Technology for small spacecraft
NASA Technical Reports Server (NTRS)
1994-01-01
This report gives the results of a study by the National Research Council's Panel on Small Spacecraft Technology that reviewed NASA's technology development program for small spacecraft and assessed technology within the U.S. government and industry that is applicable to small spacecraft. The panel found that there is a considerable body of advanced technology currently available for application by NASA and the small spacecraft industry that could provide substantial improvement in capability and cost over those technologies used for current NASA small spacecraft. These technologies are the result of developments by commercial companies, Department of Defense agencies, and to a lesser degree NASA. The panel also found that additional technologies are being developed by these same entities that could provide additional substantial improvement if development is successfully completed. Recommendations for future technology development efforts by NASA across a broad technological spectrum are made.
ERIC Educational Resources Information Center
Gardner, Charles; Garner, Cathy
2005-01-01
The commercialization of technologies arising from university research depends on the ability of technology managers to find and contract with appropriate development partners. Substantial investment is required to bring new health-science technologies to market, and when such technologies appear to have limited commercial markets it can be…
Human genome project: revolutionizing biology through leveraging technology
NASA Astrophysics Data System (ADS)
Dahl, Carol A.; Strausberg, Robert L.
1996-04-01
The Human Genome Project (HGP) is an international project to develop genetic, physical, and sequence-based maps of the human genome. Since the inception of the HGP it has been clear that substantially improved technology would be required to meet the scientific goals, particularly in order to acquire the complete sequence of the human genome, and that these technologies coupled with the information forthcoming from the project would have a dramatic effect on the way biomedical research is performed in the future. In this paper, we discuss the state-of-the-art for genomic DNA sequencing, technological challenges that remain, and the potential technological paths that could yield substantially improved genomic sequencing technology. The impact of the technology developed from the HGP is broad-reaching and a discussion of other research and medical applications that are leveraging HGP-derived DNA analysis technologies is included. The multidisciplinary approach to the development of new technologies that has been successful for the HGP provides a paradigm for facilitating new genomic approaches toward understanding the biological role of functional elements and systems within the cell, including those encoded within genomic DNA and their molecular products.
10 CFR 784.5 - Waiver of identified inventions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... extent to which the Government has contributed to the field of technology of the invention; (e) The... contractor has made or will make substantial investment of financial resources or technology developed at the... extent to which the field of technology of the invention has been developed at the contractor's expense...
Development of a transportation real-time technology readiness framework.
DOT National Transportation Integrated Search
2017-03-01
The purpose of this study was to develop a proof-of-concept carrier technology readiness framework. While substantial investment has been made into the Iowa Department of Transportation (DOT) Traffic Operations Center, scant attention has been paid t...
Advanced Technology Development for Stirling Convertors
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.; Schreiber, Jeffrey G.
2004-01-01
A high-efficiency Stirling Radioisotope generator (SRG) for use on potential NASA space missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center. GRC is also developing advanced technology for Stirling converters, aimed at substantially improving the specific power and efficiency of the converter.The status and results to date will be discussed in this paper.
Information Technology Team Projects in Higher Education: An International Viewpoint
ERIC Educational Resources Information Center
Lynch, Kathy; Heinze, Aleksej; Scott, Elsje
2007-01-01
It is common to find final or near final year undergraduate Information Technology students undertaking a substantial development project; a project where the students have the opportunity to be fully involved in the analysis, design, and development of an information technology service or product. This involvement has been catalyzed and prepared…
Leadership & Technology: What School Board Members Need To Know.
ERIC Educational Resources Information Center
Bailey, Gerald D.; And Others
Board members' role in technology implementation ranges from prompting development of technology plans to gathering community support for funding technology initiatives; they need substantial knowledge to enable them to ask the right questions, absorb new information, make good decisions, set appropriate policies, and lead confidently as…
Renewable Energy for Rural Sustainability in Developing Countries
ERIC Educational Resources Information Center
Alazraque-Cherni, Judith
2008-01-01
This article establishes the benefits of applying renewable energy and analyzes the main difficulties that have stood in the way of more widely successful renewable energy for rural areas in the developing world and discusses why outcomes from these technologies fall short. Although there is substantial recognition of technological, economic,…
NASA Astrophysics Data System (ADS)
Ryzhikova, O.; Naumov, N.; Sergienko, V.; Kostylev, V.
2017-01-01
Positron emission tomography is the most promising technology to monitor cancer and heart disease treatment. Stationary PET center requires substantial financial resources and time for construction and equipping. The developed mobile solution will allow introducing PET technology quickly without major investments.
ERIC Educational Resources Information Center
O'Brien, Chris; Aguinaga, Nancy J.; Hines, Rebecca; Hartshorne, Richard
2011-01-01
Ongoing developments in educational technology, including web-based instruction, streaming video, podcasting, video-conferencing, and the use of wikis and blogs to create learning communities, have substantial impact on distance education and preparation of special educators in rural communities. These developments can be overwhelming, however,…
Methods for Heel Retrieval for Tanks C-101, C-102, and C-111 at the Hanford Site - 13064
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sams, T.L.; Kirch, N.W.; Reynolds, J.H.
The purpose of this paper is to evaluate the prospects of using bulk waste characteristics to determine the most appropriate heel retrieval technology. If the properties of hard to remove heels can be determined before bulk retrieval, then a heel retrieval technology can be selected before bulk retrieval is complete. This would save substantially on sampling costs and would allow the deployment of the heel retrieval technology immediately after bulk retrieval. The latter would also accelerate the heel removal schedule. A number of C-farm retrievals have been fully or partially completed at the time of this writing. Thus, there ismore » already substantial information on the success of different technologies and the composition of the heels. There is also substantial information on the waste types in each tank based on historical records. Therefore, this study will correlate the performance of technologies used so far and compare them to the known waste types in the tanks. This will be used to estimate the performance of future C Farm heel retrievals. An initial decision tree is developed and employed on tanks C-101, C-102, and C 111. An assumption of this study is that no additional characterization information would be available, before or after retrieval. Note that collecting additional information would substantially increase the probability of success. Deploying some in-situ testing technologies, such as a water lance or an in-situ Raman probe, might substantially increase the probability of successfully selecting the process conditions without having to take samples from the tanks for laboratory analysis. (authors)« less
Methods for heel retrieval for tanks C-101, C-102, and C-111 at the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sams, Terry L.; Kirch, N. W.; Reynolds, Jacob G.
