need for effective vaccines is magnified. Here, F. tularensis LVS was genetically modified to express surface proteins PilAPa, OprFPa, and FliCPa of P. aeruginosa. Immunization of mice with LVS expressing the recombinant FliCPa led to a significant production of antibodies specific for P. aeruginosa. However, mice that had been immunized with LVS expressing PilAPa or OprFPa did not produce high levels of antibodies specific for P. aerugionsa. Therefore, the recombinant LVS strain engineered to produce FliCPa may be able to provide immune protection against a P. aeruginosa challenge. However for future use of this vaccine platform, selection of the appropriate recombinant antigen is critical as not all recombinant antigens expressed in this strain were immunogenic.

  18. Francisella tularensis modulates a distinct subset of regulatory factors and sustains mitochondrial integrity to impair human neutrophil apoptosis

    PubMed Central

    McCracken, Jenna M.; Kinkead, Lauren C.; McCaffrey, Ramona L.; Allen, Lee-Ann H.

    2016-01-01

    Tularemia is a disease characterized by profound neutrophil accumulation and tissue destruction. The causative organism, Francisella tularensis, is a facultative intracellular bacterium that replicates in neutrophil cytosol, inhibits caspase activation, and profoundly prolongs cell lifespan. Herein we identify unique features of this infection and provide fundamental insight into the mechanisms of apoptosis inhibition. Mitochondria are critical regulators of neutrophil apoptosis. We demonstrate that F. tularensis significantly inhibits Bax translocation and Bid processing through 24–48 h of infection, and in this manner sustains mitochondrial integrity. Downstream of mitochondria, XIAP and PCNA inhibit caspase-9 and caspase-3 by direct binding. Notably, we find that PCNA disappeared rapidly and selectively from infected cells, thereby demonstrating that it is not essential for neutrophil survival, whereas upregulation of calpastatin correlated with diminished calpain activity and reduced XIAP degradation. In addition, R-roscovitine is a cyclin-dependent kinase inhibitor developed for treatment of cancer that also induces neutrophil apoptosis and can promote resolution of several infectious and inflammatory disorders. Herein we confirm the ability of R-roscovitine to induce neutrophil apoptosis, yet also demonstrate that its efficacy is significantly impaired by F. tularensis. Collectively, our findings advance understanding of neutrophil apoptosis and its capacity to be manipulated by pathogenic bacteria. PMID:26906922

  19. Prior Inoculation with Type B Strains of Francisella tularensis Provides Partial Protection against Virulent Type A Strains in Cottontail Rabbits

    PubMed Central

    Brown, Vienna R.; Adney, Danielle R.; Olea-Popelka, Francisco; Bowen, Richard A.

    2015-01-01

    Francisella tularensis is a highly virulent bacterium that is capable of causing severe disease (tularemia) in a wide range of species. This organism is characterized into two distinct subspecies: tularensis (type A) and holarctica (type B) which vary in several crucial ways, with some type A strains having been found to be considerably more virulent in humans and laboratory animals. Cottontail rabbits have been widely implicated as a reservoir species for this subspecies; however, experimental inoculation in our laboratory revealed type A organisms to be highly virulent, resulting in 100% mortality following challenge with 50–100 organisms. Inoculation of cottontail rabbits with the same number of organisms from type B strains of bacteria was found to be rarely lethal and to result in a robust humoral immune response. The objective of this study was to characterize the protection afforded by a prior challenge with type B strains against a later inoculation with a type A strain in North American cottontail rabbits (Sylvilagus spp). Previous infection with a type B strain of organism was found to lengthen survival time and in some cases prevent death following inoculation with a type A2 strain of F. tularensis. In contrast, inoculation of a type A1b strain was uniformly lethal in cottontail rabbits irrespective of a prior type B inoculation. These findings provide important insight about the role cottontail rabbits may play in environmental maintenance and transmission of this organism. PMID:26474413

  20. 3-substituted indole inhibitors against Francisella tularensis FabI identified by structure-based virtual screening.

    PubMed

    Hu, Xin; Compton, Jaimee R; Abdulhameed, Mohamed Diwan M; Marchand, Charles L; Robertson, Kelly L; Leary, Dagmar H; Jadhav, Ajit; Hershfield, Jeremy R; Wallqvist, Anders; Friedlander, Arthur M; Legler, Patricia M

    2013-07-11

    In this study, we describe novel inhibitors against Francisella tularensis SchuS4 FabI identified from structure-based in silico screening with integrated molecular dynamics simulations to account for induced fit of a flexible loop crucial for inhibitor binding. Two 3-substituted indoles, 54 and 57, preferentially bound the NAD(+) form of the enzyme and inhibited growth of F. tularensis SchuS4 at concentrations near that of their measured Ki. While 57 was species-specific, 54 showed a broader spectrum of growth inhibition against F. tularensis , Bacillus anthracis , and Staphylococcus aureus . Binding interaction analysis in conjunction with site-directed mutagenesis revealed key residues and elements that contribute to inhibitor binding and species specificity. Mutation of Arg-96, a poorly conserved residue opposite the loop, was unexpectedly found to enhance inhibitor binding in the R96G and R96M variants. This residue may affect the stability and closure of the flexible loop to enhance inhibitor (or substrate) binding.

  1. [ROLE OF VARIOUS ANTIGENIC PREPARATIONS OF FRANCISELLA TULARENSIS IN FORMATION OF ALLERGY REACTION IN HUMANS AND ANIMALS].

    PubMed

    Onoprienko, N N; Aronova, N V; Pavlovich, N V

    2016-01-01

    Study the role of LPS in induction of anti-tularemia immunity in humans and animals. Activity of various antigenic preparations of tularemia microbe, including highly purified from protein and S- and R-LPS, was studied using leukocytolysis reaction with blood of vaccinated humans and guinea pigs and skin allergy test (guinea pigs). Only the whole cells of Francisella tularensis, killed in protein non-denaturating conditions and conserving full S-LPS structure (tularin⁺) were shown to be inductors of delayed-type hypersensitivity reaction. Alterations in LPS structure (tularin⁻) results in a significant decrease, and denaturation of bacterial proteins (during boiling) results in a complete loss of immune stimulating properties of the preparations. Purified LPS preparations and O-polysaccharide fraction of S-LPS are not able to activate cell-mediated immunity. The presence of LPS with the full structure affects the ability of antigenic preparations of F. tularensis to cause allergic reactions, and thus, form cell-mediated antitularemia immunity. LPS of F. tularensis can not be excluded as an adjuvant and provides the most effective presentation of epitopes of protein molecules for interaction with receptors of T-lymphocytes.

  2. Monitoring biothreat agents (Francisella tularensis, Bacillus anthracis and Yersinia pestis) with a portable real-time PCR instrument.

    PubMed

    Mölsä, Markos; Hemmilä, Heidi; Katz, Anna; Niemimaa, Jukka; Forbes, Kristian M; Huitu, Otso; Stuart, Peter; Henttonen, Heikki; Nikkari, Simo

    2015-08-01

    In the event of suspected releases or natural outbreaks of contagious pathogens, rapid identification of the infectious agent is essential for appropriate medical intervention and disease containment. The purpose of this study was to compare the performance of a novel portable real-time PCR thermocycler, PikoReal™, to the standard real-time PCR thermocycler, Applied Biosystems® 7300 (ABI 7300), for the detection of three high-risk biothreat bacterial pathogens: Francisella tularensis, Bacillus anthracis and Yersinia pestis. In addition, a novel confirmatory real-time PCR assay for the detection of F. tularensis is presented and validated. The results show that sensitivity of the assays, based on a dilution series, for the three infectious agents ranged from 1 to 100 fg of target DNA with both instruments. No cross-reactivity was revealed in specificity testing. Duration of the assays with the PikoReal and ABI 7300 systems were 50 and 100 min, respectively. In field testing for F. tularensis, results were obtained with the PikoReal system in 95 min, as the pre-PCR preparation, including DNA extraction, required an additional 45 min. We conclude that the PikoReal system enables highly sensitive and rapid on-site detection of biothreat agents under field conditions, and may be a more efficient alternative to conventional diagnostic methods.

  3. Genetic engineering of Francisella tularensis LVS for use as a novel live vaccine platform against Pseudomonas aeruginosa infections

    PubMed Central

    Robinson, Cory M; Kobe, Brianna N; Schmitt, Deanna M; Phair, Brian; Gilson, Tricia; Jung, Joo-Yong; Roberts, Lawton; Liao, Jialin; Camerlengo, Chelsea; Chang, Brandon; Davis, Mackenzie; Figurski, Leah; Sindeldecker, Devin; Horzempa, Joseph

    2015-01-01

    Francisella tularensis LVS (Live Vaccine Strain) is an attenuated bacterium that has been used as a live vaccine. Patients immunized with this organism show a very long-term memory response (over 30 years post vaccination) evidenced by the presence of indicators of robust cell-mediated immunity. Because F. tularensis LVS is such a potent vaccine, we hypothesized that this organism would be an effective vaccine platform. First, we sought to determine if we could genetically modify this strain to produce protective antigens of a heterologous pathogen. Currently, there is not a licensed vaccine against the important opportunistic bacterial pathogen, Pseudomonas aeruginosa. Because many P. aeruginosa strains are also drug resistant, the need for effective vaccines is magnified. Here, F. tularensis LVS was genetically modified to express surface proteins PilAPa, OprFPa, and FliCPa of P. aeruginosa. Immunization of mice with LVS expressing the recombinant FliCPa led to a significant production of antibodies specific for P. aeruginosa. However, mice that had been immunized with LVS expressing PilAPa or OprFPa did not produce high levels of antibodies specific for P. aerugionsa. Therefore, the recombinant LVS strain engineered to produce FliCPa may be able to provide immune protection against a P. aeruginosa challenge. However for future use of this vaccine platform, selection of the appropriate recombinant antigen is critical as not all recombinant antigens expressed in this strain were immunogenic. PMID:25617059

  4. Primate phylogeny: molecular evidence for a pongid clade excluding humans and a prosimian clade containing tarsiers.

    PubMed

    Huang, Shi

    2012-08-01

    Unbiased readings of fossils are well known to contradict some of the popular molecular groupings among primates, particularly with regard to great apes and tarsiers. The molecular methodologies today are however flawed as they are based on a mistaken theoretical interpretation of the genetic equidistance phenomenon that originally started the field. An improved molecular method the 'slow clock' was here developed based on the Maximum Genetic Diversity hypothesis, a more complete account of the unified changes in genotypes and phenotypes. The method makes use of only slow evolving sequences and requires no uncertain assumptions or mathematical corrections and hence is able to give definitive results. The findings indicate that humans are genetically more distant to orangutans than African apes are and separated from the pongid clade ∼17.6 million years ago. Also, tarsiers are genetically closer to lorises than simian primates are. Finally, the fossil times for the radiation of mammals at the K/T boundary and for the Eutheria-Metatheria split in the Early Cretaceous were independently confirmed from molecular dating calibrated using the fossil split times of gorilla-orangutan, mouse-rat, and opossum-kangaroo. Therefore, the re-established primate phylogeny indicates a remarkable unity between molecules and fossils.

  5. Antioxidant activity of supercritical extract of Melissa officinalis subsp. officinalis and Melissa officinalis subsp. inodora.

    PubMed

    Marongiu, Bruno; Porcedda, Silvia; Piras, Alessandra; Rosa, Antonella; Deiana, Monica; Dessì, Maria Assunta

    2004-10-01

    The antioxidant activity of Melissa officinalis subsp. officinalis and of Melissa officinalis subsp. inodora extracts, obtained by using carbon dioxide under supercritical conditions was investigated. The samples were prepared in two steps. A preliminary extraction at 90 bar and 50 degrees C eliminated the essential oil, then a further extraction at 300 bar and 50 degrees C obtained the high molecular mass extract. These samples were tested for autoxidation and the iron or EDTA-mediated oxidation of linoleic acid at 37 degrees C in the absence of solvent, in in vitro systems. During linoleic acid autoxidation and its EDTA-mediated oxidation both M. officinalis and M. inodora extracts showed an antioxidant activity, and no significant differences in their efficacy were observed. None showed any prooxidant activity. Copyright 2004 John Wiley & Sons, Ltd.

  6. Data supporting phylogenetic reconstructions of the Neotropical clade Gymnotiformes

    PubMed Central

    Tagliacollo, Victor A.; Bernt, Maxwell J.; Craig, Jack M.; Oliveira, Claudio; Albert, James S.

    2016-01-01

    Data is presented in support of model-based total evidence (MBTE) phylogenetic reconstructions of the Neotropical clade of Gymnotiformes “Model-based total evidence phylogeny of Neotropical electric knifefishes (Teleostei, Gymnotiformes)” (Tagliacollo et al., 2016) [1]). The MBTE phylogenies were inferred using a comprehensive dataset comprised of six genes (5277 bp) and 223 morphological characters for an ingroup taxon sample of 120 of 218 valid species and 33 of the 34 extant genera. The data in this article include primer sequences for gene amplification and sequencing, voucher information and GenBank accession numbers, descriptions of morphological characters, morphological synapomorphies for the recognized clades of Gymnotiformes, a supermatrix comprised of concatenated molecular and morphological data, and computer scripts to replicate MBTE inferences. We also included here Maximum-likelihood and Bayesian topologies, which support two main gymnotiform clades: Gymnotidae and Sternopygoidei, the latter comprised of Rhamphichthyoidea (Rhamphichthyidae+Hypopomidae) and Sinusoidea (Sternopygidae+Apteronotidae). PMID:26955648

  7. A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai'i.

    PubMed

    Pochon, Xavier; Gates, Ruth D

    2010-07-01

    Dinoflagellates in the genus Symbiodinium are crucial components of coral reef ecosystems in their roles as endosymbionts of corals and other marine invertebrates. The genus Symbiodinium encompasses eight lineages (clades A-H), and multiple sub-clade types. Symbiodinium in clades A, B, C, and D are most commonly associated with metazoan hosts while clades C, D, F, G, and H with large soritid foraminifera. Recent studies have described a diversity of new Symbiodinium types within each clades, but no new clades have been reported since 2001. Here, we describe a new clade of Symbiodinium isolated from soritid foraminifera from Hawai'i. Published by Elsevier Inc.

  8. Expanding the World of Marine Bacterial and Archaeal Clades

    PubMed Central

    Yilmaz, Pelin; Yarza, Pablo; Rapp, Josephine Z.; Glöckner, Frank O.

    2016-01-01

    Determining which microbial taxa are out there, where they live, and what they are doing is a driving approach in marine microbial ecology. The importance of these questions is underlined by concerted, large-scale, and global ocean sampling initiatives, for example the International Census of Marine Microbes, Ocean Sampling Day, or Tara Oceans. Given decades of effort, we know that the large majority of marine Bacteria and Archaea belong to about a dozen phyla. In addition to the classically culturable Bacteria and Archaea, at least 50 “clades,” at different taxonomic depths, exist. These account for the majority of marine microbial diversity, but there is still an underexplored and less abundant portion remaining. We refer to these hitherto unrecognized clades as unknown, as their boundaries, names, and classifications are not available. In this work, we were able to characterize up to 92 of these unknown clades found within the bacterial and archaeal phylogenetic diversity currently reported for marine water column environments. We mined the SILVA 16S rRNA gene datasets for sequences originating from the marine water column. Instead of the usual subjective taxa delineation and nomenclature methods, we applied the candidate taxonomic unit (CTU) circumscription system, along with a standardized nomenclature to the sequences in newly constructed phylogenetic trees. With this new phylogenetic and taxonomic framework, we performed an analysis of ICoMM rRNA gene amplicon datasets to gain insights into the global distribution of the new marine clades, their ecology, biogeography, and interaction with oceanographic variables. Most of the new clades we identified were interspersed by known taxa with cultivated members, whose genome sequences are available. This result encouraged us to perform metabolic predictions for the novel marine clades using the PICRUSt approach. Our work also provides an update on the taxonomy of several phyla and widely known marine clades as

  9. Description of two new plasmids isolated from Francisella philomiragia strains and construction of shuttle vectors for the study of Francisella tularensis.

    PubMed

    Le Pihive, E; Blaha, D; Chenavas, S; Thibault, F; Vidal, D; Valade, E

    2009-11-01

    Francisella tularensis is the causative agent of tularemia, a zoonotic disease often transmitted to humans by infected animals. The lack of useful specific genetic tools has long hampered the study of F. tularensis subspecies. We identified and characterized two new plasmids, pF242 and pF243, isolated from Francisella philomiragia strains ATCC 25016 and ATCC 25017, respectively. Sequence analysis revealed that pF242 and pF243 are closely related to pC194 and pFNL10 plasmids, respectively. Two generations of pF242- and pF243-based shuttle vectors, harboring several antibiotic resistance markers, were developed. We used the first generation to compare transformation efficiencies in two virulent F. tularensis subspecies. We found that electroporation was more efficient than cryotransformation: almost all vectors tested were successfully introduced by electroporation into Francisella strains with a high level of efficiency. The second generation of shuttle vectors, containing a multiple cloning site and/or gfp gene downstream of Francisella groES promotor, was used for GFP production in F. tularensis. The development of new shuttle vectors offers new perspectives in the genetic manipulation of F. tularensis, helping to elucidate the mechanisms underlying its virulence.

  10. Use of a capture-based pathogen transcript enrichment strategy for RNA-Seq analysis of the Francisella tularensis LVS transcriptome during infection of murine macrophages.

    PubMed

    Bent, Zachary W; Brazel, David M; Tran-Gyamfi, Mary B; Hamblin, Rachelle Y; VanderNoot, Victoria A; Branda, Steven S

    2013-01-01

    Francisella tularensis is a zoonotic intracellular pathogen that is capable of causing potentially fatal human infections. Like all successful bacterial pathogens, F. tularensis rapidly responds to changes in its environment during infection of host cells, and upon encountering different microenvironments within those cells. This ability to appropriately respond to the challenges of infection requires rapid and global shifts in gene expression patterns. In this study, we use a novel pathogen transcript enrichment strategy and whole transcriptome sequencing (RNA-Seq) to perform a detailed characterization of the rapid and global shifts in F. tularensis LVS gene expression during infection of murine macrophages. We performed differential gene expression analysis on all bacterial genes at two key stages of infection: phagosomal escape, and cytosolic replication. By comparing the F. tularensis transcriptome at these two stages of infection to that of the bacteria grown in culture, we were able to identify sets of genes that are differentially expressed over the course of infection. This analysis revealed the temporally dynamic expression of a number of known and putative transcriptional regulators and virulence factors, providing insight into their role during infection. In addition, we identified several F. tularensis genes that are significantly up-regulated during infection but had not been previously identified as virulence factors. These unknown genes may make attractive therapeutic or vaccine targets.

  11. Fatal pneumonia due to Serratia proteamaculans subsp. quinovora.

    PubMed Central

    Bollet, C; Grimont, P; Gainnier, M; Geissler, A; Sainty, J M; De Micco, P

    1993-01-01

    Serratia proteamaculans subsp. quinovora was isolated from several samples (blood cultures, tracheal aspirates, pleural effusion) from a patient with pneumonia. This is the first clinical isolate and the first documented human infection caused by this organism. PMID:8432835

  12. Draft Genome Sequences of 11 Lactococcus lactis subsp. cremoris Strains

    PubMed Central

    Backus, Lennart; Boekhorst, Jos; Dijkstra, Annereinou; Beerthuyzen, Marke; Siezen, Roland J.; Bachmann, Herwig; van Hijum, Sacha A. F. T.

    2017-01-01

    ABSTRACT The lactic acid bacterium Lactococcus lactis is widely used for the fermentation of dairy products. Here, we present the draft genome sequences of 11 L. lactis subsp. cremoris strains isolated from different environments. PMID:28302789

  13. Mycobacterium avium subsp. paratuberculosis in Veterinary Medicine

    PubMed Central

    Harris, N. Beth; Barletta, Raúl G.

    2001-01-01

    Mycobacterium avium subsp. paratuberculosis (basonym M. paratuberculosis) is the etiologic agent of a severe gastroenteritis in ruminants known as Johne's disease. Economic losses to the cattle industry in the United States are staggering, reaching $1.5 billion annually. A potential pathogenic role in humans in the etiology of Crohn's disease is under investigation. In this article, we review the epidemiology, pathogenesis, diagnostics, and disease control measures of this important veterinary pathogen. We emphasize molecular genetic aspects including the description of markers used for strain identification, diagnostics, and phylogenetic analysis. Recent important advances in the development of animal models and genetic systems to study M. paratuberculosis virulence determinants are also discussed. We conclude with proposals for the applications of these models and recombinant technology to the development of diagnostic, control, and therapeutic measures. PMID:11432810

  14. Highly pathogenic avian influenza H5N1 clade 2.3.2.1 and clade 2.3.4 viruses do not induce a clade-specific phenotype in mallard ducks.

    PubMed

    Ducatez, Mariette; Sonnberg, Stephanie; Crumpton, Jeri Carol; Rubrum, Adam; Phommachanh, Phouvong; Douangngeun, Bounlom; Peiris, Malik; Guan, Yi; Webster, Robert; Webby, Richard

    2017-06-01

    Among the diverse clades of highly pathogenic avian influenza (HPAI) H5N1 viruses of the goose/Guangdong lineage, only a few have been able to spread across continents: clade 2.2 viruses spread from China to Europe and into Africa in 2005-2006, clade 2.3.2.1 viruses spread from China to Eastern Europe in 2009-2010 and clade 2.3.4.4 viruses of the H5Nx subtype spread from China to Europe and North America in 2014/2015. While the poultry trade and wild-bird migration have been implicated in the spread of HPAI H5N1 viruses, it has been proposed that robust virus-shedding by wild ducks in the absence of overt clinical signs may have contributed to the wider dissemination of the clade 2.2, 2.3.2.1 and 2.3.4.4 viruses. Here we determined the phenotype of two divergent viruses from clade 2.3.2.1, a clade that spread widely, and two divergent viruses from clade 2.3.4, a clade that was constrained to Southeast Asia, in young (ducklings) and adult (juvenile) mallard ducks. We found that the virus-shedding magnitude and duration, transmission pattern and pathogenicity of the viruses in young and adult mallard ducks were largely independent of the virus clade. A clade-specific pattern could only be detected in terms of cumulative virus shedding, which was higher with clade 2.3.2.1 than with clade 2.3.4 viruses in juvenile mallards, but not in ducklings. The ability of clade 2.3.2.1c A/common buzzard/Bulgaria/38 WB/2010-like viruses to spread cross-continentally may, therefore, have been strain-specific or independent of phenotype in wild ducks.

  15. A heterologous prime-boost vaccination strategy comprising the Francisella tularensis live vaccine strain capB mutant and recombinant attenuated Listeria monocytogenes expressing F. tularensis IglC induces potent protective immunity in mice against virulent F. tularensis aerosol challenge.

    PubMed

    Jia, Qingmei; Bowen, Richard; Sahakian, Jacob; Dillon, Barbara Jane; Horwitz, Marcus A

    2013-05-01

    Francisella tularensis, the causative agent of tularemia, is a category A bioterrorism agent. A vaccine that is safer and more effective than the currently available unlicensed F. tularensis live vaccine strain (LVS) is needed to protect against intentional release of aerosolized F. tularensis, the most dangerous type of exposure. In this study, we employed a heterologous prime-boost vaccination strategy comprising intradermally administered LVS ΔcapB (highly attenuated capB-deficient LVS mutant) as the primer vaccine and rLm/iglC (recombinant attenuated Listeria monocytogenes expressing the F. tularensis immunoprotective antigen IglC) as the booster vaccine. Boosting LVS ΔcapB-primed mice with rLm/iglC significantly enhanced T cell immunity; their splenic T cells secreted significantly more gamma interferon (IFN-γ) and had significantly more cytokine (IFN-γ and/or tumor necrosis factor [TNF] and/or interleukin-2 [IL-2])-producing CD4(+) and CD8(+) T cells upon in vitro IglC stimulation. Importantly, mice primed with LVS ΔcapB or rLVS ΔcapB/IglC, boosted with rLm/iglC, and subsequently challenged with 10 50% lethal doses (LD50) of aerosolized highly virulent F. tularensis Schu S4 had a significantly higher survival rate and mean survival time than mice immunized with only LVS ΔcapB (P < 0.0001); moreover, compared with mice immunized once with LVS, primed-boosted mice had a higher survival rate (75% versus 62.5%) and mean survival time during the first 21 days postchallenge (19 and 20 days for mice boosted after being primed with LVS ΔcapB and rLVS ΔcapB/IglC, respectively, versus 17 days for mice immunized with LVS) and maintained their weight significantly better (P < 0.01). Thus, the LVS ΔcapB-rLm/iglC prime-boost vaccination strategy holds substantial promise for a vaccine that is safer and at least as potent as LVS.

  16. A Heterologous Prime-Boost Vaccination Strategy Comprising the Francisella tularensis Live Vaccine Strain capB Mutant and Recombinant Attenuated Listeria monocytogenes Expressing F. tularensis IglC Induces Potent Protective Immunity in Mice against Virulent F. tularensis Aerosol Challenge

    PubMed Central

    Jia, Qingmei; Bowen, Richard; Sahakian, Jacob; Dillon, Barbara Jane

    2013-01-01

    Francisella tularensis, the causative agent of tularemia, is a category A bioterrorism agent. A vaccine that is safer and more effective than the currently available unlicensed F. tularensis live vaccine strain (LVS) is needed to protect against intentional release of aerosolized F. tularensis, the most dangerous type of exposure. In this study, we employed a heterologous prime-boost vaccination strategy comprising intradermally administered LVS ΔcapB (highly attenuated capB-deficient LVS mutant) as the primer vaccine and rLm/iglC (recombinant attenuated Listeria monocytogenes expressing the F. tularensis immunoprotective antigen IglC) as the booster vaccine. Boosting LVS ΔcapB-primed mice with rLm/iglC significantly enhanced T cell immunity; their splenic T cells secreted significantly more gamma interferon (IFN-γ) and had significantly more cytokine (IFN-γ and/or tumor necrosis factor [TNF] and/or interleukin-2 [IL-2])-producing CD4+ and CD8+ T cells upon in vitro IglC stimulation. Importantly, mice primed with LVS ΔcapB or rLVS ΔcapB/IglC, boosted with rLm/iglC, and subsequently challenged with 10 50% lethal doses (LD50) of aerosolized highly virulent F. tularensis Schu S4 had a significantly higher survival rate and mean survival time than mice immunized with only LVS ΔcapB (P < 0.0001); moreover, compared with mice immunized once with LVS, primed-boosted mice had a higher survival rate (75% versus 62.5%) and mean survival time during the first 21 days postchallenge (19 and 20 days for mice boosted after being primed with LVS ΔcapB and rLVS ΔcapB/IglC, respectively, versus 17 days for mice immunized with LVS) and maintained their weight significantly better (P < 0.01). Thus, the LVS ΔcapB-rLm/iglC prime-boost vaccination strategy holds substantial promise for a vaccine that is safer and at least as potent as LVS. PMID:23439306

  17. Description of Klebsiella quasipneumoniae sp. nov., isolated from human infections, with two subspecies, Klebsiella quasipneumoniae subsp. quasipneumoniae subsp. nov. and Klebsiella quasipneumoniae subsp. similipneumoniae subsp. nov., and demonstration that Klebsiella singaporensis is a junior heterotypic synonym of Klebsiella variicola.

