Increasing the Cryogenic Toughness of Steels
NASA Technical Reports Server (NTRS)
Rush, H. F.
1986-01-01
Grain-refining heat treatments increase toughness without substantial strength loss. Five alloys selected for study, all at or near technological limit. Results showed clearly grain sizes of these alloys refined by such heat treatments and grain refinement results in large improvement in toughness without substantial loss in strength. Best improvements seen in HP-9-4-20 Steel, at low-strength end of technological limit, and in Maraging 200, at high-strength end. These alloys, in grain refined condition, considered for model applications in high-Reynolds-number cryogenic wind tunnels.
USDA-ARS?s Scientific Manuscript database
Whole grain-rich diets are consistently associated with lower adiposity in observational studies. However, clinical trials have failed to substantiate this association or identify underlying mechanisms. The inconsistency has been suggested to be due to trial methodology including suboptimal dietary ...
Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alihosseini, H., E-mail: hamid.alihossieni@gmail.com; Materials Science and Engineering Department, Engineering School, Amirkabir University, Tehran; Faraji, G.
2012-06-15
In the present work, the microstructural evolutions and microhardness of AA1050 subjected to one, two and three passes of accumulative back extrusion (ABE) were investigated. The microstructural evolutions were characterized using transmission electron microscopy. The results revealed that applying three passes of accumulative back extrusion led to significant grain refinement. The initial grain size of 47 {mu}m was refined to the grains of 500 nm after three passes of ABE. Increasing the number of passes resulted in more decrease in grain size, better microstructure homogeneity and increase in the microhardness. The cross-section of ABEed specimen consisted of two different zones:more » (i) shear deformation zone, and (ii) normal deformation zone. The microhardness measurements indicated that the hardness increased from the initial value of 31 Hv to 67 Hv, verifying the significant microstructural refinement via accumulative back extrusion. - Highlights: Black-Right-Pointing-Pointer A significant grain refinement can be achieved in AA1050, Al alloy by applying ABE. Black-Right-Pointing-Pointer Microstructural homogeneity of ABEed samples increased by increasing the number of ABE cycles. Black-Right-Pointing-Pointer A substantial increase in the hardness, from 31 Hv to 67 Hv, was recorded.« less
A Food Service Intervention Improves Whole Grain Access at Lunch in Rural Elementary Schools
ERIC Educational Resources Information Center
Cohen, Juliana F. W.; Rimm, Eric B.; Austin, S. Bryn; Hyatt, Raymond R.; Kraak, Vivica I.; Economos, Christina D.
2014-01-01
Background: Whole grain (WG) options are often limited in schools, which may impact rural, low-income students who rely on school meals for a substantial portion of their food intake. This study examined the changes in the availability and quantity of WG and refined grain foods offered in schools participating in the Creating Healthy, Active and…
Reformulation of pizza crust in restaurants may increase whole-grain intake among children.
Tritt, Aimee; Reicks, Marla; Marquart, Len
2015-06-01
Whole-grain intake among children is well below recommendations. The purpose of the present study was to test the acceptability and liking of pizza made with whole-grain crust compared with refined-grain crust among children in restaurant and school settings. Plate waste data were collected via observation from child restaurant patrons consuming pizza made with either whole-grain or refined-grain crust. Waste was estimated by trained observers over eight months (August 2012-March 2013). Percentage waste was calculated and compared by crust type. A taste test was conducted with school children who tasted pizza made with whole-grain crust alongside pizza made with refined-grain crust and rated their liking of each product. Liking ratings were compared by crust type. Five Green Mill restaurant (a Midwest US chain) locations and one elementary school in the Minneapolis/St. Paul metropolitan area, Minnesota, USA. Child restaurant patrons (n 394) and school children (n 120, grades 3-5). Children consumed as much of the pizza made with whole-grain crust (42·1 %) as the pizza made with refined-grain crust (44·6 %; P=0·55), based on an average serving size of 350-400 g. Liking ratings for both types of pizza were high (>4·5 of 5) and did not differ by crust type (P=0·47). These positive consumption and liking outcomes indicate that whole-grain pizza crust is well accepted among children in a restaurant setting. The impact on whole-grain intake could be substantial if large, national restaurant chains served pizza made with whole-grain crust.
Chu, Yen Li; Warren, Cynthia A; Sceets, Christine E; Murano, Peter; Marquart, Len; Reicks, Marla
2011-09-01
Whole-grain intake among children and adolescents is below national recommendations, prompting efforts to increase intake in schools. The purpose of this study was to compare the acceptance of whole-grain pancakes and tortillas to refined grain counterparts when served as part of the school meal. Data were collected at 10 schools in Minnesota and seven schools in Texas during the Spring and Fall semesters of 2009. Three pancake and two tortilla products of varying red or white whole-wheat flour content were each served an average of four times per school. Aggregate plate waste was collected and percent consumption used to assess acceptance. Students rated each product on overall liking, taste, color, and softness on 5-point (elementary schools) or 9-point hedonic scales (middle and high schools). Analysis of covariance was used to compare intake and rating scores of all products. For all children, intake of whole-grain products was substantial (percent consumption ranging from 67% to 75%). No differences were noted in consumption of whole-wheat pancakes compared to refined wheat pancakes, while consumption of whole-wheat tortillas was lower than refined products. In elementary schools, overall liking scores of pancakes made with red whole-wheat and both types of whole-wheat tortillas were lower than refined products. However, in middle and high schools, overall liking scores of 100% red whole-wheat pancakes and 66% white whole-wheat tortillas were similar to refined products. Substituting refined grain with whole-grain options represents a viable approach to increasing consumption of whole-grain products in schools. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
StJohn, D. H.; Easton, M. A.; Qian, M.; Taylor, J. A.
2013-07-01
This paper builds on the "Grain Refinement of Mg Alloys" published in 2005 and reviews the grain refinement research on Mg alloys that has been undertaken since then with an emphasis on the theoretical and analytical methods that have been developed. Consideration of recent research results and current theoretical knowledge has highlighted two important factors that affect an alloy's as-cast grain size. The first factor applies to commercial Mg-Al alloys where it is concluded that impurity and minor elements such as Fe and Mn have a substantially negative impact on grain size because, in combination with Al, intermetallic phases can be formed that tend to poison the more potent native or deliberately added nucleant particles present in the melt. This factor appears to explain the contradictory experimental outcomes reported in the literature and suggests that the search for a more potent and reliable grain refining technology may need to take a different approach. The second factor applies to all alloys and is related to the role of constitutional supercooling which, on the one hand, promotes grain nucleation and, on the other hand, forms a nucleation-free zone preventing further nucleation within this zone, consequently limiting the grain refinement achievable, particularly in low solute-containing alloys. Strategies to reduce the negative impact of these two factors are discussed. Further, the Interdependence model has been shown to apply to a broad range of casting methods from slow cooling gravity die casting to fast cooling high pressure die casting and dynamic methods such as ultrasonic treatment.
NASA Astrophysics Data System (ADS)
Feng, Min-nan; Wang, Yu-cong; Wang, Hao; Liu, Guo-quan; Xue, Wei-hua
2017-03-01
Using a total of 297 segmented sections, we reconstructed the three-dimensional (3D) structure of pure iron and obtained the largest dataset of 16254 3D complete grains reported to date. The mean values of equivalent sphere radius and face number of pure iron were observed to be consistent with those of Monte Carlo simulated grains, phase-field simulated grains, Ti-alloy grains, and Ni-based super alloy grains. In this work, by finding a balance between automatic methods and manual refinement, we developed an interactive segmentation method to segment serial sections accurately in the reconstruction of the 3D microstructure; this approach can save time as well as substantially eliminate errors. The segmentation process comprises four operations: image preprocessing, breakpoint detection based on mathematical morphology analysis, optimized automatic connection of the breakpoints, and manual refinement by artificial evaluation.
Grain Refinement Kinetics in a Low Alloyed Cu–Cr–Zr Alloy Subjected to Large Strain Deformation
Morozova, Anna; Borodin, Elijah; Bratov, Vladimir; Zherebtsov, Sergey; Kaibyshev, Rustam
2017-01-01
This paper investigates the microstructural evolution and grain refinement kinetics of a solution-treated Cu–0.1Cr–0.06Zr alloy during equal channel angular pressing (ECAP) at a temperature of 673 K via route BC. The microstructural change during plastic deformation was accompanied by the formation of the microband and an increase in the misorientations of strain-induced subboundaries. We argue that continuous dynamic recrystallization refined the initially coarse grains, and discuss the dynamic recrystallization kinetics in terms of grain/subgrain boundary triple junction evolution. A modified Johnson–Mehl–Avrami–Kolmogorov relationship with a strain exponent of about 1.49 is used to express the strain dependence of the triple junctions of high-angle boundaries. Severe plastic deformation by ECAP led to substantial strengthening of the Cu–0.1Cr–0.06Zr alloy. The yield strength increased from 60 MPa in the initial state to 445 MPa after a total strain level of 12. PMID:29210990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajayi, O. O.; Lorenzo-Martin, Cinta
This study presents results of an experimental study to evaluate friction stir processing (FSP) with and without hard second-phase particle incorporation as a means to enhance surface properties and wear performance of C86300 manganese bronze alloy. FSP of flat bronze alloy specimens was conducted with hardened H-13 tool steel to create a 3-mm-thick processed surface layer. The process was also used to incorporate B 4C particles, thereby creating a metal-matrix composite layer on the alloy surface. FSP alone was observed to produce substantial reduction in grain size (from an initial value of 350 mu m to 1-5 μm). FSP withoutmore » particle incorporation resulted in modest surface hardening due to grain refinement and dispersion hardening. Under lubricated contact in block-on-ring testing with a hardened steel counter face, FSP produced substantial reduction (about 3X) in bronze wear after polishing of processing surface roughening. FSP with hard B 4C second-phase particle incorporation further reduced wear by up to 20X. The improvement in wear behavior is attributed to grain refinement and load shielding by second-phase particles, as determined by wear mechanism analysis.« less
Enhancement of bronze alloy surface properties by FSP second-phase particle incorporation
Ajayi, O. O.; Lorenzo-Martin, Cinta
2017-06-15
This study presents results of an experimental study to evaluate friction stir processing (FSP) with and without hard second-phase particle incorporation as a means to enhance surface properties and wear performance of C86300 manganese bronze alloy. FSP of flat bronze alloy specimens was conducted with hardened H-13 tool steel to create a 3-mm-thick processed surface layer. The process was also used to incorporate B 4C particles, thereby creating a metal-matrix composite layer on the alloy surface. FSP alone was observed to produce substantial reduction in grain size (from an initial value of 350 mu m to 1-5 μm). FSP withoutmore » particle incorporation resulted in modest surface hardening due to grain refinement and dispersion hardening. Under lubricated contact in block-on-ring testing with a hardened steel counter face, FSP produced substantial reduction (about 3X) in bronze wear after polishing of processing surface roughening. FSP with hard B 4C second-phase particle incorporation further reduced wear by up to 20X. The improvement in wear behavior is attributed to grain refinement and load shielding by second-phase particles, as determined by wear mechanism analysis.« less
Effect of Grain Refining on Defect Formation in DC Cast Al-Zn-Mg-Cu Alloy Billet
NASA Astrophysics Data System (ADS)
Nadella, Ravi; Eskin, Dmitry; Katgerman, Laurens
In direct chill (DC) casting, the effect of grain refining on the prominent defects such as hot cracking and macrosegregation remains poorly understood, especially for multi-component commercial aluminum alloys. In this work, DC casting experiments were conducted on a 7075 alloy with and without grain refining at two casting speeds. The grain refiner was introduced either in the launder or in the furnace. The concentration profiles of Zn, Cu and Mg, measured along the billet diameter, showed that the increasing casting speed raises the segregation levels but grain refining does not seem to have a noticeable effect. However, hot cracking tendency is significantly reduced with grain refining and it is observed that crack is terminated with the introduction of grain refiner at a lower casting speed. These experimental results are correlated with microstructural observations such as grain size and morphology, and the occurrence of floating grains.
Mechanisms of microstructure formation under the influence of ultrasonic vibrations
NASA Astrophysics Data System (ADS)
Rakita, Milan
Positive effects of ultrasound on crystallization have been known for almost 90 years. Application of ultrasound has been very successful in many industries, most notably in chemistry, creating a new branch of science - sonochemistry. However, ultrasonication has not found wide commercial application in the solidification processing. The reason for that is the complexity of underlying phenomena and the lack of predicting models which correlate processing parameters with the properties of a product. The purpose of this study is to give some contribution toward better understanding of mechanisms that lead to changes in the solidifying microstructure. It has been found that, under experimental conditions used in this work, cavitation-induced nucleation is the major contributor to the grain refinement. Ultrasonication at minimal supercoolings is expected to give maximal grain refinement. Dendrite fragmentation has not shown to be a significant contributor to the grain refinement. Dendrite fragmentation is maximal if done by bubbles that come in contact with the solidifying phase, or that are created there. Alloys/solutions with long solidification interval, or wide mushy zone, are expected to exhibit more dendrite fragmentation. Bubbles are recognized as a crucial feature in ultrasonication. Their size distribution in the liquid phase prior to ultrasonication dictates the cavitation threshold and intensity of cavitation. For the first time, radiation pressure has been recognized as potentially significant factor in grain refinement. In the experimental setup used in this study, acoustic pressure at the main (driving) frequency is not substantial to cause significant fragmentation, and only dendrites close to the sonotrode were fragmented. However, application of ultrasound with frequencies that are several times higher than the current industrial practice could substantially increase dendrite fragmentation. Appearance of fractional harmonics has also been recognized for the first time as potentially influential factor. The amplitude of pressure caused by these vibrations is quite sensible, and since resonant in nature, these pressure variations propagate throughout entire liquid volume. Although ultrasonication is a very efficient method for degassing melts, there is a risk of gas entrapment if ultrasound is applied during solidification. Heating can create unwanted effects during ultrasonication at small supercoolings.
Influence of Mg on Grain Refinement of Near Eutectic Al-Si Alloys
NASA Astrophysics Data System (ADS)
Ravi, K. R.; Manivannan, S.; Phanikumar, G.; Murty, B. S.; Sundarraj, Suresh
2011-07-01
Although the grain-refinement practice is well established for wrought Al alloys, in the case of foundry alloys such as near eutectic Al-Si alloys, the underlying mechanisms and the use of grain refiners need better understanding. Conventional grain refiners such as Al-5Ti-1B are not effective in grain refining the Al-Si alloys due to the poisoning effect of Si. In this work, we report the results of a newly developed grain refiner, which can effectively grain refine as well as modify eutectic and primary Si in near eutectic Al-Si alloys. Among the material choices, the grain refining response with Al-1Ti-3B master alloy is found to be superior compared to the conventional Al-5Ti-1B master alloy. It was also found that magnesium additions of 0.2 wt pct along with the Al-1Ti-3B master alloy further enhance the near eutectic Al-Si alloy's grain refining efficiency, thus leading to improved bulk mechanical properties. We have found that magnesium essentially scavenges the oxygen present on the surface of nucleant particles, improves wettability, and reduces the agglomeration tendency of boride particles, thereby enhancing grain refining efficiency. It allows the nucleant particles to act as potent and active nucleation sites even at levels as low as 0.2 pct in the Al-1Ti-3B master alloy.
Whole grains, refined grains and fortified refined grains: What's the difference?
Slavin, J L
2000-09-01
Dietary guidance universally supports the importance of grains in the diet. The United States Department of Agriculture pyramid suggests that Americans consume from six to 11 servings of grains per day, with three of these servings being whole grain products. Whole grain contains the bran, germ and endosperm, while refined grain includes only endosperm. Both refined and whole grains can be fortified with nutrients to improve the nutrient profile of the product. Most grains consumed in developed countries are subjected to some type of processing to optimize flavor and provide shelf-stable products. Grains provide important sources of dietary fibre, plant protein, phytochemicals and needed vitamins and minerals. Additionally, in the United States grains have been chosen as the best vehicle to fortify our diets with vitamins and minerals that are typically in short supply. These nutrients include iron, thiamin, niacin, riboflavin and, more recently, folic acid and calcium. Grains contain antioxidants, including vitamins, trace minerals and non-nutrients such as phenolic acids, lignans and phytic acid, which are thought to protect against cardiovascular disease and cancer. Additionally, grains are our most dependable source of phytoestrogens, plant compounds known to protect against cancers such as breast and prostate. Grains are rich sources of oligosaccharides and resistant starch, carbohydrates that function like dietary fibre and enhance the intestinal environment and help improve immune function. Epidemiological studies find that whole grains are more protective than refined grains in the prevention of chronic disease, although instruments to define intake of refined, whole and fortified grains are limited. Nutritional guidance should support whole grain products over refined, with fortification of nutrients improving the nutrient profile of both refined and whole grain products.
USDA-ARS?s Scientific Manuscript database
The influence of added phytate on dough properties and bread baking quality was studied to determine the role of phytate in the impaired functional properties of whole grain wheat flour for baking bread. Phytate addition to refined flour at a 1% level substantially increased mixograph mixing time, g...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Lavender, Curt
2015-05-08
Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO 2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size andmore » volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.« less
The Influence of Grain Refiners on the Efficiency of Ceramic Foam Filters
NASA Astrophysics Data System (ADS)
Towsey, Nicholas; Schneider, Wolfgang; Krug, Hans-Peter; Hardman, Angela; Keegan, Neil J.
An extensive program of work has been carried out to evaluate the efficiency of ceramic foam filters under carefully controlled conditions. Work reported at previous TMS meetings showed that in the absence of grain refiners, ceramic foam filters have the capacity for high filtration efficiency and consistent, reliable performance. The current phase of the investigation focuses on the impact grain refiner additions have on filter performance. The high filtration efficiencies obtained using 50 or 80ppi CFF's in the absence of grain refiners diminish when Al-3%Ti-1%B grain refiners are added. This, together with the impact of incoming inclusion loading on filter performance and the level of grain refiner addition are considered in detail. The new generation Al-3%Ti-0.15%C grain refiner has also been included. At typical addition levels (1kg/tonne) the effect on filter efficiency is similar to that for TiB2based grain refiners. The work was again conducted on a production scale using AA1050 alloy. Metal quality was determined using LiMCA and PoDFA. Spent filters were also analysed.
NASA Astrophysics Data System (ADS)
Zhao, H.; Palmiere, E. J.
2017-07-01
Although there has been much research regarding the effect of austenite deformation on accelerated cooled microstructures in microalloyed steels, there is still a lack of accurate data on boundary densities and effective grain sizes. Previous results observed from optical micrographs are not accurate enough, because, for displacive transformation products, a substantial part of the boundaries have disorientation angles below 15 deg. Therefore, in this research, a niobium microalloyed steel was used and electron backscattering diffraction mappings were performed on all of the transformed microstructures to obtain accurate results on boundary densities and grain refinement. It was found that with strain rising from 0 to 0.5, a transition from bainitic ferrite to acicular ferrite occurs and the effective grain size reduces from 5.7 to 3.1 μm. When further increasing strain from 0.5 to 0.7, dynamic recrystallization was triggered and postdynamic softening occurred during the accelerated cooling, leading to an inhomogeneous and coarse transformed microstructure. In the entire strain range, the density changes of boundaries with different disorientation angles are distinct, due to different boundary formation mechanisms. Finally, the controversial influence of austenite deformation on effective grain size of low-temperature transformation products was argued to be related to the differences in transformation conditions and final microstructures.
A Food Service Intervention Improves Whole Grain Access at Lunch in Rural Elementary Schools
Cohen, Juliana F. W.; Rimm, Eric B.; Austin, S. Bryn; Hyatt, Raymond R.; Kraak, Vivica I.; Economos, Christina D.
2015-01-01
Background Whole grain (WG) options are often limited in schools, which may impact rural, low-income students who rely on school meals for a substantial portion of their food intake. This study examined the changes in the availability and quantity of WG and refined grain foods offered in schools participating in the Creating Healthy, Active and Nurturing Growing-up Environments (CHANGE) study, a randomized, controlled intervention among rural communities (4 intervention and 4 control). Methods Foods were assessed using production records, recipes, and nutrition labels from breakfast and lunch over 1week during fall 2008 and spring 2009. Key informant interviews were conducted with school food service directors in the spring 2009. Results The CHANGE intervention schools significantly increased the average percent of school days WGs were offered (p =.047) and the amount of WGs offered/food item (ounces) at lunch compared with control schools (p = .02). There was a significant decrease in the percent of students with access to refined grains at lunch compared with control schools (p =.049), although there were no significant differences in WG availability during breakfast. Conclusions The CHANGE schools improved WG availability, enabling student's WG consumption to be closer to national recommendations. PMID:24443783
A food service intervention improves whole grain access at lunch in rural elementary schools.
Cohen, Juliana F W; Rimm, Eric B; Austin, S Bryn; Hyatt, Raymond R; Kraak, Vivica I; Economos, Christina D
2014-03-01
Whole grain (WG) options are often limited in schools, which may impact rural, low-income students who rely on school meals for a substantial portion of their food intake. This study examined the changes in the availability and quantity of WG and refined grain foods offered in schools participating in the Creating Healthy, Active and Nurturing Growing-up Environments (CHANGE) study, a randomized, controlled intervention among rural communities (4 intervention and 4 control). Foods were assessed using production records, recipes, and nutrition labels from breakfast and lunch over 1 week during fall 2008 and spring 2009. Key informant interviews were conducted with school food service directors in the spring 2009. The CHANGE intervention schools significantly increased the average percent of school days WGs were offered (p = .047) and the amount of WGs offered/food item (ounces) at lunch compared with control schools (p = .02). There was a significant decrease in the percent of students with access to refined grains at lunch compared with control schools (p = .049), although there were no significant differences in WG availability during breakfast. The CHANGE schools improved WG availability, enabling student's WG consumption to be closer to national recommendations. © 2014, American School Health Association.
NASA Astrophysics Data System (ADS)
Li, Gui-rong; Wang, Hong-ming; Cai, Yun; Zhao, Yu-tao; Wang, Jun-jie; Gill, Simon P. A.
2013-09-01
AZ91 magnesium alloy was subjected to a deep cryogenic treatment. X-ray diffraction (XRD), scanning electronic microscopy (SEM), and transmission electronic microscopy (TEM) methods were utilized to characterize the composition and microstructure of the treated samples. The results show that after two cryogenic treatments, the quantity of the precipitate hardening β phase increases, and the sizes of the precipitates are refined from 8-10 μm to 2-4 μm. This is expected to be due to the decreased solubility of aluminum in the matrix at low temperature and the significant plastic deformation owing to internal differences in thermal contraction between phases and grains. The polycrystalline matrix is also noticeably refined, with the sizes of the subsequent nanocrystalline grains in the range of 50-100 nm. High density dislocations are observed to pile up at the grain boundaries, inducing the dynamic recrystallization of the microstructure, leading to the generation of a nanocrystalline grain structure. After two deep cryogenic treatments, the tensile strength and elongation are found to be substantially increased, rising from 243 MPa and 4.4% of as-cast state to 299 MPa and 5.1%.
A Comparison of the Behaviour of AlTiB and AlTiC Grain Refiners
NASA Astrophysics Data System (ADS)
Schneider, W.; Kearns, M. A.; McGarry, M. J.; Whitehead, A. J.
AlTiC master alloys present a new alternative to AlTiB grain refiners which have enjoyed pre-eminence in cast houses for several decades. Recent investigations have shown that, under defined casting conditions, AlTiC is a more efficient grain refiner than AlTiB, is less prone to agglomeration and is more resistant to poisoning by Zr, Cr. Moreover it is observed that there are differences in the mechanism of grain refinement for the different alloys. This paper describes the influence of melt temperature and addition rate on the performance of both types of grain refiner in DC casting tests on different wrought alloys. Furthermore the effects of combined additions of the grain refiners and the recycling behaviour of the treated alloys are presented. Results are compared with laboratory test data. Finally, mechanisms of grain refinement are discussed which are consistent with the observed differences in behaviour with AlTiC and AlTiB.
Enright, Lynda; Slavin, Joanne
2010-03-19
Epidemiological evidence supports that a diet high in whole grains is associated with lowered risk of chronic diseases included coronary heart disease, obesity, type 2 diabetes, and some types of cancer. One potential mechanism for the protective properties of whole grains is their antioxidant content. The aim of this study was to compare differences in antioxidant measures when subjects consumed either refined or whole grain diets. Twenty healthy subjects took part in a randomized, crossover dietary intervention study. Subjects consumed either a refined grain or whole grain diet for 14 days and then the other diet for the next 14 days. Male subjects consumed 8 servings of grains per day and female subjects consumed 6 servings of grains per day. Blood and urine samples were collected at the end of each diet. Antioxidant measures included oxygen radical absorbance capacity (ORAC) in blood, and isoprostanes and thiobarbituric acid reactive substances (TBARS) in urine. The whole grain diet was significantly higher in dietary fiber, vitamin B6, folate, selenium, copper, zinc, iron, magnesium and cystine compared to the refined grain diet. Despite high intakes of whole grains, no significant differences were seen in any of the antioxidant measures between the refined and whole grain diets. No differences in antioxidant measures were found when subjects consumed whole grain diets compared to refined grain diets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valiev, R.Z.; Islamgaliev, R.K.; Kuzmina, N.F.
Intense plastic straining techniques such as torsion straining and equal channel angular (ECA) pressing are processing procedures which may be used to make beneficial changes in the properties of materials through a substantial refinement in the microstructure. Although intense plastic straining procedures have been used for grain refinement in numerous experiments reported over the last decade, there appears to have been no investigations in which these procedures were used with metal matrix composites. The present paper describes a series of experiments in which torsion straining and ECA pressing were applied to an Al-6061 metal matrix composite reinforced with 10 volumemore » % of Al{sub 2}O{sub 3} particulates. As will be demonstrated, intense plastic straining has the potential for both reducing the grain size of the composite to the submicrometer level and increasing the strength at room temperature by a factor in the range of {approximately}2 to {approximately}3.« less
Comparison of corrosion behavior between coarse grained and nano/ultrafine grained alloy 690
NASA Astrophysics Data System (ADS)
Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Ting, Guo
2016-01-01
The effect of grain refinement on corrosion resistance of alloy 690 was investigated. The electron work function value of coarse grained alloy 690 was higher than that of nano/ultrafine grained one. The grain refinement reduced the electron work function of alloy 690. The passive films formed on coarse grained and nano/ultrafine grained alloy 690 in borate buffer solution were studied by potentiodynamic curves and electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The results showed that the grain refinement improved corrosion resistance of alloy 690. This was attributed to the fact that grain refinement promoted the enrichment of Cr2O3 and inhibited Cr(OH)3 in the passive film. More Cr2O3 in passive film could significantly improve the corrosion resistance of the nano/ultrafine grained alloy 690.
Application of Al-2La-1B Grain Refiner to Al-10Si-0.3Mg Casting Alloy
NASA Astrophysics Data System (ADS)
Jing, Lijun; Pan, Ye; Lu, Tao; Li, Chenlin; Pi, Jinhong; Sheng, Ningyue
2018-05-01
This paper reports the application and microstructure refining effect of an Al-2La-1B grain refiner in Al-10Si-0.3Mg casting alloy. Compared with the traditional Al-5Ti-1B refiner, Al-2La-1B refiner shows better performances on the grain refinement of Al-10Si-0.3Mg alloy. Transmission electron microscopy analysis suggests that the crystallite structure features of LaB6 are beneficial to the heterogeneous nucleation of α-Al grains. Regarding the mechanical performances, tensile properties of Al-10Si-0.3Mg casting alloy are prominently improved, due to the refined microstructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao
Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less
Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao
2017-10-03
Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less
Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babu, N. Kishore; Cross, Carl E.
2012-06-28
The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought basemore » metal levels.« less
Aune, Dagfinn; Norat, Teresa; Romundstad, Pål; Vatten, Lars J
2013-11-01
Several studies have suggested a protective effect of intake of whole grains, but not refined grains on type 2 diabetes risk, but the dose-response relationship between different types of grains and type 2 diabetes has not been established. We conducted a systematic review and meta-analysis of prospective studies of grain intake and type 2 diabetes. We searched the PubMed database for studies of grain intake and risk of type 2 diabetes, up to June 5th, 2013. Summary relative risks were calculated using a random effects model. Sixteen cohort studies were included in the analyses. The summary relative risk per 3 servings per day was 0.68 (95% CI 0.58-0.81, I(2) = 82%, n = 10) for whole grains and 0.95 (95% CI 0.88-1.04, I(2) = 53%, n = 6) for refined grains. A nonlinear association was observed for whole grains, p nonlinearity < 0.0001, but not for refined grains, p nonlinearity = 0.10. Inverse associations were observed for subtypes of whole grains including whole grain bread, whole grain cereals, wheat bran and brown rice, but these results were based on few studies, while white rice was associated with increased risk. Our meta-analysis suggests that a high whole grain intake, but not refined grains, is associated with reduced type 2 diabetes risk. However, a positive association with intake of white rice and inverse associations between several specific types of whole grains and type 2 diabetes warrant further investigations. Our results support public health recommendations to replace refined grains with whole grains and suggest that at least two servings of whole grains per day should be consumed to reduce type 2 diabetes risk.
Effect of Solutes on Grain Refinement of As-Cast Fe-4Si Alloy
NASA Astrophysics Data System (ADS)
Li, Ming; Li, Jian-Min; Zheng, Qing; Wang, Geoff; Zhang, Ming-Xing
2018-06-01
Grain size is one of the key microstructural factors that control the mechanical properties of steels. The present work aims to extend the theories of grain refinement which were established for cast light alloys to steel systems. Using a designed Fe-4 wt pct Si alloy (all-ferrite structure during whole solidification process), the solute effect on grain refinement/grain coarsening in ferritic systems was comprehensively investigated. Experimental results showed that boron (B), which is associated with the highest Q value (growth restriction factor) in ferrite, significantly refined the as-cast structure of the Fe-4 wt pct Si alloy. Cu and Mo with low Q values had no effect on grain refinement. However, although Y and Zr have relatively high Q values, addition of these two solutes led to grain coarsening in the Fe-4Si alloy. Understanding the results in regards to the growth restriction factor and the driving force for the solidification led to the conclusion that in addition to the grain growth restriction effect, the changes of thermodynamic driving force for solidification due to the solute addition also played a key role in grain refinement in ferritic alloys.
Effect of Solutes on Grain Refinement of As-Cast Fe-4Si Alloy
NASA Astrophysics Data System (ADS)
Li, Ming; Li, Jian-Min; Zheng, Qing; Wang, Geoff; Zhang, Ming-Xing
2018-03-01
Grain size is one of the key microstructural factors that control the mechanical properties of steels. The present work aims to extend the theories of grain refinement which were established for cast light alloys to steel systems. Using a designed Fe-4 wt pct Si alloy (all-ferrite structure during whole solidification process), the solute effect on grain refinement/grain coarsening in ferritic systems was comprehensively investigated. Experimental results showed that boron (B), which is associated with the highest Q value (growth restriction factor) in ferrite, significantly refined the as-cast structure of the Fe-4 wt pct Si alloy. Cu and Mo with low Q values had no effect on grain refinement. However, although Y and Zr have relatively high Q values, addition of these two solutes led to grain coarsening in the Fe-4Si alloy. Understanding the results in regards to the growth restriction factor and the driving force for the solidification led to the conclusion that in addition to the grain growth restriction effect, the changes of thermodynamic driving force for solidification due to the solute addition also played a key role in grain refinement in ferritic alloys.
Zhao, Lijia; Park, Nokeun; Tian, Yanzhong; Shibata, Akinobu; Tsuji, Nobuhiro
2016-01-01
Dynamic recrystallization (DRX) is an important grain refinement mechanism to fabricate steels with high strength and high ductility (toughness). The conventional DRX mechanism has reached the limitation of refining grains to several microns even though employing high-strain deformation. Here we show a DRX phenomenon occurring in the dynamically transformed (DT) ferrite, by which the required strain for the operation of DRX and the formation of ultrafine grains is significantly reduced. The DRX of DT ferrite shows an unconventional temperature dependence, which suggests an optimal condition for grain refinement. We further show that new strategies for ultra grain refinement can be evoked by combining DT and DRX mechanisms, based on which fully ultrafine microstructures having a mean grain size down to 0.35 microns can be obtained without high-strain deformation and exhibit superior mechanical properties. This study will open the door to achieving optimal grain refinement to nanoscale in a variety of steels requiring no high-strain deformation in practical industrial application. PMID:27966603
Solidification Based Grain Refinement in Steels
2009-07-24
pearlite (See Figure 1). No evidence of the as-cast austenite dendrite structure was observed. The gating system for this sample resides at the thermal...possible nucleating compounds. 3) Extend grain refinement theory and solidification knowledge through experimental data. 4) Determine structure ...refine the structure of a casting through heat treatment. The energy required for grain refining via thermomechanical processes or heat treatment
Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making
McCallum, R.W.; Branagan, D.J.
1996-01-23
A method of making a permanent magnet is disclosed wherein (1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and (2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties. 33 figs.
Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making
McCallum, R. William; Branagan, Daniel J.
1996-01-23
A method of making a permanent magnet wherein 1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and 2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties.
Microstructures and Grain Refinement of Additive-Manufactured Ti- xW Alloys
NASA Astrophysics Data System (ADS)
Mendoza, Michael Y.; Samimi, Peyman; Brice, David A.; Martin, Brian W.; Rolchigo, Matt R.; LeSar, Richard; Collins, Peter C.
2017-07-01
It is necessary to better understand the composition-processing-microstructure relationships that exist for materials produced by additive manufacturing. To this end, Laser Engineered Net Shaping (LENS™), a type of additive manufacturing, was used to produce a compositionally graded titanium binary model alloy system (Ti- xW specimen (0 ≤ x ≤ 30 wt pct), so that relationships could be made between composition, processing, and the prior beta grain size. Importantly, the thermophysical properties of the Ti- xW, specifically its supercooling parameter ( P) and growth restriction factor ( Q), are such that grain refinement is expected and was observed. The systematic, combinatorial study of this binary system provides an opportunity to assess the mechanisms by which grain refinement occurs in Ti-based alloys in general, and for additive manufacturing in particular. The operating mechanisms that govern the relationship between composition and grain size are interpreted using a model originally developed for aluminum and magnesium alloys and subsequently applied for titanium alloys. The prior beta grain factor observed and the interpretations of their correlations indicate that tungsten is a good grain refiner and such models are valid to explain the grain-refinement process. By extension, other binary elements or higher order alloy systems with similar thermophysical properties should exhibit similar grain refinement.
Refining As-cast β-Ti Grains Through ZrN Inoculation
NASA Astrophysics Data System (ADS)
Qiu, Dong; Zhang, Duyao; Easton, Mark A.; St John, David H.; Gibson, Mark A.
2018-03-01
The columnar-to-equiaxed transition and remarkable refinement of β-Ti grains occur in an as-cast Ti-13Mo alloy when a new grain refiner, ZrN, was inoculated at a nitrogen level as low as 0.4 wt pct. The grain refining effect is attributed to in situ-formed TiN particles that provide active nucleation sites and solute Zr that promotes constitutional supercooling. Reproducible orientation relationships were identified between TiN nucleants and β-Ti matrix, and well explained by the edge-to-edge matching model.
Krawczynska, Agnieszka Teresa; Lewandowska, Malgorzata; Pippan, Reinhard; Kurzydlowski, Krzysztof Jan
2013-05-01
In the present study, the high pressure torsion (HPT) was used to refine the grain structure down to the nanometer scale in an austenitic stainless steel. The principles of HPT lay on torsional deformation under simultaneous high pressure of the specimen, which results in substantial reduction in the grain size. Disks of the 316LVM austenitic stainless steel of 10 mm in diameter were subjected to equivalent strains epsilon of 32 at RT and 450 degrees C under the pressure of 4 GPa. Furthermore, two-stage HPT processes, i.e., deformation at room temperature followed by deformation at 450 degrees C, were performed. The resulting microstructures were investigated in TEM observations. The mechanical properties were measured in terms of the microhardness and in tensile tests. HPT performed at two-stage conditions (firstly at RT next at 450 degrees C) gives similar values of microhardness to the ones obtained after deforming only at 450 degrees C but performed to higher values of the overall equivalent strain epsilon. The effect of high pressure torsion on structural refinement and mechanical properties of an austenitic stainless steel was evaluated.
USDA-ARS?s Scientific Manuscript database
In recent history, refined grains have replaced whole grains in the human diet. However, refined grains have fewer phytochemicals and more starches than whole grain. In addition, studies have shown that inclusion of whole grains in a daily diet results in decreased risk of cancer and cardiovascular ...
NASA Astrophysics Data System (ADS)
Timelli, Giulio; Camicia, Giordano; Ferraro, Stefano
2014-02-01
The effect of AlTi5B1 grain refinement and different solidification rates on metallurgical and mechanical properties of a secondary AlSi7Cu3Mg alloy is reported. While the Ti content ranges from 0.04 up to 0.225 wt.%, the cooling rate varies between 0.1 and 5.5 °C/s. Metallographic and thermal analysis techniques have been used to quantitatively examine the macro- and microstructural changes occurring with grain refiner addition at various cooling rates. The results indicate that a small AlTi5B1 addition produces the greatest refinement, while no significant reduction of grain size is obtained with a great amount of grain refiner. On increasing the cooling rate, a lower amount of AlTi5B1 master alloy is necessary to produce a uniform grain size throughout the casting. The combined addition of AlTi5B1 and Sr does not produce any reciprocal interaction or effect on primary α-Al and eutectic solidification. The grain refinement improves the plastic behavior of the alloy and increases the reliability of castings, as evidenced by the Weibull statistics.
Influence of Solute Content and Solidification Parameters on Grain Refinement of Aluminum Weld Metal
NASA Astrophysics Data System (ADS)
Schempp, Philipp; Cross, Carl Edward; Pittner, Andreas; Rethmeier, Michael
2013-07-01
Grain refinement provides an important possibility to enhance the mechanical properties ( e.g., strength and ductility) and the weldability (susceptibility to solidification cracking) of aluminum weld metal. In the current study, a filler metal consisting of aluminum base metal and different amounts of commercial grain refiner Al Ti5B1 was produced. The filler metal was then deposited in the base metal and fused in a GTA welding process. Additions of titanium and boron reduced the weld metal mean grain size considerably and resulted in a transition from columnar to equiaxed grain shape ( CET). In commercial pure aluminum (Alloy 1050A), the grain-refining efficiency was higher than that in the Al alloys 6082 and 5083. Different welding and solidification parameters influenced the grain size response only slightly. Furthermore, the observed grain-size reduction was analyzed by means of the undercooling parameter P and the growth restriction parameter Q, which revealed the influence of solute elements and nucleant particles on grain size.
Modeling of the Coupling of Microstructure and Macrosegregation in a Direct Chill Cast Al-Cu Billet
NASA Astrophysics Data System (ADS)
Heyvaert, Laurent; Bedel, Marie; Založnik, Miha; Combeau, Hervé
2017-10-01
The macroscopic multiphase flow and the growth of the solidification microstructures in the mushy zone of a direct chill (DC) casting are closely coupled. These couplings are the key to the understanding of the formation of the macrosegregation and of the non-uniform microstructure of the casting. In the present paper we use a multiphase and multiscale model to provide a fully coupled picture of the links between macrosegregation and microstructure in a DC cast billet. The model describes nucleation from inoculant particles and growth of dendritic and globular equiaxed crystal grains, fully coupled with macroscopic transport phenomena: fluid flow induced by natural convection and solidification shrinkage, heat, mass, and solute mass transport, motion of free-floating equiaxed grains, and of grain refiner particles. We compare our simulations to experiments on grain-refined and non-grain-refined industrial size billets from literature. We show that a transition between dendritic and globular grain morphology triggered by the grain refinement is the key to the explanation of the differences between the macrosegregation patterns in the two billets. We further show that the grain size and morphology are strongly affected by the macroscopic transport of free-floating equiaxed grains and of grain refiner particles.
Grain Refinement of Freeform Fabricated Ti-6Al-4V Alloy Using Beam/Arc Modulation
NASA Technical Reports Server (NTRS)
Mitzner, Scott; Liu, Stephen; Domack, Marcia S.; Hafley, Robert A.
2012-01-01
Grain refinement can significantly improve the mechanical properties of freeform-fabricated Ti-6Al-4V alloy, promoting increased strength and enhanced isotropy compared with coarser grained material. Large beta-grains can lead to a segregated microstructure, in regard to both alpha-phase morphology and alpha-lath orientation. Beam modulation, which has been used in conventional fusion welding to promote grain refinement, is explored in this study for use in additive manufacturing processes including electron beam freeform fabrication (EBF(sup 3)) and gas-tungsten arc (GTA) deposition to alter solidification behavior and produce a refined microstructure. The dynamic molten pool size induced by beam modulation causes rapid heat flow variance and results in a more competitive grain growth environment, reducing grain size. Consequently, improved isotropy and strength can be achieved with relatively small adjustments to deposition parameters.
Wu, Bingzhi; Leng, Xuesong; Xiu, Ziyang; Yan, Jiuchun
2018-06-01
SiC ceramics were successfully soldered with the assistance of ultrasound. Two kinds of filler metals, namely non-eutectic Zn-5Al-3Cu and eutectic Zn-5Al alloys, were used. The effects of ultrasonic action on the microstructure and mechanical properties of the soldered joints were investigated. The results showed that ultrasound could promote the wetting and bonding between the SiC ceramic and filler metals within tens of seconds. For the Zn-5Al-3Cu solder, a fully grain-refined structure in the bond layer was obtained as the ultrasonic action time increased. This may lead to a substantial enhancement in the strength of the soldered joints. For the Zn-5Al solder, the shear strength of the soldered joints was only ∼102 MPa when the ultrasonic action time was shorter, and fractures occurred in the brittle lamellar eutectic phases in the center of the bond layer. With increasing ultrasonic action time, the lamellar eutectic phase in the bond layer of SiC joints could be completely transformed to a fine non-lamellar eutectic structure. Meanwhile, the grains in the bond layer were obviously refined. Those results led to the remarkable enhancement of the shear strength of the joints (∼138 MPa) using the Zn-5Al solder, which had approached that enhancement using the Zn-5Al-3Cu solder. The enhanced mechanical properties of the joints were attributed to the significant refinement of the grains and the change in the eutectic structure in the bond layer. Prolonged enhanced heterogeneous nucleation triggered by ultrasonic cavitation is the predominant refinement mechanism of the bond metals of the SiC joints. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lehao
A nanocrystalline surface layer was produced on Mg-3 wt.% Li-6 wt.% Al alloy by means of surface mechanical attrition treatment (SMAT). Microstructure features of various sections were systematically characterized by transmission electron microscopy. The results indicate that grain refinement induced by SMAT is dominated mainly by dislocation slip. Twinning is active at the early stage of grain refinement process when the grain size is large. The dislocation-dominated deformation mechanism is attributed to the change of c/a ratio due to the alloying of Li in Mg matrix and the suppression of twinning due to grain refinement. Nanoindentation results show that themore » hardness of the surface is enhanced by SMAT. - Highlights: •Nanocrystalline surface layer was produced on Mg-3 wt.%Li-6 wt.%Al alloy by SMAT. •Grain refinement induced by SMAT is dominated mainly by dislocation slip. •Twinning is active at the early stage of grain refinement process. •The hardness of the surface was enhanced by SMAT.« less
Grain Refinement of Al-Si Hypoeutectic Alloys by Al3Ti1B Master Alloy and Ultrasonic Treatment
NASA Astrophysics Data System (ADS)
Wang, Gui; Wang, Eric Qiang; Prasad, Arvind; Dargusch, Matthew; StJohn, David H.
Al-Si alloys are widely used in automotive and aerospace industries due to their excellent castability, high strength to weight ratio and good corrosion resistance. However, Si poisoning severely limits the degree of grain refinement with the grain size becoming larger as the Si content increases. Generally the effect of Si poisoning is reduced by increasing the amount of master alloy added to the melt during casting. However, an alternative approach is physical grain refinement through the application of an external force (e.g. mechanical or electromagnetic stirring, intensive shearing and ultrasonic irradiation). This work compares the grain refining efficiency of three approaches to the grain refinement of a range of hypoeutectic Al-Si alloys by (i) the addition of A13Ti1B master alloy, (ii) the application of Ultrasonic Treatment (UT) and (iii) the combined addition of A13Ti1B master alloy and the application of UT.
USDA-ARS?s Scientific Manuscript database
Background: The effect of whole grains on the regulation of energy balance remains controversial. Objective: To determine the effects of substituting whole grains for refined grains, independent of body weight change, on energy metabolism parameters and glycemic control. Design: A randomized, con...
Stratonovitch, Pierre; Semenov, Mikhail A.
2015-01-01
To deliver food security for the 9 billon population in 2050, a 70% increase in world food supply will be required. Projected climatic and environmental changes emphasize the need for breeding strategies that delivers both a substantial increase in yield potential and resilience to extreme weather events such as heat waves, late frost, and drought. Heat stress around sensitive stages of wheat development has been identified as a possible threat to wheat production in Europe. However, no estimates have been made to assess yield losses due to increased frequency and magnitude of heat stress under climate change. Using existing experimental data, the Sirius wheat model was refined by incorporating the effects of extreme temperature during flowering and grain filling on accelerated leaf senescence, grain number, and grain weight. This allowed us, for the first time, to quantify yield losses resulting from heat stress under climate change. The model was used to optimize wheat ideotypes for CMIP5-based climate scenarios for 2050 at six sites in Europe with diverse climates. The yield potential for heat-tolerant ideotypes can be substantially increased in the future (e.g. by 80% at Seville, 100% at Debrecen) compared with the current cultivars by selecting an optimal combination of wheat traits, e.g. optimal phenology and extended duration of grain filling. However, at two sites, Seville and Debrecen, the grain yields of heat-sensitive ideotypes were substantially lower (by 54% and 16%) and more variable compared with heat-tolerant ideotypes, because the extended grain filling required for the increased yield potential was in conflict with episodes of high temperature during flowering and grain filling. Despite much earlier flowering at these sites, the risk of heat stress affecting yields of heat-sensitive ideotypes remained high. Therefore, heat tolerance in wheat is likely to become a key trait for increased yield potential and yield stability in southern Europe in the future. PMID:25750425
Grain refinement of high strength steels to improve cryogenic toughness
NASA Technical Reports Server (NTRS)
Rush, H. F.
1985-01-01
Grain-refining techniques using multistep heat treatments to reduce the grain size of five commercial high-strength steels were investigated. The goal of this investigation was to improve the low-temperature toughness as measured by Charpy V-notch impact test without a significant loss in tensile strength. The grain size of four of five alloys investigated was successfully reduced up to 1/10 of original size or smaller with increases in Charpy impact energy of 50 to 180 percent at -320 F. Tensile properties were reduced from 0 to 25 percent for the various alloys tested. An unexpected but highly beneficial side effect from grain refining was improved machinability.
Džugan, Ján; Németh, Gergely; Lukáč, Pavel; Bohlen, Jan
2018-01-01
Deformation behaviour of rolled AZ31 sheets that were subjected to the accumulative roll bonding was investigated. Substantially refined microstructure of samples was achieved after the first and second pass through the rolling mill. Sheets texture was investigated using an X-ray diffractometer. Samples for tensile tests were cut either parallel or perpendicular to the rolling direction. Tensile tests were performed at temperatures ranging from room temperature up to 300 °C. Tensile plastic anisotropy, different from the anisotropy observed in AZ31 sheets by other authors, was observed. This anisotropy decreases with an increasing number of rolling passes and increasing deformation temperature. Grain refinement and texture are the crucial factors influencing the deformation behaviour. PMID:29303975
NASA Astrophysics Data System (ADS)
Sabau, Adrian S.; Mirmiran, Seyed; Glaspie, Christopher; Li, Shimin; Apelian, Diran; Shyam, Amit; Allen Haynes, J.; Rodriguez, Andres F.
2018-06-01
The hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: "V"-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on the variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct.
Overview: Application of heterogeneous nucleation in grain-refining of metals.
Greer, A L
2016-12-07
In all of metallurgical processing, probably the most prominent example of nucleation control is the "inoculation" of melts to suppress columnar solidification and to obtain fine equiaxed grain structures in the as-cast solid. In inoculation, a master alloy is added to the melt to increase its solute content and to add stable particles that can act as nucleants for solid grains. This is important for alloys of many metals, and in other cases such as ice nucleation in living systems, but inoculation of aluminum alloys using Al-5Ti-1B (wt.%) master alloy is the exemplar. The key elements are (i) that the chemical interactions between nucleant TiB 2 particles and the melt ensure that the solid phase (α-Al) exists on the surface of the particles even above the liquidus temperature of the melt, (ii) that these perfect nucleants can initiate grains only when the barrier for free growth of α-Al is surmounted, and (iii) that (depending on whether the melt is spatially isothermal or not) the release of latent heat, or the limited extent of constitutional supercooling, can act to limit the number of grains that is initiated and therefore the degree of grain refinement that can be achieved. We review recent studies that contribute to better understanding, and improvement, of grain refinement in general. We also identify priorities for future research. These include the study of the effects of nanophase dispersions in melts. Preliminary studies show that such dispersions may be especially effective in achieving grain refinement, and raise many questions about the underlying mechanisms. The stimulation of icosahedral short-range ordering in the liquid has been shown to lead to grain refinement, and is a further priority for study, especially as the refinement can be achieved with only minor additions of solute.
Overview: Application of heterogeneous nucleation in grain-refining of metals
NASA Astrophysics Data System (ADS)
Greer, A. L.
2016-12-01
In all of metallurgical processing, probably the most prominent example of nucleation control is the "inoculation" of melts to suppress columnar solidification and to obtain fine equiaxed grain structures in the as-cast solid. In inoculation, a master alloy is added to the melt to increase its solute content and to add stable particles that can act as nucleants for solid grains. This is important for alloys of many metals, and in other cases such as ice nucleation in living systems, but inoculation of aluminum alloys using Al-5Ti-1B (wt.%) master alloy is the exemplar. The key elements are (i) that the chemical interactions between nucleant TiB2 particles and the melt ensure that the solid phase (α-Al) exists on the surface of the particles even above the liquidus temperature of the melt, (ii) that these perfect nucleants can initiate grains only when the barrier for free growth of α-Al is surmounted, and (iii) that (depending on whether the melt is spatially isothermal or not) the release of latent heat, or the limited extent of constitutional supercooling, can act to limit the number of grains that is initiated and therefore the degree of grain refinement that can be achieved. We review recent studies that contribute to better understanding, and improvement, of grain refinement in general. We also identify priorities for future research. These include the study of the effects of nanophase dispersions in melts. Preliminary studies show that such dispersions may be especially effective in achieving grain refinement, and raise many questions about the underlying mechanisms. The stimulation of icosahedral short-range ordering in the liquid has been shown to lead to grain refinement, and is a further priority for study, especially as the refinement can be achieved with only minor additions of solute.
Leap, Michael Jerald
2017-08-31
Here, the kinetics of toughness degradation resulting from transgranular particle embrittlement are evaluated as a function of composition and processing history for simulated carburizing operations in air-melt steel containing grain-refining additions of aluminum and aluminum plus niobium. The kinetics of particle embrittlement are inherently linked to the ripening of AlN precipitates after extended austenitization in steel containing carbon contents representative of both the case and core of a carburized component. Embrittlement in steel containing AlN occurs with an activation energy similar to the value for aluminum diffusion in austenite, although an AlN volume fraction effect on the embrittlement kinetics ismore » manifested as decreases in activation energy with decreases in the [Al]/[N] ratio of steel. In contrast, the presence of niobium substantially retards the kinetics of particle embrittlement in steel containing 120–200 ppm N. Observations of AlN precipitates coated with Nb(C,N) indicate that the decreases in embrittlement kinetics are related to a reduction in the potential for AlN ripening during austenitization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leap, Michael Jerald
Here, the kinetics of toughness degradation resulting from transgranular particle embrittlement are evaluated as a function of composition and processing history for simulated carburizing operations in air-melt steel containing grain-refining additions of aluminum and aluminum plus niobium. The kinetics of particle embrittlement are inherently linked to the ripening of AlN precipitates after extended austenitization in steel containing carbon contents representative of both the case and core of a carburized component. Embrittlement in steel containing AlN occurs with an activation energy similar to the value for aluminum diffusion in austenite, although an AlN volume fraction effect on the embrittlement kinetics ismore » manifested as decreases in activation energy with decreases in the [Al]/[N] ratio of steel. In contrast, the presence of niobium substantially retards the kinetics of particle embrittlement in steel containing 120–200 ppm N. Observations of AlN precipitates coated with Nb(C,N) indicate that the decreases in embrittlement kinetics are related to a reduction in the potential for AlN ripening during austenitization.« less
Ding, Wanwu; Xia, Tiandong; Zhao, Wenjun
2014-05-07
Three types of Al-5Ti master alloys were synthesized by a method of thermal explosion reaction in pure molten aluminum. Performance comparison of Al-5Ti master alloy in grain refinement of commercial purity Al with different additions (0.6%, 1.0%, 1.6%, 2.0%, and 3.0%) and holding time (10, 30, 60 and 120 min) were investigated. The results show that Al-5Ti master alloy with blocky TiAl₃ particles clearly has better refining efficiency than the master alloy with mixed TiAl₃ particles and the master alloy with needle-like TiAl₃ particles. The structures of master alloys, differing by sizes, morphologies and quantities of TiAl₃ crystals, were found to affect the pattern of the grain refining properties with the holding time. The grain refinement effect was revealed to reduce markedly for master alloys with needle-like TiAl₃ crystals and to show the further significant improvement at a longer holding time for the master alloy containing both larger needle-like and blocky TiAl₃ particles. For the master alloy with finer blocky particles, the grain refining effect did not obviously decrease during the whole studied range of the holding time.
Kinetics of Sub-Micron Grain Size Refinement in 9310 Steel
NASA Astrophysics Data System (ADS)
Kozmel, Thomas; Chen, Edward Y.; Chen, Charlie C.; Tin, Sammy
2014-05-01
Recent efforts have focused on the development of novel manufacturing processes capable of producing microstructures dominated by sub-micron grains. For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermo-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel. Starting with initial bainitic grain sizes of 40 to 50 μm, various levels of grain refinement were observed following hot deformation of 9310 steel samples at temperatures and strain rates ranging from 755 K to 922 K (482 °C and 649 °C) and 1 to 0.001/s, respectively. The resulting deformation microstructures were characterized using scanning electron microscopy and electron backscatter diffraction techniques to quantify the extent of carbide coarsening and grain refinement occurring during deformation. Microstructural models based on the Zener-Holloman parameter were developed and modified to include the effect of the ferrite/carbide interactions within the system. These models were shown to effectively correlate microstructural attributes to the thermal mechanical processing parameters.
Grain Refinement of AZ31 Magnesium Alloy Weldments by AC Pulsing Technique
NASA Astrophysics Data System (ADS)
Kishore Babu, N.; Cross, C. E.
2012-11-01
The current study has investigated the influence of alternating current pulsing on the structure and mechanical properties of AZ31 magnesium alloy gas tungsten arc (GTA) weldments. Autogenous full penetration bead-on-plate GTA welds were made under a variety of conditions including variable polarity (VP), variable polarity mixed (VPM), alternating current (AC), and alternating current pulsing (ACPC). AC pulsing resulted in significant refinement of weld metal when compared with the unpulsed conditions. AC pulsing leads to relatively finer and more equiaxed grain structure in GTA welds. In contrast, VP, VPM, and AC welding resulted in predominantly columnar grain structures. The reason for this grain refinement may be attributed to the periodic variations in temperature gradient and solidification rate associated with pulsing as well as weld pool oscillation observed in the ACPC welds. The observed grain refinement was shown to result in an appreciable increase in fusion zone hardness, tensile strength, and ductility.
NASA Astrophysics Data System (ADS)
Chou, Tzu-Ting; Chen, Wei-Yu; Fleshman, Collin Jordon; Duh, Jenq-Gong
2018-03-01
A fine-grain structure with random orientations of lead-free solder joints was successfully obtained in this study. The Sn-Ag-Cu solder alloys doped with minor Ni were reflowed with Ni-based or Cu-based substrates to fabricate the joints containing different Ni content. Adding 0.1 wt.% Ni into the solder effectively promoted the formation of fine Sn grains, and reflowing with Ni-based substrates further enhanced the effects of β-Sn grain refinement. The crystallographic characteristics and the microstructures were analyzed to identify the solidification mechanism of different types of microstructure in the joints. The phase precipitating order in the joint altered as the solder composition were modified by elemental doping and changing substrate, which significantly affected the efficiency of grain refinement and the final grain structure. The formation mechanism of fine β-Sn grains in the Ni-doped joint with a Ni-based substrate is attributable to the heterogeneous nucleation by Ni, whereas the Ni in the joint using ChouCu-based substrate is consumed to form an intermetallic compound and thus retard the effect of grain refining.
The Grain Structure of Castings: Some Aspects of Modelling
NASA Technical Reports Server (NTRS)
Hellawell, A.
1995-01-01
The efficacy of the modelling of the solidification of castings is typically tested against observed cooling curves and the final grain structures and sizes. Without thermo solutal convection, equiaxed grain formation is promoted by introduction of heterogeneous substrates into the melt, as grain refiners. With efficient thermo solutal convection, dendrite fragments from the mushy zone can act as an intrinsic source of equiaxed grains and resort to grain refining additions is unnecessary. The mechanisms of dendrite fragmentation and transport of these fragments are briefly considered.
The Role of Carbon in Grain Refinement of Cast CrFeCoNi High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Liu, X. W.; Liu, L.; Liu, G.; Wu, X. X.; Lu, D. H.; Yao, J. Q.; Jiang, W. M.; Fan, Z. T.; Zhang, W. B.
2018-03-01
As a promising engineering material, high-entropy alloys (HEAs) CrFeCoNi system has attracted extensive attention worldwide. Their cast alloys are of great importance because of their great formability of complex components, which can be further improved through the transition of the columnar to equiaxed grains and grain refinement. In the current work, the influence of C contents on the grain structures and mechanical properties of the as-cast high-entropy alloy CrFeCoNi was chosen as the target and systematically studied via a hybrid approach of the experiments and thermodynamic calculations. The alloys with various C additions were prepared by arc melting and drop cast. The as-cast macrostructure and microstructure were characterized using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The cast HEAs transform from coarse columnar grains into equiaxed grains with the C level increased to ≥ 2 at. pct and the size of equiaxed grains is further decreased with the increasing C addition. It is revealed that the interdendritic segregation of Cr and C results in grain boundary precipitation of M23C6 carbides. The grain refinement is attributed to the additional constitutional supercoiling from the C addition. The yield stress and tensile strength at room temperature are improved due to the transition of columnar to equiaxed grains and grain refinement.
The Role of Carbon in Grain Refinement of Cast CrFeCoNi High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Liu, X. W.; Liu, L.; Liu, G.; Wu, X. X.; Lu, D. H.; Yao, J. Q.; Jiang, W. M.; Fan, Z. T.; Zhang, W. B.
2018-06-01
As a promising engineering material, high-entropy alloys (HEAs) CrFeCoNi system has attracted extensive attention worldwide. Their cast alloys are of great importance because of their great formability of complex components, which can be further improved through the transition of the columnar to equiaxed grains and grain refinement. In the current work, the influence of C contents on the grain structures and mechanical properties of the as-cast high-entropy alloy CrFeCoNi was chosen as the target and systematically studied via a hybrid approach of the experiments and thermodynamic calculations. The alloys with various C additions were prepared by arc melting and drop cast. The as-cast macrostructure and microstructure were characterized using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The cast HEAs transform from coarse columnar grains into equiaxed grains with the C level increased to ≥ 2 at. pct and the size of equiaxed grains is further decreased with the increasing C addition. It is revealed that the interdendritic segregation of Cr and C results in grain boundary precipitation of M23C6 carbides. The grain refinement is attributed to the additional constitutional supercoiling from the C addition. The yield stress and tensile strength at room temperature are improved due to the transition of columnar to equiaxed grains and grain refinement.