The purpose of this paper is to evaluate the prospects of using bulk waste characteristics to determine the most appropriate heel retrieval technology. If the properties of hard to remove heels can be determined before bulk retrieval, then a heel retrieval technology can be selected before bulk retrieval is complete. This would save substantially on sampling costs and would allow the deployment of the heel retrieval technology immediately after bulk retrieval. The latter would also accelerate the heel removal schedule. A number of C-farm retrievals have been fully or partially completed at the time of this writing. Thus, there ismore » already substantial information on the success of different technologies and the composition of the heels. There is also substantial information on the waste types in each tank based on historical records. Therefore, this study will correlate the performance of technologies used so far and compare them to the known waste types in the tanks. This will be used to estimate the performance of future C Farm heel retrievals. An initial decision tree is developed and employed on tanks C-101, C-102, and C 111. An assumption of this study is that no additional characterization information would be available, before or after retrieval. Note that collecting additional information would substantially increase the probability of success. Deploying some in-situ testing technologies, such as a water lance or an in-situ Raman probe, might substantially increase the probability of successfully selecting the process conditions without having to take samples from the tanks for laboratory analysis.« less
Advanced propulsion for LEO-Moon transport. 3: Transportation model. M.S. Thesis - California Univ.
NASA Technical Reports Server (NTRS)
Henley, Mark W.
1992-01-01
A simplified computational model of low Earth orbit-Moon transportation system has been developed to provide insight into the benefits of new transportation technologies. A reference transportation infrastructure, based upon near-term technology developments, is used as a departure point for assessing other, more advanced alternatives. Comparison of the benefits of technology application, measured in terms of a mass payback ratio, suggests that several of the advanced technology alternatives could substantially improve the efficiency of low Earth orbit-Moon transportation.
NASA Astrophysics Data System (ADS)
Uglyanitca, Andrey; Solonin, Kirill
2017-11-01
The environmentally friendly technology for filling the vertical mine workings with autoclaved slag-concrete, prefabricated on the surface of the mine is presented in the article; the optimal parameters of filling technology are proposed. The developed technology for filling the abandoned vertical mine workings allows ensuring the environmental safety of the territories adjacent to the abandoned mine, utilizing slag dumps and providing the possibility of shaft recovery, if necessary, with minimal labor and material costs.
ERIC Educational Resources Information Center
Ospanova, Bikesh Revovna; Azimbayeva, Zhanat Amantayevna; Timokhina, Tatyana Vladimirovna; Seydakhmetova, Zergul Koblandiyevna
2016-01-01
The need of implementing the model of professional development in training an expert in the conditions of multilingualism is considered. The possibility of using the multilingual approach in the context of present day education with the use of innovative technologies of training is substantiated, the definition of "multilingual…
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Leimkuehler, Thomas O.; Sheth, Rubik B.; Le,Hung
2012-01-01
The Fusible Heat Sink is a novel vehicle heat rejection technology which combines a flow through radiator with a phase change material. The combined technologies create a multi-function device able to shield crew members against Solar Particle Events (SPE), reduce radiator extent by permitting sizing to the average vehicle heat load rather than to the peak vehicle heat load, and to substantially absorb heat load excursions from the average while constantly maintaining thermal control system setpoints. This multi-function technology provides great flexibility for mission planning, making it possible to operate a vehicle in hot or cold environments and under high or low heat load conditions for extended periods of time. This paper describes the model development and experimental validation of the Fusible Heat Sink technology. The model developed was intended to meet the radiation and heat rejection requirements of a nominal MMSEV mission. Development parameters and results, including sizing and model performance will be discussed. From this flight-sized model, a scaled test-article design was modeled, designed, and fabricated for experimental validation of the technology at Johnson Space Center thermal vacuum chamber facilities. Testing showed performance comparable to the model at nominal loads and the capability to maintain heat loads substantially greater than nominal for extended periods of time.
China Report, Science and Technology
1985-06-11
ZHIYEBING ZAZHI tCHINESE JOURNAL OF INDUSTRIAL HYGIENE AND OCCUPATIONAL DISEASES!, No 1, 20 Feb 85 148 YICHUAN XUEBAO TACTA GENETICA SINICAJ, No 1...markets, all cities and counties should enthusiastically create conditions , substanti- ate strength, and augment the equipment to gradually develop... conditions should concentrate certain production capacity and certain technological force on developing new tech- nology and set up and improve the
New systems for treatment of manure from confined animal production
USDA-ARS?s Scientific Manuscript database
New swine waste management systems developed in North Carolina to replace the anaerobic lagoons need to meet the strict performance standards of an environmentally superior technology (EST). These technologies must be able to substantially remove nutrients, heavy metals, emissions of ammonia, odors,...
Research and Development Needs for Building-Integrated Solar Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2014-01-01
The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).
Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang*
Fang, Bin; Wang, Guang-huo; Van den berg, Marrit; Roetter, Reimund
2005-01-01
This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China’s Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops. PMID:16187411
Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang.
Fang, Bin; Wang, Guang-Huo; Van, Den Berg Marrit; Roetter, Reimund
2005-10-01
This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China's Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops.
ERIC Educational Resources Information Center
Cohen, Daniel J.; Rosenzweig, Roy
2006-01-01
The combination of the Web and the cell phone forecasts the end of the inexpensive technologies of multiple-choice tests and grading machines. These technological developments are likely to bring the multiple-choice test to the verge of obsolescence, mounting a substantial challenge to the presentation of history and other disciplines.
Research and Development Opportunities for Joining Technologies in HVAC&R
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Guernsey, Matt; Young, Jim
The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reductionmore » goals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-12-31
The report S. 978 is a bill to establish programs to promote environmental technologies. The findings are that the Federal Government research institutes, universities, and industries are conducting substantial environmental research and development, however environmental concerns must become a more pervasive and central dimension of technology research and development. The proposed legislative text is included.
Speeding Products to Market: Waiting Time to First Product Introduction in New Firms.
ERIC Educational Resources Information Center
Schoonhoven, Claudia Bird; And Others
1990-01-01
Using event-history analysis techniques, a longitudinal study of the semiconductor industry found that substantial technological innovation lengthens development times and reduces the speed with which first products reach the marketplace. Organizations that undertook lower levels of technological innovation had relatively lower monthly…
ERIC Educational Resources Information Center
Harman, Grant
2010-01-01
Australian governments in recent years have invested substantially in innovation and research commercialisation with the aim of enhancing international economic competitiveness, making research findings more readily available to research users, and supporting economic and social development. Although there have been a number of evaluations of…
NASA Stennis Space Center integrated system health management test bed and development capabilities
NASA Astrophysics Data System (ADS)
Figueroa, Fernando; Holland, Randy; Coote, David
2006-05-01
Integrated System Health Management (ISHM) capability for rocket propulsion testing is rapidly evolving and promises substantial reduction in time and cost of propulsion systems development, with substantially reduced operational costs and evolutionary improvements in launch system operational robustness. NASA Stennis Space Center (SSC), along with partners that includes NASA, contractor, and academia; is investigating and developing technologies to enable ISHM capability in SSC's rocket engine test stands (RETS). This will enable validation and experience capture over a broad range of rocket propulsion systems of varying complexity. This paper describes key components that constitute necessary ingredients to make possible implementation of credible ISHM capability in RETS, other NASA ground test and operations facilities, and ultimately spacecraft and space platforms and systems: (1) core technologies for ISHM, (2) RETS as ISHM testbeds, and (3) RETS systems models.