    PubMed

    Brisse, Sylvain; Passet, Virginie; Grimont, Patrick A D

    2014-09-01

    Strains previously classified as members of Klebsiella pneumoniae phylogroups KpI, KpII-A, KpII-B and KpIII were characterized by 16S rRNA (rrs) gene sequencing, multilocus sequence analysis based on rpoB, fusA, gapA, gyrA and leuS genes, average nucleotide identity and biochemical characteristics. Phylogenetic analysis demonstrated that KpI and KpIII corresponded to K. pneumoniae and Klebsiella variicola, respectively, whereas KpII-A and KpII-B formed two well-demarcated sequence clusters distinct from other members of the genus Klebsiella. Average nucleotide identity between KpII-A and KpII-B was 96.4 %, whereas values lower than 94 % were obtained for both groups when compared with K. pneumoniae and K. variicola. Biochemical properties differentiated KpII-A, KpII-B, K. pneumoniae and K. variicola, with acid production from adonitol and l-sorbose and ability to use 3-phenylproprionate, 5-keto-d-gluconate and tricarballylic acid as sole carbon sources being particularly useful. Based on their genetic and phenotypic characteristics, we propose the names Klebsiella quasipneumoniae subsp. quasipneumoniae subsp. nov. and K. quasipneumoniae subsp. similipneumoniae subsp. nov. for strains of KpII-A and KpII-B, respectively. The type strain of K. quasipneumoniae sp. nov. and of K. quasipneumoniae subsp. quasipneumoniae subsp. nov. is 01A030(T) ( = SB11(T) = CIP 110771(T) = DSM 28211(T)). The type strain of K. quasipneumoniae subsp. similipneumoniae subsp. nov. is 07A044(T) ( = SB30(T) = CIP 110770(T) = DSM 28212(T)). Both strains were isolated from human blood cultures. This work also showed that Klebsiella singaporensis is a junior heterotypic synonym of K. variicola.

  18. Sulfitobacter pontiacus subsp. fungiae subsp. nov., Isolated from Coral Fungia seychellensis from Andaman Sea, and Description of Sulfitobacter pontiacus subsp. pontiacus subsp. nov.

    PubMed

    Zachariah, Sherin; Kumari, Prabla; Das, Subrata K

    2017-03-01

    Two closely related aerobic, Gram reaction-negative rod-shaped bacteria (S7-75(T) and S7-80) were isolated from mucus of coral Fungia seychellensis from Andaman Sea, India. Heterotrophic growth on marine agar was observed at 4-35 °C and pH 6.5-10.5; optimum growth occurred at 25-30 °C and pH 7-8. 16 S rRNA sequence analysis confirmed the strains belonged to the genus Sulfitobacter and the two isolates shared more than 99.28% pairwise sequence similarity. DNA-DNA similarity between two isolates S7-75(T) and S7-80 was above 96%. Strain S7-75(T) showed maximum 16S rRNA similarity of 99.64% with Sulfitobacter pontiacus LMG 19752(T). However, DNA-DNA relatedness between strain S7-75(T) and S. pontiacus LMG 19752(T) confirmed the placement of strain S7-75(T) as subspecies under the species S. pontiacus. Further, pulsed-field gel electrophoresis (PFGE), REP-PCR, ERIC-PCR fingerprint patterns and lipid profiles also differentiated strain S7-75(T) from the reference strain of S. pontiacus LMG 19752(T). The DNA G+C content was 59.8 mol%. Q10 was the major respiratory quinone. Based on polyphasic analysis, the isolate S7-75(T) represents a subspecies of S. pontiacus for which the name S. pontiacus subsp. fungiae subsp. nov. is proposed with S7-75(T) (=JCM 31094(T) = LMG 29158(T)) as type strain.

  19. Phenotypic characterization of the marine pathogen Photobacterium damselae subsp. piscicida.

    PubMed

    Thyssen, A; Grisez, L; van Houdt, R; Ollevier, F

    1998-10-01

    The taxonomic position of Photobacterium damselae subsp. piscicida, the causative agent of fish pasteurellosis, is controversial as this organism has also been described as 'Pasteurella piscicida'. To clarify the taxonomic position of the pathogen, a total of 113 P. damselae subsp. piscicida strains and 20 P. damselae subsp. damselae strains, isolated from different geographical areas and from the main affected fish species, were analysed using 129 morphological and biochemical tests, including the commercial API 20E and API CH50 test systems. For comparison, the type strains of other Photobacterium species (i.e. Photobacterium leiognathi and Photobacterium angustum) were included in the analyses. The results were statistically analysed by unweighted pair group average clustering and the distance between the different clusters was expressed as the percentage disagreement. The analyses showed that, based on morphological and biochemical identification tests, P. damselae subsp. piscicida is related to other Photobacterium species. However, it is clearly distinguishable from P. damselae subsp. damselae and no phenotypic evidence was found to include P. damselae subsp. piscicida as a subspecies in the species P. damselae.

  20. Hymenochaetales: a molecular phylogeny for the hymenochaetoid clade

    Treesearch

    Karl-Henrik Larsson; Erast Parmasto; Michael Fischer; Ewald Langer; Karen K. Nakasone; Scott A. Redhead

    2006-01-01

    The hymenochaetoid clade is dominated by wood-decaying species previously classified in the artificial families Corticiaceae, Polyporaceae and Stereaceae. The majority of these species cause a white rot. The polypore Bridgeoporus and several corticioid species with inconspicuous basidiomata live in association with brown-rotted wood, but their nutritional strategy is...

  1. Photosynthetic pigments of oceanic Chlorophyta belonging to prasinophytes clade VII.

    PubMed

    Lopes Dos Santos, Adriana; Gourvil, Priscillia; Rodríguez, Francisco; Garrido, José Luis; Vaulot, Daniel

    2016-02-01

    The ecological importance and diversity of pico/nanoplanktonic algae remains poorly studied in marine waters, in part because many are tiny and without distinctive morphological features. Amongst green algae, Mamiellophyceae such as Micromonas or Bathycoccus are dominant in coastal waters while prasinophytes clade VII, yet not formerly described, appear to be major players in open oceanic waters. The pigment composition of 14 strains representative of different subclades of clade VII was analyzed using a method that improves the separation of loroxanthin and neoxanthin. All the prasinophytes clade VII analyzed here showed a pigment composition similar to that previously reported for RCC287 corresponding to pigment group prasino-2A. However, we detected in addition astaxanthin for which it is the first report in prasinophytes. Among the strains analyzed, the pigment signature is qualitatively similar within subclades A and B. By contrast, RCC3402 from subclade C (Picocystis) lacks loroxanthin, astaxanthin, and antheraxanthin but contains alloxanthin, diatoxanthin, and monadoxanthin that are usually found in diatoms or cryptophytes. For subclades A and B, loroxanthin was lowest at highest light irradiance suggesting a light-harvesting role of this pigment in clade VII as in Tetraselmis.

  2. A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales)

    Treesearch

    Beatriz Ortiz-Santana; Daniel L. Lindner; Otto Miettinen; Alfredo Justo; David S. Hibbett

    2013-01-01

    Phylogenetic relationships among members of the antrodia clade were investigated with molecular data from two nuclear ribosomal DNA regions, LSU and ITS. A total of 123 species representing 26 genera producing a brown rot were included in the present study. Three DNA datasets (combined LSU-ITS dataset, LSU dataset, ITS dataset) comprising sequences of 449 isolates were...

  3. Coupling molecules and morphology to discover new clades of ciliates.

    NASA Astrophysics Data System (ADS)

    Grattepanche, J. D.; Maurer-Alcalá, X. X.; Tucker, S. J.; McManus, G. B.; Katz, L. A.

    2016-02-01

    In a previous study using high-throughput sequencing (Grattepanche et al submitted, oral presentation?), we observe the presence of two clades of spirotrich ciliates mainly present in marine deep-water along the New England coast. These clades, clusters X1 and X2, are characterized by several deletions in their SSU-rDNA and have been observed elsewhere as both identical and similar sequences have been deposited on GenBank from other environmental studies, but lack morphological description. In order to link molecules (SSU-rDNA sequence) to their morphology, we sample below the photic zone (between 60 to 400m of depth) in the New England coast (Northeast Atlantic) in a transect crossing the continental shelf. We designed an oligonucleotide probe specific for choreotrich and oligotrich ciliates and another specific to clusters X1 and X2 to describe these clades through a combination of Fluorescence In Situ Hybridization (FISH) and light microscopy. Our aim is to increase our knowledge on the morphology of these `unknown' clades of ciliates, which will allow for future ecological studies.

  4. Characterization of the PT clade of oligopeptide transporters in rice

    USDA-ARS?s Scientific Manuscript database

    Oligopeptide transporters (OPTs) are a group of membrane-localized proteins with a broad range of substrate transport capabilities, and which are thought to contribute to many biological processes. Nine OPTs belonging to the peptide transport (PT) clade were identified in the rice (Oryza sativa L.) ...

  5. Structural differences in chromosomes distinguish species in the tomato clade.

    PubMed

    Anderson, L K; Covey, P A; Larsen, L R; Bedinger, P; Stack, S M

    2010-07-01

    The tomato clade of Solanaceae is composed of 12 species that are all diploid with the same chromosome number and morphology. Species in the tomato clade are considered to have evolved primarily by genic changes rather than large-scale chromosomal rearrangements because pachytene chromosomes in F(1) hybrids synapse normally along their lengths and linkage maps of intra- and inter-specific hybrids are co-linear. However, small inversions have been reported between tomato and some of its wild relatives. Therefore, we reevaluated 5 F(1) hybrids using high-resolution, electron microscopic examination of pachytene chromosome (= synaptonemal complex) spreads to determine whether any minor structural changes had occurred among species in the tomato clade, which were not easily visible using light microscopic analysis of conventional chromosome squashes. Our study revealed a number of unexpected synaptic configurations such as mismatched kinetochores, inversion loops and reciprocal translocations. Most of these structural differences were in or close to heterochromatin that has comparatively few genes and little recombination, so they would be expected to have little effect on the evident colinearity of linkage maps, especially in euchromatin. However, these results demonstrate that substantial changes in chromosome structure have occurred among species within the tomato clade.

  6. Phylogeny and biogeography of an uncultured clade of snow chytrids.

    PubMed

    Naff, C S; Darcy, J L; Schmidt, S K

    2013-10-01

    Numerous studies have shown that snow can contain a diverse array of algae known as 'snow algae'. Some reports also indicate that parasites of algae (e.g. chytrids) are also found in snow, but efforts to phylogenetically identify 'snow chytrids' have not been successful. We used culture-independent molecular approaches to phylogenetically identify chytrids that are common in long-lived snowpacks of Colorado and Europe. The most remarkable finding of the present study was the discovery of a new clade of chytrids that has representatives in snowpacks of Colorado and Switzerland and cold sites in Nepal and France, but no representatives from warmer ecosystems. This new clade ('Snow Clade 1' or SC1) is as deeply divergent as its sister clade, the Lobulomycetales, and phylotypes of SC1 show significant (P < 0.003) genetic-isolation by geographic distance patterns, perhaps indicating a long evolutionary history in the cryosphere. In addition to SC1, other snow chytrids were phylogenetically shown to be in the order Rhizophydiales, a group with known algal parasites and saprotrophs. We suggest that these newly discovered snow chytrids are important components of snow ecosystems where they contribute to snow food-web dynamics and the release of nutrients due to their parasitic and saprotrophic activities.

  7. Prevalence of Streptococcus dysgalactiae subsp. equisimilis and S. equi subsp. zooepidemicus in a sample of healthy dogs, cats and horses.

    PubMed

    Acke, E; Midwinter, A C; Lawrence, K; Gordon, S J G; Moore, S; Rasiah, I; Steward, K; French, N; Waller, A

    2015-09-01

    To estimate the prevalence of β-haemolytic Lancefield group C streptococci in healthy dogs, cats and horses; to determine if frequent contact with horses was associated with isolation of these species from dogs and cats; and to characterise recovered S. equi subsp. zooepidemicus isolates by multilocus sequence typing. Oropharyngeal swabs were collected from 197 dogs and 72 cats, and nasopharyngeal swabs from 93 horses. Sampling was carried out at the Massey University Veterinary Teaching Hospital, on sheep and beef farms or on premises where horses were present. All animals were healthy and were categorised as Urban dogs and cats (minimal contact with horses or farm livestock), Farm dogs (minimal contact with horses) and Stable dogs and cats (frequent contact with horses). Swabs were cultured for β-haemolytic Streptococcus spp. and Lancefield group C streptococcal subspecies were confirmed by phenotypic and molecular techniques. Of the 197 dogs sampled, 21 (10.7 (95% CI= 4.0-25.4)%) tested positive for S. dysgalactiae subsp. equisimilis and 4 (2.0 (95% CI=0.7-5.5)%) tested positive for S. equi subsp. zooepidemicus. All these isolates, except for one S. dysgalactiae subsp. equisimilis isolate in an Urban dog, were from Stable dogs. S. dysgalactiae subsp. equisimilis was isolated from one Stable cat. Of the 93 horses, 22 (23.7 (95% CI=12.3-40.6)%) and 6 (6.5 (95% CI=2.8-14.1)%) had confirmed S. dysgalactiae subsp. equisimilis and S. equi subsp. zooepidemicus isolation respectively. Isolation of S. dysgalactiae subsp. equisimilis from dogs was associated with frequent contact with horses (OR=9.8 (95% CI=2.6-72.8)). Three different multilocus sequence type profiles of S. equi subsp. zooepidemicus that have not been previously reported in dogs were recovered. Subclinical infection or colonisation by S. equi subsp. zooepidemicus and S. dysgalactiae subsp. equisimilis occurs in dogs and further research on inter-species transmission and the pathogenic potential of these

  8. Exposure of laboratory workers to Francisella tularensis despite a bioterrorism procedure.

    PubMed

    Shapiro, Daniel S; Schwartz, Donald R

    2002-06-01

    A rapidly fatal case of pulmonary tularemia in a 43-year-old man who was transferred to a tertiary care facility is presented. The microbiology laboratory and autopsy services were not notified of the clinical suspicion of tularemia by the service caring for the patient. Despite having a laboratory bioterrorism procedure in place and adhering to established laboratory protocol, 12 microbiology laboratory employees were exposed to Francisella tularensis and the identification of the organism was delayed due to lack of notification of the laboratory of the clinical suspicion of tularemia. A total of 11 microbiology employees and two persons involved in performing the patient's autopsy received prophylactic doxycycline due to concerns of transmission. None of them developed signs or symptoms of tularemia. One microbiology laboratory employee was pregnant and declined prophylactic antibiotics. As a result of this event, the microbiology laboratory has incorporated flow charts directly into the bench procedures for several highly infectious agents that may be agents of bioterrorism. This should permit more rapid recognition of an isolate for referral to a Level B laboratory for definitive identification and should improve laboratory safety.

  9. Exposure of Laboratory Workers to Francisella tularensis despite a Bioterrorism Procedure

    PubMed Central

    Shapiro, Daniel S.; Schwartz, Donald R.

    2002-01-01

    A rapidly fatal case of pulmonary tularemia in a 43-year-old man who was transferred to a tertiary care facility is presented. The microbiology laboratory and autopsy services were not notified of the clinical suspicion of tularemia by the service caring for the patient. Despite having a laboratory bioterrorism procedure in place and adhering to established laboratory protocol, 12 microbiology laboratory employees were exposed to Francisella tularensis and the identification of the organism was delayed due to lack of notification of the laboratory of the clinical suspicion of tularemia. A total of 11 microbiology employees and two persons involved in performing the patient's autopsy received prophylactic doxycycline due to concerns of transmission. None of them developed signs or symptoms of tularemia. One microbiology laboratory employee was pregnant and declined prophylactic antibiotics. As a result of this event, the microbiology laboratory has incorporated flow charts directly into the bench procedures for several highly infectious agents that may be agents of bioterrorism. This should permit more rapid recognition of an isolate for referral to a Level B laboratory for definitive identification and should improve laboratory safety. PMID:12037110

  10. Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification.

    PubMed

    del Río, Jonathan Sabaté; Yehia Adly, Nouran; Acero-Sánchez, Josep Lluis; Henry, Olivier Y F; O'Sullivan, Ciara K

    2014-04-15

    Solid-phase isothermal DNA amplification was performed exploiting the homology protein recombinase A (recA). The system was primarily tested on maleimide activated microtitre plates as a proof-of-concept and later translated to an electrochemical platform. In both cases, forward primer for Francisella tularensis holarctica genomic DNA was surface immobilised via a thiol or an amino moiety and then elongated during the recA mediated amplification, carried out in the presence of specific target sequence and reverse primers. The formation of the subsequent surface tethered amplicons was either colorimetrically or electrochemically monitored using a horseradish peroxidase (HRP)-labelled DNA secondary probe complementary to the elongated strand. The amplification time was optimised to amplify even low amounts of DNA copies in less than an hour at a constant temperature of 37°C, achieving a limit of detection of 1.3×10(-13) M (4×10(6) copies in 50 μL) for the colorimetric assay and 3.3×10(-14) M (2×10(5) copies in 10 μL) for the chronoamperometric assay. The system was demonstrated to be highly specific with negligible cross-reactivity with non-complementary targets or primers.

  11. Bioavailability and efficacy of levofloxacin against Francisella tularensis in the common marmoset (Callithrix jacchus).

    PubMed

    Nelson, Michelle; Lever, Mark S; Dean, Rachel E; Pearce, Peter C; Stevens, Daniel J; Simpson, Andrew J H

    2010-09-01

    Pharmacokinetic and efficacy studies with levofloxacin were performed in the common marmoset (Callithrix jacchus) model of inhalational tularemia. Plasma levofloxacin pharmacokinetics were determined in six animals in separate single-dose and multidose studies. Plasma drug concentrations were analyzed using liquid chromatography-tandem mass spectrometry-electrospray ionization. On day 7 of a twice-daily dosing regimen of 40 mg/kg, the levofloxacin half-life, maximum concentration, and area under the curve in marmoset plasma were 2.3 h, 20.9 microg/ml, and 81.4 microg/liter/h, respectively. An efficacy study was undertaken using eight treated and two untreated control animals. Marmosets were challenged with a mean of 1.5 x 10(2) CFU of Francisella tularensis by the airborne route. Treated animals were administered 16.5 mg/kg levofloxacin by mouth twice daily, based on the pharmacokinetic parameters, beginning 24 h after challenge. Control animals had a raised core body temperature by 57 h postchallenge and died from infection by day 5. All of the other animals survived, remained afebrile, and lacked overt clinical signs. No bacteria were recovered from the organs of these animals at postmortem after culling at day 24 postchallenge. In conclusion, postexposure prophylaxis with orally administered levofloxacin was efficacious against acute inhalational tularemia in the common marmoset. The marmoset appears to be an appropriate animal model for the evaluation of postexposure therapies.

  12. Characterization of Monoclonal Antibodies to Terminal and Internal O-Antigen Epitopes of Francisella tularensis Lipopolysaccharide

    PubMed Central

    Roche, Marly I.; Lu, Zhaohua; Hui, Julia H.

    2011-01-01

    The lipopolysaccharide (LPS) of Francisella tularensis (Ft), the Gram negative bacterium that causes tularemia, has been shown to be a main protective antigen in mice and humans; we have previously demonstrated that murine anti-Ft LPS IgG2a monoclonal antibodies (MAbs) can protect mice against otherwise lethal intranasal infection with the Ft live vaccine strain (LVS). Here we show that four IgG2a anti-LPS MAbs are specific for the O-polysaccharide (O-antigen [OAg]) of Ft LPS. But whereas three of the MAbs bind to immunodominant repeating internal epitopes, one binds to a unique terminal epitope of Ft OAg. This was deduced from its even binding to both long and short chains of the LPS ladder in Western blots, its rapid decrease in ELISA binding to decreasing solid-phase LPS concentrations, its inability to compete for LPS binding with a representative of the other three MAbs, and its inability to immunoprecipitate OAg despite its superior agglutination titer. Biacore analysis showed the end-binding MAb to have higher bivalent avidity for Ft OAg than the internal-binding MAbs and provided an immunogenicity explanation for the predominance of internal-binding anti-Ft OAg MAbs. These findings demonstrate that non-overlapping epitopes can be targeted by antibodies to Ft OAg, which may inform the design of vaccines and immunotherapies against tularemia. PMID:21466282

  13. Immunization with heat-killed Francisella tularensis LVS elicits protective antibody-mediated immunity.

    PubMed

    Lavine, Christy L; Clinton, Shawn R; Angelova-Fischer, Irena; Marion, Tony N; Bina, Xiaowen R; Bina, James E; Whitt, Michael A; Miller, Mark A

    2007-11-01

    Francisella tularensis (FT) has been classified by the CDC as a category A pathogen because of its high virulence and the high mortality rate associated with infection via the aerosol route. Because there is no licensed vaccine available for FT, development of prophylactic and therapeutic regimens for the prevention/treatment of infection is a high priority. In this report, heat-killed FT live vaccine strain (HKLVS) was employed as a vaccine immunogen, either alone or in combination with an adjuvant, and was found to elicit protective immunity against high-dose FT live vaccine strain (FTLVS) challenge. FT-specific antibodies produced in response to immunization with HKLVS alone were subsequently found to completely protect naive mice against high-dose FT challenge in both infection-interference and passive immunization experiments. Additional passive immunization trials employing serum collected from mice immunized with a heat-killed preparation of an O-antigen-deficient transposon mutant of FTLVS (HKLVS-OAg(neg)) yielded similar results. These findings demonstrated that FT-specific antibodies alone can confer immunity against high-dose FTLVS challenge, and they reveal that antibody-mediated protection is not dependent upon production of LPS-specific antibodies.

  14. Establishment of lethal inhalational infection with Francisella tularensis (tularaemia) in the common marmoset (Callithrix jacchus).

    PubMed

    Nelson, Michelle; Lever, Mark S; Savage, Victoria L; Salguero, Francisco Javier; Pearce, Peter C; Stevens, Daniel J; Simpson, Andrew J H

    2009-04-01

    Susceptibility and lethality studies of inhalational tularaemia were undertaken using the common marmoset (Callithrix jacchus) to determine its suitability as a non-human primate model. Pairs of marmosets were exposed to varying challenge doses of Francisella tularensis by the airborne route and monitored for up to 14 days postchallenge (p.c.). Lethal infection was achieved following a retained dose of less than 10 bacterial colony-forming units (CFU). However, precise LD(50) determination was not possible. The model was characterized using a target challenge dose of approximately 100 CFU. Increased core body temperature was the first indicator of disease, at approximately 2.5 days p.c. Overt clinical signs were first observed 12-18 h after the temperature increase. Significantly decreased activity was observed after approximately 3 days. All animals succumbed to infection between 4.5 and 7 days p.c. At postmortem examination, gross pathology was evident in the liver, spleen and lungs of all animals and high bacterial numbers were detected in all the organs assessed. Bacteraemia was demonstrated in all animals postmortem. Histopathological observations included severe suppurative bronchopneumonia, severe multifocal pyogranulomatous hepatitis, splenitis and lymphadenitis. Tularaemia disease progression in the common marmoset therefore appears to be consistent with the disease seen in humans and other animal models. The common marmoset may therefore be considered a suitable model for further studies of inhalational tularaemia.

  15. Pasteurella multocida subsp. multocida and P. multocida subsp. septica Differentiation by PCR Fingerprinting and α-Glucosidase Activity

    PubMed Central

    Hunt Gerardo, Sharon; Citron, Diane M.; Claros, Marina C.; Fernandez, Helen T.; Goldstein, Ellie J. C.

    2001-01-01

    Pasteurella multocida is composed of three subspecies that are often differentiated by fermentation of sorbitol and dulcitol. We studied 35 dulcitol-negative P. multocida isolates from infected dog and cat bite wounds, 16 of which yielded weak and/or conflicting fermentation reactions in Andrades sorbitol, thus making it difficult to distinguish between the two dulcitol-negative subspecies of P. multocida, i.e., P. multocida subsp. multocida and P. multocida subsp. septica. All isolates and two control strains were further analyzed using a PCR fingerprinting technique with a single primer (M13 core) and assessed for α-glucosidase (α-Glu) activity. Although the PCR fingerprint patterns and α-Glu activity did not correlate well with the sorbitol fermentation reactions, they did correlate well with each other. All strains identified as P. multocida subsp. septica were positive for α-Glu activity and exhibited the group I PCR fingerprint profile. All strains categorized as P. multocida subsp. multocida displayed either the group II or group III PCR fingerprint profile; 9 of 11 of these isolates were α-Glu negative. These data suggest that both PCR fingerprinting and α-Glu activity provide reliable means for differentiating P. multocida subsp. multocida from P. multocida subsp. septica, particularly in strains that produce weak and/or discrepant sorbitol fermentation reactions. PMID:11427568

  16. In vitro and in vivo evaluation of fluoroquinolone resistance associated with DNA gyrase mutations in Francisella tularensis, including in tularaemia patients with treatment failure.

    PubMed

    Sutera, V; Hoarau, G; Renesto, P; Caspar, Y; Maurin, M

    2017-09-01

    Fluoroquinolones (FQs) are highly effective for treating tularaemia, a zoonosis caused by Francisella tularensis, but failures and relapses remain common in patients with treatment delay or immunocompromised status. FQ-resistant strains of F. tularensis harboring mutations in the quinolone-resistance determining region (QRDR) of gyrA and gyrB, the genes encoding subunits A and B of DNA gyrase, have been selected in vitro. Such mutants have never been isolated from humans as this microorganism is difficult to culture. In this study, the presence of FQ-resistant mutants of F. tularensis was assessed in tularaemia patients using combined culture- and PCR-based approaches. We analyzed 42 F. tularensis strains and 82 tissue samples collected from 104 tularaemia cases, including 32 (30.7%) with FQ treatment failure or relapse. Forty F. tularensis strains and 55 clinical samples were obtained before any FQ treatment, while 2 strains and 15 tissue samples were collected after treatment. FQ resistance was evaluated by the minimum inhibitory concentration (MIC) for the bacterial strains, and by newly developed PCR-based methods targeting the gyrA and gyrB QRDRs for both the bacterial strains and the clinical samples. None of the F. tularensis strains displayed an increased MIC compared with FQ-susceptible controls. Neither gyrA nor gyrB QRDR mutation was found in bacterial strains and tissue samples tested, including those from patients with FQ treatment failure or relapse. Further phenotypic and genetic resistance traits should be explored to explain the poor clinical response to FQ treatment in such tularaemia patients. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  17. An improved Francisella tularensis Live Vaccine Strain (LVS) is well tolerated and highly immunogenic when administered to rabbits in escalating doses using various immunization routes

    PubMed Central

    Pasetti, Marcela F.; Cuberos, Lilian; Horn, Thomas L.; Shearer, Jeffry D.; Matthews, Stephen J.; House, Robert V.; Sztein, Marcelo B.

    2008-01-01

    Tularemia is a severe disease for which there is no licensed vaccine. An attenuated F. tularensis live vaccine strain (LVS) was protective when administered to humans but safety concerns precluded its licensure and use in large scale immunization. An improved F. tularensis LVS preparation was produced under current Good Manufacturing Practice (cGMP) guidelines for evaluation in clinical trials. Preclinical safety, tolerability and immunogenicity were investigated in rabbits that received LVS in escalating doses (1x105 to 1x109 CFU) by the intradermal, subcutaneous or percutaneous (scarification) route. This improved LVS formulation was well tolerated at all doses; no death or adverse clinical signs were observed and necropsies showed no signs of pathology. No live organisms were detected in liver or spleen. Transient local reactogenicity was observed after scarification injection. Erythema and edema developed after intradermal injection in the highest dose cohorts. High levels of F. tularensis-specific IgM, IgG and IgA developed early after immunization, in a dose-dependent fashion. Scarification elicited higher levels of IgA. Antibodies elicited by LVS also recognized F. tularensis Schu-S4 antigens and there was a significant correlation between antibody titers measured against both LVS and Schu-S4. The ELISA titers also correlated closely with those measured by microagglutination. This is the first report describing comprehensive toxicological and immunological studies of F. tularensis LVS in rabbits. This animal model, which closely resembles human disease, proved adequate to assess safety and immunogenicity of F. tularensis vaccine candidates. This new LVS vaccine preparation is being evaluated in human clinical studies. PMID:18308432

  18. Francisella Tularensis Blue–Gray Phase Variation Involves Structural Modifications of Lipopolysaccharide O-Antigen, Core and Lipid A and Affects Intramacrophage Survival and Vaccine Efficacy

    PubMed Central

    Soni, Shilpa; Ernst, Robert K.; Muszyński, Artur; Mohapatra, Nrusingh P.; Perry, Malcolm B.; Vinogradov, Evgeny; Carlson, Russell W.; Gunn, John S.