Tayyem, Reema F.; Bawadi, Hiba A.; Shehadah, Ihab; Agraib, Lana M.; Al-Awwad, Narmeen J.; Heath, Dennis D.; Bani-Hani, Kamal E.
2015-01-01
Background. The role of whole grains, refined cereals, and legumes in preventing or initiating colorectal cancer (CRC) is still uncertain. The aim of this study is to examine the possible association between the consumption of whole grains, refined cereals, and legumes and the risk of developing CRC among Jordanian population. Methods. A validated food frequency questionnaire was used to collect dietary data with regard to intake of whole grains, refined cereals, and legumes. A total of 220 diagnosed CRC participants and 281 CRC-free control participants matched by age, gender, occupation, and marital status were recruited. Logistic regression was used to estimate the odds of developing CRC in relation to the consumption of different types of whole grains, refined cereals, and legumes. Results. The odds ratio (OR) for developing CRC among cases consumed refined wheat bread at all meals was 3.1 compared with controls (95% CI: 1.2-7.9, P-Trend = 0.001); whereas the OR associated with whole wheat bread was 0.44 (95% CI: 0.22-0.92, P-Trend = 0.001). The statistical evaluation for daily consumption of rice suggested a direct association with the risk of developing CRC, OR = 3.0 (95% CI: 0.27-33.4, P-Trend = 0.020). Weekly consumption of macaroni was associated with CRC with OR of 2.4 (95% CI: 1.1-5.3, P-Trend = 0.001). The consumption of corn, bulgur, lentils, and peas suggested a protective trend, although the trend was not statistically significant. Conclusion. This study provides additional indicators of the protective role of whole grains and suggests a direct association between consumption of refined grains and higher possibility for developing CRC. PMID:26631260
Optimization of Melt Treatment for Austenitic Steel Grain Refinement
NASA Astrophysics Data System (ADS)
Lekakh, Simon N.; Ge, Jun; Richards, Von; O'Malley, Ron; TerBush, Jessica R.
2017-02-01
Refinement of the as-cast grain structure of austenitic steels requires the presence of active solid nuclei during solidification. These nuclei can be formed in situ in the liquid alloy by promoting reactions between transition metals (Ti, Zr, Nb, and Hf) and metalloid elements (C, S, O, and N) dissolved in the melt. Using thermodynamic simulations, experiments were designed to evaluate the effectiveness of a predicted sequence of reactions targeted to form precipitates that could act as active nuclei for grain refinement in austenitic steel castings. Melt additions performed to promote the sequential precipitation of titanium nitride (TiN) onto previously formed spinel (Al2MgO4) inclusions in the melt resulted in a significant refinement of the as-cast grain structure in heavy section Cr-Ni-Mo stainless steel castings. A refined as-cast structure consisting of an inner fine-equiaxed grain structure and outer columnar dendrite zone structure of limited length was achieved in experimental castings. The sequential of precipitation of TiN onto Al2MgO4 was confirmed using automated SEM/EDX and TEM analyses.
Roager, Henrik Munch; Vogt, Josef K; Kristensen, Mette; Hansen, Lea Benedicte S; Ibrügger, Sabine; Mærkedahl, Rasmus B; Bahl, Martin Iain; Lind, Mads Vendelbo; Nielsen, Rikke L; Frøkiær, Hanne; Gøbel, Rikke Juul; Landberg, Rikard; Ross, Alastair B; Brix, Susanne; Holck, Jesper; Meyer, Anne S; Sparholt, Morten H; Christensen, Anders F; Carvalho, Vera; Hartmann, Bolette; Holst, Jens Juul; Rumessen, Jüri Johannes; Linneberg, Allan; Sicheritz-Pontén, Thomas; Dalgaard, Marlene D; Blennow, Andreas; Frandsen, Henrik Lauritz; Villas-Bôas, Silas; Kristiansen, Karsten; Vestergaard, Henrik; Hansen, Torben; Ekstrøm, Claus T; Ritz, Christian; Nielsen, Henrik Bjørn; Pedersen, Oluf Borbye; Gupta, Ramneek; Lauritzen, Lotte; Licht, Tine Rask
2017-11-01
To investigate whether a whole grain diet alters the gut microbiome and insulin sensitivity, as well as biomarkers of metabolic health and gut functionality. 60 Danish adults at risk of developing metabolic syndrome were included in a randomised cross-over trial with two 8-week dietary intervention periods comprising whole grain diet and refined grain diet, separated by a washout period of ≥6 weeks. The response to the interventions on the gut microbiome composition and insulin sensitivity as well on measures of glucose and lipid metabolism, gut functionality, inflammatory markers, anthropometry and urine metabolomics were assessed. 50 participants completed both periods with a whole grain intake of 179±50 g/day and 13±10 g/day in the whole grain and refined grain period, respectively. Compliance was confirmed by a difference in plasma alkylresorcinols (p<0.0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did, however, compared with the refined grain diet, decrease body weight (p<0.0001), serum inflammatory markers, interleukin (IL)-6 (p=0.009) and C-reactive protein (p=0.003). The reduction in body weight was consistent with a reduction in energy intake, and IL-6 reduction was associated with the amount of whole grain consumed, in particular with intake of rye. Compared with refined grain diet, whole grain diet did not alter insulin sensitivity and gut microbiome but reduced body weight and systemic low-grade inflammation. NCT01731366; Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Hongyi, E-mail: h.zhan@uq.edu.au; Zeng, Weidong; Wang, Gui
2015-04-15
The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentationmore » of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.« less
A new insight into ductile fracture of ultrafine-grained Al-Mg alloys.
Yu, Hailiang; Tieu, A Kiet; Lu, Cheng; Liu, Xiong; Liu, Mao; Godbole, Ajit; Kong, Charlie; Qin, Qinghua
2015-04-08
It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation.
A new insight into ductile fracture of ultrafine-grained Al-Mg alloys
Yu, Hailiang; Tieu, A. Kiet; Lu, Cheng; Liu, Xiong; Liu, Mao; Godbole, Ajit; Kong, Charlie; Qin, Qinghua
2015-01-01
It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation. PMID:25851228
A new insight into ductile fracture of ultrafine-grained Al-Mg alloys
NASA Astrophysics Data System (ADS)
Yu, Hailiang; Tieu, A. Kiet; Lu, Cheng; Liu, Xiong; Liu, Mao; Godbole, Ajit; Kong, Charlie; Qin, Qinghua
2015-04-01
It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation.
Effects of grain refinement on the biocorrosion and in vitro bioactivity of magnesium.
Saha, Partha; Roy, Mangal; Datta, Moni Kanchan; Lee, Boeun; Kumta, Prashant N
2015-12-01
Magnesium is a new class of biodegradable metals potentially suitable for bone fracture fixation due to its suitable mechanical properties, high degradability and biocompatibility. However, rapid corrosion and loss in mechanical strength under physiological conditions render it unsuitable for load-bearing applications. In the present study, grain refinement was implemented to control bio-corrosion demonstrating improved in vitro bioactivity of magnesium. Pure commercial magnesium was grain refined using different amounts of zirconium (0.25 and 1.0 wt.%). Corrosion behavior was studied by potentiodynamic polarization (PDP) and mass loss immersion tests demonstrating corrosion rate decrease with grain size reduction. In vitro biocompatibility tests conducted by MC3T3-E1 pre-osteoblast cells and measured by DNA quantification demonstrate significant increase in cell proliferation for Mg-1 wt.% Zr at day 5. Similarly, alkaline phosphatase (ALP) activity was higher for grain refined Mg. Alloys were also tested for ability to support osteoclast differentiation using RAW264.7 monocytes with receptor activator of nuclear factor kappa-β ligand (RANKL) supplemented cell culture. Osteoclast differentiation process was observed to be severely restricted for smaller grained Mg. Overall, the results indicate grain refinement to be useful not only for improving corrosion resistance of Mg implants for bone fixation devices but also potentially modulate bone regeneration around the implant. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhu, Yeyi; Olsen, Sjurdur F; Mendola, Pauline; Halldorsson, Thorhallur I; Yeung, Edwina H; Granström, Charlotta; Bjerregaard, Anne A; Wu, Jing; Rawal, Shristi; Chavarro, Jorge E; Hu, Frank B; Zhang, Cuilin
2017-07-01
Background: Refined grains, a major source of dietary carbohydrates, have been related to impaired glucose homeostasis and obesity. Emerging animal data suggest that in utero exposure to dietary refined carbohydrates may predispose offspring to an obese phenotype, indicating a potential role for nutritional programming in the early origins of obesity, but intergenerational human data are lacking. Objective: We prospectively investigated refined-grain intake during pregnancy in association with offspring growth through age 7 y among high-risk children born to women with gestational diabetes mellitus (GDM). Design: The analysis included 918 mother-singleton child dyads from the Danish National Birth Cohort. Offspring body mass index z scores (BMIZs) were calculated by using weight and length or height measured at birth, 5 and 12 mo, and 7 y. Overweight or obesity was defined by WHO cutoffs. Linear and Poisson regressions were used, with adjustment for maternal demographic, lifestyle, and dietary factors. Results: Refined-grain intake during pregnancy was positively associated with offspring BMIZ (adjusted β per serving increase per day: 0.09; 95% CI: 0.02, 0.15) and risk of overweight or obesity at age 7 y [adjusted RR (aRR) comparing the highest with the lowest quartile: 1.80; 95% CI: 1.09, 2.98; P -trend = 0.032]. The association appeared to be more pronounced among children who were breastfed <6 mo. The substitution of 1 serving refined grains/d with an equal serving of whole grains during pregnancy was related to a 10% reduced risk of offspring overweight or obesity at 7 y of age (aRR: 0.90; 95% CI: 0.82, 0.98). No associations were observed between refined-grain intake and infant growth. Conclusions: Higher maternal refined-grain intake during pregnancy was significantly related to a greater BMIZ and a higher risk of overweight or obesity at age 7 y among children born after pregnancies complicated by GDM. The findings highlight pregnancy as a potential window of susceptibility associated with offspring growth and obesity risk among this high-risk population. Data with longer follow-up are warranted. © 2017 American Society for Nutrition.
Grain refinement of cast zinc through magnesium inoculation: Characterisation and mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhilin; Qiu, Dong; Wang, Feng
2015-08-15
It was previously found that peritectic-forming solutes are more favourable for the grain refinement of cast Al alloys than eutectic-forming solutes. In this work, we report that the eutectic-forming solute, Mg, can also significantly grain refine cast Zn. Differential thermal analysis (DTA) of a Zn–Mg alloy, in which efficient grain refinement occurred, evidenced an unexpected peak that appeared before the nucleation of η-Zn grains on the DTA spectrum. Based on extensive examination using X-ray diffraction, high resolution SEM and EDS, it was found that: (a) some faceted Zn–Mg intermetallic particles were reproducibly observed; (b) the particles were located at ormore » near grain centres; (c) the atomic ratio of Mg to Zn in the intermetallic compound was determined to be around 1/2. Using tilting selected area diffraction (SAD) and convergent beam Kikuchi line diffraction pattern (CBKLDP) techniques, these faceted particles were identified as MgZn{sub 2} and an orientation relationship between such grain-centred MgZn{sub 2} particles and the η-Zn matrix was determined. Hence, the unexpected peak on the DTA spectrum is believed to correspond to the formation of MgZn{sub 2} particles, which act as effective heterogeneous nucleation sites in the alloy. Together with the effect of Mg solute on restricting grain growth, such heterogeneous nucleation is cooperatively responsible for the grain size reduction in Zn–Mg alloys. - Highlights: • A new eutectic-based grain refiner for the cast Zn was found. • The formation process of an intermetallic compound (MgZn{sub 2}) was characterised. • MgZn{sub 2} can act as potent heterogeneous nucleation sites above the liquidus. • A new OR between MgZn{sub 2} and η-Zn was determined using the CBKLDP technique.« less
Effect of Al on Grain Refinement and Mechanical Properties of Mg-3Nd Casting Alloy
NASA Astrophysics Data System (ADS)
Wang, Lei; Feng, Yicheng; Wang, Liping; Chen, Yanhong; Guo, Erjun
2018-05-01
The effect of Al on the grain refinement and mechanical properties of as-cast Mg-3Nd alloy was investigated systematically by a series of microstructural analysis, solidification analysis and tensile tests. The results show that Al has an obvious refining effect on the as-cast Mg-3Nd alloy. With increasing Al content, the grain size of the as-cast Mg-3Nd alloy decreases firstly, then increases slightly after the Al content reaching 3 wt.%, and the minimum grain size of the Mg-3Nd alloy is 48 ± 4.0 μm. The refining mechanism can be attributed to the formation of Al2Nd particles, which play an important role in the heterogeneous nucleation. The strength and elongation of the Mg-3Nd alloy refined by Al also increase with increasing Al content and slightly decrease when the Al content is more than 3 wt.%, and the strengthening mechanism is attributed to the grain refinement as well as dispersed intermetallic particles. Furthermore, the microstructural thermal stability of the Mg-3Nd-3Al alloy is higher than that of the Mg-3Nd-0.5Zr alloy. Overall, the Mg-3Nd alloy with Al addition is a novel alloy with wide and potential application prospects.
Precipitation process in a Mg–Gd–Y alloy grain-refined by Al addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Jichun; CAST Cooperative Research Centre, Department of Materials Engineering, Monash University, Victoria 3800; Zhu, Suming, E-mail: suming.zhu@monash.edu
2014-02-15
The precipitation process in Mg–10Gd–3Y (wt.%) alloy grain-refined by 0.8 wt.% Al addition has been investigated by transmission electron microscopy. The alloy was given a solution treatment at 520 °C for 6 h plus 550 °C for 7 h before ageing at 250 °C. Plate-shaped intermetallic particles with the 18R-type long-period stacking ordered structure were observed in the solution-treated state. Upon isothermal ageing at 250 °C, the following precipitation sequence was identified for the α-Mg supersaturated solution: β″ (D0{sub 19}) → β′ (bco) → β{sub 1} (fcc) → β (fcc). The observed precipitation process and age hardening response in themore » Al grain-refined Mg–10Gd–3Y alloy are compared with those reported in the Zr grain-refined counterpart. - Highlights: • The precipitation process in Mg–10Gd–3Y–0.8Al (wt.%) alloy has been investigated. • Particles with the 18R-type LPSO structure were observed in the solution state. • Upon ageing at 250 °C, the precipitation sequence is: β″ → β′ → β1 (fcc) → β. • The Al grain-refined alloy has a lower hardness than the Zr refined counterpart.« less
Rose, Devin J; Williams, Emily; Mkandawire, Nyambe L; Weller, Curtis L; Jackson, David S
2014-07-01
Frybreads were prepared using wheat flour and wheat-sorghum composite flours (refined and whole grain; white, tannin-free and red, tannin-containing) at 0, 25, 50, and 75% sorghum flour. Hardness, volume, specific volume, color, and oil uptake were determined. Frybreads made with refined white, tannin-free sorghum were also evaluated in a sensory panel. Substitution of sorghum flour for wheat flour reduced the volume and increased the darkness of the fried dough pieces compared with wheat flour controls. Oil absorption was unaffected when using white, tannin-free sorghum. When using red, tannin-containing sorghum, oil absorption increased for refined flour and decreased for whole grain flour, suggesting that a component only present in the whole grain tannin-containing Sorghum--perhaps tannins themselves--may decrease oil uptake. Panelists rated frybreads containing up to 50% white, tannin-free sorghum flour as not significantly different from control frybreads made with refined wheat flour.
Effect of Mg2Sn Intermetallic on the Grain Refinement in As-cast AM Series Alloy
NASA Astrophysics Data System (ADS)
She, J.; Pan, F. S.; Hu, H. H.; Tang, A. T.; Yu, Z. W.; Song, K.
2015-08-01
In the present work, in order to investigate the grain refinement mechanism of AM containing Sn alloys, the as-cast AM60, AM90 alloys, and the alloys with addition of 1 wt.% Sn were fabricated by traditional casting, respectively. During the solidification of AM + Sn alloys, the morphology of divorced eutectic Mg17Al12 was refined by Mg2Sn intermetallic that served as the heterogeneous nucleation cores. The modified Mg17Al12 effectively restricted the grain growth and resulted in a grain refinement. As a result, the yield strength of as-cast AM alloys was significantly enhanced by addition of Sn, while the ductility also improved. Moreover, the edge-to-edge model was employed to predict the orientation relationship between Mg17Al12 and Mg2Sn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadzadeh, Roghayeh, E-mail: r_mohammadzadeh@sut.ac.ir; Akbari, Alireza, E-mail: akbari@sut.ac.ir
2014-07-01
Prolonged exposure at high temperatures during solution nitriding induces grain coarsening which deteriorates the mechanical properties of high nitrogen austenitic stainless steels. In this study, grain refinement of nickel and manganese free Fe–22.75Cr–2.42Mo–1.17N high nitrogen austenitic stainless steel plates was investigated via a two-stage heat treatment procedure. Initially, the coarse-grained austenitic stainless steel samples were subjected to an isothermal heating at 700 °C to be decomposed into the ferrite + Cr{sub 2}N eutectoid structure and then re-austenitized at 1200 °C followed by water quenching. Microstructure and hardness of samples were characterized using X-ray diffraction, optical and scanning electron microscopy, andmore » micro-hardness testing. The results showed that the as-solution-nitrided steel decomposes non-uniformly to the colonies of ferrite and Cr{sub 2}N nitrides with strip like morphology after isothermal heat treatment at 700 °C. Additionally, the complete dissolution of the Cr{sub 2}N precipitates located in the sample edges during re-austenitizing requires longer times than 1 h. In order to avoid this problem an intermediate nitrogen homogenizing heat treatment cycle at 1200 °C for 10 h was applied before grain refinement process. As a result, the initial austenite was uniformly decomposed during the first stage, and a fine grained austenitic structure with average grain size of about 20 μm was successfully obtained by re-austenitizing for 10 min. - Highlights: • Successful grain refinement of Fe–22.75Cr–2.42Mo–1.17N steel by heat treatment • Using the γ → α + Cr{sub 2}N reaction for grain refinement of a Ni and Mn free HNASS • Obtaining a single phase austenitic structure with average grain size of ∼ 20 μm • Incomplete dissolution of Cr{sub 2}N during re-austenitizing at 1200 °C for long times • Reducing re-austenitizing time by homogenizing treatment before grain refinement.« less
NASA Astrophysics Data System (ADS)
Serebryany, V. N.; Ivanova, T. M.; Kopylov, V. I.; Dobatkin, S. V.; Pozdnyakova, N. N.; Pimenov, V. A.; Savelova, T. I.
2010-07-01
Equal-channel angular pressing (ECAP) of am MA2-1 alloy according to routes A and Bc is used to study the possibility of increasing the low-temperature deformability of the alloy due to grain refinement and a change in its texture. To separate the grain refinement effect from the effect of texture on the deformability of the alloy, samples after ECAP are subjected to recrystallization annealing that provides grain growth to the grain size characteristic of the initial state (IS) of the alloy. Upon ECAP, the average grain size is found to decrease to 2-2.4 μm and the initial sharp axial texture changes substantially (it decomposes into several scattered orientations). The type of orientations and the degree of their scattering depend on the type of ECAP routes. The detected change in the texture is accompanied by an increase in the deformability parameters (normal plastic anisotropy coefficient R, strain-hardening exponent n, relative uniform elongation δu) determined upon tensile tests at 20°C for the states of the alloy formed in the IS-4A-4Bc and IS-4Ao-4BcO sequences. The experimental values of R agree with the values calculated in terms of the Taylor model of plastic deformation in the Bishop-Hill approximation using quantitative texture data in the form of orientation distribution function coefficients with allowance for the activation of prismatic slip, especially for ECAP routes 4Bc and 4BcO. When the simulation results, the Hall-Petch relation, and the generalized Schmid factors are taken into account, a correlation is detected between the deformability parameter, the Hall-Petch coefficient, and the ratio of the critical shear stresses on prismatic and basal planes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S.; Mirmiran, Seyed; Glaspie, Christopher
Here, the hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: “V”-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on themore » variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct.« less
Sabau, Adrian S.; Mirmiran, Seyed; Glaspie, Christopher; ...
2018-02-16
Here, the hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: “V”-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on themore » variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct.« less
NASA Astrophysics Data System (ADS)
Wang, Jinxiang; Yang, Rui; Jiang, Li; Wang, Xiaoxu; Zhou, Nan
2013-11-01
Nanocrystalline (NC) copper was fabricated by severe plastic deformation of coarse-grained copper at a high strain rate under explosive loading. The feasibility of grain refinement under different explosive loading and the influence of overall temperature rise on grain refinement under impact compression were studied in this paper. The calculation model for the macroscopic temperature rise was established according to the adiabatic shock compression theory. The calculation model for coarse-grained copper was established by the Voronoi method and the microscopic temperature rise resulted from severe plastic deformation of grains was calculated by ANSYS/ls-dyna finite element software. The results show that it is feasible to fabricate NC copper by explosively dynamic deformation of coarse-grained copper and the average grain size of the NC copper can be controlled between 200˜400 nm. The whole temperature rise would increase with the increasing explosive thickness. Ammonium nitrate fuel oil explosive was adopted and five different thicknesses of the explosive, which are 20 mm, 25 mm, 30 mm, 35 mm, 45 mm, respectively, with the same diameter using 20 mm to the fly plate were adopted. The maximum macro and micro temperature rise is up to 532.4 K, 143.4 K, respectively, which has no great effect on grain refinement due to the whole temperature rise that is lower than grain growth temperature according to the high pressure melting theory.
Wu, Wenqian; Song, Min; Ni, Song; Wang, Jingshi; Liu, Yong; Liu, Bin; Liao, Xiaozhou
2017-01-01
An equiatomic FeCoCrNi high-entropy alloy with a face-centered cubic structure was fabricated by a powder metallurgy route, and then processed by high-pressure torsion. Detailed microscopy investigations revealed that grain refinement from coarse grains to nanocrystalline grains occurred mainly via concurrent nanoband (NB) subdivision and deformation twinning. NB–NB, twin–NB and twin–twin interactions contributed to the deformation process. The twin–twin interactions resulted in severe lattice distortion and accumulation of high densities of dislocations in the interaction areas. With increasing strain, NB subdivision and interactions between primary twins and inclined secondary stacking faults (SFs)/nanotwins occurred. Secondary nanotwins divided the primary twins into many equiaxed parts, leading to further grain refinement. The interactions between secondary SFs/nanotwins associated with the presence of Shockley partials and primary twins also transformed the primary twin boundaries into incoherent high-angle grain boundaries. PMID:28429759
Effect of Al Addition on Microstructure of AZ91D
NASA Astrophysics Data System (ADS)
Joshi, Utsavi; Babu, Nadendla Hari
Casting is a net shape or near net shape forming process so work-hardening will not be applicable for improving properties of magnesium cast alloys. Grain refinement, solid-solution strengthening, precipitation hardening and specially designed heat treatment are the techniques used to enhance the properties of these alloys. This research focusses on grain refinement of magnesium alloy AZ91D, which is a widely used commercial cast alloy. Recently, Al-B based master alloys have shown potential in grain refining AZ91D. A comparative study of the grain refinement of AZ91D by addition of 0.02wt%B, 0.04wt%B, 0.1wt%B, 0.5wt%B and 1.0wt%B of A1-5B master alloy and equivalent amount of solute element aluminium is described in this paper. Hardness profile of AZ91D alloyed with boron and aluminium is compared.
NASA Astrophysics Data System (ADS)
Wang, Xiang; Guan, Ren-Guo; Tie, Di; Shang, Ying-Qiu; Jin, Hong-Mei; Li, Hong-Chao
2018-04-01
As a new microstructure refining method, accumulative continuous extrusion forming (ACEF) cannot only refine metal matrix but also refine the phases that exist in it. In order to detect the refinements of grain and second phase during the process, Al-1Fe (wt pct) alloy was processed by ACEF, and the microstructural evolution was analyzed by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results revealed that the average grain size of Al-1Fe (wt pct) alloy decreased from 13 to 1.2 μm, and blocky Al3Fe phase with an average length of 300 nm was granulated to Al3Fe particle with an average diameter of 200 nm, after one pass of ACEF. Refinement of grain was attributed to continuous dynamic recrystallization (CDRX), and the granulation of Al3Fe phase included the spheroidization resulting from deformation heat and the fragmentation caused by the coupling effects of strain and thermal effect. The spheroidization worked in almost the entire deformation process, while the fragmentation required strain accumulation. However, fragmentation contributed more than spheroidization. Al3Fe particle stimulated the formation of substructure and retarded the migration of recrystallized grain boundary, but the effect of Al3Fe phase on refinement of grain could only be determined by the contrastive investigation of Al-1Fe (wt pct) alloy and pure Al.
NASA Astrophysics Data System (ADS)
Pourbahari, Bita; Mirzadeh, Hamed; Emamy, Massoud
2018-03-01
The effects of rare earth intermetallics and grain refinement by alloying and hot extrusion on the mechanical properties of Mg-Gd-Al-Zn alloys have been studied to elucidate some useful ways to enhance the mechanical properties of magnesium alloys. It was revealed that aluminum as an alloying element is a much better grain refining agent compared with gadolinium, but the simultaneous presence of Al and Gd can refine the as-cast grain size more efficiently. The presence of fine and widely dispersed rare earth intermetallics was found to be favorable to achieve finer recrystallized grains during hot deformation by extrusion. The presence of coarse dendritic structure in the GZ61 alloy, grain boundary eutectic containing Mg17Al12 phase in the AZ61 alloy, and rare earth intermetallics with unfavorable morphology in the Mg-4Gd-2Al-1Zn alloy was found to be detrimental to mechanical properties of the alloy in the as-cast condition. As a result, the microstructural refinement induced by hot extrusion process resulted in a significant enhancement in strength and ductility of the alloys. The presence of intermetallic compounds in the extruded Mg-4Gd-2Al-1Zn and Mg-2Gd-4Al-1Zn alloys deteriorated tensile properties, which was related to the fact that such intermetallic compounds act as stress risers and microvoid initiation sites.
NASA Astrophysics Data System (ADS)
Paidar, Moslem; Asgari, Ali; Ojo, Olatunji Oladimeji; Saberi, Abbas
2018-03-01
Grain growth inhibition at the heat-affected zone, improved weld strength and superior tribological properties of welds are desirable attributes of modern manufacturing. With the focused on these attributes, tungsten carbide (WC) nanoparticles were employed as reinforcements for the friction stir welding of 5-mm-thick AA5182 aluminum alloy by varying tool traverse speeds. The microstructure, microhardness, ultimate tensile strength, fracture and wear behavior of the resultant WC-reinforced welds were investigated, while unreinforced AA5182 welds were employed as controls for the study. The result shows that the addition of WC nanoparticles causes substantial grain refinement within the weld nugget. A decrease in traverse speed caused additional particle fragmentation, improved hardness value and enhanced weld strength in the reinforced welds. Improved wear rate and friction coefficient of welds were attained at a reduced traverse speed of 100 mm/min in the WC-reinforced welds. This improvement is attributed to the effects of reduced grain size/grain fragmentation and homogeneous dispersion of WC nanoparticles within the WC-reinforced weld nugget.
Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong
2016-05-01
The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. Copyright © 2016 Elsevier B.V. All rights reserved.
Keast, Debra R; Rosen, Renee A; Arndt, Elizabeth A; Marquart, Len F
2011-09-01
Currently available whole-grain foods are not frequently consumed, and few children achieve the whole-grain intake recommendation. To investigate the influence on whole-grain consumption of substituting whole-grain for refined-grain ingredients of foods commonly consumed by children. Secondary cross-sectional analysis of publicly available food consumption data collected by the US Department of Agriculture. A nationally representative sample of US children aged 9 to 18 years (n=2,349) providing 24-hour dietary recall data in the 2003-2004 National Health and Nutrition Examination Survey. Whole-grain intake was modeled by replacing varying proportions of refined flour contained in foods such as pizza crust, pasta, breads, and other baked goods with whole-wheat flour, and by replacing a proportion of white rice with brown rice. Replacement levels were based on the acceptability of whole-grain foods tested among children in elementary schools, and ranged from 15% to 50%; the majority were ≤25%. Sample-weighted mean premodeled and postmodeled whole-grain intake, standard errors, and statistical significance of differences between demographic subgroups were determined using SUDAAN (version 9.0.3, 2007, Research Triangle Institute, Research Triangle Park, NC). Whole-grain intake increased 1.7 oz eq per day (from 0.5 to 2.2 oz eq/day). Premodeled and postmodeled whole-grain intakes were 6% and 28%, respectively, of total grain intake (7.7 oz eq/day). Major sources of postmodeled whole-grain intakes were breads/rolls (28.0%); pizza (14.2%); breakfast cereals (11.0%); rice/pasta (10.6%); quick breads such as tortillas, muffins, and waffles (10.8%); other baked goods (9.9%); and grain-based savory snacks other than popcorn (7.3%). Premodeled whole-grain intake differed by poverty level, but postmodeled whole-grain intake did not. The substitution of whole grain for a specific proportion of refined grain ingredients of commonly consumed foods increased whole-grain intake and reduced disparities between demographic subgroups of children and teens. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron
NASA Astrophysics Data System (ADS)
Zaid, A. I. O.
2014-06-01
Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1% (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Ti+B on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Ti+B or Zr resulted in enhancement of the weldment.
Zhao, Jianhua; He, Jiansheng; Tang, Qi; Wang, Tao; Chen, Jing
2016-01-01
A series of Al-4Ti master alloys with various TiAl3 particles were prepared via pouring the pure aluminum added with K2TiF6 or sponge titanium into three different molds made of graphite, copper, and sand. The microstructure and morphology of TiAl3 particles were characterized and analyzed by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). The microstructure of TiAl3 particles in Al-4Ti master alloys and their grain refinement efficiency in commercial-purity aluminum were investigated in this study. Results show that there were three different morphologies of TiAl3 particles in Al-4Ti master alloys: petal-like structures, blocky structures, and flaky structures. The Al-4Ti master alloy with blocky TiAl3 particles had better and more stable grain refinement efficiency than the master alloys with petal-like and flaky TiAl3 particles. The average grain size of the refined commercial-purity aluminum always hereditarily followed the size of the original TiAl3 particles. In addition, the grain refinement efficiency of Al-4Ti master alloys with the same morphology, size, and distribution of TiAl3 particles prepared through different processes was almost identical. PMID:28773987
Zhao, Jianhua; He, Jiansheng; Tang, Qi; Wang, Tao; Chen, Jing
2016-10-26
A series of Al-4Ti master alloys with various TiAl₃ particles were prepared via pouring the pure aluminum added with K₂TiF₆ or sponge titanium into three different molds made of graphite, copper, and sand. The microstructure and morphology of TiAl₃ particles were characterized and analyzed by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). The microstructure of TiAl₃ particles in Al-4Ti master alloys and their grain refinement efficiency in commercial-purity aluminum were investigated in this study. Results show that there were three different morphologies of TiAl₃ particles in Al-4Ti master alloys: petal-like structures, blocky structures, and flaky structures. The Al-4Ti master alloy with blocky TiAl₃ particles had better and more stable grain refinement efficiency than the master alloys with petal-like and flaky TiAl₃ particles. The average grain size of the refined commercial-purity aluminum always hereditarily followed the size of the original TiAl₃ particles. In addition, the grain refinement efficiency of Al-4Ti master alloys with the same morphology, size, and distribution of TiAl₃ particles prepared through different processes was almost identical.
Formation and mechanism of nanocrystalline AZ91 powders during HDDR processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yafen; Fan, Jianfeng, E-mail: fanjianfeng@tyu
2017-03-15
Grain sizes of AZ91 alloy powders were markedly refined to about 15 nm from 100 to 160 μm by an optimized hydrogenation-disproportionation-desorption-recombination (HDDR) process. The effect of temperature, hydrogen pressure and processing time on phase and microstructure evolution of AZ91 alloy powders during HDDR process was investigated systematically by X-ray diffraction, optical microscopy, scanning electron microscopy and transmission electron microscopy, respectively. The optimal HDDR process for preparing nanocrystalline Mg alloy powders is hydriding at temperature of 350 °C under 4 MPa hydrogen pressure for 12 h and dehydriding at 350 °C for 3 h in vacuum. A modified unreacted coremore » model was introduced to describe the mechanism of grain refinement of during HDDR process. - Highlights: • Grain size of the AZ91 alloy powders was significantly refined from 100 μm to 15 nm. • The optimal HDDR technology for nano Mg alloy powders is obtained. • A modified unreacted core model of grain refinement mechanism was proposed.« less
Kim, Yoona; Keogh, Jennifer B; Clifton, Peter M
2016-10-30
Epidemiological studies suggest that a diet high in processed meat, with a high glycemic index is associated with an increased risk of type 2 diabetes. It is not clear if this is due to altered insulin sensitivity or an enhanced postprandial glucose. We aimed to compare the acute metabolic response of two different types of meals after ingestion of the matching diet for four weeks. The study was a randomized, crossover acute meal study. Volunteers consumed either a red meat/refined grain meal or a dairy/chicken/nuts/wholegrain meal after four weeks of the matching diet. After a three-week washout period and four weeks of the alternate diet, they consumed the matching meal. The diets differed with respect to both protein and carbohydrate sources. Blood samples were taken for 180 min for the measurement of glucose, insulin, C-peptide and triglyceride. Fifty-one participants (age: 35.1 ± 15.6 years; body mass index: 27.7 ± 6.9 kg/m², 17 with normal and 34 with impaired glucose tolerance) completed two meal tests. The area under the curve ( p < 0.001) and incremental area under the curve ( p = 0.001) for insulin was significantly higher after the red meat/refined grain diet than after the dairy/chicken/nuts/whole grain diet. There was an interaction between meal and glucose tolerance group ( p < 0.05) in the area under the curve (AUC) and the incremental area under the curve (iAUC) of glucose; the red meat/refined grain diet increased glucose relative to the dairy/chicken/nuts/whole grain diet only in the normal group (+2.5 mmol/L/3 h). The red meat/refined grain diet increased glucose and insulin responses compared with the dairy/chicken/nuts/whole grain diet. This meal pattern would increase pancreatic stress long term and may account for the increased risk of type 2 diabetes with this diet.
Containerless processing of beryllium
NASA Technical Reports Server (NTRS)
Wouch, G.; Keith, G. H.; Frost, R. T.; Pinto, N. P.
1977-01-01
Melting and solidification of a beryllium alloy containing 1.5% BeO by weight in the weightless environment of space has produced cast beryllium with a relatively uniform dispersion of BeO throughout. Examination of the cast material shows that it is coarse grained, although the BeO is not heavily agglomerated in the flight specimen. Ground based comparison experiments show extreme agglomeration and segregation of BeO, resulting in large zones which are practically free of the oxide. Several postulated hypotheses for the failure to grain refine the beryllium are formulated. These are: (1) spherodization of the BeO particles during specimen preparation and during the molten phase of the experiment; (2) loss of nucleation potency through aging in the molten phase; and (3) inability of BeO to act as a grain refiner for beryllium. Further investigation with non spherodized particles and shorter dwell times molten may delineate which of these hypotheses are valid. The results of this flight experiment indicate that the weightless environment of space is an important asset in conducting research to find grain refiners for beryllium and other metals for which cast dispersions of grain refining agents cannot be prepared terrestrially due to gravitationally driven settling and agglomeration.
NASA Astrophysics Data System (ADS)
Im, Jae-Taek
The purpose of this work was to study learn about grain refinement mechanisms and texture development in cast n-type Bi90Sb10 alloy caused by severe plastic deformation. The practical objective is to produce a fine grained and textured microstructure in Bi90Sb10 alloy with enhanced thermoelectric performance and mechanical strength. In the study, twelve millimeter diameter cast bars of Bi90Sb 10 alloy were encapsulated in square cross section aluminum 6061 alloy containers. The composite bars were equal channel angular (ECAE) extruded through a 90 degree angle die at high homologous temperature. Various extrusion conditions were studied including punch speed (0.1, 0.3 and 0.6 in/min), extrusion temperature (220, 235 and 250°C), number of extrusion passes (1, 2 and 4), route (A, BC and C), and exit channel area reduction ratio (half and quarter area of inlet channel). The affect of an intermediate long term heat treatment (for 100 hours at 250°C under 10-3 torr vacuum) was explored. Processed materials were characterized by optical microscopy, x-ray diffraction, energy dispersive spectroscopy, wavelength dispersive spectroscopy and scanning electron microscopy. Texture was analyzed using the {006} reflection plane to identify the orientation of the basal poles in processed materials. The cast grains were irregularly shaped, had a grain size of hundreds-of-microns to millimeters, and showed inhomogeneous chemical composition. Severe plastic deformation refines the cast grains through dynamic recrystallization and causes the development of a bimodal microstructure consisting of fine grains (5-30 micron) and coarse grains (50-300 micron). ECAE processing of homogenizied Bi-Sb alloy causes grain refinement and produces a more uniform microstructure. Texture results show that ECAE route C processing gives a similar or slightly stronger texture than ECAE route A processing. In both cases, the basal-plane poles become aligned with the shear direction. Reduction area exit channel extrusion is more effective for both grain refinement and texture enhancement than simple ECAE processing.
Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, John P.; Askari, Hesam A.; Hovanski, Yuri
2015-03-01
Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energymore » for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiegs, T.N.
The Cooperative Research and Development Agreement (CRADA) was to develop composites of TiC-Ni{sub 3}Al with refined grain microstructures for application in diesel engine fuel injection devices. Grain refinement is important for improved wear resistance and high strength for the applications of interest. Attrition milling effectively reduces the initial particle size and leads to a reduction of the final grain size. However, an increase in the oxygen content occurs concomitantly with the grinding operation and decreased densification of the compacts occurs during sintering.
Effects of grain size on the strength and ductility of Ni sub 3 Al and Ni sub 3 Al + boron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viens, D.V.; Weihs, T.P.; Baker, I.
Tensile and compression experiments have been performed on Ni{sub 3}Al and on Ni{sub 3}Al + B at 77K to 1023K at 1 {times} 10{sup {minus}4}s{sup {minus}1}. At low temperatures yielding occurs discontinuously and the yield strength obeys the relationship {sigma}{sub y} = {sigma}{sub i} + kd{sup {minus}3/4} where {sigma}{sub i} and k are constants. Grain refinement has little effect on the ductility of the binary alloy, but leads to a brittle to ductile transition in the alloy containing boron. At high temperatures, grain refinement weakens the material, owing to grain boundary sliding. Dynamic recrystalization occurs and leads to another brittlemore » to ductile transition upon refining the grains. Under all conditions investigated, fracture occurs intergranularly. An analysis based upon a work-hardening model is given for the d{sup {minus}3/4} dependence of the yield strength at low temperatures.« less
Radford, Allyson; Langkamp-Henken, Bobbi; Hughes, Christine; Christman, Mary C; Jonnalagadda, Satya; Boileau, Thomas W; Thielecke, Frank; Dahl, Wendy J
2014-09-01
In accordance with the 2010 Dietary Guidelines for Americans, at least half of total grain intake should be whole grains. Adolescents are currently not consuming the recommended daily intake of whole grains. Research is needed to determine whether whole grains are acceptable to adolescents and whether changing their food environment to include whole-grain foods will improve intake. The aim of this study was to determine the effect of providing refined-grain or whole-grain foods to adolescents, with encouragement to eat three different grain-based foods per day, on total grain and whole-grain intakes. Middle school students (n=83; aged 11 to 15 years) were randomly assigned to either refined-grain or whole-grain foods for 6 weeks. Participants and their families were provided with weekly grains (eg, bread, pasta, and cereals), and participants were provided grain snacks at school. Intake of grains in ounce equivalents (oz eq) was determined through eight baseline and intervention targeted 24-hour diet recalls. Participants consumed 1.1±1.3 oz eq (mean±standard deviation) of whole grains at baseline, out of 5.3±2.4 oz eq of total grains. During intervention, whole-grain intake increased in the whole-grain group (0.9±1.0 to 3.9±1.8 oz eq/day), whereas those in the refined-grain group reduced whole-grain intake (1.3±1.6 to 0.3±0.3 oz eq/day; P<0.002, group by time period interaction). Total grain intake achieved was 6.4±2.1 oz eq/day and did not differ across intervention groups. Providing adolescents with whole-grain foods in their school and home environments was an effective means of achieving recommendations. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A fuzzy mass spectrometric (MS) fingerprinting method combined with chemometric analysis was established to provide rapid discrimination between whole grain and refined wheat flour. Twenty one samples, including thirteen samples from three cultivars and eight from local grocery store, were studied....
NASA Astrophysics Data System (ADS)
Pearson, E.; Smith, M. W.; Klaar, M. J.; Brown, L. E.
2017-09-01
High resolution topographic surveys such as those provided by Structure-from-Motion (SfM) contain a wealth of information that is not always exploited in the generation of Digital Elevation Models (DEMs). In particular, several authors have related sub-metre scale topographic variability (or 'surface roughness') to sediment grain size by deriving empirical relationships between the two. In fluvial applications, such relationships permit rapid analysis of the spatial distribution of grain size over entire river reaches, providing improved data to drive three-dimensional hydraulic models, allowing rapid geomorphic monitoring of sub-reach river restoration projects, and enabling more robust characterisation of riverbed habitats. However, comparison of previously published roughness-grain-size relationships shows substantial variability between field sites. Using a combination of over 300 laboratory and field-based SfM surveys, we demonstrate the influence of inherent survey error, irregularity of natural gravels, particle shape, grain packing structure, sorting, and form roughness on roughness-grain-size relationships. Roughness analysis from SfM datasets can accurately predict the diameter of smooth hemispheres, though natural, irregular gravels result in a higher roughness value for a given diameter and different grain shapes yield different relationships. A suite of empirical relationships is presented as a decision tree which improves predictions of grain size. By accounting for differences in patch facies, large improvements in D50 prediction are possible. SfM is capable of providing accurate grain size estimates, although further refinement is needed for poorly sorted gravel patches, for which c-axis percentiles are better predicted than b-axis percentiles.
Kim, Yoona; Keogh, Jennifer B.; Clifton, Peter M.
2016-01-01
Epidemiological studies suggest that a diet high in processed meat, with a high glycemic index is associated with an increased risk of type 2 diabetes. It is not clear if this is due to altered insulin sensitivity or an enhanced postprandial glucose. We aimed to compare the acute metabolic response of two different types of meals after ingestion of the matching diet for four weeks. The study was a randomized, crossover acute meal study. Volunteers consumed either a red meat/refined grain meal or a dairy/chicken/nuts/wholegrain meal after four weeks of the matching diet. After a three-week washout period and four weeks of the alternate diet, they consumed the matching meal. The diets differed with respect to both protein and carbohydrate sources. Blood samples were taken for 180 min for the measurement of glucose, insulin, C-peptide and triglyceride. Fifty-one participants (age: 35.1 ± 15.6 years; body mass index: 27.7 ± 6.9 kg/m2, 17 with normal and 34 with impaired glucose tolerance) completed two meal tests. The area under the curve (p < 0.001) and incremental area under the curve (p = 0.001) for insulin was significantly higher after the red meat/refined grain diet than after the dairy/chicken/nuts/whole grain diet. There was an interaction between meal and glucose tolerance group (p < 0.05) in the area under the curve (AUC) and the incremental area under the curve (iAUC) of glucose; the red meat/refined grain diet increased glucose relative to the dairy/chicken/nuts/whole grain diet only in the normal group (+2.5 mmol/L/3 h). The red meat/refined grain diet increased glucose and insulin responses compared with the dairy/chicken/nuts/whole grain diet. This meal pattern would increase pancreatic stress long term and may account for the increased risk of type 2 diabetes with this diet. PMID:27809219
NASA Astrophysics Data System (ADS)
Riastuti, R.; Ramadini, C.; Siallagan, S. T.; Rifki, A.; Herdino, F.
2018-04-01
The addition of sodium citrate to nickel electroplating process as additive is useful for refining the grain size of nickel deposit. The refining of grain size in nickel deposit as coating layer can improve surface performance, one of which corrosion resistance. This paper aims to investigate the effect of sodium citrate addition as grain refiner to promote corrosion resistance on SPCC steel. This experiment used Watt’s Bath solution of NiSO4 300 g/L, NiCl4 45 g/L, H3BO3 60 g/L, wetting agent 0.2 cc/L. Sodium citrate was added in composition of 45g/L and 60g/L. Nickel were deposited by direct current using current density on 6 A/dm2 at the acidity level of 5 for 30 minutes by keeping the operating temperature stable at 50°C. The grain size of nickel deposit was observed through Optical Microscope and Atomic Force Microscope (AFM). The corrosion behavior of SPCC was observed by linear polarization and Electrochemical Impedance Spectroscopy (EIS) methods using 3% NaCl solution. Based on the research, the addition of sodium citrate as grain refiner will increasing corrosion resistance on SPCC steel from 0.35 to 0.05 mm/year.
USDA-ARS?s Scientific Manuscript database
Different aspects of diet may be differentially related to body fat distribution. The purpose of this study was to assess associations between whole- and refined- grain intake and abdominal subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). We examined the cross-sectional associati...
USDA-ARS?s Scientific Manuscript database
Objective: The objective of this prospective cohort study is to evaluate associations between whole and refined grains and their food sources in relation to risk of adiposity-related cancers combined and three of the most commonly diagnosed site-specific cancers in the US: breast, prostate, and colo...
Time evolution as refining, coarse graining and entangling
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Steinhaus, Sebastian
2014-12-01
We argue that refining, coarse graining and entangling operators can be obtained from time evolution operators. This applies in particular to geometric theories, such as spin foams. We point out that this provides a construction principle for the physical vacuum in quantum gravity theories and more generally allows construction of a (cylindrically) consistent continuum limit of the theory.
GRAIN REFINEMENT OF URANIUM BILLETS
Lewis, L.
1964-02-25
A method of refining the grain structure of massive uranium billets without resort to forging is described. The method consists in the steps of beta- quenching the billets, annealing the quenched billets in the upper alpha temperature range, and extrusion upset of the billets to an extent sufficient to increase the cross sectional area by at least 5 per cent. (AEC)
NASA Astrophysics Data System (ADS)
Luo, Yajun; Zhang, Zhifeng; Li, Bao; Gao, Mingwei; Qiu, Yang; He, Min
2017-12-01
To obtain a large-sized, high-quality aluminum alloy billet, an advanced uniform direct chill (UDC) casting method was developed by combining annular electromagnetic stirring (A-EMS) with intercooling in the sump. The 7005 alloy was chosen to investigate the effect of UDC on grain refinement and homogeneity during normal direct chill (NDC) casting. It was concluded that the microstructure consisting of both primary α-Al phase and secondary phases becomes finer and more homogeneous for the billets prepared with UDC casting compared to those prepared with NDC casting, and the forced cooling from both the inner and outer melt under A-EMS has a measurable effect on grain refinement and homogeneity.
NASA Astrophysics Data System (ADS)
Zhao, Bingyi; Cai, Qizhou; Li, Xinwei; Li, Bing; Cheng, Jingfan
2018-03-01
A novel grain refiner consisting of TiC nanoparticles (NPs) supported by Ti powders (abbr. TiC/Ti refiner) was prepared by high-energy milling. The addition of 0.5 wt% TiC/Ti refiner converted the structure of pure Al from coarse dendrites to fine equiaxed grains with the average grain size of 114.7 μm, and it also increased the nucleation temperature of α(Al) from 656.7 to 664.4 °C. When TiC/Ti refiner was introduced into Al melt, the heat released from the Al-Ti reaction promoted the uniform dispersion of TiC NPs. The dissolution of the reaction product TiAl3 released Ti atoms into the melt and thus formed a "Ti-rich transition region" around TiC NPs. The dispersive TiC NPs could act as the heterogeneous nuclei for α(Al) and the "Ti-rich transition region" further improved the lattice orientation relationship between Al (\\bar{1}1\\bar{1} ) and TiC (11\\bar{1} ) planes, which eventually resulted in the refining of α(Al).
Total antioxidant content of alternatives to refined sugar.
Phillips, Katherine M; Carlsen, Monica H; Blomhoff, Rune
2009-01-01
Oxidative damage is implicated in the etiology of cancer, cardiovascular disease, and other degenerative disorders. Recent nutritional research has focused on the antioxidant potential of foods, while current dietary recommendations are to increase the intake of antioxidant-rich foods rather than supplement specific nutrients. Many alternatives to refined sugar are available, including raw cane sugar, plant saps/syrups (eg, maple syrup, agave nectar), molasses, honey, and fruit sugars (eg, date sugar). Unrefined sweeteners were hypothesized to contain higher levels of antioxidants, similar to the contrast between whole and refined grain products. To compare the total antioxidant content of natural sweeteners as alternatives to refined sugar. The ferric-reducing ability of plasma (FRAP) assay was used to estimate total antioxidant capacity. Major brands of 12 types of sweeteners as well as refined white sugar and corn syrup were sampled from retail outlets in the United States. Substantial differences in total antioxidant content of different sweeteners were found. Refined sugar, corn syrup, and agave nectar contained minimal antioxidant activity (<0.01 mmol FRAP/100 g); raw cane sugar had a higher FRAP (0.1 mmol/100 g). Dark and blackstrap molasses had the highest FRAP (4.6 to 4.9 mmol/100 g), while maple syrup, brown sugar, and honey showed intermediate antioxidant capacity (0.2 to 0.7 mmol FRAP/100 g). Based on an average intake of 130 g/day refined sugars and the antioxidant activity measured in typical diets, substituting alternative sweeteners could increase antioxidant intake an average of 2.6 mmol/day, similar to the amount found in a serving of berries or nuts. Many readily available alternatives to refined sugar offer the potential benefit of antioxidant activity.
Peng, Jinhua; Zhang, Zhen; Liu, Zhao; Li, Yaozu; Guo, Peng; Zhou, Wei; Wu, Yucheng
2018-03-08
Friction stir processing (FSP) was used to achieve grain refinement on Mg-Al-Zn alloys, which also brought in significant texture modification. The different micro-texture characteristics were found to cause irregular micro-hardness distribution in FSPed region. The effects of texture and grain size were investigated by comparative analyses with strongly textured rolling sheet. Grain refinement improved both strength and elongation in condition of a basal texture while such led to an increment in yield stress and a drop in elongation and ultimate stress when the basal texture was modified by FSP.
Ultra fine grained Ti prepared by severe plastic deformation
NASA Astrophysics Data System (ADS)
Lukáč, F.; Čížek, J.; Knapp, J.; Procházka, I.; Zháňal, P.; Islamgaliev, R. K.
2016-01-01
The positron annihilation spectroscopy was employed for characterisation of defects in pure Ti with ultra fine grained (UFG) structure. UFG Ti samples were prepared by two techniques based on severe plastic deformation (SPD): (i) high pressure torsion (HPT) and (ii) equal channel angular pressing (ECAP). Although HPT is the most efficient technique for grain refinement, the size of HPT-deformed specimens is limited. On the other hand, ECAP is less efficient in grain refinement but enables to produce larger samples more suitable for industrial applications. Characterisation of defects by positron annihilation spectroscopy was accompanied by hardness testing in order to monitor the development of mechanical properties of UFG Ti.
NASA Astrophysics Data System (ADS)
Wang, Jian; Zhu, Wei; Xiao, Hong; Zhang, Liang-liang; Qin, Hao; Yu, Yue
2018-02-01
Grain refinement is a critical approach to improve the strength of materials without damaging the toughness. The grains of deformation-induced ferrite are considerably smaller than those of proeutectoid ferrite. Grain refinement is crucial to the application of deformation-induced ferrite. The composition of ferrite and bainite or martensite is important in controlling the performance of X70HD pipeline steel, and cooling significantly influences the control of their ratio and grain size. By analyzing the static and dynamic phase-transition points using Gleeble-3800 thermal simulator, thermal simulations were performed through two-stage deformations in the austenite zone. Ferrite transformation rules were studied with thermal simulation tests under different deformation and cooling parameters based on the actual production of cumulative deformation. The influence of deformation parameters on the microstructure transformation was analyzed. Numerous fine-grain deformation-induced ferrites were obtained by regulating various parameters, including deformation temperature, strain rate, cooling rate, final cooling temperature and other parameters. Results of metallographic observation and microtensile testing revealed that the selection of appropriate parameters can refine the grains and improve the performance of the X70HD pipeline steel.
NASA Astrophysics Data System (ADS)
Gao, Zhongtang; Hu, Rui; Guo, Wei; Zhang, Chuanwei
2018-04-01
The combination of liquidus casting and thermal control solidification furnace was applied to obtain a fine-grained ingot. A rapid quenching method and x-ray diffraction measurement were used to investigate the effect of authigenic inoculation on grain refinement. The structure factor S(Q) of liquid Ni-Cr-W superalloy at 1400 °C (Liquidus temperature) and bright-field image of the microstructures quenched from 1400 °C have been measured by the high-temperature x-ray diffractometer and the transmission electron microscopy (TEM), respectively. The results show that a pre-peak exists on a S(Q) curve at the liquidus temperature. The clusters of atom in rapidly quenched microstructures obtained by isothermal heat treatment at 1400 °C were studied using TEM. Meanwhile, the effect of isothermal different temperatures on rapidly quenched microstructures was studied. The results also show that there are only the globular, equiaxed grains distributed in the solidification structure. These particles are inherited from the medium-range order structure, which is beneficial for grain refinement. The normalized work-hardening rate-strain curve indicates the work-hardening rate of fine grain is higher than that of conventional grain at the same temperature and the same deformation.
NASA Astrophysics Data System (ADS)
Gao, Zhongtang; Hu, Rui; Guo, Wei; Zhang, Chuanwei
2018-05-01
The combination of liquidus casting and thermal control solidification furnace was applied to obtain a fine-grained ingot. A rapid quenching method and x-ray diffraction measurement were used to investigate the effect of authigenic inoculation on grain refinement. The structure factor S( Q) of liquid Ni -Cr-W superalloy at 1400 °C (Liquidus temperature) and bright-field image of the microstructures quenched from 1400 °C have been measured by the high-temperature x-ray diffractometer and the transmission electron microscopy (TEM), respectively. The results show that a pre-peak exists on a S( Q) curve at the liquidus temperature. The clusters of atom in rapidly quenched microstructures obtained by isothermal heat treatment at 1400 °C were studied using TEM. Meanwhile, the effect of isothermal different temperatures on rapidly quenched microstructures was studied. The results also show that there are only the globular, equiaxed grains distributed in the solidification structure. These particles are inherited from the medium-range order structure, which is beneficial for grain refinement. The normalized work-hardening rate-strain curve indicates the work-hardening rate of fine grain is higher than that of conventional grain at the same temperature and the same deformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chunling, E-mail: zhangchl@ysu.edu.cn; School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401; Zhang, Mengmeng
2016-03-15
Self-designed Cu–P–Cr–Ni–Mo weathering steel was subjected to compression test to determine the mechanism of ferrite grain refinement from 750 °C to 925 °C. Optical microscopic images showed that ferrite grain size declined, whereas the ferrite volume fraction increased with increasing compression temperature. Electron backscatter diffraction patterns revealed that several low-angle boundaries shifted to high-angle boundaries, thereby generating fine ferrite grains surrounded by high-angle boundaries. Numerous low-angle boundaries were observed within ferrite grains at 750 °C, which indicated the existence of pre-eutectoid ferrite. Results showed that ferrite grain refinement could be due to continuous dynamic recrystallization at 750 °C and 775more » °C, and deformation-induced ferrite transformation could be the main mechanism at 800 °C and 850 °C. Fine equiaxed ferrite grains with size ranging from 1.77 μm to 2.69 μm were produced in the (α + γ) dual-phase region. - Graphical abstract: There is a close relationship between the microstructure evolution and flow curves during deformation. Fine equiaxed ferrite grains with size ranging from 1.77 μm to 2.69 μm were achieved in the (α + γ) dual-phase region. Ferrite grain refinement could be due to continuous dynamic recrystallization at 750 °C and 775 °C, and deformation-induced ferrite transformation at 800 °C and 850 °C. The occurrence of deformation-induced ferrite transformation and continuous dynamic recrystallization can be monitored by analysis of flow curves and microstructures. Deformation-induced ferrite transformation leads to the dynamic softening in flow curve when temperature just below A{sub r3}, while the dynamic softening in flow curve is ferrite continuous dynamic recrystallization (Special Fig. 5b). - Highlights: • Compression deformation was operated at temperatures from 750 °C to 925 °C at a strain rate of 0.1 s–1, and a strain of 1.2. • Fine equiaxed ferrite grains of ~1.77–2.19 μm were obtained at 750 °C and 775 °C via continuous dynamic recrystallization. • Ferrite grain size of ~2.31–2.69 μm at 800 °C and 850 °C can be obtained by deformation-induced ferrite transformation. • With decreasing deformation temperature the average grain size of ferrite decreased while volume fraction increased. • Ferrite refinement was from deformation-induced ferrite to continuous dynamic recrystallization as temperature reduced.« less
Grain Structure Control of Additively Manufactured Metallic Materials
Faierson, Eric J.
2017-01-01
Grain structure control is challenging for metal additive manufacturing (AM). Grain structure optimization requires the control of grain morphology with grain size refinement, which can improve the mechanical properties of additive manufactured components. This work summarizes methods to promote fine equiaxed grains in both the additive manufacturing process and subsequent heat treatment. Influences of temperature gradient, solidification velocity and alloy composition on grain morphology are discussed. Equiaxed solidification is greatly promoted by introducing a high density of heterogeneous nucleation sites via powder rate control in the direct energy deposition (DED) technique or powder surface treatment for powder-bed techniques. Grain growth/coarsening during post-processing heat treatment can be restricted by presence of nano-scale oxide particles formed in-situ during AM. Grain refinement of martensitic steels can also be achieved by cyclic austenitizing in post-processing heat treatment. Evidently, new alloy powder design is another sustainable method enhancing the capability of AM for high-performance components with desirable microstructures.
Weighing in on whole grains: A review of evidence linking whole grains to body weight
USDA-ARS?s Scientific Manuscript database
U.S. dietary guidelines support the consumption of whole grains in lieu of refined grains. On January 31, 2011, the 2010 Dietary Guidelines for Americans (DGA) were released and the recommendations with respect to grains were for individuals to “Consume at least half of all grains as whole grains” a...
Ductility Improvement of an AZ61 Magnesium Alloy through Two-Pass Submerged Friction Stir Processing
Luo, Xicai; Cao, Genghua; Zhang, Wen; Qiu, Cheng; Zhang, Datong
2017-01-01
Friction stir processing (FSP) has been considered as a novel technique to refine the grain size and homogenize the microstructure of metallic materials. In this study, two-pass FSP was conducted under water to enhance the cooling rate during processing, and an AZ61 magnesium alloy with fine-grained and homogeneous microstructure was prepared through this method. Compared to the as-cast material, one-pass FSP resulted in grain refinement and the β-Mg17Al12 phase was broken into small particles. Using a smaller stirring tool and an overlapping ratio of 100%, a finer and more uniform microstructure with an average grain size of 4.6 μm was obtained through two-pass FSP. The two-pass FSP resulted in a significant improvement in elongation of 37.2% ± 4.3%, but a slight decrease in strength compared with one-pass FSP alloy. Besides the microstructure refinement, the texture evolution in the stir zone is also considered responsible for the ductility improvement. PMID:28772614
Grain-refining heat treatments to improve cryogenic toughness of high-strength steels
NASA Technical Reports Server (NTRS)
Rush, H. F.