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Leimkuehler, Thomas; Sheth, Rubik; Le, Hung
2013-01-01
The Fusible Heat Sink is a novel vehicle heat rejection technology which combines a flow through radiator with a phase change material. The combined technologies create a multi-function device able to shield crew members against Solar Particle Events (SPE), reduce radiator extent by permitting sizing to the average vehicle heat load rather than to the peak vehicle heat load, and to substantially absorb heat load excursions from the average while constantly maintaining thermal control system setpoints. This multi-function technology provides great flexibility for mission planning, making it possible to operate a vehicle in hot or cold environments and under high or low heat load conditions for extended periods of time. This paper describes the modeling and experimental validation of the Fusible Heat Sink technology. The model developed was intended to meet the radiation and heat rejection requirements of a nominal MMSEV mission. Development parameters and results, including sizing and model performance will be discussed. From this flight-sized model, a scaled test-article design was modeled, designed, and fabricated for experimental validation of the technology at Johnson Space Center thermal vacuum chamber facilities. Testing showed performance comparable to the model at nominal loads and the capability to maintain heat loads substantially greater than nominal for extended periods of time.
NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology
NASA Technical Reports Server (NTRS)
Haller, Bill
2015-01-01
Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacAllister, D.J.; Day, R.; McCormack, M.D.
This paper gives an overview of a major integrated oil company`s experience with artificial intelligence (AI) over the last 5 years, with an emphasis on expert systems. The authors chronicle the development of an AI group, including details on development tool selection, project selection strategies, potential pitfalls, and descriptions of several completed expert systems. Small expert systems produced by teams of petroleum technology experts and experienced expert system developers that are focused in well-defined technical areas have produced substantial benefits and accelerated petroleum technology transfer.
Status of silicon solar cell technology
NASA Technical Reports Server (NTRS)
Brandhorst, H. W., Jr.
1976-01-01
Major progress in solar cell technology leading to increased efficiency has occurred since 1970. Technical approaches leading to this increased output include surface texturing, improved antireflection coatings, reduced grid pattern area coverage, shallow junctions and back surface fields. The status of these developments and their incorporation into cell production is discussed. Future research and technology trends leading to further efficiency increases and substantial cost reductions are described.
Electric Propulsion Technology Development for the Jupiter Icy Moons Orbiter Project
NASA Technical Reports Server (NTRS)
2004-01-01
During 2004, the Jupiter Icy Moons Orbiter project, a part of NASA's Project Prometheus, continued efforts to develop electric propulsion technologies. These technologies addressed the challenges of propelling a spacecraft to several moons of Jupiter. Specific challenges include high power, high specific impulse, long lived ion thrusters, high power/high voltage power processors, accurate feed systems, and large propellant storage systems. Critical component work included high voltage insulators and isolators as well as ensuring that the thruster materials and components could operate in the substantial Jupiter radiation environment. A review of these developments along with future plans is discussed.
Patient assessment systems using the World Wide Web.
Kohane, I S
1997-02-01
Of the major issues in developing a Web patient assessment system, I have emphasized two main points. First, the World Wide Web can provide substantial leverage in the development of online patient assessment systems. Second, although the existence of Internet technologies does not alter the need to resolve issues that preceded their arrival, current trends suggest that in the home and the office, patient assessment systems will increasingly employ Internet technologies.
Applications and challenges for thermal energy storage
NASA Astrophysics Data System (ADS)
Kannberg, L. D.; Tomlinson, J. T.
1991-04-01
New thermal energy storage (TES) technologies are being developed and applied as society strives to relieve increasing energy and environmental stresses. Applications for these new technologies range from residential and district heating and cooling using waste and solar energy, to high-temperature energy storage for power production and industrial processes. In the last two decades there has been great interest and development of heat storage systems, primarily for residential and commercial buildings. While development has continued, the rate of advancement has slowed with current technology considered adequate for electrically charged heat storage furnaces. Use of chill storage for building diurnal cooling has received substantial development.
NASA Technical Reports Server (NTRS)
1994-01-01
For pipeline companies, mapping, facilities inventory, pipe inspections, environmental reporting, etc. is a monumental task. An Automated Mapping/Facilities Management/Geographic Information Systems (AM/FM/GIS) is the solution. However, this is costly and time consuming. James W. Sewall Company, an AM/FM/GIS consulting firm proposed an EOCAP project to Stennis Space Center (SSC) to develop a computerized system for storage and retrieval of digital aerial photography. This would provide its customer, Algonquin Gas Transmission Company, with an accurate inventory of rights-of-way locations and pipeline surroundings. The project took four years to complete and an important byproduct was SSC's Digital Aerial Rights-of-Way Monitoring System (DARMS). DARMS saves substantial time and money. EOCAP enabled Sewall to develop new products and expand its customer base. Algonquin now manages regulatory requirements more efficiently and accurately. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology. Because changes on Earth's surface are accelerating, planners and resource managers must assess the consequences of change as quickly and accurately as possible. Pacific Meridian Resources and NASA's Stennis Space Center (SSC) developed a system for monitoring changes in land cover and use, which incorporated the latest change detection technologies. The goal of this EOCAP project was to tailor existing technologies to a system that could be commercialized. Landsat imagery enabled Pacific Meridian to identify areas that had sustained substantial vegetation loss. The project was successful and Pacific Meridian's annual revenues have substantially increased. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology.
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Connolly, D. J.
1986-01-01
Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.
The use of remote sensing in mosquito control
NASA Technical Reports Server (NTRS)
1973-01-01
The technology of remote sensing, developed by the space program for identification of surface features from the vantage point of an aircraft or satellite, has substantial application in precisely locating mosquito breeding grounds. Preliminary results of the NASA technology working cooperatively with a city government agency in solving this problem are discussed.
Development and application of wood adhesives in China
Jiyou Gu; Zhiyong Cai
2010-01-01
Rapid economic development and growth in China has resulted in a substantial increase in the demand for utilization of bio-based composites. This provides a unique opportunity for developing wood adhesives. This study reviews research development and major accomplishments in wood adhesives and technology in China over the last 50 years. It also discusses the...
Nano-technology and nano-toxicology.
Maynard, Robert L
2012-01-01
Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.
Nano-technology and nano-toxicology
Maynard, Robert L.
2012-01-01
Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology. PMID:22662021
Ultralightweight optics for space applications
NASA Astrophysics Data System (ADS)
Mayo, James W.; DeHainaut, Linda L.; Bell, Kevin D.; Smith, Winfred S.; Killpatrick, Don H.; Dyer, Richard W.
2000-07-01
Lightweight, deployable space optics has been identified as a key technology for future cost-effective, space-based systems. The United States Department of Defense has partnered with the National Aeronautical Space Administration to implement a space mirror technology development activity known as the Advanced Mirror System Demonstrator (AMSD). The AMSD objectives are to advance technology in the production of low-mass primary mirror systems, reduce mirror system cost and shorten mirror- manufacturing time. The AMSD program will offer substantial weight, cost and production rate improvements over Hubble Space Telescope mirror technology. A brief history of optical component development and a review of optical component state-of-the-art technology will be given, and the AMSD program will be reviewed.