    2010-01-01

    Francisella tularensis is a CDC Category A biological agent and a potential bioterrorist threat. There is no licensed vaccine against tularemia in the United States. A long-standing issue with potential Francisella vaccines is strain phase variation to a gray form that lacks protective capability in animal models. Comparisons of the parental strain (LVS) and a gray variant (LVSG) have identified lipopolysaccharide (LPS) alterations as a primary change. The LPS of the F. tularensis variant strain gains reactivity to F. novicida anti-LPS antibodies, suggesting structural alterations to the O-antigen. However, biochemical and structural analysis of the F. tularensis LVSG and LVS LPS demonstrated that LVSG has less O-antigen but no major O-antigen structural alterations. Additionally, LVSG possesses structural differences in both the core and lipid A regions, the latter being decreased galactosamine modification. Recent work has identified two genes important in adding galactosamine (flmF2 and flmK) to the lipid A. Quantitative real-time PCR showed reduced transcripts of both of these genes in the gray variant when compared to LVS. Loss of flmF2 or flmK caused less frequent phase conversion but did not alter intramacrophage survival or colony morphology. The LVSG strain demonstrated an intramacrophage survival defect in human and rat but not mouse macrophages. Consistent with this result, the LVSG variant demonstrated little change in LD50 in the mouse model of infection. Furthermore, the LVSG strain lacks the protective capacity of F. tularensis LVS against virulent Type A challenge. These data suggest that the LPS of the F. tularensis LVSG phase variant is dramatically altered. Understanding the mechanism of blue to gray phase variation may lead to a way to inhibit this variation, thus making future F. tularensis vaccines more stable and efficacious. PMID:21687776

  19. Comparative evaluation of automated and manual commercial DNA extraction methods for detection of Francisella tularensis DNA from suspensions and spiked swabs by real-time polymerase chain reaction.

    PubMed

    Dauphin, Leslie A; Walker, Roblena E; Petersen, Jeannine M; Bowen, Michael D

    2011-07-01

    This study evaluated commercial automated and manual DNA extraction methods for the isolation of Francisella tularensis DNA suitable for real-time polymerase chain reaction (PCR) analysis from cell suspensions and spiked cotton, foam, and polyester swabs. Two automated methods, the MagNA Pure Compact and the QIAcube, were compared to 4 manual methods, the IT 1-2-3 DNA sample purification kit, the MasterPure Complete DNA and RNA purification kit, the QIAamp DNA blood mini kit, and the UltraClean Microbial DNA isolation kit. The methods were compared using 6 F. tularensis strains representing the 2 subspecies which cause the majority of reported cases of tularemia in humans. Cell viability testing of the DNA extracts showed that all 6 extraction methods efficiently inactivated F. tularensis at concentrations of ≤10⁶ CFU/mL. Real-time PCR analysis using a multitarget 5' nuclease assay for F. tularensis revealed that the PCR sensitivity was equivalent using DNA extracted by the 2 automated methods and the manual MasterPure and QIAamp methods. These 4 methods resulted in significantly better levels of detection from bacterial suspensions and performed equivalently for spiked swab samples than the remaining 2. This study identifies optimal DNA extraction methods for processing swab specimens for the subsequent detection of F. tularensis DNA using real-time PCR assays. Furthermore, the results provide diagnostic laboratories with the option to select from 2 automated DNA extraction methods as suitable alternatives to manual methods for the isolation of DNA from F. tularensis.

  20. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of macrophage growth locus A (MglA) protein from Francisella tularensis

    SciTech Connect

    Subburaman, P.; Austin, B.P.; Shaw, G.X.; Waugh, D.S.; Ji, X.

    2010-11-03

    Francisella tularensis, a potential bioweapon, causes a rare infectious disease called tularemia in humans and animals. The macrophage growth locus A (MglA) protein from F. tularensis associates with RNA polymerase to positively regulate the expression of multiple virulence factors that are required for its survival and replication within macrophages. The MglA protein was overproduced in Escherichia coli, purified and crystallized. The crystals diffracted to 7.5 {angstrom} resolution at the Advanced Photon Source, Argonne National Laboratory and belonged to the hexagonal space group P6{sub 1} or P6{sub 5}, with unit-cell parameters a = b = 125, c = 54 {angstrom}.

  1. Genome-Wide Diversity and Phylogeography of Mycobacterium avium subsp. paratuberculosis in Canadian Dairy Cattle.

    PubMed

    Ahlstrom, Christina; Barkema, Herman W; Stevenson, Karen; Zadoks, Ruth N; Biek, Roman; Kao, Rowland; Trewby, Hannah; Haupstein, Deb; Kelton, David F; Fecteau, Gilles; Labrecque, Olivia; Keefe, Greg P; McKenna, Shawn L B; Tahlan, Kapil; De Buck, Jeroen

    2016-01-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is the causative bacterium of Johne's disease (JD) in ruminants. The control of JD in the dairy industry is challenging, but can be improved with a better understanding of the diversity and distribution of MAP subtypes. Previously established molecular typing techniques used to differentiate MAP have not been sufficiently discriminatory and/or reliable to accurately assess the population structure. In this study, the genetic diversity of 182 MAP isolates representing all Canadian provinces was compared to the known global diversity, using single nucleotide polymorphisms identified through whole genome sequencing. MAP isolates from Canada represented a subset of the known global diversity, as there were global isolates intermingled with Canadian isolates, as well as multiple global subtypes that were not found in Canada. One Type III and six "Bison type" isolates were found in Canada as well as one Type II subtype that represented 86% of all Canadian isolates. Rarefaction estimated larger subtype richness in Québec than in other Canadian provinces using a strict definition of MAP subtypes and lower subtype richness in the Atlantic region using a relaxed definition. Significant phylogeographic clustering was observed at the inter-provincial but not at the intra-provincial level, although most major clades were found in all provinces. The large number of shared subtypes among provinces suggests that cattle movement is a major driver of MAP transmission at the herd level, which is further supported by the lack of spatial clustering on an intra-provincial scale.

  2. Complete Genome Sequence of Type Strain Campylobacter fetus subsp. fetus ATCC 27374.

    PubMed

    Oliveira, Luciana M; Resende, Daniela M; Dorneles, Elaine M S; Horácio, Elvira C A; Alves, Fernanda L; Gonçalves, Leilane O; Tavares, Grace S; Stynen, Ana Paula R; Lage, Andrey P; Ruiz, Jeronimo C

    2016-12-15

    Campylobacter fetus subsp. fetus is a zoonotic bacterium important for animal and public health. The complete sequencing and annotation of the genome of the type strain C. fetus subsp. fetus ATCC 27374 are reported here.

  3. Complete Genome Sequence of Type Strain Campylobacter fetus subsp. fetus ATCC 27374

    PubMed Central

    Oliveira, Luciana M.; Resende, Daniela M.; Dorneles, Elaine M. S.; Horácio, Elvira C. A.; Alves, Fernanda L.; Gonçalves, Leilane O.; Tavares, Grace S.; Stynen, Ana Paula R.; Lage, Andrey P.

    2016-01-01

    Campylobacter fetus subsp. fetus is a zoonotic bacterium important for animal and public health. The complete sequencing and annotation of the genome of the type strain C. fetus subsp. fetus ATCC 27374 are reported here. PMID:27979934

  4. Neonatal Mortality in Puppies Due to Bacteremia by Streptococcus dysgalactiae subsp. dysgalactiae

    PubMed Central

    Vela, Ana I.; Falsen, Enevold; Simarro, Isabel; Rollan, Eduardo; Collins, Matthew D.; Domínguez, Lucas; Fernandez-Garayzabal, Jose F.

    2006-01-01

    We report a case of bacteremia in puppies caused by Streptococcus dysgalactiae subsp. dysgalactiae. Identification was achieved by phenotypic and molecular genetic methods. This is the first report of the recovery of S. dysgalactiae subsp. dysgalactiae from dogs. PMID:16455943

  5. Live Attenuated Mutants of Francisella tularensis Protect Rabbits against Aerosol Challenge with a Virulent Type A Strain

    PubMed Central

    Smith, Le'Kneitah P.; Cole, Kelly Stefano; Santiago, Araceli E.; Mann, Barbara J.; Barry, Eileen M.

    2014-01-01

    Francisella tularensis, a Gram-negative bacterium, is the causative agent of tularemia. No licensed vaccine is currently available for protection against tularemia, although an attenuated strain, dubbed the live vaccine strain (LVS), is given to at-risk laboratory personnel as an investigational new drug (IND). In an effort to develop a vaccine that offers better protection, recombinant attenuated derivatives of a virulent type A strain, SCHU S4, were evaluated in New Zealand White (NZW) rabbits. Rabbits vaccinated via scarification with the three attenuated derivatives (SCHU S4 ΔguaBA, ΔaroD, and ΔfipB strains) or with LVS developed a mild fever, but no weight loss was detected. Twenty-one days after vaccination, all vaccinated rabbits were seropositive for IgG to F. tularensis lipopolysaccharide (LPS). Thirty days after vaccination, all rabbits were challenged with aerosolized SCHU S4 at doses ranging from 50 to 500 50% lethal doses (LD50). All rabbits developed fevers and weight loss after challenge, but the severity was greater for mock-vaccinated rabbits. The ΔguaBA and ΔaroD SCHU S4 derivatives provided partial protection against death (27 to 36%) and a prolonged time to death compared to results for the mock-vaccinated group. In contrast, LVS and the ΔfipB strain both prolonged the time to death, but there were no survivors from the challenge. This is the first demonstration of vaccine efficacy against aerosol challenge with virulent type A F. tularensis in a species other than a rodent since the original work with LVS in the 1960s. The ΔguaBA and ΔaroD SCHU S4 derivatives warrant further evaluation and consideration as potential vaccines for tularemia and for identification of immunological correlates of protection. PMID:24614653

  6. Historical distribution and host-vector diversity of Francisella tularensis, the causative agent of tularemia, in Ukraine.

    PubMed

    Hightower, Jake; Kracalik, Ian T; Vydayko, Nataliya; Goodin, Douglas; Glass, Gregory; Blackburn, Jason K

    2014-10-16

    Francisella tularensis, the causative agent of tularemia, is a zoonotic agent that remains across much of the northern hemisphere, where it exists in enzootic cycles. In Ukraine, tularemia has a long history that suggests a need for sustained surveillance in natural foci. To better characterize the host-vector diversity and spatial distribution of tularemia, we analyzed historical data from field collections carried out from 1941 to 2008. We analyzed the spatial-temporal distribution of bacterial isolates collected from field samples. Isolates were characterized by source and dominant land cover type. To identify environmental persistence and spatial variation in the source of isolation, we used the space-time permutation and multinomial models in SaTScan. A total of 3,086 positive isolates were taken from 1,084 geographic locations. Isolation of F. tularensis was more frequent among arthropods [n = 2,045 (66.3%)] followed by mammals [n = 619 (20.1%)], water [n = 393 (12.7%)], and farm produce [n = 29 (0.94%)], respectively. Four areas of persistent bacterial isolation were identified. Water and farm produce as sources of bacterial isolation were clustered. Our findings confirm the presence of long-standing natural foci of F. tularensis in Ukraine. Given the history of tularemia as well as its environmental persistence there exists a possibility of (re)emergence in human populations. Heterogeneity in the distribution of tularemia isolate recovery related to land cover type supports the theory of natural nidality and clusters identify areas to target potential sources of the pathogen and improve surveillance.

  7. Host-Adaptation of Francisella tularensis Alters the Bacterium's Surface-Carbohydrates to Hinder Effectors of Innate and Adaptive Immunity

    PubMed Central

    Zarrella, Tiffany M.; Singh, Anju; Bitsaktsis, Constantine; Rahman, Tabassum; Sahay, Bikash; Feustel, Paul J.; Gosselin, Edmund J.; Sellati, Timothy J.; Hazlett, Karsten R. O.

    2011-01-01

    Background The gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacterium's mammalian, extracellular phase. Methods/Findings SDS-PAGE and carbohydrate analysis of differentially-cultivated F. tularensis LVS revealed that bacteria displaying the host-adapted phenotype produce both longer polymers of LPS O-antigen (OAg) and additional HMW carbohydrates/glycoproteins that are reduced/absent in non-host-adapted bacteria. Analysis of wildtype and OAg-mutant bacteria indicated that the induced changes in surface carbohydrates involved both OAg and non-OAg species. To assess the impact of these HMW carbohydrates on the access of outer membrane constituents to antibody we used differentially-cultivated bacteria in vitro to immunoprecipitate antibodies directed against outer membrane moieties. We observed that the surface-carbohydrates induced during host–adaptation shield many outer membrane antigens from binding by antibody. Similar assays with normal mouse serum indicate that the induced HMW carbohydrates also impede complement deposition. Using an in vitro macrophage infection assay, we find that the bacterial HMW carbohydrate impedes TLR2-dependent, pro-inflammatory cytokine production by macrophages. Lastly we show that upon host-adaptation, the human-virulent strain, F. tularensis SchuS4 also induces capsule production with the effect of reducing macrophage-activation and accelerating tularemia pathogenesis in mice. Conclusion F. tularensis undergoes

  8. [Investigation of the presence of Francisella tularensis by culture, serology and molecular methods in mice of Thrace Region, Turkey].

    PubMed

    Unal Yilmaz, Gülizar; Gurcan, Saban; Ozkan, Beytullah; Karadenizli, Aynur

    2014-04-01

    Tularemia is a disease that has been reported in Turkey since 1936. Although mice are considered to have a role in the transmission of Francisella tularensis to man, this has not been exactly confirmed yet. The aim of this study was to investigate the presence of F. tularensis in mice by using culture, serology and molecular methods. For this purpose, four villages (Edirne-Demirkoy, Kirklareli-Kaynarca, Tekirdag-Muzruplu, Tekirdag-Sinanli) were selected in Thrace Region of Turkey where tularemia cases had been reported previously. A total of 126 live-catch mouse traps were established in warehouses, barns, areas near wells, water tanks and creeks in the villages in December 2012. Traps were kept overnight and the next day the animals collected were identified at species-level. The live-captured mice were anesthetized and their heart blood samples were obtained. Subsequently, liver and spleen tissues were removed from every mouse under aseptic conditions in the class-2 safety cabinet. These tissues were cultivated in Francis medium containing 5% sheep blood, 0.1% cystein, 1% glucose and incubated for seven days in both normal atmosphere and 5% carbondioxide incubator at 37°C. Tularemia microagglutination test was performed by using the sera which were obtained from live-captured mice. Finally, DNAs were isolated from both liver and spleen tissues of mice, and real-time polymerase chain reaction (Tularemia RT-PCR; Public Health Agency of Turkey, Ankara) were performed. In our study, a total of 19 mice were captured and of these 11 were alive. Ten mice were identified as Apodemus flavicollis, seven were Mus macedonicus and two were Mus musculus. There were no Francisella tularensis isolation in the cultures of mice liver and spleen tissues. Serological tests yielded negative results for 10 mice whose serum samples could be obtained. In RT-PCR, positivity were detected in spleen tissues of two mice which were captured from Kaynarca where first tularemia cases in

  9. Molecular characterization of virulence genes of Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus in equines

    PubMed Central

    Javed, R.; Taku, A. K.; Gangil, Rakhi; Sharma, R. K.

    2016-01-01

    Aim: The aim was to determine the occurrence of streptococci in equines in Jammu (R. S. Pura, Katra), characterization of Streptococci equi subsp. equi and Streptococcus equi subsp. zooepidemicus with respect to their virulence traits and to determine antibiotic sensitivity pattern of virulent Streptococcus isolates. Materials and Methods: A total of 96 samples were collected from both clinically affected animals (exhibiting signs of respiratory tract disease) and apparently healthy animals and were sent to laboratory. The organisms were isolated on Columbia nalidixic acid agar containing 5% sheep blood as well as on sheep blood agar and confirmed by cultural characteristics and biochemical tests. Molecular detection of Streptococcus was done directly from cultures using sodA and seM gene-based polymerase chain reaction (PCR). Antibiogram was performed against five antibiotics such as amoxicillin, penicillin G, streptomycin, rifampicin, and methicillin. Results: During this study, a total 40 streptococcal isolates were obtained out of which 2 isolates were of S. equi subsp. equi, 12 isolates were from S. equi subsp. zooepidemicus. In the PCR-based detection, we revealed amplicons of 235 bp and 679 bp for confirmation of sodA and seM gene, respectively. In antibiogram, two isolates of S. equi subsp. equi were found resistant to penicillin G, and all other isolates were found sensitive to amoxicillin and streptomycin. Conclusion: The majority of streptococcal infections was due to S. equi subsp. Zooepidemicus, and thus was recognized as a potential pathogen of diseases of equines besides S. equi subsp. equi. PMID:27651677

  10. Major clades of Agaricales: a multilocus phylogenetic overview.

    Treesearch

    P. Brandon Matheny; Judd M. Curtis; Valerie Hofstetter; M. Catherine Aime; Jean-Marc Moncalvo; Zai-Wei Ge; Zhu-Liang Yang; Joseph F. Ammirati; Timothy J. Baroni; Neale L. Bougher; Karen W. Lodge Hughes; Richard W. Kerrigan; Michelle T. Seidl; Aanen; Matthew Duur K. DeNitis; Graciela M. Daniele; Dennis E. Desjardin; Bradley R. Kropp; Lorelei L. Norvell; Andrew Parker; Else C. Vellinga; Rytas Vilgalys; David S. Hibbett

    2006-01-01

    An overview of the phylogeny of the Agaricales is presented based on a multilocus analysis of a six-gene region supermatrix. Bayesian analyses of 5611 nucleotide characters of rpb1, rpb1-intron 2, rpb2 and 18S, 25S, and 5.8S ribosomal RNA genes recovered six major clades, which are recognized informally and labeled the Agaricoid, Tricholomatoid, Marasmioid, Pluteoid,...

  11. The automation and evaluation of nested clade phylogeographic analysis.

    PubMed

    Panchal, Mahesh; Beaumont, Mark A

    2007-06-01

    Nested clade phylogeographic analysis (NCPA) is a popular method for reconstructing the demographic history of spatially distributed populations from genetic data. Although some parts of the analysis are automated, there is no unique and widely followed algorithm for doing this in its entirety, beginning with the data, and ending with the inferences drawn from the data. This article describes a method that automates NCPA, thereby providing a framework for replicating analyses in an objective way. To do so, a number of decisions need to be made so that the automated implementation is representative of previous analyses. We review how the NCPA procedure has evolved since its inception and conclude that there is scope for some variability in the manual application of NCPA. We apply the automated software to three published datasets previously analyzed manually and replicate many details of the manual analyses, suggesting that the current algorithm is representative of how a typical user will perform NCPA. We simulate a large number of replicate datasets for geographically distributed, but entirely random-mating, populations. These are then analyzed using the automated NCPA algorithm. Results indicate that NCPA tends to give a high frequency of false positives. In our simulations we observe that 14% of the clades give a conclusive inference that a demographic event has occurred, and that 75% of the datasets have at least one clade that gives such an inference. This is mainly due to the generation of multiple statistics per clade, of which only one is required to be significant to apply the inference key. We survey the inferences that have been made in recent publications and show that the most commonly inferred processes (restricted gene flow with isolation by distance and contiguous range expansion) are those that are commonly inferred in our simulations. However, published datasets typically yield a richer set of inferences with NCPA than obtained in our random

  12. Revision of the Maddenia clade of Prunus (Rosaceae)

    PubMed Central

    Wen, Jun; Shi, Wenting

    2012-01-01

    Abstract The Maddenia clade of Prunus L. is monographed based on herbarium and field studies. Four species are currently accepted in this group: Prunus himalayana J.Wen, Prunus hypoleuca (Koehne) J.Wen, Prunus hypoxantha (Koehne) J.Wen, and Prunus gongshanensis J.Wen, with the last described herein as a new species. Maddenia fujianensis Y.T.Chang and Maddenia incisoserrata T.T.Yü & T.C.Ku are treated as synonyms of Prunus hypoleuca. PMID:22577333

  13. Disparate host immunity to Mycobacterium avium subsp. paratuberculosis antigens in calves inoculated with M. avium subsp. paratuberculosis, M. avium subsp. avium, M. kansasii and M. bovis

    USDA-ARS?s Scientific Manuscript database

    Cross-reactivity of mycobacterial antigens in immune-based diagnostic assays has been a major concern and criticism of current tests for the detection of paratuberculosis. In the present study, host immune responses to antigen preparations of Mycobacterium avium subsp. paratuberculosis (MAP), consis...

  14. Biofilm formation of Francisella noatunensis subsp. orientalis

    USGS Publications Warehouse

    Soto, Esteban; Halliday-Wimmonds, Iona; Francis , Stewart; Kearney, Michael T; Hansen, John D.

    2015-01-01

    Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC)and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon®, bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in theiglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums.

  15. Biofilm formation of Francisella noatunensis subsp. orientalis.

    PubMed

    Soto, Esteban; Halliday-Simmonds, Iona; Francis, Stewart; Kearney, Michael T; Hansen, John D

    2015-12-31

    Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC) and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon(®), bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in the iglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Potential Transmission Pathways of Streptococcus gallolyticus subsp. gallolyticus

    PubMed Central

    Dumke, Jessika; Hinse, Dennis; Vollmer, Tanja; Schulz, Jochen; Knabbe, Cornelius; Dreier, Jens

    2015-01-01

    Streptococcus gallolyticus subsp. gallolyticus (S. gallolyticus subsp. gallolyticus), a member of group D streptococci, is an inhabitant of the animal and human gastrointestinal tract. Furthermore, it is a facultative pathogen which causes e.g. endocarditis, septicemia and mastitis. S. gallolyticus subsp. gallolyticus may be transmitted either directly or indirectly between animals and humans. However, the transmission routes are an unsolved issue. In this study, we present systematic analyses of an S. gallolyticus subsp. gallolyticus isolate of an infective endocarditis patient in relation to isolates of his laying hen flock. Isolates from pooled droppings of laying hens, pooled dust samples and human blood culture were characterized by using multilocus sequence typing (MLST) and DNA fingerprinting. MLST revealed the same allelic profile of isolates from the human blood culture and from the droppings of laying hens. In addition, these isolates showed clonal identity regarding a similar DNA fingerprinting pattern. For the first time, we received a hint that transmission of S. gallolyticus subsp. gallolyticus between poultry and humans may occur. This raises the question about the zoonotic potential of isolates from poultry and should be considered in future studies. PMID:25978355

  17. Experimentally induced bovine abortion with Mycoplasma agalactiae subsp bovis.

    PubMed

    Stalheim, O H; Proctor, S J

    1976-08-01

    Two pregnant cows aborted 11 and 18 days after Mycoplasma agalactiae subsp bovis was inoculated into the amniotic fluids. The placentas were retained. The fetuses (approx 100 and 150 days of age) were decomposed; M agalactiae subsp bovis was recovered from several tissues of the fetuses, the placentas, and fetal fluids. The same organism was given by intraperitoneal injection to 2 other pregnant (130 and 180 days, respectively) cows. At necropsy of the latter 36 days later, placentitis was severe; M agalactiae subsp bovis was recovered from the placentas of both cows and from the fetus of 1 cow. Control cows given sterile mycoplasma cultural medium by intraamnion or intraperitoneal injection did not abort and were not infected. When first recovered from the bovine placenta and fetus, M agalactiae subsp bovis grew slowly in liquid medium and assumed bizarre colonial morphology on solidified medium. Colonies were small (0.1 to 0.5 mm) and dark and lacked halos, but they reacted specifically in the direct fluorescent antibody test with equine M agalactiae subsp bovis antiserum. After 1 or 2 subcultures, the isolates grew at a normal rate and displayed their usual colonial morphology.

  18. When Can Clades Be Potentially Resolved with Morphology?

    PubMed Central

    Bapst, David W.

    2013-01-01

    Morphology-based phylogenetic analyses are the only option for reconstructing relationships among extinct lineages, but often find support for conflicting hypotheses of relationships. The resulting lack of phylogenetic resolution is generally explained in terms of data quality and methodological issues, such as character selection. A previous suggestion is that sampling ancestral morphotaxa or sampling multiple taxa descended from a long-lived, unchanging lineage can also yield clades which have no opportunity to share synapomorphies. This lack of character information leads to a lack of ‘intrinsic’ resolution, an issue that cannot be solved with additional morphological data. It is unclear how often we should expect clades to be intrinsically resolvable in realistic circumstances, as intrinsic resolution must increase as taxonomic sampling decreases. Using branching simulations, I quantify intrinsic resolution across several models of morphological differentiation and taxonomic sampling. Intrinsically unresolvable clades are found to be relatively frequent in simulations of both extinct and living taxa under realistic sampling scenarios, implying that intrinsic resolution is an issue for morphology-based analyses of phylogeny. Simulations which vary the rates of sampling and differentiation were tested for their agreement to observed distributions of durations from well-sampled fossil records and also having high intrinsic resolution. This combination only occurs in those datasets when differentiation and sampling rates are both unrealistically high relative to branching and extinction rates. Thus, the poor phylogenetic resolution occasionally observed in morphological phylogenetics may result from a lack of intrinsic resolvability within groups. PMID:23638034

  19. Genome-scale evidence of the nematode-arthropod clade

    PubMed Central

    Dopazo, Hernán; Dopazo, Joaquín

    2005-01-01

    Background The issue of whether coelomates form a single clade, the Coelomata, or whether all animals that moult an exoskeleton (such as the coelomate arthropods and the pseudocoelomate nematodes) form a distinct clade, the Ecdysozoa, is the most puzzling issue in animal systematics and a major open-ended subject in evolutionary biology. Previous single-gene and genome-scale analyses designed to resolve the issue have produced contradictory results. Here we present the first genome-scale phylogenetic evidence that strongly supports the Ecdysozoa hypothesis. Results Through the most extensive phylogenetic analysis carried out to date, the complete genomes of 11 eukaryotic species have been analyzed in order to find homologous sequences derived from 18 human chromosomes. Phylogenetic analysis of datasets showing an increased adjustment to equal evolutionary rates between nematode and arthropod sequences produced a gradual change from support for Coelomata to support for Ecdysozoa. Transition between topologies occurred when fast-evolving sequences of Caenorhabditis elegans were removed. When chordate, nematode and arthropod sequences were constrained to fit equal evolutionary rates, the Ecdysozoa topology was statistically accepted whereas Coelomata was rejected. Conclusions The reliability of a monophyletic group clustering arthropods and nematodes was unequivocally accepted in datasets where traces of the long-branch attraction effect were removed. This is the first phylogenomic evidence to strongly support the 'moulting clade' hypothesis. PMID:15892869

  20. The historical biogeography of groupers: Clade diversification patterns and processes.

    PubMed

    Ma, Ka Yan; Craig, Matthew Thomas; Choat, John Howard; van Herwerden, Lynne

    2016-07-01

    Groupers (family Epinephelidae) are a clade of species-rich, biologically diverse reef fishes. Given their ecological variability and widespread distribution across ocean basins, it is important to scrutinize their evolutionary history that underlies present day distributions. This study investigated the patterns and processes by which grouper biodiversity has been generated and what factors have influenced their present day distributions. We reconstructed a robust, time-calibrated molecular phylogeny of Epinephelidae with comprehensive (∼87%) species sampling, whereby diversification rates were estimated and ancestral ranges were reconstructed. Our results indicate that groupers originated in what is now the East Atlantic during the mid-Eocene and diverged successively to form six strongly supported main clades. These clades differ in age (late Oligocene to mid-Miocene), geographic origin (West Atlantic to West Indo-Pacific) and temporal-spatial diversification pattern, ranging from constant rates of diversification to episodes of rapid radiation. Overall, divergence within certain biogeographic regions was most prevalent in groupers, while vicariant divergences were more common in Tropical Atlantic and East Pacific groupers. Our findings reveal that both biological and geographical factors have driven grouper diversification. They also underscore the importance of scrutinizing group-specific patterns to better understand reef fish evolution.