1984-01-01
The development of two high Reynolds number wind tunnels at NASA Langley Research Center which operate at cryogenic temperatures with high dynamic pressures has imposed severe requirements on materials for model construction. Existing commercial high strength steels lack sufficient toughness to permit their safe use at temperatures approaching that of liquid nitrogen (-320 F). Therefore, a program to improve the cryogenic toughness of commercial high strength steels was conducted. Significant improvement in the cryogenic toughness of commercial high strength martensitic and maraging steels was demonstrated through the use of grain refining heat treatments. Charpy impact strength at -320 F was increased by 50 to 180 percent for the various alloys without significant loss in tensile strength. The grain sizes of the 9 percent Ni-Co alloys and 200 grade maraging steels were reduced to 1/10 of the original size or smaller, with the added benefit of improved machinability. This grain refining technique should permit these alloys with ultimate strengths of 220 to 270 ksi to receive consideration for cryogenic service.
The role of grain size and shape in the strengthening of dispersion hardened nickel alloys
NASA Technical Reports Server (NTRS)
Wilcox, B. A.; Clauer, A. H.
1972-01-01
Thermomechanical processing was used to develop various microsstructures in Ni, Ni-2ThO2, Ni-20Cr, Ni-20CR-2ThO2, Ni-20Cr-10W-and Ni-20Cr-10W-2ThO2. The yield strength at 25 C increased with substructure refinement according to the Hall-Petch relation, and substructure refinement was a much more potent means of strengthening than was dispersion hardening. At elevated temperature (1093 C), the most important microstructural feature affecting strength was the grain aspect ratio (grain length, L, divided by grain width, 1. The yield strength and creep strength increased linearly with increasing L/1.
Mechanisms of grain refinement in aluminum alloys in the process of severe plastic deformation
NASA Astrophysics Data System (ADS)
Kaibyshev, R. O.; Mazurina, I. A.; Gromov, D. A.
2006-01-01
A study of the mechanisms of grain refinement in the process of severe plastic deformation of two aluminum alloys, i.e., 2219 bearing nanometric particles of Al3Zr and low-alloy Al-3% Cu, is described. The alloys are deformed by the method of equal channel angular pressing at 250°C to a maximum strain degree of about 12. The angles of (sub)grain boundaries in alloy 2219 are determined with the help of transmission electron microscopy by the method of Kikuchi lines. The evolution of the microstructure in alloy Al-3% Cu is studied with the help of grain-boundary maps obtained by the method of electron back-scattered diffraction.
Effect of convection on the dendrite growth kinetics in undercooled melts of D2 tool steels
NASA Astrophysics Data System (ADS)
Valloton, J.; Herlach, D. M.; Henein, H.
2016-03-01
Rapid solidification of D2 tool steel is investigated experimentally using the electromagnetic levitation technique under terrestrial and reduced gravity conditions. The microstructures of samples covering a broad range of undercoolings (40 K ≤ ΔT ≤ 280 K) are analysed. At low undercooling coarse grained dendritic microstructure is observed, while at higher undercoolings this dendritic feature disappears in favour of a grain refined equiaxed structure. In the latter case, the eutectic carbides are more evenly dispersed throughout the microstructure. The sample solidified in microgravity during parabolic flight experiment exhibits only a few very large grains with twinning relationship. This highlights the effect of convection on grain refinement in this system.
NASA Astrophysics Data System (ADS)
Naghizadeh, Meysam; Mirzadeh, Hamed
2018-05-01
An advanced thermomechanical process based on the formation and reversion of deformation-induced martensite was used to refine the grain size and enhance the hardness of an AISI 304L austenitic stainless steel. Both low and high reversion annealing temperatures and also the repetition of the whole thermomechanical cycle were considered. While a microstructure with average austenite grain size of a few micrometers was achieved based on cold rolling and high-temperature short-term annealing, an extreme grain refinement up to submicrometer regime was obtained by cold rolling followed by low-temperature long-term annealing. However, the required annealing time was found to be much longer, which negates its appropriateness for industrial production. While a magnificent grain refinement was achieved by one pass of the high-temperature thermomechanical process, the reduction in grain size was negligible by the repetition of the whole cycle. It was found that the hardness of the thermomechanically processed material is much higher than that of the as-received material. The results of the present work were shown to be compatible with the general trend of grain size dependence of hardness for AISI 304L stainless steel based on the Hall-Petch relationship. The results were also discussed based on the X-ray evaluation of dislocation density by modified Williamson-Hall plots.
Microstructural Development in a Laser-Remelted Al-Zn-Si-Mg Coating.
Godec, M; Podgornik, B; Nolan, D
2017-11-23
In the last five decades, there has been intense development in the field of Zn-Al galvanic coating modification. Recently, Mg was added to improve corrosion properties. Further improvements to the coating are possible with additional laser surface treatment. In this article, we focus on remelting the Al-Zn-Mg-Si layer, using a diode laser with a wide-beam format, concentrating on the microstructure development during extreme cooling rates. Laser remelting of the Al-Zn-Mg-Si coating and rapid self-quenching produces a finer grain size, and a microstructure that is substantially refined and homogenized with respect to the phase distribution. Using EBSD results, we are able to understand microstructure modification. The laser modified coating has some porosity and intergranular cracking which are difficult to avoid, however this does not seem to be detrimental to mechanical properties, such as ductility on bending. The newly developed technology has a high potential for improved corrosion performance due to highly refined microstructure.
Wu, Demo; Guan, Yixiang; Lv, Shujun; Wang, Haibo; Li, Jun
2015-12-01
Results of the relationships between dietary consumption of refined grains and the risk of stroke are mixed. This study was based on a meta-analysis of prospective cohort studies. We systematically searched the MEDLINE (from January 1, 1966) and EMBASE (from January 1, 1974) databases up to November 30, 2014. Random-effects models were used to calculate summary relative risks (SRRs) and 95% confidence intervals (CIs). Between-study heterogeneity was assessed using Cochran's Q and I(2) statistics. Eight prospective studies (7 publications) with a total of 410,821 subjects and 8284 stroke events were included in the meta-analysis. Overall, a diet containing greater amounts of refined grains was not associated with risk of stroke, with no evidence of heterogeneity among studies (SRR = 1.02; 95% CI, .93-1.10; P(heterogeneity) = .970; I(2) = 0). In addition, no significant associations between consumption of refined grains and risk of stroke were found for both women and men, for both hemorrhagic and ischemic strokes, and for both incident and fatal strokes. These null results are consistent with those of linear dose-response meta-analyses (SRR = .98; 95% CI, .73-1.03 for per 3 servings/day). Consumption of white rice was not associated with risk of stroke (SRR = 1.01; 95% CI, .93-1.11; P(heterogeneity) = .966; I(2) = 0). The current meta-analysis provides some evidence for the hypothesis that consumption of refined grains was not associated with risk of stroke and its subtypes. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Yield Asymmetry Design of Magnesium Alloys by Integrated Computational Materials Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Joshi, Vineet V.; Lavender, Curt A.
2013-11-01
Deformation asymmetry of magnesium alloys is an important factor on machine design in automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to microstructure, characterized by texture and grain size. Modified intermediate phi-model, a polycrystalline viscoplasticity model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry by thermomechanical processing. In some texture, for example, rolled texture, CYS/TYS is smaller than 1 under different loadingmore » directions. In some texture, for example, extruded texture, asymmetry is large along normal direction. Starting from rolled texture, the asymmetry will increased to close to 1 along rolling direction after compressed to a strain of 0.2. Our model shows that grain refinement increases CYS/TYS. Besides texture control, grain refinement can also optimize the yield asymmetry. After the grain size decreased to a critical value, CYS/TYS reaches to 1 since CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.« less
Yield asymmetry design of magnesium alloys by integrated computational materials engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Joshi, Vineet; Lavender, Curt
2013-11-01
Deformation asymmetry of magnesium alloys is an important factor on machine design in the automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to texture and grain size. A polycrystalline viscoplasticity model, modified intermediate Φ-model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry via thermomechanical processing. For example, CYS/TYS in rolled texture is smaller than 1 under different loading directions. In other textures,more » such as extruded texture, CYS/TYS is large along the normal direction. Starting from rolled texture, asymmetry will increase to close to 1 along the rolling direction after being compressed to a strain of 0.2. Our modified Φ-model also shows that grain refinement increases CYS/TYS. Along with texture control, grain refinement also can optimize the yield asymmetry. After the grain size decreases to a critical value, CYS/TYS reaches to 1 because CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.« less
Grain-Refined AZ92 Alloy with Superior Strength and Ductility
NASA Astrophysics Data System (ADS)
Lee, Jong Un; Kim, Sang-Hoon; Jo, Wan-Kuen; Hong, Won-Hwa; Kim, Woong; Bae, Jun Ho; Park, Sung Hyuk
2018-03-01
Grain-refined AZ92 (GR-AZ92) alloy with superior tensile properties is developed by adding 1 wt% Zn and a very small amount of SiC (0.17 wt%) to commercial AZ91 alloy for enhancing the solid-solution strengthening effect and refining the crystal grains, respectively. The homogenized GR-AZ92 alloy with an average grain size of 91 μm exhibits a tensile yield strength (TYS) of 125 MPa, ultimate tensile strength (UTS) of 281 MPa, and elongation of 12.1%, which are significantly higher than those of AZ91 alloy with a grain size of 420 μm (TYS of 94 MPa, UTS of 192 MPa, and elongation of 7.0%). The peak-aging time of GR-AZ92 alloy (8 h) is significantly shorter than that of AZ91 alloy (32 h) owing to a larger amount of grain boundaries in the former, which serve as nucleation sites of Mg17Al12 precipitates. A short-aging treatment for less than 1 h of the GR-AZ92 alloy causes an effective improvement in its strength without a significant reduction in its ductility. The 30-min-aged GR-AZ92 alloy has an excellent combination of strength and ductility, with a TYS of 142 MPa, UTS of 304 MPa, and elongation of 8.0%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirdel, M., E-mail: mshirdel1989@ut.ac.ir; Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir; Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran
A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. Amore » new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on the obtainable martensite • Characterization of martensite by virtue of a new developed magnetic device • Investigation of mechanical properties and TRIP effect and the effect of grain size.« less
Hubbard, Kristie L; Bandini, Linda G; Folta, Sara C; Wansink, Brian; Eliasziw, Misha; Must, Aviva
2015-02-01
To assess whether a Smarter Lunchroom intervention based on behavioural economics and adapted for students with intellectual and developmental disabilities would increase the selection and consumption of fruits, vegetables and whole grains, and reduce the selection and consumption of refined grains. The 3-month intervention took place at a residential school between March and June 2012. The evaluation employed a quasi-experimental, pre-post design comparing five matched days of dietary data. Selection and plate waste of foods at lunch were assessed using digital photography. Consumption was estimated from plate waste. Massachusetts, USA. Students (n 43) aged 11-22 years with intellectual and developmental disabilities attending a residential school. Daily selection of whole grains increased by a mean of 0·44 servings (baseline 1·62 servings, P = 0·005) and refined grains decreased by a mean of 0·33 servings (baseline 0·82 servings, P = 0·005). The daily consumption of fruits increased by a mean of 0·18 servings (baseline 0·39 servings, P = 0·008), whole grains increased by 0·38 servings (baseline 1·44 servings, P = 0·008) and refined grains decreased by a mean of 0·31 servings (baseline 0·68 servings, P = 0·004). Total kilojoules and total gram weight of food selected and consumed were unchanged. Fruit (P = 0·04) and vegetable (P = 0·03) plate waste decreased. A Smarter Lunchroom intervention significantly increased whole grain selection and consumption, reduced refined grain selection and consumption, increased fruit consumption, and reduced fruit and vegetable plate waste. Nudge approaches may be effective for improving the food selection and consumption habits of adolescents and young adults with intellectual and developmental disabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, N., E-mail: nirupamd@barc.gov.in; Sengupta, P.; Abraham, G.
Highlights: • Grain refinement was made in Zr–16 wt.% SS alloy while prepared by suction casting process. • Distribution of Laves phase, e.g., Zr{sub 2}(Fe, Cr) was raised in suction cast (SC) Zr–16 wt.% SS. • Corrosion resistance was improved in SC alloy compared to that of arc-melt-cast alloy. • Grain refinement in SC alloy assisted for an increase in its corrosion resistance. - Abstract: Zirconium (Zr)-stainless steel (SS) hybrid alloys are being considered as baseline alloys for developing metallic-waste-form (MWF) with the motivation of disposing of Zr and SS base nuclear metallic wastes. Zr–16 wt.% SS, a MWF alloymore » optimized from previous studies, exhibit significant grain refinement and changes in phase assemblages (soft phase: Zr{sub 2}(Fe, Cr)/α-Zr vs. hard phase: Zr{sub 3}(Fe, Ni)) when prepared by suction casting (SC) technique in comparison to arc-cast-melt (AMC) route. Variation in Cr-distribution among different phases are found to be low in suction cast alloy, which along with grain refinement restricted Cr-depletion at the Zr{sub 2}(Fe, Cr)/Zr interfaces, prone to localized attack. Hence, SC alloy, compared to AMC alloy, showed lower current density, higher potential at the breakdown of passivity and higher corrosion potential during polarization experiments (carried out under possible geological repository environments, viz., pH 8, 5 and 1) indicating its superior corrosion resistance.« less
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Ansari, Ali Reza; Mazaheri, Yousef; Karimi, Mohsen
2017-02-01
In this study, the electrochemical behavior of commercial pure titanium with both coarse-grained (annealed sample with the average grain size of about 45 µm) and nano-grained microstructure was compared by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analysis. Nano-grained Ti, which typically has a grain size of about 90 nm, is successfully made by six-cycle accumulative roll-bonding process at room temperature. Potentiodynamic polarization plots and impedance measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure Ti in H2SO4 solutions. Mott-Schottky analysis indicated that the passive films behaved as n-type semiconductors in H2SO4 solutions and grain refinement did not change the semiconductor type of passive films. Also, Mott-Schottky analysis showed that the donor densities decreased as the grain size of the samples reduced. Finally, all electrochemical tests showed that the electrochemical behavior of the nano-grained sample was improved compared to that of annealed pure Ti, mainly due to the formation of thicker and less defective oxide film.
Grain Refining and Microstructural Modification during Solidification.
1983-10-01
was found to be insensitive to the iron concentration in the samples solidified in the levitated state but not in samples quenched from the liquid . The... liquid . The preliminary * results with niobium additions indicate that no appreciable grain refinement * is achieved when the samples are levitated in an...to the critical examination of the Cr-Ni phase diagram, by using high purity starting materials, and a containerless electromagnetic levitation
NASA Technical Reports Server (NTRS)
Wigley, D. A.
1985-01-01
The results of a study to evaluate the dimensional changes created during machining and subsequent cycling to cryogenic temperatures for three different metallic alloys are presented. Experimental techniques are described and results presented for 18 Ni Grade 200 maraging steel, PH-13-8 Mo stainless steel, and Grain-refined HP 9-4-20.
Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults.
Pereira, Mark A; Jacobs, David R; Pins, Joel J; Raatz, Susan K; Gross, Myron D; Slavin, Joanne L; Seaquist, Elizabeth R
2002-05-01
Epidemiologic studies have found whole-grain intake to be inversely associated with the risk of type 2 diabetes and heart disease. We tested the hypothesis that whole-grain consumption improves insulin sensitivity in overweight and obese adults. This controlled experiment compared insulin sensitivity between diets (55% carbohydrate, 30% fat) including 6-10 servings/d of breakfast cereal, bread, rice, pasta, muffins, cookies, and snacks of either whole or refined grains. Total energy needs were estimated to maintain body weight. Eleven overweight or obese [body mass index (in kg/m(2)): 27-36] hyperinsulinemic adults aged 25-56 y participated in a randomized crossover design. At the end of each 6-wk diet period, the subjects consumed 355 mL (12 oz) of a liquid mixed meal, and blood samples were taken over 2 h. The next day a euglycemic hyperinsulinemic clamp test was administered. Fasting insulin was 10% lower during consumption of the whole-grain than during consumption of the refined-grain diet (mean difference: -15 +/- 5.5 pmol/L; P = 0.03). After the whole-grain diet, the area under the 2-h insulin curve tended to be lower (-8832 pmol.min/L; 95% CI: -18720, 1062) than after the refined-grain diet. The rate of glucose infusion during the final 30 min of the clamp test was higher after the whole-grain diet (0.07 x 10(-4) mmol.kg(-1).min(-1) per pmol/L; 95% CI: 0.003 x 10(-4), 0.144 x 10(-4)). Insulin sensitivity may be an important mechanism whereby whole-grain foods reduce the risk of type 2 diabetes and heart disease.
More sugar? No, thank you! The elusive nature of low carbohydrate diets.
Giugliano, Dario; Maiorino, Maria Ida; Bellastella, Giuseppe; Esposito, Katherine
2018-03-19
In the past decades, dietary guidelines focused on reducing saturated fat as the primary strategy for cardiovascular disease prevention, neglecting the many other potential effects of diet on health, in particular the harmful effects of sugar. A greater intake of soft drinks (sugar-sweetened beverages), for example, is associated with a 44% increased prevalence of metabolic syndrome, a higher risk of obesity, and a 26% increased risk of developing diabetes mellitus. Carbohydrates comprise around 55% of the typical western diet, ranging from 200 to 350 g/day in relation to a person's overall caloric intake. For long-term weight gain, food rich in refined grains, starches, and sugar appear to be major culprits. Low-carbohydrate diets restrict daily carbohydrates between 20 and 50 g, as in clinical ketogenic diets. The results of controlled trials show that people on ketogenic diets (a diet with no more than 50 g carbohydrates/day) tend to lose more weight than people on low-fat diets. Moreover, there is no good evidence for recommending low-fat diets, as low-carbohydrate diets lead to significantly greater weight loss (1.15 kg) than did low-fat interventions. However, the magnitude of such a benefit is small. As the quality of ingested carbohydrates seems more important than the quantity for health outcomes, people with metabolic disorders should avoid or substantially reduce low-fiber, rapidly digested, refined grains, starches, and added sugars. So, the consumption of the right carbohydrates (high-fiber, slowly digested, and whole grains), in a moderately lower amount (between 40 and 50% of daily energy content), is compatible with a state of good health and may represent a scientifically-based and palatable choice for people with metabolic disorders.
NASA Astrophysics Data System (ADS)
Imantalab, O.; Fattah-alhosseini, A.; Keshavarz, M. K.; Mazaheri, Y.
2016-02-01
In this work, electrochemical behavior of annealed (micro-) and nano-grained pure copper (fabricated by accumulative roll bonding process) in phosphate buffer solutions of various pH values ranging from 10.69 to 12.59 has been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by optical microscope and transmission electron microscopy. To investigate the electrochemical behavior of the samples, the potentiodynamic polarization, Mott-Schottky analysis, and electrochemical impedance spectroscopy (EIS) were carried out. Potentiodynamic polarization plots and EIS measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure copper. Also, Mott-Schottky analysis indicated that the passive films behaved as p-type semiconductors and grain refinement did not change the semiconductor type of passive films.
Bulk Nanolaminated Nickel: Preparation, Microstructure, Mechanical Property, and Thermal Stability
NASA Astrophysics Data System (ADS)
Liu, Fan; Yuan, Hao; Goel, Sunkulp; Liu, Ying; Wang, Jing Tao
2018-02-01
A bulk nanolaminated (NL) structure with distinctive fractions of low- and high-angle grain boundaries ( f LAGBs and f HAGBs) is produced in pure nickel, through a two-step process of primary grain refinement by equal-channel angular pressing (ECAP), followed by a secondary geometrical refinement via liquid nitrogen rolling (LNR). The lamellar boundary spacings of 2N and 4N nickel are refined to 40 and 70 nm, respectively, and the yield strength of the NL structure in 2N nickel reaches 1.5 GPa. The impacts of the deformation path, material purity, grain boundary (GB) misorientation, and energy on the microstructure, refinement ability, mechanical strength, and thermal stability are investigated to understand the inherent governing mechanisms. GB migration is the main restoration mechanism limiting the refinement of an NL structure in 4N nickel, while in 2N nickel, shear banding occurs and mediates one-fifth of the total true normal rolling strain at the mesoscale, restricting further refinement. Three typical structures [ultrafine grained (UFG), NL with low f LAGBs, and NL with high f LAGBs] obtained through three different combinations of ECAP and LNR were studied by isochronal annealing for 1 hour at temperatures ranging from 433 K to 973 K (160 °C to 700 °C). Higher thermal stability in the NL structure with high f LAGBs is shown by a 50 K (50 °C) delay in the initiation temperature of recrystallization. Based on calculations and analyses of the stored energies of deformed structures from strain distribution, as characterized by kernel average misorientation (KAM), and from GB misorientations, higher thermal stability is attributed to high f LAGBs in this type of NL structure. This is confirmed by a slower change in the microstructure, as revealed by characterizing its annealing kinetics using KAM maps.
NASA Astrophysics Data System (ADS)
Tian, Chenguang; Lu, Huimin; Zhao, Liyuan
The super-light LA141 (Mg-14%Li-1%Al) alloy was produced and processed by high-pressure torsion (HPT) under the imposed pressure of 3 GPa and different shear strains γ through 3, 6, 9 and 12 turns at room temperature (RT). The microstructure evolution of the alloy during the HPT treatment was investigated by transmission electron microscope (TEM) and optical microscope (OM). It turned out that the grains were substantially refined, and the optical microscope revealed that the grains of HPT processed samples at the edge of the disc were finer by comparison with the ones near the center of the disc. Later, Vickers indentation analysis was used to evaluate the micro-hardness of deformed samples, and tension test was employed to obtain the strength and elongation at room temperature. The results indicated that the micro-hardness and tensile strength had increased to a certain extent, and the elongation had been significantly improved.
NASA Astrophysics Data System (ADS)
Babacan, N.; Ma, J.; Turkbas, O. S.; Karaman, I.; Kockar, B.
2018-01-01
In the present study, the effect of thermo-mechanical treatments on the shape memory and the superelastic characteristics of Cu73Al16Mn11 (at%) shape memory alloy were investigated. 10%, 50% and 70% cold rolling and subsequent heat treatment processes were conducted to achieve strengthening via grain size refinement. 70% grain size reduction compared to the homogenized condition was obtained using 70% cold rolling and subsequent recrystallization heat treatment technique. Moreover, 10% cold rolling was applied to homogenized specimen to reveal the influence of the low percentage cold rolling reduction with no heat treatment on shape memory properties of Cu73Al16Mn11 (at%) alloy. Stress free transformation temperatures, monotonic tension and superelasticity behaviors of these samples were compared with those of the as-aged sample. Isobaric heating-cooling experiments were also conducted to see the dimensional stability of the samples as a function of applied stress. The 70% grain-refined sample exhibited better dimensional stability showing reduced residual strain levels upon thermal cycling under constant stress compared with the as-aged material. However, no improvement was achieved with grain size reduction in the superelasticity experiments. This distinctive observation was attributed to the difference in the magnitude of the stress levels achieved during two different types of experiments which were the isobaric heating-cooling and superelasticity tests. Intergranular fracture due to the stress concentration overcame the strengthening effect via grain refinement in the superelasticity tests at higher stress values. On the other hand, the strength of the material and resistance of material against plastic deformation upon phase transformation were increased as a result of the grain refinement at lower stress values in the isobaric heating-cooling experiments.
Refinement of Ferrite Grain Size near the Ultrafine Range by Multipass, Thermomechanical Compression
NASA Astrophysics Data System (ADS)
Patra, S.; Neogy, S.; Kumar, Vinod; Chakrabarti, D.; Haldar, A.
2012-11-01
Plane-strain compression testing was carried out on a Nb-Ti-V microalloyed steel, in a GLEEBLE3500 simulator using a different amount of roughing, intermediate, and finishing deformation over the temperature range of 1373 K to 1073 K (1100 °C to 800 °C). A decrease in soaking temperature from 1473 K to 1273 K (1200 °C to 1000 °C) offered marginal refinement in the ferrite ( α) grain size from 7.8 to 6.6 μm. Heavy deformation using multiple passes between A e3 and A r3 with true strain of 0.8 to 1.2 effectively refined the α grain size (4.1 to 3.2 μm) close to the ultrafine size by dynamic-strain-induced austenite ( γ) → ferrite ( α) transformation (DSIT). The intensities of microstructural banding, pearlite fraction in the microstructure (13 pct), and fraction of the harmful "cube" texture component (5 pct) were reduced with the increase in finishing deformation. Simultaneously, the fractions of high-angle (>15 deg misorientation) boundaries (75 to 80 pct), beneficial gamma-fiber (ND//<111>) texture components, along with {332}<133> and {554}<225> components were increased. Grain refinement and the formation of small Fe3C particles (50- to 600-nm size) increased the hardness of the deformed samples (184 to 192 HV). For the same deformation temperature [1103 K (830 °C)], the difference in α-grain sizes obtained after single-pass (2.7 μm) and multipass compression (3.2 μm) can be explained in view of the static- and dynamic-strain-induced γ → α transformation, strain partitioning between γ and α, dynamic recovery and dynamic recrystallization of the deformed α, and α-grain growth during interpass intervals.
... may want to avoid citrus) Breads, crackers, and pasta made with refined white flour Refined, hot cereals, ... or bran cereals Whole-grain breads, crackers, or pasta Pickles, sauerkraut, and similar foods Spices, such as ...
Effect of Various SPD Techniques on Structure and Superplastic Deformation of Two Phase MgLiAl Alloy
NASA Astrophysics Data System (ADS)
Dutkiewicz, Jan; Bobrowski, Piotr; Rusz, Stanislav; Hilser, Ondrej; Tański, Tomasz A.; Borek, Wojciech; Łagoda, Marek; Ostachowski, Paweł; Pałka, Paweł; Boczkal, Grzegorz; Kuc, Dariusz; Mikuszewski, Tomasz
2018-03-01
MgLiAl alloy containing 9 wt% Li and 1.5% Al composed of hexagonal α and bcc β phases was cast under protecting atmosphere and hot extruded. Various methods of severe plastic deformation were applied to study their effect on structure and grain refinement. Rods were subjected to 1-3 passes of Twist Channel Angular Pressing TCAP (with helical component), cyclic compression to total strain ɛ = 5 using MAXStrain Gleeble equipment, both performed at temperature interval 160-200 °C and, as third SPD method, KOBO type extrusion at RT. The TCAP pass resulted in grain refinement of α phase from 30 μm down to about 2 μm and that of β phase from 12 to 5 μm. Maxstrain cycling 10 × up to ɛ = 5 led to much finer grain size of 300 nm. KOBO method performed at RT caused average grain size refinement of α and β phases down to about 1 μm. Hardness of alloy decreased slightly with increasing number of TCAP passes due to increase of small void density. It was higher after MAXStrain cycling and after KOBO extrusion. TEM studies after TCAP passes showed higher dislocation density in the β region than in the α phase. Crystallographic relationship (001) α|| (110) β indicated parallel positioning of slip planes of both phases. Electron diffraction technique confirmed increase of grain misorientation with number of TCAP passes. Stress/strain curves recorded at temperature 200 °C showed superplastic forming after 1st and 3rd TCAP passes with better superplastic properties due to higher elongation with increasing number of passes. Values of strain rate sensitivity coefficient m were calculated at 0.29 after 3rd TCAP pass for strain rate range 10-5 to 5 × 10-3 s-1. Deformation by MAXStrain cycling caused much more effective grain refinement with fine microtwins in α phase. Superplastic deformation was also observed in alloy deformed by KOBO method, however the value of m = 0.21 was obtained at lower temperature of deformation equal to 160 °C and deformation rate in the range 10-5 to 5 × 10-3. Tensile samples deformed superplastically showed grain growth and void formation caused by grain boundary slip. Summarizing, all methods applied resulted in sufficient grain refinement to obtain the effect of superplastic deformation for alloys of two phase α + β structure.
Influence of nitrogen as grain refiner in low carbon and microalloyed steels
NASA Astrophysics Data System (ADS)
Hasan, B. M.; Sathyamurthy, P.
2018-02-01
Microalloyed steel is replacing using of low alloy steel in automotive industry. Microalloying elements like vanadium, niobium and titanium are used to enhance the steel property. The current work is focused on using nitrogen as a strengthening element in existing steel grade. Nitrogen in free form acts as solid solution strengthener and in combined form as precipitates acts as grain refiner for enhancing strength. The problem of grain coarsening at high temperature in case carburizing steel was avoided by increasing nitrogen level from 60ppm to 200ppm. Grain size of ASTM no 10 is obtained at carburizing temperature of 950 °C by increasing nitrogen content from grain size no 6 with lower nitrogen. Mostly crankshaft is made from Cr-Mo alloyed steel. At JSW, nitrogen in the level of 130-200ppm is added to medium carbon steel to meet property requirement for crankshaft application
NASA Astrophysics Data System (ADS)
Motoshima, Hiroaki; Hirosawa, Shoichi; Lee, Seungwon; Horita, Zenji; Matsuda, Kenji; Terada, Daisuke
The age-hardening behavior and precipitation microstructures with high dislocation density and ultrafine grains have been studied for cold-rolled and severely deformed 2091 Al-Li-Cu alloy. The age-hardenability at 463K was reduced by high-pressure torsion (HPT) due to the accelerated formation of larger 8-AlLi precipitates at grain boundaries, in place of transgranular precipitation of refined δ'-Al3Li particles that are predominantly observable in the no-deformed and 10%-rolled specimens. When aged at 373K, however, it was successfully achieved for the HPT specimen to increase the hardness up to 290HV, the highest level of hardness among conventional wrought aluminum alloys. The corresponding TEM microstructures confirmed that refined δ' particles precipitate within ultrafine grains while keeping the grain size at 206nm. This result suggests that the combined processing of severe plastic deformation with age-hardening technique enables the fabrication of novel aluminum alloys concurrently strengthened by ultrafine-grained and precipitation hardenings.
NASA Astrophysics Data System (ADS)
Apel, M.; Eiken, J.; Hecht, U.
2014-02-01
This paper aims at briefly reviewing phase field models applied to the simulation of heterogeneous nucleation and subsequent growth, with special emphasis on grain refinement by inoculation. The spherical cap and free growth model (e.g. A.L. Greer, et al., Acta Mater. 48, 2823 (2000)) has proven its applicability for different metallic systems, e.g. Al or Mg based alloys, by computing the grain refinement effect achieved by inoculation of the melt with inert seeding particles. However, recent experiments with peritectic Ti-Al-B alloys revealed that the grain refinement by TiB2 is less effective than predicted by the model. Phase field simulations can be applied to validate the approximations of the spherical cap and free growth model, e.g. by computing explicitly the latent heat release associated with different nucleation and growth scenarios. Here, simulation results for point-shaped nucleation, as well as for partially and completely wetted plate-like seed particles will be discussed with respect to recalescence and impact on grain refinement. It will be shown that particularly for large seeding particles (up to 30 μm), the free growth morphology clearly deviates from the assumed spherical cap and the initial growth - until the free growth barrier is reached - significantly contributes to the latent heat release and determines the recalescence temperature.
Khoury, George A; Smadbeck, James; Kieslich, Chris A; Koskosidis, Alexandra J; Guzman, Yannis A; Tamamis, Phanourios; Floudas, Christodoulos A
2017-06-01
Protein structure refinement is the challenging problem of operating on any protein structure prediction to improve its accuracy with respect to the native structure in a blind fashion. Although many approaches have been developed and tested during the last four CASP experiments, a majority of the methods continue to degrade models rather than improve them. Princeton_TIGRESS (Khoury et al., Proteins 2014;82:794-814) was developed previously and utilizes separate sampling and selection stages involving Monte Carlo and molecular dynamics simulations and classification using an SVM predictor. The initial implementation was shown to consistently refine protein structures 76% of the time in our own internal benchmarking on CASP 7-10 targets. In this work, we improved the sampling and selection stages and tested the method in blind predictions during CASP11. We added a decomposition of physics-based and hybrid energy functions, as well as a coordinate-free representation of the protein structure through distance-binning Cα-Cα distances to capture fine-grained movements. We performed parameter estimation to optimize the adjustable SVM parameters to maximize precision while balancing sensitivity and specificity across all cross-validated data sets, finding enrichment in our ability to select models from the populations of similar decoys generated for targets in CASPs 7-10. The MD stage was enhanced such that larger structures could be further refined. Among refinement methods that are currently implemented as web-servers, Princeton_TIGRESS 2.0 demonstrated the most consistent and most substantial net refinement in blind predictions during CASP11. The enhanced refinement protocol Princeton_TIGRESS 2.0 is freely available as a web server at http://atlas.engr.tamu.edu/refinement/. Proteins 2017; 85:1078-1098. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Avuthu, V.; Galgalikar, R.; Zhang, Z.
2015-09-01
A thermo-mechanical finite element analysis of the friction stir welding (FSW) process is carried out and the evolution of the material state (e.g., temperature, the extent of plastic deformation, etc.) monitored. Subsequently, the finite-element results are used as input to a Monte-Carlo simulation algorithm in order to predict the evolution of the grain microstructure within different weld zones, during the FSW process and the subsequent cooling of the material within the weld to room temperature. To help delineate different weld zones, (a) temperature and deformation fields during the welding process, and during the subsequent cooling, are monitored; and (b) competition between the grain growth (driven by the reduction in the total grain-boundary surface area) and dynamic-recrystallization grain refinement (driven by the replacement of highly deformed material with an effectively "dislocation-free" material) is simulated. The results obtained clearly revealed that different weld zones form as a result of different outcomes of the competition between the grain growth and grain refinement processes.
... breads, including pita bread; tortillas and whole-grain pasta; brown rice; hot and cold unsweetened whole grain breakfast cereals White refined flour bread, rice, and pasta. French toast; taco shells; cornbread; biscuits; granola; waffles ...
Giacco, R; Costabile, G; Della Pepa, G; Anniballi, G; Griffo, E; Mangione, A; Cipriano, P; Viscovo, D; Clemente, G; Landberg, R; Pacini, G; Rivellese, A A; Riccardi, G
2014-08-01
Until recently, very few intervention studies have investigated the effects of whole-grain cereals on postprandial glucose, insulin and lipid metabolism, and the existing studies have provided mixed results. The objective of this study was to evaluate the effects of a 12-week intervention with either a whole-grain-based or a refined cereal-based diet on postprandial glucose, insulin and lipid metabolism in individuals with metabolic syndrome. Sixty-one men and women age range 40-65 years, with the metabolic syndrome were recruited to participate in this study using a parallel group design. After a 4-week run-in period, participants were randomly assigned to a 12-week diet based on whole-grain products (whole-grain group) or refined cereal products (control group). Blood samples were taken at the beginning and end of the intervention, both fasting and 3 h after a lunch, to measure biochemical parameters. Generalized linear model (GLM) was used for between-group comparisons. Overall, 26 participants in the control group and 28 in the whole-grain group completed the dietary intervention. Drop-outs (five in the control and two in the whole-grain group) did not affect randomization. After 12 weeks, postprandial insulin and triglyceride responses (evaluated as average change 2 and 3 h after the meal, respectively) decreased by 29% and 43%, respectively, in the whole-grain group compared to the run-in period. Postprandial insulin and triglyceride responses were significantly lower at the end of the intervention in the whole-grain group compared to the control group (p = 0.04 and p = 0.05; respectively) whereas there was no change in postprandial response of glucose and other parameters evaluated. A twelve week whole-grain cereal-based diet, compared to refined cereals, reduced postprandial insulin and triglycerides responses. This finding may have implications for type 2 diabetes risk and cardiovascular disease. Copyright © 2014 Elsevier B.V. All rights reserved.
Healthy Eating | NIH MedlinePlus the Magazine
... products.) Your child can also try soy or rice drinks enriched with calcium or vitamin D. Be ... least half of the refined grains (breads, pasta, rice) your child eats with whole-grain foods. Eat ...
... such as kidney beans, black beans, pinto beans, black-eyed peas, split peas, and garbanzo beans Starchy vegetables, such as potatoes, corn, green peas, and parsnips Whole grains, such as brown rice, oats, barley, and quinoa Refined grains, such as ...
Managing your weight with healthy eating
... bulgur, and amaranth. Foods made with grains include: Pasta Oatmeal Breads Breakfast cereals Tortillas Grits There are ... fiber than refined grains. These include: Bread and pasta made with whole-wheat flour Bulgur (cracked wheat), ...
The role of grain size and shape in strengthening of dispersion hardened nickel alloys.
NASA Technical Reports Server (NTRS)
Wilcox, B. A.; Clauer, A. H.
1972-01-01
Thermomechanical processing was used to develop various microstructures in Ni, Ni-2ThO2, Ni-20Cr, Ni-20Cr-2ThO2, Ni-20Cr-10W and Ni-20Cr-10W-2ThO2, and the influence of microstructure on room temperature and elevated temperature strength was investigated. The yield strength at 25 C increased with substructure refinement according to the Hall-Petch relation. It was found that substructure refinement was a much more potent means of strengthening at room temperature than was dispersion hardening. At elevated temperature (1093 C), the most important microstructural feature affecting strength of dispersion hardened nickel alloys was the grain aspect ratio, i.e. grain length, L, divided by grain width,l. The yield strength and creep strength increased linearly with increasing L/l.
Nucleation and Grain Refinement of 7A04 Aluminum Alloy Under a Low-Power Electromagnetic Pulse
NASA Astrophysics Data System (ADS)
Bai, Qingwei; Ma, Yonglin; Xing, Shuqing; Bao, Xinyu; Feng, Yanfei; Kang, Xiaolan
2018-02-01
The effects of a low-power electromagnetic pulse on the grain size and cooling curve of high-strength aluminum alloy 7A04 were investigated for various pulse duty cycles. This electromagnetic pulse treatment was found to effectively produce fine grains with globular crystals and a uniform microstructure for pulse duty cycles between 20 and 40%. The key factors that affected grain refinement under the electromagnetic pulse included the electromagnetic energy and the conversion frequency between \\varvec{B} and \\varvec{E} . The nucleation rate increased as the nucleation period was extended. A new kinetic condition of magnetic nucleation was explored by decreasing the critical Gibbs free energy in the electromagnetic pulse, which was more sensitive under low undercooling. In addition, the crystal orientation was controlled in such a solidification environment.
Microstructure evolution and texture development in a friction stir-processed AISI D2 tool steel
NASA Astrophysics Data System (ADS)
Yasavol, N.; Abdollah-zadeh, A.; Vieira, M. T.; Jafarian, H. R.
2014-02-01
Crystallographic texture developments during friction stir processing (FSP) of AISI D2 tool were studied with respect to grain sizes in different tool rotation rates. Comparison of the grain sizes in various rotation rates confirmed that grain refinement occurred progressively in higher rotation rates by severe plastic deformation. It was found that the predominant mechanism during FSP should be dynamic recovery (DRV) happened concurrently with continuous dynamic recrystallization (CDRX) caused by particle-stimulated nucleation (PSN). The developed shear texture relates to the ideal shear textures of D1 and D2 in bcc metals. The prevalence of highly dense arrangement of close-packed planes of bcc and the lowest Taylor factor showed the lowest compressive residual stress which is responsible for better mechanical properties compared with the grain-precipitate refinement.
A New Grain Refiner for Ferritic Steels
NASA Astrophysics Data System (ADS)
Li, Ming; Li, Jian-Min; Zheng, Qing; Qiu, Dong; Wang, Geoff; Zhang, Ming-Xing
2017-12-01
A new grain refiner, LaB6, was identified for ferritic steels based on the crystallographic calculation using the edge-to-edge matching model. Addition of 0.5 wt pct LaB6 led to a reduction of the average grain size from 765 to 92 μm and the proportion of the columnar structure from 35 to 8 pct in an as-cast Fe-4Si ferritic alloy. Although LaB6 was supposed to act as an active inoculant for δ-ferrite, thermodynamic calculation indicated that LaB6 is not thermodynamically stable in the melt of the Fe-4Si alloy. It was subject to decompose into La and B solutes. Consequently, both La and B reacted with Fe, O and S, forming different compounds. Microstructural examination at room temperature observed La2SO2 and La2O3 particles within the ferrite grains and Fe2B along the grain boundaries in the samples. Through EBSD analysis, a reproducible orientation relationship between ferrite and La2SO2 was identified. In addition, the edge-to-edge matching calculation also predicted the high potency for La2SO2 to be an effective nucleant for δ-ferrite. It was considered that the grain refinement of LaB6 was attributed to the enhanced heterogeneous nucleation of δ-ferrite by La2SO2, and the solute effect of B due to the high Q-value in ferrite.
Fabrication of the Ti5Si3/Ti composite inoculants and its refining mechanism on pure titanium
NASA Astrophysics Data System (ADS)
Li, Nuo; Cui, Chunxiang; Liu, Shaungjin; Zhao, Long; Liu, Shuiqing
2017-03-01
The in situ Ti5Si3/Ti inoculants were successfully prepared by vacuum arc-melting and melt-spinning method. An efficient route by adding a small quantity of Ti5Si3/Ti inoculants to Ti melt has been first proposed to modify the coarse grains of as cast microstructure of pure titanium in this paper. It was found that the microstructure of ribbon inoculants was cellular structure that composed of Ti5Si3 and α-Ti phases. The grain refining effect of the inoculants was significantly improved with the adding ratio range from 0.2% to 0.5% in weight. With the increase of addition amount of inoculants on Ti melt, the tensile strength, yield strength and microhardness of pure titanium are significantly improved except elongation. The excellent grain refining effect can be attributed to the heterogeneous nucleation of the titanium grain on the precipitated Ti5Si3 phases in the Si-rich regions and the constitutional supercooling of Si in the Si-poverty regions. It is suggested that the in situ Ti5Si3/Ti inoculants is a promising inoculants for titanium alloys.
Scaling up of High-Pressure Sliding (HPS) for Grain Refinement and Superplasticity
NASA Astrophysics Data System (ADS)
Takizawa, Yoichi; Masuda, Takahiro; Fujimitsu, Kazushige; Kajita, Takahiro; Watanabe, Kyohei; Yumoto, Manabu; Otagiri, Yoshiharu; Horita, Zenji
2016-09-01
The process of high-pressure sliding (HPS) is a method of severe plastic deformation developed recently for grain refinement of metallic materials under high pressure. The sample for HPS is used with a form of sheet or rod. In this study, an HPS facility with capacities of 500 tonnes for vertical pressing and of 500 and 300 tonnes for horizontal forward and backward pressings, respectively, was newly built and applied for grain refinement of a Mg alloy as AZ61, Al alloys such as Al-Mg-Sc, A2024 and A7075 alloys, a Ti alloy as ASTM-F1295, and a Ni-based superalloy as Inconel 718. Sheet samples with dimensions of 10 to 30 mm width, 100 mm length, and 1 mm thickness were processed at room temperature and ultrafine grains with sizes of ~200 to 300 nm were successfully produced in the alloys. Tensile testing at elevated temperatures confirmed the advent of superplasticity with total elongations of more than 400 pct in all the alloys. It is demonstrated that the HPS can make all the alloys superplastic through processing at room temperature with a form of rectangular sheets.
NASA Astrophysics Data System (ADS)
Kennett, Shane C.
Three low-carbon ASTM A514 microalloyed steels were used to assess the effects of austenite conditioning on the microstructure and mechanical properties of martensite. A range of prior austenite grain sizes with and without thermomechanical processing were produced in a Gleeble RTM 3500 and direct-quenched. Samples in the as-quenched, low temperature tempered, and high temperature tempered conditions were studied. The microstructure was characterized with scanning electron microscopy, electron backscattered diffraction, transmission electron microscopy, and x-ray diffraction. The uniaxial tensile properties and Charpy V-notch properties were measured and compared with the microstructural features (prior austenite grain size, packet size, block size, lath boundaries, and dislocation density). For the equiaxed prior austenite grain conditions, prior austenite grain size refinement decreases the packet size, decreases the block size, and increases the dislocation density of as-quenched martensite. However, after high temperature tempering the dislocation density decreases with prior austenite grain size refinement. Thermomechanical processing increases the low angle substructure, increases the dislocation density, and decreases the block size of as-quenched martensite. The dislocation density increase and block size refinement is sensitive to the austenite grain size before ausforming. The larger prior austenite grain size conditions have a larger increase in dislocation density, but the small prior austenite grain size conditions have the largest refinement in block size. Additionally, for the large prior austenite grain size conditions, the packet size increases with thermomechanical processing. The strength of martensite is often related to an effective grain size or carbon concentration. For the current work, it was concluded that the strength of martensite is primarily controlled by the dislocation density and dislocation substructure; which is related to a grain size and carbon concentration. In the microyielding regime, the strength and work hardening is related to the motion of unpinned dislocation segments. However, with tensile strain, a dislocation cell structure is developed and the flow strength (greater than 1% offset) is controlled by the dislocation density following a Taylor hardening model, thereby ruling out any grain size effects on the flow strength. Additionally, it is proposed that lath boundaries contribute to strength. It is shown that the strength differences associated with thermomechanically processed steels can be fully accounted for by dislocation density differences and the effect of lath boundaries. The low temperature ductile to brittle transition of martensite is controlled by the martensite block size, packet size, and prior austenite grain size. However, the effect of block size is likely small in comparison. The ductile to brittle transition temperature is best correlated to the inverse square root of the martensite packet size because large crack deflections are typical at packet boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirras, G., E-mail: dirras@univ-paris13.fr; Ouarem, A.; Couque, H.
2011-05-15
Polycrystalline Zn with an average grain size of about 300 {mu}m was deformed by direct impact Hopkinson pressure bar at a velocity of 29 m/s. An inhomogeneous grain structure was found consisting of a center region having large average grain size of 20 {mu}m surrounded by a fine-grained rim with an average grain size of 6 {mu}m. Transmission electron microscopy investigations showed a significant dislocation density in the large-grained area while in the fine-grained rim the dislocation density was negligible. Most probably, the higher strain yielded recrystallization in the outer ring while in the center only recovery occurred. The hardeningmore » effect of dislocations overwhelms the smaller grain size strengthening in the center part resulting in higher nanohardness in this region than in the outer ring. - Graphical Abstract: (a): EBSD micrograph showing the initial microstructure of polycrystalline Zn that was subsequently submitted to high strain rate impact. (b): an inhomogeneous grain size refinement was obtained which consists of a central coarse-grained area, surrounded by a fine-grained recrystallized rim. The black arrow points to the disc center. Research Highlights: {yields} A polycrystalline Zn specimen was submitted to high strain rate impact loading. {yields} Inhomogeneous grain refinement occurred due to strain gradient in impacted sample. {yields} A fine-grained recrystallized rim surrounded the coarse-grained center of specimen. {yields} The coarse-grained center exhibited higher hardness than the fine-grained rim. {yields} The higher hardness of the center was caused by the higher dislocation density.« less
Nano-Sized Grain Refinement Using Friction Stir Processing
2013-03-01
friction stir weld is a very fine grain microstructure produced as a result of dynamic recrystallization. The friction stir ... Friction Stir Processing, Magnesium, Nano-size grains Abstract A key characteristic of a friction stir weld is a very fine grain microstructure...state process developed on the basis of the friction stir welding (FSW) technique invented by The Welding Institute (TWI) in 1991 [2]. During
Strengthening of Cu–Ni–Si alloy using high-pressure torsion and aging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seungwon, E-mail: chominamlsw@gmail.com; WPI, International Institute for Carbon-Neutral Energy Research; Matsunaga, Hirotaka
2014-04-01
An age-hardenable Cu–2.9%Ni–0.6%Si alloy was subjected to high-pressure torsion. Aging behavior was investigated in terms of hardness, electrical conductivity and microstructural features. Transmission electron microscopy showed that the grain size is refined to ∼ 150 nm and the Vickers microhardness was significantly increased through the HPT processing. Aging treatment of the HPT-processed alloy led to a further increase in the hardness. Electrical conductivity is also improved with the aging treatment. It was confirmed that the simultaneous strengthening by grain refinement and fine precipitation is achieved while maintaining high electrical conductivity. Three dimensional atom probe analysis including high-resolution transmission electron microscopymore » revealed that nanosized precipitates having compositions of a metastable Cu{sub 3}Ni{sub 5}Si{sub 2} phase and a stable NiSi phase were formed in the Cu matrix by aging of the HPT-processed samples and these particles are responsible for the additional increase in strength after the HPT processing. - Highlights: • Grain refinement is achieved in Corson alloy the size of ∼150nm by HPT. • Aging at 300°C after HPT leads to further increase in the mechanical property. • Electrical conductivity reaches 40% IACS after aging for 100 h. • 3D-APT revealed the formation of nanosized-precipitates during aging treatment. • Simultaneous hardening in both grain refinement and precipitation is achieved.« less
Kang, Ryungwoo; Kim, Minjoo; Chae, Jey Sook; Lee, Sang-Hyun; Lee, Jong Ho
2014-04-01
The apolipoprotein A5 gene (APOA5) -1131 T > C polymorphism is associated with mild hypertriglyceridemia in type 2 diabetic subjects, and interacts with dietary fat in the determination of triglyceride concentrations. We examined whether a substitution of whole grains and legumes for refined rice in a high carbohydrate diet (about 65% of energy derived from carbohydrate) may modify the effect of this variant on changes in apolipoprotein A-V (apoA-V) and triglyceride concentrations. We genotyped the APOA5 -1131 T > C in individuals with impaired fasting glucose (IFG) or newly diagnosed type 2 diabetes, who were randomly assigned to either a group ingesting whole grain and legume meals daily or a control group for 12 weeks. After dietary intervention, we observed significant interactions between the APOA5 -1131 T > C polymorphism and carbohydrate sources (whole grains and legumes versus refined rice) in the determination of mean percent changes in triglyceride and apoA-V (P interactions <0.001 and =0.038, respectively). In the refined rice group (n = 93), the carriers of the risk C allele (n = 50) showed a greater increase in the mean percent changes of triglyceride and apoA-V than noncarriers after adjusting for HOMA-IR (P = 0.004 and 0.021, respectively). The whole grain and legume group (n = 92), however, showed a decrease in fasting glucose, HOMA-IR, and triglyceride, and an increase in apoA-V, irrespective of genotype. The data showed that the magnitude of the genetic effect of the APOA5 -1131C variant on triglyceride and apoA-V levels was modulated when substituting consumption of whole grains and legumes for refined rice as a carbohydrate source in IFG or diabetic subjects. ClinicalTrials.gov: NCT01784952.
Method for producing ultrafine-grained materials using repetitive corrugation and straightening
Zhu, Yuntian T.; Lowe, Terry C.; Jiang, Honggang; Huang, Jianyu
2001-01-01
A method of refining the grain structure and improving the hardness and strength properties of a metal or metal alloy workpiece is disclosed. The workpiece is subjected to forces that corrugate and then straighten the workpiece. These steps are repeated until an ultrafine-grained product having improved hardness and strength is produced.
Al-Ezzi, Salih; Quan, Gaofeng; Elrayah, Adil
2018-05-07
This paper examines the effect of ultrasonic vibration (USV) on grain size and interrupted porosity in Gas Tungsten Arc (GTA) spot-welded copper. Grain size was refined by perpendicularly attaching a transducer to the welded sheet and applying USV to the weld pool for a short time (0, 2, 4, and 6 s) in addition improvements to the degassing process. Results illustrate a significant reduction of grain size (57%). Notably, USV provided interaction between reformations (fragmentation) and provided nucleation points (detaching particles from the fusion line) for grains in the nugget zone and the elimination of porosity in the nugget zone. The GTA spot welding process, in conjunction with USV, demonstrated an improvement in the corrosion potential for a copper spot-welded joint in comparison to the joint welded without assistance of USV. Finally, welding of copper by GTA spot welding in conjunction with ultrasound for 2 s presented significant mechanical properties.
Quan, Gaofeng
2018-01-01
This paper examines the effect of ultrasonic vibration (USV) on grain size and interrupted porosity in Gas Tungsten Arc (GTA) spot-welded copper. Grain size was refined by perpendicularly attaching a transducer to the welded sheet and applying USV to the weld pool for a short time (0, 2, 4, and 6 s) in addition improvements to the degassing process. Results illustrate a significant reduction of grain size (57%). Notably, USV provided interaction between reformations (fragmentation) and provided nucleation points (detaching particles from the fusion line) for grains in the nugget zone and the elimination of porosity in the nugget zone. The GTA spot welding process, in conjunction with USV, demonstrated an improvement in the corrosion potential for a copper spot-welded joint in comparison to the joint welded without assistance of USV. Finally, welding of copper by GTA spot welding in conjunction with ultrasound for 2 s presented significant mechanical properties. PMID:29735894
Nanostructure formation during accumulative roll bonding of commercial purity titanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karimi, Mohsen, E-mail: m.karimi@shahroodut.ac.ir
2016-12-15
In this investigation, commercial purity titanium (CP–Ti) was subjected to accumulative roll bonding (ARB) process up to 8 cycles (equivalent strain of 6.4) at the ambient temperature. Transmission electron microscopy (TEM) and X–ray diffraction line profile analysis (XRDLPA) were utilized to investigate the microstructure and grain size evolution. Both characterization techniques could clarify the non–uniform microstructure in the early stages and the uniform microstructure in the final stages of the process. The effectiveness of ARB for the fabrication of the nano–grained structure in CP–Ti was revealed. It was found that the SFE is not the only factor affecting grain refinement,more » as compared with other studies on ARB of FCC materials. Influence of other factors such as the melting temperature and the crystalline structure of the material was determined on the grain refinement. - Highlights: •Nano–grained commercial purity titanium was produced by accumulative roll bonding. •TEM and XRDLPA were used for the characterization of the microstructure. •Important factors affecting the grain size of ARBed materials were discussed.« less
NASA Astrophysics Data System (ADS)
Wei, Kun Xia; Liu, Ping; Wei, Wei; Du, Qing Bo; Alexandrov, Igor V.; Hu, Jing
2016-12-01
Al-5%Ti-1%B master alloy was subjected to equal-channel angular pressing (ECAP) by route A at room temperature. The effect of the ECAP on the size and the distribution of Al3Ti and TiB2 particles, the fading resistance of the Al-5%Ti-1%B master alloy and the grain refining performance of pure Al ingots with the addition of the Al-5%Ti-1%B master alloy before and after ECAP have been investigated. The large platelet Al3Ti particles were fragmented into fine blocky Al3Ti particles from 88 to 25 μm after eight ECAP passes, and the TiB2 particles were well dispersed in the Al matrix. It has been revealed that grain refining efficiency was improved by adding the Al-5%Ti-1%B master alloy after ECAP to the Al melt. The mean grain size of α-Al was decreased from 1220 to 70 μm with increasing the number of ECAP passes. It has been proved that the grain size of α-Al could be well fitted by the length of Al3Ti particles and the growth restrict factor. Al-5%Ti-1%B master alloy after four ECAP passes appeared to have a better fading resistance due to fine blocky Al3Ti particles.
Precision wood particle feedstocks
Dooley, James H; Lanning, David N
2013-07-30
Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.
Dovi, Koya Ap; Chiremba, Constance; Taylor, John Rn; de Kock, Henriëtta L
2018-02-01
The challenges of malnutrition and urbanization in Africa demand the development of acceptable, affordable, nutritious complementary-type foods. Biscuits (i.e. cookies; a popular snack) from whole grain staples are an option. The present study aimed to relate check-all-that-applies (CATA) sensory profiles of sorghum-cowpea composite biscuits compared to economic commercial refined wheat biscuits with hedonic ratings by low income consumers. In addition, the nutritional composition and protein quality, L * a * b * colour and texture of the biscuits were determined. The CATA method is suitable for rapidly determining which attributes consumers perceive in food products and relating these to acceptability. Consumers preferred the lighter, more yellow wheat biscuits with ginger, vanilla, sweet and cinnamon flavours compared to the stronger flavours (sorghum, beany and nutty) and harder but brittle, grittier, dry and rough textured sorghum or sorghum-cowpea biscuits. However, a substantial proportion of consumers also liked the latter biscuits. The composite biscuits had higher dietary fibre content and a similar protein quality to the standards. Whole grain sorghum-cowpea biscuits could serve as acceptable value-added nutritious complementary snacks for consumers in sub-Saharan Africa. The biscuits are simple to produce for the creation of viable small enterprises. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Engineered plant biomass feedstock particles
Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA
2012-04-17
A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.
NASA Astrophysics Data System (ADS)
Karmakar, Anish; Sivaprasad, S.; Nath, S. K.; Misra, R. D. K.; Chakrabarti, Debalay
2014-05-01
A comparative study was carried out on the development of ultrafine-grained dual-phase (DP) (ferrite-martensite) structures in a low-carbon microalloyed steel processed using two thermomechanical processing routes, (i) intercritical deformation and (ii) warm-deformation and intercritical annealing. The samples were deformed using Gleeble3500® simulator, maintaining a constant total strain ( ɛ = 1) and strain rate ( = 1/s). Evolution of microstructure and micro-texture was investigated by SEM, TEM, and EBSD. Ultrafine-grained DP structures could be formed by careful selection of deformation temperature, T def (for intercritical deformation) or annealing temperature, T anneal (for warm-deformation and annealing). Overall, the ferrite grain sizes ranged from 1.5 to 4.0 μm, and the sizes and fractions of the uniformly distributed fine-martensitic islands ranged from 1.5 to 3.0 μm and 15 to 45 pct, respectively. Dynamic strain-induced austenite-to-ferrite transformation followed by continuous (dynamic) recrystallization of the ferrite dictated the grain refinement during intercritical deformation, while, continuous (static) recrystallization by pronounced recovery dictated the grain refinement during the warm-deformation and the annealing. Regarding intercritical deformation, the samples cooled to T def indicated finer grain size compared with the samples heated to T def, which are explained in terms of the effects of strain partitioning on the ferrite and the heating during deformation. Alpha-fiber components dominated the texture in all the samples, and the fraction of high-angle boundaries (with >15 deg misorientation) increased with the increasing T def or T anneal, depending on the processing schedule. Fine carbide particles, microalloyed precipitates and austenitic islands played important roles in defining the mechanism of grain refinement that involved retarding conventional ferrite recrystallization and ferrite grain growth. With regard to the intercritical deformation, warm-deformation followed by annealing is a simpler process to control in the rolling mill; however, the need for high-power rolling mill and controlled annealing facility imposes industrial challenges.
Microstructural evolution of AZ31 magnesium alloy subjected to sliding friction treatment
NASA Astrophysics Data System (ADS)
Zhang, Wei; Lu, Jinwen; Huo, Wangtu; Zhang, Yusheng; Wei, Q.
2018-06-01
Microstructural evolution and grain refinement mechanism in AZ31 magnesium alloy subjected to sliding friction treatment were investigated by means of transmission electron microscopy. The process of grain refinement was found to involve the following stages: (I) coarse grains were divided into fine twin plates through mechanical twinning; then the twin plates were transformed to lamellae with the accumulation of residual dislocations at the twin boundaries; (II) the lamellae were separated into subgrains with increasing grain boundary misorientation and evolution of high angle boundaries into random boundaries by continuous dynamic recrystallisation (cDRX); (III) the formation of nanograins. The mechanisms for the final stage, the formation of nanograins, can be classified into three types: (i) cDRX; (ii) discontinuous dynamic recrystallisation (dDRX); (iii) a combined mechanism of prior shear-band and subsequent dDRX. Stored strain energy plays an important role in determining deformation mechanisms during plastic deformation.
Intrinsic stress response of low and high mobility solute additions to Cu thin films
NASA Astrophysics Data System (ADS)
Kaub, Tyler; Anthony, Ryan; Thompson, Gregory B.
2017-12-01
Thin film stress is frequently controlled through adjustments applied to the processing parameters used during film deposition. In this work, we explore how the use of solutes with different intrinsic growth properties influences the residual growth stress development for a common solvent Cu film. The findings demonstrated that the addition of a high atomic mobility solute, Ag, or a low atomic mobility solute, V, results in both alloy films undergoing grain refinement that scaled with increases in the solute content. This grain refinement was associated with solute segregation and was more pronounced in the Cu(Ag) system. The grain size reduction was also associated with an increase in the tensile stresses observed in both alloy sets. These findings indicate that solutes can be used to control the grain size under the same deposition conditions, as well as alter the stress evolution of a growing thin film.