Overview on Recent Developments of Bondcoats for Plasma-Sprayed Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Naumenko, D.; Pillai, R.; Chyrkin, A.; Quadakkers, W. J.
2017-12-01
The performance of MCrAlY (M = Ni, Co) bondcoats for atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) is substantially affected by the contents of Co, Ni, Cr, and Al as well as minor additions of Y, Hf, Zr, etc., but also by manufacturing-related properties such as coating thickness, porosity, surface roughness, and oxygen content. The latter properties depend in turn on the exact technology and set of parameters used for bondcoat deposition. The well-established LPPS process competes nowadays with alternative technologies such as HVOF and APS. In addition, new technologies have been developed for bondcoats manufacturing such as high-velocity APS or a combination of HVOF and APS for application of a flashcoat. Future developments of the bondcoat systems will likely include optimization of thermal spraying methods for obtaining complex bondcoat roughness profiles required for extended APS-TBC lifetimes. Introduction of the newest generation single-crystal superalloys possessing low Cr and high Al and refractory metals (Re, Ru) contents will require definition of new bondcoat compositions and/or multilayered bondcoats to minimize interdiffusion issues. The developments of new bondcoat compositions may be substantially facilitated using thermodynamic-kinetic modeling, the vast potential of which has been demonstrated in recent years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiNunzio, Camillo A.; Gupta, Abhinav; Golay, Michael
2002-11-30
This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.
A guide to LIDAR data acquisition and processing for the forests of the Pacific Northwest.
Demetrios Gatziolis; Hans-Erik Andersen
2008-01-01
Light detection and ranging (LIDAR) is an emerging remote-sensing technology with promising potential to assist in mapping, monitoring, and assessment of forest resources. Continuous technological advancement and substantial reductions in data acquisition cost have enabled acquisition of laser data over entire states and regions. These developments have triggered an...
AIRS-Light Instrument Concept and Critical Technology Development
NASA Technical Reports Server (NTRS)
Maschhoff, Kevin
2001-01-01
Understanding Earth's climate, atmospheric transport mechanisms, and the hydrologic cycle requires a precise knowledge of global atmospheric circulation, temperature profiles, and water vapor distribution. The accuracy of advanced sounders such as AIRS/AMSU/HSB on NASA's Aqua spacecraft can match radiosonde accuracy. It is essential to fold those capabilities fully into the NPOESS, enabling soundings of radiosonde accuracy, every 6 hours around the globe on an operational basis. However, the size, mass, power demands, and thermal characteristics of the Aqua sounding instrument suite cannot be accommodated on the NPOESS spacecraft. AIRS-Light is an instrument concept, developed under the Instrument Incubator Program, which provides IR sounding performance identical to the AIRS instrument, but uses advances in HgCdTe FPA technology and pulse tube cooler technology, as well as design changes to dramatically reduce the size, mass, and power demand, allowing AIRS-Light to meet all NPOESS spacecraft interface requirements. The instrument concept includes substantial re-use of AIRS component designs, including the complex AIRS FPA, to reduce development risk and cost. The AIRS-Light Instrument Incubator program fostered the development of photovoltaic-mode HgCdTe detector array technology for the 13.5-15.4 micron band covered by photoconductive-mode HgCdTe arrays in AIRS, achieved state of the art results in this band, and substantially reduced the development risk for this last new technology needed for AIRS-Light implementation, A demonstration of a prototype 14.5-15.4 micron band IRFPA in a reduced heat-load dewar together with the IMAS pulse tube cryocooler is in progress.
Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Spray
2007-09-30
The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial newmore » technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.« less
NASA Technical Reports Server (NTRS)
Bahr, D. W.; Burrus, D. L.; Sabla, P. E.
1979-01-01
A sector combustor technology development program was conducted to define an advanced double annular dome combustor sized for use in the quiet clean short haul experimental engine (QCSEE). A design which meets the emission goals, and combustor performance goals of the QCSEE engine program was developed. Key design features were identified which resulted in substantial reduction in carbon monoxide and unburned hydrocarbon emission levels at ground idle operating conditions, in addition to very low nitric oxide emission levels at high power operating conditions. Their significant results are reported.
"Seeing is believing": perspectives of applying imaging technology in discovery toxicology.
Xu, Jinghai James; Dunn, Margaret Condon; Smith, Arthur Russell
2009-11-01
Efficiency and accuracy in addressing drug safety issues proactively are critical in minimizing late-stage drug attritions. Discovery toxicology has become a specialty subdivision of toxicology seeking to effectively provide early predictions and safety assessment in the drug discovery process. Among the many technologies utilized to select safer compounds for further development, in vitro imaging technology is one of the best characterized and validated to provide translatable biomarkers towards clinically-relevant outcomes of drug safety. By carefully applying imaging technologies in genetic, hepatic, and cardiac toxicology, and integrating them with the rest of the drug discovery processes, it was possible to demonstrate significant impact of imaging technology on drug research and development and substantial returns on investment.
ERIC Educational Resources Information Center
Bagley, Katherine G.
2012-01-01
Technological devices are ubiquitous in nearly every facet of society. There are substantial investments made in organizations on a daily basis to improve information technology. From a military perspective, the ultimate goal of these highly sophisticated devices is to assist soldiers in achieving mission success across dynamic and often chaotic…
Navy Distributed Virtual Library Requirements Analysis.
1995-12-01
Josie McCrary asajam01@asnmail.asc.edu Issues In Science and Technology Librarianship ♦ Provides short substantial articles on timely and important...topics in science and technology librarianship as well as conference and workshop reports and short correspondences. ♦ Send a message to acrlsts...electronic journal encompassing all aspects of aca- demic audiovisual librarianship . Focus includes cataloging, refer- ence, collection development
Polycrystalline Thin Film Photovoltaics: Research, Development, and Technologies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullal, H. S.; Zweibel, K.; von Roedern, B.
2002-05-01
II-VI binary thin-film solar cells based on cadmium telluride (CdTe) and I-III-VI ternary thin-film solar cells based on copper indium diselenide (CIS) and related materials have been the subject of intense research and development in the past few years. Substantial progress has been made thus far in the area of materials research, device fabrication, and technology development, and numerous applications based on CdTe and CIS have been deployed worldwide. World record efficiency of 16.5% has been achieved by NREL scientists for a thin-film CdTe solar cell using a modified device structure. Also, NREL scientists achieved world-record efficiency of 21.1% formore » a thin-film CIGS solar cell under a 14X concentration and AM1.5 global spectrum. When measured under a AM1.5 direct spectrum, the efficiency increases to 21.5%. Pathways for achieving 25% efficiency for tandem polycrystalline thin-film solar cells are elucidated. R&D issues relating to CdTe and CIS are reported in this paper, such as contact stability and accelerated life testing in CdTe, and effects of moisture ingress in thin-film CIS devices. Substantial technology development is currently under way, with various groups reporting power module efficiencies in the range of 7.0% to 12.1% and power output of 40.0 to 92.5 W. A number of lessons learned during the scale-up activities of the technology development for fabrication of thin-film power modules are discussed. The major global players actively involved in the technology development and commercialization efforts using both rigid and flexible power modules are highlighted.« less
A plot twist: the continuing story of VCSELs at AOC
NASA Astrophysics Data System (ADS)
Guenter, James K.; Tatum, Jim A.; Hawthorne, Robert A., III; Johnson, Ralph H.; Mathes, David T.; Hawkins, Bobby M.