  1. Bartonella vinsonii subsp. berkhoffii in free-ranging white-tailed deer (Odocoileus virginianus).

    PubMed

    Chitwood, M Colter; Maggi, Ricardo G; Kennedy-Stoskopf, Suzanne; Toliver, Marcée; DePerno, Christopher S

    2013-04-01

    Bartonella vinsonii subsp. berkhoffii has not been detected previously in white-tailed deer (Odocoileus virginianus). We tested whole blood from 60 white-tailed deer for Bartonella spp. DNA; three (5%) were positive for Bartonella vinsonii subsp. berkhoffii. This is the first detection of Bartonella vinsonii subsp. berkhoffii in white-tailed deer.

  2. Tulipa cinnabarina subsp. toprakii (Liliaceae), a new subspecies from southwestern Anatolia.

    PubMed

    Eker, İsmail; Yıldırım, Hasan; Altıoğlu, Yusuf

    2016-01-01

    A new subpecies, Tulipa cinnabarina subsp. toprakii subsp. nov. (Liliaceae) from Turkey is described. Diagnostic characters, descriptions, detailed illustrations, geographical distribution, conservation status and ecological observations on the new taxon are provided. It is also compared with the closely related Tulipa cinnabarina subsp. cinnabarina.

  3. Tulipa cinnabarina subsp. toprakii (Liliaceae), a new subspecies from southwestern Anatolia

    PubMed Central

    Eker, İsmail; Yıldırım, Hasan; Altıoğlu, Yusuf

    2016-01-01

    Abstract A new subpecies, Tulipa cinnabarina subsp. toprakii subsp. nov. (Liliaceae) from Turkey is described. Diagnostic characters, descriptions, detailed illustrations, geographical distribution, conservation status and ecological observations on the new taxon are provided. It is also compared with the closely related Tulipa cinnabarina subsp. cinnabarina. PMID:27698585

  4. Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov., a thermophilic bacterium isolated from a hot spring in Batman.

    PubMed

    Gul-Guven, Reyhan; Guven, Kemal; Poli, Annarita; Nicolaus, Barbara

    2008-12-01

    A new thermophilic spore-forming strain KG8(T) was isolated from the mud of Taslidere hot spring in Batman. Strain KG8(T) was aerobe, Gram-positive, rod-shaped, motile, occurring in pairs or filamentous. Growth was observed from 35-65 degrees C (optimum 55 degrees C) and at pH 5.5-9.5 (optimum pH 7.5). It was capable of utilizing starch, growth was observed until 3% NaCl (w/v) and it was positive for nitrate reduction. On the basis of 16S rRNA gene sequence similarity, strain KG8(T) was shown to be related most closely to Anoxybacillus species. Chemotaxonomic data (major isoprenoid quinone-menaquinone-7; major fatty acid-iso-C15:0 and iso-C17:0) supported the affiliation of strain KG8(T) to the genus Anoxybacillus. The results of DNA-DNA hybridization, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain KG8(T). Based on these results we propose assigning a novel subspecies of Anoxybacillus kamchatkensis, to be named Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov. with the type strain KG8(T) (DSM 18475(T)=CIP 109280(T)).

  5. Simultaneous detection of Clavibacter michiganensis subsp. nebraskensis and Pantoea stewartii subsp. stewartii based on microsphere immunoreaction.

    PubMed

    Zhang, Fan; Li, Jinfeng; Zou, Mingqiang; Chen, Yan; Wang, Yanfei; Qi, Xiaohua

    2013-04-01

    Clavibacter michiganensis subsp. nebraskensis (Cmn) and Pantoea stewartii subsp. stewartii (Pss) are two plant pathogens that can cause tremendous agricultural economic losses. This novel method based on microsphere immunoreaction was developed for the simultaneous detection of Cmn and Pss in maize. This multiplex method was constructed based on microsphere immunodetection with fluorescent labels such as quantum dots (QDs) and R-phycoerythrin (R-PE) for the detection of Cmn and Pss. Captured QDs and R-PE serve as signal reporters for fluorescent readout. The principle of this method is based on a sandwich immunoreaction. Cmn and Pss captured by the microspheres were detected using flow cytometry. The limit of detection of this method was 10 times lower than the enzyme-linked immunosorbent assay (ELISA), and its analysis time (1 h) was much shorter compared with ELISA (6-8 h). The method, which has been proven to be an effective approach to multiplex detection of plant bacteria (Cmn and Pss as models), not only increased the varieties but also improved the sensitivity. The microsphere immunoreaction provides a universal method for the multiplex determination of microbes because of its high sensitivity, specificity, and speed. In the future, the method will be more fully validated in vivo to detect diversiform bacteria.

  6. Characterization of the O-antigen Polymerase (Wzy) of Francisella tularensis*

    PubMed Central

    Kim, Tae-Hyun; Sebastian, Shite; Pinkham, Jessica T.; Ross, Robin A.; Blalock, LeeAnn T.; Kasper, Dennis L.

    2010-01-01

    The O-antigen polymerase of Gram-negative bacteria has been difficult to characterize. Herein we report the biochemical and functional characterization of the protein product (Wzy) of the gene annotated as the putative O-antigen polymerase, which is located in the O-antigen biosynthetic locus of Francisella tularensis. In silico analysis (homology searching, hydropathy plotting, and codon usage assessment) strongly suggested that Wzy is an O-antigen polymerase whose function is to catalyze the addition of newly synthesized O-antigen repeating units to a glycolipid consisting of lipid A, inner core polysaccharide, and one repeating unit of the O-polysaccharide (O-PS). To characterize the function of the Wzy protein, a non-polar deletion mutant of wzy was generated by allelic replacement, and the banding pattern of O-PS was observed by immunoblot analysis of whole-cell lysates obtained by SDS-PAGE and stained with an O-PS-specific monoclonal antibody. These immunoblot analyses showed that O-PS of the wzy mutant expresses only one repeating unit of O-antigen. Further biochemical characterization of the subcellular fractions of the wzy mutant demonstrated that (as is characteristic of O-antigen polymerase mutants) the low molecular weight O-antigen accumulates in the periplasm of the mutant. Site-directed mutagenesis based on protein homology and topology, which was carried out to locate a catalytic residue of the protein, showed that modification of specific residues (Gly176, Asp177, Gly323, and Tyr324) leads to a loss of O-PS polymerization. Topology models indicate that these amino acids most likely lie in close proximity on the bacterial surface. PMID:20605777

  7. Characterization of the O-antigen polymerase (Wzy) of Francisella tularensis.

    PubMed

    Kim, Tae-Hyun; Sebastian, Shite; Pinkham, Jessica T; Ross, Robin A; Blalock, LeeAnn T; Kasper, Dennis L

    2010-09-03

    The O-antigen polymerase of gram-negative bacteria has been difficult to characterize. Herein we report the biochemical and functional characterization of the protein product (Wzy) of the gene annotated as the putative O-antigen polymerase, which is located in the O-antigen biosynthetic locus of Francisella tularensis. In silico analysis (homology searching, hydropathy plotting, and codon usage assessment) strongly suggested that Wzy is an O-antigen polymerase whose function is to catalyze the addition of newly synthesized O-antigen repeating units to a glycolipid consisting of lipid A, inner core polysaccharide, and one repeating unit of the O-polysaccharide (O-PS). To characterize the function of the Wzy protein, a non-polar deletion mutant of wzy was generated by allelic replacement, and the banding pattern of O-PS was observed by immunoblot analysis of whole-cell lysates obtained by SDS-PAGE and stained with an O-PS-specific monoclonal antibody. These immunoblot analyses showed that O-PS of the wzy mutant expresses only one repeating unit of O-antigen. Further biochemical characterization of the subcellular fractions of the wzy mutant demonstrated that (as is characteristic of O-antigen polymerase mutants) the low molecular weight O-antigen accumulates in the periplasm of the mutant. Site-directed mutagenesis based on protein homology and topology, which was carried out to locate a catalytic residue of the protein, showed that modification of specific residues (Gly(176), Asp(177), Gly(323), and Tyr(324)) leads to a loss of O-PS polymerization. Topology models indicate that these amino acids most likely lie in close proximity on the bacterial surface.

  8. B-Cell Epitopes in GroEL of Francisella tularensis

    PubMed Central

    Lu, Zhaohua; Rynkiewicz, Michael J.; Madico, Guillermo; Li, Sheng; Yang, Chiou-Ying; Perkins, Hillary M.; Sompuram, Seshi R.; Kodela, Vani; Liu, Tong; Morris, Timothy; Wang, Daphne; Roche, Marly I.; Seaton, Barbara A.; Sharon, Jacqueline

    2014-01-01

    The chaperonin protein GroEL, also known as heat shock protein 60 (Hsp60), is a prominent antigen in the human and mouse antibody response to the facultative intracellular bacterium Francisella tularensis (Ft), the causative agent of tularemia. In addition to its presumed cytoplasmic location, FtGroEL has been reported to be a potential component of the bacterial surface and to be released from the bacteria. In the current study, 13 IgG2a and one IgG3 mouse monoclonal antibodies (mAbs) specific for FtGroEL were classified into eleven unique groups based on shared VH-VL germline genes, and seven crossblocking profiles revealing at least three non-overlapping epitope areas in competition ELISA. In a mouse model of respiratory tularemia with the highly pathogenic Ft type A strain SchuS4, the Ab64 and N200 IgG2a mAbs, which block each other’s binding to and are sensitive to the same two point mutations in FtGroEL, reduced bacterial burden indicating that they target protective GroEL B-cell epitopes. The Ab64 and N200 epitopes, as well as those of three other mAbs with different crossblocking profiles, Ab53, N3, and N30, were mapped by hydrogen/deuterium exchange–mass spectrometry (DXMS) and visualized on a homology model of FtGroEL. This model was further supported by its experimentally-validated computational docking to the X-ray crystal structures of Ab64 and Ab53 Fabs. The structural analysis and DXMS profiles of the Ab64 and N200 mAbs suggest that their protective effects may be due to induction or stabilization of a conformational change in FtGroEL. PMID:24968190

  9. Francisella tularensis novicida proteomic and transcriptomic data integration and annotation based on semantic web technologies

    PubMed Central

    Anwar, Nadia; Hunt, Ela

    2009-01-01

    Background This paper summarises the lessons and experiences gained from a case study of the application of semantic web technologies to the integration of data from the bacterial species Francisella tularensis novicida (Fn). Fn data sources are disparate and heterogeneous, as multiple laboratories across the world, using multiple technologies, perform experiments to understand the mechanism of virulence. It is hard to integrate these data sources in a flexible manner that allows new experimental data to be added and compared when required. Results Public domain data sources were combined in RDF. Using this connected graph of database cross references, we extended the annotations of an experimental data set by superimposing onto it the annotation graph. Identifiers used in the experimental data automatically resolved and the data acquired annotations in the rest of the RDF graph. This happened without the expensive manual annotation that would normally be required to produce these links. This graph of resolved identifiers was then used to combine two experimental data sets, a proteomics experiment and a transcriptomic experiment studying the mechanism of virulence through the comparison of wildtype Fn with an avirulent mutant strain. Conclusion We produced a graph of Fn cross references which enabled the combination of two experimental datasets. Through combination of these data we are able to perform queries that compare the results of the two experiments. We found that data are easily combined in RDF and that experimental results are easily compared when the data are integrated. We conclude that semantic data integration offers a convenient, simple and flexible solution to the integration of published and unpublished experimental data. PMID:19796400

  10. Interleukin-6 Is Essential for Primary Resistance to Francisella tularensis Live Vaccine Strain Infection

    PubMed Central

    Kurtz, Sherry L.; Foreman, Oded; Bosio, Catharine M.; Anver, Miriam R.

    2013-01-01

    We employed Francisella tularensis live vaccine strain (LVS) to study mechanisms of protective immunity against intracellular pathogens and, specifically, to understand protective correlates. One potential molecular correlate identified previously was interleukin-6 (IL-6), a cytokine with pleotropic roles in immunity, including influences on T and B cell functions. Given its role as an immune modulator and the correlation with successful anti-LVS vaccination, we examined the role IL-6 plays in the host response to LVS. IL-6-deficient (IL-6 knockout [KO]) mice infected with LVS intradermally or intranasally or anti-IL-6-treated mice, showed greatly reduced 50% lethal doses compared to wild-type (WT) mice. Increased susceptibility was not due to altered splenic immune cell populations during infection or decreased serum antibody production, as IL-6 KO mice had similar compositions of each compared to WT mice. Although LVS-infected IL-6 KO mice produced much less serum amyloid A and haptoglobin (two acute-phase proteins) than WT mice, there were no other obvious pathophysiological differences between LVS-infected WT and IL-6 KO mice. IL-6 KO or WT mice that survived primary LVS infection also survived a high-dose LVS secondary challenge. Using an in vitro overlay assay that measured T cell activation, cytokine production, and abilities of primed splenocytes to control intracellular LVS growth, we found that IL-6 KO total splenocytes or purified T cells were slightly defective in controlling intracellular LVS growth but were equivalent in cytokine production. Taken together, IL-6 is an integral part of a successful immune response to primary LVS infection, but its exact role in precipitating adaptive immunity remains elusive. PMID:23230288

  11. Structural Analysis of a Protective Epitope of the Francisella tularensis O-Polysaccharide†

    PubMed Central

    Rynkiewicz, Michael J.; Lu, Zhaohua; Hui, Julia H.; Sharon, Jacqueline; Seaton, Barbara A.

    2012-01-01

    Francisella tularensis (Ft), the Gram negative facultative intracellular bacterium that causes tularemia, is considered a biothreat due to its high infectivity and the high mortality rate of respiratory disease. The Ft lipopolysaccharide (Ft LPS) is thought to be a main protective antigen in mice and humans, and we have previously demonstrated the protective effect of the Ft LPS-specific monoclonal antibody Ab52 in a mouse model of respiratory tularemia. Immunochemical characterization has shown that the epitope recognized by Ab52 is contained within two internal repeat units of the O-polysaccharide [O-antigen (OAg)] of Ft LPS. To further localize the Ab52 epitope and understand the molecular interactions between the antibody and the saccharide, we now solved the X-ray crystal structure of the Fab fragment of Ab52 and derived an antibody-antigen complex using molecular docking. The docked complex, refined through energy minimization, reveals an antigen binding site in the shape of a large canyon with a central pocket that accommodates a V-shaped epitope consisting of six sugar residues, α-D-GalpNAcAN(1→4)-α-D-GalpNAcAN(1→3)-β-D-QuipNAc(1→2)-β-D-Quip4NFm(1→4)-α-D-GalpNAcAN(1→4)-α-D-GalpNAcAN. These results inform the development of vaccines and immunotherapeutic/immunoprophylactic antibodies against Ft by suggesting a desired topology for antibody binding to internal epitopes of Ft LPS. This is the first report of an X-ray crystal structure of a monoclonal antibody that targets a protective Ft B cell epitope. PMID:22747335

  12. IL-12Rβ2 is critical for survival of primary Francisella tularensis LVS infection

    PubMed Central

    Melillo, Amanda A.; Foreman, Oded; Elkins, Karen L.

    2013-01-01

    Using a panel of vaccines that provided different degrees of protection, we previously identified the IL-12 receptor subunit β2 as a mediator, whose relative expression correlated with strength of protection against secondary lethal challenge of vaccinated mice with an intracellular bacterium, the LVS of Francisella tularensis. The present study therefore tested the hypothesis that IL-12Rβ2 is an important mediator in resistance to LVS by directly examining its role during infections. IL-12Rβ2 KO mice were highly susceptible to LVS primary infection, administered i.d. or i.n. The LD50 of LVS infection of KO mice were 2 logs lower than those of WT mice, regardless of route. Five days after infection with LVS, bacterial organ burdens were significantly higher in IL-12Rβ2 KO mice. IL-12Rβ2 KO mice infected with lethal doses of LVS had more severe liver pathology, including significant increases in the liver enzymes ALT and AST. Despite decreased levels of IFN-γ, LVS-vaccinated IL-12Rβ2 KO mice survived large lethal LVS secondary challenge. Consistent with in vivo protection, in vitro intramacrophage LVS growth was well-controlled in cocultures containing WT or IL-12Rβ2 KO LVS-immune splenocytes. Thus, survival of secondary LVS challenge was not strictly dependent on IL-12Rβ2. However, IL-12Rβ2 is important in parenteral and mucosal host resistance to primary LVS infection and in the ability of WT mice to clear LVS infection and serves to restrict liver damage. PMID:23440500

  13. T-bet Regulates Immunity to Francisella tularensis Live Vaccine Strain Infection, Particularly in Lungs

    PubMed Central

    Melillo, Amanda A.; Foreman, Oded; Bosio, Catharine M.

    2014-01-01

    Upregulation of the transcription factor T-bet is correlated with the strength of protection against secondary challenge with the live vaccine strain (LVS) of Francisella tularensis. Thus, to determine if this mediator had direct consequences in immunity to LVS, we examined its role in infection. Despite substantial in vivo gamma interferon (IFN-γ) levels, T-bet-knockout (KO) mice infected intradermally (i.d.) or intranasally (i.n.) with LVS succumbed to infection with doses 2 log units less than those required for their wild-type (WT) counterparts, and exhibited significantly increased bacterial burdens in the lung and spleen. Lungs of LVS-infected T-bet-KO mice contained fewer lymphocytes and more neutrophils and interleukin-17 than WT mice. LVS-vaccinated T-bet-KO mice survived lethal LVS intraperitoneal secondary challenge but not high doses of LVS i.n. challenge, independently of the route of vaccination. Immune T lymphocytes from the spleens of i.d. LVS-vaccinated WT or KO mice controlled intracellular bacterial replication in an in vitro coculture system, but cultures with T-bet-KO splenocyte supernatants contained less IFN-γ and increased amounts of tumor necrosis factor alpha. In contrast, immune T-bet-KO lung lymphocytes were greatly impaired in controlling intramacrophage growth of LVS; this functional defect is the likely mechanism underpinning the lack of respiratory protection. Taken together, T-bet is important in host resistance to primary LVS infection and i.n. secondary challenge. Thus, T-bet represents a true, useful correlate for immunity to LVS. PMID:24421047

  14. Cytosolic clearance of replication-deficient mutants reveals Francisella tularensis interactions with the autophagic pathway.

    PubMed

    Chong, Audrey; Wehrly, Tara D; Child, Robert; Hansen, Bryan; Hwang, Seungmin; Virgin, Herbert W; Celli, Jean

    2012-09-01

    Cytosolic bacterial pathogens must evade intracellular innate immune recognition and clearance systems such as autophagy to ensure their survival and proliferation. The intracellular cycle of the bacterium Francisella tularensis is characterized by rapid phagosomal escape followed by extensive proliferation in the macrophage cytoplasm. Cytosolic replication, but not phagosomal escape, requires the locus FTT0369c, which encodes the dipA gene (deficient in intracellular replication A). Here, we show that a replication-deficient, ∆dipA mutant of the prototypical SchuS4 strain is eventually captured from the cytosol of murine and human macrophages into double-membrane vacuoles displaying the late endosomal marker, LAMP1, and the autophagy-associated protein, LC3, coinciding with a reduction in viable intracellular bacteria. Capture of SchuS4ΔdipA was not dipA-specific as other replication-deficient bacteria, such as chloramphenicol-treated SchuS4 and a purine auxotroph mutant SchuS4ΔpurMCD, were similarly targeted to autophagic vacuoles. Vacuoles containing replication-deficient bacteria were labeled with ubiquitin and the autophagy receptors SQSTM1/p62 and NBR1, and their formation was decreased in macrophages from either ATG5-, LC3B- or SQSTM1-deficient mice, indicating recognition by the ubiquitin-SQSTM1-LC3 pathway. While a fraction of both the wild-type and the replication-impaired strains were ubiquitinated and recruited SQSTM1, only the replication-defective strains progressed to autophagic capture, suggesting that wild-type Francisella interferes with the autophagic cascade. Survival of replication-deficient strains was not restored in autophagy-deficient macrophages, as these bacteria died in the cytosol prior to autophagic capture. Collectively, our results demonstrate that replication-impaired strains of Francisella are cleared by autophagy, while replication-competent bacteria seem to interfere with autophagic recognition, therefore ensuring survival

  15. Rapid comparative genomic analysis for clinical microbiology: the Francisella tularensis paradigm.

    PubMed

    La Scola, Bernard; Elkarkouri, Khalid; Li, Wenjun; Wahab, Tara; Fournous, Ghislain; Rolain, Jean-Marc; Biswas, Silpak; Drancourt, Michel; Robert, Catherine; Audic, Stéphane; Löfdahl, Sven; Raoult, Didier

    2008-05-01

    It is critical to avoid delays in detecting strain manipulations, such as the addition/deletion of a gene or modification of genes for increased virulence or antibiotic resistance, using genome analysis during an epidemic outbreak or a bioterrorist attack. Our objective was to evaluate the efficiency of genome analysis in such an emergency context by using contigs produced by pyrosequencing without time-consuming finishing processes and comparing them to available genomes for the same species. For this purpose, we analyzed a clinical isolate of Francisella tularensis subspecies holarctica (strain URFT1), a potential biological weapon, and compared the data obtained with available genomic sequences of other strains. The technique provided 1,800,530 bp of assembled sequences, resulting in 480 contigs. We found by comparative analysis with other strains that all the gaps but one in the genome sequence were caused by repeats. No new genes were found, but a deletion was detected that included three putative genes and part of a fourth gene. The set of 35 candidate LVS virulence attenuation genes was identified, as well as a DNA gyrase mutation associated with quinolone resistance. Selection for variable sequences in URFT1 allowed the design of a strain-specific, highly effective typing system that was applied to 74 strains and six clinical specimens. The analysis presented herein may be completed within approximately 6 wk, a duration compatible with that required by an urgent context. In the bioterrorism context, it allows the rapid detection of strain manipulation, including intentionally added virulence genes and genes that support antibiotic resistance.

  16. Staphylococcus equorum subsp. linens, subsp. nov., a starter culture component for surface ripened semi-hard cheeses.

    PubMed

    Place, Raymond B; Hiestand, Daniel; Gallmann, Hans Rudolf; Teuber, Michael

    2003-03-01

    Two staphylococcal strains, RP29T and RP33, were isolated from the main microflora of a surface ripened Swiss mountain cheese made from raw milk. These two strains were differentiated from the most closely related species Staphylococcus equorum on the basis of DNA-DNA hybridisation and phenotypic characteristics and are proposed as Staphylococcus equorum subsp. linens subsp. nov. They could be distinguished phenotypically from S. equorum by their sensitivity to all 14 tested antibiotics, especially to novobiocin, their incapability to ferment alpha-D-lactose, maltose, sucrose, D-trehalose, D-xylose, L-arabinose, salicin, D-ribose, D-raffinose, D-mannitol, and D-alanine. The GenBank accession numbers for the reference sequences of the 16S rDNA and the hsp60 gene used in this study are AF527483 and AF527484, respectively. 30 tons of a semi-hard Swiss cheese were produced with Staphylococcus equorum subsp. linens DSM 15097T as starter culture component in addition to Debaryomyces hansenii, Geotrichum candidum, Brevibacterium linens, Corynebacterium casei for surface ripened cheeses. The products were sensorically and hygienically perfect. Therefore, Staphylococcus equorum subsp. linens DSM 15097T can be proposed as starter culture component for surface ripened cheeses without any detected antibiotic resistances. The type strain of Staphylococcus equorum subsp. linens is DSM 15097T (CIP 107656T).

  17. The Trichoderma brevicompactum clade: a new lineage with new species, new peptaibiotics and mycotoxins

    USDA-ARS?s Scientific Manuscript database

    A new lineage is recognized in Trichoderma/Hypocrea, the Brevicompactum clade. This clade includes T. brevicompactum and the new species T. arundinaceum, T. turrialbense, T. protrudens and Hypocrea rodmanii. With the exception of H. rodmanii, all members of this clade produce trichothecenes harzian...

  18. Utilization of an unstable plasmid and the I-SceI endonuclease to generate routine markerless deletion mutants in Francisella tularensis

    PubMed Central

    Horzempa, Joseph; Shanks, Robert M.Q.; Brown, Matthew J.; Russo, Brian C.; O’Dee, Dawn M.; Nau, Gerard J.

    2011-01-01

    We engineered an efficient system to make Francisella tularensis deletion mutations using an unstable, poorly maintained plasmid to enhance the likelihood of homologous recombination. For counterselection, we adapted a strategy using I-SceI, which causes a double-stranded break in the integrated suicide vector, forcing a second recombination to mediate allelic replacement. PMID:19879904

  19. Performance of a Handheld PCR Instrument in the Detection of Bacillus anthracis, Francisella tularensis, and Yersinia pestis: Sensitivity, Specificity, and Effect of Interferents on Assay Results

    DTIC Science & Technology

    2004-12-01

    and DNA extracted, in the ECBC BSL-3 facility. Strains of Bacillus spp . were grown for DNA isolation in liquid Nutrient Broth (Difco), prepared...positive/totala Ct valuesb Yersinia enterocolitica 105 0/3 N/A Yersinia rohdei 105 0/3 N/A F. tularensis Schu 4 105 0/3 N/A Pantoea

  20. Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish.

    PubMed

    Sjödin, Andreas; Svensson, Kerstin; Ohrman, Caroline; Ahlinder, Jon; Lindgren, Petter; Duodu, Samuel; Johansson, Anders; Colquhoun, Duncan J; Larsson, Pär; Forsman, Mats

    2012-06-22

    Prior to this study, relatively few strains of Francisella had been genome-sequenced. Previously published Francisella genome sequences were largely restricted to the zoonotic agent F. tularensis. Only limited data were available for other members of the Francisella genus, including F. philomiragia, an opportunistic pathogen of humans, F. noatunensis, a serious pathogen of farmed fish, and other less well described endosymbiotic species. We determined the phylogenetic relationships of all known Francisella species, including some for which the phylogenetic positions were previously uncertain. The genus Francisella could be divided into two main genetic clades: one included F. tularensis, F. novicida, F. hispaniensis and Wolbachia persica, and another included F. philomiragia and F. noatunensis.Some Francisella species were found to have significant recombination frequencies. However, the fish pathogen F. noatunensis subsp. noatunensis was an exception due to it exhibiting a highly clonal population structure similar to the human pathogen F. tularensis. The genus Francisella can be divided into two main genetic clades occupying both terrestrial and marine habitats. However, our analyses suggest that the ancestral Francisella species originated in a marine habitat. The observed genome to genome variation in gene content and IS elements of different species supports the view that similar evolutionary paths of host adaptation developed independently in F. tularensis (infecting mammals) and F. noatunensis subsp. noatunensis (infecting fish).