NASA Astrophysics Data System (ADS)
Wu, Da-yong; Han, Xiu-lin; Tian, Hong-tao; Liao, Bo; Xiao, Fu-ren
2015-05-01
This study designed post-weld heat treatments, including reheating and tempering, associated with hot bending to investigate the microstructures, toughness, and hardness of two weld metals with different Ni contents (<1 wt pct level). The results indicated that a high Ni content decreased the ferrite transformation temperature and increased the proportion of acicular ferrite (AF). Furthermore, a high Ni content promoted the martensite/austenite (M/A) constituent formation after reheating. The promotion of the M/A formation increased the number of cementite particles, and accelerated cementite coarsening during tempering. The large-angle grain boundary density from the AF improved the toughness despite the negative effect of cementite. The strengthening contributions were calculated, and the grain refinement was the greatest. The high Ni content decreased the effective grain size with a 2 deg tolerance angle, thus enhancing the grain refinement contribution.
Perspective: A Definition for Whole-Grain Food Products-Recommendations from the Healthgrain Forum.
Ross, Alastair B; van der Kamp, Jan-Willem; King, Roberto; Lê, Kim-Anne; Mejborn, Heddie; Seal, Chris J; Thielecke, Frank
2017-07-01
Whole grains are a key component of a healthy diet, and enabling consumers to easily choose foods with a high whole-grain content is an important step for better prevention of chronic disease. Several definitions exist for whole-grain foods, yet these do not account for the diversity of food products that contain cereals. With the goal of creating a relatively simple whole-grain food definition that aligns with whole-grain intake recommendations and can be applied across all product categories, the Healthgrain Forum, a not-for-profit consortium of academics and industry working with cereal foods, established a working group to gather input from academics and industry to develop guidance on labeling the whole-grain content of foods. The Healthgrain Forum recommends that a food may be labeled as "whole grain" if it contains ≥30% whole-grain ingredients in the overall product and contains more whole grain than refined grain ingredients, both on a dry-weight basis. For the purposes of calculation, added bran and germ are not considered refined-grain ingredients. Additional recommendations are also made on labeling whole-grain content in mixed-cereal foods, such as pizza and ready meals, and a need to meet healthy nutrition criteria. This definition allows easy comparison across product categories because it is based on dry weight and strongly encourages a move from generic whole-grain labels to reporting the actual percentage of whole grain in a product. Although this definition is for guidance only, we hope that it will encourage more countries to adopt regulation around the labeling of whole grains and stimulate greater awareness and consumption of whole grains in the general population. © 2017 American Society for Nutrition.
Son, Hyeon-Taek; Kim, Yong-Ho; Yoo, Hyo-Sang
2018-03-01
The microstructure of the as-cast Mg-5Al-3Ca-2Nd-xDy alloys consists of α-Mg matrix, (Mg, Al)2Ca eutectic phase, Al-Nd and Al-Dy intermetallic compounds. α-Mg matrix morphology was changed from dendritic to equiaxed with the increase Dy addition. And grain size was remarkably refined. As Dy content was increased, yield strength was improved due to the refined grains and the homogeneous distribution of Al-Dy phase.
USDA-ARS?s Scientific Manuscript database
Background: Observational studies suggest an inverse association between whole-grain (WG) consumption and inflammation. However, evidence from interventional studies is limited, and few studies have included measurements of cell-mediated immunity. Objective: We assessed the effects of diets rich in ...
ERIC Educational Resources Information Center
Rosen, Renee A.; Burgess-Champoux, Teri L.; Marquart, Len; Reicks, Marla M.
2012-01-01
Objective: Develop, refine, and test psychosocial scales for associations with whole-grain intake. Methods: A cross-sectional survey was conducted in a Minneapolis/St. Paul suburban elementary school with children in fourth through sixth grades (n = 98) and their parents (n = 76). Variables of interest were child whole-grain intake, self-efficacy,…
NASA Astrophysics Data System (ADS)
Liu, Shuiqing; Cui, Chunxiang; Wang, Xin; Zhao, Lichen; Sun, Yijiao; Shi, Jiejie; Cui, Sen; Ding, Jinhua
2018-01-01
A novel preparation technology of Al-Ti-B-C inoculant with uniform microstructure is prepared using B4C powder instead of graphite in Al-Ti melt reaction method in this study. It is found that the addition of B4C powder improves the wettability between carbon element and liquid aluminum and reduce the tendency to the gravity segregation simultaneously. The result shows that Al-Ti-B-C inoculant using B4C powder presents excellent grain refinement performance than the conventional approach. After T6 heat treatment, the ultimate tensile strength, the yield strength and elongation of A356 alloy are increased to 292 ± 6 MPa, 238 ± 7 MPa and 8.2% ± 0.5% from 260 ± 7 MPa, 218 ± 5 MPa and 4.9% ± 0.6% by addition of Al-Ti-B-C inoculant with a very small ratio of 0.3% in weight. The increase of strength in Al-Ti-B-C refined alloy is attributed to the grain refinement of primary α-Al, while the increase of ductility results from the submicron particles in Al-Ti-B-C inoculant adsorb impurity atoms as well as decreased grain size.
Liu, Dunyi; Liu, Yumin; Zhang, Wei; Chen, Xinping; Zou, Chunqin
2017-01-01
Zinc (Zn) deficiency is a common disorder of humans in developing countries. The effect of Zn biofortification (via application of six rates of Zn fertilizer to soil) on Zn bioavailability in wheat grain and flour and its impacts on human health was evaluated. Zn bioavailability was estimated with a trivariate model that included Zn homeostasis in the human intestine. As the rate of Zn fertilization increased, the Zn concentration increased in all flour fractions, but the percentages of Zn in standard flour (25%) and bran (75%) relative to total grain Zn were constant. Phytic acid (PA) concentrations in grain and flours were unaffected by Zn biofortification. Zn bioavailability and the health impact, as indicated by disability-adjusted life years (DALYs) saved, increased with the Zn application rate and were greater in standard and refined flour than in whole grain and coarse flour. The biofortified standard and refined flour obtained with application of 50 kg/ha ZnSO4·7H2O met the health requirement (3 mg of Zn obtained from 300 g of wheat flour) and reduced DALYs by >20%. Although Zn biofortification increased Zn bioavailability in standard and refined flour, it did not reduce the bioavailability of iron, manganese, or copper in wheat flour. PMID:28481273
Liu, Dunyi; Liu, Yumin; Zhang, Wei; Chen, Xinping; Zou, Chunqin
2017-05-06
Zinc (Zn) deficiency is a common disorder of humans in developing countries. The effect of Zn biofortification (via application of six rates of Zn fertilizer to soil) on Zn bioavailability in wheat grain and flour and its impacts on human health was evaluated. Zn bioavailability was estimated with a trivariate model that included Zn homeostasis in the human intestine. As the rate of Zn fertilization increased, the Zn concentration increased in all flour fractions, but the percentages of Zn in standard flour (25%) and bran (75%) relative to total grain Zn were constant. Phytic acid (PA) concentrations in grain and flours were unaffected by Zn biofortification. Zn bioavailability and the health impact, as indicated by disability-adjusted life years (DALYs) saved, increased with the Zn application rate and were greater in standard and refined flour than in whole grain and coarse flour. The biofortified standard and refined flour obtained with application of 50 kg/ha ZnSO₄·7H₂O met the health requirement (3 mg of Zn obtained from 300 g of wheat flour) and reduced DALYs by >20%. Although Zn biofortification increased Zn bioavailability in standard and refined flour, it did not reduce the bioavailability of iron, manganese, or copper in wheat flour.
Engineered plant biomass particles coated with biological agents
Dooley, James H.; Lanning, David N.
2014-06-24
Plant biomass particles coated with a biological agent such as a bacterium or seed, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.
Zhang, Junyi; Kang, Zhixin; Wang, Fen
2016-11-01
A Mg-Gd-Nd-Zn-Zr alloy was processed by equal channel angular pressing (ECAP) at 375°C. The grain size of Mg-Gd-Nd-Zn-Zr alloy was refined to ~2.5μm with the spherical precipitates (β1 phase) distributing in the matrix. The mechanical properties of ECAPed alloy were significantly improved as a result of the grain refinement and precipitation strengthening. The corrosion rate of the ECAPed magnesium alloy in simulated body fluid dramatically decreased from 0.236mm/a to 0.126mm/a due to the strong basal texture and refined microstructure. This wrought magnesium alloy shows potentials in biomedical application. Copyright © 2016 Elsevier B.V. All rights reserved.
Equal Channel Angular Pressing (ECAP) and Its Application to Grain Refinement of Al-Zn-Mg-Cu Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tekeli, Sueleyman; Gueral, Ahmet
Microstructure of a metal can be considerably changed by severe plastic deformation techniques such as high pressure torsion, extrusion and equal-channel angular pressing (ECAP). Among these methods, ECAP is particularly attractive because it has a potential for introducing significant grain refinement and homogeneous microstructure into bulk materials. Typically, it reduces the grain size to the submicrometer level or even nanometer range and thus produces materials that are capable of exhibiting unusual mechanical properties. In the present study, a test unites for equal channel angular pressing was constructed and this system was used for Al-Zn-Mg-Cu alloy. After the optimization tests, itmore » was seen that the most effective lubricant for the dies was MoS{sub 2}, the pressing pressure was around 25-35 ton and the pressing speed was 2 mm/s. By using these parameters, the Al-Zn-Mg-Cu alloy was successfully ECAPed up to 14 passes at 200 deg. C using route C. After ECAP tests, the specimens were characterized by transmission electron microscope (TEM), hardness and macrostructural investigations. It was seen that the plastic deformation in the ECAPed specimens occurred from edge to the centre like whirlpool. In addition, the deformation intensity increased with increasing pass number. The grain size of the specimens effectively also decreased with increasing pass number. That is, while the grain size of unECAPed specimen was 10 {mu}m, this value decreased to 300 nm after 14 passes. At the beginning, while there was a banding tendency in the grains toward deformation direction, homogeneous and equiaxed grains were formed with increasing pass number. This grain refinement was as a result of an interaction between shear strain and thermal recovery during ECAP processing. Hardness measurements showed that the hardness values increased up to 4 passes, decreased effectively at 6th pass, again increased at 8th pass and after this pass, the hardness again decreased due to dynamic recrystallization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James H; Lanning, David N
Comminution process of wood veneer to produce wood particles, by feeding wood veneer in a direction of travel substantially normal to grain through a counter rotating pair of intermeshing arrays of cutting discs arrayed axially perpendicular to the direction of veneer travel, wherein the cutting discs have a uniform thickness (Td), to produce wood particles characterized by a length dimension (L) substantially equal to the Td and aligned substantially parallel to grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) substantially equal to the veneer thickness (Tv) and aligned normal to Wmore » and L, wherein the W.times.H dimensions define a pair of substantially parallel end surfaces with end checking between crosscut fibers.« less
A Worksite Nutrition Intervention is Effective at Improving Employee Well-Being: A Pilot Study.
Sutliffe, Jay T; Carnot, Mary Jo; Fuhrman, Joel H; Sutliffe, Chloe A; Scheid, Julia C
2018-01-01
Worksite dietary interventions show substantial potential for improving employee health and well-being. The aim of this pilot study was to determine the effect of a worksite nutrition intervention on improving well-being. Thirty-five university employees participated in a 6-week nutrition intervention. The dietary protocol emphasized the daily consumption of greens, beans/legumes, a variety of other vegetables, fruits, nuts, seeds, and whole grains, referred to as a micronutrient-dense, plant-rich diet. Participants were encouraged to minimize the consumption of refined foods and animal products. Significant improvements in sleep quality, quality of life, and depressive symptoms were found. Findings reveal that a worksite nutrition intervention is effective at improving sleep quality, quality of life, and depressive symptoms with a projected improvement in work productivity and attendance.
Precision wood particle feedstocks with retained moisture contents of greater than 30% dry basis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James H; Lanning, David N
Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfacesmore » in the mixture of wood particles have end checking.« less
Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek
2018-03-01
We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.
Effect of vibration on microstructures and mechanical properties of 304 stainless steel GTA welds
NASA Astrophysics Data System (ADS)
Hsieh, Chih-Chun; Lai, Chien-Hong; Wu, Weite
2013-07-01
This study investigates the microstructures and mechanical properties of 304 stainless steel at various vibration frequencies during simultaneous vibration welding. The experimental results demonstrated that simultaneous vibration welding could accelerate the nucleation and grain refinement of the microstructures. The effect of the grain refinement was more evident at the resonant frequency (375 Hz) and a minimum content of residual δ-ferrite (4.0%). The γ phase grew in the preferential orientation of the (111) direction with and without vibration. The full width at half maximum of the diffraction peak widened after the vibration, which was attributed to the grain refinement. The residual stress could be efficiently removed through simultaneous vibration welding when the amplitude of the vibration was increased. Furthermore, the lowest residual stress (139 MPa) was found when the vibration frequency was 375 Hz. The hardness and Young's modulus exhibited slight increases with low and medium frequencies. The hardness values were increased by 7.6% and Young's modulus was increased by 15% when the vibration frequency was resonant (375 Hz).
Distribution of trace elements in a modified and grain refined aluminium-silicon hypoeutectic alloy.
Faraji, M; Katgerman, L
2010-08-01
The influence of modifier and grain refiner on the nucleation process of a commercial hypoeutectic Al-Si foundry alloy (A356) was investigated using optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis technique (EPMA). Filtering was used to improve the casting quality; however, it compromised the modification of silicon. Effect of filtering on strontium loss was also studied using the afore-mentioned techniques. EPMA was used to trace the modifying and grain refining agents inside matrix and eutectic Si. This was to help understanding mechanisms of nucleation and modification in this alloy. Using EPMA, the negative interaction of Sr and Al3TiB was closely examined. In modified structure, it was found that the maximum point of Sr concentration was in line with peak of silicon; however, in case of just 0.1wt% added Ti, the peak of Ti concentration was not in line with aluminium, (but it was close to Si peak). Furthermore, EPMA results showed that using filter during casting process lowered the strontium content, although produced a cleaner melt. (c) 2010 Elsevier Ltd. All rights reserved.
Refining the treatment of membrane proteins by coarse-grained models.
Vorobyov, Igor; Kim, Ilsoo; Chu, Zhen T; Warshel, Arieh
2016-01-01
Obtaining a quantitative description of the membrane proteins stability is crucial for understanding many biological processes. However the advance in this direction has remained a major challenge for both experimental studies and molecular modeling. One of the possible directions is the use of coarse-grained models but such models must be carefully calibrated and validated. Here we use a recent progress in benchmark studies on the energetics of amino acid residue and peptide membrane insertion and membrane protein stability in refining our previously developed coarse-grained model (Vicatos et al., Proteins 2014;82:1168). Our refined model parameters were fitted and/or tested to reproduce water/membrane partitioning energetics of amino acid side chains and a couple of model peptides. This new model provides a reasonable agreement with experiment for absolute folding free energies of several β-barrel membrane proteins as well as effects of point mutations on a relative stability for one of those proteins, OmpLA. The consideration and ranking of different rotameric states for a mutated residue was found to be essential to achieve satisfactory agreement with the reference data. © 2015 Wiley Periodicals, Inc.
Intermetallic Growth and Interfacial Properties of the Grain Refiners in Al Alloys.
Li, Chunmei; Cheng, Nanpu; Chen, Zhiqian; Xie, Zhongjing; Hui, Liangliang
2018-04-20
Al₃TM(TM = Ti, Zr, Hf, Sc) particles acting as effective grain refiners for Al alloys have been receiving extensive attention these days. In order to judge their nucleation behaviors, first-principles calculations are used to investigate their intermetallic and interfacial properties. Based on energy analysis, Al₃Zr and Al₃Sc are more suitable for use as grain refiners than the other two intermetallic compounds. Interfacial properties show that Al/Al₃TM(TM = Ti, Zr, Hf, Sc) interfaces in I-ter interfacial mode exhibit better interface wetting effects due to larger Griffith rupture work and a smaller interface energy. Among these, Al/Al₃Sc achieves the lowest interfacial energy, which shows that Sc atoms should get priority for occupying interfacial sites. Additionally, Sc-doped Al/Al₃(Zr, Sc) interfacial properties show that Sc can effectively improve the Al/Al₃(Zr, Sc) binding strength with the Al matrix. By combining the characteristics of interfaces with the properties of intermetallics, the core-shell structure with Al₃Zr-core or Al₃Zr(Sc1-1)-core encircled with an Sc-rich shell forms.
40 CFR 180.658 - Penthiopyrad; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., subgroup 5A 5.0 Brassica, leafy greens, subgroup 5B 50 Buckwheat, grain 0.15 Canola 1.5 Corn, field, forage 40 Corn, field, grain 0.01 Corn, field, refined oil 0.05 Corn, field, stover 15 Corn, pop, grain 0.01 Corn, sweet, kernel plus cob with husks removed 0.01 Cotton, seed 1.5 Cotton, gin byproducts 15 Fruit...
40 CFR 180.658 - Penthiopyrad; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., subgroup 5A 5.0 Brassica, leafy greens, subgroup 5B 50 Buckwheat, grain 0.15 Canola 1.5 Corn, field, forage 40 Corn, field, grain 0.01 Corn, field, refined oil 0.05 Corn, field, stover 15 Corn, pop, grain 0.01 Corn, sweet, kernel plus cob with husks removed 0.01 Cotton, seed 1.5 Cotton, gin byproducts 15 Fruit...
40 CFR 180.658 - Penthiopyrad; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., subgroup 5A 5.0 Brassica, leafy greens, subgroup 5B 50 Buckwheat, grain 0.15 Canola 1.5 Corn, field, forage 40 Corn, field, grain 0.01 Corn, field, refined oil 0.05 Corn, field, stover 15 Corn, pop, grain 0.01 Corn, sweet, kernel plus cob with husks removed 0.01 Cotton, seed 1.5 Cotton, gin byproducts 15 Fruit...
NASA Astrophysics Data System (ADS)
Václavová, K.; Stráský, J.; Zháňal, P.; Veselý, J.; Polyakova, V.; Semenova, I.; Janeček, M.
2017-05-01
Processing of metastable titanium alloys by severe plastic deformation provides an opportunity to achieve exceptional grain refinement, to enhance the strength and to affect phase transformations occurring during thermal treatment. The main aim of this study is to investigate the microstructure of ultra-fine grained (UFG) material and effect of microstructural changes on phase transformations in metastable β-Ti alloy Ti-15Mo. Metastable β-Ti alloys are currently the most studied Ti-based materials with prospective use in medicine. Ti-15Mo alloy after solution treatment contains metastable β-phase. Metastable ω-phase and stable α-phase particles are formed upon annealing,. Solution treated Ti-15Mo alloy was deformed by high pressure torsion (HPT) at room temperature. Severely deformed structure after HPT with grain size of ~200 nm was studied by transmission electron microscopy. In-situ electrical resistance measurements showed significant changes in undergoing phase transformations when compared to coarse-grained (CG) material. Scanning electron microscopy revealed heterogeneous precipitation of α-particles at grain boundaries (GB). Due to the high density of GBs in UFG structure, these precipitates are very fine and equiaxed. The study demonstrates that SPD is capable of enhancing mechanical properties due to grain refinement and via affecting precipitation processes in metastable β-Ti alloys.
NASA Astrophysics Data System (ADS)
Jiang, Bo; Wu, Meng; Sun, He; Wang, Zhilin; Zhao, Zhigang; Liu, Yazheng
2018-01-01
The austenite growth behavior of non-quenched and tempered steels (casted by continuous casting and molding casting processes) was studied. The austenite grain size of steel B casted by continuous casting process is smaller than that of steel A casted by molding casting process at the same heating parameters. The abnormal austenite growth temperature of the steels A and B are 950 °C and 1000 °C, respectively. Based on the results, the models for the austenite grain growth below and above the abnormal austenite growth temperature of the investigated steels were established. The dispersedly distributed fine particles MnS in steel B is the key factor refining the austenite grain by pinning the migration of austenite grain boundary. The elongated inclusions MnS are ineffective in preventing the austenite grain growth at high heating temperature. For the non-quenched and tempered steel, the continuous casting process should be adopted and the inclusion MnS should be elliptical, smaller in size and distributed uniformly in order to refine the final microstructure and also improve the mechanical properties.
Guo, Jing; Zhou, Yong; Liu, Changmeng; Wu, Qianru; Chen, Xianping; Lu, Jiping
2016-10-09
Wire arc additive manufacturing (WAAM) offers a potential approach to fabricate large-scale magnesium alloy components with low cost and high efficiency, although this topic is yet to be reported in literature. In this study, WAAM is preliminarily applied to fabricate AZ31 magnesium. Fully dense AZ31 magnesium alloy components are successfully obtained. Meanwhile, to refine grains and obtain good mechanical properties, the effects of pulse frequency (1, 2, 5, 10, 100, and 500 Hz) on the macrostructure, microstructure and tensile properties are investigated. The results indicate that pulse frequency can result in the change of weld pool oscillations and cooling rate. This further leads to the change of the grain size, grain shape, as well as the tensile properties. Meanwhile, due to the resonance of the weld pool at 5 Hz and 10 Hz, the samples have poor geometry accuracy but contain finer equiaxed grains (21 μm) and exhibit higher ultimate tensile strength (260 MPa) and yield strength (102 MPa), which are similar to those of the forged AZ31 alloy. Moreover, the elongation of all samples is above 23%.
Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys
NASA Astrophysics Data System (ADS)
Hecht, Ulrike; Witusiewicz, Victor T.
2017-12-01
Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.
NASA Astrophysics Data System (ADS)
Karthikeyan, T.; Thomas Paul, V.; Saroja, S.; Moitra, A.; Sasikala, G.; Vijayalakshmi, M.
2011-12-01
This paper presents the results of an experimental investigation where an enhancement in Charpy impact toughness and decrease in DBTT was obtained through grain refinement in 9Cr-1Mo steel. The steel in the normalized and tempered condition (1323 K/air cool + 1023 K/2 h/air cool) had an average prior-austenite grain size of 26 μm. By designing a two-stage normalizing (1323 K/2 h/water quench + 1223 K/2 h/air cool) and tempering treatment (1023 K/2 h/air cool), a homogeneous tempered martensite microstructure with a lesser prior-austenite grain size of 12 μm could be obtained. An improvement trend in impact properties of standard sized Charpy specimens was obtained in fine-grained steel: upper shelf energy increased from 175 J to 210 J, and DBTT reduced from 243 K to 228 K. This heat treatment is unique since an attempt to carry out a single-stage low temperature normalizing treatment (1223 K/2 h/air cool) did not give a complete martensite structure, due to the incomplete dissolution of carbides during austenitization.
Engineered plant biomass particles coated with bioactive agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James H; Lanning, David N
Plant biomass particles coated with a bioactive agent such as a fertilizer or pesticide, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.Wmore » dimensions define a pair of substantially parallel top and bottom surfaces.« less
Kim, Minjoo; Jeung, Se Ri; Jeong, Tae-Sook; Lee, Sang-Hyun; Lee, Jong Ho
2014-01-01
To determine dietary effects on circulating lipoprotein-associated phospholipase A2 (Lp-PLA2) activity and enzyme activity in peripheral blood mononuclear cells (PBMCs), 99 patients with impaired fasting glucose, impaired glucose tolerance, or newly-diagnosed T2D were randomly assigned to either a control group (usual diet with refined rice) or the whole grain and legume group. Substitution of whole grains and legumes for refined rice was associated with the replacement of 7% of energy from carbohydrates with energy from protein (about 4%) and fat. After 12 weeks, the whole grain and legume group showed a significant decrease in fasting glucose, insulin, homeostasis model assessment-insulin resistance, hemoglobin A1c, malondialdehyde, plasma Lp-PLA2 activity, and oxidized LDL (ox-LDL), and an increase in LDL particle size. The changes (Δs) in these variables in the whole grain and legume group were significantly different from those in controls after adjustment for the baseline levels. When all subjects were considered, Δ plasma Lp-PLA2 positively correlated with Δ glucose, Δ PBMC Lp-PLA2, Δ ox-LDL, and Δ urinary 8-epi-prostaglandin F2α after being adjusted for confounding factors. The Δ PBMC Lp-PLA2 correlated positively with Δ glucose and Δ ox-LDL, and negatively with Δ LDL particle size and baseline PBMC Lp-PLA2. The substitution of whole grains and legumes for refined rice resulted in a reduction in Lp-PLA2 activities in plasma and PBMCs partly through improved glycemic control, increased consumption of protein relative to carbohydrate, and reduced lipid peroxides. PMID:24904022
Whole-grain pasta reduces appetite and meal-induced thermogenesis acutely: a pilot study.
Cioffi, Iolanda; Santarpia, Lidia; Vaccaro, Andrea; Iacone, Roberto; Labruna, Giuseppe; Marra, Maurizio; Contaldo, Franco; Kristensen, Mette; Pasanisi, Fabrizio
2016-03-01
In epidemiological studies, the intake of foods rich in dietary fiber is associated with a reduced risk of developing overweight and type 2 diabetes. This work aims to identify acute strategies to regulate appetite and improve glucose control by using different pasta meals. Hence, 4 different isocaloric lunch meals, consisting of (i) refined-grain pasta (RG+T), (ii) whole-grain pasta (WG+T), (iii) lemon juice-supplemented refined-grain pasta (LRG+T), and (iv) refined-grain pasta with legumes (RG+L), were administered to 8 healthy participants in a crossover design. On the test days, participants underwent baseline measurements, including appetite sensation, blood sample, and resting energy expenditure (EE), after which the test lunch was served. Subjective appetite was assessed and a blood sample was taken each hour for 240 min, and postprandial EE was measured for 3 h. In repeated-measures analysis of covariance (ANCOVA), postprandial fullness (p = 0.001) increased and hunger (p = 0.038) decreased. WG+T had a lower EE than did both LGR+T (p = 0.02) and RG+L (p < 0.001). Likewise, meal-induced thermogenesis was lower for WG+T compared with RG+L (58 ± 81 kJ vs 248 ± 188 kJ; p < 0.05). Plasma glucose (p = 0.001) was lower for RG+T, and triacylglycerols (p = 0.02) increased for LRG+T; however, insulin, C-peptide, and ghrelin were comparable in all other meals. In conclusion, our study indicates that acute consumption of whole-grain pasta may promote fullness and reduce hunger, lowering postprandial thermogenesis, and adding lemon juice to the pasta or legumes does not appear to affect appetite. However, none of pasta meal alterations improved the postprandial metabolic profile.
The effect of high-pressure torsion on the microstructure and properties of magnesium
NASA Astrophysics Data System (ADS)
Figueiredo, Roberto B.; Sabbaghianrad, Shima; Langdon, Terence G.
2017-05-01
High-pressure torsion provides the opportunity to introduce significant plastic strain at room temperature in magnesium and its alloys. It is now established that this processing operation produces ultrafine-grained structures and changes the properties of these materials. The present paper shows that the mechanism of grain refinement differs from f.c.c. and b.c.c. materials. It is shown that fine grains are formed at the grain boundaries of coarse grains and gradually consume the whole structure. Also, the processed material exhibits unusual mechanical properties due to the activation of grain boundary sliding at room temperature.
2014-01-01
Background The apolipoprotein A5 gene (APOA5) -1131 T > C polymorphism is associated with mild hypertriglyceridemia in type 2 diabetic subjects, and interacts with dietary fat in the determination of triglyceride concentrations. We examined whether a substitution of whole grains and legumes for refined rice in a high carbohydrate diet (about 65% of energy derived from carbohydrate) may modify the effect of this variant on changes in apolipoprotein A-V (apoA-V) and triglyceride concentrations. Methods We genotyped the APOA5 -1131 T > C in individuals with impaired fasting glucose (IFG) or newly diagnosed type 2 diabetes, who were randomly assigned to either a group ingesting whole grain and legume meals daily or a control group for 12 weeks. Results After dietary intervention, we observed significant interactions between the APOA5 -1131 T > C polymorphism and carbohydrate sources (whole grains and legumes versus refined rice) in the determination of mean percent changes in triglyceride and apoA-V (P interactions <0.001 and =0.038, respectively). In the refined rice group (n = 93), the carriers of the risk C allele (n = 50) showed a greater increase in the mean percent changes of triglyceride and apoA-V than noncarriers after adjusting for HOMA-IR (P = 0.004 and 0.021, respectively). The whole grain and legume group (n = 92), however, showed a decrease in fasting glucose, HOMA-IR, and triglyceride, and an increase in apoA-V, irrespective of genotype. Conclusions The data showed that the magnitude of the genetic effect of the APOA5 -1131C variant on triglyceride and apoA-V levels was modulated when substituting consumption of whole grains and legumes for refined rice as a carbohydrate source in IFG or diabetic subjects. Trial registration ClinicalTrials.gov: NCT01784952. PMID:24690159
Kim, Yoona; Keogh, Jennifer B; Clifton, Peter M
2017-03-01
Red and processed meat and refined grains are associated with an increased risk of type 2 diabetes. Interventions are limited. We hypothesized that a diet high in red and processed meat and refined grains (HMD) would decrease insulin sensitivity compared to a diet high in whole grains, nuts, dairy and legumes with no red meat (HWD). Forty-nine subjects without diabetes [15 men and 34 women, age, 35.6±15.7 years, body mass index (BMI), 27±5.9kg/m 2 ] underwent two 4-week weight-stable dietary interventions in a randomized crossover design. The insulin sensitivity index (ISI) was calculated from the last 30min of a continuous low-dose insulin (25mU/kg·h) and glucose (4mg/kg·min) infusion test (LDIGIT 120-150min ) at the end of each diet. The population fell into two very discrete groups: those with a very low insulin response in the LDIGIT 120-150min on HMD (Group 1<56pmol/L, n=24), and those with relatively normal insulin responses (Group 2>56pmol/L, n=25). Group 2 had significantly higher insulin concentrations [(median and interquartile range) 153, 180 for HMD vs. 123, 149pmol/L for HWD; P=0.019] and glucose concentrations [(mean±standard deviation) 7.4±1.3 for HMD vs.6.7±1.2mmol/L for HWD; P=0.05], resulting in a significantly decreased ISI [(median and interquartile range) 21.1, 34.2 for HMD vs. 31.6, 39.4 for HWD; P=0.014] compared to HWD. Log ISI after HMD was significantly correlated with BMI (r=-0.5; P=0.009), fat mass (r=-0.55; P=0.004) and self-reported activity levels (r=-0.45; P=0.024). A dietary pattern high in red and processed meat and refined grains decreased insulin sensitivity compared to a dietary pattern high in whole grains, nuts, dairy products and legumes only in relatively insulin-resistant adults. Copyright © 2016 Elsevier Inc. All rights reserved.
Johansson, Daniel P; Lee, Isabella; Risérus, Ulf; Langton, Maud; Landberg, Rikard
2015-01-01
Background Whole grain rye products have been shown to increase satiety and elicit lower postprandial insulin response without a corresponding change in glucose response compared with soft refined wheat bread. The underlying mechanisms for these effects have not been fully determined The primary aim of the study was to investigate if whole grain rye crisp bread compared to refined wheat crisp bread, elected beneficial effects on appetite and postprandial insulin response, similarly as for other rye products. Methods In a randomized cross-over trial, 23 healthy volunteers, aged 27-70 years, BMI 18-31.4 kg/m2, were served a standardized breakfast with unfermented whole grain rye crisp bread (uRCB), fermented whole grain rye crisp bread (RCB) or refined wheat crisp bread (WCB), Appetite was measured using a visual analogue scale (VAS) until 4 h after breakfast. Postprandial glucose and insulin were measured at 0-230 min. Breads were chemically characterized including macronutrients, energy, dietary fiber components, and amino acid composition, and microstructure was characterized with light microscopy. Results Reported fullness was 16% higher (P<0.001), and hunger 11% and 12% lower (P<0.05) after ingestion of uRCB and RCB, respectively, compared with WCB. Postprandial glucose response did not differ significantly between treatments. Postprandial insulin was 10% lower (P<0.007) between 0-120 min but not significantly lower between 0-230 min for RCB compared with WCB. uRCB induced 13% (P<0.002) and 17% (P<0.001) lower postprandial insulin response between 0-230 min compared with RCB and WCB respectively. Conclusion Whole grain rye crisp bread induces higher satiety and lower insulin response compared with refined wheat crisp bread. Microstructural characteristics, dietary fiber content and composition are probable contributors to the increased satiety after ingestion of rye crisp breads. Higher insulin secretion after ingestion of RCB and WCB compared with uRCB may be due to differences in fiber content and composition, and higher availability of insulinogenic branched chain amino acids. Trial Registration ClinicalTrials.gov NCT02011217 PMID:25826373
Cyclic Spin Testing of Superalloy Disks With a Dual Grain Microstructure
NASA Technical Reports Server (NTRS)
Gayda, John; Kantzos, Pete
2005-01-01
An aggressive cyclic spin test program was run to verify the reliability of superalloy disks with a dual grain structure, fine grain bore and coarse grain rim, utilizing a disk design with web holes bisecting the grain size transition zone. Results of these tests were compared with conventional disks with uniform grain structures. Analysis of the test results indicated the cyclic performance of disks with a dual grain structure could be estimated to a level of accuracy which does not appear to prohibit the use of this technology in advanced gas turbine engines, although further refinement of lifing methodology is clearly warranted.
Pressure-induced stiffness of Au nanoparticles to 71 GPa under quasi-hydrostatic loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Xinguo; Duffy, Thomas S.; Ehm, Lars
2015-11-16
The compressibility of nanocrystalline gold (n-Au, 20 nm) has been studied by x-ray total scattering using high-energy monochromatic x-rays in the diamond anvil cell under quasi-hydrostatic conditions up to 71 GPa. The bulk modulus, K 0, of the n-Au obtained from fitting to a Vinet equation of state is ~196(3) GPa, which is about 17% higher than for the corresponding bulk materials (K 0: 167 GPa). At low pressures (<7 GPa), the compression behavior of n-Au shows little difference from that of bulk Au. With increasing pressure, the compressive behavior of n-Au gradually deviates from the equation of state (EOS)more » of bulk gold. Analysis of the pair distribution function, peak broadening and Rietveld refinement reveals that the microstructure of n-Au is nearly a single-grain/domain at ambient conditions, but undergoes substantial pressure-induced reduction in grain size until 10 GPa. The results indicate that the nature of the internal microstructure in n-Au is associated with the observed EOS difference from bulk Au at high pressure. Full-pattern analysis confirms that significant changes in grain size, stacking faults, grain orientation and texture occur in n-Au at high pressure. We have observed direct experimental evidence of a transition in compressional mechanism for n-Au at ~20 GPa, i.e. from a deformation dominated by nucleation and motion of lattice dislocations (dislocation-mediated) to a prominent grain boundary mediated response to external pressure. In conclusion, the internal microstructure inside the nanoparticle (nanocrystallinity) plays a critical role for the macro-mechanical properties of nano-Au.« less
Pressure-induced stiffness of Au nanoparticles to 71 GPa under quasi-hydrostatic loading.
Hong, Xinguo; Duffy, Thomas S; Ehm, Lars; Weidner, Donald J
2015-12-09
The compressibility of nanocrystalline gold (n-Au, 20 nm) has been studied by x-ray total scattering using high-energy monochromatic x-rays in the diamond anvil cell under quasi-hydrostatic conditions up to 71 GPa. The bulk modulus, K0, of the n-Au obtained from fitting to a Vinet equation of state is ~196(3) GPa, which is about 17% higher than for the corresponding bulk materials (K0: 167 GPa). At low pressures (<7 GPa), the compression behavior of n-Au shows little difference from that of bulk Au. With increasing pressure, the compressive behavior of n-Au gradually deviates from the equation of state (EOS) of bulk gold. Analysis of the pair distribution function, peak broadening and Rietveld refinement reveals that the microstructure of n-Au is nearly a single-grain/domain at ambient conditions, but undergoes substantial pressure-induced reduction in grain size until 10 GPa. The results indicate that the nature of the internal microstructure in n-Au is associated with the observed EOS difference from bulk Au at high pressure. Full-pattern analysis confirms that significant changes in grain size, stacking faults, grain orientation and texture occur in n-Au at high pressure. We have observed direct experimental evidence of a transition in compressional mechanism for n-Au at ~20 GPa, i.e. from a deformation dominated by nucleation and motion of lattice dislocations (dislocation-mediated) to a prominent grain boundary mediated response to external pressure. The internal microstructure inside the nanoparticle (nanocrystallinity) plays a critical role for the macro-mechanical properties of nano-Au.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James H.; Lanning, David N.
Comminution process of wood veneer to produce wood particles, by feeding wood veneer in a direction of travel substantially normal to grain through a counter rotating pair of intermeshing arrays of cutting discs arrayed axially perpendicular to the direction of wood veneer travel, wherein the cutting discs have a uniform thickness (Td), to produce wood particles characterized by a length dimension (L) substantially equal to the Td and aligned substantially parallel to grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) aligned normal to W and L, wherein the W.times.H dimensions definemore » a pair of substantially parallel end surfaces with end checking between crosscut fibers.« less
NASA Astrophysics Data System (ADS)
Zhang, Chuanyou; Wang, Qian; Sun, Yu; Wang, Huibin; Zhang, Wei; Wang, Qingfeng; Guo, Aimin; Sun, Kaiming
Extensive investigations of metallurgical roles played by Nb microalloying in advanced products of seamless steel tube have been carried out. The results show that with Nb microalloyed , the recrystallized austenite grain (RAG) and final ferrite grain of tubular steel are evidently refined even experiencing a piercing and a continuous rolling at very high temperature, and a certain quantity of (Nb,V)(C,N) and (Ti,Nb,V)(C,N) particles form on air cooling. Moreover, for quenching (Q) & tempering (T) treated tubular steels, the nanoscale particles of (Nb,V) (C,N) further precipitate on heating stage of Q at 900-1000°C, leading to a significant refinement of prior austenite grain (PAG) and final martensitic or bainitic packet/block structures, and during subsequent T at 600-700°C, producing an improved resistance to softening.
NASA Astrophysics Data System (ADS)
Apparao, K. Ch; Birru, Anil Kumar
2018-01-01
A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.
Preparation of nanostructured materials having improved ductility
Zhao, Yonghao; Zhu, Yuntian T.
2010-04-20
A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy, then refining the grain size of the workpiece at a temperature at or below room temperature, and then aging the workpiece to precipitate second phase particles in the nanosized grains of the workpiece that increase the ductility without decreasing the strength of the workpiece.
Bimodal and multimodal plant biomass particle mixtures
Dooley, James H.
2013-07-09
An industrial feedstock of plant biomass particles having fibers aligned in a grain, wherein the particles are individually characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L, wherein the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces, and wherein the particles in the feedstock are collectively characterized by having a bimodal or multimodal size distribution.
Zhang, Tao; Li, Lei; Lu, Shi-Hong; Gong, Hai; Wu, Yun-Xin
2018-01-01
Asymmetrical shear rolling with velocity asymmetry and geometry asymmetry is beneficial to enlarge deformation and refine grain size at the center of the thick plate compared to conventional symmetrical rolling. Dynamic recrystallization (DRX) plays a vital role in grain refinement during hot deformation. Finite element models (FEM) coupled with microstructure evolution models and cellular automata models (CA) are established to study the microstructure evolution of plate during asymmetrical shear rolling. The results show that a larger DRX fraction and a smaller average grain size can be obtained at the lower layer of the plate. The DRX fraction at the lower part increases with the ascending speed ratio, while that at upper part decreases. With the increase of the offset distance, the DRX fraction slightly decreases for the whole thickness of the plate. The differences in the DRX fraction and average grain size between the upper and lower surfaces increase with the ascending speed ratio; however, it varies little with the change of the speed ratio. Experiments are conducted and the CA models have a higher accuracy than FEM models as the grain morphology, DRX nuclei, and grain growth are taken into consideration in CA models, which are more similar to the actual DRX process during hot deformation. PMID:29342080
Zhang, Tao; Li, Lei; Lu, Shi-Hong; Gong, Hai; Wu, Yun-Xin
2018-01-17
Asymmetrical shear rolling with velocity asymmetry and geometry asymmetry is beneficial to enlarge deformation and refine grain size at the center of the thick plate compared to conventional symmetrical rolling. Dynamic recrystallization (DRX) plays a vital role in grain refinement during hot deformation. Finite element models (FEM) coupled with microstructure evolution models and cellular automata models (CA) are established to study the microstructure evolution of plate during asymmetrical shear rolling. The results show that a larger DRX fraction and a smaller average grain size can be obtained at the lower layer of the plate. The DRX fraction at the lower part increases with the ascending speed ratio, while that at upper part decreases. With the increase of the offset distance, the DRX fraction slightly decreases for the whole thickness of the plate. The differences in the DRX fraction and average grain size between the upper and lower surfaces increase with the ascending speed ratio; however, it varies little with the change of the speed ratio. Experiments are conducted and the CA models have a higher accuracy than FEM models as the grain morphology, DRX nuclei, and grain growth are taken into consideration in CA models, which are more similar to the actual DRX process during hot deformation.
Microstructural Modeling of Dynamic Intergranular and Transgranular Fracture Modes in Zircaloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammed, I.; Zikry, M.A.; Ziaei, S.
2017-04-01
In this time period, we have continued to focus on (i) refining the thermo-mechanical fracture model for zirconium (Zr) alloys subjected to large deformations and high temperatures that accounts for the cracking of ZrH and ZrH2 hydrides, (ii) formulating a framework to account intergranular fracture due to iodine diffusion and pit formation in grain-boundaries (GBs). Our future objectives are focused on extending to a combined population of ZrH and ZrH2 populations and understanding how thermo-mechanical behavior affects hydride reorientation and cracking. We will also refine the intergranular failure mechanisms for grain boundaries with pits.
Intermetallic Growth and Interfacial Properties of the Grain Refiners in Al Alloys
Li, Chunmei; Cheng, Nanpu; Chen, Zhiqian; Xie, Zhongjing; Hui, Liangliang
2018-01-01
Al3TM(TM = Ti, Zr, Hf, Sc) particles acting as effective grain refiners for Al alloys have been receiving extensive attention these days. In order to judge their nucleation behaviors, first-principles calculations are used to investigate their intermetallic and interfacial properties. Based on energy analysis, Al3Zr and Al3Sc are more suitable for use as grain refiners than the other two intermetallic compounds. Interfacial properties show that Al/Al3TM(TM = Ti, Zr, Hf, Sc) interfaces in I-ter interfacial mode exhibit better interface wetting effects due to larger Griffith rupture work and a smaller interface energy. Among these, Al/Al3Sc achieves the lowest interfacial energy, which shows that Sc atoms should get priority for occupying interfacial sites. Additionally, Sc-doped Al/Al3(Zr, Sc) interfacial properties show that Sc can effectively improve the Al/Al3(Zr, Sc) binding strength with the Al matrix. By combining the characteristics of interfaces with the properties of intermetallics, the core-shell structure with Al3Zr-core or Al3Zr(Sc1-1)-core encircled with an Sc-rich shell forms. PMID:29677155
NASA Astrophysics Data System (ADS)
Dhaneswara, D.; Zulfia, A.; Pramudita, T. P.; Ferdian, D.; Utomo, B. W.
2018-03-01
Addition of Ti-B grain refiner in Al-ADC12/nanoSiC composite results in improvement of tensile strength, hardness, and wear resistance through grain refinement. In this research, composite of Al-ADC12/nano SiC (0.15 %vf) with variations of TiB respectively (0.0), (0.02), (0.04), (0.06), dan (0.08) wt% were produced by stir casting. 10% of Mg were added to promote wettability between reinforce and matrix. It was found the best addition of TiB is 0.04 wt% Ti-B which results 135,9 MPa in tensile strength, 46 HRB in hardness, and 1.47x10-5 mm3/s as wear rate. The increase in mechanical properties of composites mainly because of Al3Ti acts as nucleants which initiates the grain refinement and the existence of MgAl2O4 phase indicates an interphase between nano SiC and ADC12 matrix. However, the increase of Ti-B addition after optimum number gives no significant results. High composition of iron and magnesium addition will form intermetallic phase β-Fe, π-Fe, and Mg2Si.
NASA Astrophysics Data System (ADS)
Liu, Jiang; Wen, Guanghua; Tang, Ping
2017-12-01
The formation of coarse prior austenite grain is a key factor to promote transverse crack, and the susceptibility to the transverse crack can be reduced by refining the austenite grain size. In the present study, the high-temperature confocal laser scanning microscope (CLSM) was used to simulate two types of double phase-transformation technologies. The distribution and morphology of ferrites under different cooling conditions were analyzed, and the effects of ferrite distribution and morphology on the double phase-transformation technologies were explored to obtain the suitable double phase-change technology for the continuous casting process. The results indicate that, under the thermal cycle TH0 [the specimens were cooled down to 913 K (640 °C) at a cooling rate of 5.0 K/s (5.0 °C/s)], the width of prior austenite grain boundaries was thick, and the dislocation density at grain boundaries was high. It had strong inhibition effect on crack propagation; under the thermal cycle TH1 [the specimens were cooled down to 1073 K (800 °C) at a cooling rate of 5.0 K/s (5.0 °C/s) and then to 913 K (640 °C) at a cooling rate of 1.0 K/s (1.0 °C/s)], the width of prior austenite grain boundary was thin, and the dislocation density at grain boundaries was low. It was beneficial to crack propagation. After the first phase change, the developed film-like ferrite along the austenite grain boundaries improved the nucleation conditions of new austenitic grains and removed the inhibition effect of the prior austenite grain boundaries on the austenite grain size.
Engineered plant biomass feedstock particles
Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA
2011-10-11
A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.
Leung, Cindy W.; Leak, Tashara M.; Laraia, Barbara A.
2017-01-01
Introduction Whole-grain consumption reduces risk of chronic disease, yet adolescents consume suboptimal amounts. It is unclear whether trends in consumption of whole grains have been positive among adolescents, and research assessing disparities by socioeconomic status is limited. The objective of our study was to evaluate recent trends in whole-grain consumption by US adolescents. Methods We examined data on 3,265 adolescents aged 13 to18 years from the National Health and Nutrition Examination Survey (NHANES) 2005–2012. Intake of whole and refined grains was analyzed by using generalized linear models, and odds of no whole-grain intake were examined with logistic regression, adjusting for socioeconomic and demographic factors. We evaluated trends and examined heterogeneity of trends with respect to annual household income. Results Daily whole-grain consumption among adolescents increased overall by about a quarter-ounce–equivalent per day (oz-eq/d) (P trend <.001). We found a significant relationship between whole-grain intake and income. Daily whole grains (recommended as ≥3 oz-eq/d), increased (0.6 to 1.0 oz-eq/d) among high-income adolescents (P trend < .001) but remained at 0.5 oz-eq/d for low-income adolescents. The ratio of whole grains to total grains (recommended to be at least 50%) rose from 7.6% to 14.2% for high-income adolescents (P trend < .001), with no significant trend for the low-income group. Consumption of refined grains did not change. Odds of having no whole grains trended downward, but only for the high-income adolescents (P trend = .01). Conclusion These data show significant (albeit modest) trends toward increased intake of whole grains among high-income adolescents nationwide that are absent among low-income peers. Future interventions and policies should address barriers to whole-grain consumption among this vulnerable group. PMID:28682743
Tester, June M; Leung, Cindy W; Leak, Tashara M; Laraia, Barbara A
2017-07-06
Whole-grain consumption reduces risk of chronic disease, yet adolescents consume suboptimal amounts. It is unclear whether trends in consumption of whole grains have been positive among adolescents, and research assessing disparities by socioeconomic status is limited. The objective of our study was to evaluate recent trends in whole-grain consumption by US adolescents. We examined data on 3,265 adolescents aged 13 to18 years from the National Health and Nutrition Examination Survey (NHANES) 2005-2012. Intake of whole and refined grains was analyzed by using generalized linear models, and odds of no whole-grain intake were examined with logistic regression, adjusting for socioeconomic and demographic factors. We evaluated trends and examined heterogeneity of trends with respect to annual household income. Daily whole-grain consumption among adolescents increased overall by about a quarter-ounce-equivalent per day (oz-eq/d) (P trend <.001). We found a significant relationship between whole-grain intake and income. Daily whole grains (recommended as ≥3 oz-eq/d), increased (0.6 to 1.0 oz-eq/d) among high-income adolescents (P trend < .001) but remained at 0.5 oz-eq/d for low-income adolescents. The ratio of whole grains to total grains (recommended to be at least 50%) rose from 7.6% to 14.2% for high-income adolescents (P trend < .001), with no significant trend for the low-income group. Consumption of refined grains did not change. Odds of having no whole grains trended downward, but only for the high-income adolescents (P trend = .01). These data show significant (albeit modest) trends toward increased intake of whole grains among high-income adolescents nationwide that are absent among low-income peers. Future interventions and policies should address barriers to whole-grain consumption among this vulnerable group.
Investigations on the effect of grain size on hot tearing susceptibility of MgZn1Y2 alloy
NASA Astrophysics Data System (ADS)
Zhou, Z. J.; Liu, Z.; Wang, Y.; Mao, P. L.; Tang, W. R.; Zhou, Y.
2018-05-01
Effect of grain size on hot tearing susceptibility of MgZn1Y2 alloy was explored in the present paper. Based on the microstructure observation and phase constitution analysis results by the method of OM, SEM, EBSD and XRD, it was found that the addition of 0.2 wt% C2Cl6 or 0.5 wt% Zr could reduced the grain size significantly. The addition of Zr had the better effect than that of 0.2 wt% C2Cl6. The average grain size reduced from 55.48 μm to 20.64 μm, and the average grain shape aspect ratio reduced from 1.859 to 1.49 with the addition of Zr. Although the addition of 0.2 wt% C2Cl6 refined grain, it also reduced the amount of LPSO phase. It was also found that the dendrite coherent temperature (Tcoh) decreased with decreasing of the grain size of the alloy, while the dendrite coherent solid fraction ({{{{f}}}{{s}}}{{coh}}) increased with decreasing of the alloy. The modified Clyne-Davies model was used to predict the hot cracking susceptibility of the alloy. The predicted results indicated that the hot tearing susceptibility decreased with grain refinement. With addition of 0.2 wt% Zr, the predicted hot tearing sensitivity value was reduced by about 2.5 times than that of the alloy without the addition of Zr.
Microstructure and performance of rare earth element-strengthened plasma-facing tungsten material
Luo, Laima; Shi, Jing; Lin, Jinshan; Zan, Xiang; Zhu, Xiaoyong; Xu, Qiu; Wu, Yucheng
2016-01-01
Pure W and W-(2%, 5%, 10%) Lu alloys were manufactured via mechanical alloying for 20 h and a spark plasma sintering process at 1,873 K for 2 min. The effects of Lu doping on the microstructure and performance of W were investigated using various techniques. For irradiation performance analysis, thermal desorption spectroscopy (TDS) measurements were performed from room temperature to 1,000 K via infrared irradiation with a heating rate of 1 K/s after implantations of He+ and D+ ions. TDS measurements were conducted to investigate D retention behavior. Microhardness was dramatically enhanced, and the density initially increased and then decreased with Lu content. The D retention performance followed the same trend as the density. Second-phase particles identified as Lu2O3 particles were completely distributed over the W grain boundaries and generated an effective grain refinement. Transgranular and intergranular fracture modes were observed on the fracture surface of the sintered W-Lu samples, indicating some improvement of strength and toughness. The amount and distribution of Lu substantially affected the properties of W. Among the investigated alloy compositions, W-5%Lu exhibited the best overall performance. PMID:27596002
On the flux of fluctuation energy in a collisional grain flow at a flat, frictional wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, J.T.; Louge, M.Y.
We consider a flow of colliding spheres that interacts with a flat, frictional wall and calculate the flux of fluctuation energy in two limits. In the first limit, all spheres slide upon contact with the wall. Here, we refine the calculations of Jenkins [J. Appl. Mech. {bold 59}, 120 (1992)] and show that a correlation between two orthogonal components of the fluctuation velocity of the point of contact of the grains with the wall provides a substantial correction to the flux originally predicted. In the other limit, the granular material is agitated but the mean velocity of the contact pointsmore » with respect to the wall is zero and Jenkins{close_quote} earlier calculation is improved by distinguishing between those contacts that slide in a collision and those that stick. The new expressions for the flux agree well with the computer simulations of Louge [Phys. Fluids {bold 6}, 2253 (1994)]. Finally, we extend the expression for zero mean sliding to incorporate small sliding and obtain an approximate expression for the flux between the two limits. {copyright} {ital 1997 American Institute of Physics.}« less
Guo, Jing; Zhou, Yong; Liu, Changmeng; Wu, Qianru; Chen, Xianping; Lu, Jiping
2016-01-01
Wire arc additive manufacturing (WAAM) offers a potential approach to fabricate large-scale magnesium alloy components with low cost and high efficiency, although this topic is yet to be reported in literature. In this study, WAAM is preliminarily applied to fabricate AZ31 magnesium. Fully dense AZ31 magnesium alloy components are successfully obtained. Meanwhile, to refine grains and obtain good mechanical properties, the effects of pulse frequency (1, 2, 5, 10, 100, and 500 Hz) on the macrostructure, microstructure and tensile properties are investigated. The results indicate that pulse frequency can result in the change of weld pool oscillations and cooling rate. This further leads to the change of the grain size, grain shape, as well as the tensile properties. Meanwhile, due to the resonance of the weld pool at 5 Hz and 10 Hz, the samples have poor geometry accuracy but contain finer equiaxed grains (21 μm) and exhibit higher ultimate tensile strength (260 MPa) and yield strength (102 MPa), which are similar to those of the forged AZ31 alloy. Moreover, the elongation of all samples is above 23%. PMID:28773944
Effects of Sm addition on electromagnetic interference shielding property of Mg-Zn-Zr alloys
NASA Astrophysics Data System (ADS)
Yang, Chubin; Pan, Fusheng; Chen, Xianhua; Luo, Ning
2017-06-01
The electromagnetic interference (EMI) shielding of Sm-containing magnesium alloys in the 30-1500 MHz testing frequency range was investigated by coaxial cable method. The results demonstrated that Mg-3Zn alloys displayed the best electromagnetic shielding property. When 0.5 wt% of Zr was added for crystal grain refinement, the shielding effectiveness (SE) was apparently reduced. The addition of the rare earth element Sm in ZK magnesium alloys can improve the electromagnetic interference shielding of magnesium alloys. The main reason for the differences in electromagnetic interference shielding of magnesium alloys was the change in conductivity. The addition of Zr in Mg-Zn alloys can refine the grains and consequently improve the grain boundary area significantly. Therefore, the number of irregularly arranged atoms at the grain boundaries increased, decreasing the conductivity of magnesium alloys and leading to a decrease in the electromagnetic interference shielding. Following the Sm addition, the Mg-Zn-Sm phase was precipitated at the grain boundaries and in cores. The precipitation of Sm-containing rare earth phases could consume the solid-soluted Zn atoms within the Mg, resulting in an increase in electrical conductivity and electromagnetic interference shielding improvement.
Solidification of Magnesium (AM50A) / vol%. SiCp composite
NASA Astrophysics Data System (ADS)
Zhang, X.; Hu, H.
2012-01-01
Magnesium matrix composite is one of the advanced lightweight materials with high potential to be used in automotive and aircraft industries due to its low density and high specific mechanical properties. The magnesium composites can be fabricated by adding the reinforcements of fibers or/and particles. In the previous literature, extensive studies have been performed on the development of matrix grain structure of aluminum-based metal matrix composites. However, there is limited information available on the development of grain structure during the solidification of particulate-reinforced magnesium. In this work, a 5 vol.% SiCp particulate-reinforced magnesium (AM50A) matrix composite (AM50A/SiCp) was prepared by stir casting. The solidification behavior of the cast AM50A/SiCp composite was investigated by computer-based thermal analysis. Optical and scanning electron microscopies (SEM) were employed to examine the occurrence of nucleation and grain refinement involved. The results indicate that the addition of SiCp particulates leads to a finer grain structure in the composite compared with the matrix alloy. The refinement of grain structure should be attributed to both the heterogeneous nucleation and the restricted primary crystal growth.
NASA Astrophysics Data System (ADS)
Hu, Dianyin; Gao, Ye; Meng, Fanchao; Song, Jun; Wang, Rongqiao
2018-04-01
Combining experiments and finite element analysis (FEA), a systematic study was performed to analyze the microstructural evolution and stress states of shot-peened GH4169 superalloy over a variety of peening intensities and coverages. A dislocation density evolution model was integrated into the representative volume FEA model to quantitatively predict microstructural evolution in the surface layers and compared with experimental results. It was found that surface roughness and through-depth residual stress profile are more sensitive to shot-peening intensity compared to coverage due to the high kinetic energy involved. Moreover, a surface nanocrystallization layer was discovered in the top surface region of GH4169 for all shot-peening conditions. However, the grain refinement was more intensified under high shot-peening coverage, under which enough time was permitted for grain refinement. The grain size gradient predicted by the numerical framework showed good agreement with experimental observations.
Grain refinement control in TIG arc welding
NASA Technical Reports Server (NTRS)
Iceland, W. F.; Whiffen, E. L. (Inventor)
1975-01-01
A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.
Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial
Sawicki, Caleigh M.; McKay, Diane L.; McKeown, Nicola M.; Dallal, Gerard; Chen, C. -Y. Oliver; Blumberg, Jeffrey B.
2016-01-01
While dietary fiber plays an important role in the health benefits associated with whole grain consumption, other ingredients concentrated in the outer bran layer, including alkylresorcinols, lignans, phenolic acids, phytosterols, and tocols, may also contribute to these outcomes. To determine the acute bioavailability and pharmacokinetics of the major phytochemicals found in barley and oats, we conducted a randomized, three-way crossover trial in 13 healthy subjects, aged 40–70 years with a body mass index (BMI) of 27–35.9 kg/m2. After a two-day run-in period following a diet low in phytochemicals, subjects were randomized to receive muffins made with either 48 g whole oat flour, whole barley flour, or refined wheat flour plus cellulose (control), with a one-week washout period between each intervention. At the same time, an oral glucose tolerance test was administered. In addition to plasma phytochemical concentrations, glucose and insulin responses, biomarkers of antioxidant activity, lipid peroxidation, inflammation, and vascular remodeling were determined over a 24-h period. There was no significant effect on acute bioavailability or pharmacokinetics of major phytochemicals. Administered concurrently with a glucose bolus, the source of whole grains did not attenuate the post-prandial response of markers of glucoregulation and insulin sensitivity, inflammation, nor vascular remodeling compared to the refined grain control. No significant differences were observed in the bioavailability or postprandial effects between whole-oat and whole-barley compared to a refined wheat control when administered with a glucose challenge. These null results may be due, in part, to the inclusion criteria for the subjects, dose of the whole grains, and concurrent acute administration of the whole grains with the glucose bolus. PMID:27983687
USDA-ARS?s Scientific Manuscript database
This study was designed to determine if providing wheat, corn, and rice as whole (WG) or refined grains (RG) under free-living conditions will change parameters of health over a six-week intervention in healthy, habitual non-WG consumers. Measurements of body composition, fecal microbiota, fasting ...
Competitive Heterogeneous Nucleation Between Zr and MgO Particles in Commercial Purity Magnesium
NASA Astrophysics Data System (ADS)
Peng, G. S.; Wang, Y.; Fan, Z.