2005-03-01
During a year of substantial consolidation in the VCSEL industry, Honeywell sold their VCSEL Optical Products Division, which has now officially changed its name to Advanced Optical Components (AOC). Both manufacture and applied research continue, however. Some of the developments of the past year are discussed in this paper. They include advances in the understanding of VCSEL degradation physics, substantial improvements in long-wavelength VCSEL performance, and continuing progress in manufacturing technology. In addition, higher speed serial communications products, at 10 gigabits and particularly at 4 gigabits per second, have shown faster than predicted growth. We place these technologies and AOC's approach to them in a market perspective, along with other emerging applications.
NASA Technical Reports Server (NTRS)
1976-01-01
The feasibility of systematically quantifying the economic benefits of secondary applications of NASA related R and D was investigated. Based upon the tools of economic theory and econometric analysis, a set of empirical methods was developed and selected applications were made to demonstrate their workability. Analyses of the technological developments related to integrated circuits, cryogenic insulation, gas turbines, and computer programs for structural analysis indicated substantial secondary benefits accruing from NASA's R and D in these areas.
Quantifying the benefits to the national economy from secondary applications of NASA technology
NASA Technical Reports Server (NTRS)
1976-01-01
The feasibility of systematically quantifying the economic benefits of secondary applications of NASA related R and D is investigated. Based upon the tools of economic theory and econometric analysis, it develops a set of empirical methods and makes selected applications to demonstrate their workability. Analyses of the technological developments related to integrated circuits, cryogenic insulation, gas turbines, and computer programs for structural analysis indicated substantial secondary benefits accruing from NASA's R and D in these areas.
ERIC Educational Resources Information Center
Gorbach, Lyudmila A.; Rajskaya, Marina V.; Aksianova, Anna V.; Morozov, Alexander V.; Gusarova, Irina A.; Sagdeeva, Anzhella A.
2016-01-01
The relevance of the research problem is conditioned by the lack of developments in the field of management of transformational processes in modern economic systems in conditions of globalization and development in the framework of the trends of the world economy. The purpose of this paper is to substantiate directions of innovative development of…
Object-oriented technologies in a multi-mission data system
NASA Technical Reports Server (NTRS)
Murphy, Susan C.; Miller, Kevin J.; Louie, John J.
1993-01-01
The Operations Engineering Laboratory (OEL) at JPL is developing new technologies that can provide more efficient and productive ways of doing business in flight operations. Over the past three years, we have worked closely with the Multi-Mission Control Team to develop automation tools, providing technology transfer into operations and resulting in substantial cost savings and error reduction. The OEL development philosophy is characterized by object-oriented design, extensive reusability of code, and an iterative development model with active participation of the end users. Through our work, the benefits of object-oriented design became apparent for use in mission control data systems. Object-oriented technologies and how they can be used in a mission control center to improve efficiency and productivity are explained. The current research and development efforts in the JPL Operations Engineering Laboratory are also discussed to architect and prototype a new paradigm for mission control operations based on object-oriented concepts.
Miernik, A; Becker, C; Wullich, B; Schoenthaler, M; Arnolds, B J; Wetterauer, U
2015-01-01
The innovative power in medical engineering and technology development requires a close cooperation between universities and non-university research institutions and a collaboration with industrial partners. German knowledge in the fields of video and micro-optics, microsystem technology and of informational technology and software applications seem to be highly competitive at international level. Germany's previous leadership in the development of technical equipment will be challenged by today's requirements and difficulties in medical engineering. Research and expenses demands for the development of novel medical instruments, products and applications will increase continuously. Transparency and coordinated collaboration between universities and industrial partners will contribute to a substantial improvement in surgical therapy. Medical technology of the future, including urotechnology, requires professional structures and coordination and will have to be based on evidence.
Exploring the Multimedia Landscape from a Training and Professional Development Perspective.
ERIC Educational Resources Information Center
Fankhauser, Rae; Lopaczuk, Helmut
The move by training and educational institutions in Australia toward the use of multimedia to facilitate effective and cost effective training and professional development has grown at a substantial pace. This paper focuses on the impact of multimedia on the areas of training and professional development. Benefits of the technology are described,…
Winglet and long duct nacelle aerodynamic development for DC-10 derivatives
NASA Technical Reports Server (NTRS)
Taylor, A. B.
1978-01-01
Advanced technology for application to the Douglas DC-10 transport is discussed. Results of wind tunnel tests indicate that the winglet offers substantial cruise drag reduction with less wing root bending moment penalty than a wing-tip extension of the same effectiveness and that the long duct nacelle offers substantial drag reduction potential as a result of aerodynamic and propulsion improvements. The aerodynamic design and test of the nacelle and pylon installation are described.
ERIC Educational Resources Information Center
Schiefelbusch, Richard L.; Lent, James R.
During the past reporting period the curriculum development staff of Project MORE (Mediated Operational Research for Education) has made substantial progress in attaining its program objectives. Design and development phases have proceeded on schedule. Four programs are currently in the field-testing stage, and four others are under development.…
NASA Technical Reports Server (NTRS)
Knouse, G.; Weber, W.
1985-01-01
A three phase development program for ground and space segment technologies which will enhance and enable the second and third generation mobile satellite systems (MSS) is outlined. Phase 1, called the Mobile Satellite Experiment (MSAT-X), is directed toward the development of ground segment technology needed for future MSS generations. Technology validation and preoperational experiments with other government agencies will be carried out during the two year period following launch. The satellite channel capacity needed to carry out these experiments will be obtained from industry under a barter type agreement in exchange for NASA provided launch services. Phase 2 will develop and flight test the multibeam spacecraft antenna technology needed to obtain substantial frequency reuse for second generation commercial systems. Industry will provide the antenna, and NASA will fly it on the Shuttle and test it in orbit. Phase 3 is similar to Phase 2 but will develop an even larger multibeam antenna and test it on the space station.
NASA Astrophysics Data System (ADS)
Knouse, G.; Weber, W.