  1. Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish

    PubMed Central

    2012-01-01

    Background Prior to this study, relatively few strains of Francisella had been genome-sequenced. Previously published Francisella genome sequences were largely restricted to the zoonotic agent F. tularensis. Only limited data were available for other members of the Francisella genus, including F. philomiragia, an opportunistic pathogen of humans, F. noatunensis, a serious pathogen of farmed fish, and other less well described endosymbiotic species. Results We determined the phylogenetic relationships of all known Francisella species, including some for which the phylogenetic positions were previously uncertain. The genus Francisella could be divided into two main genetic clades: one included F. tularensis, F. novicida, F. hispaniensis and Wolbachia persica, and another included F. philomiragia and F. noatunensis. Some Francisella species were found to have significant recombination frequencies. However, the fish pathogen F. noatunensis subsp. noatunensis was an exception due to it exhibiting a highly clonal population structure similar to the human pathogen F. tularensis. Conclusions The genus Francisella can be divided into two main genetic clades occupying both terrestrial and marine habitats. However, our analyses suggest that the ancestral Francisella species originated in a marine habitat. The observed genome to genome variation in gene content and IS elements of different species supports the view that similar evolutionary paths of host adaptation developed independently in F. tularensis (infecting mammals) and F. noatunensis subsp. noatunensis (infecting fish). PMID:22727144

  2. Cross-clade neutralization patterns among HIV-1 strains from the six major clades of the pandemic evaluated and compared in two different models.

    PubMed

    Brown, Bruce K; Wieczorek, Lindsay; Sanders-Buell, Eric; Rosa Borges, Andrew; Robb, Merlin L; Birx, Deborah L; Michael, Nelson L; McCutchan, Francine E; Polonis, Victoria R

    2008-06-05

    A panel of paired primary virus isolates and envelope pseudoviruses from sixty strains representing six HIV-1 clades was tested for neutralization using pooled, clade-specific plasma in two prominently utilized neutralization platforms: a primary isolate assay using peripheral blood mononuclear cells (PBMC) and a pseudovirus assay using a reporter epithelial cell line. Using the PMBC assay, pairing of the antibody pool against homologous clade viruses generated the highest geometric mean neutralizing antibody titer in 4 out of 6 clades tested, and neutralization patterns showed numerous examples of reciprocal cross-recognition between antibody and viruses of specific clade pairs. In the pseudovirus assay, cross-clade neutralization was more limited, with fewer distinct cross-clade relationships evident. The clade C antibody pool was broadly cross-reactive, neutralizing the greatest number of viruses in both assays. These data highlight the importance of the neutralization assay format employed and suggest that clade C envelopes merit further evaluation for the elicitation of broadly neutralizing antibodies.

  3. Persistence of cell-mediated immunity three decades after vaccination with the live vaccine strain of Francisella tularensis

    PubMed Central

    Eneslätt, Kjell; Rietz, Cecilia; Rydén, Patrik; Stöven, Svenja; House, Robert V.; Wolfraim, Lawrence A.; Tärnvik, Arne; Sjöstedt, Anders

    2012-01-01

    Summary The efficacy of many vaccines against intracellular bacteria depends on the generation of cell-mediated immunity, but studies to determine the duration of immunity are usually confounded by re-exposure. The causative agent of tularemia, Francisella tularensis, is rare in most areas and, therefore, tularemia vaccination is an interesting model for studies of the longevity of vaccine-induced cell-mediated immunity. Here lymphocyte proliferation and cytokine production in response to F. tularensis were assayed in two groups of 16 individuals, vaccinated 1-3 or 27-34 years previously. As compared to naïve individuals, vaccinees of both groups showed higher proliferative responses and, out of 17 cytokines assayed, higher levels of MIP-1β, IFN-γ, IL-10, and IL-5 in response to recall stimulation. The responses were very similar in the two groups of vaccinees. A statistical model was developed to predict the immune status of the individuals and by use of two parameters, proliferative responses and levels of IFN-γ, 91.1% of the individuals were correctly classified. Using flow cytometry analysis, we demonstrated that during recall stimulation, expression of IFN-γ by CD4+CCR7+, CD4+CD62L+, CD8+CCR7+, and CD8+CD62L+ cells significantly increased in samples from vaccinated donors. In conclusion, cell-mediated immunity was found to persist three decades after tularemia vaccination without evidence of decline. PMID:21442618

  4. Contribution of FcɛRI-associated vesicles to mast cell-macrophage communication following Francisella tularensis infection.

    PubMed

    Rodriguez, Annette R; Yu, Jieh-Juen; Navara, Christopher; Chambers, James P; Guentzel, M Neal; Arulanandam, Bernard P

    2016-10-01

    Understanding innate immune intercellular communication following microbial infection remains a key biological issue. Using live cell imaging, we demonstrate that mast cells actively extend cellular projections to sample the macrophage periphery during Francisella tularensis LVS infection. Mast cell MHCII(hi) expression was elevated from less than 1% to 13% during LVS infection. Direct contact during co-culture with macrophages further increased mast cell MHCII(hi) expression to approximately 87%. Confocal analyses of the cellular perimeter revealed mast cell caspase-1 was localized in close proximity with FcɛRI in uninfected mast cells, and repositioned to clustered regions upon LVS infection. Importantly, mast cell FcɛRI-encompassed vesicles are transferred to macrophages by trogocytosis, and macrophage caspase-1 expression is further up-regulated upon direct contact with mast cells. Our study reveals direct cellular interactions between innate cells that may impact the function of caspase-1, a known sensor of microbial danger and requirement for innate defense against many pathogenic microbes including F. tularensis.

  5. Cat-bite-induced Francisella tularensis infection with a false-positive serological reaction for Bartonella quintana

    PubMed Central

    Petersson, Evelina

    2017-01-01

    Introduction. Tularaemia is caused by infection with Francisella tularensistransmitted via direct contact with an infected hare carcass or indirectly through the bites of vectors, but may be cat-bite-associated as well. Medical history and reliable diagnostic analysis are important in order to differentiate it from other cat-associated infections, e.g. Bartonella spp. Case presentation. A healthy 56-year-old man was examined because of a cat-bite-associated ulceroglandular wound on his right thumb. Nineteen days after the cat bite occurred, a serology test was positive for anti-Bartonella quintana, but negative for anti-F. tularensis. Since Bartonella infections are rare in Sweden, another serology test was analysed 2 weeks later with a positive result for anti-F. tularensis. The patient was treated with doxycycline for 14 days and recovered. The patient was re-sampled after 18 months to obtain a convalescent sample. The acute and the convalescent samples were both analysed at a reference centre, with negative results for anti-Bartonella spp. this time. Conclusion. This case is enlightening about the importance of extending the medical history and re-sampling the patient for antibody detection when the clinical suspicion of cat-bite-associated tularaemia is high. The false-positive result for anti-B. quintana antibodies may have been due to technical issues with the assay, cross-reactivity or both. PMID:28348802

  6. Anion inhibitors of the β-carbonic anhydrase from the pathogenic bacterium responsible of tularemia, Francisella tularensis.

    PubMed

    Del Prete, Sonia; Vullo, Daniela; Osman, Sameh M; AlOthman, Zeid; Donald, William A; Winum, Jean-Yves; Supuran, Claudiu T; Capasso, Clemente

    2017-09-01

    A β-class carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium Francisella tularensis (FtuβCA) was cloned and purified, and the anion inhibition profile was investigated. Based on the measured kinetic parameters for the enzyme catalyzed CO2 hydration reaction (kcat of 9.8×10(5)s(-1) and a kcat/KM of 8.9×10(7)M(-1)s(-1)), FtuβCA is a highly effective enzyme. The activity of FtuβCA was not inhibited by a range of anions that do not typically coordinate Zn(II) effectively, including perchlorate, tetrafluoroborate, and hexafluorophosphate. Surprisingly, some anions which generally complex well with many cations, including Zn(II), also did not effectively inhibit FtuβCA, e.g., fluoride, cyanide, azide, nitrite, bisulphite, sulfate, tellurate, perrhenate, perrhuthenate, and peroxydisulfate. However, the most effective inhibitors were in the range of 90-94µM (sulfamide, sulfamic acid, phenylarsonic and phenylboronic acid). N,N-Diethyldithiocarbamate (KI of 0.31mM) was a moderately potent inhibitor. As Francisella tularensis is the causative agent of tularemia, the discovery of compounds that can interfere with the life cycle of this pathogen may result in novel opportunities to fight antibiotic drug resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Differential MicroRNA Analyses of Burkholderia pseudomallei- and Francisella tularensis-Exposed hPBMCs Reveal Potential Biomarkers

    PubMed Central

    Herrera-Galeano, J. Enrique; Frey, Kenneth G.; Schully, Kevin L.; Luu, Truong V.; Pesce, John; Mokashi, Vishwesh P.; Keane-Myers, Andrea M.; Bishop-Lilly, Kimberly A.

    2017-01-01

    Increasing evidence that microRNAs (miRNAs) play important roles in the immune response against infectious agents suggests that miRNA might be exploitable as signatures of exposure to specific infectious agents. In order to identify potential early miRNA biomarkers of bacterial infections, human peripheral blood mononuclear cells (hPBMCs) were exposed to two select agents, Burkholderia pseudomallei K96243 and Francisella tularensis SHU S4, as well as to the nonpathogenic control Escherichia coli DH5α. RNA samples were harvested at three early time points, 30, 60, and 120 minutes postexposure, then sequenced. RNAseq analyses identified 87 miRNAs to be differentially expressed (DE) in a linear fashion. Of these, 31 miRNAs were tested using the miScript miRNA qPCR assay. Through RNAseq identification and qPCR validation, we identified differentially expressed miRNA species that may be involved in the early response to bacterial infections. Based upon its upregulation at early time points postexposure in two different individuals, hsa-mir-30c-5p is a miRNA species that could be studied further as a potential biomarker for exposure to these gram-negative intracellular pathogens. Gene ontology functional analyses demonstrated that programmed cell death is the first ranking biological process associated with miRNAs that are upregulated in F. tularensis-exposed hPBMCs. PMID:28791299

  8. Detection of Francisella tularensis in Alaskan Mosquitoes (Diptera: Culicidae) and Assessment of a Laboratory Model for Transmission

    PubMed Central

    TRIEBENBACH, ALISON N.; VOGL, SIGRID J.; LOTSPEICH-COLE, LEDA; SIKES, DEREK S.; HAPP, GEORGE M.; HUEFFER, KARSTEN

    2013-01-01

    Tularemia is a zoonotic disease caused by the Category A bioterrorism agent Francisella tularensis. In Scandinavia, tularemia transmission by mosquitoes has been widely cited in the literature. We tested >2,500 mosquitoes captured in Alaska and found Francisella DNA in 30% of pooled samples. To examine the potential for transmission of Francisella by mosquitoes, we developed a mosquito model of Francisella infection. Larvae of Anopheles gambiae Giles and Aedes aegypti (L.) readily ingest F. tularensis but do not efficiently transfer infective doses of the bacterium to the pupal or adult stage. After a bloodmeal containing Francisella, adult female An. gambiae and Ae. aegypti retained detectable levels of Francisella DNA for 3 d, but when they took a second bloodmeal, the mammalian host was not infected. This study suggests that although Francisella DNA can be detected in a significant portion of wild-caught mosquitoes, transmission of Francisella is either very inefficient or is species dependent for the Francisella strain or the arthropod vector. PMID:20695280

  9. Denitrification capabilities of two biological phosphorus removal sludges dominated by different “Candidatus Accumulibacter” clades

    PubMed Central

    Flowers, Jason J.; He, Shaomei; Yilmaz, Safak; Noguera, Daniel R.; McMahon, Katherine D.

    2010-01-01

    SUMMARY The capability of “Candidatus Accumulibacter” to use nitrate as an electron acceptor for phosphorus uptake was investigated using two activated sludge communities. The two communities were enriched in Accumulibacter clade IA and clade IIA, respectively. By performing a series of batch experiments, we found that clade IA was able to couple nitrate reduction with phosphorus uptake, but clade IIA could not. These results agree with a previously proposed hypothesis that different populations of Accumulibacter have different nitrate reduction capabilities, and they will help to understand the ecological roles that these two clades provide. PMID:20808723

  10. Lonsdalea quercina subsp. populi subsp. nov., isolated from bark canker of poplar trees.

    PubMed

    Tóth, Tímea; Lakatos, Tamás; Koltay, András

    2013-06-01

    Seven Gram-negative bacterial strains were isolated from oozing bark canker of poplar (Populus × euramericana) trees in Hungary. They showed high (>98.3%) 16S rRNA gene sequence similarity to Lonsdalea quercina; however, they differed from this species in several phenotypic characteristics. Multilocus sequence analysis based on three housekeeping genes (gyrB, atpD and infB) revealed, and DNA-DNA hybridization analysis confirmed, that this group of bacterial strains forms a distinct lineage within the species Lonsdalea quercina. A detailed study of phenotypic and physiological characteristics confirmed the separation of isolates from poplars from other subspecies of L. quercina; therefore, a novel subspecies, Lonsdalea quercina subsp. populi, type strain NY060(T) (=DSM 25466(T)=NCAIM B 02483(T)), is proposed.

  11. Spore-forming Serratia marcescens subsp. sakuensis subsp. nov., isolated from a domestic wastewater treatment tank.

    PubMed

    Ajithkumar, Bindu; Ajithkumar, Vasudevan P; Iriye, Ryozo; Doi, Yukio; Sakai, Tadashi

    2003-01-01

    A strain (KREDT) that formed endospores and produced the pigment prodigiosin was isolated from activated sludge. The presence of spores in cells of strain KREDT was evident upon electron microscopy examination, heat treatment and the detection of dipicolinic acid in the cells. Biochemical characteristics, and 16S rDNA sequence and DNA-DNA homology data identified strain KREDT as Serratia marcescens. The major respiratory quinone of strain KREDT was found to be ubiquinone Q-8. The formation of endospores by Gram-negative bacteria has not been observed previously, and has never been reported in any species of Serratia. Here, it is shown that strain KREDT (JCM 11315T = CIP 107489T) represents a novel subspecies of S. marcescens, for which the name Serratia marcescens subsp. sakuensis is proposed.

  12. Juvenile skeletogenesis in anciently diverged sea urchin clades.

    PubMed

    Gao, Feng; Thompson, Jeffrey R; Petsios, Elizabeth; Erkenbrack, Eric; Moats, Rex A; Bottjer, David J; Davidson, Eric H

    2015-04-01

    Mechanistic understanding of evolutionary divergence in animal body plans devolves from analysis of those developmental processes that, in forms descendant from a common ancestor, are responsible for their morphological differences. The last common ancestor of the two extant subclasses of sea urchins, i.e., euechinoids and cidaroids, existed well before the Permian/Triassic extinction (252 mya). Subsequent evolutionary divergence of these clades offers in principle a rare opportunity to solve the developmental regulatory events underlying a defined evolutionary divergence process. Thus (i) there is an excellent and fairly dense (if yet incompletely analyzed) fossil record; (ii) cladistically confined features of the skeletal structures of modern euechinoid and cidaroid sea urchins are preserved in fossils of ancestral forms; (iii) euechinoids and cidaroids are among current laboratory model systems in molecular developmental biology (here Strongylocentrotus purpuratus [Sp] and Eucidaris tribuloides [Et]); (iv) skeletogenic specification in sea urchins is uncommonly well understood at the causal level of interactions of regulatory genes with one another, and with known skeletogenic effector genes, providing a ready arsenal of available molecular tools. Here we focus on differences in test and perignathic girdle skeletal morphology that distinguish all modern euechinoid from all modern cidaroid sea urchins. We demonstrate distinct canonical test and girdle morphologies in juveniles of both species by use of SEM and X-ray microtomography. Among the sharply distinct morphological features of these clades are the internal skeletal structures of the perignathic girdle to which attach homologous muscles utilized for retraction and protraction of Aristotles׳ lantern and its teeth. We demonstrate that these structures develop de novo between one and four weeks after metamorphosis. In order to study the underlying developmental processes, a method of section whole mount in

  13. Origin and Dispersal History of Two Colonial Ascidian Clades in the Botryllus schlosseri Species Complex

    PubMed Central

    Nydam, Marie L.

    2017-01-01

    Human-induced global warming and species introductions are rapidly altering the composition and functioning of Earth’s marine ecosystems. Ascidians (Phylum Chordata, Subphylum Tunicata, Class Ascidiacea) are likely to play an increasingly greater role in marine communities. The colonial ascidian B. schlosseri is a cryptic species complex comprising five genetically divergent clades (A-E). Clade A is a global species, and Clade E has so far been identified in European waters only. Using the largest mitochondrial cytochrome oxidase I datasets yet assembled, we determine the origin and dispersal history of these species. Nucleotide diversity and Approximate Bayesian Computation analyses support a Pacific origin for Clade A, with two likely dispersal scenarios that both show the northwestern Atlantic populations establishing early in the history of the species. Both Discrete Phylogeographic Analysis and Approximate Bayesian Computation support an origin of Clade E on the French side of the English Channel. An unsampled lineage evolved from the French lineage, which reflects the conclusion from the median joining network that not all Clade E lineages have been sampled. This unsampled lineage gave rise to the haplotypes on the English side of the English Channel, which were the ancestors to the Mediterranean and Bay of Biscay populations. Clade E has a wider geographic range than previously thought, and shows evidence of recent range expansion. Both Clade A and Clade E should be considered widespread species: Clade A globally and Clade E within Europe. PMID:28107476

  14. Overexpressed Proteins in Hypervirulent Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 Compared to E. coli O157:H7 EDL933 Clade 3 Strain

    PubMed Central

    Amigo, Natalia; Zhang, Qi; Amadio, Ariel; Zhang, Qunjie; Silva, Wanderson M.; Cui, Baiyuan; Chen, Zhongjian; Larzabal, Mariano; Bei, Jinlong; Cataldi, Angel

    2016-01-01

    Escherichia coli O157:H7 is responsible for severe diarrhea and hemolytic uremic syndrome (HUS), and predominantly affects children under 5 years. The major virulence traits are Shiga toxins, necessary to develop HUS and the Type III Secretion System (T3SS) through which bacteria translocate effector proteins directly into the host cell. By SNPs typing, E. coli O157:H7 was separated into nine different clades. Clade 8 and clade 6 strains were more frequently associated with severe disease and HUS. In this study, we aimed to identify differentially expressed proteins in two strains of E. coli O157:H7 (clade 8 and clade 6), obtained from cattle and compared them with the well characterized reference EDL933 strain (clade 3). Clade 8 and clade 6 strains show enhanced pathogenicity in a mouse model and virulence-related properties. Proteins were extracted and analyzed using the TMT-6plex labeling strategy associated with two dimensional liquid chromatography and mass spectrometry in tandem. We detected 2241 proteins in the cell extract and 1787 proteins in the culture supernatants. Attention was focused on the proteins related to virulence, overexpressed in clade 6 and 8 strains compared to EDL933 strain. The proteins relevant overexpressed in clade 8 strain were the curli protein CsgC, a transcriptional activator (PchE), phage proteins, Stx2, FlgM and FlgD, a dienelactone hydrolase, CheW and CheY, and the SPATE protease EspP. For clade 6 strain, a high overexpression of phage proteins was detected, mostly from Stx2 encoding phage, including Stx2, flagellin and the protease TagA, EDL933_p0016, dienelactone hydrolase, and Haemolysin A, amongst others with unknown function. Some of these proteins were analyzed by RT-qPCR to corroborate the proteomic data. Clade 6 and clade 8 strains showed enhanced transcription of 10 out of 12 genes compared to EDL933. These results may provide new insights in E. coli O157:H7 mechanisms of pathogenesis. PMID:27880834

  15. Overexpressed Proteins in Hypervirulent Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 Compared to E. coli O157:H7 EDL933 Clade 3 Strain.

    PubMed

    Amigo, Natalia; Zhang, Qi; Amadio, Ariel; Zhang, Qunjie; Silva, Wanderson M; Cui, Baiyuan; Chen, Zhongjian; Larzabal, Mariano; Bei, Jinlong; Cataldi, Angel

    2016-01-01

    Escherichia coli O157:H7 is responsible for severe diarrhea and hemolytic uremic syndrome (HUS), and predominantly affects children under 5 years. The major virulence traits are Shiga toxins, necessary to develop HUS and the Type III Secretion System (T3SS) through which bacteria translocate effector proteins directly into the host cell. By SNPs typing, E. coli O157:H7 was separated into nine different clades. Clade 8 and clade 6 strains were more frequently associated with severe disease and HUS. In this study, we aimed to identify differentially expressed proteins in two strains of E. coli O157:H7 (clade 8 and clade 6), obtained from cattle and compared them with the well characterized reference EDL933 strain (clade 3). Clade 8 and clade 6 strains show enhanced pathogenicity in a mouse model and virulence-related properties. Proteins were extracted and analyzed using the TMT-6plex labeling strategy associated with two dimensional liquid chromatography and mass spectrometry in tandem. We detected 2241 proteins in the cell extract and 1787 proteins in the culture supernatants. Attention was focused on the proteins related to virulence, overexpressed in clade 6 and 8 strains compared to EDL933 strain. The proteins relevant overexpressed in clade 8 strain were the curli protein CsgC, a transcriptional activator (PchE), phage proteins, Stx2, FlgM and FlgD, a dienelactone hydrolase, CheW and CheY, and the SPATE protease EspP. For clade 6 strain, a high overexpression of phage proteins was detected, mostly from Stx2 encoding phage, including Stx2, flagellin and the protease TagA, EDL933_p0016, dienelactone hydrolase, and Haemolysin A, amongst others with unknown function. Some of these proteins were analyzed by RT-qPCR to corroborate the proteomic data. Clade 6 and clade 8 strains showed enhanced transcription of 10 out of 12 genes compared to EDL933. These results may provide new insights in E. coli O157:H7 mechanisms of pathogenesis.

  16. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov.

    PubMed

    Iversen, Carol; Mullane, Niall; McCardell, Barbara; Tall, Ben D; Lehner, Angelika; Fanning, Séamus; Stephan, Roger; Joosten, Han

    2008-06-01

    [Enterobacter] sakazakii is an opportunistic pathogen that can cause infections in neonates. This study further clarifies the taxonomy of isolates described as [E.] sakazakii and completes the formal description of the proposed reclassification of these organisms as novel species and subspecies within a proposed novel genus, Cronobacter gen. nov. [E.] sakazakii was first defined in 1980, however recent polyphasic taxonomic analysis has determined that this group of organisms consists of several genomospecies. In this study, the phenotypic descriptions of the proposed novel species are expanded using Biotype 100 and Biolog Phenotype MicroArray data. Further DNA-DNA hybridization experiments showed that malonate-positive strains within the [E.] sakazakii genomospecies represent a distinct species, not a subspecies. DNA-DNA hybridizations also determined that phenotypically different strains within the proposed species, Cronobacter dublinensis sp. nov., belong to the same species and can be considered as novel subspecies. Based on these analyses, the following alternative classifications are proposed: Cronobacter sakazakii gen. nov., comb. nov. [type strain ATCC 29544(T) (=NCTC 11467(T))]; Cronobacter malonaticus sp. nov. [type strain CDC 1058-77(T) (=LMG 23826(T)=DSM 18702(T))]; Cronobacter turicensis sp. nov. [type strain z3032(T) (=LMG 23827(T)=DSM 18703(T))]; Cronobacter muytjensii sp. nov. [type strain ATCC 51329(T) (=CIP 103581(T))]; Cronobacter dublinensis sp. nov. [type strain DES187(T) (=LMG 23823(T)=DSM 18705(T))]; Cronobacter dublinensis subsp. dublinensis subsp. nov. [type strain DES187(T) (=LMG 23823(T)=DSM 18705(T))]; Cronobacter dublinensis subsp. lausannensis subsp. nov. [type strain E515(T) (=LMG 23824=DSM 18706(T))], and Cronobacter dublinensis subsp. lactaridi subsp. nov. [type strain E464(T) (=LMG 23825(T)=DSM 18707(T))].

  17. Crystal Structures of the Histidine Acid Phosphatase from Francisella tularensis Provide Insight into Substrate Recognition

    SciTech Connect

    Singh, Harkewal; Felts, Richard L.; Schuermann, Jonathan P.; Reilly, Thomas J.; Tanner, John J.

    2009-12-01

    Histidine acid phosphatases catalyze the transfer of a phosphoryl group from phosphomonoesters to water at acidic pH using an active-site histidine. The histidine acid phosphatase from the category A pathogen Francisella tularensis (FtHAP) has been implicated in intramacrophage survival and virulence, motivating interest in understanding the structure and mechanism of this enzyme. Here, we report a structure-based study of ligand recognition by FtHAP. The 1.70-{angstrom}-resolution structure of FtHAP complexed with the competitive inhibitor L(+)-tartrate was solved using single-wavelength anomalous diffraction phasing. Structures of the ligand-free enzyme and the complex with inorganic phosphate were determined at resolutions of 1.85 and 1.70 {angstrom}, respectively. The structure of the Asp261Ala mutant enzyme complexed with the substrate 3'-AMP was determined at 1.50 {angstrom} resolution to gain insight into substrate recognition. FtHAP exhibits a two-domain fold similar to that of human prostatic acid phosphatase, consisting of an {alpha}/{beta} core domain and a smaller domain that caps the core domain. The structures show that the core domain supplies the phosphoryl binding site, catalytic histidine (His17), and an aspartic acid residue (Asp261) that protonates the leaving group, while the cap domain contributes residues that enforce substrate preference. FtHAP and human prostatic acid phosphatase differ in the orientation of the crucial first helix of the cap domain, implying differences in the substrate preferences of the two enzymes. 3'-AMP binds in one end of a 15-{angstrom}-long tunnel, with the adenine clamped between Phe23 and Tyr135, and the ribose 2'-hydroxyl interacting with Gln132. The importance of the clamp is confirmed with site-directed mutagenesis; mutation of Phe23 and Tyr135 individually to Ala increases K{sub m} by factors of 7 and 10, respectively. The structural data are consistent with a role for FtHAP in scavenging phosphate from small

  18. Description of Teunomyces gen. nov. for the Candida kruisii clade, Suhomyces gen. nov. for the Candida tanzawaensis clade and Suhomyces kilbournensis sp. nov.

    USDA-ARS?s Scientific Manuscript database

    DNA sequence analysis has shown that species of the Candida kruisii clade and species of the C. tanzawaensis clade represent phylogenetically circumscribed genera, which are described as Teunomyces gen. nov., type species T. kruisii, and Suhomyces gen. nov., type species S. tanzawaensis. Many of the...