2018-04-01
Grain refining of commercial purity (CP) Mg by Zr addition with intensive melt shearing prior to solidification has been investigated. Experimental results showed that, when intensive melt shearing is imposed prior to solidification, the grain structure of CP Mg exhibits a complex changing pattern with increasing Zr addition. This complex behavior can be attributed to the change of nucleating particles in terms of their crystal structure, size, and number density with varied Zr additions. Naturally occurring MgO particles are found to be {100} faceted with a cubic morphology and 50 to 300 nm in size. Such MgO particles are usually populated densely in a liquid film (usually referred as oxide film) and can be effectively dispersed by intensive melt shearing. It has been confirmed that the dispersed MgO particles can act as nucleating substrates resulting in a significant grain refinement of CP Mg when no other more potent particles are present in the melt. However, Zr particles in the Mg-Zr alloys are more potent than MgO particles for nucleation of Mg due to their same crystal structure and similar lattice parameters with Mg. With the addition of Zr, Zr and the MgO particles co-exist in the melt. Grain refining efficiency is closely related to the competition for heterogeneous nucleation between Zr and the MgO particles. The final solidified microstructure is mainly determined by the interplay of three factors: nucleation potency (measured by lattice misfit), particle size, and particle number density.
Competitive Heterogeneous Nucleation Between Zr and MgO Particles in Commercial Purity Magnesium
NASA Astrophysics Data System (ADS)
Peng, G. S.; Wang, Y.; Fan, Z.
2018-06-01
Grain refining of commercial purity (CP) Mg by Zr addition with intensive melt shearing prior to solidification has been investigated. Experimental results showed that, when intensive melt shearing is imposed prior to solidification, the grain structure of CP Mg exhibits a complex changing pattern with increasing Zr addition. This complex behavior can be attributed to the change of nucleating particles in terms of their crystal structure, size, and number density with varied Zr additions. Naturally occurring MgO particles are found to be {100} faceted with a cubic morphology and 50 to 300 nm in size. Such MgO particles are usually populated densely in a liquid film (usually referred as oxide film) and can be effectively dispersed by intensive melt shearing. It has been confirmed that the dispersed MgO particles can act as nucleating substrates resulting in a significant grain refinement of CP Mg when no other more potent particles are present in the melt. However, Zr particles in the Mg-Zr alloys are more potent than MgO particles for nucleation of Mg due to their same crystal structure and similar lattice parameters with Mg. With the addition of Zr, Zr and the MgO particles co-exist in the melt. Grain refining efficiency is closely related to the competition for heterogeneous nucleation between Zr and the MgO particles. The final solidified microstructure is mainly determined by the interplay of three factors: nucleation potency (measured by lattice misfit), particle size, and particle number density.
NASA Astrophysics Data System (ADS)
Mahbooba, Zaynab; West, Harvey; Harrysson, Ola; Wojcieszynski, Andrzej; Dehoff, Ryan; Nandwana, Peeyush; Horn, Timothy
2017-03-01
In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricated Ti-6Al-4V + B indicate that the addition of 0.25-1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., grain; corn, field, grits; corn, field, meal; corn, field, refined oil; corn, field, stover; corn, sweet... time-limited exemption from the requirement of a tolerance is established for residues of Bacillus... byproducts; cotton, hay; cotton, hulls; cotton, meal; cotton, refined oil; and cotton, undelinted seed when...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., grain; corn, field, grits; corn, field, meal; corn, field, refined oil; corn, field, stover; corn, sweet... time-limited exemption from the requirement of a tolerance is established for residues of Bacillus... byproducts; cotton, hay; cotton, hulls; cotton, meal; cotton, refined oil; and cotton, undelinted seed when...
USDA-ARS?s Scientific Manuscript database
A fuzzy chromatography mass spectrometric (FCMS) fingerprinting method combined with chemometric analysis was established to diffrentiate between whole wheat (WW) flours and refined wheat (RW) flour, and the breads made from them. The chemical compositions of the bread samples were profiled using h...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdulstaar, Mustafa A., E-mail: mustafa.abdulstaar
The current study examined the effect of microstructure variation on the development of mechanical properties in friction stir welded joints of 6061-T6 aluminum alloy, which were subsequently processed by shot peening (SP). Following to FSW, fatigue specimens were extracted perpendicularly to the welding direction. Surface Skimming to 0.5 mm from crown and root sides of the joint was made and SP was later applied on the two sides using ceramic shots of two different Almen intensities of 0.18 mmA and 0.24 mmA. Microstructural examination by electron back scattered diffraction (EBSD) indicated variation in the grain refinement of the weld zone,more » with coarsest grains (5 μm) at the crown side and finest grains (2 μm) at the root side. Reduction of microhardness to 60 HV occurred in the weld zone for samples in FSW condition. Application of SP promoted significant strain hardening at the crown side, with Almen intensities of 0.24 mmA providing maximum increase in microhardness to 120 HV. On the contrary, only a maximum microhardness of 75 HV was obtained at the root side. The difference in strain hardening capability at the two sides was strongly dependent on grain size. The two Almen intensities produced similar distribution of compressive residual stresses in the subsurface regions that led to enhance the fatigue strength to the level of base metal for N ≥ 10{sup 5} cycles. Yet, the increase in fatigue strength was more pronounced with increasing Almen intensity to 0.24 mmA, demonstrating further enhancement by strain hardening. - Highlights: • Grain refinement was observed after friction stir welding of AA 6061-T6. • Reduction in microhardness and fatigue strength were obtained after welding. • Variation in grain refinement led to different hardening behavior after peening. • Shot peening induced beneficial compressive residual stresses. • Shot peening and surface skimming markedly improved the fatigue performance.« less
An Informatics Based Approach to Reduce the Grain Size of Cast Hadfield Steel
NASA Astrophysics Data System (ADS)
Dey, Swati; Pathak, Shankha; Sheoran, Sumit; Kela, Damodar H.; Datta, Shubhabrata
2016-04-01
Materials Informatics concept using computational intelligence based approaches are employed to bring out the significant alloying additions to achieve grain refinement in cast Hadfield steel. Castings of Hadfield steels used for railway crossings, requires fine grained austenitic structure. Maintaining proper grain size of this component is very crucial in order to achieve the desired properties and service life. This work studies the important variables affecting the grain size of such steels which includes the compositional and processing variables. The computational findings and prior knowledge is used to design the alloy, which is subjected to a few trials to validate the findings.
Micro/nano composited tungsten material and its high thermal loading behavior
NASA Astrophysics Data System (ADS)
Fan, Jinglian; Han, Yong; Li, Pengfei; Sun, Zhiyu; Zhou, Qiang
2014-12-01
Tungsten (W) is considered as promising candidate material for plasma facing components (PFCs) in future fusion reactors attributing to its many excellent properties. Current commercial pure tungsten material in accordance with the ITER specification can well fulfil the performance requirements, however, it has defects such as coarse grains, high ductile-brittle transition temperature (DBTT) and relatively low recrystallization temperature compared with its using temperature, which cannot meet the harsh wall loading requirement of future fusion reactor. Grain refinement has been reported to be effective in improving the thermophysical and mechanical properties of W. In this work, rare earth oxide (Y2O3/La2O3) and carbides (TiC/ZrC) were used as dispersion phases to refine W grains, and micro/nano composite technology with a process of "sol gel - heterogeneous precipitation - spray drying - hydrogen reduction - ordinary consolidation sintering" was invented to introduce these second-phase particles uniformly dispersed into W grains and grain-boundaries. Via this technology, fine-grain W materials with near-full density and relatively high mechanical properties compared with traditional pure W material were manufactured. Preliminary transient high-heat flux tests were performed to evaluate the thermal response under plasma disruption conditions, and the results show that the W materials prepared by micro/nano composite technology can endure high-heat flux of 200 MW/m2 (5 ms).
40 CFR 180.544 - Methoxyfenozide; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
....0 Canistel 0.6 Cattle, fat 0.50 Cattle, meat 0.02 Citrus, oil 100 Coriander, leaves 30 Corn, field, forage 15 Corn, field, grain 0.05 Corn, field, refined oil 0.20 Corn, field, stover 125 Corn, pop, grain 0.05 Corn, pop, stover 125 Corn, sweet, forage 30 Corn, sweet, kernel plus cob with husks removed 0...
Grain refinement control in gas-shielded arc welding of aluminum tubing
NASA Technical Reports Server (NTRS)
Iceland, W. F.; Whiffen, E. L.
1974-01-01
When sections are being welded, operator varies pulse rate of power supply and simultaneously monitors signal on oscilloscope until rate is found which produces maximum arc gas voltage. Remainder of welding is performed with power supply set at this pulse rate, producing desired maximum weld puddle agitation and fine uniform weld of grain structure.
40 CFR 180.589 - Boscalid; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., dried shelled, except soybean, subgroup 6C, except cowpea, field pea and grain lupin 2.5 Pea and bean, succulent shelled, subgroup 6B, except cowpea 0.6 Peanut 0.05 Peanut, meal 0.15 Peanut, refined oil 0.15... Cotton, undelinted seed 0.05 Cowpea, seed 0.1 Flax, seed 3.5 Grain, cereal, forage, fodder and straw...
40 CFR 180.589 - Boscalid; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., dried shelled, except soybean, subgroup 6C, except cowpea, field pea and grain lupin 2.5 Pea and bean, succulent shelled, subgroup 6B, except cowpea 0.6 Peanut 0.05 Peanut, meal 0.15 Peanut, refined oil 0.15... Cotton, undelinted seed 0.05 Cowpea, seed 0.1 Flax, seed 3.5 Grain, cereal, forage, fodder and straw...
Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel.
Inoue, Tadanobu; Kimura, Yuuji; Ochiai, Shojiro
2012-06-01
A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength-toughness balance of the developed steels was markedly better than that of conventionally quenched and tempered steel with a martensitic structure. In particular, the static fracture toughness of the UFEG steel, having a yield strength of 1.86 GPa at ambient temperature, was improved by more than 40 times compared with conventional steel having a yield strength of 1.51 GPa. Furthermore, even at 77 K, the fracture toughness of the UFEG steel was about eight times higher than that of the conventional and UFG steels, despite the high strength of the UFEG steel (2.26 GPa). The UFG steel exhibited brittle fracture behavior at 77 K, as did the conventional steel, and no dimple structure was observed on the fracture surface. Therefore, it is difficult to improve the low-temperature toughness of the UFG steel by grain refinement only. The shape of crystal grains plays an important role in delamination toughening, as do their refinement and orientation.
Thermomechanical processing of aluminum micro-alloyed with Sc, Zr, Ti, B, and C
NASA Astrophysics Data System (ADS)
McNamara, Cameron T.
Critical exploration of the minimalistic high strength low alloy aluminum (HSLA-Al) paradigm is necessary for the continued development of advanced aluminum alloys. In this study, scandium (Sc) and zirconium (Zr) are examined as the main precipitation strengthening additions, while magnesium (Mg) is added to probe the synergistic effects of solution and precipitation hardening, as well as the grain refinement during solidification afforded by a moderate growth restriction factor. Further, pathways of recrystallization are explored in several potential HSLA-Al syste =ms sans Sc. Aluminum-titanium-boron (Al-Ti-B) and aluminum-titanium-carbon (Al-Ti-C) grain refining master alloys are added to a series of Al-Zr alloys to examine both the reported Zr poisoning effect on grain size reduction and the impact on recrystallization resistance through the use of electron backscattered diffraction (EBSD) imaging. Results include an analysis of active strengthening mechanisms and advisement for both constitution and thermomechanical processing of HSLA-Al alloys for wrought or near-net shape cast components. The mechanisms of recrystallization are discussed for alloys which contain a bimodal distribution of particles, some of which act as nucleation sites for grain formation during annealing and others which restrict the growth of the newly formed grains.
NASA Astrophysics Data System (ADS)
Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Lv, Zhenhua
2016-11-01
The isothermal and non-isothermal multi-pass compression tests of centrifugal casting 42CrMo steel were conducted on a Gleeble-3500 thermal simulation machine. The effects of compression passes and finishing temperatures on deformation behavior and microstructure evolution were investigated. It is found that the microstructure is homogeneous with equiaxed grains, and the flow stress does not show significant change with the increase in passes, while the peak softening coefficient increases first and then decreases during inter-pass. Moreover, the dominant mechanisms of controlled temperature and accumulated static recrystallization for grain refinement and its homogeneous distribution are found after 5 passes deformation. As the finishing temperature increases, the flow stress decreases gradually, but the dynamic recrystallization accelerates and softening effect increases, resulting in the larger grain size and homogeneous microstructure. The microhardness decreases sharply because the sufficient softening occurs in microstructure. When the finishing temperature is 890 °C, the carbide particles are precipitated in the vicinity of the grain boundaries, thus inhibiting the dislocation motion. Thus, the higher finishing temperature (≥970 °C) for centrifugal casting 42CrMo alloy should be avoided in non-isothermal multi-pass deformation, which is beneficial to grain refinement and properties improvement.
Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel
Inoue, Tadanobu; Kimura, Yuuji; Ochiai, Shojiro
2012-01-01
A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength–toughness balance of the developed steels was markedly better than that of conventionally quenched and tempered steel with a martensitic structure. In particular, the static fracture toughness of the UFEG steel, having a yield strength of 1.86 GPa at ambient temperature, was improved by more than 40 times compared with conventional steel having a yield strength of 1.51 GPa. Furthermore, even at 77 K, the fracture toughness of the UFEG steel was about eight times higher than that of the conventional and UFG steels, despite the high strength of the UFEG steel (2.26 GPa). The UFG steel exhibited brittle fracture behavior at 77 K, as did the conventional steel, and no dimple structure was observed on the fracture surface. Therefore, it is difficult to improve the low-temperature toughness of the UFG steel by grain refinement only. The shape of crystal grains plays an important role in delamination toughening, as do their refinement and orientation. PMID:27877493
NASA Astrophysics Data System (ADS)
Xie, Siyao; Li, Ruidi; Yuan, Tiechui; Chen, Chao; Zhou, Kechao; Song, Bo; Shi, Yusheng
2018-02-01
Although laser cladding has find its widespread application in surface hardening, this technology has been significantly limited by the solidification crack, which usually initiates along grain boundary due to the brittle precipitation in grain boundary and networks formation during the laser rapid melting/solidification process. This paper proposed a novel laser cladding technology assisted by friction stir processing (FSP) to eliminate the usual metallurgical defects by the thermomechanical coupling effect of FSP with the Ni-Cr-Fe as representative coating material. By the FSP assisted laser cladding, the crack in laser cladding Ni-Cr-Fe coating was eliminated and the coarse networks of laser cladding coating was transformed into dispersed nanoparticles. Moreover, the plastic layers with thicknesses 47-140 μm can be observed, with gradient grain refinement from substrate to the top surface in which grain size reached 300 nm and laser photocoagulation net second phase crushed in the layer. In addition, cracks closed in the plastic zone. The refinement of grain resulted the hardness increased to over 400 HV, much higher than the 300 HV of the laser cladding structure. After FSP, the friction coefficient decreased from 0.6167 to 0.5645 which promoted the wear resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Cong, E-mail: xucong55555@gmail.com; Xiao, Wenlong, E-mail: wlxiao@buaa.edu.cn; Hanada, Shuji
2015-12-15
Effect of scandium (Sc) additions on the microstructure, mechanical properties and fracture behavior of Al–Si–Mg casting alloy (F357) were systematically investigated. It was found that Sc addition caused a multi-refining efficiency on the microstructure of as-cast F357 alloy, including refinement of grains and secondary dendrite arm spacing (SDAS), modification of eutectic Si and harmless disposal of β-Al{sub 5}FeSi phase. Subsequent T6 heat treatment had further induced the complete spheroidization of eutectic Si and precipitation of fine secondary Al{sub 3}Sc dispersoids in the Sc modified alloys. Thus the mechanical properties, especially the ductility, were significantly enhanced by the addition of Scmore » combined with the heat treatment. The highest ultimate tensile strength, yield strength and elongation were achieved in 0.8 wt.% Sc modified F357 alloy combined with T6 heat treatment. Furthermore, fractographic examinations indicated that the ductile fracture mechanism served as a dominate role in the modified alloys due to the formation of fine, deep and uniformly distributed dimples. - Highlights: • Detailed characterization of the multi-refining microstructure of Sc modified F357 alloy was performed. • The multi-refinement was proposed to refine grain and SDAS, modify eutectic Si and β-phase. • Sc modifier combined with T6 treatment is effective in improving tensile properties. • Modification of eutectic Si in F357 alloy with Sc is consistent with the IIT mechanism.« less
Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue
NASA Astrophysics Data System (ADS)
Su, Yun-Shuai; Yu, Shu-Rong; Li, Shu-Xin; He, Yan-Ni
2017-12-01
Wind turbine gearbox bearings fail with the service life is much shorter than the designed life. Gearbox bearings are subjected to rolling contact fatigue (RCF) and they are observed to fail due to axial cracking, surface flaking, and the formation of white etching areas (WEAs). The current study reviewed these three typical failure modes. The underlying dominant mechanisms were discussed with emphasis on the formation mechanism of WEAs. Although numerous studies have been carried out, the formation of WEAs remains unclear. The prevailing mechanism of the rubbing of crack faces that generates WEAs was questioned by the authors. WEAs were compared with adiabatic shear bands (ASBs) generated in the high strain rate deformation in terms of microstructural compositions, grain refinement, and formation mechanism. Results indicate that a number of similarities exist between them. However, substantial evidence is required to verify whether or not WEAs and ASBs are the same matters.
NASA Astrophysics Data System (ADS)
Liu, Yichi; Liu, Debao; You, Chen; Chen, Minfang
2015-09-01
The aim of this study was to investigate the effect of grain size on the corrosion resistance of pure magnesium developed for biomedical applications. High-purity magnesium samples with different grain size were prepared by the cooling rate-controlled solidification. Electrochemical and immersion tests were employed to measure the corrosion resistance of pure magnesium with different grain size. The electrochemical polarization curves indicated that the corrosion susceptibility increased as the grain size decrease. However, the electrochemical impedance spectroscopy (EIS) and immersion tests indicated that the corrosion resistance of pure magnesium is improved as the grain size decreases. The improvement in the corrosion resistance is attributed to refine grain can produce more uniform and density film on the surface of sample.
Laser Surface Treatment and Modification of Aluminum Alloy Matrix Composites
NASA Astrophysics Data System (ADS)
Abbass, Muna Khethier
2018-02-01
The present work aimed to study the laser surface treatment and modification of Al-4.0%Cu-1.0%Mg alloy matrix composite reinforced with 10%SiC particles produced by stir casting. The specimens of the base alloy and composite were irradiated with an Nd:YAG laser of 1000 mJ, 1064 nm and 3 Hz . Dry wear test using the pin-on -disc technique at different sliding times (5-30 min) at a constant applied load and sliding speed were performed before and after laser treatment. Micro hardness and wear resistance were increased for all samples after laser hardening treatment. The improvement of these properties is explained by microstructural homogenization and grain refinement of the laser treated surface. Modification and refinement of SiC particles and grain refinement in the microstructure of the aluminum alloy matrix (α-Al) were observed by optical and SEM micrographs. The highest increase in hardness was 21.4% and 26.2% for the base alloy and composite sample respectively.
Characteristics of ADC12/nano Al2O3composites with Addition of Ti Produced By Stir Casting Method
NASA Astrophysics Data System (ADS)
Zulfia, A.; Krisiphala; Ferdian, D.; Utomo, B. W.; Dhaneswara, D.
2018-03-01
The mechanical properties and microstructure of ADC12/nano Al2O3 matrix composites have been studied in this work. The composites were produced by stir casting method. ADC 12 as matrix composites was combined by Mg and Ti. The addition of Ti was varied from 0.02 to 0.08 wt-% as grain refinement wetting to improve mechanical properties such as tensile strength, hardness and wear resistance, while Mg addition was to promote wetting between ADC 12 and nano Al2O3. The optimum tensile strength was found at 0.04 wt-% addition of Ti with value of 132.5 MPa, further adding more Ti cause a poisoning mechanism that will hindered the grain refining process and reduce the tensile strength. The hardness and wear resistance of composites would also increase because of the refinement process. and the added Magnesium in the material that will form Mg2Si primary phases who have a high hardness value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yanxia
2017-01-15
Precipitate redistribution and texture evolution are usually two concurrent aspects accompanying grain refinement induced by various surface treatment. However, the detailed precipitate redistribution characteristics and process, as well as crystallographic texture in the surface refined grain layer, are still far from full understanding. In this study, we focused on the microstructural and crystallographic features of the sliding friction treatment (SFT) induced surface deformation layer in a 7050 aluminum alloy. With the combination of transmission electron microscopy (TEM) and high angle angular dark field scanning TEM (HAADF-STEM) observations, a surface ultrafine grain (UFG) layer composed of both equiaxed and lamellar ultrafinemore » grains and decorated by high density of coarse grain boundary precipitates (GBPs) were revealed. Further precession electron diffraction (PED) assisted orientation mapping unraveled that high angle grain boundaries rather than low angle grain boundaries are the most favorable nucleation sites for GBPs. The prominent precipitate redistribution can be divided into three successive and interrelated stages, i.e. the mechanically induced precipitate dissolution, solute diffusion and reprecipitation. The quantitative prediction based on pipe diffusion along dislocations and grain boundary diffusion proved the distribution feasibility of GBPs around UFGs. Based on PED and electron backscatter diffraction (EBSD) analyses, the crystallographic texture of the surface UFG layer was identified as a shear texture composed of major rotated cube texture (001) 〈110〉 and minor (111) 〈112〉, while that of the adjoining lamellar coarse grained matrix was pure brass. The SFT induced surface severe shear deformation is responsible for texture evolution. - Highlights: •The surface ultrafine grain layer in a 7050 aluminum alloy was focused. •Precipitate redistribution and texture evolution were discussed. •The quantitative prediction proved the distribution feasibility of GBPs. •Precession electron diffraction orientation mapping showed a shear texture.« less
Engineered plant biomass feedstock particles
Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA
2011-10-18
A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jinlong, Lv, E-mail: ljlbuaa@126.com; State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084; Tongxiang, Liang, E-mail: ljltsinghua@126.com
The nanocrystalline pure nickels with different grain orientations were fabricated by direct current electrodeposition process. The grain size slightly decreased with the increasing of electrodeposition solution temperature. However, grain orientation was affected significantly. Comparing with samples obtained at 50 °C and 80 °C, sample obtained at 20 °C had the strongest (111) orientation plane which increased electrochemical corrosion resistance of this sample. At the same time, the lowest (111) orientation plane deteriorated electrochemical corrosion resistance of sample obtained at 50 °C. - Graphical abstract: The increased electrodeposition temperature promoted slightly grain refinement. The grain orientation was affected significantly by electrodepositionmore » solution temperature. The (111) orientation plane of sample increased significantly corrosion resistance. Display Omitted.« less
High-rate squeezing process of bulk metallic glasses
Fan, Jitang
2017-01-01
High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials. PMID:28338092
High-rate squeezing process of bulk metallic glasses
NASA Astrophysics Data System (ADS)
Fan, Jitang
2017-03-01
High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials.
Schlossberg, Marc; Johnson-Shelton, Deb; Evers, Cody; Moreno, Geraldine
Researchers use measures of street connectivity to assess neighborhood walkability and many studies show a relationship between neighborhood design and walking activity. Yet, the core of those connectivity measures are based on constructs designed for analyzing automobile mobility - the street network - not pedestrian movement. This paper examines the effect of a finer grained characterization of street connectivity and illustrates the idea using parent ratings of street and intersection walkability for children throughout a suburban school district in Oregon. Several policy and practice recommendations are presented, including a discussion that extends Michael Southworth's (1993; 2005) foundational representation of streets and the walkable city using a refined, more pedestrian-centered approach to visualizing connectivity and walkable urban form.
High-rate squeezing process of bulk metallic glasses.
Fan, Jitang
2017-03-24
High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials.
NASA Astrophysics Data System (ADS)
Naghizadeh, Meysam; Mirzadeh, Hamed
2018-03-01
Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.
Grain refinement of 7075Al alloy microstructures by inoculation with Al-Ti-B master alloy
NASA Astrophysics Data System (ADS)
Hotea, V.; Juhasz, J.; Cadar, F.
2017-05-01
This paper aims to bring some clarification on grain refinement and modification of high strength alloys used in aerospace technique. In this work it was taken into account 7075 Al alloy, and the melt treatment was carried out by placing in the form of master alloy wire ternary AlTiB the casting trough at 730°C. The morphology of the resulting microstructures was characterized by optical microscopy. Micrographs unfinished and finished with pre-alloy containing ternary Al5Ti1B evidence fine crystals, crystal containing no columnar structure and highlights the size of the dendrites, and intermetallic phases occurring at grain boundaries in Al-Zn-Mg-Cu alloy. It has been found that these intermetallic compounds are MgZn2 type. AlTiB master alloys finishing ensures a fine eutectic structure, which determines the properties of hardware and improving the mechanical properties of aluminum alloys used in aeronautical engineering.
Improvement of mechanical properties on metastable stainless steels by reversion heat treatments
NASA Astrophysics Data System (ADS)
Mateo, A.; Zapata, A.; Fargas, G.
2013-12-01
AISI 301LN is a metastable austenitic stainless steel that offers an excellent combination of high strength and ductility. This stainless grade is currently used in applications where severe forming operations are required, such as automotive bodies. When these metastable steels are plastically deformed at room temperature, for example by cold rolling, austenite transforms to martensite and, as a result, yield strength increases but ductility is reduced. Grain refinement is the only method that allows improving strength and ductility simultaneously. Several researchers have demonstrated that fine grain AISI 301LN can be obtained by heat treatment after cold rolling. This heat treatment is called reversion because it provokes the reversion of strain induced martensite to austenite. In the present work, sheets of AISI 301LN previously subjected to 20% of cold rolling reduction were treated and a refined grain austenitic microstructure was obtained. Mechanical properties, including fatigue limit, were determined and compared with those corresponding to the steel both before and after the cold rolling.
NASA Astrophysics Data System (ADS)
Naghizadeh, Meysam; Mirzadeh, Hamed
2018-06-01
Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.
NASA Astrophysics Data System (ADS)
Kawasaki, Megumi; Lee, Han-Joo; Choi, In-Chul; Jang, Jae-il; Ahn, Byungmin; Langdon, Terence G.
2014-08-01
Severe plastic deformation (SPD) is an attractive processing method for refining microstructures of metallic materials to give ultrafine grain sizes within the submicrometer to even the nanometer levels. Experiments were conducted to discuss the evolution of hardness, microstructure and strain rate sensitivity, m, in a Zn-22% Al eutectoid alloy processed by high- pressure torsion (HPT). The data from microhardness and nanoindentation hardness measurements revealed that there is a significant weakening in the Zn-Al alloy during HPT despite extensive grain refinement. Excellent room-temperature (RT) plasticity was observed in the alloy after HPT from nanoindentation creep in terms of an increased value of m. The microstructural changes with increasing numbers of HPT turns show a strong correlation with the change in the m value. Moerover, the excellent RT plasticity in the alloy is discussed in terms of the enhanced level of grain boundary sliding and the evolution of microsturucture.
40 CFR 180.544 - Methoxyfenozide; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Canistel 0.6 Cattle, fat 0.50 Cattle, meat 0.02 Coriander, leaves 30 Corn, field, forage 15 Corn, field, grain 0.05 Corn, field, refined oil 0.20 Corn, field, stover 125 Corn, pop, grain 0.05 Corn, pop, stover 125 Corn, sweet, forage 30 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 60...
Code of Federal Regulations, 2012 CFR
2012-07-01
... or on the food and feed commodities of corn; corn, field, flour; corn, field, forage; corn, field, grain; corn, field, grits; corn, field, meal; corn, field, refined oil; corn, field, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husk removed; corn, sweet, stover; and corn, pop, grain and...
40 CFR 180.544 - Methoxyfenozide; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 0.6 Cattle, fat 0.50 Cattle, meat 0.02 Cherimoya 0.60 Citrus, oil 100 Corn, field, forage 15 Corn, field, grain 0.05 Corn, field, refined oil 0.20 Corn, field, stover 125 Corn, pop, grain 0.05 Corn, pop, stover 125 Corn, sweet, forage 30 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet...
Code of Federal Regulations, 2014 CFR
2014-07-01
... or on the food and feed commodities of corn; corn, field, flour; corn, field, forage; corn, field, grain; corn, field, grits; corn, field, meal; corn, field, refined oil; corn, field, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husk removed; corn, sweet, stover; and corn, pop, grain and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... or on the food and feed commodities of corn; corn, field, flour; corn, field, forage; corn, field, grain; corn, field, grits; corn, field, meal; corn, field, refined oil; corn, field, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husk removed; corn, sweet, stover; and corn, pop, grain and...
Mahbooba, Zaynab; West, Harvey; Harrysson, Ola; ...
2016-12-02
In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricatedmore » Ti-6Al-4V + B indicate that the addition of 0.25–1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Furthermore, despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahbooba, Zaynab; West, Harvey; Harrysson, Ola
In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricatedmore » Ti-6Al-4V + B indicate that the addition of 0.25–1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Furthermore, despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.« less
Effect of Microstructure on the Mechanical Properties of Extruded Magnesium and a Magnesium Alloy
NASA Astrophysics Data System (ADS)
McGhee, Paul
The main objective of this research was to investigate the relationship between the fatigue behavior and crystallographic texture evolution of magnesium (Mg) alloys with a range of microalloying element content processed under various extrusion conditions. Several Mg alloys were processed under a range of extrusion temperatures, extrusion ratios, and alloying content and tested under monotonic and cyclic fatigue loading conditions: fully-reversed condition tested at strain amplitudes of 0.15% - 1.00% in strain-control mode. After fatigue testing, Mg microstructural analysis was performed using SEM, TEM, optical microscopy, and X-ray diffraction techniques. Microstructural observations revealed significant grain refinement through a combination of zirconium (Zr) addition and hot-extrusion, producing fine equiaxed grain structure with grain sizes ranging between 1-5 microm. Texture analysis and partial compression testing results showed that the initial texture of the extruded alloy gradually evolved upon compressive loading along the c-axes inducing extension twinning creating a strong basal texture along the extrusion direction. Full tensile and compression testing at room temperature showed that the combination of hot extrusion and Zr addition can further refine the grains of the Mg alloys microstructure and enhance the texture while simultaneously enhancing the mechanical properties.
NASA Astrophysics Data System (ADS)
Ghosh, P.; Bhowmik, R. N.; Das, M. R.; Mitra, P.
2017-04-01
We have studied the grain size dependent electrical conductivity, dielectric relaxation and magnetic field dependent current voltage (I - V) characteristics of nickel ferrite (NiFe2O4) . The material has been synthesized by sol-gel self-combustion technique, followed by ball milling at room temperature in air environment to control the grain size. The material has been characterized using X-ray diffraction (refined with MAUD software analysis) and Transmission electron microscopy. Impedance spectroscopy and I - V characteristics in the presence of variable magnetic fields have confirmed the increase of resistivity for the fine powdered samples (grain size 5.17±0.6 nm), resulted from ball milling of the chemical routed sample. Activation energy of the material for electrical charge hopping process has increased with the decrease of grain size by mechanical milling of chemical routed sample. The I - V curves showed many highly non-linear and irreversible electrical features, e.g., I - V loop and bi-stable electronic states (low resistance state-LRS and high resistance state-HRS) on cycling the electrical bias voltage direction during I-V curve measurement. The electrical dc resistance for the chemically routed (without milled) sample in HRS (∼3.4876×104 Ω) at 20 V in presence of magnetic field 10 kOe has enhanced to ∼3.4152×105 Ω for the 10 h milled sample. The samples exhibited an unusual negative differential resistance (NDR) effect that gradually decreased on decreasing the grain size of the material. The magneto-resistance of the samples at room temperature has been found substantially large (∼25-65%). The control of electrical charge transport properties under magnetic field, as observed in the present ferrimagnetic material, indicate the magneto-electric coupling in the materials and the results could be useful in spintronics applications.
ERIC Educational Resources Information Center
Chan, Hing Wan; Burgess Champoux, Teri; Reicks, Marla; Vickers, Zata; Marquart, Len
2008-01-01
Objectives: Recent dietary guidance recommends that children consume at least three servings of whole-grains daily. This study examined whether white whole-wheat (WWW) flour can be partially substituted for refined-wheat (RW) flour in pizza crust without affecting consumption by children in a school cafeteria. Methods: Subjects included first to…
NASA Astrophysics Data System (ADS)
Hu, Nan; Gao, Nong; Starink, Marco J.
2016-11-01
Anodic titanium dioxide nanotube (TNT) arrays have wide applications in photocatalytic, catalysis, electronics, solar cells and biomedical implants. When TNT coatings are combined with severe plastic deformation (SPD), metal processing techniques which efficiently improve the strength of metals, a new generation of biomedical implant is made possible with both improved bulk and surface properties. This work investigated the effect of processing by high pressure torsion (HPT) and different mechanical preparations on the substrate and subsequently on the morphology of TNT layers. HPT processing was applied to refine the grain size of commercially pure titanium samples and substantially improved their strength and hardness. Subsequent anodization at 30 V in 0.25 wt.% NH4F for 2 h to form TNT layers on sample surfaces prepared with different mechanical preparation methods was carried out. It appeared that the local roughness of the titanium surface on a microscopic level affected the TNT morphology more than the macroscopic surface roughness. For HPT-processed sample, the substrate has to be pre-treated by a mechanical preparation finer than 4000 grit for HPT to have a significant influence on TNTs. During the formation of TNT layers the oxide dissolution rate was increased for the ultrafine-grained microstructure formed due to HPT processing.
... include sugars added during food processing and refining. Complex carbohydrates include whole grain breads and cereals, starchy vegetables and legumes. Many of the complex carbohydrates are good sources of fiber. For a healthy ...
Empirical Analysis and Refinement of Expert System Knowledge Bases
1988-08-31
refinement. Both a simulated case generation program, and a random rule basher were developed to enhance rule refinement experimentation. *Substantial...the second fiscal year 88 objective was fully met. Rule Refinement System Simulated Rule Basher Case Generator Stored Cases Expert System Knowledge...generated until the rule is satisfied. Cases may be randomly generated for a given rule or hypothesis. Rule Basher Given that one has a correct
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, X., E-mail: Xiujuan.jiang@pnnl.gov
Soft magnetic materials are often limited in scalability due to conventional processes that do not retain beneficial microstructures, and their associated physical properties, during densification. In this work, friction consolidation (FC) has been studied to fabricate Fe−Si soft magnetic materials from gas-atomized powder precursors. Fe−Si powder is consolidated using variable pressure and tool rotation speed in an effort to evaluate this unique densification approach for potential improvements in magnetic properties. FC, due to the high shear deformation involved, is shown to result in uniform gradual grain structure refinement across the consolidated workpiece from the center nearest the tool to themore » edge. Magnetic properties along different orientations indicate little, if any, textural orientation in the refined grain structure. The effect of annealing on the magnetic properties is evaluated and shown to decrease coercivity. FC processing was able to retain the magnetization of the original gas-atomized powders but further process optimization is needed to reach the optimal coercivity for the soft magnetic materials applications. - Highlights: •Friction stir processing was utilized to consolidate Fe−Si soft magnetic powders. •The resultant microstructure and magnetic properties were correlated to the processing conditions. •Friction consolidation refined the grain size of the materials by ~ 40%. •Annealing successfully reduced the coercivity induced by the stress during processing. •The results shine light on the possible scaling up of nanostructured materials.« less
NASA Astrophysics Data System (ADS)
Li, Hu-Tian; Zhao, Pizhi; Yang, Rongdong; Patel, Jayesh B.; Chen, Xiangfu; Fan, Zhongyun
2017-10-01
Melt-conditioned, direct-chill (MC-DC) casting is an emerging technology to manipulate the solidification process by melt conditioning via intensive shearing in the sump during DC casting to tailor the solidification microstructure and defect formation. When using MC-DC casting technology in an industrial scale DC cast billet of an A4032 aluminum alloy, significant grain refinement and uniform microstructure can be achieved in the primary α-Al phase with fine secondary dendritic arm spacing (SDAS). Improved macrosegregation is quantitatively characterized and correlated with the suppression of channel segregation. The mechanisms for the prevention of channel segregation are attributed to the increased local cooling rate in the liquid-solid phase region in the sump and the formation of fine equiaxed dendritic grains under intensive melt shearing during MC-DC casting. A critical cooling rate has been identified to be around 0.5 to 1 K/s (°C/s) for the channel segregation to happen in the investigated alloy based on quantitative metallographic results of SDAS. Reduction and refinement of microporosity is attributed to the improved permeability in the liquid-solid phase region estimated by the Kozeny-Carman relationship. The potential improvement in the mechanical properties achievable in MC-DC cast billets is indicated by the finer and more uniform forging streamline in the forgings of MC-DC cast billet.
NASA Astrophysics Data System (ADS)
Mandal, Arka; Patra, Sudipta; Chakrabarti, Debalay; Singh, Shiv Brat
2017-12-01
A lean duplex stainless steel (LDSS) has been prepared with low-N content and processed by different thermo-mechanical schedules, similar to the industrial processing that comprised hot-rolling, cold-rolling, and annealing treatments. The microstructure developed in the present study on low-N LDSS has been compared to that of high-N LDSS as reported in the literature. As N is an austenite stabilizer, lower-N content reduced the stability of austenite and the austenite content in low-N LDSS with respect to the conventional LDSS. Due to low stability of austenite in low-N LDSS, cold rolling resulted in strain-induced martensitic transformation and the reversion of martensite to austenite during subsequent annealing contributed to significant grain refinement within the austenite regions. δ-ferrite grains in low-N LDSS, on the other hand, are refined by extended recovery mechanism. Initial solidification texture (mainly cube texture) within the δ-ferrite region finally converted into gamma-fiber texture after cold rolling and annealing. Although MS-brass component dominated the austenite texture in low-N LDSS after hot rolling and cold rolling, that even transformed into alpha-fiber texture after the final annealing. Due to the significant grain refinement and formation of beneficial texture within both austenite and ferrite, good combination of strength and ductility has been achieved in cold-rolled and annealed sample of low-N LDSS steel.
Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan
2017-01-01
The TiCp/Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiCp/Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu–Cr–Zr alloys to fabricate the nano-sized TiCp-reinforced Cu–Cr–Zr composites. Results show that nano-sized TiCp can effectively refine the grain size of Cu–Cr–Zr alloys. The morphologies of grain in Cu–Cr–Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiCp. The grain size decreased from 82 to 28 μm with the nano-sized TiCp content. Compared with Cu–Cr–Zr alloys, the ultimate compressive strength (σUCS) and yield strength (σ0.2) of 4 wt% TiCp-reinforced Cu–Cr–Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu–Cr–Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiCp-reinforced Cu–Cr–Zr composites decreased with the increasing TiCp content under abrasive particles. The eletrical conductivity of Cu–Cr–Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu–Cr–Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively. PMID:28786937
NASA Astrophysics Data System (ADS)
Zhang, Tao; Shen, Jun; Sang, Jia-Xin; Li, Yang; He, Pei-Pei
2015-08-01
In this paper, Mg-6Zn-3Cu- xSn (ZC63- xSn) magnesium alloys with different Sn contents (0, 1, 2, 4 wt pct) were fabricated and subjected to different heat treatments. The microstructures and mechanical properties of the obtained ZC63- xSn samples were investigated by optical microscopy, X-ray diffraction, scanning electron microscopy, Vickers hardness testing, and tensile testing. It was found that the As-cast Mg-6Zn-3Cu (ZC63) magnesium alloy mainly contained α-Mg grains and Mg(Zn,Cu) particles. Sn dissolved in α-Mg grains when Sn content was below 2 wt pct while Mg2Sn phase forms in the case of Sn content was above 4 wt pct. Addition of Sn refined both α-Mg grains and Mg(Zn,Cu) particles, and increased the volume fraction of Mg(Zn,Cu) particles. Compared with the Sn-free alloy, the microhardness of Sn-containing alloys increased greatly and that of As-extrude ZC63-4Sn sample achieved the highest value. The strength of ZC63 magnesium alloy was significantly enhanced because of Sn addition, which was attributed to grain refinement strengthening, solid solution strengthening, and precipitation strengthening. Furthermore, the ultimate yield stress, yield strength, and elongation of ZC63- xSn magnesium alloys were increased owing to the deceasing grain size induced by extrusion process.
NASA Astrophysics Data System (ADS)
Inoue, Tadanobu; Yin, Fuxing; Kimura, Yuuji; Tsuzaki, Kaneaki; Ochiai, Shojiro
2010-02-01
Bulk ultrafine-grained (UFG) low-carbon steel bars were produced by caliber rolling, and the impact and tensile properties were investigated. Initial samples with two different microstructures, ferrite-pearlite and martensite (or bainite), were prepared and then caliber rolling was conducted at 500 °C. The microstructures in the rolled bars consisted of an elongated UFG structure with a strong α-fiber texture. The rolled bar consisting of spheroidal cementite particles that distributed uniformly in the elongated ferrite matrix of transverse grain sizes 0.8 to 1.0 μm exhibited the best strength-ductility balance and impact properties. Although the yield strength in the rolled bar increased 2.4 times by grain refinement, the upper-shelf energy did not change, and its value was maintained from 100 °C to -40 °C. In the rolled bars, cracks during an impact test branched parallel to the longitudinal direction of the test samples as temperatures decreased. Delamination caused by such crack branching appeared, remarkably, near the ductile-to-brittle transition temperature (DBTT). The effect of delamination on the impact properties was associated with crack propagation on the basis of the microstructural features in the rolled bars. In conclusion, the strength-toughness balance is improved by refining crystal grains and controlling their shape and orientation; in addition, delamination effectively enhances the low-temperature toughness.
Ruan, Ying; Mohajerani, Amirhossein; Dao, Ming
2016-01-01
Rapid dendrite growth in single- or dual-phase multicomponent alloys can be manipulated to improve the mechanical properties of such metallic materials. Rapid growth of (αFe) dendrites was realized in an undercooled Fe-5Ni-5Mo-5Ge-5Co (wt.%) multinary alloy using the glass fluxing method. The relationship between rapid dendrite growth and the micro-/nano-mechanical properties of the alloy was investigated by analyzing the grain refinement and microstructural evolution resulting from the rapid dendrite growth. It was found that (αFe) dendrites grow sluggishly within a low but wide undercooling range. Once the undercooling exceeds 250 K, the dendritic growth velocity increases steeply until reaching a plateau of 31.8 ms−1. The increase in the alloy Vickers microhardness with increasing dendritic growth velocity results from the hardening effects of increased grain/phase boundaries due to the grain refinement, the more homogeneous distribution of the second phase along the boundaries, and the more uniform distribution of solutes with increased contents inside the grain, as verified also by nanohardness maps. Once the dendritic growth velocity exceeds ~8 ms−1, the rate of Vickers microhardness increase slows down significantly with a further increase in dendritic growth velocity, owing to the microstructural transition of the (αFe) phase from a trunk-dendrite to an equiaxed-grain microstructure. PMID:27539749
Chen, Lianxi; Sheng, Yinying; Zhao, Xueyang; Liu, Hui; Li, Wei
2018-01-01
The stress corrosion cracking (SCC) properties of the bi-directional forged (BDF) Mg-4Zn-0.6Zr-xSr (ZK40-xSr, x = 0, 0.4, 0.8, 1.2, 1.6 wt %) alloys were studied by the slow strain rate tensile (SSRT) testing in modified simulated body fluid (m-SBF). The average grain size of the BDF alloys were approximately two orders of magnitude smaller than those of the as-cast alloys. However, grain refinement increased the hydrogen embrittlement effect, leading to a higher SCC susceptibility in the BDF ZK40-0/0.4Sr alloys. Apart from the grain refinements effect, the forging process also changed the distribution of second phase from the net-like shape along the grain boundary to a uniformly isolated island shape in the BDF alloys. The SCC susceptibility of the BDF ZK40-1.2/1.6Sr alloys were lower than those of the as-cast alloys. The change of distribution of the second phase suppressed the adverse effect of Sr on the SCC susceptibility in high Sr–containing magnesium alloys. The results indicated the stress corrosion behavior of magnesium alloys was related to the average grain size of matrix and the distribution and shape of the second phase. PMID:29614043
Structure and chemistry of the sorghum grain
USDA-ARS?s Scientific Manuscript database
Sorghum is grown around the world and often under harsh and variable environmental conditions. Combined with the high degree of genetic diversity present in sorghum, this can result in substantial variability in grain composition and grain quality. While similar to other cereal grains such as maize ...
40 CFR 180.555 - Trifloxystrobin; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pulp 1.0 Citrus, oil 38 Corn, field, forage 6.0 Corn, field, grain 0.05 Corn, field, stover 7 Corn, field, refined oil 0.1 Corn, pop, grain 0.05 Corn, pop, stover 7 Corn, sweet, cannery waste 0.6 Corn, sweet, forage 7.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 4.0 Egg 0.04...
40 CFR 180.582 - Pyraclostrobin; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 12.5 Citrus, oil 9.0 Coffee, bean, green 0.31 Corn, field, forage 5.0 Corn, field, grain 0.1 Corn, field, refined oil 0.2 Corn, field, stover 17.0 Corn, pop, grain 0.1 Corn, pop, stover 17.0 Corn, sweet, forage 5.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 23.0 Cotton, gin...
40 CFR 180.555 - Trifloxystrobin; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pulp 1.0 Citrus, oil 38 Corn, field, forage 6.0 Corn, field, grain 0.05 Corn, field, stover 7 Corn, field, refined oil 0.1 Corn, pop, grain 0.05 Corn, pop, stover 7 Corn, sweet, cannery waste 0.6 Corn, sweet, forage 7.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 4.0 Egg 0.04...
40 CFR 180.582 - Pyraclostrobin; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 12.5 Citrus, oil 9.0 Coffee, bean, green 0.31 Corn, field, forage 5.0 Corn, field, grain 0.1 Corn, field, refined oil 0.2 Corn, field, stover 17.0 Corn, pop, grain 0.1 Corn, pop, stover 17.0 Corn, sweet, forage 5.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 23.0 Cotton, gin...
40 CFR 180.555 - Trifloxystrobin; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Corn, field, forage 6.0 Corn, field, grain 0.05 Corn, field, stover 7 Corn, field, refined oil 0.1 Corn, pop, grain 0.05 Corn, pop, stover 7 Corn, sweet, cannery waste 0.6 Corn, sweet, forage 7.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 4.0 Egg 0.04 Fruit, citrus, group 10 0.6...
40 CFR 180.555 - Trifloxystrobin; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Corn, field, forage 6.0 Corn, field, grain 0.05 Corn, field, stover 7 Corn, field, refined oil 0.1 Corn, pop, grain 0.05 Corn, pop, stover 7 Corn, sweet, cannery waste 0.6 Corn, sweet, forage 7.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 4.0 Egg 0.04 Fruit, citrus, group 10 0.6...
40 CFR 180.555 - Trifloxystrobin; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... plus cob with husks removed 0.04 Corn, sweet, stover 4.0 Egg 0.04 Fruit, citrus, group 10 0.6 Fruit... Cattle, meat byproducts 0.1 Citrus, dried pulp 1.0 Citrus, oil 38 Coffee, green bean 2 0.02 Corn, field, forage 6.0 Corn, field, grain 0.05 Corn, field, stover 7 Corn, field, refined oil 0.1 Corn, pop, grain 0...
40 CFR 180.435 - Deltamethrin; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., stover 15 Cotton, refined oil 0.2 Cotton, undelinted seed 0.04 Egg 0.02 Fruit, pome, Group 11 0.2 Goat... Sorghum, grain, forage 0.5 Sorghum, grain, stover 1.0 Soybean, seed 0.1 Soybean, hulls 0.2 Starfruit* 0.2 Sunflower, seed 0.1 Tomato 0.2 Tomato, paste 1.0 Tomato, puree 1.0 Vegetable, cucurbit, Group 9 0.2...
40 CFR 180.435 - Deltamethrin; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., stover 15 Cotton, refined oil 0.2 Cotton, undelinted seed 0.04 Egg 0.02 Fruit, pome, Group 11 0.2 Goat... Sorghum, grain, forage 0.5 Sorghum, grain, stover 1.0 Soybean, seed 0.1 Soybean, hulls 0.2 Starfruit* 0.2 Sunflower, seed 0.1 Tomato 0.2 Tomato, paste 1.0 Tomato, puree 1.0 Vegetable, cucurbit, Group 9 0.2...
40 CFR 180.435 - Deltamethrin; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., stover 15 Cotton, refined oil 0.2 Cotton, undelinted seed 0.04 Egg 0.02 Fruit, pome, Group 11 0.2 Goat... Sorghum, grain, forage 0.5 Sorghum, grain, stover 1.0 Soybean, seed 0.1 Soybean, hulls 0.2 Starfruit* 0.2 Sunflower, seed 0.1 Tomato 0.2 Tomato, paste 1.0 Tomato, puree 1.0 Vegetable, cucurbit, Group 9 0.2...
40 CFR 180.435 - Deltamethrin; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., stover 15 Cotton, refined oil 0.2 Cotton, undelinted seed 0.04 Egg 0.02 Fruit, pome, Group 11 0.2 Goat... Sorghum, grain, forage 0.5 Sorghum, grain, stover 1.0 Soybean, seed 0.1 Soybean, hulls 0.2 Starfruit* 0.2 Sunflower, seed 0.1 Tomato 0.2 Tomato, paste 1.0 Tomato, puree 1.0 Vegetable, cucurbit, Group 9 0.2...
40 CFR 180.377 - Diflubenzuron; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Parts per million Almond, hulls 6.0 Barley, grain 0.06 Barley, hay 3.0 Barley, straw 1.8 Brassica, leafy greens, subgroup 5B 9.0 Cattle, meat byproducts 0.15 Citrus, oil 32 Fruit, citrus, group 10-10 3.0 Fruit... Peanut, refined oil 0.20 Pear 0.50 Pepper 1.0 Pistachio 0.06 Rice, grain 0.02 Rice, straw 0.8 Sheep, meat...
NASA Astrophysics Data System (ADS)
Li, Ji-heng; Yuan, Chao; Mu, Xing; Bao, Xiao-qian; Gao, Xue-xu
2018-04-01
The influences of initial microstructures on the mechanical properties and the recrystallization texture of magnetostrictive 0.1at% NbC-doped Fe83Ga17 alloys were investigated. The directionally solidified columnar-grained structure substantially enhanced the tensile elongation at intermediate temperatures by suppressing fracture along the transverse boundaries. Compared with tensile elongations of 1.0% at 300°C and 12.0% at 500°C of the hot-forged equiaxed-grained alloys, the columnar-grained alloys exhibited substantially increased tensile elongations of 21.6% at 300°C and 46.6% at 500°C. In the slabs for rolling, the introduction of <001>-oriented columnar grains also promotes the secondary recrystallization of Goss grains in the finally annealed sheets, resulting in an improvement of the saturation magnetostriction. For the columnar-grained specimens, the inhomogeneous microstructure and disadvantage in number and size of Goss grains are improved in the primarily annealed sheets, which is beneficial to the abnormal growth of Goss grains during the final annealing process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, O.S. Asiq; Wasekar, Nitin P.; Sundararajan, G.
Nanoindentation was performed on silicon carbide (SiC) reinforced pulse electrodeposited nickel-tungsten (Ni-W) composite coating. Addition of 5 vol.% of SiC in Ni-W coating increased the hardness from 10.31 ± 0.65 GPa to 14.32 ± 0.63 GPa and elastic modulus from 119.74 ± 3.15 GPa to 139.26 ± 2.09 GPa. Increased hardness and elastic modulus directly translates to the improved strengthening in the coating. An experimental investigation of strengthening mechanism was carried out in Ni-W-5 vol.% SiC alloy. Two simultaneous phenomena viz. grain refinement and increased internal strain was observed, which increased the dislocation density from 5.51 × 10{sup 18} m{supmore » −2} to 1.346 × 10{sup 19} m{sup −2} on reinforcement of 5 vol.% of SiC in Ni-W coating. Increased dislocation density promoted the formation of grain boundary misorientations and nano twinning. Low angle grain boundary, high angle grain boundary and nano twinning were identified using high resolution transmission electron microscope (HR-TEM) image and their role in strengthening mechanism was discussed in details. - Highlights: • SiC reinforced pulse electrodeposition Ni-W coating was deposited on steel. • Nanoindentation showed the increased mechanical properties on addition of SiC. • Grain refinement and increased internal strain was observed in Ni-W-SiC coating. • Dislocation density increased on reinforcement of SiC in Ni-W coating. • Increased dislocation density triggered grain boundary misorientation and twinning.« less
Microstructural modification of pure Mg for improving mechanical and biocorrosion properties.
Ahmadkhaniha, D; Järvenpää, A; Jaskari, M; Sohi, M Heydarzadeh; Zarei-Hanzaki, A; Fedel, M; Deflorian, F; Karjalainen, L P
2016-08-01
In this study, the effect of microstructural modification on mechanical properties and biocorrosion resistance of pure Mg was investigated for tailoring a load-bearing orthopedic biodegradable implant material. This was performed utilizing the friction stir processing (FSP) in 1-3 passes to refine the grain size. Microstructure was examined in an optical microscope and scanning electron microscope with an electron backscatter diffraction unit. X-ray diffraction method was used to identify the texture. Mechanical properties were measured by microhardness and tensile testing. Electrochemical impedance spectroscopy was applied to evaluate corrosion behavior. The results indicate that even applying a single pass of FSP refined the grain size significantly. Increasing the number of FSP passes further refined the structure, increased the mechanical strength and intensified the dominating basal texture. The best combination of mechanical properties and corrosion resistance were achieved after three FSP passes. In this case, the yield strength was about six times higher than that of the as-cast Mg and the corrosion resistance was also improved compared to that in the as-cast condition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fat, Sugar, Whole Grains and Heart Disease: 50 Years of Confusion.
Temple, Norman J
2018-01-04
During the 1970s some investigators proposed that refined carbohydrates, especially sugar and a low intake of dietary fiber, were major factors in coronary heart disease (CHD). This suggestion was eclipsed by the belief that an excess intake of saturated fatty acids (SFA) was the key dietary factor, a view that prevailed from roughly 1974 to 2014. Findings that have accumulated since 1990 inform us that the role of SFA in the causation of CHD has been much exaggerated. A switch from SFA to refined carbohydrates does not lower the ratio of total cholesterol to HDL-cholesterol in the blood and therefore does not prevent CHD. A reduced intake of SFA combined with an increased intake of polyunsaturated fatty acids lowers the ratio of total cholesterol to HDL-cholesterol; this may reduce the risk of CHD. The evidence linking carbohydrate-rich foods with CHD has been steadily strengthening. Refined carbohydrates, especially sugar-sweetened beverages, increase the risk of CHD. Conversely, whole grains and cereal fiber are protective. An extra one or 2 servings per day of these foods increases or decreases risk by approximately 10% to 20%.
Influence of attrition milling on nano-grain boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawers, J.; Cook, D.
1999-03-01
Nanostructured materials have a relatively large proportion of their atoms associated with the grain boundary, and the method used to develop the nano-grains has a strong influence on the resulting grain boundary structure. In this study, attrition milling iron powders and blends of iron powders produced micron-size particles composed of nano-size grains. Mechanical cold-working powder resulted in dislocation generation, multiplication, and congealing that produced grain refinement. As the grain size approached nano-dimensions, dislocations were no longer sustained within the grain and once generated, rapidly diffused to the grain boundary. Dislocations on the grain boundary strained the local lattice structure which,more » as the grain size decreased, became the entire grain. Mechanical alloying of substitutional aluminium atoms into iron powder resulted in the aluminium atoms substituting for iron atoms in the grain boundary cells and providing a grain boundary structure similar to that of the iron powder processed in argon. Attrition milling iron powder in nitrogen gas resulted in nitrogen atoms being adsorbed onto the particle surface. Continued mechanical milling infused the nitrogen atoms into interstitial lattice sites on the grain boundary which also contributed to expanding and straining the local lattice.« less
Dietary patterns and odds of Type 2 diabetes in Beirut, Lebanon: a case-control study.
Naja, Farah; Hwalla, Nahla; Itani, Leila; Salem, Maya; Azar, Sami T; Zeidan, Maya Nabhani; Nasreddine, Lara
2012-12-27
In Lebanon, Type 2 diabetes (T2D) has a major public health impact through high disease prevalence, significant downstream pathophysiologic effects, and enormous financial liabilities. Diet is an important environmental factor in the development and prevention of T2D. Dietary patterns may exert greater effects on health than individual foods, nutrients, or food groups. The objective of this study is to examine the association between dietary patterns and the odds of T2D among Lebanese adults. Fifty-eight recently diagnosed cases of T2D and 116 population-based age, sex, and place of residence matched control participants were interviewed. Data collection included a standard socio-demographic and lifestyle questionnaire. Dietary intake was evaluated by a semi-quantitative 97-item food frequency questionnaire. Anthropometric measurements including weight, height, waist circumference, and percent body fat were also obtained. Dietary patterns were identified by factor analysis. Multivariate logistic regression analysis was used to evaluate the associations of extracted patterns with T2D. Pearson correlations between these patterns and obesity markers, energy, and nutrient intakes were also examined. Four dietary patterns were identified: Refined Grains & Desserts, Traditional Lebanese, Fast Food and Meat & Alcohol. While scores of the "Refined Grains & Desserts" had the highest correlations with energy (r = 0.74) and carbohydrates (r = 0.22), those of the "Fast Food" had the highest correlation with fat intake (r = 0.34). After adjustment for socio-demographic and lifestyle characteristics, scores of the Refined Grains & Desserts and Fast Food patterns were associated with higher odds of T2D (OR: 3.85, CI: 1.13-11.23 and OR: 2.80, CI: 1.14-5.59; respectively) and scores of the Traditional Lebanese pattern were inversely associated with the odds of T2D (OR: 0.46, CI: 0.22-0.97). The findings of this study demonstrate direct associations of the Refined Grains & Desserts and Fast Food patterns with T2D and an inverse association between the Traditional Lebanese pattern and the disease among Lebanese adults. These results may guide the development of nutrition interventions for the prevention and management of T2D among Lebanese adults.
40 CFR 180.582 - Pyraclostrobin; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 13-07A 4.0 Canistel 0.6 Citrus, dried pulp 12.5 Citrus, oil 9.0 Coffee, green bean 1 0.3 Corn, field, forage 5.0 Corn, field, grain 0.1 Corn, field, refined oil 0.2 Corn, field, stover 17.0 Corn, pop, grain 0.1 Corn, pop, stover 17.0 Corn, sweet, forage 5.0 Corn, sweet, kernel plus cob with husks removed 0...
Structure-based coarse-graining for inhomogeneous liquid polymer systems.
Fukuda, Motoo; Zhang, Hedong; Ishiguro, Takahiro; Fukuzawa, Kenji; Itoh, Shintaro
2013-08-07
The iterative Boltzmann inversion (IBI) method is used to derive interaction potentials for coarse-grained (CG) systems by matching structural properties of a reference atomistic system. However, because it depends on such thermodynamic conditions as density and pressure of the reference system, the derived CG nonbonded potential is probably not applicable to inhomogeneous systems containing different density regimes. In this paper, we propose a structure-based coarse-graining scheme to devise CG nonbonded potentials that are applicable to different density bulk systems and inhomogeneous systems with interfaces. Similar to the IBI, the radial distribution function (RDF) of a reference atomistic bulk system is used for iteratively refining the CG nonbonded potential. In contrast to the IBI, however, our scheme employs an appropriately estimated initial guess and a small amount of refinement to suppress transfer of the many-body interaction effects included in the reference RDF into the CG nonbonded potential. To demonstrate the application of our approach to inhomogeneous systems, we perform coarse-graining for a liquid perfluoropolyether (PFPE) film coated on a carbon surface. The constructed CG PFPE model favorably reproduces structural and density distribution functions, not only for bulk systems, but also at the liquid-vacuum and liquid-solid interfaces, demonstrating that our CG scheme offers an easy and practical way to accurately determine nonbonded potentials for inhomogeneous systems.