1985-04-01
A three phase development program for ground and space segment technologies which will enhance and enable the second and third generation mobile satellite systems (MSS) is outlined. Phase 1, called the Mobile Satellite Experiment (MSAT-X), is directed toward the development of ground segment technology needed for future MSS generations. Technology validation and preoperational experiments with other government agencies will be carried out during the two year period following launch. The satellite channel capacity needed to carry out these experiments will be obtained from industry under a barter type agreement in exchange for NASA provided launch services. Phase 2 will develop and flight test the multibeam spacecraft antenna technology needed to obtain substantial frequency reuse for second generation commercial systems. Industry will provide the antenna, and NASA will fly it on the Shuttle and test it in orbit. Phase 3 is similar to Phase 2 but will develop an even larger multibeam antenna and test it on the space station.
Low Cost, Upper Stage-Class Propulsion
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The low cost, upper stage-class propulsion (LCUSP) element will develop a high strength copper alloy additive manufacturing (AM) process as well as critical components for an upper stage-class propulsion system that will be demonstrated with testing. As manufacturing technologies have matured, it now appears possible to build all the major components and subsystems of an upper stage-class rocket engine for substantially less money and much faster than traditionally done. However, several enabling technologies must be developed before that can happen. This activity will address these technologies and demonstrate the concept by designing, manufacturing, and testing the critical components of a rocket engine. The processes developed and materials' property data will be transitioned to industry upon completion of the activity. Technologies to enable the concept are AM copper alloy process development, AM post-processing finishing to minimize surface roughness, AM material deposition on existing copper alloy substrate, and materials characterization.
Cavallo, F; Aquilano, M; Bonaccorsi, M; Mannari, I; Carrozza, M C; Dario, P
2011-01-01
This paper aims to show the effectiveness of a (inter / multi)disciplinary team, based on the technology developers, elderly care organizations, and designers, in developing the ASTRO robotic system for domiciliary assistance to elderly people. The main issues presented in this work concern the improvement of robot's behavior by means of a smart sensor network able to share information with the robot for localization and navigation, and the design of the robot's appearance and functionalities by means of a substantial analysis of users' requirements and attitude to robotic technology to improve acceptability and usability.
ERIC Educational Resources Information Center
Balakrishnan, Balamuralithara; Low, Foon Siang
2016-01-01
As developed and developing countries move towards greater technological development in the 21st century, the need for engineers has increased substantially. Japan is facing the dilemma of insufficient engineers; therefore, the country has to rely on foreign workers. This problem may be resolved if there is a continuous effort to increase the…
Flórez-Arango, José F; Sriram Iyengar, M; Caicedo, Indira T; Escobar, German
2017-01-01
Development and electronic distribution of Clinical Practice Guidelines production is costly and challenging. This poster presents a rapid method to represent existing guidelines in auditable, computer executable multimedia format. We used a technology that enables a small number of clinicians to, in a short period of time, develop a substantial amount of computer executable guidelines without programming.
NASA Astrophysics Data System (ADS)
1994-03-01
This report documents a portion of the work performed on Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective of this program is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.
Development of the fine-particle agglomerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, P.; Balasic, P.
1999-07-01
This paper presents the current status of the commercial development of a new technology to more efficiently control fine particulate emissions. The technology is based on an invention by Environmental Elements Corporation (EEC) which utilizes laminar flow to promote contact of fine submicron particles with larger particles to form agglomerates prior to their removal in a conventional particulate control device, such as an ESP. As agglomerates the particles are easily captured in the control device, whereas a substantial amount would pass through if allowed to remain as fine particles. EEC has developed the laminar-flow agglomerator technology through the laboratory proof-of-conceptmore » stage, which was funded by a DOE SBIR grant, to pilot-scale and full-scale demonstrations.« less
AUTOMATION OF EXPERIMENTS WITH A HAND-HELD PROGRAMMABLE CALCULATOR
Technological developments have dramatically reduced the cost of data collection, experimental control and computation. Products are now available which allow automation of experiments both in the laboratory and in the field at substantially lower cost and with less technical exp...
Financial options methodology for analyzing investments in new technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenning, B.D.
1994-12-31
The evaluation of investments in longer term research and development in emerging technologies, because of the nature of such subjects, must address inherent uncertainties. Most notably, future cash flow forecasts include substantial uncertainties. Conventional present value methodology, when applied to emerging technologies severely penalizes cash flow forecasts, and strategic investment opportunities are at risk of being neglected. Use of options valuation methodology adapted from the financial arena has been introduced as having applicability in such technology evaluations. Indeed, characteristics of superconducting magnetic energy storage technology suggest that it is a candidate for the use of options methodology when investment decisionsmore » are being contemplated.« less
Financial options methodology for analyzing investments in new technology
NASA Technical Reports Server (NTRS)
Wenning, B. D.
1995-01-01
The evaluation of investments in longer term research and development in emerging technologies, because of the nature of such subjects, must address inherent uncertainties. Most notably, future cash flow forecasts include substantial uncertainties. Conventional present value methodology, when applied to emerging technologies severely penalizes cash flow forecasts, and strategic investment opportunities are at risk of being neglected. Use of options evaluation methodology adapted from the financial arena has been introduced as having applicability in such technology evaluations. Indeed, characteristics of superconducting magnetic energy storage technology suggest that it is a candidate for the use of options methodology when investment decisions are being contemplated.
Technology Thresholds for Microgravity: Status and Prospects
NASA Technical Reports Server (NTRS)
Noever, D. A.
1996-01-01
The technological and economic thresholds for microgravity space research are estimated in materials science and biotechnology. In the 1990s, the improvement of materials processing has been identified as a national scientific priority, particularly for stimulating entrepreneurship. The substantial US investment at stake in these critical technologies includes six broad categories: aerospace, transportation, health care, information, energy, and the environment. Microgravity space research addresses key technologies in each area. The viability of selected space-related industries is critically evaluated and a market share philosophy is developed, namely that incremental improvements in a large markets efficiency is a tangible reward from space-based research.
[Review of driver fatigue/drowsiness detection methods].
Wang, Lei; Wu, Xiaojuan; Yu, Mengsun
2007-02-01
Driver fatigue/drowsiness is one of the important causes of serious traffic accidents and results in so many people deaths or injuries, but also substantial directly and indirectly economic expenses. Therefore, many countries make great effort on how to detect drowsiness during driving. In this paper, we introduce the recent developments of driver fatigue/drowsiness detection technology of world wide and try to classify the existing methods into several kinds according to different features measured, and analyzed. Finally, the challenges faced to fatigue/drowsiness detection technology and the development trend are presented.