  19. Laminaria japonica Extract, an Inhibitor of Clavibater michiganense Subsp. Sepedonicum

    PubMed Central

    Cai, Jin; Feng, Jia; Xie, Shulian; Wang, Feipeng; Xu, Qiufeng

    2014-01-01

    Bacterial ring rot of potato is one of the most serious potato plant and tuber diseases. Laminaria japonica extract was investigated for its antimicrobial activity against Clavibater michiganense subsp. sepedonicum (Spieckermann & Kotthoff) Davis et al., the causative agent of bacterial ring rot of potato. The results showed that the optimum extraction conditions of antimicrobial substances from L. japonica were an extraction temperature of 80°C, an extraction time of 12 h, and a solid to liquid ratio of 1∶25. Active compounds of L. japonica were isolated by solvent partition, thin layer chromatography (TLC) and column chromatography. All nineteen fractionations had antimicrobial activities against C. michiganense subsp. sepedonicum, while Fractionation three (Fr.3) had the highest (P<0.05) antimicrobial activity. Chemical composition analysis identified a total of 26 components in Fr.3. The main constituents of Fr.3 were alkanes (80.97%), esters (5.24%), acids (4.87%) and alcohols (2.21%). Antimicrobial activity of Fr.3 against C. michiganense subsp. sepedonicum could be attributed to its ability to damage the cell wall and cell membrane, induce the production of reactive oxygen species (ROS), increase cytosolic Ca2+ concentration, inhibit the glycolytic pathway (EMP) and tricarboxylic acid (TCA) cycle, inhibit protein and nucleic acid synthesis, and disrupt the normal cycle of DNA replication. These findings indicate that L. japonica extracts have potential for inhibiting C. michiganense subsp. sepedonicum. PMID:24714388

  20. Cellular Interactions in Mycobacterium avium subsp. paratuberculosis Infection

    USDA-ARS?s Scientific Manuscript database

    The study of host immune responses to Mycobacterium avium subsp. paratuberculosis (MAP) is complicated by a number of factors, including the protracted nature of the disease and the stealthy nature of the pathogen. Noted as one of the more fastidious mycobacteria, infection with MAP is often chara...

  1. Mycobacterium avium subsp. paratuberculosis infection, immunology and pathology of livestock

    USDA-ARS?s Scientific Manuscript database

    Mycobacterium avium subsp. paratuberculosis (MAP) infection in ruminants leads to a chronic and progressive enteric disease (Johne’s disease) that results in loss of intestinal function, poor body condition, and eventual death. Transmission is primarily through a fecal-oral route in neonates but con...

  2. Complete genome sequence of Clavibacter michiganensis subsp. insidiosus

    USDA-ARS?s Scientific Manuscript database

    Clavibacter michiganensis subsp. insidiosus (Cmi) causes bacterial wilt disease of alfalfa (Medicago sativa L.) and can also infect the model legume plant M. truncatula. The virulence mechanisms of Cmi are yet to be identified, hampered by the lack of efficient mutagenesis tools as well as by the la...

  3. Description and history of Syringa oblata subsp. oblata 'Frank Meyer'

    USDA-ARS?s Scientific Manuscript database

    An accession of Syringa oblata subsp. oblata (PI 23031) collected in China by Frank Meyer in 1908was given the name ‘Frank Meyer’ by Father Fiala in 1988. To be established according to the International Code of Nomenclature for Cultivated Plants, a new cultivar name must be accompanied by a descrip...

  4. A new flavan-3-ol from Artocarpus nitidus subsp. lingnanensis.

    PubMed

    Ti, Hui-Hui; Lin, Li-Dong; Ding, Wen-Bing; Wei, Xiao-Yi

    2012-01-01

    Further investigation on the stems of Artocarpus nitidus subsp. lingnanensis led to the isolation and characterization of a new flavan-3-ol, named artoflavanocoumarin, along with three known compounds (+)-catechin, (+)-afzelechin 3-O-α-L-rhamnoside, and (+)-catechin 3-O-α-L-rhamnoside. Their structures were elucidated on the basis of spectroscopic data.

  5. Laminaria japonica Extract, an Inhibitor of Clavibater michiganense Subsp. Sepedonicum.

    PubMed

    Cai, Jin; Feng, Jia; Xie, Shulian; Wang, Feipeng; Xu, Qiufeng

    2014-01-01

    Bacterial ring rot of potato is one of the most serious potato plant and tuber diseases. Laminaria japonica extract was investigated for its antimicrobial activity against Clavibater michiganense subsp. sepedonicum (Spieckermann & Kotthoff) Davis et al., the causative agent of bacterial ring rot of potato. The results showed that the optimum extraction conditions of antimicrobial substances from L. japonica were an extraction temperature of 80°C, an extraction time of 12 h, and a solid to liquid ratio of 1∶25. Active compounds of L. japonica were isolated by solvent partition, thin layer chromatography (TLC) and column chromatography. All nineteen fractionations had antimicrobial activities against C. michiganense subsp. sepedonicum, while Fractionation three (Fr.3) had the highest (P<0.05) antimicrobial activity. Chemical composition analysis identified a total of 26 components in Fr.3. The main constituents of Fr.3 were alkanes (80.97%), esters (5.24%), acids (4.87%) and alcohols (2.21%). Antimicrobial activity of Fr.3 against C. michiganense subsp. sepedonicum could be attributed to its ability to damage the cell wall and cell membrane, induce the production of reactive oxygen species (ROS), increase cytosolic Ca2+ concentration, inhibit the glycolytic pathway (EMP) and tricarboxylic acid (TCA) cycle, inhibit protein and nucleic acid synthesis, and disrupt the normal cycle of DNA replication. These findings indicate that L. japonica extracts have potential for inhibiting C. michiganense subsp. sepedonicum.

  6. Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans

    SciTech Connect

    Ingvorsen, K.; Hojer-Pederson, B.; Godtfredsen, S.E. )

    1991-06-01

    A cyanide-metabolizing bacterium, strain DF3, isolated from soil was identified as Alcaligenes xylosoxidans subsp. denitrificans. Whole cells and cell extracts of strain DF3 catalyzed hydrolysis of cyanide to formate and ammonia (HCN + 2H{sub 2}O {r arrow} HCOOH + NH{sub 3}) without forming formamide as a free intermediate. The cyanide-hydrolyzing activity was inducibly produced in cells during growth in cyanide-containing media. Cyanate (OCN{sup {minus}}) and a wide range of aliphatic and aromatic nitriles were not hydrolyzed by intact cells of A. xylosoxidans subsp. denitrificans DF3. Strain DF3 hydrolyzed cyanide with great efficacy. Thus, by using resting induced cells at a concentration of 11.3 mg (dry weight) per ml, the cyanide concentration could be reduced from 0.97 M (approximately 25,220 ppm) to less than 77 nM (approximately 0.002 ppm) in 55 h. Enzyme purification established that cyanide hydrolysis by A. xylosoxidans subsp. denitrificans DF3 was due to a single intracellular enzyme. The molecular mass of the active enzyme (purity, {gt}97% as determined by amino acid sequencing) was estimated to be {gt}300,000 Da. The cyanide-hydrolyzing enzyme of A. xylosoxidans subsp. denitrificans DF3 was tentatively named cyanidase to distinguish it from known nitrilases (EC 3.5.5.1) which act on organic nitriles.

  7. Characterization of Lactococcus lactis subsp. lactis isolated from surface waters.

    PubMed

    Svec, P; Sedlácek, I

    2008-01-01

    A group of nine presumptive enterococci was isolated on enterococcal selective media Slanetz-Bartley agar and/or kanamycin-esculin-azide agar during a screening of Enterococcus spp. in surface waters. All strains formed a homogeneous cluster separated from all enterococcal species using rep-PCR fingerprinting with the (GTG)5 primer but they matched fingerprints revealed by Lactococcus lactis subsp. lactis representatives. Further identification using extensive biotyping and automated ribotyping with EcoRI (RiboPrinter microbial characterization system) confirmed all strains as L. lactis subsp. lactis in full correspondence with the (GTG)5-PCR. We demonstrated that L. lactis subsp. lactis strains occur in different surface waters and can be confused with enterococci due to their positive growth on selective enterococcal media as well as positive results in tests commonly used for identification of the genus Enterococcus (esculin hydrolysis, acetoin and pyrrolidonyl arylamidase production, growth at 10 degrees C and in 6.5% NaCl). The (GTG)5-PCR fingerprinting was revealed as a reliable and fast method for the identification of L. lactis subsp lactis while automated ribotyping with EcoRI proved to be a good tool for intrasubspecies typing purposes.

  8. Streptococcus dysgalactiae subsp. equisimilis Bacteremia, Finland, 1995–2004

    PubMed Central

    Vähäkuopus, Susanna; Vuopio-Varkila, Jaana; Vuento, Risto; Syrjänen, Jaana

    2010-01-01

    We conducted a retrospective population-based study of 140 episodes of Streptococcus dysgalactiae subsp. equisimilis bacteremia occurring in Finland during 1995–2004. Rare emm types were associated with more severe disease and increased mortality rates. Skin and soft tissue infections were more frequent clinical signs among cases caused by common emm types. PMID:20409380

  9. Streptococcus dysgalactiae subsp. equisimilis Bacteremia, Finland, 1995-2004.

    PubMed

    Rantala, Sari; Vahakuopus, Susanna; Vuopio-Varkila, Jaana; Vuento, Risto; Syrjanen, Jaana

    2010-05-01

    We conducted a retrospective population-based study of 140 episodes of Streptococcus dysgalactiae subsp. equisimilis bacteremia occurring in Finland during 1995-2004. Rare emm types were associated with more severe disease and increased mortality rates. Skin and soft tissue infections were more frequent clinical signs among cases caused by common emm types.

  10. Complete Genome Sequence of Beijerinckia indica subsp. indica▿

    PubMed Central

    Tamas, Ivica; Dedysh, Svetlana N.; Liesack, Werner; Stott, Matthew B.; Alam, Maqsudul; Murrell, J. Colin; Dunfield, Peter F.

    2010-01-01

    Beijerinckia indica subsp. indica is an aerobic, acidophilic, exopolysaccharide-producing, N2-fixing soil bacterium. It is a generalist chemoorganotroph that is phylogenetically closely related to facultative and obligate methanotrophs of the genera Methylocella and Methylocapsa. Here we report the full genome sequence of this bacterium. PMID:20601475

  11. Linear plasmid in the genome of Clavibacter michiganensis subsp. sepedonicus.

    PubMed

    Brown, Susan E; Knudson, Dennis L; Ishimaru, Carol A

    2002-05-01

    Contour-clamped homogeneous electric field gel analysis of genomic DNA of the plant pathogen Clavibacter michiganensis subsp. sepedonicus revealed the presence of a previously unreported extrachromosomal element. This new element was demonstrated to be a linear plasmid. Of 11 strains evaluated, all contained either a 90-kb (pCSL1) or a 140-kb (pCSL2) linear plasmid.

  12. A Proteomic Study of Clavibacter Michiganensis Subsp. Michiganensis Culture Supernatants.

    PubMed

    Hiery, Eva; Poetsch, Ansgar; Moosbauer, Tanja; Amin, Bushra; Hofmann, Jörg; Burkovski, Andreas

    2015-11-12

    Clavibacter michiganensis, subsp. michiganensis is a Gram-positive plant pathogen infecting tomato (Solanum lycopersicum). Despite a considerable economic importance due to significant losses of infected plants and fruits, knowledge about virulence factors of C. michiganensis subsp. michiganensis and host-pathogen interactions on a molecular level are rather limited. In the study presented here, the proteome of culture supernatants from C. michiganensis subsp. michiganensis NCPPB382 was analyzed. In total, 1872 proteins were identified in M9 and 1766 proteins in xylem mimicking medium. Filtration of supernatants before protein precipitation reduced these to 1276 proteins in M9 and 976 proteins in the xylem mimicking medium culture filtrate. The results obtained indicate that C. michiganensis subsp. michiganensis reacts to a sucrose- and glucose-depleted medium similar to the xylem sap by utilizing amino acids and host cell polymers as well as their degradation products, mainly peptides, amino acids and various C5 and C6 sugars. Interestingly, the bacterium expresses the previously described virulence factors Pat-1 and CelA not exclusively after host cell contact in planta but already in M9 minimal and xylem mimicking medium.

  13. Linear Plasmid in the Genome of Clavibacter michiganensis subsp. sepedonicus

    PubMed Central

    Brown, Susan E.; Knudson, Dennis L.; Ishimaru, Carol A.

    2002-01-01

    Contour-clamped homogeneous electric field gel analysis of genomic DNA of the plant pathogen Clavibacter michiganensis subsp. sepedonicus revealed the presence of a previously unreported extrachromosomal element. This new element was demonstrated to be a linear plasmid. Of 11 strains evaluated, all contained either a 90-kb (pCSL1) or a 140-kb (pCSL2) linear plasmid. PMID:11976316

  14. Genome Sequence of Bacillus thuringiensis subsp. kurstaki Strain HD-1.

    PubMed

    Day, Michael; Ibrahim, Mohamed; Dyer, David; Bulla, Lee

    2014-07-17

    We report here the complete genome sequence of Bacillus thuringiensis subsp. kurstaki strain HD-1, which serves as the primary U.S. reference standard for all commercial insecticidal formulations of B. thuringiensis manufactured around the world. Copyright © 2014 Day et al.

  15. Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans.

    PubMed Central

    Ingvorsen, K; Højer-Pedersen, B; Godtfredsen, S E

    1991-01-01

    A cyanide-metabolizing bacterium, strain DF3, isolated from soil was identified as Alcaligenes xylosoxidans subsp. denitrificans. Whole cells and cell extracts of strain DF3 catalyzed hydrolysis of cyanide to formate and ammonia (HCN + 2H2O----HCOOH + NH3) without forming formamide as a free intermediate. The cyanide-hydrolyzing activity was inducibly produced in cells during growth in cyanide-containing media. Cyanate (OCN-) and a wide range of aliphatic and aromatic nitriles were not hydrolyzed by intact cells of A. xylosoxidans subsp. denitrificans DF3. Strain DF3 hydrolyzed cyanide with great efficacy. Thus, by using resting induced cells at a concentration of 11.3 mg (dry weight) per ml, the cyanide concentration could be reduced from 0.97 M (approximately 25,220 ppm) to less than 77 nM (approximately 0.002 ppm) in 55 h. Enzyme purification established that cyanide hydrolysis by A. xylosoxidans subsp. denitrificans DF3 was due to a single intracellular enzyme. The soluble enzyme was purified approximately 160-fold, and the first 25 NH2-terminal amino acids were determined by automated Edman degradation. The molecular mass of the active enzyme (purity, greater than 97% as determined by amino acid sequencing) was estimated to be greater than 300,000 Da. The cyanide-hydrolyzing enzyme of A. xylosoxidans subsp. denitrificans DF3 was tentatively named cyanidase to distinguish it from known nitrilases (EC 3.5.5.1) which act on organic nitriles. Images PMID:1872607

  16. Bartonella vinsonii subsp. berkhoffii endocarditis in a dog from Saskatchewan

    PubMed Central

    Cockwill, Ken R.; Taylor, Susan M.; Philibert, Helene M.; Breitschwerdt, Edward B.; Maggi, Ricardo G.

    2007-01-01

    A dog referred for lameness was diagnosed with culture-negative endocarditis. Antibodies to Bartonella spp. were detected. Antibiotic treatment resulted in transient clinical improvement, but the dog developed cardiac failure and was euthanized. Bartonella vinsonii subsp. berkhoffii genotype IV was identified within the aortic heart valve lesions by PCR amplification and DNA sequencing. PMID:17824328

  17. Streptococcus equi subsp. zooepidemicus Infections Associated with Guinea Pigs

    PubMed Central

    Young, Andrea; Levine, Seth J.; Garvin, Joseph P.; Brown, Susan; Turner, Lauren; Fritzinger, Angela; Gertz, Robert E.; Murphy, Julia M.; Vogt, Marshall; Beall, Bernard

    2015-01-01

    Streptococcus equi subsp. zooepidemicus is a known zoonotic pathogen. In this public health investigation conducted in Virginia, USA, in 2013, we identified a probable family cluster of S. zooepidemicus cases linked epidemiologically and genetically to infected guinea pigs. S. zooepidemicus infections should be considered in patients who have severe clinical illness and report guinea pig exposure. PMID:25531424

  18. Staphylococcus aureus subsp. anaerobius strain ST1464 genome sequence

    PubMed Central

    Elbir, Haitham; Robert, Catherine; Nguyen, Ti Thien; Gimenez, Grégory; El Sanousi, Sulieman M.; Flock, Jan-Ingmar; Raoult, Didier

    2013-01-01

    Staphylococcus aureus subsp. anaerobius is responsible for Morel's disease in animals and a cause of abscess in humans. It is characterized by a microaerophilic growth, contrary to the other strains of S. aureus. The 2,604,446-bp genome (32.7% GC content) of S. anaerobius ST1464 comprises one chromosome and no plasmids. The chromosome contains 2,660 open reading frames (ORFs), 49 tRNAs and three complete rRNAs, forming one complete operon. The size of ORFs ranges between 100 to 4,600 bp except for two ORFs of 6,417 and 7,173 bp encoding segregation ATPase and non-ribosomal peptide synthase, respectively. The chromosome harbors Staphylococcus phage 2638A genome and incomplete Staphylococcus phage genome PT1028, but no detectable CRISPRS. The antibiotic resistance gene for tetracycline was found although Staphylococcus aureus subsp. anaerobius is susceptible to tetracycline in-vitro. Intact oxygen detoxification genes encode superoxide dismutase and cytochrome quinol oxidase whereas the catalase gene is impaired by a stop codon. Based on the genome, in-silico multilocus sequence typing indicates that S. aureus subsp. anaerobius emerged as a clone separated from all other S. aureus strains, illustrating host-adaptation linked to missing functions. Availability of S. aureus subsp. anaerobius genome could prompt the development of post-genomic tools for its rapid discrimination from S. aureus. PMID:24501641

  19. A Proteomic Study of Clavibacter Michiganensis Subsp. Michiganensis Culture Supernatants

    PubMed Central

    Hiery, Eva; Poetsch, Ansgar; Moosbauer, Tanja; Amin, Bushra; Hofmann, Jörg; Burkovski, Andreas

    2015-01-01

    Clavibacter michiganensis, subsp. michiganensis is a Gram-positive plant pathogen infecting tomato (Solanum lycopersicum). Despite a considerable economic importance due to significant losses of infected plants and fruits, knowledge about virulence factors of C. michiganensis subsp. michiganensis and host-pathogen interactions on a molecular level are rather limited. In the study presented here, the proteome of culture supernatants from C. michiganensis subsp. michiganensis NCPPB382 was analyzed. In total, 1872 proteins were identified in M9 and 1766 proteins in xylem mimicking medium. Filtration of supernatants before protein precipitation reduced these to 1276 proteins in M9 and 976 proteins in the xylem mimicking medium culture filtrate. The results obtained indicate that C. michiganensis subsp. michiganensis reacts to a sucrose- and glucose-depleted medium similar to the xylem sap by utilizing amino acids and host cell polymers as well as their degradation products, mainly peptides, amino acids and various C5 and C6 sugars. Interestingly, the bacterium expresses the previously described virulence factors Pat-1 and CelA not exclusively after host cell contact in planta but already in M9 minimal and xylem mimicking medium. PMID:28248277

  20. A Spontaneous Mutation in kdsD, a Biosynthesis Gene for 3-Deoxy-D-manno-Octulosonic Acid, Occurred in a Ciprofloxacin Resistant Strain of Francisella tularensis and Causes a High Level of Attenuation in Murine Models of Tularemia

    DTIC Science & Technology

    2016-08-30

    words) 37 Francisella tularensis is a gram–negative facultative intracellular bacterial pathogen that 38 can infect many mammalian species...tularensis by determining its phenotypic characteristics 45 and sequencing the chromosome to determine additional genetic alterations that occurred...53). Ciprofloxacin targets the bacterial type II enzymes, DNA gyrase (GyrA and GyrB) and 107 topoisomerase IV (ParC and ParE) (54, 55) and functions

  1. Decoupled form and function in disparate herbivorous dinosaur clades

    NASA Astrophysics Data System (ADS)

    Lautenschlager, Stephan; Brassey, Charlotte A.; Button, David J.; Barrett, Paul M.

    2016-05-01

    Convergent evolution, the acquisition of morphologically similar traits in unrelated taxa due to similar functional demands or environmental factors, is a common phenomenon in the animal kingdom. Consequently, the occurrence of similar form is used routinely to address fundamental questions in morphofunctional research and to infer function in fossils. However, such qualitative assessments can be misleading and it is essential to test form/function relationships quantitatively. The parallel occurrence of a suite of morphologically convergent craniodental characteristics in three herbivorous, phylogenetically disparate dinosaur clades (Sauropodomorpha, Ornithischia, Theropoda) provides an ideal test case. A combination of computational biomechanical models (Finite Element Analysis, Multibody Dynamics Analysis) demonstrate that despite a high degree of morphological similarity between representative taxa (Plateosaurus engelhardti, Stegosaurus stenops, Erlikosaurus andrewsi) from these clades, their biomechanical behaviours are notably different and difficult to predict on the basis of form alone. These functional differences likely reflect dietary specialisations, demonstrating the value of quantitative biomechanical approaches when evaluating form/function relationships in extinct taxa.

  2. Five novel species in the Lodderomyces clade associated with insects.

    PubMed

    Liu, Xiao-Jing; Yi, Ze-Hao; Ren, Yong-Cheng; Li, Ying; Hui, Feng-Li

    2016-11-01

    During a survey of yeasts associated with insects in Central China's natural ecosystems, 116 yeast strains were isolated from the gut of adult insects in two families and from one beetle larva. Among the yeasts isolated in this study, 102 strains were identified as 20 known species in the class Saccharomycetes. The remaining 14 strains were identified as representing five novel species in the Lodderomyces clade based on the combined sequences of the D1/D2 domains of the LSU rRNA gene and the internal transcribed spacer (ITS) regions, as well as other taxonomic characteristics. Lodderomyces beijingensis sp. nov. (type strain CBS 14171T=CICC 33087T=NYNU 15764T) formed a clade with Lodderomyces elongisporus and Candida oxycetoniae. The other four novel species, namely Candida margitis sp. nov. (type strain CBS 14175T=CICC 33091T=NYNU 15857T), Candida xiaguanensis sp. nov. (type strain CBS 13923T=CICC 33056T=NYNU 1488T), Candida parachauliodis sp. nov. (type strain CBS 13928T=CICC 33058T=NYNU 14959T) and Candida coleopterorum sp. nov. (type strain CBS 14180T=CICC 33084T=NYNU 1582T), showed close relationships to the species near Candida parapsilosis, Candida sakaeoensis, Candida chauliodes and Candida corydalis. Descriptions of these novel yeast species are provided as well as discussions of their ecology in relation to their insect hosts.

  3. Decoupled form and function in disparate herbivorous dinosaur clades

    PubMed Central

    Lautenschlager, Stephan; Brassey, Charlotte A.; Button, David J.; Barrett, Paul M.

    2016-01-01

    Convergent evolution, the acquisition of morphologically similar traits in unrelated taxa due to similar functional demands or environmental factors, is a common phenomenon in the animal kingdom. Consequently, the occurrence of similar form is used routinely to address fundamental questions in morphofunctional research and to infer function in fossils. However, such qualitative assessments can be misleading and it is essential to test form/function relationships quantitatively. The parallel occurrence of a suite of morphologically convergent craniodental characteristics in three herbivorous, phylogenetically disparate dinosaur clades (Sauropodomorpha, Ornithischia, Theropoda) provides an ideal test case. A combination of computational biomechanical models (Finite Element Analysis, Multibody Dynamics Analysis) demonstrate that despite a high degree of morphological similarity between representative taxa (Plateosaurus engelhardti, Stegosaurus stenops, Erlikosaurus andrewsi) from these clades, their biomechanical behaviours are notably different and difficult to predict on the basis of form alone. These functional differences likely reflect dietary specialisations, demonstrating the value of quantitative biomechanical approaches when evaluating form/function relationships in extinct taxa. PMID:27199098

  4. The genetic code of the fungal CTG clade.

    PubMed

    Santos, Manuel A S; Gomes, Ana C; Santos, Maria C; Carreto, Laura C; Moura, Gabriela R

    2011-01-01

    Genetic code alterations discovered over the last 40 years in bacteria and eukaryotes invalidate the hypothesis that the code is universal and frozen. Mitochondria of various yeast species translate the UGA stop codon as tryptophan (Trp) and leucine (Leu) CUN codons (N = any nucleotide) as threonine (Thr) and fungal CTG clade species reassigned Leu CUG codons to serine and translate them ambiguously in their cytoplasms. This unique sense-to-sense genetic code alteration is mediated by a Ser-tRNA containing a Leu 5'-CAG-3'anticodon (ser-tRNA(CAG)), which is recognized and charged with Ser (~97%) by the seryl-tRNA synthetase (SerRS) and with Leu (~3%) by the leucyl-tRNA synthetase (LeuRS). This unusual tRNA appeared 272 ± 25 million years ago and had a profound impact on the evolution of the CTG clade species. Here, we review the most recent results and concepts arising from the study of this codon reassignment and we highlight how its study is changing our views of the evolution of the genetic code.

  5. Direct evidence for the Homo-Pan clade.

    PubMed

    Wimmer, Rainer; Kirsch, Stefan; Rappold, Gudrun A; Schempp, Werner

    2002-01-01

    For a long time, the evolutionary relationship between human and African apes, the 'trichotomy problem', has been debated with strong differences in opinion and interpretation. Statistical analyses of different molecular DNA data sets have been carried out and have primarily supported a Homo-Pan clade. An alternative way to address this question is by the comparison of evolutionarily relevant chromosomal breakpoints. Here, we made use of a P1-derived artificial chromosome (PAC)/bacterial artificial chromosome (BAC) contig spanning approximately 2.8 Mb on the long arm of the human Y chromosome, to comparatively map individual PAC clones to chromosomes from great apes, gibbons, and two species of Old World monkeys by fluorescence in-situ hybridization. During our search for evolutionary breakpoints on the Y chromosome, it transpired that a transposition of an approximately 100-kb DNA fragment from chromosome 1 onto the Y chromosome must have occurred in a common ancestor of human, chimpanzee and bonobo. Only the Y chromosomes of these three species contain the chromosome-1-derived fragment; it could not be detected on the Y chromosomes of gorillas or the other primates examined. Thus, this shared derived (synapomorphic) trait provides clear evidence for a Homo-Pan clade independent of DNA sequence analysis.

  6. Decoupled form and function in disparate herbivorous dinosaur clades.

    PubMed

    Lautenschlager, Stephan; Brassey, Charlotte A; Button, David J; Barrett, Paul M

    2016-05-20

    Convergent evolution, the acquisition of morphologically similar traits in unrelated taxa due to similar functional demands or environmental factors, is a common phenomenon in the animal kingdom. Consequently, the occurrence of similar form is used routinely to address fundamental questions in morphofunctional research and to infer function in fossils. However, such qualitative assessments can be misleading and it is essential to test form/function relationships quantitatively. The parallel occurrence of a suite of morphologically convergent craniodental characteristics in three herbivorous, phylogenetically disparate dinosaur clades (Sauropodomorpha, Ornithischia, Theropoda) provides an ideal test case. A combination of computational biomechanical models (Finite Element Analysis, Multibody Dynamics Analysis) demonstrate that despite a high degree of morphological similarity between representative taxa (Plateosaurus engelhardti, Stegosaurus stenops, Erlikosaurus andrewsi) from these clades, their biomechanical behaviours are notably different and difficult to predict on the basis of form alone. These functional differences likely reflect dietary specialisations, demonstrating the value of quantitative biomechanical approaches when evaluating form/function relationships in extinct taxa.

  7. Distinct Processes Drive Diversification in Different Clades of Gesneriaceae.

    PubMed

    Roalson, Eric H; Roberts, Wade R

    2016-07-01

    Using a time-calibrated phylogenetic hypothesis including 768 Gesneriaceae species (out of [Formula: see text]3300 species) and more than 29,000 aligned bases from 26 gene regions, we test Gesneriaceae for diversification rate shifts and the possible proximal drivers of these shifts: geographic distributions, growth forms, and pollination syndromes. Bayesian Analysis of Macroevolutionary Mixtures analyses found five significant rate shifts in Beslerieae, core Nematanthus, core Columneinae, core Streptocarpus, and Pacific Cyrtandra These rate shifts correspond with shifts in diversification rates, as inferred by Binary State Speciation and Extinction Model and Geographic State Speciation and Extinction model, associated with hummingbird pollination, epiphytism, unifoliate growth, and geographic area. Our results suggest that diversification processes are extremely variable across Gesneriaceae clades with different combinations of characters influencing diversification rates in different clades. Diversification patterns between New and Old World lineages show dramatic differences, suggesting that the processes of diversification in Gesneriaceae are very different in these two geographic regions. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Deep phylogenetic incongruence in the angiosperm clade Rosidae.