NASA Astrophysics Data System (ADS)
Lardner, Timothy; Li, Minghui; Gachagan, Anthony
2014-02-01
Materials with a coarse grain structure are becoming increasingly prevalent in industry due to their resilience to stress and corrosion. These materials are difficult to inspect with ultrasound because reflections from the grains lead to high noise levels which hinder the echoes of interest. Spatially Averaged Sub-Aperture Correlation Imaging (SASACI) is an advanced array beamforming technique that uses the cross-correlation between images from array sub-apertures to generate an image weighting matrix, in order to reduce noise levels. This paper presents a method inspired by SASACI to further improve imaging using phase information to refine focusing and reduce noise. A-scans from adjacent array elements are cross-correlated using both signal amplitude and phase to refine delay laws and minimize phase aberration. The phase-based and amplitude-based corrected images are used as inputs to a two-dimensional cross-correlation algorithm that will output a weighting matrix that can be applied to any conventional image. This approach was validated experimentally using a 5MHz array a coarse grained Inconel 625 step wedge, and compared to the Total Focusing Method (TFM). Initial results have seen SNR improvements of over 20dB compared to TFM, and a resolution that is much higher.
Thermomechanical processing of microalloyed powder forged steels and a cast vanadium steel
NASA Astrophysics Data System (ADS)
Dogan, B.; Davies, T. J.
1985-09-01
The effects of controlled rolling on transformation behavior of two powder forged (P/F) microalloyed vanadium steels and a cast microalloyed vanadium steel were investigated. Rolling was carried out in the austenitic range below the recrystallization temperature. Equiaxed grain structures were produced in specimens subjected to different reductions and different cooling rates. The ferrite grain size decreased with increasing deformation and cooling rate. Ferrite nucleated on second phase particles, deformation bands, and on elongated prior austenite grain boundaries; consequently a high fractional ferrite refinement was achieved. Deformation raised the ferrite transformation start temperature while the time to transformation from the roll finish temperature decreased. Cooling rates in the cast steel were higher than in P/F steels for all four cooling media used, and the transformation start temperatures of cast steels were lower than that of P/F steel. Intragranular ferrite nucleation, which played a vital role in grain refinement, increased with cooling rate. Fully bainitic microstructures were formed at higher cooling rates in the cast steel. In the P/F steels inclusions and incompletely closed pores served as sites for ferrite nucleation, often forming a ‘secondary’ ferrite. The rolling schedule reduced the size of large pores and particle surface inclusions and removed interconnected porosity in the P/F steels.
Effect of Nb on Delayed Fracture Resistance of Ultra-High Strength Martensitic Steels
NASA Astrophysics Data System (ADS)
Song, Rongjie; Fonstein, Nina; Pottore, Narayan; Jun, Hyun Jo; Bhattacharya, Debanshu; Jansto, Steve
Ultra-high strength steels are materials of considerable interest for automotive and structural applications and are increasingly being used in those areas. Higher strength, however, makes steels more prone to hydrogen embrittlement (HE). The effects of Nb and other alloying elements on the hydrogen-induced delayed fracture resistance of cold rolled martensitic steels with ultra-high strength 2000 MPa were studied using an acid immersion test, thermal desorption analysis (TDA) and measuring of permeation. The microstructure was characterized by high resolution field emission Scanning Electron Microscopy (SEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). It was shown that the combined addition of Nb significantly improved the delayed fracture resistance of investigated steel. The addition of Nb to alloyed martensitic steels resulted in very apparent grain refinement of the prior austenite grain size. The Nb microalloyed steel contained a lower diffusible hydrogen content during thermal desorption analysis as compared to the base steel and had a higher trapped hydrogen amount after charging. The reason that Nb improved the delayed fracture resistance of steels can be attributed mostly to both hydrogen trapping and grain refinement.
NASA Astrophysics Data System (ADS)
Kim, Y. H.; Kim, W. J.
2015-03-01
This study reported that a combination of strip casting and high-ratio differential speed rolling (HRDSR) can produce flame-resistant Mg alloy sheets (0.7 wt%Ca-AZ31: 0.7Ca-AZ31) with good room-temperature mechanical properties and high-temperature formability. HRDSR effectively refined the coarse microstructure of the strip-casting processed 0.7Ca-AZ31 alloy. As the result, the (true) grain size was reduced to as small as 2.7 μm and the (Mg, Al)2Ca phase was broken up to fine particles with an average sizes of 0.5 μm. Due to the advantage of having such a highly refined microstructure, the HRDSR-processed 0.7Ca-AZ31 alloy sheet exhibited a high yield stress over 300 MPa and good superplasticity at elevated temperatures. The deformation mechanism of the fine-grained 0.7Ca-AZ31 alloy in the superplastic regime was identified to be grainboundary-diffusion or lattice-diffusion controlled grain boundary sliding.
2010-09-01
on an Optical Micrograph of the Transverse View of Single-Pass NAB. After [5]............................................... 6 Figure 4 . Vertical...deformed and 6 elongated but does not see the same refinement that is seen inside the SZ [ 4 ]. The grain structure right outside the TMAZ will also...including grinding, polishing, and electropolishing . The first step was to grind the surface using a Buehler ECOMET 4 Variable Speed Grinder
... added sugar and doesn't contain important nutrients. Complex carbohydrates: These are also called starches. Starches include grain ... pasta, and rice. As with simple sugars, some complex carbohydrate foods are better choices than others. Refined (say: ...
Thermal Impacts in Vibration-assisted Laser Deep Penetration Welding of Aluminum
NASA Astrophysics Data System (ADS)
Radel, T.
Mechanical vibrations affect the nucleation and grain growth conditions during welding. In order to understand the vibration-induced influences on the grain formation conditions in laser beam welding of aluminum the thermal impacts of simultaneously applied vibrations are analyzed in this study. Therefore, laser deep penetration welding at vibration frequencies between 0.5 kHz and 5 kHz is investigated. Besides full penetration, partial penetration experiments were carried out. The results show that the thermal and absorption efficiencies are not significantly affected by the applied excitation. The solidification time increases in case of applied excitation which is rather disadvantageous regarding grain refinement. Thus, mechanical-metallurgical and not thermal-metallurgical effects should be responsible for the change in grain nucleation and grain growth conditions in laser beam welding with simultaneously applied vibrations.
Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan
2017-08-08
The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.
Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee
2016-02-01
Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound.
Laboratory Investigation of Space and Planetary Dust Grains
NASA Technical Reports Server (NTRS)
Spann, James
2005-01-01
Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.
Tan, Liming; He, Guoai; Liu, Feng; Li, Yunping; Jiang, Liang
2018-01-01
The microstructure with homogeneously distributed grains and less prior particle boundary (PPB) precipitates is always desired for powder metallurgy superalloys after hot isostatic pressing (HIPping). In this work, we studied the effects of HIPping parameters, temperature and pressure on the grain structure in PM superalloy FGH96, by means of scanning electron microscope (SEM), electron backscatter diffraction (EBSD), transmission electron microscope (TEM) and Time-of-flight secondary ion spectrometry (ToF-SIMS). It was found that temperature and pressure played different roles in controlling PPB precipitation and grain structure during HIPping, the tendency of grain coarsening under high temperature could be inhibited by increasing HIPping pressure which facilitates the recrystallization. In general, relatively high temperature and pressure of HIPping were preferred to obtain an as-HIPped superalloy FGH96 with diminished PPB precipitation and homogeneously refined grains. PMID:29495312
Tan, Liming; He, Guoai; Liu, Feng; Li, Yunping; Jiang, Liang
2018-02-24
The microstructure with homogeneously distributed grains and less prior particle boundary (PPB) precipitates is always desired for powder metallurgy superalloys after hot isostatic pressing (HIPping). In this work, we studied the effects of HIPping parameters, temperature and pressure on the grain structure in PM superalloy FGH96, by means of scanning electron microscope (SEM), electron backscatter diffraction (EBSD), transmission electron microscope (TEM) and Time-of-flight secondary ion spectrometry (ToF-SIMS). It was found that temperature and pressure played different roles in controlling PPB precipitation and grain structure during HIPping, the tendency of grain coarsening under high temperature could be inhibited by increasing HIPping pressure which facilitates the recrystallization. In general, relatively high temperature and pressure of HIPping were preferred to obtain an as-HIPped superalloy FGH96 with diminished PPB precipitation and homogeneously refined grains.
Meso-scale framework for modeling granular material using computed tomography
Turner, Anne K.; Kim, Felix H.; Penumadu, Dayakar; ...
2016-03-17
Numerical modeling of unconsolidated granular materials is comprised of multiple nonlinear phenomena. Accurately capturing these phenomena, including grain deformation and intergranular forces depends on resolving contact regions several orders of magnitude smaller than the grain size. Here, we investigate a method for capturing the morphology of the individual particles using computed X-ray and neutron tomography, which allows for accurate characterization of the interaction between grains. The ability of these numerical approaches to determine stress concentrations at grain contacts is important in order to capture catastrophic splitting of individual grains, which has been shown to play a key role in themore » plastic behavior of the granular material on the continuum level. Discretization approaches, including mesh refinement and finite element type selection are presented to capture high stress concentrations at contact points between grains. The effect of a grain’s coordination number on the stress concentrations is also investigated.« less
Solidification Based Grain Refinement in Steels
2010-07-20
methods which worked in the SVSU foundry. However, additions of NbO powder, FeTi, misch metal , and rare earth silicide were successful. Misch metal ...and rare earth silicide additions at the ladle are the most promising from an industrial stand point. The project group has begun preparing for the... metal and rare earth silicide additions have also reduced grain size and improved hardness. Instructions: You may use this MS Word file to submit the
Understanding Solidification Based Grain Refinement in Steels
2014-12-18
sulfide.^^"^^ Another approach would be to react a sample of misch metal or rare earth silicide at elevated temperatures to form the desired oxide or...dislocation can travel through a metal crystal before being blocked by a grain boundary. Since the dislocation is impeded sooner, the material cannot...in the melt; 3) be wetted by the liquid metal ; and 4) have a similar crystallographic structure to the host metal . Using reference data and
2012-05-01
reactive milled (RM) experiments forming nickel aluminides [3,4,6,8–10,12,15,16,18,19], titanium - based alloys [5] and combustion reactions in metal...highly heterogeneous and is refined during processing until reaction occurs. The refinement process consists of the cold welding of powder grains within... welding at the surface of deforming particles, which pro-Table 2 Sample preparation measurements corresponding to the designed exper- iments presented
Equal channel angular pressing (ECAP) and forging of commercially pure titanium (CP-Ti)
NASA Astrophysics Data System (ADS)
Krystian, Maciej; Huber, Daniel; Horky, Jelena
2017-10-01
Pure titanium with ultra-fine grained (UFG) microstructure is an exceptionally interesting material for biomedical and dental applications due to its very good biocompatibility and high strength. Such bulk, high-strength UFG materials are commonly produced by different Severe Plastic Deformation (SPD) techniques, whereof Equal Channel Angular Pressing (ECAP) is the most commonly used one. In this investigation commercially pure (CP) titanium (grade 2) was processed by ECAP using a die with a channel diameter of 20mm and an intersection angle of 105°. Six passes using route B120 (in which the billet is rotated between subsequent passes by 120°) at a temperature of 400°C were performed leading to a substantial grain refinement and an increase of strength and hardness. Subsequently, a thermal treatment study on ECAP-processed samples at different temperatures and for different time periods was carried out revealing the stability limit for ECAP CP-Ti as well as the best conditions leading to an improvement in both, strength and ductility. Furthermore, room temperature forging of the as-received (AR; hot-rolled and annealed) as well as ECAP-processed material was conducted. Tensile tests and hardness mappings revealed that forging is capable to further increase the strength of ECAP CP-Ti by more than 20%. Moreover, the mechanical properties are significantly more homogenous than after forging only.
Study on the rheoformability of semi-solid 7075 wrought aluminum alloy using seed process =
NASA Astrophysics Data System (ADS)
Zhao, Qinfu
Semisolid metal forming is becoming more and more attractive in the foundry industry due to its low cost and easy operation to produce high quality near-net-shape components. Over the past years, semisolid forming technique is mainly applied on the casting aluminum alloys due to their superior castability because of low melting temperature and viscosity. In semisolid forming field, thixoforming has been majorly used which involves of reheating the billet into semisolid state followed by casting process. Rheocasting is a more economic semisolid processing compared to thixoforming, which the semisolid billet is produced directly from liquid phase. The SEED process is one of reliable rheocasting techniques to produce high quality semisolid billets. To produce high quality semisolid billets, their unique rheological properties have been the most important issue need to be fully investigated. The aim of present project is to produce high quality semisolid AA7075 billets by SEED process and analyze their rheological properties under various process conditions. The effect of the SEED processing parameters and grain refiners on the semisolid microstructure and rheoformability were investigated. The deformation and rheological behavior of the semisolid billets of AA7075 base and its grain-refined alloys were studied using parallel-plate viscometer. In the first part, the evolution of liquid fraction to temperature of semisolid AA7075 alloy was investigated using Differential Scanning Calorimetry (DSC). It was found that the liquidus and solidus temperature of AA7075 alloy were 631 °C and 490°C respectively. And the corresponding temperatures of solid fraction of 40% and 60% were 622°C and 610°C, which was recognized as the temperature window for semisolid forming of this alloy. In the second part, the semisolid slurries were rheocasted using SEED technology and the effect of the SEED process parameters like swirling frequency and demolding temperature on evolution of microstructure was studied. It was found that the swirling frequency has a strong influence on the mean grain size and morphology of primary alpha-Al particles. With increasing swirling frequency, the mean size of alpha-Al particles first decreased significantly and then kept constant or increased slightly, due to the fragment and aggregation of solid particles. Microstructures also revealed that the alpha-Al particles tend to transform from dendrite-like to rosette-like to globular-like morphology due to the stirring movement. In the third part, the effects of TiB2 and Zr on the microstructure of semisolid AA7075 alloy were investigated. The microstructure observation and the intermetallic phase identification were carried out by optical microscopy equipped with Clemex analyzer and scanning electron microscopy (SEM). The mean size of primary alpha-Al particles decreases from more than 110 mum to less than 90 mum and the morphology changes from dendritic-like to globular-like with the addition of TiB2. With the addition of Zr or Zr + TiB 2, the mean size and morphology of primary alpha-Al particles didn't show significant modification. Furthermore, the addition of TiB2 shows significant refinement on three intermetallic phases (Mg(Zn,Cu,Al) 2, Fe-rich Al(Fe,Mn)Si and Mg2Si. All the intermetallic phases become finer in size and more uniform distribution among the grains. Finally, the rheological behavior and microstructure of deformed semisolid billets of AA7075 base and grain-refined alloys were investigated using parallel-plate viscometer. Images analysis shows that liquid segregates from center to edge of the billet during compression and with increasing temperature the liquid segregation becomes more significant. The apparent viscosity of two alloys decreases with the increasing shear rate, indicating shear thinning behavior. Shear rate jump phenomenon (first increase and then decrease) occurred at lower solid fraction, reaching a maximum shear rate value. The whole compression processing is divided into two parts: shear rate increasing part and shear rate decreasing part. For higher solid fraction, the shear rate decreases continuously and slowly. The attainable maximum shear rate value increases with the decreasing solid fraction. During the shear rate decreasing part, at any given shear rate the viscosity increases with the increasing solid fraction. The comparison of the viscosity of two alloys indicated that the TiB2-refined AA7075 alloy has lower viscosity (shear rate decreasing part) due to small grain size and globular grain shape. In addition, the grain refinement significantly expands the solid fraction range of good rheoformability from 42%-48% for the base alloy to 42%-55% for the refined alloy.
NASA Astrophysics Data System (ADS)
Založnik, Miha; Kumar, Arvind; Combeau, Hervé; Bedel, Marie; Jarry, Philippe; Waz, Emmanuel
The phenomena responsible for the formation of macrosegregations, and grain structures during solidification are closely intertwined. We present a model study of the formation of macrosegregation and grain structure in an industrial sized (350 mm thick) direct chill (DC) cast aluminum alloy slab. The modeling of these phenomena in DC casting is a challenging problem mainly due to the size of the products, the variety of the phenomena to be accounted for, and the non-linearities involved. We used a volume-averaged multiscale model that describes nucleation on grain refiner particles and grain growth, coupled with macroscopic transport: fluid flow driven by natural convection and shrinkage, transport of free-floating globular equiaxed grains, heat transfer, and solute transport. We analyze the heat and mass transfer in the slurry moving-grain zone that is a result of the coupling of the fluid flow and of the grain nucleation, growth and motion. We discuss the impact of the flow structure in the slurry zone and of the grain packing fraction on the macrosegregation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yongfeng; Jia, Nan; Wang, Y. D.
2015-07-17
An ultrafine-grained 304 austenitic 18 wt.%Cr-8 wt.%Ni stainless steel with a grain size of ~270 nm was synthesized by accumulative rolling (67 % total reduction) and annealing (550 °C, 150s). Uniaxial tensile testing at room temperature reveals an extremely high yield strength of 1890 ± 50MPa and a tensile strength of 2050 ± 30MPa, while the elongation reaches 6 ± 1%. Experimental characterization on samples with different grain sizes between 270 nm and 35 μm indicates that both, deformation twinning and martensitic phase transformation are significantly retarded with increasing grain refinement. A crystal plasticity finite element model incorporating a constitutivemore » law reflecting the grain size-controlled dislocation slip and deformation twinning captures the micromechanical behavior of the steels with different grain sizes. Comparison of simulation and experiment shows that the deformation of ultrafine-grained 304 steels is dominated by the slip of partial dislocations, whereas for coarse-grained steels dislocation slip, twinning and martensite formation jointly contribute to the shape change.« less
Does Whole Grain Consumption Alter Gut Microbiota and Satiety?
Cooper, Danielle N.; Martin, Roy J.; Keim, Nancy L.
2015-01-01
This review summarizes recent studies examining whole grain consumption and its effect on gut microbiota and satiety in healthy humans. Studies comparing whole grains to their refined grain counterparts were considered, as were studies comparing different grain types. Possible mechanisms linking microbial metabolism and satiety are described. Clinical trials show that whole grain wheat, maize, and barley alter the human gut microbiota, but these findings are based on a few studies that do not include satiety components, so no functional claims between microbiota and satiety can be made. Ten satiety trials were evaluated and provide evidence that whole oats, barley, and rye can increase satiety, whereas the evidence for whole wheat and maize is not compelling. There are many gaps in the literature; no one clinical trial has examined the effects of whole grains on satiety and gut microbiota together. Once understanding the impact of whole grains on satiety and microbiota is more developed, then particular grains might be used for better appetite control. With this information at hand, healthcare professionals could make individual dietary recommendations that promote satiety and contribute to weight control. PMID:27417768
Schwingshackl, Lukas; Hoffmann, Georg; Lampousi, Anna-Maria; Knüppel, Sven; Iqbal, Khalid; Schwedhelm, Carolina; Bechthold, Angela; Schlesinger, Sabrina; Boeing, Heiner
2017-05-01
The aim of this systematic review and meta-analysis was to synthesize the knowledge about the relation between intake of 12 major food groups and risk of type 2 diabetes (T2D). We conducted a systematic search in PubMed, Embase, Medline (Ovid), Cochrane Central, and Google Scholar for prospective studies investigating the association between whole grains, refined grains, vegetables, fruits, nuts, legumes, eggs, dairy, fish, red meat, processed meat, and sugar-sweetened beverages (SSB) on risk of T2D. Summary relative risks were estimated using a random effects model by contrasting categories, and for linear and non-linear dose-response relationships. Six out of the 12 food-groups showed a significant relation with risk of T2D, three of them a decrease of risk with increasing consumption (whole grains, fruits, and dairy), and three an increase of risk with increasing consumption (red meat, processed meat, and SSB) in the linear dose-response meta-analysis. There was evidence of a non-linear relationship between fruits, vegetables, processed meat, whole grains, and SSB and T2D risk. Optimal consumption of risk-decreasing foods resulted in a 42% reduction, and consumption of risk-increasing foods was associated with a threefold T2D risk, compared to non-consumption. The meta-evidence was graded "low" for legumes and nuts; "moderate" for refined grains, vegetables, fruit, eggs, dairy, and fish; and "high" for processed meat, red meat, whole grains, and SSB. Among the investigated food groups, selecting specific optimal intakes can lead to a considerable change in risk of T2D.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ke, E-mail: study_ke@cqu.edu.cn
A TC8 titanium alloy was isothermally compressed at the strain rates of 10–50 s{sup −1} in the two-phase region of 820–940 °C, and the evolution mechanisms of the primary α and β phases, including grain morphology, dynamic recovery (DRV) and dynamic recrystallization (DRX), were investigated by optical microscopy (OM) and transmission electron microscopy (TEM). OM reveals that the phase content and grain morphology are more significantly influenced by the deformation temperature than the strain rate. The β grains achieve refinement only at 940 °C due to DRX in the β phase. TEM reveals the remarkable variations of the DRX grains,more » subgrains, sub-boundaries and dislocations morphology with temperature and strain rate related to DRV and DRX in the primary α phase. The DRX in the primary α phase appears most strongly at a middle temperature of 860 °C, and DRV dominates in the primary α phase at 940 °C. While the dominant mechanism varies from DRV to DRX in the β phase as the temperature increases. Finally, the influence mechanism of deformation parameters on the primary α grain morphology is revealed based on the combined effect of DRV and DRX in the primary α phase and diffusion of the β phase. - Highlights: •The β grains achieve refinement only at 940 °C due to DRX in the β phase. •The DRX in the primary α phase is most remarkable at 860 °C. •The dominant mechanism in β phase varies from DRV to DRX with increasing temperature. •The interaction between the primary α and β phases depends on the phase content.« less
Influence of Pulsed Current on Superplasticity of Fine Grained 1420 Al-Li Alloy
NASA Astrophysics Data System (ADS)
Zhang, Yanling; Hou, Hongliang; Bi, Jing; Wang, Yaoqi
2018-01-01
The effects of an externally applied electropulse on the superplastic deformation behavior and microstructure of 1420 Al-Li alloy were studied. The flow stress of superplastic deformation was reduced by the high-density electropulse while the elongation was increased. The optimal electrical parameters for superplastic deformation were 192A/mm2 of current density, 150Hz of frequency and 30s of duration at 480°C and 0.001s-1. The elongation raised by 68% compared to that without electropulse. Furthermore, the grain was refined and the average grain size was reduced after superplastic deformation with the optimal electropulse. It is noted that the electropulse promoted the recrystallization and restrained the grain growth.
Ultrasonic influence on evolution of disordered dislocation structures
NASA Astrophysics Data System (ADS)
Bachurin, D. V.; Murzaev, R. T.; Nazarov, A. A.
2017-12-01
Evolution of disordered dislocation structures under ultrasonic influence is studied in a model two-dimensional grain within the discrete-dislocation approach. Non-equilibrium grain boundary state is mimicked by a mesodefect located at the corners of the grain, stress field of which is described by that of a wedge junction disclination quadrupole. Significant rearrangement related to gliding of lattice dislocations towards the grain boundaries is found, which results in a noticeable reduction of internal stress fields and cancel of disclination quadrupole. The process of dislocation structure evolution passes through two stages: rapid and slow. The main dislocation rearrangement occurs during the first stage. Reduction of internal stress fields is associated with the number of dislocations entered into the grain boundaries. The change of misorientation angle due to lattice dislocations absorbed by the grain boundaries is evaluated. Amplitude of ultrasonic treatment significantly influences the relaxation of dislocation structure. Preliminary elastic relaxation of dislocation structure does not affect substantially the results of the following ultrasonic treatment. Substantial grain size dependence of relaxation of disordered dislocation systems is found. Simulation results are consistent with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James H; Lanning, David N
A process of comminution of wood chips (C) having a grain direction to produce a mixture of wood particles (P), wherein the wood chips are characterized by an average length dimension (L.sub.C) as measured substantially parallel to the grain, an average width dimension (W.sub.C) as measured normal to L.sub.C and aligned cross grain, and an average height dimension (H.sub.C) as measured normal to W.sub.C and L.sub.C, and wherein the comminution process comprises the step of feeding the wood chips in a direction of travel substantially randomly to the grain direction one or more times through a counter rotating pair ofmore » intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of wood chip travel.« less
Whole-grain intake is associated with body mass index in college students.
Rose, Nick; Hosig, Kathy; Davy, Brenda; Serrano, Elena; Davis, Linda
2007-01-01
To measure whole-grain intake in college students and determine the association with body mass index (BMI). Cross-sectional convenience sample of college students enrolled in an introductory nutrition course. Large state university. 159 college students, mean age: 19.9. Intake of whole grains, refined grains, calories, and fiber from food records; BMI determined from height and weight measurements. Analysis of variance with linear contrasts; participants grouped by BMI category (P<.05). Average intake of cereal grains was 5.4 servings per day, of which whole-grain intake accounted for an average of 0.7 servings per day. Whole-grain intake was significantly higher in normal weight students than in overweight and obese students (based on BMI). The low intake of whole grains in this population of college students indicates the need for interventions aiming to increase whole-grain intake to the recommended minimum of 3 servings per day. College students who are concerned about their body weight may be motivated to increase their intake of whole-grain foods; however, their intake of whole grains is likely to be influenced by the availability of these food items in campus dining halls and other locations around the college campus.
NASA Technical Reports Server (NTRS)
Anderson, Kenneth Reed
2000-01-01
Ternary Cu-Cr-Nb alloys, particularly Cu-8 Cr-4 Nb (in at.%), have demonstrated good thermal stability as well as high strength and conductivity at elevated temperatures. The initial powder material has a bimodal size distribution of Cr2Nb precipitates. Primary Cr2Nb precipitates are approx. 1 micron, and secondary Cr2Nb particles are 30-200 nm. The particle coarsening was analyzed and found to follow LSW-type behavior, This study provides a detailed examination of the stability and strengthening effects of Cr2Nb particles. This investigation also revealed that the primary particles provide direct grain boundary pinning and indirect grain boundary strengthening but virtually no Orowan strengthening. The secondary particles found within grains do provide Orowan strengthening. For extruded material, grain bound-ary strengthening (Hall-Petch effect) accounts for two-thirds of the strength with Orowan effects contributing the remainder. The proven advantages of Cu-Cr-Nb were the motivation to improve these attributes via microstructural refinement. Mechanical milling (MM) of Cu- 4 Cr-2 Nb and Cu-8 Cr-2 Nb produced an increase in hot pressed Vickers hardness of 122% and 96%, respectively. The increase in hardness was more due to Cu grain-size refinement than to Cr,,Nb refinement. This study also demonstrated enhanced stability of MM Cu-4 Cr-2 Nb. Hot pressed 4 h milled Cu-4 Cr-2 Nb experienced only a 22% drop in hardness when annealed at 1273 K for 50 h versus a 30% drop for extruded Cu-8 Cr-4 Nb. The goal of improving the strength and stability of Cu-4 Cr-2 Nb to better than such properties for as- extruded Cu-8 Cr-4 Nb has been met. In addition, a figure-of-merit (FOM) coupling hardness and thermal conductivity was maximized for the case of 4 h milled Cu-4 Cr-2 Nb material. Overall, Cu-Cr-Nb alloys not only possess high strength, conductivity and thermal stability but also can be further developed to improve strength and stability.
Adaptive mesh refinement for characteristic grids
NASA Astrophysics Data System (ADS)
Thornburg, Jonathan
2011-05-01
I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius and Lehner (J Comp Phys 198:10, 2004), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in two-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null slices. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both second and fourth order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.
NASA Astrophysics Data System (ADS)
Zhou, Cheng; Ye, Qibin; Yan, Ling
The effect of ultra-fast cooling(UFC) and conventional accelerated cooling(AcC) on the mechanical properties and microstructure of controlled rolled AH32 grade steel plates on industrial scale were compared using tensile test, Charpy impact test, welding thermal simulation, and microscopic analysis. The results show that the properties of the plate produced by UFC are improved considerably comparing to that by AcC. The yield strength is increased with 54 MPa without deterioration in the ductility and the impact energy is improved to more than 260 J at -60 °C with much lower ductile-to-brittle transition temperature(DBTT). The ferrite grain size is refined to ASTM No. 11.5 in the UFC steel with uniform microstructure throughout the thickness direction, while that of the AcC steel is ASTM No. 9.5. The analysis of nucleation kinetics of α-ferrite indicates that the microstructure is refined due to the increased nucleation rate of α-ferrite by much lower γ→α transition temperature through the UFC process. The Hall-Petch effect is quantified for the improvement of the strength and toughness of the UFC steel attributed to the grain refinement.
Xuan, Yang; Nastac, Laurentiu
2018-02-01
Recent studies showed that the microstructure and mechanical properties of aluminum based nanocomposites can be significantly improved when ultrasonic cavitation and solidification processing is used. This is because ultrasonic cavitation processing plays an important role not only in degassing and dispersion of the nanoparticles, but also in breaking up the dendritic grains and refining the as-cast microstructure. In the present study, A356 alloy and Al 2 O 3 nanoparticles are used as the matrix alloy and the reinforcement, respectively. Nanoparticles were added into the molten A356 alloy and dispersed via ultrasonic cavitation processing. Ultrasonic cavitation was applied over various temperature ranges during molten alloy cooling and solidification to investigate the grain structure formation and the nanoparticle dispersion behavior. Optical Microscopy and Scanning Electron Microscopy were used to investigate in detail the differences in the microstructure characteristics and the nanoparticle distribution. Experimental results indicated that the ultrasonic cavitation processing and Al 2 O 3 nanoparticles play an important role for microstructure refinement. In addition, it was shown in this study that the Al 2 O 3 nanoparticles modified the eutectic phase. Copyright © 2017 Elsevier B.V. All rights reserved.
Crystallography and Interphase Boundary of Martensite and Bainite in Steels
NASA Astrophysics Data System (ADS)
Furuhara, Tadashi; Chiba, Tadachika; Kaneshita, Takeshi; Wu, Huidong; Miyamoto, Goro
2017-06-01
Grain refinements in lath martensite and bainite structures are crucial for strengthening and toughening of high-strength structural steels. Clearly, crystallography of transformation plays an important role in determining the "grain" sizes in these structures. In the present study, crystallography and intrinsic boundary structure of martensite and bainite are described. Furthermore, various extrinsic factors affecting variant selection and growth kinetics, such as elastic/plastic strain and alloying effects on interphase boundary migration, are discussed.
NASA Technical Reports Server (NTRS)
Hwang, S. K.; Morris, J. W., Jr.
1979-01-01
An investigation has been made to improve the low temperature mechanical properties of Fe-8Mn and Fe-12Mn-0.2 Ti alloy steels. A reversion annealing heat treatment in the two-phase (alpha + gamma) region following cold working has been identified as an effective treatment. In an Fe-12Mn-0.2Ti alloy a promising combination of low temperature (-196 C) fracture toughness and yield strength was obtained by this method. The improvement of properties was attributed to the refinement of grain size and to the introduction of a uniform distribution of retained austenite (gamma). It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated alpha-prime martensitic structure and absence of epsilon martensite. As a result, a significant reduction of ductile to brittle transition temperature was obtained.
Mostaed, Ehsan; Vedani, Maurizio; Hashempour, Mazdak; Bestetti, Massimiliano
2014-01-01
Equal channel angular pressing (ECAP) was performed on ZK60 alloy and pure Mg in the temperature range 150–250 °C. A significant grain refinement was detected after ECAP, leading to an ultrafine grain size (UFG) and enhanced formability during extrusion process. Comparing to conventional coarse grained samples, fracture elongation of pure Mg and ZK60 alloy were significantly improved by 130% and 100%, respectively, while the tensile strength remained at high level. Extrusion was performed on ECAP processed billets to produce small tubes (with outer/inner diameter of 4/2.5 mm) as precursors for biodegradable stents. Studies on extruded tubes revealed that even after extrusion the microstructure and microhardness of the UFG ZK60 alloy were almost stable. Furthermore, pure Mg tubes showed an additional improvement in terms of grain refining and mechanical properties after extrusion. Electrochemical analyses and microstructural assessments after corrosion tests demonstrated two major influential factors in corrosion behavior of the investigated materials. The presence of Zn and Zr as alloying elements simultaneously increases the nobility by formation of a protective film and increase the local corrosion damage by amplifying the pitting development. ECAP treatment decreases the size of the second phase particles thus improving microstructure homogeneity, thereby decreasing the localized corrosion effects. PMID:25482411
Code of Federal Regulations, 2010 CFR
2010-07-01
... the period for which any royalty or net profit share is accrued or reserved to the United States... only be made if substantial amounts of royalty oil are turned back. Refined petroleum product means gasoline, kerosene, distillates (including Number 2 fuel oil), refined lubricating oils, or diesel fuel...
Code of Federal Regulations, 2013 CFR
2013-07-01
... the period for which any royalty or net profit share is accrued or reserved to the United States... only be made if substantial amounts of royalty oil are turned back. Refined petroleum product means gasoline, kerosene, distillates (including Number 2 fuel oil), refined lubricating oils, or diesel fuel...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the period for which any royalty or net profit share is accrued or reserved to the United States... only be made if substantial amounts of royalty oil are turned back. Refined petroleum product means gasoline, kerosene, distillates (including Number 2 fuel oil), refined lubricating oils, or diesel fuel...
Zhang, Yinyin; Brodusch, Nicolas; Descartes, Sylvie; Chromik, Richard R; Gauvin, Raynald
2014-10-01
The electron channeling contrast imaging technique was used to investigate the microstructure of copper coatings fabricated by cold gas dynamic spray. The high velocity impact characteristics for cold spray led to the formation of many substructures, such as high density dislocation walls, dislocation cells, deformation twins, and ultrafine equiaxed subgrains/grains. A schematic model is proposed to explain structure refinement of Cu during cold spray, where an emphasis is placed on the role of dislocation configurations and twinning.
Zhang, Li; Popov, Dmitry; Meng, Yue; ...
2016-01-01
Seifertite SiO₂ likely exists as a minor phase near the core–mantle boundary. By simulating the pressure and temperature conditions near the core–mantle boundary, seifertite was synthesized as a minor phase in a coarse-grained, polycrystalline sample coexisting with the (Mg,Fe)SiO₃ post-perovskite (pPv) phase at 129 GPa and 2500 K. Here we report the first in situ single-crystal structure determination and refinement of seifertite at high pressure and after a temperature quench from laser heating. We improved the data coverage of a minor phase from a diamond-anvil cell (DAC) by merging single-crystal data of seifertite from six selected grains that had differentmore » orientations. Observed systematic absences of reflections from the six individual grains allowed only one space group: Pbcn. The refined results of seifertite are in good agreement with the predictions from previous first-principles calculations at high pressure. This approach provides a method for structure determination of a minor phase in a mineral assemblage synthesized under P-T conditions representative of the deep Earth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Li; Popov, Dmitry; Meng, Yue
Seifertite SiO₂ likely exists as a minor phase near the core–mantle boundary. By simulating the pressure and temperature conditions near the core–mantle boundary, seifertite was synthesized as a minor phase in a coarse-grained, polycrystalline sample coexisting with the (Mg,Fe)SiO₃ post-perovskite (pPv) phase at 129 GPa and 2500 K. Here we report the first in situ single-crystal structure determination and refinement of seifertite at high pressure and after a temperature quench from laser heating. We improved the data coverage of a minor phase from a diamond-anvil cell (DAC) by merging single-crystal data of seifertite from six selected grains that had differentmore » orientations. Observed systematic absences of reflections from the six individual grains allowed only one space group: Pbcn. The refined results of seifertite are in good agreement with the predictions from previous first-principles calculations at high pressure. This approach provides a method for structure determination of a minor phase in a mineral assemblage synthesized under P-T conditions representative of the deep Earth.« less
NASA Astrophysics Data System (ADS)
Prasad, A.; Liotti, E.; McDonald, S. D.; Nogita, K.; Yasuda, H.; Grant, P. S.; StJohn, D. H.
2015-06-01
Recently, in-situ observations were carried out by synchrotron X-ray radiography to observe the nucleation and growth in Al alloys during solidification. The nucleation and grain formation of a range of Al-Si and Al-Cu binary alloys were studied. When grain refiner was added to the alloys, the location of the nucleation events was readily observed. Once nucleation began it continued to occur in a wave of events with the movement of the temperature gradient across the field of view due to cooling. Other features observed were the settling of the primary phase grains in the Al-Si alloys and floating in the Al-Cu alloys, the effects of convection with marked fluctuation of the growth rate of the solid-liquid interface in the Al-Si alloys, and an absence of fragmentation. The microstructures are typical of those produced in the equiaxed zone of actual castings. These observations are compared with predictions arising from the Interdependence model. The results from this comparison have implications for further refinement of the model and simulation and modelling approaches in general. These implications will be discussed.
NASA Astrophysics Data System (ADS)
Mirzaei, A.; Zarei-Hanzaki, A.; Mohamadizadeh, A.; Lin, Y. C.
2018-03-01
The post-deformation annealing treatments of a commercial cold-worked corrosion-resistant superalloy steel (Sanicro 28 steel) were carried out at different temperatures in the range of 900-1100 °C for different holding durations of 5, 10, and 15 min. The effects of post-deformation annealing time and temperature on the microstructural evolution and subsequent mechanical properties of the processed Sanicro 28 steel were investigated. The observations indicated that twin-twin hardening in cold deformation condition mainly correlates with abundant nucleation of mechanical twins in multiple directions resulting in considerable strain hardening behavior. Microstructural investigations showed that the static recrystallization takes place after isothermal holding at 900 °C for 5 min. Increasing the annealing temperature from 900 to 1050 °C leads to recrystallization development and grain refinement in the as-recrystallized state. In addition, an increase in annealing duration from 5 to 15 min leads to subgrain coarsening and subsequently larger recrystallized grains size. The occurrence of large proportion of the grain refinement, which is achieved in the first annealing stage at 1050 °C after 5 min, is considered as the main factor for the maximum elongation at this stage.
NASA Astrophysics Data System (ADS)
Cavaliere, P.; Perrone, A.; Silvello, A.
2014-10-01
Cold spray is a coating technology based on aerodynamics and high-speed impact dynamics. In this process, spray particles (usually 1-50 μm in diameter) are accelerated to a high velocity (typically 300-1200 m/s) by a high-speed gas (pre-heated air, nitrogen, or helium) flow that is generated through a convergent-divergent de Laval-type nozzle. A coating is formed through the intensive plastic deformation of particles impacting on a substrate at a temperature below the melting point of the spray material. In the present paper the main processing parameters affecting the microstructural and mechanical behavior of metal-metal cold spray deposits are described. The effect of process parameters on grain refinement and mechanical properties were analyzed for composite particles of Al-Al2O3, Ni-BN, Cu-Al2O3, and Co-SiC. The properties of the formed nanocomposites were compared with those of the parent materials sprayed under the same conditions. The process conditions, leading to a strong grain refinement with an acceptable level of the deposit mechanical properties such as porosity and adhesion strength, are discussed.
NASA Astrophysics Data System (ADS)
Deirmina, Faraz; Pellizzari, Massimo; Federici, Matteo
2017-04-01
Commercial AISI-H13 gas atomized powders (AT) were mechanically milled (MM) to refine both the particle size and the microstructure. Different volume fractions of coarser grained (CG) AT powders were mixed with the ultra-fine grained (UFG) MM and consolidated by spark plasma sintering to obtain bulks showing a harmonic structure ( i.e. a 3D interconnected network of UFG areas surrounding the CG atomized particles). The low sintering temperature, 1373.15 K (1100 °C) and the short sintering time (30 minutes) made it possible to obtain near full density samples while preserving the refined microstructure induced by MM. A combination of high hardness and significantly improved fracture toughness is achieved by the samples containing 50 to 80 vol pct MM, essentially showing harmonic structure. The design allows to easily achieve specific application oriented properties by varying the MM volume fraction in the initial mixture. Hardness is governed by the fine-grained MM matrix and improved toughening is due to (1) deviatory effect of AT particles and (2) energy dissipation as a result of the decohesion in MM regions or AT and MM interface.
Accumulative Roll Bonding and Post-Deformation Annealing of Cu-Al-Mn Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Moghaddam, Ahmad Ostovari; Ketabchi, Mostafa; Afrasiabi, Yaser
2014-12-01
Accumulative roll bonding is a severe plastic deformation process used for Cu-Al-Mn shape memory alloy. The main purpose of this study is to investigate the possibility of grain refinement of Cu-9.5Al-8.2Mn (in wt.%) shape memory alloy using accumulative roll bonding and post-deformation annealing. The alloy was successfully subjected to 5 passes of accumulative roll bonding at 600 °C. The microstructure, properties as well as post-deformation annealing of this alloy were investigated by optical microscopy, scanning electron microscopy, x-ray diffraction, differential scanning calorimeter, and bend and tensile testing. The results showed that after 5 passes of ARB at 600 °C, specimens possessed α + β microstructure with the refined grains, but martensite phases and consequently shape memory effect completely disappeared. Post-deformation annealing was carried out at 700 °C, and the martensite phase with the smallest grain size (less than 40 μm) was obtained after 150 s of annealing at 700 °C. It was found that after 5 passes of ARB and post-deformation annealing, the stability of SME during thermal cycling improved. Also, tensile properties of alloys significantly improved after post-deformation annealing.
NASA Astrophysics Data System (ADS)
Mesbah, Mohsen; Faraji, Ghader; Bushroa, A. R.
2016-03-01
Microstructural evolution and mechanical properties of nanostructured 1060 aluminum alloy tubes processed by tubular-channel angular pressing (TCAP) process were investigated using electron back-scattered diffraction (EBSD), transmission electron microscopy (TEM) and nanoindentation analyzes. EBSD scans revealed a homogeneous ultrafine grained microstructure after the third passes of the TCAP process. Apart from that the mean grain sizes of the TCAP processed tubes were refined to 566 nm, 500 nm and 480 nm respectively after the first, second and third passes. The results showed that after the three TCAP passes, the grain boundaries with a high angle comprised 78% of all the boundaries. This is in comparison to the first pass processed sample that includes approximately 20% HAGBs. The TEM inspection afforded an appreciation of the role of very low-angle misorientation boundaries in the process of refining microstructure. Nanoindentation results showed that hardness was the smallest form of an unprocessed sample while the largest form of the processed sample after the three passes of TCAP indicated the highest resistant of the material. In addition, the module of elasticity of the TCAP processed samples was greater from that of the unprocessed sample.
Dietary patterns and odds of Type 2 diabetes in Beirut, Lebanon: a case–control study
2012-01-01
Background In Lebanon, Type 2 diabetes (T2D) has a major public health impact through high disease prevalence, significant downstream pathophysiologic effects, and enormous financial liabilities. Diet is an important environmental factor in the development and prevention of T2D. Dietary patterns may exert greater effects on health than individual foods, nutrients, or food groups. The objective of this study is to examine the association between dietary patterns and the odds of T2D among Lebanese adults. Methods Fifty-eight recently diagnosed cases of T2D and 116 population-based age, sex, and place of residence matched control participants were interviewed. Data collection included a standard socio-demographic and lifestyle questionnaire. Dietary intake was evaluated by a semi-quantitative 97-item food frequency questionnaire. Anthropometric measurements including weight, height, waist circumference, and percent body fat were also obtained. Dietary patterns were identified by factor analysis. Multivariate logistic regression analysis was used to evaluate the associations of extracted patterns with T2D. Pearson correlations between these patterns and obesity markers, energy, and nutrient intakes were also examined. Results Four dietary patterns were identified: Refined Grains & Desserts, Traditional Lebanese, Fast Food and Meat & Alcohol. While scores of the “Refined Grains & Desserts” had the highest correlations with energy (r = 0.74) and carbohydrates (r = 0.22), those of the “Fast Food” had the highest correlation with fat intake (r = 0.34). After adjustment for socio-demographic and lifestyle characteristics, scores of the Refined Grains & Desserts and Fast Food patterns were associated with higher odds of T2D (OR: 3.85, CI: 1.13-11.23 and OR: 2.80, CI: 1.14-5.59; respectively) and scores of the Traditional Lebanese pattern were inversely associated with the odds of T2D (OR: 0.46, CI: 0.22-0.97). Conclusions The findings of this study demonstrate direct associations of the Refined Grains & Desserts and Fast Food patterns with T2D and an inverse association between the Traditional Lebanese pattern and the disease among Lebanese adults. These results may guide the development of nutrition interventions for the prevention and management of T2D among Lebanese adults. PMID:23270372
He, Guoai; Tan, Liming; Liu, Feng; Huang, Lan; Huang, Zaiwang; Jiang, Liang
2017-01-01
Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX) process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs) to high angle grain boundaries (HAGBs) and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary. PMID:28772514
Dixit, Anjali A.; Azar, Kristen M. J.; Gardner, Christopher D.; Palaniappan, Latha P.
2011-01-01
Refined carbohydrates, such as white rice and white flour, are the mainstay of the modern Asian Indian diet, and may contribute to the rising incidence of type 2 diabetes and cardiovascular disease in this population. Prior to the 1950s, whole grains such as amaranth, barley, brown rice, millet, and sorghum were more commonly used in Asian Indian cooking. These grains and other non-Indian grains such as couscous, quinoa, and spelt are nutritionally advantageous and may be culturally acceptable carbohydrate substitutes for Asian Indians. This review focuses on practical recommendations for culturally sensitive carbohydrate modification in a modern Asian Indian diet, in an effort to reduce type 2 diabetes and cardiovascular disease in this population. PMID:21790614
Dixit, Anjali A; Azar, Kristen Mj; Gardner, Christopher D; Palaniappan, Latha P
2011-08-01
Refined carbohydrates, such as white rice and white flour, are the mainstay of the modern Asian Indian diet, and may contribute to the rising incidence of type 2 diabetes and cardiovascular disease in this population. Prior to the 1950s, whole grains such as amaranth, barley, brown rice, millet, and sorghum were more commonly used in Asian Indian cooking. These grains and other non-Indian grains such as couscous, quinoa, and spelt are nutritionally advantageous and may be culturally acceptable carbohydrate substitutes for Asian Indians. This review focuses on practical recommendations for culturally sensitive carbohydrate modification in a modern Asian Indian diet to reduce type 2 diabetes and cardiovascular disease in this population. © 2011 International Life Sciences Institute.
NASA Astrophysics Data System (ADS)
Yang, Ming; Long, Shao-lei; Liang, Yi-long
2018-03-01
In this paper, the effect of substructure of lath martensite on the mechanical properties was discussed in detail. Results indicated that prior austenite grain, packet and block increase with the increasing of quenching temperature. A good linear relationship exists between the packet, block and prior austenite, which reveal that the size of packet, block depends on prior austenite grain. However, lath is increased with not determined by prior austenite grain. Based on the EBSD analysis, the large ratio of the low angle orientation boundaries determines the better plasticity is obtained in coarse grain. Therefore, the refining of martensite lath or the increase of the low angle orientation plays an important role on improving the plasticity in lath martensite steel.
NASA Astrophysics Data System (ADS)
Qaban, Abdullah; Naher, Sumsun
2018-05-01
High-strength low-alloy steel (HSLA) has been widely used in many applications involving automobiles, aerospace, construction, and oil and gas pipelines due to their enhanced mechanical and chemical properties. One of the most critical elements used to improve these properties is Aluminium. This work will explore the effect of Al content on the corrosion behaviour of hot rolled high-strength low-alloy steel as a function of grain size. The method of investigation employed was weight loss technique. It was obvious that the increase in Al content enhanced corrosion resistance through refinement of grain size obtained through AlN precipitation by pinning grain boundaries and hindering their growth during solidification which was found to be beneficial in reducing corrosion rate.
Controlling Surface Chemistry to Deconvolute Corrosion Benefits Derived from SMAT Processing
NASA Astrophysics Data System (ADS)
Murdoch, Heather A.; Labukas, Joseph P.; Roberts, Anthony J.; Darling, Kristopher A.
2017-07-01
Grain refinement through surface plastic deformation processes such as surface mechanical attrition treatment has shown measureable benefits for mechanical properties, but the impact on corrosion behavior has been inconsistent. Many factors obfuscate the particular corrosion mechanisms at work, including grain size, but also texture, processing contamination, and surface roughness. Many studies attempting to link corrosion and grain size have not been able to decouple these effects. Here we introduce a preprocessing step to mitigate the surface contamination effects that have been a concern in previous corrosion studies on plastically deformed surfaces; this allows comparison of corrosion behavior across grain sizes while controlling for texture and surface roughness. Potentiodynamic polarization in aqueous NaCl solution suggests that different corrosion mechanisms are responsible for samples prepared with the preprocessing step.
Microstructure and properties of ultrafine grain nickel 200 after hydrostatic extrusion processes
NASA Astrophysics Data System (ADS)
Sitek, R.; Krajewski, C.; Kamiński, J.; Spychalski, M.; Garbacz, H.; Pachla, W.; Kurzydłowski, K. J.
2012-09-01
This paper presents the results of the studies of the structure and properties of ultrafine grained nickel 200 obtained by hydrostatic extrusion processes. Microstructure was characterized by means of optical microscopy and electron transmission microscopy. Corrosion resistance was studied by impedance and potentiodynamic methods using an AutoLab PGSTAT 100 potentiostat in 0.1 M Na2SO4 solution and in acidified (by addition of H2SO4) 0.1 M NaCl solution at pH = 4.2 at room temperature. Microhardness tests were also performed. The results showed that hydrostatic extrusion produces a heterogeneous, ultrafine-grained microstructure in nickel 200. The corrosive resistance tests showed that the grain refinement by hydrostatic extrusion is accompanied by a decreased corrosive resistance of nickel 200.
NASA Astrophysics Data System (ADS)
Zhang, Li; Wang, Meiyu; Yan, Xueliang; Lin, Ye; Shield, Jeffrey
2018-04-01
The effect of adding a low melting point Pr-Cu-Al alloy during spark plasma sintering of melt-spun Nd-Fe-B ribbons is investigated. Regions of coarse grains were reduced and overall grain refinement was observed after the addition of Pr68Cu25Al7, leading to an enhancement of coercivity from 12.7 kOe to 20.4 kOe. Hot deformation of the samples in the spark plasma sintering system resulted in the formation of platelet-like grains, producing crystallographic alignment and magnetic anisotropy. The hot deformation process improved the remanence and energy product but reduced the coercivity. The decrease of coercivity resulted from grain growth and aggregation of Pr and Nd elements at triple-junction phases.
Recrystallization and grain growth in NiAl
NASA Technical Reports Server (NTRS)
Haff, G. R.; Schulson, E. M.
1982-01-01
Aluminide intermetallics, because of their strength, microstructural stability, and oxidation resistance at elevated temperatures, represent potential structural materials for use in advanced energy conversion systems. This inherent potential of the intermetallics can currently not be realized in connection with the general brittleness of the materials under ambient conditions. It is pointed out, however, that brittleness is not an inherent characteristic. Single crystals are ductile and polycrystals may be, too, if their grains are fine enough. The present investigation is concerned with an approach for reducing material brittleness, taking into account thermal-mechanically induced grain refinement in NiAl, a B2 aluminide which melts at 1638 C and which retains complete order to its melting point. Attention is given to the kinetics of recrystallization and grain growth of warm-worked, nickel-rich material.
Essentials of Healthy Eating: A Guide
Skerrett, Patrick J.; Willett, Walter C.
2012-01-01
Enough solid evidence now exists to offer women several fundamental strategies for healthy eating. They include emphasizing healthful unsaturated fats, whole grains, good protein “packages,” and fruits and vegetables; limiting consumption of trans and saturated fats, highly refined grains, and sugary beverages; and taking a multivitamin with folic acid and extra vitamin D as a nutritional safety net. A diet based on these principles is healthy through virtually all life stages, from young adulthood through planning for pregnancy, pregnancy, and on into old age. PMID:20974411
NASA Astrophysics Data System (ADS)
Remshev, E. Yu.; Danilin, G. A.; Vorob'eva, G. A.; Kuznetsov, V. V.
2017-01-01
The influence of standard heat or aerothermoacoustic treatment on the structure and the properties of a TS6 titanium alloy is considered. The interrelation between variations in the structure, the grain size, and the properties of the alloy has been detected. The possibilities of aerothermoacoustic treatment to provide a simultaneous increase in the strength and the plasticity of a TS6 alloy upon refining of its grain structure in the course of microplastic deformation and recrystallization are demonstrated.
Jin, Fangwei; Ren, Zhongming; Ren, Weili; Deng, Kang; Zhong, Yunbo; Yu, Jianbo
2008-01-01
The migration of primary Si grains during the solidification of Al–18 wt%Si alloy under a high-gradient magnetic field has been investigated experimentally. It was found that under a gradient magnetic field, the primary Si grains migrated toward one end of the specimen, forming a Si-rich layer, and the thickness of the Si-rich layer increased with increasing magnetic flux density. No movement of Si grains was apparent under a magnetic field below 2.3 T. For magnetic fields above 6.6 T, however, the thickness of the Si-rich layer was almost constant. It was shown that the static field also played a role in impeding the movement of the grains. The primary Si grains were refined in the Si layer, even though the primary silicon grains were very dense. The effect of the magnetic flux density on the migratory behavior is discussed. PMID:27877953
40 CFR 180.342 - Chlorpyrifos; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., oil 20 Corn, field, forage 8.0 Corn, field, grain 0.05 Corn, field, refined oil 0.25 Corn, field, stover 8.0 Corn, sweet, forage 8.0 Corn, sweet, kernel plus cob with husk removed 0.05 Corn, sweet...
40 CFR 180.342 - Chlorpyrifos; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., oil 20 Corn, field, forage 8.0 Corn, field, grain 0.05 Corn, field, refined oil 0.25 Corn, field, stover 8.0 Corn, sweet, forage 8.0 Corn, sweet, kernel plus cob with husk removed 0.05 Corn, sweet...
40 CFR 180.342 - Chlorpyrifos; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., oil 20 Corn, field, forage 8.0 Corn, field, grain 0.05 Corn, field, refined oil 0.25 Corn, field, stover 8.0 Corn, sweet, forage 8.0 Corn, sweet, kernel plus cob with husk removed 0.05 Corn, sweet...
40 CFR 180.342 - Chlorpyrifos; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., oil 20 Corn, field, forage 8.0 Corn, field, grain 0.05 Corn, field, refined oil 0.25 Corn, field, stover 8.0 Corn, sweet, forage 8.0 Corn, sweet, kernel plus cob with husk removed 0.05 Corn, sweet...
40 CFR 180.342 - Chlorpyrifos; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., oil 20 Corn, field, forage 8.0 Corn, field, grain 0.05 Corn, field, refined oil 0.25 Corn, field, stover 8.0 Corn, sweet, forage 8.0 Corn, sweet, kernel plus cob with husk removed 0.05 Corn, sweet...
Assumption-versus data-based approaches to summarizing species' ranges.
Peterson, A Townsend; Navarro-Sigüenza, Adolfo G; Gordillo, Alejandro
2018-06-01
For conservation decision making, species' geographic distributions are mapped using various approaches. Some such efforts have downscaled versions of coarse-resolution extent-of-occurrence maps to fine resolutions for conservation planning. We examined the quality of the extent-of-occurrence maps as range summaries and the utility of refining those maps into fine-resolution distributional hypotheses. Extent-of-occurrence maps tend to be overly simple, omit many known and well-documented populations, and likely frequently include many areas not holding populations. Refinement steps involve typological assumptions about habitat preferences and elevational ranges of species, which can introduce substantial error in estimates of species' true areas of distribution. However, no model-evaluation steps are taken to assess the predictive ability of these models, so model inaccuracies are not noticed. Whereas range summaries derived by these methods may be useful in coarse-grained, global-extent studies, their continued use in on-the-ground conservation applications at fine spatial resolutions is not advisable in light of reliance on assumptions, lack of real spatial resolution, and lack of testing. In contrast, data-driven techniques that integrate primary data on biodiversity occurrence with remotely sensed data that summarize environmental dimensions (i.e., ecological niche modeling or species distribution modeling) offer data-driven solutions based on a minimum of assumptions that can be evaluated and validated quantitatively to offer a well-founded, widely accepted method for summarizing species' distributional patterns for conservation applications. © 2016 Society for Conservation Biology.
Process-scale modelling of microstructure in direct chill casting of aluminium alloys
NASA Astrophysics Data System (ADS)
Bedel, M.; Heyvaert, L.; Založnik, M.; Combeau, H.; Daloz, D.; Lesoult, G.
2015-06-01
The mechanical properties of an alloy being related to its microstructure, the understanding of the mechanisms responsible for the grain structure formation in direct chill casting is crucial. However, the grain size prediction by modelling is difficult since a variety of multi-scale coupled phenomena have to be considered. Nucleation and growth of the grains are interrelated, and the macroscopic transport phenomena such as the motion of grains and inoculant particles with the flow impact the nucleation-gowth competition. Thus we propose to study the grain size distribution of a 5182 alloy industrial scale slab of 510 mm thickness, both non-inoculated and inoculated with Al-3Ti-1B, for which experimental grain size measurements are available. We use a volume-averaged two-phase multi-scale model that describes nucleation from inoculant particles and grain growth, fully coupled with macroscopic transport phenomena: fluid flow induced by natural convection and solidification shrinkage, heat, mass and solute mass transport, grains and inoculant particles motion. We analyze the effect of liquid and grain motion as the effect of grain morphology on microstructure formation and we show in which extent those phenomena are responsible for the grain size distribution observed experimentally. The effect of the refiner level is also studied.
Valli, Veronica; Taccari, Annalisa; Di Nunzio, Mattia; Danesi, Francesca; Bordoni, Alessandra
2018-05-01
Nowadays the higher nutritional value of whole grains compared to refined grains is recognized. In the last decade, there has been a renewed interest in the ancient wheat varieties for producing high-value food products with enhanced health benefits. This study compared two ancient grains, two heritage grains, and four modern grains grown in the same agronomic conditions considering not only their chemical characteristics, but also their biological effects. Whole grain flours were obtained and used to make bread. Bread was in vitro digested, the digesta were supplemented to HepG2 cells, and the biological effects of supplementation were evaluated. In addition, cells previously supplemented with the different digested bread types were then exposed to inflammatory agents to evidence possible protective effects of the pre-treatments. Despite the impossibility to discriminate bread made with different grains based on their chemical composition, results herein reported evidence that their supplementation to cultured cells exerts different effects, confirming the potential health benefits of ancient grains. This research represents an advancement for the evaluation of the apparent positive effects of ancient grains and the formulation of cereal-based products with added nutritional value. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James H; Lanning, David N
A process of comminution of wood chips (C) having a grain direction to produce a mixture of wood particles (P), wherein the wood chips are characterized by an average length dimension (L.sub.C) as measured substantially parallel to the grain, an average width dimension (W.sub.C) as measured normal to L.sub.C and aligned cross grain, and an average height dimension (H.sub.C) as measured normal to W.sub.C and L.sub.C, and wherein the comminution process comprises the step of feeding the wood chips in a direction of travel substantially randomly to the grain direction through a counter rotating pair of intermeshing arrays of cuttingmore » discs (D) arrayed axially perpendicular to the direction of wood chip travel, wherein the cutting discs have a uniform thickness (T.sub.D), and wherein at least one of L.sub.C, W.sub.C, and H.sub.C is greater than T.sub.D.« less
Process for solvent refining of coal using a denitrogenated and dephenolated solvent
Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.
1984-01-01
A process is disclosed for the solvent refining of non-anthracitic coal at elevated temperatures and pressure in a hydrogen atmosphere using a hydrocarbon solvent which before being recycled in the solvent refining process is subjected to chemical treatment to extract substantially all nitrogenous and phenolic constituents from the solvent so as to improve the conversion of coal and the production of oil in the solvent refining process. The solvent refining process can be either thermal or catalytic. The extraction of nitrogenous compounds can be performed by acid contact such as hydrogen chloride or fluoride treatment, while phenolic extraction can be performed by caustic contact or contact with a mixture of silica and alumina.