Adriaens, Peter; Goovaerts, Pierre; Skerlos, Steven; Edwards, Elizabeth; Egli, Thomas
2003-12-01
Recent commercial and residential development have substantially impacted the fluxes and quality of water that recharge the aquifers and discharges to streams, lakes and wetlands and, ultimately, is recycled for potable use. Whereas the contaminant sources may be varied in scope and composition, these issues of urban water sustainability are of public health concern at all levels of economic development worldwide, and require cheap and innovative environmental sensing capabilities and interactive monitoring networks, as well as tailored distributed water treatment technologies. To address this need, a roundtable was organized to explore the potential role of advances in biotechnology and bioengineering to aid in developing causative relationships between spatial and temporal changes in urbanization patterns and groundwater and surface water quality parameters, and to address aspects of socioeconomic constraints in implementing sustainable exploitation of water resources. An interactive framework for quantitative analysis of the coupling between human and natural systems requires integrating information derived from online and offline point measurements with Geographic Information Systems (GIS)-based remote sensing imagery analysis, groundwater-surface water hydrologic fluxes and water quality data to assess the vulnerability of potable water supplies. Spatially referenced data to inform uncertainty-based dynamic models can be used to rank watershed-specific stressors and receptors to guide researchers and policymakers in the development of targeted sensing and monitoring technologies, as well as tailored control measures for risk mitigation of potable water from microbial and chemical environmental contamination. The enabling technologies encompass: (i) distributed sensing approaches for microbial and chemical contamination (e.g. pathogens, endocrine disruptors); (ii) distributed application-specific, and infrastructure-adaptive water treatment systems; (iii) geostatistical integration of monitoring data and GIS layers; and (iv) systems analysis of microbial and chemical proliferation in distribution systems. This operational framework is aimed at technology implementation while maximizing economic and public health benefits. The outcomes of the roundtable will further research agendas in information technology-based monitoring infrastructure development, integration of processes and spatial analysis, as well as in new educational and training platforms for students, practitioners and regulators. The potential for technology diffusion to emerging economies with limited financial resources is substantial.
Sensor Web and Intelligent Sensors for Earth Science Applications
NASA Technical Reports Server (NTRS)
Habib, Shahid
2002-01-01
There is a significant interest in the Earth Science remote sensing community in substantially increasing the number of observations relative to the current frequency of collection. The obvious reason for such a push is to improve the temporal and surface coverage of measurements. However, there is little analysis available in terms of benefits, costs and optimized set of sensors needed to make these necessary observations. This is a complex problem that should be carefully studied and balanced over many boundaries. For example, the question of technology maturity versus users' desire for obtaining additional measurements is noncongruent. This is further complicated by the limitations of the laws of physics and the economic conditions. With the advent of advanced technology, it is anticipated that developments in spacecraft technology will enable advanced capabilities to become more affordable. However, specialized detector subsystems, and precision flying techniques may still require substantial innovation, development time and cost. Additionally, the space deployment scheme should also be given careful attention because of the high associated expense. Nonetheless, it is important to carefully examine the science priorities and steer the development efforts that can commensurate with the tangible requirements. This presentation will focus on a possible set of architectural concepts beneficial for future Earth science studies and research its and potential benefits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, L.; Hedman, B.; Knowles, D.
The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications inmore » the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.« less
ERIC Educational Resources Information Center
Crompton, Helen
2015-01-01
Mobile technologies are quickly becoming tools found in the educational environment. The researchers in this study use a form of mobile learning to support students in learning about angle concepts. Design-based research is used in this study to develop an empirically-substantiated local instruction theory about students' develop of angle and…
Dependent convergence: the importation of technological hazards by semiperipheral countries.
Siqueira, C E; Levenstein, C
2000-01-01
This article complements the substantial body of literature produced over the last three decades on the export of hazards from developed countries to developing countries. After reviewing the central arguments proposed by this literature, the authors add to the debate by focusing on the role of national actors in the importation of these hazards, based on the experience of late 1970s' developments in the petrochemical industry in Brazil. The Brazilian case indicates that social struggles and/or interactions among actors in developing and developed nations determine to what extent hazardous technologies are imported without environmental controls and to what extent their hazardous effects are controlled by these nations. This study suggests that the future development of a more inclusive theory of export-import of hazardous technologies and products should take into account the dialectical relationship established between social actors internal to the exporting and importing countries.
DOT National Transportation Integrated Search
2009-03-01
By implementing the recommended actions of the Task Force, New Hampshire will achieve substantial emission reductions, beginning immediately, using cost-effective, available : technology. The greatest reductions would come from improvements in the bu...
Energy Efficient Engine Program: Technology Benefit/Cost Study, Volume II
NASA Technical Reports Server (NTRS)
Gray, D. E.; Gardner, W. B.
1983-01-01
The Benefit/Cost Study portion of the NASA-sponsored Energy Efficient Engine Component Development and Integration program was successful in achieving its objectives: identification of air transport propulsion system technology requirements for the years 2000 and 2010, and formulation of programs for developing these technologies. It is projected that the advanced technologies identified, when developed to a state of readiness, will provide future commercial and military turbofan engines with significant savings in fuel consumption and related operating costs. These benefits are significant and far from exhausted. The potential savings translate into billions of dollars in annual savings for the airlines. Analyses indicate that a significant portion of the overall savings is attributed to aerodynamic and structure advancements. Another important consideration in acquiring these benefits is developing a viable reference technology base that will permit engines to operate at substantially higher overall pressure ratios and bypass ratios. Results have pointed the direction for future research and a comprehensive program plan for achieving this was formulated. The next major step is initiating the program effort that will convert the advanced technologies into the expected benefits.
Engineering solutions of environmental problems in organic waste handling
NASA Astrophysics Data System (ADS)
Briukhanov, A. Y.; Vasilev, E. V.; Shalavina, E. V.; Kucheruk, O. N.
2017-10-01
This study shows the urgent need to consider modernization of agricultural production in terms of sustainable development, which takes into account environmental implications of intensive technologies in livestock farming. Some science-based approaches are offered to address related environmental challenges. High-end technologies of organic livestock waste processing were substantiated by the feasibility study and nutrient balance calculation. The technologies were assessed on the basis of best available techniques criteria, including measures such as specific capital and operational costs associated with nutrient conservation and their delivery to the plants.
A historical overview of tiltrotor aeroelastic research at Langley Research Center
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1992-01-01
The Bell/Boeing V-22 Osprey which is being developed for the U.S. Military is a tiltrotor aircraft combining the versatility of a helicopter with the range and speed of a turboprop airplane. The V-22 represents a tiltrotor lineage which goes back over forty years, during which time contributions to the technology base needed for its development were made by both government and industry. NASA Langley Research Center has made substantial contributions to tiltrotor technology in several areas, in particular in the area of aeroelasticity. The purpose of this talk is to present a summary of the tiltrotor aeroelastic research conducted at Langley which has contributed to that technology.
Development of magnetoelectric nanocomposite for soft technology
NASA Astrophysics Data System (ADS)
Bitla, Yugandhar; Chu, Ying-Hao
2018-06-01
The proliferation of flexible and stretchable electronics has led to substantial advancements in principles, material combinations and technologies. The integration of magnetoelectric systems in soft electronics is inevitable by virtue of their extensive applications. Recently, 2D layered materials have emerged as potential candidates due to their excellent flexibility and atomic-scale thickness scalability in addition to their interesting physics. This paper presents a new perspective on the development of magnetoelectric nanocomposites through materials engineering on a pliant mica with excellent mechanical, thermal and chemical stabilities. The unique features of 2D muscovite mica and the power of van der Waals epitaxy are expected to contribute significantly to the emerging transparent soft-technology research applications.