    PubMed

    Sun, Miao; Soltis, Douglas E; Soltis, Pamela S; Zhu, Xinyu; Burleigh, J Gordon; Chen, Zhiduan

    2015-02-01

    Analysis of large data sets can help resolve difficult nodes in the tree of life and also reveal complex evolutionary histories. The placement of the Celastrales-Oxalidales-Malpighiales (COM) clade within Rosidae remains one of the most confounding phylogenetic questions in angiosperms, with previous analyses placing it with either Fabidae or Malvidae. To elucidate the position of COM, we assembled multi-gene matrices of chloroplast, mitochondrial, and nuclear sequences, as well as large single- and multi-copy nuclear gene data sets. Analyses of multi-gene data sets demonstrate conflict between the chloroplast and both nuclear and mitochondrial data sets, and the results are robust to various character-coding and data-exclusion treatments. Analyses of single- and multi-copy nuclear loci indicate that most loci support the placement of COM with Malvidae, fewer loci support COM with Fabidae, and almost no loci support COM outside a clade of Fabidae and Malvidae. Although incomplete lineage sorting and ancient introgressive hybridization remain as plausible explanations for the conflict among loci, more complete sampling is necessary to evaluate these hypotheses fully. Our results emphasize the importance of genomic data sets for revealing deep incongruence and complex patterns of evolution.

  9. Novel Temperate Phages of Salmonella enterica subsp. salamae and subsp. diarizonae and Their Activity against Pathogenic S. enterica subsp. enterica Isolates.

    PubMed

    Mikalová, Lenka; Bosák, Juraj; Hříbková, Hana; Dědičová, Daniela; Benada, Oldřich; Šmarda, Jan; Šmajs, David

    2017-01-01

    Forty strains of Salmonella enterica (S. enterica) subspecies salamae (II), arizonae (IIIa), diarizonae (IIIb), and houtenae (IV) were isolated from human or environmental samples and tested for bacteriophage production. Production of bacteriophages was observed in 15 S. enterica strains (37.5%) belonging to either the subspecies salamae (8 strains) or diarizonae (7 strains). Activity of phages was tested against 52 pathogenic S. enterica subsp. enterica isolates and showed that phages produced by subsp. salamae had broader activity against pathogenic salmonellae compared to phages from the subsp. diarizonae. All 15 phages were analyzed using PCR amplification of phage-specific regions and 9 different amplification profiles were identified. Five phages (SEN1, SEN4, SEN5, SEN22, and SEN34) were completely sequenced and classified as temperate phages. Phages SEN4 and SEN5 were genetically identical, thus representing a single phage type (i.e. SEN4/5). SEN1 and SEN4/5 fit into the group of P2-like phages, while the SEN22 phage showed sequence relatedness to P22-like phages. Interestingly, while phage SEN34 was genetically distantly related to Lambda-like phages (Siphoviridae), it had the morphology of the Myoviridae family. Based on sequence analysis and electron microscopy, phages SEN1 and SEN4/5 were members of the Myoviridae family and phage SEN22 belonged to the Podoviridae family.

  10. Novel Temperate Phages of Salmonella enterica subsp. salamae and subsp. diarizonae and Their Activity against Pathogenic S. enterica subsp. enterica Isolates

    PubMed Central

    Hříbková, Hana; Dědičová, Daniela; Benada, Oldřich; Šmarda, Jan; Šmajs, David

    2017-01-01

    Forty strains of Salmonella enterica (S. enterica) subspecies salamae (II), arizonae (IIIa), diarizonae (IIIb), and houtenae (IV) were isolated from human or environmental samples and tested for bacteriophage production. Production of bacteriophages was observed in 15 S. enterica strains (37.5%) belonging to either the subspecies salamae (8 strains) or diarizonae (7 strains). Activity of phages was tested against 52 pathogenic S. enterica subsp. enterica isolates and showed that phages produced by subsp. salamae had broader activity against pathogenic salmonellae compared to phages from the subsp. diarizonae. All 15 phages were analyzed using PCR amplification of phage-specific regions and 9 different amplification profiles were identified. Five phages (SEN1, SEN4, SEN5, SEN22, and SEN34) were completely sequenced and classified as temperate phages. Phages SEN4 and SEN5 were genetically identical, thus representing a single phage type (i.e. SEN4/5). SEN1 and SEN4/5 fit into the group of P2-like phages, while the SEN22 phage showed sequence relatedness to P22-like phages. Interestingly, while phage SEN34 was genetically distantly related to Lambda-like phages (Siphoviridae), it had the morphology of the Myoviridae family. Based on sequence analysis and electron microscopy, phages SEN1 and SEN4/5 were members of the Myoviridae family and phage SEN22 belonged to the Podoviridae family. PMID:28118395

  11. [Evaluation of a newly-developed ready-to-use commercial PCR kit for the molecular diagnosis of Francisella tularensis].

    PubMed

    Celebi, Bekir; Kılıç, Selçuk; Yeşilyurt, Murat; Acar, Bülent

    2014-01-01

    Tularemia is a rare zoonotic infection, however, considerations of tularemia as a biological weapon and several recent major epidemics have caused renewed interest in this disease. Laboratory diagnosis of tularemia is done in the presence of appropriate epidemiological data, by the demonstration of specific antibodies in the serum samples obtained with 1-2 week intervals following the development of symptoms. It is an a posteriori analysis with limited use for prompt diagnosis of the patient during the early symptomatic phase and deliberate release of biological agents. Limitations in both culture and serology have led to substantial research in the development of new diagnostic techniques. Several PCR methods for tularemia have been developed, both for conventional and real-time polymerase chain reaction (rtPCR). However, PCR methods are hard to be deployed in remote endemic areas that lack sufficient infrastructure. Recently a "Toolbox" which includes all instruments, equipments and solutions [DNA4U® Bacteria Genomic DNA Isolation Kit, CubeCycler® (Personal Thermal Cycler), PCR4U® Bioterrorism Agents Detection Kit, electrophoresis tank, power supply, ready-agarose gel and electrophoresis buffer] necessary for conventional PCR, was developed for the identification of bioterrorism agents in the field. In this study we aimed to evaluate the efficacy of a ready-to-use commercial PCR kit (Nanobiz, Ankara, Turkey) targeting the tul4 gene, for the diagnosis of tularemia and to compare the results with an in-house conventional PCR and a rtPCR test. We applied the assay to a collection of four F.tularensis standard strains, 15 field isolates (from humans, animals, water), 13 non-Francisella strains which are phylogenetically related to F.tularensis and a total of 60 lymph node aspirates obtained from suspected tularemia cases. Compared to the in-house PCR method used in our laboratory, the sensitivity, specificity, positive and negative predictive values of Nanobiz PCR

  12. Whole genome sequences of three Clade 3 Clostridium difficile strains carrying binary toxin genes in China

    PubMed Central

    Chen, Rong; Feng, Yu; Wang, Xiaohui; Yang, Jingyu; Zhang, Xiaoxia; Lü, Xiaoju; Zong, Zhiyong

    2017-01-01

    Clostridium difficile consists of six clades but studies on Clade 3 are limited. Here, we report genome sequences of three Clade 3 C. difficile strains carrying genes encoding toxin A and B and the binary toxin. Isolates 103 and 133 (both of ST5) and isolate 106 (ST285) were recovered from three ICU patients. Whole genome sequencing using HiSeq 2500 revealed 4.1-Mb genomes with 28–29% GC content. There were ≥1,104 SNP between the isolates, suggesting they were not of a single clone. The toxin A and B gene-carrying pathogenicity locus (PaLoc) of the three isolates were identical and had the insertion of the transposon Tn6218. The genetic components of PaLoc among Clade 3 strains were the same with only a few nucleotide mutations and deletions/insertions, suggesting that the Tn6218 insertion might have occurred before the divergence within Clade 3. The binary toxin-genes carrying CDT locus (CdtLoc) of the three isolates were identical and were highly similar to those of other Clade 3 strains, but were more divergent from those of other clades. In conclusion, Clade 3 has an unusual clade-specific PaLoc characteristic of a Tn6218 insertion which appears to be the main feature to distinguish Clade 3 from other C. difficile. PMID:28262711

  13. Variable depth distribution of Trichodesmium clades in the North Pacific Ocean.

    PubMed

    Rouco, Mónica; Haley, Sheean T; Alexander, Harriet; Wilson, Samuel T; Karl, David M; Dyhrman, Sonya T

    2016-12-01

    Populations of nitrogen-fixing cyanobacteria in the genus Trichodesmium are critical to ocean ecosystems, yet predicting patterns of Trichodesmium distribution and their role in ocean biogeochemistry is an ongoing challenge. This may, in part, be due to differences in the physiological ecology of Trichodesmium species, which are not typically considered independently in field studies. In this study, the abundance of the two dominant Trichodesmium clades (Clade I and Clade III) was investigated during a survey at Station ALOHA in the North Pacific Subtropical Gyre (NPSG) using a clade-specific qPCR approach. While Clade I dominated the Trichodesmium community, Clade III abundance was >50% in some NPSG samples, in contrast to the western North Atlantic where Clade III abundance was always <10%. Clade I populations were distributed down to depths >80 m, while Clade III populations were only observed in the mixed layer and found to be significantly correlated with depth and temperature. These data suggest active niche partitioning of Trichodesmium species from different clades, as has been observed in other cyanobacteria. Tracking the distribution and physiology of Trichodesmium spp. would contribute to better predictions of the physiological ecology of this biogeochemically important genus in the present and future ocean. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Whole genome sequences of three Clade 3 Clostridium difficile strains carrying binary toxin genes in China.

    PubMed

    Chen, Rong; Feng, Yu; Wang, Xiaohui; Yang, Jingyu; Zhang, Xiaoxia; Lü, Xiaoju; Zong, Zhiyong

    2017-03-06

    Clostridium difficile consists of six clades but studies on Clade 3 are limited. Here, we report genome sequences of three Clade 3 C. difficile strains carrying genes encoding toxin A and B and the binary toxin. Isolates 103 and 133 (both of ST5) and isolate 106 (ST285) were recovered from three ICU patients. Whole genome sequencing using HiSeq 2500 revealed 4.1-Mb genomes with 28-29% GC content. There were ≥1,104 SNP between the isolates, suggesting they were not of a single clone. The toxin A and B gene-carrying pathogenicity locus (PaLoc) of the three isolates were identical and had the insertion of the transposon Tn6218. The genetic components of PaLoc among Clade 3 strains were the same with only a few nucleotide mutations and deletions/insertions, suggesting that the Tn6218 insertion might have occurred before the divergence within Clade 3. The binary toxin-genes carrying CDT locus (CdtLoc) of the three isolates were identical and were highly similar to those of other Clade 3 strains, but were more divergent from those of other clades. In conclusion, Clade 3 has an unusual clade-specific PaLoc characteristic of a Tn6218 insertion which appears to be the main feature to distinguish Clade 3 from other C. difficile.

  15. Evaluation of the FilmArray® system for detection of Bacillus anthracis, Francisella tularensis, and Yersinia pestis

    SciTech Connect

    Seiner, Derrick R.; Colburn, Heather A.; Baird, Cheryl L.; Bartholomew, Rachel A.; Straub, Tim M.; Victry, Kristin D.; Hutchison, Janine R.; Valentine, Nancy B.; Bruckner-Lea, Cindy J.

    2013-04-29

    To evaluate the sensitivity and specificity of the Idaho Technologies FilmArray® Biothreat Panel for the detection of Bacillus anthracis (Ba), Francisella tularensis (Ft), and Yersinia pestis (Yp) DNA, and demonstrate the detection of Ba spores. Methods and Results: DNA samples from Ba, Ft and Yp strains and near-neighbors, and live Ba spores were analyzed using the Biothreat Panel, a multiplexed PCR-based assay for 17 pathogens and toxins. Sensitivity studies with DNA suggest a limit of detection of 250 genome equivalents (GEs) per sample. Furthermore, the correct call of Ft, Yp or Bacillus species was made in 63 of 72 samples tested at 25 GE or less. With samples containing 25 Ba Sterne spores, at least one of the two possible Ba markers were identified in all samples tested. We observed no cross-reactivity with near-neighbor DNAs.

  16. The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling

    PubMed Central

    Bröms, Jeanette E.; Sjöstedt, Anders; Lavander, Moa

    2010-01-01

    Francisella tularensis is a highly virulent gram-negative intracellular bacterium that causes the zoonotic disease tularemia. Essential for its virulence is the ability to multiply within host cells, in particular monocytic cells. The bacterium has developed intricate means to subvert host immune mechanisms and thereby facilitate its intracellular survival by preventing phagolysosomal fusion followed by escape into the cytosol, where it multiplies. Moreover, it targets and manipulates numerous host cell signaling pathways, thereby ameliorating the otherwise bactericidal capacity. Many of the underlying molecular mechanisms still remain unknown but key elements, directly or indirectly responsible for many of the aforementioned mechanisms, rely on the expression of proteins encoded by the Francisella pathogenicity island (FPI), suggested to constitute a type VI secretion system. We here describe the current knowledge regarding the components of the FPI and the roles that have been ascribed to them. PMID:21687753

  17. Francisella tularensis Vaccines Elicit Concurrent Protective T- and B-Cell Immune Responses in BALB/cByJ Mice

    PubMed Central

    De Pascalis, Roberto; Mittereder, Lara; Chou, Alicia Y.; Kennett, Nikki J.; Elkins, Karen L.

    2015-01-01

    In the last decade several new vaccines against Francisella tularensis, which causes tularemia, have been characterized in animal models. Whereas many of these vaccine candidates showed promise, it remains critical to bridge the preclinical studies to human subjects, ideally by taking advantage of correlates of protection. By combining in vitro intramacrophage LVS replication with gene expression data through multivariate analysis, we previously identified and quantified correlative T cell immune responses that discriminate vaccines of different efficacy. Further, using C57BL/6J mice, we demonstrated that the relative levels of gene expression vary according to vaccination route and between cell types from different organs. Here, we extended our studies to the analysis of T cell functions of BALB/cByJ mice to evaluate whether our approach to identify correlates of protection also applies to a Th2 dominant mouse strain. BALB/cByJ mice had higher survival rates than C57BL/6J mice when they were immunized with suboptimal vaccines and challenged. However, splenocytes derived from differentially vaccinated BALB/cByJ mice controlled LVS intramacrophage replication in vitro in a pattern that reflected the hierarchy of protection observed in C57BL/6J mice. In addition, gene expression of selected potential correlates revealed similar patterns in splenocytes of BALB/cByJ and C57BL/6J mice. The different survival patterns were related to B cell functions, not necessarily to specific antibody production, which played an important protective role in BALB/cByJ mice when vaccinated with suboptimal vaccines. Our studies therefore demonstrate the range of mechanisms that operate in the most common mouse strains used for characterization of vaccines against F. tularensis, and illustrate the complexity necessary to define a comprehensive set of correlates. PMID:25973794

  18. Francisella tularensis Vaccines Elicit Concurrent Protective T- and B-Cell Immune Responses in BALB/cByJ Mice.

    PubMed

    De Pascalis, Roberto; Mittereder, Lara; Chou, Alicia Y; Kennett, Nikki J; Elkins, Karen L

    2015-01-01

    In the last decade several new vaccines against Francisella tularensis, which causes tularemia, have been characterized in animal models. Whereas many of these vaccine candidates showed promise, it remains critical to bridge the preclinical studies to human subjects, ideally by taking advantage of correlates of protection. By combining in vitro intramacrophage LVS replication with gene expression data through multivariate analysis, we previously identified and quantified correlative T cell immune responses that discriminate vaccines of different efficacy. Further, using C57BL/6J mice, we demonstrated that the relative levels of gene expression vary according to vaccination route and between cell types from different organs. Here, we extended our studies to the analysis of T cell functions of BALB/cByJ mice to evaluate whether our approach to identify correlates of protection also applies to a Th2 dominant mouse strain. BALB/cByJ mice had higher survival rates than C57BL/6J mice when they were immunized with suboptimal vaccines and challenged. However, splenocytes derived from differentially vaccinated BALB/cByJ mice controlled LVS intramacrophage replication in vitro in a pattern that reflected the hierarchy of protection observed in C57BL/6J mice. In addition, gene expression of selected potential correlates revealed similar patterns in splenocytes of BALB/cByJ and C57BL/6J mice. The different survival patterns were related to B cell functions, not necessarily to specific antibody production, which played an important protective role in BALB/cByJ mice when vaccinated with suboptimal vaccines. Our studies therefore demonstrate the range of mechanisms that operate in the most common mouse strains used for characterization of vaccines against F. tularensis, and illustrate the complexity necessary to define a comprehensive set of correlates.

  19. Rapid Focused Sequencing: A Multiplexed Assay for Simultaneous Detection and Strain Typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis

    PubMed Central

    Zolotova, Anna; Tan, Eugene; Selden, Richard F.

    2013-01-01

    Background The intentional release of Bacillus anthracis in the United States in 2001 has heightened concern about the use of pathogenic microorganisms in bioterrorism attacks. Many of the deadliest bacteria, including the Class A Select Agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis, are highly infectious via the pulmonary route when released in aerosolized form. Hence, rapid, sensitive, and reliable methods for detection of these biothreats and characterization of their potential impact on the exposed population are of critical importance to initiate and support rapid military, public health, and clinical responses. Methodology/Principal Findings We have developed microfluidic multiplexed PCR and sequencing assays based on the simultaneous interrogation of three pathogens per assay and ten loci per pathogen. Microfluidic separation of amplified fluorescently labeled fragments generated characteristic electrophoretic signatures for identification of each agent. The three sets of primers allowed significant strain typing and discrimination from non-pathogenic closely-related species and environmental background strains based on amplicon sizes alone. Furthermore, sequencing of the 10 amplicons per pathogen, termed “Rapid Focused Sequencing,” allowed an even greater degree of strain discrimination and, in some cases, can be used to determine virulence. Both amplification and sequencing assays were performed in microfluidic biochips developed for fast thermal cycling and requiring 7 µL per reaction. The 30-plex sequencing assay resulted in genotypic resolution of 84 representative strains belonging to each of the three biothreat species. Conclusions/Significance The microfluidic multiplexed assays allowed identification and strain differentiation of the biothreat agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis and clear discrimination from closely-related species and several environmental background strains. The

  20. Reproducible and Quantitative Model of Infection of Dermacentor variabilis with the Live Vaccine Strain of Francisella tularensis

    PubMed Central

    Coburn, Jenifer; Maier, Tamara; Casey, Monika; Padmore, Lavinia; Sato, Hiromi

    2014-01-01

    Pathogen life cycles in mammalian hosts have been studied extensively, but studies with arthropod vectors represent considerable challenges. In part this is due to the difficulty of delivering a reproducible dose of bacteria to follow arthropod-associated replication. We have established reproducible techniques to introduce known numbers of Francisella tularensis strain LVS from mice into Dermacentor variabilis nymphs. Using this model infection system, we performed dose-response infection experiments and followed bacterial replication through the molt to adults and at later time points. During development to adults, bacteria replicate to high numbers and can be found associated with the gut tissues, salivary glands, and hemolymph of adult ticks. Further, we can transmit a mutant of LVS (LVS ΔpurMCD) that cannot replicate in macrophages in vitro or in mice to nymphs. Our data show that the LVS ΔpurMCD mutant cannot be transstadially transmitted from nymphs to adult ticks. We then show that a plasmid-complemented strain of this mutant is recoverable in adult ticks and necessary for bacterial replication during the molt. In a mixed-infection assay (ΔpurMCD mutant versus ΔpurMCD complement), 98% of the recovered bacteria retained the plasmid marker. These data suggest that the ΔpurMCD mutation cannot be rescued by the presence a complemented strain in a mixed infection. Importantly, our infection model provides a platform to test specific mutants for their replication in ticks, perform competition studies, and use other genetic techniques to identify F. tularensis genes that are expressed or required in this unique environment. PMID:25362054

  1. A Molecular Survey for Francisella tularensis and Rickettsia spp. in Haemaphysalis leporispalustris (Acari: Ixodidae) in Northern California.

    PubMed

    Roth, Tara; Lane, Robert S; Foley, Janet

    2016-12-28

    Francisella tularensis and Rickettsia spp. have been cultured from Haemaphysalis leporispalustris Packard, but their prevalence in this tick has not been determined using modern molecular methods. We collected H. leporispalustris by flagging vegetation and leaf litter and from lagomorphs (Lepus californicus Gray and Sylvilagus bachmani (Waterhouse)) in northern California. Francisella tularensis DNA was not detected in any of 1,030 ticks tested by polymerase chain reaction (PCR), whereas 0.4% of larvae tested in pools, 0 of 117 individual nymphs, and 2.3% of 164 adult ticks were PCR-positive for Rickettsia spp. Positive sites were Laurel Canyon Trail in Tilden Regional Park in Alameda Contra Costa County, with a Rickettsia spp. prevalence of 0.6% in 2009, and Hopland Research and Extension Center in Mendocino County, with a prevalence of 4.2% in 1988. DNA sequencing revealed R. felis, the agent of cat-flea typhus, in two larval pools from shaded California bay and live oak leaf litter in Contra Costa County and one adult tick from a L. californicus in chaparral in Mendocino County. The R. felis in unfed, questing larvae demonstrates that H. leporispalustris can transmit this rickettsia transovarially. Although R. felis is increasingly found in diverse arthropods and geographical regions, prior literature suggests a typical epidemiological cycle involving mesocarnivores and the cat flea, Ctenocephalides felis. To our knowledge, this is the first report of R. felis in H. leporispalustris. Natural infection and transovarial transmission of this pathogen in the tick indicate the existence of a previously undocumented wild-lands transmission cycle that may intersect mesocarnivore-reservoired cycles and collectively affect human health risk.

  2. Development of functional and molecular correlates of vaccine-induced protection for a model intracellular pathogen, F. tularensis LVS.

    PubMed

    De Pascalis, Roberto; Chou, Alicia Y; Bosio, Catharine M; Huang, Chiung-Yu; Follmann, Dean A; Elkins, Karen L

    2012-01-01

    In contrast with common human infections for which vaccine efficacy can be evaluated directly in field studies, alternative strategies are needed to evaluate efficacy for slowly developing or sporadic diseases like tularemia. For diseases such as these caused by intracellular bacteria, serological measures of antibodies are generally not predictive. Here, we used vaccines varying in efficacy to explore development of clinically useful correlates of protection for intracellular bacteria, using Francisella tularensis as an experimental model. F. tularensis is an intracellular bacterium classified as Category A bioterrorism agent which causes tularemia. The primary vaccine candidate in the U.S., called Live Vaccine Strain (LVS), has been the subject of ongoing clinical studies; however, safety and efficacy are not well established, and LVS is not licensed by the U.S. FDA. Using a mouse model, we compared the in vivo efficacy of a panel of qualitatively different Francisella vaccine candidates, the in vitro functional activity of immune lymphocytes derived from vaccinated mice, and relative gene expression in immune lymphocytes. Integrated analyses showed that the hierarchy of protection in vivo engendered by qualitatively different vaccines was reflected by the degree of lymphocytes' in vitro activity in controlling the intramacrophage growth of Francisella. Thus, this assay may be a functional correlate. Further, the strength of protection was significantly related to the degree of up-regulation of expression of a panel of genes in cells recovered from the assay. These included IFN-γ, IL-6, IL-12Rβ2, T-bet, SOCS-1, and IL-18bp. Taken together, the results indicate that an in vitro assay that detects control of bacterial growth, and/or a selected panel of mediators, may ultimately be developed to predict the outcome of vaccine efficacy and to complement clinical trials. The overall approach may be applicable to intracellular pathogens in general.

  3. Genome-Wide Diversity and Phylogeography of Mycobacterium avium subsp. paratuberculosis in Canadian Dairy Cattle

    PubMed Central

    Ahlstrom, Christina; Barkema, Herman W.; Stevenson, Karen; Zadoks, Ruth N.; Biek, Roman; Kao, Rowland; Trewby, Hannah; Haupstein, Deb; Kelton, David F.; Fecteau, Gilles; Labrecque, Olivia; Keefe, Greg P.; McKenna, Shawn L. B.; Tahlan, Kapil; De Buck, Jeroen

    2016-01-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is the causative bacterium of Johne’s disease (JD) in ruminants. The control of JD in the dairy industry is challenging, but can be improved with a better understanding of the diversity and distribution of MAP subtypes. Previously established molecular typing techniques used to differentiate MAP have not been sufficiently discriminatory and/or reliable to accurately assess the population structure. In this study, the genetic diversity of 182 MAP isolates representing all Canadian provinces was compared to the known global diversity, using single nucleotide polymorphisms identified through whole genome sequencing. MAP isolates from Canada represented a subset of the known global diversity, as there were global isolates intermingled with Canadian isolates, as well as multiple global subtypes that were not found in Canada. One Type III and six “Bison type” isolates were found in Canada as well as one Type II subtype that represented 86% of all Canadian isolates. Rarefaction estimated larger subtype richness in Québec than in other Canadian provinces using a strict definition of MAP subtypes and lower subtype richness in the Atlantic region using a relaxed definition. Significant phylogeographic clustering was observed at the inter-provincial but not at the intra-provincial level, although most major clades were found in all provinces. The large number of shared subtypes among provinces suggests that cattle movement is a major driver of MAP transmission at the herd level, which is further supported by the lack of spatial clustering on an intra-provincial scale. PMID:26871723

  4. Differential niche dynamics among major marine invertebrate clades

    PubMed Central

    Hopkins, Melanie J; Simpson, Carl; Kiessling, Wolfgang

    2014-01-01

    The degree to which organisms retain their environmental preferences is of utmost importance in predicting their fate in a world of rapid climate change. Notably, marine invertebrates frequently show strong affinities for either carbonate or terrigenous clastic environments. This affinity is due to characteristics of the sediments as well as correlated environmental factors. We assessed the conservatism of substrate affinities of marine invertebrates over geological timescales, and found that niche conservatism is prevalent in the oceans, and largely determined by the strength of initial habitat preference. There is substantial variation in niche conservatism among major clades with corals and sponges being among the most conservative. Time-series analysis suggests that niche conservatism is enhanced during times of elevated nutrient flux, whereas niche evolution tends to occur after mass extinctions. Niche evolution is not necessarily elevated in genera exhibiting higher turnover in species composition. PMID:24313951

  5. Differential niche dynamics among major marine invertebrate clades.

    PubMed

    Hopkins, Melanie J; Simpson, Carl; Kiessling, Wolfgang

    2014-03-01

    The degree to which organisms retain their environmental preferences is of utmost importance in predicting their fate in a world of rapid climate change. Notably, marine invertebrates frequently show strong affinities for either carbonate or terrigenous clastic environments. This affinity is due to characteristics of the sediments as well as correlated environmental factors. We assessed the conservatism of substrate affinities of marine invertebrates over geological timescales, and found that niche conservatism is prevalent in the oceans, and largely determined by the strength of initial habitat preference. There is substantial variation in niche conservatism among major clades with corals and sponges being among the most conservative. Time-series analysis suggests that niche conservatism is enhanced during times of elevated nutrient flux, whereas niche evolution tends to occur after mass extinctions. Niche evolution is not necessarily elevated in genera exhibiting higher turnover in species composition.