Ross, Alastair B; Colega, Marjorelee T; Lim, Ai Lin; Silva-Zolezzi, Irma; Macé, Katherine; Saw, Seang Mei; Kwek, Kenneth; Gluckman, Peter; Godfrey, Keith M; Chong, Yap-Seng; Chong, Mary F F
2015-01-01
To quantify whole grain intake in pregnant women in Singapore in order to provide the first detailed analysis of whole grain intake in an Asian country and in pregnant women. Analysis of 24-h diet recalls in a cross-sectional cohort study and analysis of a biomarker of whole grain intake (plasma alkylresorcinols) in a subset of subjects. The Growing Up in Singapore Towards healthy Outcomes-mother offspring cohort study based in Singapore. 998 pregnant mothers with complete 24-h recalls taken during their 26-28th week of gestation. Plasma samples from a randomly select subset of 100 subjects were analysed for plasma alkylresorcinols. Median (IQR) whole grain intake for the cohort and the 30% who reported eating whole grains were 0 (IQR 0, 9) and 23.6 (IQR 14.6, 44.2) g/day respectively. Plasma alkylresorcinol concentrations were very low [median (IQR)=9 (3, 15) nmol/L], suggesting low intake of whole grain wheat in this population. Plasma alkylresorcinols were correlated with whole grain wheat intake (Spearman's r=0.35; p<0.01). Whole grain intake among pregnant mothers in Singapore was well below the 2-3 (60-95 g) servings of whole grains per day recommended by the Singapore Health Promotion Board. Efforts to increase whole grain intake should be supported to encourage people to choose whole grains over refined grains in their diet.
Effects of whole grains on coronary heart disease risk.
Harris, Kristina A; Kris-Etherton, Penny M
2010-11-01
Characterizing which types of carbohydrates, including whole grains, reduce the risk for coronary heart disease (CHD) is challenging. Whole grains are characterized as being high in resistant carbohydrates as compared with refined grains, meaning they typically are high in fiber, nutrients, and bound antioxidants. Whole grain intake consistently has been associated with improved cardiovascular disease outcomes, but also with healthy lifestyles, in large observational studies. Intervention studies that assess the effects of whole grains on biomarkers for CHD have mixed results. Due to the varying nutrient compositions of different whole grains, each could potentially affect CHD risk via different mechanisms. Whole grains high in viscous fiber (oats, barley) decrease serum low-density lipoprotein cholesterol and blood pressure and improve glucose and insulin responses. Grains high in insoluble fiber (wheat) moderately lower glucose and blood pressure but also have a prebiotic effect. Obesity is inversely related to whole grain intake, but intervention studies with whole grains have not produced weight loss. Visceral fat, however, may be affected favorably. Grain processing improves palatability and can have varying effects on nutrition (e.g., the process of milling and grinding flour increases glucose availability and decreases phytochemical content whereas thermal processing increases available antioxidants). Understanding how individual grains, in both natural and processed states, affect CHD risk can inform nutrition recommendations and policies and ultimately benefit public health.
NASA Astrophysics Data System (ADS)
Pimentel, G.; Aranda, M. M.; Chao, J.; González-Carrasco, J. L.; Capdevila, C.
2015-09-01
The first part of this two-part study reported the possibility of simultaneously generating a dense, self-healing α-alumina layer by thermal oxidation and a coarse-grained microstructure with a potential goodness for high-temperature creep resistance in a FeCrAl oxide dispersion-strengthened ferritic alloy that was cold deformed after hot rolling and extrusion. In this second part, the factors affecting the formation of the coarse-grained microstructure such as strain gradients induced during the rolling process are analyzed. It is concluded that larger strain gradients lead to more refined and more isotropic grain structures.
NASA Astrophysics Data System (ADS)
Sai Anuhya, Danam; Gupta, Ashutosh; Nayan, Niraj; Narayana Murty, S. V. S.; Manna, R.; Sastry, G. V. S.
2014-08-01
Al-Cu-Mg alloys are extensively used for riveting applications in aerospace industries due to their relatively high shear strength coupled with high plasticity. The significant advantage of using V65 aluminum alloy ((Al-4Cu-0.2Mg) for rivet application also stems from its significantly slower natural aging kinetics, which gives operational flexibility to carryout riveting operation even after 4 days of solution heat treatment, in contrast to its equivalent alloy AA2024.Rivets are usually made by cold heading of wire rods. In order to form a defect free rivet head, grain size control in wire rods is essential at each and every stage of processing right from casting onwards upto the final wire drawing stage. Wire drawing is carried out at room temperature to reduce diameter as well as impart good surface finish. In the present study, different microstructures in V65 alloy bars were produced by rolling at different temperatures (room temperature to 523K) and subsequently deformed by equal channel angular pressing (ECAP) at 423K upto an equivalent strain of 7. ECAP was carried out to study the effect of initial microstructure on grain refinement and degree of deformation on the evolution of ultrafine grain structure. The refinement of V65 alloy by ECAP is significantly influenced by Initial microstructure but amount of deformation strongly affects the evolution processes as revealed by optical microscopy and transmission electron microscopy.
NASA Astrophysics Data System (ADS)
Oksiuta, Z.; Hosemann, P.; Vogel, S. C.; Baluc, N.
2014-08-01
Various thermo-mechanical treatments were applied to refine and homogenise grain size and improve mechanical properties of hot-isostatically pressed (HIP) 14%Cr ODS ferritic steel. The grain size was reduced, improving mechanical properties, tensile strength and Charpy impact, however bimodal-like distribution was also observed. As a result, larger, frequently elongated grains with size above 1 μm and refined, equiaxed grains with a diameter ranging from 250 to 500 nm. Neutron diffraction measurements revealed that for HIP followed by hydrostatic extrusion material the strongest fiber texture was observed oriented parallel to the extrusion direction. In comparison with hot rolling and hot pressing methods, this material exhibited promising mechanical properties: the ultimate tensile strength of 1350 MPa, yield strength of 1280 MPa, total elongation of 21.7% and Charpy impact energy of 5.8 J. Inferior Charpy impact energy of ∼3.0 J was measured for HIP and hot rolled material, emphasising that parameters of this manufacturing process still have to be optimised. As an alternative manufacturing route, due to the uniform microstructure and simplicity of the process, hot pressing might be a promising method for production of smaller parts of ODS ferritic steels. Besides, the ductile-to-brittle transition temperature of all thermo-mechanically treated materials, in comparison with as-HIPped ODS steel, was improved by more than 50%, the transition temperature ranging from 50 to 70 °C (323 and 343 K) remains still unsatisfactory.
NASA Astrophysics Data System (ADS)
Brodskaya, R. L.; Bil'Skaya, I. V.; Lyakhnitskaya, V. D.; Markovsky, B. A.; Sidorov, E. G.
2007-12-01
Intergrowth boundaries between mineral individuals in dunite of the Gal’moenan massif in Koryakia was studied in terms of crystal morphology, crystal optics, and ontogenesis. The results obtained allowed us to trace the staged formation of olivine and chromite and four generations of these minerals. Micro-and nanotopography of boundary surfaces between intergrown mineral individuals of different generations was examined with optic, electron, and atomic force microscopes. The boundaries between mineral individuals of different generations are distinguished by their microsculpture for both olivine and chromite grains. Both minerals demonstrate a compositional trend toward refinement from older to younger generations. The decrease in the iron mole fraction in olivine and chromite is accompanied by the crystallization of magnetite along weakened zones in olivine of the first generation and as outer rims around the chromite grains of the second generation observable under optic and electronic microscopes. The subsequent refinement of chromite results in the release of PGE from its lattice, as established by atomic power microscopy. The newly formed PGM are localized at the boundaries between mineral individuals and, thus, mark a special stage in the ontogenetic evolution of mineral aggregates. Further recrystallization is expressed in the spatial redistribution of grain boundaries and the formation of monomineralic intergrowth boundaries, i.e., the glomerogranular structure of rock and substructures of PGM, chromite, and olivine grains as intermediate types of organization of the granular assemblies in the form of reticulate, chain, and cellular structures and substructures of aggregates.
Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minárik, Peter; Král, Robert; Pešička, Josef
2016-02-15
The magnesium alloy LAE442 was processed by extrusion and equal channel angular pressing (ECAP) to achieve ultrafine grained microstructure. Detailed characterization of the microstructure was performed by scanning electron microscope, electron back scattered diffraction (EBSD) and transmission electron microscope. The initial, as-cast, microstructure consisted of large grains of ~ 1 mm. The grain refinement due to the processing by severe plastic deformation led to a decrease of the average grain size to ~ 1.7 μm after the final step of ECAP. A detailed characterization of secondary phases showed the precipitation of Al{sub 11}RE{sub 3}, Al{sub 2}Ca and Al{sub 10}RE{sub 2}Mn{submore » 7} intermetallic phases. X-ray diffraction measurements proved that Li is dissolved within the magnesium matrix in the as-cast condition. Newly formed Al{sub 3}Li phase was observed after ECAP. The texture formation due to the extrusion and ECAP was different from that in the other magnesium alloys due to the activation of non-basal slip systems as a result of the decrease of the c/a ratio. - Highlights: • Combined extrusion and equal channel angular pressing results in significant grain refinement by factor 1000 approximately. • Al{sub 11}RE{sub 3}, Al{sub 2}Ca and Al{sub 10}RE{sub 2}Mn{sub 7} secondary phases are present in the as-cast material while Li was dissolved in the Mg matrix. • Extrusion and ECAP have no effect on the composition of the secondary phases but they influence strongly their distribution. • Texture evolution is affected by decrease of c/a ratio due to the presence of Li and resulting activation of non-basal slip.« less
Characterization of acoustic cavitation in water and molten aluminum alloy.
Komarov, Sergey; Oda, Kazuhiro; Ishiwata, Yasuo; Dezhkunov, Nikolay
2013-03-01
High-intensive ultrasonic vibrations have been recognized as an attractive tool for refining the grain structure of metals in casting technology. However, the practical application of ultrasonics in this area remains rather limited. One of the reasons is a lack of data needed to optimize the ultrasonic treatment conditions, particularly those concerning characteristics of cavitation zone in molten aluminum. The main aim of the present study was to investigate the intensity and spectral characteristics of cavitation noise generated during radiation of ultrasonic waves into water and molten aluminum alloys, and to establish a measure for evaluating the cavitation intensity. The measurements were performed by using a high temperature cavitometer capable of measuring the level of cavitation noise within five frequency bands from 0.01 to 10MHz. The effect of cavitation treatment was verified by applying high-intense ultrasonic vibrations to a DC caster to refine the primary silicon grains of a model Al-17Si alloy. It was found that the level of high frequency noise components is the most adequate parameter for evaluating the cavitation intensity. Based on this finding, it was concluded that implosions of cavitation bubbles play a decisive role in refinement of the alloy structure. Copyright © 2012 Elsevier B.V. All rights reserved.
Coarse Grained Model for Biological Simulations: Recent Refinements and Validation
Vicatos, Spyridon; Rychkova, Anna; Mukherjee, Shayantani; Warshel, Arieh
2014-01-01
Exploring the free energy landscape of proteins and modeling the corresponding functional aspects presents a major challenge for computer simulation approaches. This challenge is due to the complexity of the landscape and the enormous computer time needed for converging simulations. The use of various simplified coarse grained (CG) models offers an effective way of sampling the landscape, but most current models are not expected to give a reliable description of protein stability and functional aspects. The main problem is associated with insufficient focus on the electrostatic features of the model. In this respect our recent CG model offers significant advantage as it has been refined while focusing on its electrostatic free energy. Here we review the current state of our model, describing recent refinement, extensions and validation studies while focusing on demonstrating key applications. These include studies of protein stability, extending the model to include membranes and electrolytes and electrodes as well as studies of voltage activated proteins, protein insertion trough the translocon, the action of molecular motors and even the coupling of the stalled ribosome and the translocon. Our example illustrates the general potential of our approach in overcoming major challenges in studies of structure function correlation in proteins and large macromolecular complexes. PMID:25050439
NASA Astrophysics Data System (ADS)
Ueji, R.; Tsuchida, N.; Harada, K.; Takaki, K.; Fujii, H.
2015-08-01
The grain size effect on the deformation twinning in a high manganese austenitic steel which is so-called TWIP (twining induced plastic deformation) steel was studied in order to understand how to control deformation twinning. The 31wt%Mn-3%Al-3% Si steel was cold rolled and annealed at various temperatures to obtain fully recrystallized structures with different mean grain sizes. These annealed sheets were examined by room temperature tensile tests at a strain rate of 10-4/s. The coarse grained sample (grain size: 49.6μm) showed many deformation twins and the deformation twinning was preferentially found in the grains in which the tensile axis is parallel near to [111]. On the other hand, the sample with finer grains (1.8 μm) had few grains with twinning even after the tensile deformation. The electron back scattering diffraction (EB SD) measurements clarified the relationship between the anisotropy of deformation twinning and that of inhomogeneous plastic deformation. Based on the EBSD analysis, the mechanism of the suppression of deformation twinning by grain refinement was discussed with the concept of the slip pattern competition between the slip system governed by a grain boundary and that activated by the macroscopic load.
Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation
El Atwani, Osman; Nathaniel, James; Leff, Asher C.; ...
2017-05-12
Crystal defects generated during irradiation can result in severe changes in morphology and an overall degradation of mechanical properties in a given material. Nanomaterials have been proposed as radiation damage tolerant materials, due to the hypothesis that defect density decreases with grain size refinement due to the increase in grain boundary surface area. The lower defect density should arise from grain boundary-point defect absorption and enhancement of interstitial-vacancy annihilation. In this study, low energy helium ion irradiation on free-standing iron thin films were performed at 573 K. Interstitial loops of a 0 /2 [111] Burgers vector were directly observed asmore » a result of the displacement damage. Loop density trends with grain size demonstrated an increase in the nanocrystalline (<100 nm) regime, but scattered behavior in the transition from the nanocrystalline to the ultra-fine regime (100–500 nm). To examine the validity of such trends, loop density and area for different grains at various irradiation doses were compared and revealed efficient defect absorption in the nanocrystalline grain size regime, but loop coalescence in the ultra-fine grain size regime. Lastly, a relationship between the denuded zone formation, a measure of grain boundary absorption efficiency, grain size, grain boundary type and misorientation angle is determined.« less
Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Atwani, Osman; Nathaniel, James; Leff, Asher C.
Crystal defects generated during irradiation can result in severe changes in morphology and an overall degradation of mechanical properties in a given material. Nanomaterials have been proposed as radiation damage tolerant materials, due to the hypothesis that defect density decreases with grain size refinement due to the increase in grain boundary surface area. The lower defect density should arise from grain boundary-point defect absorption and enhancement of interstitial-vacancy annihilation. In this study, low energy helium ion irradiation on free-standing iron thin films were performed at 573 K. Interstitial loops of a 0 /2 [111] Burgers vector were directly observed asmore » a result of the displacement damage. Loop density trends with grain size demonstrated an increase in the nanocrystalline (<100 nm) regime, but scattered behavior in the transition from the nanocrystalline to the ultra-fine regime (100–500 nm). To examine the validity of such trends, loop density and area for different grains at various irradiation doses were compared and revealed efficient defect absorption in the nanocrystalline grain size regime, but loop coalescence in the ultra-fine grain size regime. Lastly, a relationship between the denuded zone formation, a measure of grain boundary absorption efficiency, grain size, grain boundary type and misorientation angle is determined.« less
Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott
2008-01-01
Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be produced through exploratory drilling programs; (2) the tools for gas hydrate detection and characterisation from remote sensing data; (3) the details of gas hydrate reservoir production behaviour through additional, well-monitored and longer duration field tests and (4) the understanding of the potential environmental impacts of gas hydrate resource development. The results of future production tests, in the context of varying market and energy supply conditions around the globe, will be the key to determine the ultimate timing and scale of the commercial production of natural gas from gas hydrates.
Grain dynamics and plastic properties of highly refined materials
NASA Astrophysics Data System (ADS)
Lagos, Miguel; Retamal, César
2010-12-01
It has been shown that a grain boundary may undergo two competing classes of elastic instability when the in-plane shear stress exceeds the proper critical values. It may buckle acquiring a sinusoidal shape or may develop a periodic series of fissures, separating bands with a sigmoidal profile. The two instabilities lead to grain sliding, but the corresponding expressions relating the relative velocity between adjacent grains with stress do differ. The plastic properties for small strains were calculated for the two force laws, which we called force models A and B. A comparison of the theoretical results with published experimental data shows that model A, while giving predictions within the experimental uncertainties for a series of superplastic aluminium and titanium alloys, fails for Avesta 2304 steel. However, excellent results are obtained when model B is applied for this steel.
Cai, Jie; Lv, Peng; Guan, Qingfeng; Xu, Xiaojing; Lu, Jinzhong; Wang, Zhiping; Han, Zhiyong
2016-11-30
Microstructural modifications of a thermally sprayed MCrAlY bond coat subjected to high-current pulsed electron beam (HCPEB) and their relationships with thermal cycling behavior of thermal barrier coatings (TBCs) were investigated. Microstructural observations revealed that the rough surface of air plasma spraying (APS) samples was significantly remelted and replaced by many interconnected bulged nodules after HCPEB irradiation. Meanwhile, the parallel columnar grains with growth direction perpendicular to the coating surface were observed inside these bulged nodules. Substantial Y-rich Al 2 O 3 bubbles and varieties of nanocrystallines were distributed evenly on the top of the modified layer. A physical model was proposed to describe the evaporation-condensation mechanism taking place at the irradiated surface for generating such surface morphologies. The results of thermal cycling test showed that HCPEB-TBCs presented higher thermal cycling resistance, the spalling area of which after 200 cycles accounted for only 1% of its total area, while it was about 34% for APS-TBCs. The resulting failure mode, i.e., in particular, a mixed delamination crack path, was shown and discussed. The irradiated effects including compact remelted surface, abundant nanoparticles, refined columnar grains, Y-rich alumina bubbles, and deformation structures contributed to the formation of a stable, continuous, slow-growing, and uniform thermally grown oxide with strong adherent ability. It appeared to be responsible for releasing stress and changing the cracking paths, and ultimately greatly improving the thermal cycling behavior of HCPEB-TBCs.
Primary Prevention of Colorectal Cancer
Chan, Andrew T.; Giovannucci, Edward L.
2010-01-01
Colorectal cancer has been strongly associated with a Western lifestyle. In the past several decades, much has been learned about the dietary, lifestyle, and medication risk factors for this malignancy. Although there is controversy about the role of specific nutritional factors, consideration of the dietary pattern as a whole appears useful for formulating recommendations. For example, several studies have shown that high intake of red and processed meats, highly refined grains and starches, and sugars is related to increased risk of colorectal cancer. Replacing these factors with poultry, fish, and plant sources as the primary source of protein; unsaturated fats as the primary source of fat; and unrefined grains, legumes and fruits as the primary source of carbohydrates is likely to lower risk of colorectal cancer. Although a role for supplements, including vitamin D, folate, and vitamin B6, remains uncertain, calcium supplementation is likely to be at least modestly beneficial. With respect to lifestyle, compelling evidence indicates that avoidance of smoking and heavy alcohol use, prevention of weight gain, and the maintenance of a reasonable level of physical activity are associated with markedly lower risks of colorectal cancer. Medications such as aspirin and non-steroidal anti-inflammatory drugs and post-menopausal hormones for women are associated with significant reductions in colorectal cancer risk, though their utility is affected by associated risks. Taken together, modifications in diet and lifestyle should substantially reduce the risk of colorectal cancer and could complement screening in reducing colorectal cancer incidence. PMID:20420944
Microstructure and Tensile Properties of Friction Stir Processed Mg–Sn–Zn Alloy
Chen, Xiaoyang; Dai, Qiao; Li, Xingcheng; Lu, Yalin; Zhang, Yang
2018-01-01
In this study, as-cast Mg–6Sn–2Zn (wt.%) alloy was subjected to friction stir processing (FSP) and the microstructure and tensile properties of FSP Mg–6Sn–2Zn samples were investigated. It was found that, in the stir zone (SZ) of FSP Mg–6Sn–2Zn samples, α-Mg grains were significantly refined via dynamic recrystallization (DRX) and the Mg2Sn phase was broken and partially dissolved. The microstructure in SZ was nonuniform and DRXed grains in the SZ-up regions were coarser than those in the SZ-down regions. Coarse broken Mg2Sn particles were observed in the SZ-up regions, while only fine Mg2Sn particles were observed in the SZ-down regions. Strong {0001} basal texture developed in the SZ regions of Mg–6Sn–2Zn samples after FSP. The increase of travel speed had little effect on the texture of different SZ regions. The ductility of FSP Mg–6Sn–2Zn samples was obviously improved, while the improvement in strength was negligible when compared to the as-cast sample. The tensile properties of FSP Mg–6Sn–2Zn samples were influenced by grain refinement, texture modification, and the breaking up and dissolution of the Mg2Sn phase. PMID:29690590
Microstructure and Tensile Properties of Friction Stir Processed Mg⁻Sn⁻Zn Alloy.
Chen, Xiaoyang; Dai, Qiao; Li, Xingcheng; Lu, Yalin; Zhang, Yang
2018-04-23
In this study, as-cast Mg⁻6Sn⁻2Zn (wt.%) alloy was subjected to friction stir processing (FSP) and the microstructure and tensile properties of FSP Mg⁻6Sn⁻2Zn samples were investigated. It was found that, in the stir zone (SZ) of FSP Mg⁻6Sn⁻2Zn samples, α-Mg grains were significantly refined via dynamic recrystallization (DRX) and the Mg₂Sn phase was broken and partially dissolved. The microstructure in SZ was nonuniform and DRXed grains in the SZ-up regions were coarser than those in the SZ-down regions. Coarse broken Mg₂Sn particles were observed in the SZ-up regions, while only fine Mg₂Sn particles were observed in the SZ-down regions. Strong {0001} basal texture developed in the SZ regions of Mg⁻6Sn⁻2Zn samples after FSP. The increase of travel speed had little effect on the texture of different SZ regions. The ductility of FSP Mg⁻6Sn⁻2Zn samples was obviously improved, while the improvement in strength was negligible when compared to the as-cast sample. The tensile properties of FSP Mg⁻6Sn⁻2Zn samples were influenced by grain refinement, texture modification, and the breaking up and dissolution of the Mg₂Sn phase.
Effect of Cryorolling and Aging on Fatigue Behavior of Ultrafine-grained Al6061
NASA Astrophysics Data System (ADS)
Yadollahpour, M.; Hosseini-Toudeshky, H.; Karimzadeh, F.
2016-05-01
The effects of cryorolling (rolling at liquid nitrogen temperature) and heat treatment on tensile and high-cycle fatigue properties and fatigue crack growth rate of Al6061 alloy have been investigated in the present work. First, the solid solution-treated bulk Al6061 alloy was subjected to cryorolling with 90% total thickness reduction and subsequent short annealing at 205°C for 5 min and peak aging at 148°C for 39 h to achieve grain refinement and simultaneous improvement of the strength and ductility. Then, hardness measurements, tensile tests, fatigue life, and fatigue crack growth rate tests including fractography analyses using scanning electron microscopy were performed on bulk Al6061 alloy, cryorolled (CR), and cryorolled material followed by peak aging (PA). The PA specimen showed improved yield strength by 24%, ultimate tensile strength by 20%, and ductility by 12% as compared with the bulk Al6061 alloy. It is shown that the fatigue strength of both CR and PA specimens under a high-cycle fatigue regime are larger than that of the bulk Al6061 alloy. Also, fatigue crack growth rates of the CR and PA specimens show significant enhancement in fatigue crack growth resistances as compared with the bulk Al6061 alloy, as a result of grain refinement.
Effect of severe plastic deformation on microstructure of squeeze-cast magnesium alloy AZ31 plate
NASA Astrophysics Data System (ADS)
Fong, Kai Soon; Tan, Ming Jen; Atsushi, Danno; Chua, Beng Wah; Ho, Meng Kwong
2016-10-01
High cost and poor room temperature formability of magnesium alloy sheet are the key factors that limit its application as a feedstock material for press forming. Production of Mg plates by squeeze casting with further processing by severe plastic deformation (SPD) is a potential method to reduce cost and improve formability. In this study, AZ31 Mg plate of dimension 96×96×4 mm was successfully produced by squeeze casting, using a novel melt transfer technique, at a forging force and speed of 180 Ton and 200 mm/sec respectively. The effect of severe plastic deformation (SPD) using groove pressing on the mechanical properties of squeeze-casted Mg plate after partial homogenization was subsequently investigated. Observation of the microstructure after two cycles of groove pressing, under decreasing temperature from 543K to 493K, shows a significant grain refinement from 39 to 4.7 µm. The Vickers hardness increased by approximately 25% from 56 to 74.1 which suggests an improvement in mechanical strength as a result of both the grain refinement and work hardening. The result shows that squeeze casting combined with groove pressing is potentially an effective method for preparation of thin magnesium alloy plate with fine-grained structure and improved mechanical properties.
NASA Astrophysics Data System (ADS)
Zhou, Ping; Guo, Wei-Guo; Su, Yu; Wang, Jianjun; Lin, Xin; Huang, Weidong
2017-07-01
To investigate the mechanical properties of the Ti-6Al-4V alloy fabricated by laser solid forming technology, both static and dynamic shear tests were conducted on hat-shaped specimens by a servohydraulic testing machine and an enhanced split Hopkinson pressure bar system, over a temperature range of 173-573 K. The microstructure of both the original and deformed specimens was characterized by optical microscopy and scanning electron microscopy. The results show that: (1) the anisotropy of shear properties is not significant regardless of the visible stratification and the prior- β grains that grow epitaxially along the depositing direction; (2) the ultimate shear strength of this material is lower than that of those Ti-6Al-4V alloys fabricated by forging and extrusion; (3) the adiabatic shear bands of approximately 25.6-36.4 μm in width can develop at all selected temperatures during the dynamic shear deformation; and (4) the observed microstructure and measured microhardness indicate that the grains become refined in adiabatic shear band. Estimation of the temperature rise shows that the temperature in shear band exceeds the recrystallization temperature. The process of rotational dynamic recrystallization is considered to be the cause of the grain refinement in shear band.
40 CFR 180.377 - Diflubenzuron; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Barley, straw 1.8 Brassica, leafy greens, subgroup 5B 9.0 Cattle, meat byproducts 0.15 Fruit, stone..., refined oil 0.20 Pear 0.50 Pepper 1.0 Pistachio 0.06 Pummelo 0.50 Rice, grain 0.02 Rice, straw 0.8 Sheep...
40 CFR 180.377 - Diflubenzuron; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Barley, straw 1.8 Brassica, leafy greens, subgroup 5B 9.0 Cattle, meat byproducts 0.15 Fruit, stone..., refined oil 0.20 Pear 0.50 Pepper 1.0 Pistachio 0.06 Pummelo 0.50 Rice, grain 0.02 Rice, straw 0.8 Sheep...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Xiujuan; Whalen, Scott A.; Darsell, Jens T.
Soft magnetic materials are often limited in scalability due to conventional processes that do not retain beneficial microstructures, and their associated physical properties, during densification. In this work, friction consolidation (FC) has been studied to fabricate Fe-Si soft magnetic materials from gas-atomized powder precursors. Fe-Si powder is consolidated using variable pressure and tool rotation speed in an effort to evaluate this unique densification approach for potential improvements in magnetic properties. FC, due to the high shear deformation involved, is shown to result in uniform gradual grain structure refinement across the consolidated workpiece from the center nearest the tool to themore » edge. Magnetic properties along different orientations indicate little, if any, textural orientation in the refined grain structure. The effect of annealing on the magnetic properties is evaluated and shown to decrease coercivity. FC processing was able to retain the magnetization of the original gas-atomized powders but further process optimization is needed to reach the optimal coercivity for the soft magnetic materials applications.« less
NASA Astrophysics Data System (ADS)
Azami, Hamed; Escudero, Javier
2017-01-01
Multiscale entropy (MSE) is an appealing tool to characterize the complexity of time series over multiple temporal scales. Recent developments in the field have tried to extend the MSE technique in different ways. Building on these trends, we propose the so-called refined composite multivariate multiscale fuzzy entropy (RCmvMFE) whose coarse-graining step uses variance (RCmvMFEσ2) or mean (RCmvMFEμ). We investigate the behavior of these multivariate methods on multichannel white Gaussian and 1/ f noise signals, and two publicly available biomedical recordings. Our simulations demonstrate that RCmvMFEσ2 and RCmvMFEμ lead to more stable results and are less sensitive to the signals' length in comparison with the other existing multivariate multiscale entropy-based methods. The classification results also show that using both the variance and mean in the coarse-graining step offers complexity profiles with complementary information for biomedical signal analysis. We also made freely available all the Matlab codes used in this paper.
Danchenko, Vitaliy G [Dnipropetrovsk, UA; Noyes, Ronald T [Stillwater, OK; Potapovych, Larysa P [Dnipropetrovsk, UA
2012-02-28
Aeration drying and disinfecting grain crops in bulk and pretreating seeds includes passing through a bulk of grain crops and seeds disinfecting and drying agents including an ozone and air mixture and surrounding air, subdividing the disinfecting and drying agents into a plurality of streams spaced from one another in a vertical direction, and passing the streams at different heights through levels located at corresponding heights of the bulk of grain crops and seeds transversely in a substantially horizontal direction.
The Structure of Psychopathology: Toward an Expanded Quantitative Empirical Model
Wright, Aidan G.C.; Krueger, Robert F.; Hobbs, Megan J.; Markon, Kristian E.; Eaton, Nicholas R.; Slade, Tim
2013-01-01
There has been substantial recent interest in the development of a quantitative, empirically based model of psychopathology. However, the majority of pertinent research has focused on analyses of diagnoses, as described in current official nosologies. This is a significant limitation because existing diagnostic categories are often heterogeneous. In the current research, we aimed to redress this limitation of the existing literature, and to directly compare the fit of categorical, continuous, and hybrid (i.e., combined categorical and continuous) models of syndromes derived from indicators more fine-grained than diagnoses. We analyzed data from a large representative epidemiologic sample (the 2007 Australian National Survey of Mental Health and Wellbeing; N = 8,841). Continuous models provided the best fit for each syndrome we observed (Distress, Obsessive Compulsivity, Fear, Alcohol Problems, Drug Problems, and Psychotic Experiences). In addition, the best fitting higher-order model of these syndromes grouped them into three broad spectra: Internalizing, Externalizing, and Psychotic Experiences. We discuss these results in terms of future efforts to refine emerging empirically based, dimensional-spectrum model of psychopathology, and to use the model to frame psychopathology research more broadly. PMID:23067258
Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy
NASA Astrophysics Data System (ADS)
Xia, Minglu; Sun, Qingping
2017-10-01
Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.
Fabrication of MEMS components using ultrafine-grained aluminium alloys
NASA Astrophysics Data System (ADS)
Qiao, Xiao Guang; Gao, Nong; Moktadir, Zakaria; Kraft, Michael; Starink, Marco J.
2010-04-01
A novel process for the fabrication of a microelectromechanical systems (MEMS) metallic component with features smaller than 10 µm and high thermal conductivity was investigated. This may be applied to new or improved microscale components, such as (micro-) heat exchangers. In the first stage of processing, equal channel angular pressing (ECAP) was employed to refine the grain size of commercial purity aluminium (Al-1050) to the ultrafine-grained (UFG) material. Embossing was conducted using a micro silicon mould fabricated by deep reactive ion etching (DRIE). Both cold embossing and hot embossing were performed on the coarse-grained and UFG Al-1050. Cold embossing on UFG Al-1050 led to a partially transferred pattern from the micro silicon mould and high failure rate of the mould. Hot embossing on UFG Al-1050 provided a smooth embossed surface with a fully transferred pattern and a low failure rate of the mould, while hot embossing on the coarse-grained Al-1050 resulted in a rougher surface with shear bands.
Establishing Substantial Equivalence: Transcriptomics
NASA Astrophysics Data System (ADS)
Baudo, María Marcela; Powers, Stephen J.; Mitchell, Rowan A. C.; Shewry, Peter R.
Regulatory authorities in Western Europe require transgenic crops to be substantially equivalent to conventionally bred forms if they are to be approved for commercial production. One way to establish substantial equivalence is to compare the transcript profiles of developing grain and other tissues of transgenic and conventionally bred lines, in order to identify any unintended effects of the transformation process. We present detailed protocols for transcriptomic comparisons of developing wheat grain and leaf material, and illustrate their use by reference to our own studies of lines transformed to express additional gluten protein genes controlled by their own endosperm-specific promoters. The results show that the transgenes present in these lines (which included those encoding marker genes) did not have any significant unpredicted effects on the expression of endogenous genes and that the transgenic plants were therefore substantially equivalent to the corresponding parental lines.
Strengthening of metallic alloys with nanometer-size oxide dispersions
Flinn, John E.; Kelly, Thomas F.
1999-01-01
Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James H.; Lanning, David N.
A process of comminution of wood chips (C) having a grain direction to produce a mixture of wood particles (P), wherein the wood chips are characterized by an average length dimension (L.sub.C) as measured substantially parallel to the grain, an average width dimension (W.sub.C) as measured normal to L.sub.C and aligned cross grain, and an average height dimension (H.sub.C) as measured normal to W.sub.C and L.sub.C, wherein W.sub.C>L.sub.C, and wherein the comminution process comprises the step of feeding the wood chips in a direction of travel substantially randomly to the grain direction through a counter rotating pair of intermeshing arraysmore » of cutting discs (D) arrayed axially perpendicular to the direction of wood chip travel, wherein the cutting discs have a uniform thickness (T.sub.D), and wherein at least one of L.sub.C, W.sub.C, and H.sub.C is less than T.sub.D.« less
NASA Astrophysics Data System (ADS)
Charfeddine, Saifeddine; Zehani, Karim; Besais, Lotfi; Korchef, Atef
2014-08-01
In the present work, investigations on the microstructure of an aluminum alloy that had been subjected to severe plastic deformation (SPD) by equal channel angular pressing (ECAP), filing and ball milling, were carried out using X-ray diffraction and scanning electron microscopy. SPD leads to lattice distortions, increased dislocation density and an intensive refinement of the microstructure. The refinement and lattice imperfections of the material are greatly affected by the deformation modes and loading performance occurring during SPD. During the milling, the dislocation annihilation increases at higher strains thereby resulting in a smaller crystallite size. After ECAP, the material manifests a strong shear texture and anisotropy of the deformation behavior. Strain anisotropy is less pronounced in filed and ball milled powder particles.
Grain boundary and triple junction diffusion in nanocrystalline copper
NASA Astrophysics Data System (ADS)
Wegner, M.; Leuthold, J.; Peterlechner, M.; Song, X.; Divinski, S. V.; Wilde, G.
2014-09-01
Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes,
NASA Astrophysics Data System (ADS)
Guo, Qianying; Thompson, Gregory B.
2018-04-01
In-situ TEM nanoindentation of a polycrystalline Cu film was cross-correlated with precession electron diffraction (PED) to quantify the microstructural evolution. The use of PED is shown to clearly reveal features, such as grain size, that are easily masked by diffraction contrast created by the deformation. Using PED, the accompanying grain refinement and change in texture as well as the preservation of specific grain boundary structures, including a ∑3 boundary, under the indent impression were quantified. The nucleation of dislocations, evident in low-angle grain boundary formations, was also observed under the indent. PED quantification of texture gradients created by the indentation process linked well to bend contours observed in the bright-field images. Finally, PED enabled generating a local orientation spread map that gave an approximate estimation of the spatial distribution of strain created by the indentation impression.
ISS-Experiments of Columnar-to-Equiaxed Transition in Solidification Processing
NASA Technical Reports Server (NTRS)
Sturz, Laszlo; Zimmermann, Gerhard; Gandin, Charles, Andre; Billia, Bernard; Magelinck, Nathalie; Nguyen-Thi, Henry; Browne, David John; Mirihanage, Wajira U.; Voss, Daniela; Beckermann, Christoph;
2012-01-01
The main topic of the research project CETSOL in the framework of the Microgravity Application Promotion (MAP) programme of the European Space Agency (ESA) is the investigation of the transition from columnar to equiaxed grain growth during solidification. Microgravity environment allows for suppression of buoyancy-driven melt flow and for growth of equiaxed grains free of sedimentation and buoyancy effects. This contribution will present first experimental results obtained in microgravity using hypo-eutectic AlSi alloys in the Materials Science Laboratory (MSL) on-board the International Space Station (ISS). The analysis of the experiments confirms the existence of a columnar to equiaxed transition, especially in the refined alloy. Temperature evolution and grain structure analysis provide critical values for the position, the temperature gradient and the solidification velocity at the columnar to equiaxed transition. These data will be used to improve modeling of solidification microstructures and grain structure on different lengths scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Subhash; Pal, Kaushik, E-mail: pl_kshk@yaho
Interface between ceramic particulate and matrix is known to control the response of the materials and functionality of the composite. Among numerous physical properties, grain structure of the materials has also played a significant role in defining the behaviour of metal matrix composites. Usually, silicon carbide (SiC) particles show poor interfacial wettability in aluminium melt. Herein, we were successfully synthesized magnesium oxide (MgO) and nanocrystalline magnesium aluminate (MgAl{sub 2}O{sub 4}) spinel coated silicon carbide (SiC) core-shell micro-composites through sol-gel technique to improve the wettability of dispersoids. Core-shell structures of submicron size were thoroughly investigated by various characterization techniques. Further, aluminiummore » matrix composites incorporated with pristine SiC, MgO grafted SiC and MgAl{sub 2}O{sub 4} grafted SiC particles were fabricated by stir casting technique, respectively. Additionally, as-cast composites were processed via friction stir processing (FSP) technique to observe the influence of grain refinement on mechanical and damping properties. Electron back scattered diffraction (EBSD), Field emission scanning electron microscopy (FE-SEM) and X-ray energy dispersion spectroscopy (EDX) analysis were conducted for investigating grain size refinement, adequate dispersion, stability and de-agglomeration of encapsulated SiC particles in aluminium matrix. The mechanical as well as thermal cyclic (from − 100 to 400 °C) damping performance of the as-cast and friction stir processed composites were studied, respectively. Finally, the enhanced properties were attributable to reduced agglomeration, stabilization and proper dispersion of the tailored SiC particles Al matrix. - Highlights: •Synthesizing a novel coating layer of MgO and MgAl{sub 2}O{sub 4} spinel onto SiC particles •Significant improvement in UTS and hardness by reinforcing tailored SiC in Al •Significant grain refinements were obtained through FSP •SiC/MgAl{sub 2}O{sub 4}/Al exhibits ~ 61% higher storage modulus as compare to pure Al after FSP.« less
Biomechanical properties of wheat grains: the implications on milling.
Hourston, James E; Ignatz, Michael; Reith, Martin; Leubner-Metzger, Gerhard; Steinbrecher, Tina
2017-01-01
Millennia of continuous innovation have driven ever increasing efficiency in the milling process. Mechanically characterizing wheat grains and discerning the structure and function of the wheat bran layers can contribute to continuing innovation. We present novel shear force and puncture force testing regimes to characterize different wheat grain cultivars. The forces endured by wheat grains during the milling process can be quantified, enabling us to measure the impact of commonly applied grain pretreatments, such as microwave heating, extended tempering, enzyme and hormone treatments on grains of different 'hardness'. Using these methods, we demonstrate the importance of short tempering phases prior to milling and identify ways in which our methods can detect differences in the maximum force, energy and breaking behaviours of hard and soft grain types. We also demonstrate for the first time, endosperm weakening in wheat, through hormone stratification on single bran layers. The modern milling process is highly refined, meaning that small, cultivar specific, adjustments can result in large increases in downstream profits. We believe that methods such as these, which enable rapid testing of milling pretreatments and material properties can help to drive an innovation process that has been core to our industrial efforts since prehistory. © 2017 The Authors.
Biomechanical properties of wheat grains: the implications on milling
Reith, Martin
2017-01-01
Millennia of continuous innovation have driven ever increasing efficiency in the milling process. Mechanically characterizing wheat grains and discerning the structure and function of the wheat bran layers can contribute to continuing innovation. We present novel shear force and puncture force testing regimes to characterize different wheat grain cultivars. The forces endured by wheat grains during the milling process can be quantified, enabling us to measure the impact of commonly applied grain pretreatments, such as microwave heating, extended tempering, enzyme and hormone treatments on grains of different ‘hardness’. Using these methods, we demonstrate the importance of short tempering phases prior to milling and identify ways in which our methods can detect differences in the maximum force, energy and breaking behaviours of hard and soft grain types. We also demonstrate for the first time, endosperm weakening in wheat, through hormone stratification on single bran layers. The modern milling process is highly refined, meaning that small, cultivar specific, adjustments can result in large increases in downstream profits. We believe that methods such as these, which enable rapid testing of milling pretreatments and material properties can help to drive an innovation process that has been core to our industrial efforts since prehistory. PMID:28100826
NASA Astrophysics Data System (ADS)
Takizawa, Yoichi; Sumikawa, Kosei; Watanabe, Kyohei; Masuda, Takahiro; Yumoto, Manabu; Kanai, Yuta; Otagiri, Yoshiharu; Horita, Zenji
2018-03-01
This study updates a process of high-pressure sliding (HPS) recently developed as a severe plastic deformation process under high pressure for grain refinement of sheet samples. The updated version, which we call the incremental feeding HPS (IF-HPS), consists of sliding for SPD and feeding for upsizing the SPD-processed area so that, without increasing the capacity of processing facility, it is possible to cover a much larger area with an SPD-processed ultrafine-grained structure with a grain size of 120 nm. For the IF-HPS processing, anvils with flat surfaces but without grooves are used in an unconstrained condition, and the feeding distance is set equal to the deformed width. A Ni-based superalloy (Inconel 718) is processed by the IF-HPS under 4 GPa at room temperature, and it is possible to obtain an SPD-processed sheet with dimensions of approximately 100 × 100 × 1 mm3. Strain distribution and evolution were examined by hardness measurement and simulation using a finite element method. Tensile tests were conducted using tensile specimens extracted from the IF-HPS-processed sheet. Advent of high strain rate superplasticity with the total elongation of more than 400 pct was confirmed by pulling the tensile specimens with an initial strain rate of 2.0 × 10-2 s-1 at a temperature as low as 1073 K. The formability of the IF-HPS-processed sheet was confirmed by successful cup forming. It was also confirmed that the restoration after the superplastic deformation was feasible by subjecting to conventional heat treatment used for Inconel 718.
NASA Astrophysics Data System (ADS)
Karthikeyan, T.; Dash, Manmath Kumar; Ravikirana; Mythili, R.; Panneer Selvi, S.; Moitra, A.; Saroja, S.
2017-10-01
The effect of 'conventional normalizing and tempering' (CNT) and 'double austenitization based normalizing and tempering' (DNT) heat treatments on the microstructure, tensile, creep and impact toughness properties of 9Cr-1Mo steel has been studied. The tempered martensite microstructure obtained through DNT treatment exhibited smaller sizes of prior-austenite grains/martensite packets (28 μm/11 μm) compared to the CNT treatment (44 μm/14 μm). The tempered martensite morphology was largely retained after long-term thermal aging at 550 °C/5000 h, while the M23C6 and M2(C,N) type of precipitates were found to act as nucleation sites for precipitation of brittle Fe2Mo Laves phase. The grain refinement by DNT was found to be beneficial for minimizing the ductile-to-brittle transition characteristics (25 °C lower ductile-to-brittle transition temperature and 70 J higher upper shelf energy) over the CNT. Thermal embrittlement occurred in both heated treated steels, but the transition temperature of aged DNT steel remained below room temperature. Fractured Charpy specimens revealed ductile failure by void coalescence for high temperature tests, and a quasi-cleavage fracture at low temperatures with few isolated occurrence of intergranular crack in thermal embrittled steel. The DNT treated steel resulted in similar or better tensile and creep properties, when compared to the CNT treatment. The homogeneous fine grained tempered martensite microstructure obtained by DNT treatment resulted in improved embrittlement resistance and mechanical properties over the conventional treatment.
Microbiological Production of Carotenoids
Ciegler, Alex; Nelson, George E. N.; Hall, Harlow H.
1962-01-01
Synthesis of β-carotene by mated strains of Blakeslea trispora in shaken-flask culture was considerably enhanced by adding either 5% kerosene after 2 days of fermentation or acid-refined kerosene at the start of fermentation to a grain-based medium that also contained a natural lipid, nonionic detergent, and β-ionone; average yields of 17,500 μg per g of dry fermentation solids (86,000 μg per 100 ml of medium) were attained when refined kerosene was used. Almost all of the carotene was retained within the mycelium. Peak yields were achieved in 5 days. PMID:13879500
Refinement of a Brief Anxiety Sensitivity Reduction Intervention
ERIC Educational Resources Information Center
Keough, Meghan E.; Schmidt, Norman B.
2012-01-01
Objective: Anxiety disorders are the most prevalent psychiatric disorders in the United States and result in substantial burden to the individual and society. Although effective treatments for anxiety disorders have been developed, there has been substantially less focus on interventions aimed at the amelioration of anxiety-related risk and…
Schuh, B.; Mendez-Martin, F.; Völker, B.; ...
2015-06-24
An equiatomic CoCrFeMnNi high-entropy alloy (HEA), produced by arc melting and drop casting, was subjected to severe plastic deformation (SPD) using high-pressure torsion. This process induced substantial grain refinement in the coarse-grained casting leading to a grain size of approximately 50 nm. As a result, strength increased significantly to 1950 MPa, and hardness to similar to 520 MV. Analyses using transmission electron microscopy (TEM) and 3-dimensional atom probe tomography (3D-APT) showed that, after SPD, the alloy remained a true single-phase solid solution down to the atomic scale. Subsequent investigations characterized the evolution of mechanical properties and microstructure of this nanocrystallinemore » HEA upon annealing. Isochronal (for 1 h) and isothermal heat treatments were performed followed by microhardness and tensile tests. The isochronal anneals led to a marked hardness increase with a maximum hardness of similar to 630 HV at about 450 degrees C before softening set in at higher temperatures. The isothermal anneals, performed at this peak hardness temperature, revealed an additional hardness rise to a maximum of about 910 MV after 100 h. To clarify this unexpected annealing response, comprehensive microstructural analyses were performed using TEM and 3D-APT. New nano-scale phases were observed to form in the originally single-phase HEA. After times as short as 5 min at 450 degrees C, a NiMn phase and Cr-rich phase formed. With increasing annealing time, their volume fractions increased and a third phase, FeCo, also formed. It appears that the surfeit of grain boundaries in the nanocrystalline HEA offer many fast diffusion pathways and nucleation sites to facilitate this phase decomposition. The hardness increase, especially for the longer annealing times, can be attributed to these nano-scaled phases embedded in the HEA matrix. The present results give new valuable insights into the phase stability of single-phase high-entropy alloys as well as the mechanisms controlling the mechanical properties of nanostructured multiphase composites. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd.« less
Ampatzoglou, Antonios; Atwal, Kiranjit K; Maidens, Catherine M; Williams, Charlotte L; Ross, Alastair B; Thielecke, Frank; Jonnalagadda, Satya S; Kennedy, Orla B; Yaqoob, Parveen
2015-02-01
Whole-grain (WG) foods have been suggested to reduce the risk of cardiovascular disease, but studies are inconsistent and effects on cardiovascular risk markers are not clear. The objective of this study was to assess the impact of increasing WG consumption to at least 80 g/d on overall dietary intake, body composition, blood pressure (BP), blood lipids, blood glucose, gastrointestinal microbiology, and gastrointestinal symptoms in healthy, middle-aged adults with habitual WG intake <24 g/d. Eligible subjects [12 men, 21 women, aged 40-65 y, body mass index (BMI): 20-35 kg/m(2)] were identified through use of food frequency questionnaires and subsequently completed 3-day food diaries (3DFDs) to confirm habitual WG consumption. Subjects consumed diets high in WG (>80 g/d) or low in WG [<16 g/d, refined-grain (RG) diet] in a crossover study with 6-wk intervention periods separated by a 4-wk washout. Adherence was achieved by specific dietary advice and provision of a range of cereal food products. The 3DFDs, diet compliance diaries, and plasma alkylresorcinols were used to verify compliance. During the WG intervention, consumption increased from 28 g/d to 168 g/d (P < 0.001), accompanied by an increase in plasma alkylresorcinols (P < 0.001) and total fiber intake (P < 0.001), without any effect on energy or other macronutrients. Although there were no effects on studied variables, there were trends toward increased 24-h fecal weight (P = 0.08) and reduction in body weight (P = 0.10) and BMI (P = 0.08) during the WG intervention compared with the RG period. A combination of dietary advice and provision of commercially available food items enabled subjects with a low-moderate habitual consumption of WG to substantially increase their WG intake, but there was little effect on blood biochemical markers, body composition, BP, fecal measurements, or gut microbiology. This trial was registered at www.controlled-trials.com as ISRCTN36521837. © 2015 American Society for Nutrition.
Pias, Sally C; Johnson, Dennis L; Smith, David E; Lyons, Barbara A
2012-08-01
We report a refinement in implicit water of the previously published solution structure of the Grb7-SH2 domain bound to the erbB2 receptor peptide pY1139. Structure quality measures indicate substantial improvement, with residues in the most favored regions of the Ramachandran plot increasing by 14 % and with WHAT IF statistics (Vriend, G. J. Mol. Graph., 1990, 8(1), 52-56) falling closer to expected values for well-refined structures.
Generation of sonic power during welding
NASA Technical Reports Server (NTRS)
Mc Campbell, W. M.
1969-01-01
Generation of intense sonic and ultrasonic power in the weld zone, close to the puddle, reduces the porosity and refinement of the grain. The ac induction brazing power supply is modified with long cables for deliberate addition of resistance to that circuit. The concept is extensible to the molding of metals and plastics.
Keystroke Logging in Writing Research: Using Inputlog to Analyze and Visualize Writing Processes
ERIC Educational Resources Information Center
Leijten, Marielle; Van Waes, Luuk
2013-01-01
Keystroke logging has become instrumental in identifying writing strategies and understanding cognitive processes. Recent technological advances have refined logging efficiency and analytical outputs. While keystroke logging allows for ecological data collection, it is often difficult to connect the fine grain of logging data to the underlying…
NASA Astrophysics Data System (ADS)
Liou, K. N.; Takano, Y.; He, C.; Yang, P.; Leung, L. R.; Gu, Y.; Lee, W. L.
2014-06-01
A stochastic approach has been developed to model the positions of BC (black carbon)/dust internally mixed with two snow grain types: hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine BC/dust single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), the action of internal mixing absorbs substantially more light than external mixing. The snow grain shape effect on absorption is relatively small, but its effect on asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions of BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2-5 µm) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 µm, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo substantially more than external mixing and that the snow grain shape plays a critical role in snow albedo calculations through its forward scattering strength. Also, multiple inclusion of BC/dust significantly reduces snow albedo as compared to an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization involving contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountain/snow topography.
Ahlfeld, David P.; Baker, Kristine M.; Barlow, Paul M.
2009-01-01
This report describes the Groundwater-Management (GWM) Process for MODFLOW-2005, the 2005 version of the U.S. Geological Survey modular three-dimensional groundwater model. GWM can solve a broad range of groundwater-management problems by combined use of simulation- and optimization-modeling techniques. These problems include limiting groundwater-level declines or streamflow depletions, managing groundwater withdrawals, and conjunctively using groundwater and surface-water resources. GWM was initially released for the 2000 version of MODFLOW. Several modifications and enhancements have been made to GWM since its initial release to increase the scope of the program's capabilities and to improve its operation and reporting of results. The new code, which is called GWM-2005, also was designed to support the local grid refinement capability of MODFLOW-2005. Local grid refinement allows for the simulation of one or more higher resolution local grids (referred to as child models) within a coarser grid parent model. Local grid refinement is often needed to improve simulation accuracy in regions where hydraulic gradients change substantially over short distances or in areas requiring detailed representation of aquifer heterogeneity. GWM-2005 can be used to formulate and solve groundwater-management problems that include components in both parent and child models. Although local grid refinement increases simulation accuracy, it can also substantially increase simulation run times.
Measuring and modeling diffuse scattering in protein X-ray crystallography
Van Benschoten, Andrew H.; Liu, Lin; Gonzalez, Ana; Brewster, Aaron S.; Sauter, Nicholas K.; Wall, Michael E.
2016-01-01
X-ray diffraction has the potential to provide rich information about the structural dynamics of macromolecules. To realize this potential, both Bragg scattering, which is currently used to derive macromolecular structures, and diffuse scattering, which reports on correlations in charge density variations, must be measured. Until now, measurement of diffuse scattering from protein crystals has been scarce because of the extra effort of collecting diffuse data. Here, we present 3D measurements of diffuse intensity collected from crystals of the enzymes cyclophilin A and trypsin. The measurements were obtained from the same X-ray diffraction images as the Bragg data, using best practices for standard data collection. To model the underlying dynamics in a practical way that could be used during structure refinement, we tested translation–libration–screw (TLS), liquid-like motions (LLM), and coarse-grained normal-modes (NM) models of protein motions. The LLM model provides a global picture of motions and was refined against the diffuse data, whereas the TLS and NM models provide more detailed and distinct descriptions of atom displacements, and only used information from the Bragg data. Whereas different TLS groupings yielded similar Bragg intensities, they yielded different diffuse intensities, none of which agreed well with the data. In contrast, both the LLM and NM models agreed substantially with the diffuse data. These results demonstrate a realistic path to increase the number of diffuse datasets available to the wider biosciences community and indicate that dynamics-inspired NM structural models can simultaneously agree with both Bragg and diffuse scattering. PMID:27035972
Measuring and modeling diffuse scattering in protein X-ray crystallography
Van Benschoten, Andrew H.; Liu, Lin; Gonzalez, Ana; ...
2016-03-28
X-ray diffraction has the potential to provide rich information about the structural dynamics of macromolecules. To realize this potential, both Bragg scattering, which is currently used to derive macromolecular structures, and diffuse scattering, which reports on correlations in charge density variations, must be measured. Until now, measurement of diffuse scattering from protein crystals has been scarce because of the extra effort of collecting diffuse data. Here, we present 3D measurements of diffuse intensity collected from crystals of the enzymes cyclophilin A and trypsin. The measurements were obtained from the same X-ray diffraction images as the Bragg data, using best practicesmore » for standard data collection. To model the underlying dynamics in a practical way that could be used during structure refinement, we tested translation–libration–screw (TLS), liquid-like motions (LLM), and coarse-grained normal-modes (NM) models of protein motions. The LLM model provides a global picture of motions and was refined against the diffuse data, whereas the TLS and NM models provide more detailed and distinct descriptions of atom displacements, and only used information from the Bragg data. Whereas different TLS groupings yielded similar Bragg intensities, they yielded different diffuse intensities, none of which agreed well with the data. In contrast, both the LLM and NM models agreed substantially with the diffuse data. In conclusion, these results demonstrate a realistic path to increase the number of diffuse datasets available to the wider biosciences community and indicate that dynamics-inspired NM structural models can simultaneously agree with both Bragg and diffuse scattering.« less
Beryllium Manufacturing Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, A
2006-06-30
This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product.more » Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.« less
Effect of Strain Rate on Hot Ductility Behavior of a High Nitrogen Cr-Mn Austenitic Steel
NASA Astrophysics Data System (ADS)
Wang, Zhenhua; Meng, Qing; Qu, Minggui; Zhou, Zean; Wang, Bo; Fu, Wantang
2016-03-01
18Mn18Cr0.6N steel specimens were tensile tested between 1173 K and 1473 K (900 °C and 1200 °C) at 9 strain rates ranging from 0.001 to 10 s-1. The tensile strained microstructures were analyzed through electron backscatter diffraction analysis. The strain rate was found to affect hot ductility by influencing the strain distribution, the extent of dynamic recrystallization and the resulting grain size, and dynamic recovery. The crack nucleation sites were primarily located at grain boundaries and were not influenced by the strain rate. At 1473 K (1200 °C), a higher strain rate was beneficial for grain refinement and preventing hot cracking; however, dynamic recovery appreciably occurred at 0.001 s-1 and induced transgranular crack propagation. At 1373 K (1100 °C), a high extent of dynamic recrystallization and fine new grains at medium strain rates led to good hot ductility. The strain gradient from the interior of the grain to the grain boundary increased with decreasing strain rate at 1173 K and 1273 K (900 °C and 1000 °C), which promoted hot cracking. Grain boundary sliding accompanied grain rotation and did not contribute to hot cracking.
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Spann, J. F.; LeClair, A. C.
2010-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstellar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10- 400 eV energy range. The charging rates of positively and negatively charged particles of approximately 0.2 to 13 microns diameters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong particle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.
Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper we focus on charging of individual micron/submicron dust grains by processes that include: (a) UV photoelectric emissions involving incident photon energies higher than the work function of the material and b) electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). It is well accepted that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Therefore, the photoelectric yields, and secondary electron emission yields of micron-size dust grains have to be obtained by experimental methods. Currently, very limited experimental data are available for charging of individual micron-size dust grains. Our experimental results, obtained on individual, micron-size dust grains levitated in an electrodynamic balance facility (at NASA-MSFC), show that: (1) The measured photoelectric yields are substantially higher than the bulk values given in the literature and indicate a particle size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains; (2) dust charging by low energy electron impact is a complex process. Also, our measurements indicate that the electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Laboratory measurements on charging of analogs of the interstellar dust as well as Apollo 11 dust grains conducted at the NASA-MSFC Dusty Plasma Lab. are presented here
NASA Astrophysics Data System (ADS)
Rivera Almeyda, Oscar G.
In this investigation, the processing-structure-property relations are correlated for solid state additively manufactured (SSAM) Inconel 625 (IN 625) and a SSAM aluminum alloy 2219 (AA2219). This is the first research of these materials processed by a new SSAM method called additive friction stir (AFS). The AFS process results in a refined grain structure by extruding solid rod through a rotating tool generating heat and severe plastic deformation. In the case of the AFS IN625, the IN625 alloy is known for exhibiting oxidation resistance and temperature mechanical stability, including strength and ductility. This study is the first to investigate the beneficial grain refinement and densification produced by AFS in IN625 that results in advantageous mechanical properties (YS, UTS, epsilonf) at both quasi-static and high strain rate. Electron Backscatter Diffraction (EBSD) observed dynamic recrystallization and grain refinement during the layer deposition in the AFS specimens, where the results identified fine equiaxed grain structures formed by dynamic recrystallization (DRX) with even finer grain structures forming at the layer interfaces. The EBSD quantified grains as fine as 0.27 microns in these interface regions while the average grain size was approximately 1 micron. Additionally, this is the first study to report on the strain rate dependence of AFS IN625 through quasi-static (QS) (0.001/s) and high strain rate (HR) (1500/s) tensile experiments using a servo hydraulic frame and a direct tension-Kolsky bar, respectively, which captured both yield and ultimate tensile strengths increasing as strain rate increased. Fractography performed on specimens showed a ductile fracture surface on both QS, and HR. Alternatively, the other AFS material system investigated in this study, AA2219, is mostly used for aerospace applications, specifically for rocket fuel tanks. EBSD was performed in the cross-section of the AA2219, also exhibiting DRX with equiaxed microstructure in the three directions and an average grain size of 2.5 microns. EBSD PFs showed that the material has a strong torsional fiber A texture in the top of the build, and this texture gets weaker in the middle and bottom sections. TEM showed that there are no theta' precipitates in the as-deposited cross-section, therefore no precipitation strengthening should be expected. Strain rate and stress state dependence was study, and in both tension and compression, with an increase in strain rate, the YS increase and the UTS decreased. Ductile fracture surface was observed on specimens tested to failure in both QS and HR. The AFS AA2219 processing-structure-property relations are being studied in this investigation to address the stress-state and strain rate dependence of AFS AA2219 with an internal sate variable (ISV) plasticity-damage model to capture the different yield stress, work hardening and failure strain in the AFS AA2219 for high fidelity modeling of AFS components. The ISV plasticity model successfully captured the material behavior in tension, compression, tension-followed-by-compression and compression-followed-by-tension experiments. Furthermore, the damage parameters of the model were calibrated using the final void density measured from the fracture surfaces.