  6. Acyl-Homoserine Lactone Quorum Sensing in the Roseobacter Clade

    PubMed Central

    Zan, Jindong; Liu, Yue; Fuqua, Clay; Hill, Russell T.

    2014-01-01

    Members of the Roseobacter clade are ecologically important and numerically abundant in coastal environments and can associate with marine invertebrates and nutrient-rich marine snow or organic particles, on which quorum sensing (QS) may play an important role. In this review, we summarize current research progress on roseobacterial acyl-homoserine lactone-based QS, particularly focusing on three relatively well-studied representatives, Phaeobacter inhibens DSM17395, the marine sponge symbiont Ruegeria sp. KLH11 and the dinoflagellate symbiont Dinoroseobacter shibae. Bioinformatic survey of luxI homologues revealed that over 80% of available roseobacterial genomes encode at least one luxI homologue, reflecting the significance of QS controlled regulatory pathways in adapting to the relevant marine environments. We also discuss several areas that warrant further investigation, including studies on the ecological role of these diverse QS pathways in natural environments. PMID:24402124

  7. Genome sequencing reveals complex speciation in the Drosophila simulans clade

    PubMed Central

    Garrigan, Daniel; Kingan, Sarah B.; Geneva, Anthony J.; Andolfatto, Peter; Clark, Andrew G.; Thornton, Kevin R.; Presgraves, Daven C.

    2012-01-01

    The three species of the Drosophila simulans clade—the cosmopolitan species, D. simulans, and the two island endemic species, D. mauritiana and D. sechellia—are important models in speciation genetics, but some details of their phylogenetic and speciation history remain unresolved. The order and timing of speciation are disputed, and the existence, magnitude, and timing of gene flow among the three species remain unclear. Here we report on the analysis of a whole-genome four-species sequence alignment that includes all three D. simulans clade species as well as the D. melanogaster reference sequence. The alignment comprises novel, paired short-read sequence data from a single highly inbred line each from D. simulans, D. mauritiana, and D. sechellia. We are unable to reject a species phylogeny with a basal polytomy; the estimated age of the polytomy is 242,000 yr before the present. However, we also find that up to 4.6% of autosomal and 2.2% of X-linked regions have evolutionary histories consistent with recent gene flow between the mainland species (D. simulans) and the two island endemic species (D. mauritiana and D. sechellia). Our findings thus show that gene flow has occurred throughout the genomes of the D. simulans clade species despite considerable geographic, ecological, and intrinsic reproductive isolation. Last, our analysis of lineage-specific changes confirms that the D. sechellia genome has experienced a significant excess of slightly deleterious changes and a dearth of presumed favorable changes. The relatively reduced efficacy of natural selection in D. sechellia is consistent with its derived, persistently reduced historical effective population size. PMID:22534282

  8. Insights into the activity of maturation inhibitor PF-46396 on HIV-1 clade C

    PubMed Central

    Ghimire, Dibya; Timilsina, Uddhav; Srivastava, Tryambak Pratap; Gaur, Ritu

    2017-01-01

    HIV maturation inhibitors are an emerging class of anti-retroviral compounds that inhibit the viral protease-mediated cleavage of the Gag, CA-SP1 (capsid-spacer peptide 1) peptide to mature CA. The first-in-class maturation inhibitor bevirimat (BVM) displayed potent activity against HIV-1 clade B but was ineffective against other HIV-1 clades including clade C. Another pyridone-based maturation inhibitor, PF-46396 displayed potent activity against HIV-1 clade B. In this study, we aimed at determining the activity of PF-46396 against HIV-1 clade C. We employed various biochemical and virological assays to demonstrate that PF-46396 is effective against HIV-1 clade C. We observed a dose dependent accumulation of CA-SP1 intermediate in presence of the compound. We carried out mutagenesis in the CA- SP1 region of HIV-1 clade C Gag and observed that the mutations conferred resistance against the compound. Many mutations inhibited Gag processing thereby reducing virus release in the absence of the compound. However, presence of PF-46396 rescued these defects and enhanced virus release, replication capacity and infectivity of HIV-1 clade C. These results put together identify PF-46396 as a broadly active maturation inhibitor against HIV-1 clade B and C and help in rational designing of novel analogs with reduced toxicity and increased efficacy for its potential use in clinics. PMID:28252110

  9. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Technical Report

    SciTech Connect

    Fischer, N. O.

    2015-01-13

    The goal of this proposal is to demonstrate that colocalization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. In the third quarter of the third year, F344 rats vaccinated with adjuvanted NLP formulations were challenged with F. tularensis SCHU S4 at Battelle. Preliminary data indicate that up to 65% of females vaccinated intranasally with an NLP-based formulation survived this challenge, compared to only 20% survival of naïve animals. In addition, NLPs were successfully formulated with Burkholderia protein antigens. IACUC approval for immunological assessments in BALB/c mice was received and we anticipate that these assessments will begin by March 2015, pending ACURO approval.

  10. Structural and biological evaluation of a novel series of benzimidazole inhibitors of Francisella tularensis enoyl-ACP reductase (FabI).

    PubMed

    Mehboob, Shahila; Song, Jinhua; Hevener, Kirk E; Su, Pin-Chih; Boci, Teuta; Brubaker, Libby; Truong, Lena; Mistry, Tina; Deng, Jiangping; Cook, James L; Santarsiero, Bernard D; Ghosh, Arun K; Johnson, Michael E

    2015-03-15

    Francisella tularensis, the causative agent of tularemia, presents a significant biological threat and is a Category A priority pathogen due to its potential for weaponization. The bacterial FASII pathway is a viable target for the development of novel antibacterial agents treating Gram-negative infections. Here we report the advancement of a promising series of benzimidazole FabI (enoyl-ACP reductase) inhibitors to a second-generation using a systematic, structure-guided lead optimization strategy, and the determination of several co-crystal structures that confirm the binding mode of designed inhibitors. These compounds display an improved low nanomolar enzymatic activity as well as promising low microgram/mL antibacterial activity against both F. tularensis and Staphylococcus aureus and its methicillin-resistant strain (MRSA). The improvements in activity accompanying structural modifications lead to a better understanding of the relationship between the chemical structure and biological activity that encompasses both enzymatic and whole-cell activity.

  11. Structural and Enzymatic Analyses Reveal the Binding Mode of a Novel Series of Francisella tularensis Enoyl Reductase (FabI) Inhibitors

    SciTech Connect

    Mehboob, Shahila; Hevener, Kirk E.; Truong, Kent; Boci, Teuta; Santarsiero, Bernard D.; Johnson, Michael E.

    2012-10-10

    Because of structural and mechanistic differences between eukaryotic and prokaryotic fatty acid synthesis enzymes, the bacterial pathway, FAS-II, is an attractive target for the design of antimicrobial agents. We have previously reported the identification of a novel series of benzimidazole compounds with particularly good antibacterial effect against Francisella tularensis, a Category A biowarfare pathogen. Herein we report the crystal structure of the F. tularensis FabI enzyme in complex with our most active benzimidazole compound bound with NADH. The structure reveals that the benzimidazole compounds bind to the substrate site in a unique conformation that is distinct from the binding motif of other known FabI inhibitors. Detailed inhibition kinetics have confirmed that the compounds possess a novel inhibitory mechanism that is unique among known FabI inhibitors. These studies could have a strong impact on future antimicrobial design efforts and may reveal new avenues for the design of FAS-II active antibacterial compounds.

  12. Serological investigation of wild boars (Sus scrofa) and red foxes (Vulpes vulpes) as indicator animals for circulation of Francisella tularensis in Germany.

    PubMed

    Otto, Peter; Chaignat, Valerie; Klimpel, Diana; Diller, Roland; Melzer, Falk; Müller, Wolfgang; Tomaso, Herbert

    2014-01-01

    Tularemia outbreaks in humans have recently been reported in many European countries, but data on the occurrence in the animal population are scarce. In North America, seroconversion of omnivores and carnivores was used as indicator for the presence of tularemia, for the European fauna, however, data are barely available. Therefore, the suitability of wild boars (Sus scrofa) and red foxes (Vulpes vulpes) as indicators for the circulation of F. tularensis in Germany was evaluated. Serum samples from 566 wild boars and 457 red foxes were collected between 1995 and 2012 in three federal states in Central Germany (Hesse, Saxony-Anhalt, and Thuringia). The overall rate of seropositive animals was 1.1% in wild boars and 7.4% in red foxes. In conclusion, serological examination of red foxes is recommended, because they can be reliably used as indicator animals for the presence of F. tularensis in the environment.

  13. Draft Genome Sequences for Canadian Isolates of Pectobacterium carotovorum subsp. brasiliense with Weak Virulence on Potato

    PubMed Central

    Yuan, Kat (Xiaoli); Cullis, Jeff; Lévesque, C. André; Chen, Wen; Lewis, Christopher T.; De Boer, Solke H.

    2015-01-01

    Pectobacterium carotovurum subsp. brasiliense causes soft rot and blackleg diseases on potato. Here, we report the draft genome sequences of three weakly virulent P. carotovurum subsp. brasiliense strains isolated in Canada. Analysis of these genome sequences will help to pinpoint differences in virulence among P. carotovurum subsp. brasiliense strains from tropical/subtropical and temperate regions, such as Canada and United States. A small number of key factors for adaptation to this bacterium's specific environmental niche were also evaluated. PMID:25858837

  14. Complete Genome of Clavibacter michiganensis subsp. sepedonicusis Siphophage CN1A

    PubMed Central

    Kongari, Rohit R.; Yao, Guichun W.; Chamakura, Karthik R.

    2013-01-01

    Clavibacter michiganensis subsp. sepedonicusis is a Gram-positive actinomycete that is the causative agent of the potato disease ring rot. Here, we announce the complete genome sequence of the Clavibacter michiganensis subsp. sepedonicusis siphophage CN1A. CN1A is only the second fully sequenced Clavibacter michiganensis subsp. sepedonicusis phage reported to date. Core and unique features of its genome are described. PMID:24309731

  15. Complete Genome of Clavibacter michiganensis subsp. sepedonicusis Siphophage CN1A.

    PubMed

    Kongari, Rohit R; Yao, Guichun W; Chamakura, Karthik R; Kuty Everett, Gabriel F

    2013-12-05

    Clavibacter michiganensis subsp. sepedonicusis is a Gram-positive actinomycete that is the causative agent of the potato disease ring rot. Here, we announce the complete genome sequence of the Clavibacter michiganensis subsp. sepedonicusis siphophage CN1A. CN1A is only the second fully sequenced Clavibacter michiganensis subsp. sepedonicusis phage reported to date. Core and unique features of its genome are described.

  16. Draft Genome Sequences of Salmonella enterica subsp. enterica Serovars Typhimurium and Nottingham Isolated from Food Products

    PubMed Central

    Zheng, Jie; Ayers, Sherry; Melka, David C.; Curry, Phillip E.; Payne, Justin S.; Laasri, Anna; Wang, Charles; Hammack, Thomas S.; Brown, Eric W.

    2016-01-01

    A quantitative real-time PCR (qPCR) designed to detect Salmonella enterica subsp. enterica serovar Enteritidis, targeting the sdf gene, generated positive results for S. enterica subsp. enterica serovar Typhimurium (CFSAN033950) and S. enterica subsp. enterica serovar Nottingham (CFSAN006803) isolated from food samples. Both strains show pulsed-field gel electrophoresis (PFGE) patterns distinct from those of S. Enteritidis. Here, we report the genome sequences of these two strains. PMID:27445384

  17. Francisella tularensis Schu S4 lipopolysaccharide core sugar and O-antigen mutants are attenuated in a mouse model of tularemia.

    PubMed

    Rasmussen, Jed A; Post, Deborah M B; Gibson, Bradford W; Lindemann, Stephen R; Apicella, Michael A; Meyerholz, David K; Jones, Bradley D

    2014-04-01

    The virulence factors mediating Francisella pathogenesis are being investigated, with an emphasis on understanding how the organism evades innate immunity mechanisms. Francisella tularensis produces a lipopolysaccharide (LPS) that is essentially inert and a polysaccharide capsule that helps the organism to evade detection by components of innate immunity. Using an F. tularensis Schu S4 mutant library, we identified strains that are disrupted for capsule and O-antigen production. These serum-sensitive strains lack both capsule production and O-antigen laddering. Analysis of the predicted protein sequences for the disrupted genes (FTT1236 and FTT1238c) revealed similarity to those for waa (rfa) biosynthetic genes in other bacteria. Mass spectrometry further revealed that these proteins are involved in LPS core sugar biosynthesis and the ligation of O antigen to the LPS core sugars. The 50% lethal dose (LD50) values of these strains are increased 100- to 1,000-fold for mice. Histopathology revealed that the immune response to the F. tularensis mutant strains was significantly different from that observed with wild-type-infected mice. The lung tissue from mutant-infected mice had widespread necrotic debris, but the spleens lacked necrosis and displayed neutrophilia. In contrast, the lungs of wild-type-infected mice had nominal necrosis, but the spleens had widespread necrosis. These data indicate that murine death caused by wild-type strains occurs by a mechanism different from that by which the mutant strains kill mice. Mice immunized with these mutant strains displayed >10-fold protective effects against virulent type A F. tularensis challenge.

  18. Francisella tularensis Schu S4 Lipopolysaccharide Core Sugar and O-Antigen Mutants Are Attenuated in a Mouse Model of Tularemia

    PubMed Central

    Rasmussen, Jed A.; Post, Deborah M. B.; Gibson, Bradford W.; Lindemann, Stephen R.; Apicella, Michael A.; Meyerholz, David K.

    2014-01-01

    The virulence factors mediating Francisella pathogenesis are being investigated, with an emphasis on understanding how the organism evades innate immunity mechanisms. Francisella tularensis produces a lipopolysaccharide (LPS) that is essentially inert and a polysaccharide capsule that helps the organism to evade detection by components of innate immunity. Using an F. tularensis Schu S4 mutant library, we identified strains that are disrupted for capsule and O-antigen production. These serum-sensitive strains lack both capsule production and O-antigen laddering. Analysis of the predicted protein sequences for the disrupted genes (FTT1236 and FTT1238c) revealed similarity to those for waa (rfa) biosynthetic genes in other bacteria. Mass spectrometry further revealed that these proteins are involved in LPS core sugar biosynthesis and the ligation of O antigen to the LPS core sugars. The 50% lethal dose (LD50) values of these strains are increased 100- to 1,000-fold for mice. Histopathology revealed that the immune response to the F. tularensis mutant strains was significantly different from that observed with wild-type-infected mice. The lung tissue from mutant-infected mice had widespread necrotic debris, but the spleens lacked necrosis and displayed neutrophilia. In contrast, the lungs of wild-type-infected mice had nominal necrosis, but the spleens had widespread necrosis. These data indicate that murine death caused by wild-type strains occurs by a mechanism different from that by which the mutant strains kill mice. Mice immunized with these mutant strains displayed >10-fold protective effects against virulent type A F. tularensis challenge. PMID:24452684

  19. The Fluorocycline TP-271 Is Efficacious in Models of Aerosolized Francisella tularensis SCHU S4 Infection in BALB/c Mice and Cynomolgus Macaques.

    PubMed

    Grossman, Trudy H; Anderson, Michael S; Christ, David; Gooldy, Melanie; Henning, Lisa N; Heine, Henry S; Kindt, M Victoria; Lin, Winston; Siefkas-Patterson, Kaylyn; Radcliff, Anne K; Tam, Vincent H; Sutcliffe, Joyce A

    2017-08-01

    TP-271 is a novel, fully synthetic fluorocycline in development for complicated bacterial respiratory infections. TP-271 was active in vitro against a panel of 29 Francisella tularensis isolates, showing MICs against 50% and 90% of isolates of 0.25 and 0.5 μg/ml, respectively. In a mouse model of inhalational tularemia, animals were exposed by aerosol to 91 to 283 50% lethal doses (LD50)/mouse of F. tularensis SCHU S4. Following 21 days of once-daily intraperitoneal dosing with TP-271 at 3, 6, 12, and 18 mg/kg of body weight/day, initiating at 24 h postchallenge, survival was 80%, 100%, 100%, and 100%, respectively. When treatment was initiated at 72 h postchallenge, survival was 89%, 100%, 100%, and 100% in the 3-, 6-, 12-, and 18-mg/kg/day TP-271 groups, respectively. No mice treated with the vehicle control survived. Surviving mice treated with TP-271 showed little to no relapse during 14 days posttreatment. In a nonhuman primate model of inhalational tularemia, cynomolgus macaques received an average aerosol exposure of 1,144 CFU of F. tularensis SCHU S4. Once-daily intravenous infusion with 1 or 3 mg/kg TP-271, or vehicle control, for 21 days was initiated within 6 h of confirmed fever. All animals treated with TP-271 survived to the end of the study, with no relapse during 14 days after the last treatment, whereas no vehicle control-treated animals survived. The protection and low relapse afforded by TP-271 treatment in these studies support continued investigation of TP-271 for use in the event of aerosolized exposure to F. tularensis. Copyright © 2017 American Society for Microbiology.

  20. Allelopathic activity of Nepeta nuda L. subsp. nuda water extracts

    NASA Astrophysics Data System (ADS)

    Dragoeva, Asya; Stoyanova, Zheni; Koleva, Vanya; Dragolova, Daniela

    2017-03-01

    Nepeta nuda subsp. nuda is a medicinal plant growing wild in Bulgaria. Different species of Nepeta genus have been reported to possess allelopathic potential. The present study was conducted to observe its phytotoxic effects on T. aestivum and C. sativus L. seeds in laboratory conditions. Nepeta water extracts (NWE) prepared from aerial parts of plants at concentrations 2, 4, 6, 8, 10, 12 and 14 g/l were tested. The rate of seed germination, the root and shoot length, fresh and dry weight of seedlings were observed after treatment with NWE. As a control served seeds treated with distilled water. Germination was not affected, but NWE showed deterioration in seedling growth. Roots were more affected than shoots. The fresh and dry weights were reduced upon treatment with the extracts tested. These negative effects were dose-dependent. The overall results indicate presence of water soluble allelochemicals in Nepeta nuda subsp. nuda.

  1. Mechanisms involved in quinolone resistance in Mycoplasma mycoides subsp. capri.

    PubMed

    Antunes, Nuno T; Assunção, Patrícia; Poveda, José B; Tavío, María M

    2015-06-01

    Mycoplasma mycoides subsp. capri is a causative agent of contagious agalactia in goats. In this study, M. mycoides subsp. capri mutants were selected for resistance to fluoroquinolones (norfloxacin, enrofloxacin and ciprofloxacin) by serial passes in broth with increasing concentrations of antibiotic. Mutations conferring cross-resistance to the three fluoroquinolones were found in the quinolone resistance determining regions of the four genes encoding DNA gyrase and topoisomerase IV. Different mutations in the DNA gyrase GyrA subunit suggest a different mechanism of inhibition between norfloxacin and the other tested fluoroquinolones. The presence of an adenosine triphosphate-dependent efflux system was suggested through the use of the inhibitor orthovanadate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Genetic Basis of Tetracycline Resistance in Bifidobacterium animalis subsp. lactis▿

    PubMed Central

    Gueimonde, Miguel; Flórez, Ana Belén; van Hoek, Angela H. A. M.; Stuer-Lauridsen, Birgitte; Strøman, Per; de los Reyes-Gavilán, Clara G.; Margolles, Abelardo

    2010-01-01

    All strains of Bifidobacterium animalis subsp. lactis described to date show medium level resistance to tetracycline. Screening of 26 strains from a variety of sources revealed the presence of tet(W) in all isolates. A transposase gene upstream of tet(W) was found in all strains, and both genes were cotranscribed in strain IPLAIC4. Mutants with increased tetracycline resistance as well as tetracycline-sensitive mutants of IPLAIC4 were isolated and genetically characterized. The native tet(W) gene was able to restore the resistance phenotype to a mutant with an alteration in tet(W) by functional complementation, indicating that tet(W) is necessary and sufficient for the tetracycline resistance seen in B. animalis subsp. lactis. PMID:20348299

  3. Isolation of Campylobacter fetus subsp jejuni from zoo animals.

    PubMed

    Luechtefeld, N W; Cambre, R C; Wang, W L

    1981-12-01

    Over a 1-year period, 619 fecal specimens from animals at the Denver Zoo were cultured for Campylobacter fetus subsp jejuni. The organism was isolated from 35 animals, including 12 primates, 2 felids, a red panda, 13 hooved animals, 6 birds, and 1 reptile. Of 44 cultured fecal specimens from diarrheal animals, 31.8% were positive for Campylobacter, whereas only 5.6% of 575 specimens from animals without diarrhea were positive (P less than 0.001). Among 25 isolates tested, 12 serotypes were represented; several of these serotypes are commonly associated with Campylobacter enteritis in human beings. Campylobacter fetus subsp jejuni was isolated from 8% of 75 wild pigeons trapped on the zoo premises during winter months and from 26% of 75 trapped during March and April (P less than 0.01).

  4. Thermal Inactivation of Mycobacterium avium subsp. paratuberculosis in Artificially Contaminated Milk by Direct Steam Injection.

    PubMed

    Peterz, Mats; Butot, Sophie; Jagadeesan, Balamurugan; Bakker, Douwe; Donaghy, John

    2016-05-01

    The efficiency of direct steam injection (DSI) at 105 °C for 3 s to inactivate Mycobacterium avium subsp. paratuberculosis in milk at a pilot-plant scale was investigated. Milk samples were artificially contaminated with M. avium subsp. paratuberculosis and also with cow fecal material naturally infected with M. avium subsp. paratuberculosis. We also tested milk artificially contaminated with Mycobacterium smegmatis as a candidate surrogate to compare thermal inactivation between M. smegmatis and M. avium subsp. paratuberculosis. Following the DSI process, no viable M. avium subsp. paratuberculosis or M. smegmatis was recovered using culture methods for both strains. For pure M. avium subsp. paratuberculosis cultures, a minimum reduction of 5.6 log10 was achieved with DSI, and a minimum reduction of 5.7 log10 was found with M. smegmatis. The minimum log10 reduction for wild-type M. avium subsp. paratuberculosis naturally present in feces was 3.3. In addition, 44 dairy and nondairy powdered infant formula (PIF) ingredients used during the manufacturing process of PIF were tested for an alternate source for M. avium subsp. paratuberculosis and were found to be negative by quantitative PCR (qPCR). In conclusion, the results obtained from this study indicate that a >7-fold-log10 reduction of M. avium subsp. paratuberculosis in milk can be achieved with the applied DSI process. M. avium subsp. paratuberculosis is widespread in dairy herds in many countries. M. avium subsp. paratuberculosis is the causative agent of Johne's disease in cattle, and infected animals can directly or indirectly (i.e., fecal contamination) contaminate milk. Despite much research and debate, there is no conclusive evidence that M. avium subsp. paratuberculosis is a zoonotic bacterium, i.e., one that causes disease in humans. The presence of M. avium subsp. paratuberculosis or its DNA has been reported in dairy products, including pasteurized milk, cheese, and infant formula. In light of this

  5. Isolation by genomic subtraction of DNA probes specific for Erwinia carotovora subsp. atroseptica.

    PubMed Central

    Darrasse, A; Kotoujansky, A; Bertheau, Y

    1994-01-01

    Erwinia carotovora subsp. atroseptica is a pathogen of potatoes in Europe because of its ability to induce blackleg symptoms early in the growing season. However, E. carotovora subsp. carotovora is not able to produce such severe symptoms under the same conditions. On the basis of the technique described by Straus and Ausubel (Proc. Natl. Acad. Sci. USA 87:1889-1893, 1990), we isolated DNA sequences of E. carotovora subsp. atroseptica 86.20 that were absent from the genomic DNA of E. carotovora subsp. carotovora CH26. Six DNA fragments ranging from ca. 180 to 400 bp were isolated, cloned, and sequenced. Each fragment was further hybridized with 130 microorganisms including 87 E. carotovora strains. One probe was specific for typical E. carotovora subsp. atroseptica strains, two probes hybridized with all E. carotovora subsp. atroseptica strains and with a few E. carotovora subsp. carotovora strains, and two probes recognized only a subset of E. carotovora subsp. atroseptica strains. The last probe was absent from the genomic DNA of E. carotovora subsp. carotovora CH26 but was present in the genomes of many strains, including those of other species and genera. This probe is homologous to the putP gene of Escherichia coli, which encodes a proline carrier. Further use of the probes is discussed. Images PMID:8117082

  6. Thermal Inactivation of Mycobacterium avium subsp. paratuberculosis in Artificially Contaminated Milk by Direct Steam Injection

    PubMed Central

    Butot, Sophie; Jagadeesan, Balamurugan; Bakker, Douwe; Donaghy, John

    2016-01-01

    ABSTRACT The efficiency of direct steam injection (DSI) at 105°C for 3 s to inactivate Mycobacterium avium subsp. paratuberculosis in milk at a pilot-plant scale was investigated. Milk samples were artificially contaminated with M. avium subsp. paratuberculosis and also with cow fecal material naturally infected with M. avium subsp. paratuberculosis. We also tested milk artificially contaminated with Mycobacterium smegmatis as a candidate surrogate to compare thermal inactivation between M. smegmatis and M. avium subsp. paratuberculosis. Following the DSI process, no viable M. avium subsp. paratuberculosis or M. smegmatis was recovered using culture methods for both strains. For pure M. avium subsp. paratuberculosis cultures, a minimum reduction of 5.6 log10 was achieved with DSI, and a minimum reduction of 5.7 log10 was found with M. smegmatis. The minimum log10 reduction for wild-type M. avium subsp. paratuberculosis naturally present in feces was 3.3. In addition, 44 dairy and nondairy powdered infant formula (PIF) ingredients used during the manufacturing process of PIF were tested for an alternate source for M. avium subsp. paratuberculosis and were found to be negative by quantitative PCR (qPCR). In conclusion, the results obtained from this study indicate that a >7-fold-log10 reduction of M. avium subsp. paratuberculosis in milk can be achieved with the applied DSI process. IMPORTANCE M. avium subsp. paratuberculosis is widespread in dairy herds in many countries. M. avium subsp. paratuberculosis is the causative agent of Johne's disease in cattle, and infected animals can directly or indirectly (i.e., fecal contamination) contaminate milk. Despite much research and debate, there is no conclusive evidence that M. avium subsp. paratuberculosis is a zoonotic bacterium, i.e., one that causes disease in humans. The presence of M. avium subsp. paratuberculosis or its DNA has been reported in dairy products, including pasteurized milk, cheese, and infant formula

  7. Characterization of the arginine deiminase of Streptococcus equi subsp. zooepidemicus.

    PubMed

    Hong, Kyongsu

    2006-09-01

    Streptococcus equi subsp. zooepidemicus is an important cause of infectious diseases in horses and rarely humans. Little is known about the virulence factors or protective antigens of S. equi subsp. zooepidemicus. In the present study, I designed original primers based on an alignment of the gene sagp(arcA) from Streptococcus pyogenes encoding streptococcal acid glycoprotein-arginine deiminase (SAGP/AD) to amplify the S. equi subsp. zooepidemicus counterpart sequence by polymerase chain reaction, and I analyzed the sagp(arcA) gene of the organism. Using chromosomal walking steps, I identified a contiguous eight-gene locus involved in SAGP/AD production. Their open reading frames were found to share significant homologies and to correspond closely in molecular mass to previously sequenced arc genes of S. pyogenes, thus they were designated ahrC.2 (arginine repressor), arcR (CRP/FNR transcription regulator), sagp(arcA) (streptococcal acid glycoprotein-arginine deiminase), putative acetyltransferase gene, arcB (ornithine carbamyl transferase), arcD (arginine-orni