Tuneable dielectric films having low electrical losses
Dimos, Duane Brian; Schwartz, Robert William; Raymond, Mark Victor; Al-Shareef, Husam Niman; Mueller, Carl; Galt, David
2000-01-01
The present invention is directed to a method for forming dielectric thin films having substantially reduced electrical losses at microwave and millimeter wave frequencies relative to conventional dielectric thin films. The reduction in losses is realized by dramatically increasing the grain sizes of the dielectric films, thereby minimizing intergranular scattering of the microwave signal due to grain boundaries and point defects. The increase in grain size is realized by heating the film to a temperature at which the grains experience regrowth. The grain size of the films can be further increased by first depositing the films with an excess of one of the compoents, such that a highly mobile grain boundary phase is formed.
NASA Astrophysics Data System (ADS)
Liu, D. R.; Mangelinck-Noël, N.; Gandin, Ch-A.; Zimmermann, G.; Sturz, L.; Nguyen Thi, H.; Billia, B.
2016-03-01
A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement.
Han, Fei; Wang, Yong; Han, Yangyang; Zhao, Jianxin; Han, Fenli; Song, Ge; Jiang, Ping; Miao, Haijiang
2018-05-29
Diets rich in whole grain (WG) cereals bring lower disease risks compared with refined grain-based diets. We investigated the effects of polished rice (PR), refined wheat (RW), unpolished rice (UPR), and whole wheat (WW) on short-chain fatty acids (SCFAs) and gut microbiota in ileal, cecal, and colonic digesta of normal rats. Animals fed with UPR and WW diets exhibited higher total SCFA in cecal and colonic digesta compared with those fed with PR and RW diets. Wheat diets contributed higher total SCFA than rice diets. In cecal and colonic digesta, animals fed with UPR and WW diets demonstrated higher acetate and butyrate contents than those given PR and RW. Firmicutes were the dominant eumycota in rat ileum digesta (>92% abundance). Cecal and colonic digesta were dominated by Firmicutes, Verrucomicrobia, and Bacteroidetes. UPR and WW affected gut microbiota, decreasing the proportion of Firmicutes to Bacteroidetes. SMB53, Lactobacillus, and Faecalibacterium were the main bacterial genera in ileal digesta. Akkermansia was highest in cecal and colonic digesta. In the colonic digesta of rats, the relative abundance of Akkermansia in rats on wheat diets was higher than that in rats on rice diets ( P < 0.05). Thus, UPR and WW could modulate gut microbiota composition and increase the SCFA concentration. Wheat diet was superior to rice diet in terms of intestinal microbiota adjustment.
Chai, Fang; Zhang, Datong; Li, Yuanyuan
2014-01-01
Hot-rolled AZ31 (Mg-2.57Al-0.84Zn-0.32Mn, in mass percentage) magnesium alloy is subjected to friction stir processing in air (normal friction stir processing, NFSP) and under water (submerged friction stir processing, SFSP). Thermal history of the two FSP procedures is measured, and its effect on microstructures and mechanical properties of the experimental materials is investigated. Compared with NFSP, the peak temperature during SFSP is lower and the duration time at a high temperature is shorter due to the enhanced cooling effect of water. Consequently, SFSP results in further grain refinement, and the average grain size of the NFSP and SFSP specimens in the stir zone (SZ) are 2.9 μm and 1.3 μm, respectively. Transmission electron microscopy (TEM) examinations confirm that grain refinement is attributed to continuous dynamic recrystallization both for NFSP and SFSP. The average Vickers hardness in the SZ of the NFSP and SFSP AZ31 magnesium alloy are 76 HV and 87 HV. Furthermore, the ultimate tensile strength and the elongation of the SFSP specimen increase from 191 MPa and 31.3% in the NFSP specimen to 210 MPa and 50.5%, respectively. Both the NFSP and SFSP alloys fail through ductile fracture, but the dimples are much more obvious in the SFSP alloy. PMID:28788532
Mechanical Properties and Microstructure of AZ31B Magnesium Alloy Processed by I-ECAP
NASA Astrophysics Data System (ADS)
Gzyl, Michal; Rosochowski, Andrzej; Pesci, Raphael; Olejnik, Lech; Yakushina, Evgenia; Wood, Paul
2014-03-01
Incremental equal channel angular pressing (I-ECAP) is a severe plastic deformation process used to refine grain size of metals, which allows processing very long billets. As described in the current article, an AZ31B magnesium alloy was processed for the first time by three different routes of I-ECAP, namely, A, BC, and C, at 523 K (250 °C). The structure of the material was homogenized and refined to ~5 microns of the average grain size, irrespective of the route used. Mechanical properties of the I-ECAPed samples in tension and compression were investigated. Strong influence of the processing route on yield and fracture behavior of the material was established. It was found that texture controls the mechanical properties of AZ31B magnesium alloy subjected to I-ECAP. SEM and OM techniques were used to obtain microstructural images of the I-ECAPed samples subjected to tension and compression. Increased ductility after I-ECAP was attributed to twinning suppression and facilitation of slip on basal plane. Shear bands were revealed in the samples processed by I-ECAP and subjected to tension. Tension-compression yield stress asymmetry in the samples tested along extrusion direction was suppressed in the material processed by routes BC and C. This effect was attributed to textural development and microstructural homogenization. Twinning activities in fine- and coarse-grained samples have also been studied.
NASA Astrophysics Data System (ADS)
Kanitpanyacharoen, W.; Boudreau, A. E.
2013-02-01
The petrology of base metal sulfides and associated accessory minerals in rocks away from economically significant ore zones such as the Merensky Reef of the Bushveld Complex has previously received only scant attention, yet this information is critical in the evaluation of models for the formation of Bushveld-type platinum-group element (PGE) deposits. Trace sulfide minerals, primarily pyrite, pyrrhotite, pentlandite, and chalcopyrite are generally less than 100 microns in size, and occur as disseminated interstitial individual grains, as polyphase assemblages, and less commonly as inclusions in pyroxene, plagioclase, and olivine. Pyrite after pyrrhotite is commonly associated with low temperature greenschist alteration haloes around sulfide grains. Pyrrhotite hosted by Cr- and Ti-poor magnetite (Fe3O4) occurs in several samples from the Marginal to Lower Critical Zones below the platiniferous Merensky Reef. These grains occur with calcite that is in textural equilibrium with the igneous silicate minerals, occur with Cl-rich apatite, and are interpreted as resulting from high temperature sulfur loss during degassing of interstitial liquid. A quantitative model demonstrates how many of the first-order features of the Bushveld ore metal distribution could have developed by vapor refining of the crystal pile by chloride-carbonate-rich fluids during which sulfur and sulfide are continuously recycled, with sulfur moving from the interior of the crystal pile to the top during vapor degassing.
NASA Astrophysics Data System (ADS)
Shu, P.; Li, B.; Wang, H.; Cheng, P.; An, Z.; Zhou, W.; Zhang, D. D.
2017-12-01
Taklimakan Desert, the largest arid landform in the Eurasia, is one of the most important dust sources in the world. Growing evidences shows that millennial-scale abrupt climate changes during the last glacial period in the region. However, records on millennial-scale climate and environmental changes remain poorly understood because dating eolian, lacustrine, and fluvial sediments and establishing the reliable environmental proxies from these records are always challenging. Here, we present 32 AMS 14C dates of bulk sediments, grain size, and Rb/Sr ratio parameters from the oasis sequence and dates of bulk loess and charcoal from the upstream source regions to examine the significance of oasis sediments on millennial-scale environmental changes in the Taklimakan Desert. We found that substantial reversal of radiocarbon dates on total organic carbon (TOC) was controlled by source region organic carbon input. Loess hills, alpine meadow north of the study region provided fluvial deposits along drainage system and deflation in the river valleys further provide eolain materials. We argue that early oasis deposits experienced deflation and re-deposition less severe than the younger oasis deposits. After refining radiocarbon age-depth relationships for an age model by Bacon package, proxy records show substantial abrupt fluctuations in climate and environments during the last glacial period, among which three wet intervals, two dry periods are identified. The wetter and warmer conditions during the Holocene facilitated human to occupy the oasis.
DELIVERY OF DUST GRAINS FROM COMET C/2013 A1 (SIDING SPRING) TO MARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tricarico, Pasquale; Samarasinha, Nalin H.; Sykes, Mark V.
Comet C/2013 A1 (Siding Spring) will have a close encounter with Mars on 2014 October 19. We model the dynamical evolution of dust grains from the time of their ejection from the comet nucleus to the close encounter with Mars, and determine the flux at Mars. Constraints on the ejection velocity from Hubble Space Telescope observations indicate that the bulk of the grains will likely miss Mars, although it is possible that a few percent of the grains with higher velocities will reach Mars, peaking approximately 90-100 minutes after the close approach of the nucleus, and consisting mostly of millimeter-radiusmore » grains ejected from the comet nucleus at a heliocentric distance of approximately 9 AU or larger. At higher velocities, younger grains from submillimeter to several millimeters can also reach Mars, although an even smaller fraction of grains is expected have these velocities, with negligible effect on the peak timing. Using NEOWISE observations of the comet, we can estimate that the maximum fluence will be of the order of 10{sup –7} grains m{sup –2}. We include a detailed analysis of how the expected fluence depends on the grain density, ejection velocity, and size-frequency distribution, to account for current model uncertainties and in preparation of possible refined model values in the near future.« less
Holmboe-Ottesen, Gerd; Wandel, Margareta
2012-01-01
Background Immigrants from low-income countries comprise an increasing proportion of the population in Europe. Higher prevalence of obesity and nutrition related diseases, such as type 2 diabetes (T2D) and cardiovascular disease (CVD) is found in some immigrant groups, especially in South Asians. Aim To review dietary changes after migration and discuss the implication for health and prevention among immigrants from low-income countries to Europe, with a special focus on South Asians. Method Systematic searches in PubMed were performed to identify relevant high quality review articles and primary research papers. The searches were limited to major immigrant groups in Europe, including those from South Asia (India, Pakistan, Bangladesh, Sri Lanka). Articles in English from 1990 and onwards from Europe were included. For health implications, recent review articles and studies of particular relevance to dietary changes among South Asian migrants in Europe were chosen. Results Most studies report on dietary changes and health consequences in South Asians. The picture of dietary change is complex, depending on a variety of factors related to country of origin, urban/rural residence, socio-economic and cultural factors and situation in host country. However, the main dietary trend after migration is a substantial increase in energy and fat intake, a reduction in carbohydrates and a switch from whole grains and pulses to more refined sources of carbohydrates, resulting in a low intake of fiber. The data also indicate an increase in intake of meat and dairy foods. Some groups have also reduced their vegetable intake. The findings suggest that these dietary changes may all have contributed to higher risk of obesity, T2D and CVD. Implications for prevention A first priority in prevention should be adoption of a low-energy density – high fiber diet, rich in whole grains and grain products, as well as fruits, vegetables and pulses. Furthermore, avoidance of energy dense and hyperprocessed foods is an important preventive measure. PMID:23139649
Strengthening of metallic alloys with nanometer-size oxide dispersions
Flinn, J.E.; Kelly, T.F.
1999-06-01
Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.
Airborne microorganisms associated with grain handling.
Swan, J R; Crook, B
1998-01-01
There is substantial evidence that workers handling grain develop allergic respiratory symptoms. Microbiological contaminants are likely to be a significant contributing factor. Worker's exposure to microorganisms contaminating grain dust in the UK was therefore examined. Aerobiological studies were made when grain was being handled on farms and also during bulk handling of grain in dockside terminals. A quantitative and qualitative microbiological examination of the airborne grain dust was carried out. Samples of airborne grain dust were collected and viable bacteria, fungi and actinomycetes were grown, isolated and identified. It was found that workers handling grain or working close to grain at farms and docks were frequently exposed to more than 1 million bacteria and fungi per m3 air, and that airborne bacteria and fungi exceeded 10(4) per m3 air in all areas sampled. The qualitative examination of the samples showed that the predominant microorganisms present differed between freshly harvested grain and stored grain, but not between different types of grain.
NASA Astrophysics Data System (ADS)
Shim, Moonsoo; Choi, Ho Gil; Yi, Kyung Woo; Hwang, Il Soon; Lee, Jong Hyeon
2016-11-01
The purification of LiCl salt mixture has traditionally been carried out by a melt crystallization process. To improve the throughput of zone refining, three heaters were installed in the zone refiner. The zone refining method was used to grow pure LiCl salt ingots from LiCl-CsCl-SrCl2 salt mixture. The main investigated parameters were the heater speed and the number of passes. A change in the LiCl crystal grain size was observed according to the horizontal direction. From each zone refined salt ingot, samples were collected horizontally. To analyze the concentrations of Sr and Cs, an inductively coupled plasma optical emission spectrometer and inductively coupled plasma mass spectrometer were used, respectively. The experimental results show that Sr and Cs concentrations at the initial region of the ingot were low and reached their peak at the final freezing region of the salt ingot. Concentration results of zone refined salt were compared with theoretical results yielded by the proposed model to validate its predictions. The keff of Sr and Cs were 0.13 and 0.11, respectively. The decontamination factors of Sr and Cs were 450 and 1650, respectively.
High-conversion hydrolysates and corn sweetener production in dry-grind corn process.
USDA-ARS?s Scientific Manuscript database
Most corn is processed to fuel ethanol and distillers’ grain animal feed using the dry grind process. However, wet milling is needed to refine corn starch. Corn starch is in turn processed to numerous products, including glucose and syrup. However, wet milling is a capital, labor, and energy intensi...
GlutoPeak profile analysis for wheat classification: skipping the refinement process
USDA-ARS?s Scientific Manuscript database
The GlutoPeak test can predict wheat flour quality by measuring gluten aggregation properties in a short time and using a small amount of sample; thus has usefulness along the entire wheat delivery chain. However, no information on the suitability of this new test on whole grain flours is available...
A Faceted Taxonomy for Rating Student Bibliographies in an Online Information Literacy Game
ERIC Educational Resources Information Center
Leeder, Chris; Markey, Karen; Yakel, Elizabeth
2012-01-01
This study measured the quality of student bibliographies through creation of a faceted taxonomy flexible and fine-grained enough to encompass the variety of online sources cited by today's students. The taxonomy was developed via interviews with faculty, iterative refinement of categories and scoring, and testing on example student…
Effects of NaBF4 + NaF on the Tensile and Impact Properties of Al-Si-Mg-Fe Alloys
NASA Astrophysics Data System (ADS)
Chen, Zongning; Wang, Tongmin; Zhao, Yufei; Zheng, Yuanping; Kang, Huijun
2015-05-01
NaBF4 + NaF were found to play three roles, i.e., Fe-eliminator, grain refiner, and eutectic modifier, in treating A356 alloy with a high Fe content. The joint effects led to significant improvement in both tensile and impact properties of thus treated alloy. The multiple reactions between the NaBF4 + NaF and Al-Si-Mg-Fe system are suggested to form Fe2B, AlB2, and Na in the melt, as per thermodynamic analysis. The three are responsible for Fe removal, grain refinement, and eutectic modification, respectively. When NaBF4 and NaF are mixed in weight ratio of 1:1, an optimum addition rate is in the range between 1.0 and 2.0 wt pct for treating AlSi7Mg0.3Fe0.65 alloy, based on the results of tensile and impact tests. Excessive addition of the salt may deteriorate the mechanical properties of the alloy, basically owing to overmodification of Si and contamination of salt inclusions.
Sklarew, R J
1983-10-01
A method has been developed for densitometric estimation of the Feulgen-stained DNA content of 3H-labeled nuclei in autoradiographs in conjunction with automated grain counting using a Quantimet Imaging System. Refinements in the methodology are reported which include 1) the incorporation of an Image-Editor Module into the Quantimet module configuration; 2) the optimization of incident illumination based upon evaluation of various light sources; 3) changes in the optical configuration which reduce glare and minimize the level of monitor shading correction; 4) the optimization of scanner sensitivity; and 5) the evaluation of cell-flattening and staining with respect to densitometry resolution and sensitivity. These refinements resulted in a CV of less than 6.4% in the G-1 and G-2 DNA peaks of rat kidney cells in autoradiographs compared to the previous CV of 10.5%, and a G-2 to G-1 ratio of 2.025. For a fixed field position the CV was 5.1% and the replication error less than 1.0%.
Dietary patterns and risk of colorectal cancer: a systematic review of cohort studies (2000-2011).
Yusof, Afzaninawati Suria; Isa, Zaleha Md; Shah, Shamsul Azhar
2012-01-01
This systematic review of cohort studies aimed to identify any association between specific dietary patterns and risk of colorectal cancer (CRC). Dietary patterns involve complex interactions of food and nutrients summarizing the total diet or key aspects of the diet for a population under study. This review involves 6 cohort studies of dietary patterns and their association with colorectal cancer. An exploratory or a posteriori approach and a hypothesis-oriented or a priori approach were employed to identify dietary patterns. The dietary pattern identified to be protective against CRC was healthy, prudent, fruits and vegetables, fat reduced/diet foods, vegetables/fish/poultry, fruit/wholegrain/dairy, healthy eating index 2005, alternate healthy eating index, Mediterranean score and recommended food score. An elevated risk of CRC was associated with Western diet, pork processed meat, potatoes, traditional meat eating, and refined grain pattern. The Western dietary pattern which mainly consists of red and processed meat and refined grains is associated with an elevated risk of development of CRC. Protective factors against CRC include a healthy or prudent diet, consisting of vegetables, fruits, fish and poultry.
NASA Astrophysics Data System (ADS)
Tuan, Nguyen Quoc
Al(Sc) alloys represent a new class of potential alloys for high performance structural applications. The excellent properties obtained from the combination of solid-solution hardening and precipitation hardening in Al-Mg-Sc alloys make these alloys very attractive to automotive, aerospace, and structural applications. However, the Sc high cost limits the applications and the addition of cheaper alloying elements that substitutes partially Sc are not only desirable but crucial. In order to reduce the cost of Sc-containing Al alloys and maintain their mechanical properties, the microstructure and mechanical properties of Al-Sc-Yb and Al-Mg-Sc-Yb alloys in comparison with Al-Sc and Al-Mg-Sc alloys were studied. The results showed the similarity of microstructure, hardness and aging behaviour of Al-0.24Sc-0.07Yb alloy in comparison with Al-0.28Sc alloy and Al-4 wt% Mg-0.3 wt% Sc alloy with Al-4 wt% Mg-0.24 wt% Sc-0.06 wt% Yb alloy. The approximately spheroidal Al3Sc and Al3(Sc,Yb) precipitates were uniformly distributed throughout the alpha-Al matrix. The precipitates remain fully coherent with alpha-Al matrix even after aging at high temperature for long time. In another aspect, the grain refinement in Al-Mg-Sc alloys with and without ultrasonic treatment at various pouring temperatures was investigated. The average grain size of Al-Mg-Sc alloy remarkably decreases by increasing the content of Mg or by adding 0.3 wt% of Sc. The pouring temperature has a strong effect on the microstructure of Al-1Mg-0.3Sc alloy. Lower pouring temperature leads to smaller grain size and more homogeneous microstructure. Ultrasonic vibration proved to be a potential grain refinement technique of Al-1Mg-0.3Sc. Significant grain refinement was obtained by applying ultrasonic treatment within the temperature range from 700 to 740 °C. The corrosion behaviour of Al-Sc, Al-Sc-Yb, Al-Mg, Al-Mg-Sc and Al-Mg-Sc-Yb alloys in 3.5 wt% NaCl solution was investigated by immersion and potentiodynamic polarisation analysis in order to understand the effect of Sc, Yb, and heat treatment on the localized corrosion and electrochemical behaviour. The addition of Yb decreases the corrosion tendency and improves the pitting corrosion resistance of Al-Sc alloy. The addition of Sc and Yb to Al-4Mg alloy decrease the susceptibility to corrosion of the heat treated alloys.
NASA Astrophysics Data System (ADS)
Dutta, R. K.; Malet, L.; Gao, H.; Hermans, M. J. M.; Godet, S.; Richardson, I. M.
2015-02-01
Surface modification by the generation of a nanostructured surface layer induced via ultrasonic impact treatment was performed at the weld toe of a welded high-strength quenched and tempered structural steel, S690QL1 (Fe-0.16C-0.2Si-0.87Mn-0.33Cr-0.21Mo (wt pct)). Such high-frequency peening techniques are known to improve the fatigue life of welded components. The nanocrystallized structure as a function of depth from the top-treated surface was characterized via a recently developed automated crystal orientation mapping in transmission electron microscopy. Based on the experimental observations, a grain refinement mechanism induced by plastic deformation during the ultrasonic impact treatment is proposed. It involves the formation of low-angle misoriented lamellae displaying a high density of dislocations followed by the subdivision of microbands into blocks and the resulting formation of polygonal submicronic grains. These submicronic grains further breakdown into nano grains. The results show the presence of retained austenite even after severe surface plastic deformation. The average grain size of the retained austenite and martensite is 17 and 35 nm, respectively. The in-grain deformation mechanisms are different in larger and smaller grains. Larger grains show long-range lattice rotations, while smaller grains show plastic deformation through grain rotation. Also the smaller nano grains exhibit the presence of short-range disorder. Surface nanocrystallization also leads to an increased fraction of low angle and low energy coincident site lattice boundaries especially in the smaller grains ( nm).
Managing for Multifunctionality in Perennial Grain Crops
Ryan, Matthew R; Crews, Timothy E; Culman, Steven W; DeHaan, Lee R; Hayes, Richard C; Jungers, Jacob M; Bakker, Matthew G
2018-01-01
Abstract Plant breeders are increasing yields and improving agronomic traits in several perennial grain crops, the first of which is now being incorporated into commercial food products. Integration strategies and management guidelines are needed to optimize production of these new crops, which differ substantially from both annual grain crops and perennial forages. To offset relatively low grain yields, perennial grain cropping systems should be multifunctional. Growing perennial grains for several years to regenerate soil health before rotating to annual crops and growing perennial grains on sloped land and ecologically sensitive areas to reduce soil erosion and nutrient losses are two strategies that can provide ecosystem services and support multifunctionality. Several perennial cereals can be used to produce both grain and forage, and these dual-purpose crops can be intercropped with legumes for additional benefits. Highly diverse perennial grain polycultures can further enhance ecosystem services, but increased management complexity might limit their adoption. PMID:29662249
Nettleton, Jennifer A; Steffen, Lyn M; Mayer-Davis, Elizabeth J; Jenny, Nancy S; Jiang, Rui; Herrington, David M; Jacobs, David R
2010-01-01
Background Dietary patterns may influence cardiovascular disease risk through effects on inflammation and endothelial activation. Objective We examined relations between dietary patterns and markers of inflammation and endothelial activation. Design At baseline, diet (food-frequency questionnaire) and concentrations of C-reactive protein (CRP), interleukin 6 (IL-6), homocysteine, soluble intercellular adhesion molecule-1 (sICAM-1), and soluble E selectin were assessed in 5089 nondiabetic participants in the Multi-Ethnic Study of Atherosclerosis. Results Four dietary patterns were derived by using factor analysis. The fats and processed meats pattern (fats, oils, processed meats, fried potatoes, salty snacks, and desserts) was positively associated with CRP (P for trend < 0.001), IL-6 (P for trend < 0.001), and homocysteine (P for trend = 0.002). The beans, tomatoes, and refined grains pattern (beans, tomatoes, refined grains, and high-fat dairy products) was positively related to sICAM-1 (P for trend = 0.007). In contrast, the whole grains and fruit pattern (whole grains, fruit, nuts, and green leafy vegetables) was inversely associated with CRP, IL-6, homocysteine (P for trend ≤ 0.001), and sICAM-1 (P for trend = 0.034), and the vegetables and fish pattern (fish and dark-yellow, cruciferous, and other vegetables) was inversely related to IL-6 (P for trend = 0.009). CRP, IL-6, and homocysteine relations across the fats and processed meats and whole grains and fruit patterns were independent of demographics and lifestyle factors and were not modified by race-ethnicity. CRP and homocysteine relations were independent of waist circumference. Conclusions These results corroborate previous findings that empirically derived dietary patterns are associated with inflammation and show that these relations in an ethnically diverse population with unique dietary habits are similar to findings in more homogeneous populations. PMID:16762949
Tailoring nanostructured, graded, and particle-reinforced Al laminates by accumulative roll bonding.
Göken, Mathias; Höppel, Heinz Werner
2011-06-17
Accumulative roll bonding (ARB) is a very attractive process for processing large sheets to achieve ultrafine-grained microstructure and high strength. Commercial purity Al and many Al alloys from the 5xxx and the precipitation strengthened 6xxx alloy series have been successfully processed by the ARB process into an ultrafine-grained state and superior ductility have been achieved for some materials like technical purity Al. It has also been shown that the ARB process can be successfully used to produce multi-component materials with tailored properties by reinforcement or grading, respectively. This allows optimizing the properties based on two or more materials/alloys. For example, to achieve high corrosion resistance and good visual surface properties it is interesting to produce a composite of two different Al alloys, where for example a high strength alloy of the 5xxx series is used as the core material and a 6xxx series alloy as the clad material. It has been shown that such a composite achieves more or less the same strength as the core material although 50% of the composite consists of the significant softer clad alloy. Furthermore, it has been found, that the serrated yielding which typically appears in 5xxx series alloys and limits applications as outer skin materials completely disappears. Moreover, the ARB process allows many other attractive ways to design new composites and graded material structures with unique properties by the introduction of particles, fibres and sheets. Strengthening with nanoparticles for example is a very attractive way to improve the properties and accelerate the grain refining used in the severe plastic deformation process. With an addition of only 0.1 vol.-% Al2O3 nanoparticles a significantly accelerated grain refinement has been found which reduces the number of ARB passes necessary to achieve the maximum in strength. The paper provides a short review on recent developments in the field of ARB processing for producing multicomponent ultrafine-grained sheet materials with tailored properties.
NASA Astrophysics Data System (ADS)
Lu, Jianxun; Wu, Xiaoyu; Wu, Zhaozhi; Liu, Zhiyuan; Guo, Dengji; Lou, Yan; Ruan, Shuangchen
2017-10-01
Equal-channel angular pressing (ECAP) is an efficient technique to achieve grain refinement in a wide range of materials. However, the extrusion process requires an excessive extrusion force, the microstructure of ECAPed specimens scatters heterogeneously because of considerable fragmentation of the structure and strain heterogeneity, and the resultant ultrafine grains exhibit poor thermal stability. The intermittent ultrasonic-assisted ECAP (IU-ECAP) approach was proposed to address these issues. In this work, ECAP and IU-ECAP were applied to produce ultrafine-grained Al-6061 alloys, and the differences in their mechanical properties, microstructural characteristics, and thermal stability were investigated. Mechanical testing demonstrated that the necessary extrusion force for IU-ECAP was significantly reduced; even more, the microhardness and ultimate tensile strength were strengthened. In addition, the IU-ECAPed Al alloy exhibited a smaller grain size with a more homogeneous microstructure. X-ray diffraction analysis indicated that the intensities of the textures were weakened using IU-ECAP, and a more homogeneous microstructure and larger dislocation densities were obtained. Investigation of the thermal stability revealed that the ultrafine-grained materials produced using IU-ECAP recrystallized at higher temperature or after longer time; the materials thus exhibited improved thermal stability.
NASA Technical Reports Server (NTRS)
Rerko, Rodney S.; deGroh, Henry C., III; Beckermann, Christoph; Gray, Hugh R. (Technical Monitor)
2002-01-01
Macrosegregation in metal casting can be caused by thermal and solutal melt convection, and the transport of unattached solid crystals. These free grains can be a result of, for example, nucleation in the bulk liquid or dendrite fragmentation. In an effort to develop a comprehensive numerical model for the casting of alloys, an experimental study has been conducted to generate benchmark data with which such a solidification model could be tested. The specific goal of the experiments was to examine equiaxed solidification in situations where sinking of grains is (and is not) expected. The objectives were: 1) experimentally study the effects of solid transport and thermosolutal convection on macrosegregation and grain size distribution patterns; and 2) provide a complete set of controlled thermal boundary conditions, temperature data, segregation data, and grain size data, to validate numerical codes. The alloys used were Al-1 wt. pct. Cu, and Al-10 wt. pct. Cu with various amounts of the grain refiner TiB2 added. Cylindrical samples were either cooled from the top, or the bottom. Several trends in the data stand out. In attempting to model these experiments, concentrating on experiments that show clear trends or differences is recommended.
NASA Astrophysics Data System (ADS)
Gopi, K. R.; Nayaka, H. Shivananda; Sahu, Sandeep
2016-09-01
Magnesium alloy Mg-Al-Mn (AM70) was processed by equal channel angular pressing (ECAP) at 275 °C for up to 4 passes in order to produce ultrafine-grained microstructure and improve its mechanical properties. ECAP-processed samples were characterized for microstructural analysis using optical microscopy, scanning electron microscopy, and transmission electron microscopy. Microstructural analysis showed that, with an increase in the number of ECAP passes, grains refined and grain size reduced from an average of 45 to 1 µm. Electron backscatter diffraction analysis showed the transition from low angle grain boundaries to high angle grain boundaries in ECAP 4 pass sample as compared to as-cast sample. The strength and hardness values an showed increasing trend for the initial 2 passes of ECAP processing and then started decreasing with further increase in the number of ECAP passes, even though the grain size continued to decrease in all the successive ECAP passes. However, the strength and hardness values still remained quite high when compared to the initial condition. This behavior was found to be correlated with texture modification in the material as a result of ECAP processing.
The influence of grain size and composition on 1000 to 1400 K slow plastic flow properties of NiAl
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel
1988-01-01
The compressive slow plastic flow behavior of several B2 crystal structure NiAl intermetallics has been studied in air between 1000 and 1400 K. Small grain-sized Ni-48.25 at. pct Al (of about 10 microns) was found to be stronger than the previously studied 17 microns diameter material. While grain refinement improved the strength at all test temperatures, the exact mechanism is not clear. Experiments at lower temperature revealed that composition as well as grain size can be an important factor, since Ni-49.2Al was weaker than Ni-48.25Al. Pronounced yield points were found during slow strain-rate testing at 1000 K; however, continued deformation appears to take place by the same mechanism(s) as found at high temperatures. Small changes in thermomechanical processing (TMP) schedules to fabricate Ni-49.2Al indicated that basic deformation characteristics (stress exponent and activation energy) are not affected; however, the preexponential term could be modified if TMP alters the grain structure.
Verifying and Validating Proposed Models for FSW Process Optimization
NASA Technical Reports Server (NTRS)
Schneider, Judith
2008-01-01
This slide presentation reviews Friction Stir Welding (FSW) and the attempts to model the process in order to optimize and improve the process. The studies are ongoing to validate and refine the model of metal flow in the FSW process. There are slides showing the conventional FSW process, a couple of weld tool designs and how the design interacts with the metal flow path. The two basic components of the weld tool are shown, along with geometries of the shoulder design. Modeling of the FSW process is reviewed. Other topics include (1) Microstructure features, (2) Flow Streamlines, (3) Steady-state Nature, and (4) Grain Refinement Mechanisms
Rietveld-refinement and optical study of the Fe doped ZnO thin film by RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Kumar, Arun; Dhiman, Pooja; Singh, M.
2017-05-01
Fe Doped ZnO Dilute Magnetic Semiconductor thin film prepared by RF magnetron sputtering on glass substrate and Influence of 3% Fe-doping on structural and Optical properties has been studied. The Rietveld-refinement analysis shows that Fe doping has a significant effect on crystalline structure, grain size and strain in the thin film. Two dimensional and three-dimensional atom probe tomography of the thin film shows that Fe ions are randomly distributed which is supported by Xray Diffraction (XRD). Fe-doping is found to effectively modify the band gap energy up to 3.5 eV.
Bagherifard, Sara; Hickey, Daniel J; de Luca, Alba C; Malheiro, Vera N; Markaki, Athina E; Guagliano, Mario; Webster, Thomas J
2015-12-01
Substrate grain structure and topography play major roles in mediating cell and bacteria activities. Severe plastic deformation techniques, known as efficient metal-forming and grain refining processes, provide the treated material with novel mechanical properties and can be adopted to modify nanoscale surface characteristics, possibly affecting interactions with the biological environment. This in vitro study evaluates the capability of severe shot peening, based on severe plastic deformation, to modulate the interactions of nanocrystallized metallic biomaterials with cells and bacteria. The treated 316L stainless steel surfaces were first investigated in terms of surface topography, grain size, hardness, wettability and residual stresses. The effects of the induced surface modifications were then separately studied in terms of cell morphology, adhesion and proliferation of primary human osteoblasts (bone forming cells) as well as the adhesion of multiple bacteria strains, specifically Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and ampicillin-resistant Escherichia coli. The results indicated a significant enhancement in surface work hardening and compressive residual stresses, maintenance of osteoblast adhesion and proliferation as well as a remarkable decrease in the adhesion and growth of gram-positive bacteria (S. aureus and S. epidermidis) compared to non-treated and conventionally shot peened samples. Impressively, the decrease in bacteria adhesion and growth was achieved without the use of antibiotics, for which bacteria can develop a resistance towards anyway. By slightly grinding the surface of severe shot peened samples to remove differences in nanoscale surface roughness, the effects of varying substrate grain size were separated from those of varying surface roughness. The expression of vinculin focal adhesions from osteoblasts was found to be singularly and inversely related to grain size, whereas the attachment of gram-positive bacteria (S. aureus and S. epidermidis) decreased with increasing nanoscale surface roughness, and was not affected by grain refinement. Ultimately, this study demonstrated the advantages of the proposed shot peening treatment to produce multifunctional 316L stainless steel materials for improved implant functions without necessitating the use of drugs. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zimmermann, G.; Sturz, L.; Nguyen-Thi, H.; Mangelinck-Noel, N.; Li, Y. Z.; Gandin, C.-A.; Fleurisson, R.; Guillemot, G.; McFadden, S.; Mooney, R. P.; Voorhees, P.; Roosz, A.; Ronaföldi, A.; Beckermann, C.; Karma, A.; Chen, C.-H.; Warnken, N.; Saad, A.; Grün, G.-U.; Grohn, M.; Poitrault, I.; Pehl, T.; Nagy, I.; Todt, D.; Minster, O.; Sillekens, W.
2017-08-01
During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton-finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.
Lutsey, Pamela L; Steffen, Lyn M; Stevens, June
2008-02-12
The role of diet in the origin of metabolic syndrome (MetSyn) is not well understood; thus, we sought to evaluate the relationship between incident MetSyn and dietary intake using prospective data from 9514 participants (age, 45 to 64 years) enrolled in the Atherosclerosis Risk in Communities (ARIC) study. Dietary intake was assessed at baseline via a 66-item food frequency questionnaire. We used principal-components analysis to derive "Western" and "prudent" dietary patterns from 32 food groups and evaluated 10 food groups used in previous studies of the ARIC cohort. MetSyn was defined by American Heart Association guidelines. Proportional-hazards regression was used. Over 9 years of follow-up, 3782 incident cases of MetSyn were identified. After adjustment for demographic factors, smoking, physical activity, and energy intake, consumption of a Western dietary pattern (P(trend)=0.03) was adversely associated with incident MetSyn. After further adjustment for intake of meat, dairy, fruits and vegetables, refined grains, and whole grains, analysis of individual food groups revealed that meat (P(trend)<0.001), fried foods (P(trend)=0.02), and diet soda (P(trend)=< 0.001) also were adversely associated with incident MetSyn, whereas dairy consumption (P(trend)=0.006) was beneficial. No associations were observed between incident MetSyn and a prudent dietary pattern or intakes of whole grains, refined grains, fruits and vegetables, nuts, coffee, or sweetened beverages. These prospective findings suggest that consumption of a Western dietary pattern, meat, and fried foods promotes the incidence of MetSyn, whereas dairy consumption provides some protection. The diet soda association was not hypothesized and deserves further study.
Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun
2018-01-01
In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg17Al12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases. PMID:29342883
Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun
2018-01-13
In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg 17 Al 12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, M. M.; Craven, P. D.; LeClair, A. C.
2010-08-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individualmore » micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.« less
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.
2010-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.
NASA Astrophysics Data System (ADS)
Negrini, Marianne; Smith, Steven A. F.; Scott, James M.; Tarling, Matthew S.
2018-01-01
Layers of calc-mylonite in the Mount Irene shear zone, Fiordland, New Zealand, show substantial variations in thickness due to deflection of the shear zone boundaries around wall rock asperities. In relatively thick parts (c. 2.6 m) of the shear zone, calcite porphyroclasts are internally strained, contain abundant subgrain boundaries and have a strong shape preferred orientation (SPO) and crystallographic preferred orientation (CPO), suggesting that deformation occurred mainly by dislocation creep involving subgrain-rotation recrystallization. In relatively thin parts (c. 1.5 m) of the shear zone, aggregates of fine-grained recrystallized calcite surrounding flattened porphyroclasts have a weak SPO and CPO, and contain polygonal calcite grains with low degrees of internal misorientation. The recrystallized aggregates also contain microstructures (e.g. grain quadruple junctions, randomized misorientation axes) similar to those reported for neighbor-switching processes during grain-boundary sliding. Comparison of subgrain sizes in the porphyroclasts to published grain-size differential-stress relationships indicates that stresses and strain rates were substantially higher in relatively thin parts of the shear zone. The primary microstructural response to higher stresses and strain rates was an increase in the amount of recrystallization to produce aggregates that deformed by grain-boundary sliding. However, even after the development of interconnected networks of recrystallized grains, dislocation creep by subgrain-rotation recrystallization continued to occur within porphyroclasts. This behavior suggests that the bulk rheology of shear zones undergoing thinning and thickening can be controlled by concomitant grain-size insensitive and grain-size sensitive mechanisms. Overall, our observations show that shear zone thickness variations at constant P-T can result in highly variable stresses and strain rates, which in turn modifies microstructure, deformation mechanism and shear zone rheology.
Fogelholm, Mikael; Anderssen, Sigmund; Gunnarsdottir, Ingibjörg; Lahti-Koski, Marjaana
2012-01-01
This systematic literature review examined the role of dietary macronutrient composition, food consumption and dietary patterns in predicting weight or waist circumference (WC) change, with and without prior weight reduction. The literature search covered year 2000 and onwards. Prospective cohort studies, case–control studies and interventions were included. The studies had adult (18–70 y), mostly Caucasian participants. Out of a total of 1,517 abstracts, 119 full papers were identified as potentially relevant. After a careful scrutiny, 50 papers were quality graded as A (highest), B or C. Forty-three papers with grading A or B were included in evidence grading, which was done separately for all exposure-outcome combinations. The grade of evidence was classified as convincing, probable, suggestive or no conclusion. We found probable evidence for high intake of dietary fibre and nuts predicting less weight gain, and for high intake of meat in predicting more weight gain. Suggestive evidence was found for a protective role against increasing weight from whole grains, cereal fibre, high-fat dairy products and high scores in an index describing a prudent dietary pattern. Likewise, there was suggestive evidence for both fibre and fruit intake in protection against larger increases in WC. Also suggestive evidence was found for high intake of refined grains, and sweets and desserts in predicting more weight gain, and for refined (white) bread and high energy density in predicting larger increases in WC. The results suggested that the proportion of macronutrients in the diet was not important in predicting changes in weight or WC. In contrast, plenty of fibre-rich foods and dairy products, and less refined grains, meat and sugar-rich foods and drinks were associated with less weight gain in prospective cohort studies. The results on the role of dietary macronutrient composition in prevention of weight regain (after prior weight loss) were inconclusive. PMID:22893781
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stráská, Jitka, E-mail: straska.jitka@gmail.com; Janeček, Miloš, E-mail: janecek@met.mff.cuni.cz; Čížek, Jakub, E-mail: jcizek@mbox.troja.mff.cuni.cz
Thermal stability of the ultra-fine grained (UFG) microstructure of magnesium AZ31 alloy was investigated. UFG microstructure was achieved by a combined two-step severe plastic deformation process: the extrusion (EX) and subsequent equal-channel angular pressing (ECAP). This combined process leads to refined microstructure and enhanced microhardness. Specimens with UFG microstructure were annealed isochronally at temperatures 150–500 °C for 1 h. The evolution of microstructure, mechanical properties and dislocation density was studied by electron backscatter diffraction (EBSD), microhardness measurements and positron annihilation spectroscopy (PAS). The coarsening of the fine-grained structure at higher temperatures was accompanied by a gradual decrease of the microhardnessmore » and decrease of dislocation density. Mechanism of grain growth was studied by general equation for grain growth and Arrhenius equation. Activation energies for grain growth were calculated to be 115, 33 and 164 kJ/mol in temperature ranges of 170–210 °C, 210–400 °C and 400–500 °C (443–483 K, 483–673 K and 673–773 K), respectively. - Highlights: • Microhardness of UFG AZ31 alloy decreases with increasing annealing temperature. • This fact has two reasons: dislocation annihilations and/or grain growth. • The activation energies for grain growth were calculated for all temperature ranges.« less
Fayet-Moore, Flavia; Petocz, Peter; McConnell, Andrew; Tuck, Kate; Mansour, Marie
2017-01-01
The Australian Dietary Guidelines recommended “grain (cereal)” core food group includes both refined and whole grain foods, but excludes those that are discretionary (i.e., cakes). We investigated the association between daily serves from the “grain (cereal)” group and its effect on fibre and adiposity. Data from Australian adults in the 2011–2012 National Nutrition and Physical Activity Survey were used (n = 9341). Participants were categorised by serves of core grain foods and general linear models were used to investigate the effect of demographic, socioeconomic, and dietary covariates on waist circumference, body mass index (BMI) and fibre intake. Compared to core grain avoiders (0 serves), high consumers (6+ serves/day) were: more likely male and socially advantaged, had a healthier dietary pattern, less likely dieting, overweight or obese, and were at lower risk of metabolic complications. After adjustment for age, sex and energy intake, there was an inverse relationship between core grain serves intake and BMI (p < 0.001), waist circumference (p = 0.001) and a positive relationship with fibre (p < 0.001). Model adjustments for diet and lifestyle factors resulted in a smaller difference in waist circumference (p = 0.006) and BMI (p = 0.006). Core grain serves was significantly associated with higher fibre, but marginally clinically significant for lower adiposity. PMID:28218715
Oxalate content of cereals and cereal products.
Siener, Roswitha; Hönow, Ruth; Voss, Susanne; Seidler, Ana; Hesse, Albrecht
2006-04-19
Detailed knowledge of food oxalate content is of essential importance for dietary treatment of recurrent calcium oxalate urolithiasis. Dietary oxalate can contribute considerably to the amount of urinary oxalate excretion. Because cereal foods play an important role in daily nutrition, the soluble and total oxalate contents of various types of cereal grains, milling products, bread, pastries, and pasta were analyzed using an HPLC-enzyme-reactor method. A high total oxalate content (>50 mg/100 g) was found in whole grain wheat species Triticum durum (76.6 mg/100 g), Triticum sativum (71.2 mg/100 g), and Triticum aestivum (53.3 mg/100 g). Total oxalate content was comparably high in whole grain products of T. aestivum, that is, wheat flakes and flour, as well as in whole grain products of T. durum, that is, couscous, bulgur, and pasta. The highest oxalate content was demonstrated for wheat bran (457.4 mg/100 g). The higher oxalate content in whole grain than in refined grain cereals suggests that oxalic acid is primarily located in the outer layers of cereal grains. Cereals and cereal products contribute to the daily oxalate intake to a considerable extent. Vegetarian diets may contain high amounts of oxalate when whole grain wheat and wheat products are ingested. Recommendations for prevention of recurrence of calcium oxalate stone disease have to take into account the oxalate content of these foodstuffs.
Fayet-Moore, Flavia; Petocz, Peter; McConnell, Andrew; Tuck, Kate; Mansour, Marie
2017-02-18
The Australian Dietary Guidelines recommended "grain (cereal)" core food group includes both refined and whole grain foods, but excludes those that are discretionary (i.e., cakes). We investigated the association between daily serves from the "grain (cereal)" group and its effect on fibre and adiposity. Data from Australian adults in the 2011-2012 National Nutrition and Physical Activity Survey were used ( n = 9341). Participants were categorised by serves of core grain foods and general linear models were used to investigate the effect of demographic, socioeconomic, and dietary covariates on waist circumference, body mass index (BMI) and fibre intake. Compared to core grain avoiders (0 serves), high consumers (6+ serves/day) were: more likely male and socially advantaged, had a healthier dietary pattern, less likely dieting, overweight or obese, and were at lower risk of metabolic complications. After adjustment for age, sex and energy intake, there was an inverse relationship between core grain serves intake and BMI ( p < 0.001), waist circumference ( p = 0.001) and a positive relationship with fibre ( p < 0.001). Model adjustments for diet and lifestyle factors resulted in a smaller difference in waist circumference ( p = 0.006) and BMI ( p = 0.006). Core grain serves was significantly associated with higher fibre, but marginally clinically significant for lower adiposity.
Microstructural stability and thermomechanical processing of boron modified beta titanium alloys
NASA Astrophysics Data System (ADS)
Cherukuri, Balakrishna
One of the main objectives during primary processing of titanium alloys is to reduce the prior beta grain size. Producing an ingot with smaller prior beta grain size could potentially eliminate some primary processing steps and thus reduce processing cost. Trace additions of boron have been shown to decrease the as-cast grain size in alpha + beta titanium alloys. The primary focus of this dissertation is to investigate the effect of boron on microstructural stability and thermomechanical processing in beta titanium alloys. Two metastable beta titanium alloys: Ti-15Mo-2.6Nb-3Al-0.2Si (Beta21S) and Ti-5Al-5V-5Mo-3Cr (Ti5553) with 0.1 wt% B and without boron additions were used in this investigation. Significant grain refinement of the as-cast microstructure and precipitation of TiB whiskers along the grain boundaries was observed with boron additions. Beta21S and Beta21S-0.1B alloys were annealed above the beta transus temperature for different times to investigate the effect of boron on grain size stability. The TiB precipitates were very effective in restricting the beta grain boundary mobility by Zener pinning. A model has been developed to predict the maximum grain size as a function of TiB size, orientation, and volume fraction. Good agreement was obtained between model predictions and experimental results. Beta21S alloys were solution treated and aged for different times at several temperatures below the beta transus to study the kinetics of alpha precipitation. Though the TiB phase did not provide any additional nucleation sites for alpha precipitation, the grain refinement obtained by boron additions resulted in accelerated aging. An investigation of the thermomechanical processing behavior showed different deformation mechanisms above the beta transus temperature. The non-boron containing alloys showed a non-uniform and fine recrystallized necklace structure at grain boundaries whereas uniform intragranular recrystallization was observed in boron containing alloys. Micro-voids were observed at the ends of the TiB needles at high temperature, slow strain rates as a result of decohesion at the TiB/matrix interfaces. At low temperatures and faster strain rates micro voids were also formed due to fracture of TiB needles. Finite element analysis on void formation in TiB containing alloys were in agreement with experimental observations. Microhardness and tensile testing of as-cast + forged and aged Beta21S and Ti5553 alloys with and without boron did not show any significant differences in mechanical properties. The primary benefits of boron modified alloys are in as-cast condition.
NASA Astrophysics Data System (ADS)
Takeuchi, T.; Tsuchiya, K.; Saeda, M.; Banno, N.; Kikuchi, A.; Iijima, Y.
2010-12-01
To enhance the non-Cu critical current density Jc at 15 T and 4.2 K (1000 A mm - 2 at present) we have endeavoured to refine the grain size of rapid heating, quenching and transformation (RHQT)-processed Nb3Al. In the present study, the grain boundary structures of RHQT-processed Nb3Al were examined by electron backscatter diffraction (EBSD) because transgranular fracture prevents the observation of fractured cross sections of Nb3Al to statistically determine the grain size. The grain size distributions of body-centred-cubic supersaturated-solid-solution Nb(Al)ss and A15 Nb3Al filaments were measured for grains misoriented by more than 2°, 5° and 15°. A mixed grain structure, which consists of a few large grains (>25 µm) and many small grains (<1 µm), was observed for an Nb3Al filament that had been transformed from non-deformed Nb(Al)ss. Plastic deformation that had been made between the rapid heating and quenching steps and the transformation step apparently homogenized the grain size distribution and then reduced the average grain size. The misorientation angle distributions of Nb(Al)ss and Nb3Al were also measured and compared with each other. A clear relationship between the Jc and the inverse grain size was not confirmed for the RHQT Nb3Al conductors examined in the present study, which indicates the importance of making a filament compositionally homogeneous to obtain a high Jc.
Precipitate strengthening of nanostructured aluminium alloy.
Wawer, Kinga; Lewandowska, Malgorzata; Kurzydlowski, Krzysztof J
2012-11-01
Grain boundaries and precipitates are the major microstructural features influencing the mechanical properties of metals and alloys. Refinement of the grain size to the nanometre scale brings about a significant increase in the mechanical strength of the materials because of the increased number of grain boundaries which act as obstacles to sliding dislocations. A similar effect is obtained if nanoscale precipitates are uniformly distributed in coarse grained matrix. The development of nanograin sized alloys raises the important question of whether or not these two mechanisms are "additive" and precipitate strengthening is effective in nanostructured materials. In the reported work, hydrostatic extrusion (HE) was used to obtain nanostructured 7475 aluminium alloy. Nanosized precipitates were obtained by post-HE annealing. It was found that such annealing at the low temperatures (100 degrees C) results in a significant increase in the microhardness (HV0.2) and strength of the nanostructured 7475 aluminium alloy. These results are discussed in terms of the interplay between the precipitation and deformation of nanocrystalline metals.
NASA Astrophysics Data System (ADS)
Ferguson, J. B.; Schultz, Benjamin F.; Venugopalan, Dev; Lopez, Hugo F.; Rohatgi, Pradeep K.; Cho, Kyu; Kim, Chang-Soo
2014-03-01
Yield strength improvement in dispersion strengthened alloys and nano particle-reinforced composites by well-known strengthening mechanisms such as solid solution, grain refinement, coherent and incoherent dispersed particles, and increased dislocation density resulting from work-hardening can all be described individually. However, there is no agreed upon description of how these mechanisms combine to determine the yield strength. In this work, we propose an analytical yield strength prediction model combining arithmetic and quadratic addition approaches based on the consideration of two types of yielding mechanisms; stress-activated and energy-activated. Using data available in the literature for materials of differing grain sizes, we consider the cases of solid solutions and coherent precipitates to show that they follow stress-activated behavior. Then, we applied our model with some empirical parameters to precipitationhardenable materials of various grain sizes in both coherent and incoherent precipitate conditions, which demonstrated that grain boundary and Orowan-strengthening can be treated as energy-activated mechanisms.
NASA Astrophysics Data System (ADS)
Ren, W. W.; Xu, C. G.; Chen, X. L.; Qin, S. X.
2018-05-01
Using high temperature compression experiments, true stress true strain curve of 6082 aluminium alloy were obtained at the temperature 460°C-560°C and the strain rate 0.01 s-1-10 s-1. The effects of deformation temperature and strain rate on the microstructure are investigated; (‑∂lnθ/∂ε) ‑ ε curves are plotted based on σ-ε curve. Critical strains of dynamic recrystallization of 6082 aluminium alloy model were obtained. The results showed lower strain rates were beneficial to increase the volume fraction of recrystallization, the average recrystallized grain size was coarse; High strain rates are beneficial to refine average grain size, the volume fraction of dynamic recrystallized grain is less than that by using low strain rates. High temperature reduced the dislocation density and provided less driving force for recrystallization so that coarse grains remained. Dynamic recrystallization critical strain model and thermal experiment results can effectively predict recrystallization critical point of 6082 aluminium alloy during thermal deformation.
NASA Technical Reports Server (NTRS)
Spanos, G.; Ayers, J. D.; Vold, C. L.; Locci, I. E.
1993-01-01
A study is presented to determine if fine microstructures could be achieved using rapid solidification to produce a fine-grained fully austenitic starting structure and then using thermal processing cycles to produce an even finer ferrite-cementite structure. The evolution, mechanisms of grain refinement, and crystallography of the resultant microstructures were examined by TEM. A thermal processing cycle consisted of quenching the ribbon in liquid nitrogen, tempering at 600 C for 10 sec, 'upquenching' to 750 C for 10 sec, and subsequently quenching again in liquid nitrogen. The heat-treatment resulted in martensite grains with sizes of about 1 micron or less in both length and thickness and cementite particles of 0.4 micron or less. It is concluded that these microstructures could be used for producing fine-grained ultrahigh carbon steels of very high strength without the brittleness associated with the formation of coarse carbide particles of the loss of strength due to graphite formation.
The 1980 US/Canada wheat and barley exploratory experiment, volume 1
NASA Technical Reports Server (NTRS)
Bizzell, R. M.; Prior, H. L.; Payne, R. W.; Disler, J. M.
1983-01-01
The results from the U.S./Canada Wheat and Barley Exploratory Experiment which was completed during FY 1980 are presented. The results indicate that the new crop identification procedures performed well for spring small grains and that they are conductive to automation. The performance of the machine processing techniques shows a significant improvement over previously evaluated technology. However, the crop calendars will require additional development and refinements prior to integration into automated area estimation technology. The evaluation showed the integrated technology to be capable of producing accurate and consistent spring small grains proportion estimates. However, barley proportion estimation technology was not satisfactorily evaluated. The low-density segments examined were judged not to give indicative or unequivocal results. It is concluded that, generally, the spring small grains technology is ready for evaluation in a pilot experiment focusing on sensitivity analyses to a variety of agricultural and meteorological conditions representative of the global environment. It is further concluded that a strong potential exists for establishing a highly efficient technology or spring small grains.
NASA Astrophysics Data System (ADS)
Zhang, Jinlong; Lu, Zhenlin; Zhao, Yuntao; Jia, Lei; Xie, Hui; Tao, Shiping
2017-09-01
Cu-Ni-Si alloys with 90% Cu content and Ni to Si ratios of 5:1 were fabricated by fusion casting, and severe plastic deformation of the Cu-Ni-Si alloy was carried out by multi-direction forging (MDF). The results showed that the as-cast and homogenized Cu-Ni-Si alloys consisted of three phases, namely the matrix phase α-Cu (Ni, Si), the reticular grain boundary phase Ni31Si12 and the precipitated phase Ni2Si. MDF significantly destroyed the net-shaped grain boundary phase, the Ni31Si12 phase and refined the grain size of the Cu matrix, and also resulted in the dissolving of Ni2Si precipitates into the Cu matrix. The effect of MDF on the conductivity of the solid solution Cu-Ni-Si alloy was very significant, with an average increase of 165.16%, and the hardness of the Cu-Ni-Si alloy also increased obviously.
Effect of scandium on the microstructure and ageing behaviour of cast Al-6Mg alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaiser, M.S.; Datta, S.; Roychowdhury, A.
2008-11-15
Microstructural modification and grain refinement due to addition of scandium in Al-6Mg alloy has been studied. Transmission electron microscopy is used to understand the microstructure and precipitation behaviour in Al-6Mg alloy doped with scandium. It is seen from the microstructure that the dendrites of the cast Al-6Mg alloy have been refined significantly due to addition of scandium. Increasing amount of scandium leads to a greater dendrite refinement. The age hardening effect in scandium added Al-6Mg alloys has been studied by subjecting the alloys containing varying amount of scandium ranging from 0.2 wt.% to 0.6 wt.% to isochronal and isothermal ageingmore » at various temperatures for different times. It is observed that significant hardening takes place in the aged alloys due to the precipitation of scandium aluminides.« less
NASA Astrophysics Data System (ADS)
Masoumi, Mohammad; Echeverri, Edwan Anderson Ariza; Silva, Cleiton Carvalho; Béreš, Miloslav; de Abreu, Hamilton Ferreira Gomes
2018-03-01
A commercial API 5L X70 steel plate was subjected to different thermomechanical processes to propose a novel thermomechanical rolling path to achieve improved mechanical properties. Scanning electron microscopy, electron backscatter diffraction, and x-ray texture analysis were employed for microstructural characterization. The results showed that strain-free recrystallized {001} ferrite grains that developed at higher rolling temperature could not meet the American Petroleum Institute (API) requirements. Also, refined and work-hardened grains that have formed in the intercritical region with high stored energy do not provide suitable tensile properties. However, fine martensite-austenite constituents dispersed in ferrite matrix with grains having predominantly {111} and {110} orientations parallel to the normal direction that developed under isothermal rolling at 850 °C provided an outstanding combination of tensile strength and ductility.
NASA Technical Reports Server (NTRS)
Payne, R. W. (Principal Investigator)
1981-01-01
The crop identification procedures used performed were for spring small grains and are conducive to automation. The performance of the machine processing techniques shows a significant improvement over previously evaluated technology; however, the crop calendars require additional development and refinements prior to integration into automated area estimation technology. The integrated technology is capable of producing accurate and consistent spring small grains proportion estimates. Barley proportion estimation technology was not satisfactorily evaluated because LANDSAT sample segment data was not available for high density barley of primary importance in foreign regions and the low density segments examined were not judged to give indicative or unequvocal results. Generally, the spring small grains technology is ready for evaluation in a pilot experiment focusing on sensitivity analysis to a variety of agricultural and meteorological conditions representative of the global environment.
USDA-ARS?s Scientific Manuscript database
Fusarium Head Blight (FHB) is a destructive disease of small grain cereals and a major food safety concern. Epidemics result in substantial yield losses, reduction in crop quality, and contamination of grains with trichothecenes and other mycotoxins. A number of different fusaria can cause FHB, and ...
Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Lee, Kunik (Inventor); Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor)
2014-01-01
Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.
The dietary intake of wheat and other cereal grains and their role in inflammation.
de Punder, Karin; Pruimboom, Leo
2013-03-12
Wheat is one of the most consumed cereal grains worldwide and makes up a substantial part of the human diet. Although government-supported dietary guidelines in Europe and the U.S.A advise individuals to eat adequate amounts of (whole) grain products per day, cereal grains contain "anti-nutrients," such as wheat gluten and wheat lectin, that in humans can elicit dysfunction and disease. In this review we discuss evidence from in vitro, in vivo and human intervention studies that describe how the consumption of wheat, but also other cereal grains, can contribute to the manifestation of chronic inflammation and autoimmune diseases by increasing intestinal permeability and initiating a pro-inflammatory immune response.
Influence of repeated quenching-tempering on spheroidized carbide area in JIS SUJ2 bearing steel
NASA Astrophysics Data System (ADS)
Egawa, K.; Yoshida, I.; Yoshida, H.; Mizobe, K.; Kida, K.
2018-02-01
High-carbon high-strength JIS-SUJ2 bearing steel is mainly used for rolling contact applications which require high fatigue strength. We had applied repeated quenching which refine the prior austenite grains to this steel. In this work, we prepared JIS SUJ2 bearing steel bar specimens which were quenched three times (Q3T1) and quenched-tempered three times (QTQTQT) in order to investigate the influence of tempering before quenching on the microstructure. The specimens were etched by picral to observe the microstructure. We found that the spheroidized carbide area was important for the prior austenite grain formation.
Mechanical Properties of Copper Processed by Equal Channel Angular Pressing
NASA Astrophysics Data System (ADS)
Sülleiová, K.; Ballóková, B.; Besterci, M.; Kvačkaj, T.
2017-12-01
The development of the nanostructure in commercial pure copper and the strength and ductility after severe plastic deformation (SPD) with the technology of equal channel angular pressing (ECAP) are analysed. Experimental results and analyses showed that both strength and ductility can be increased simultaneously by SPD. The final grain size decreased from the initial 50μm by SPD to 100-300 nm after 10 passes. An increase of the ductility together with an increase of strength caused by SPD are explained by a strong grain refinement and by a dynamic equilibrium of weakening and strengthening, and it is visible on the final static tensile test stress-strain charts.