Infrared-thermography imaging system multiapplications for manufacturing
NASA Astrophysics Data System (ADS)
Stern, Sharon A.
1990-03-01
Imaging systems technology has been utilized traditionally for diagnosing structural envelope or insulation problems in the general thermographic comunity. Industrially, new applications for utilizing thermal imaging technology have been developed i n pred i cti ve/preventi ye mai ntenance and prod uct moni tori ng prociures at Eastman Kodak Company, the largest photographic manufacturering producer in the world. In the manufacturing processes used at Eastman Kodak Company, new applications for thermal imaging include: (1) Fluid transfer line insulation (2) Web coating drying uniformity (3) Web slitter knives (4) Heating/cooling coils (5) Overheated tail bearings, and (6) Electrical phase imbalance. The substantial cost benefits gained from these applications of infrared thermography substantiate the practicality of this approach and indicate the desirability of researching further appl i cati ons.
Plasma Oscillation Characterization of NASA's HERMeS Hall Thruster via High Speed Imaging
NASA Technical Reports Server (NTRS)
Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.
2016-01-01
For missions beyond low Earth orbit, spacecraft size and mass can be dominated by onboard chemical propulsion systems and propellants that may constitute more than 50 percent of the spacecraft mass. This impact can be substantially reduced through the utilization of Solar Electric Propulsion (SEP) due to its substantially higher specific impulse. Studies performed for NASA's Human Exploration and Operations Mission Directorate and Science Mission Directorate have demonstrated that a 50kW-class SEP capability can be enabling for both near term and future architectures and science missions. A high-power SEP element is integral to the Evolvable Mars Campaign, which presents an approach to establish an affordable evolutionary human exploration architecture. To enable SEP missions at the power levels required for these applications, an in-space demonstration of an operational 50kW-class SEP spacecraft has been proposed as a SEP Technology Demonstration Mission (TDM). In 2010 NASA's Space Technology Mission Directorate (STMD) began developing high-power electric propulsion technologies. The maturation of these critical technologies has made mission concepts utilizing high-power SEP viable.
Microalgae-microbial fuel cell: A mini review.
Lee, Duu-Jong; Chang, Jo-Shu; Lai, Juin-Yih
2015-12-01
Microalgae-microbial fuel cells (mMFCs) are a device that can convert solar energy to electrical energy via biological pathways. This mini-review lists new research and development works on microalgae processes, microbial fuel cell (MFC) processes, and their combined version, mMFC. The substantial improvement and technological advancement are highlighted, with a discussion on the challenges and prospects for possible commercialization of mMFC technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Barrett, P Noel; Terpening, Sara J; Snow, Doris; Cobb, Ronald R; Kistner, Otfried
2017-09-01
Rapid development and production of vaccines against emerging diseases requires well established, validated, robust technologies to allow industrial scale production and accelerated licensure of products. Areas covered: A versatile Vero cell platform has been developed and utilized to deliver a wide range of candidate and licensed vaccines against emerging viral diseases. This platform builds on the 35 years' experience and safety record with inactivated whole virus vaccines such as polio vaccine. The current platform has been optimized to include a novel double inactivation procedure in order to ensure a highly robust inactivation procedure for novel emerging viruses. The utility of this platform in rapidly developing inactivated whole virus vaccines against pandemic (-like) influenza viruses and other emerging viruses such as West Nile, Chikungunya, Ross River and SARS is reviewed. The potential of the platform for development of vaccines against other emerging viruses such as Zika virus is described. Expert commentary: Use of this platform can substantially accelerate process development and facilitate licensure because of the substantial existing data set available for the cell matrix. However, programs to provide vaccines against emerging diseases must allow alternative clinical development paths to licensure, without the requirement to carry out large scale field efficacy studies.
Hamidi, A; Boog, C; Jadhav, S; Kreeftenberg, H
2014-07-16
The incidence of Haemophilus Influenzae type b (Hib) disease in developed countries has decreased since the introduction of Hib conjugate vaccines in their National Immunization Programs (NIP). In countries where Hib vaccination is not applied routinely, due to limited availability and high cost of the vaccines, invasive Hib disease is still a cause of mortality. Through the development of a production process for a Hib conjugate vaccine and related quality control tests and the transfer of this technology to emerging vaccine manufacturers in developing countries, a substantial contribution was made to the availability and affordability of Hib conjugate vaccines in these countries. Technology transfer is considered to be one of the fastest ways to get access to the technology needed for the production of vaccines. The first Hib conjugate vaccine based on the transferred technology was licensed in 2007, since then more Hib vaccines based on this technology were licensed. This paper describes the successful development and transfer of Hib conjugate vaccine technology to vaccine manufacturers in India, China and Indonesia. By describing the lessons learned in this process, it is hoped that other technology transfer projects can benefit from the knowledge and experience gained. Copyright © 2014 Elsevier Ltd. All rights reserved.
Teaching of students technology early professional orientation of schoolchildren
NASA Astrophysics Data System (ADS)
Gilmanshina, S. I.; Sagitova, R. N.; Gilmanshin, I. R.; Kamaleeva, A. R.
2017-09-01
The necessity of early professional orientation of schoolchildren on the engineering profession and a new type of teacher was proved. Theoretically substantiated and experimentally tested pedagogical conditions of training of students - future teachers of technology early professional orientation of schoolchildren in the system of university preparation of teacher of a new type. This development of courses of special disciplines, aimed at developing of future teachers of readiness for early career guidance activities; development of interactive group projects for schoolchildren of different age groups (including primary school), expanding their understanding of the world of professions; practical testing of career guidance projects dealing with children’s audience.
Advanced and tendencies in the development of display technologies
NASA Astrophysics Data System (ADS)
Kompanets, I. N.
2006-06-01
Advances and key display applications are discussed. Computer, compact mobile, TV and collective large screen displays are mentioned. Flat panel displays step on CRT devices to leave them behind in 2007. Materials, active matricies and applications of bright radiative field emission and organic LED displays are developing successively and pressing other technologies to be used in photo-cameras, cellular phones, auto-cars and avionics. Progress in flexible screens can substantially extend the display design and application soon. 3D display systems are under intensive development, and laser is an important unit in some vaiants of holographic and volumetric 3D displays. Value forecast of different display markets is presented.
A Virtual Notebook for biomedical work groups.
Gorry, G A; Burger, A M; Chaney, R J; Long, K B; Tausk, C M
1988-01-01
During the past several years, Baylor College of Medicine has made a substantial commitment to the use of information technology in support of its corporate and academic programs. The concept of an Integrated Academic Information Management System (IAIMS) has proved central in our planning, and the IAIMS activities that we have undertaken with funding from the National Library of Medicine have proved to be important extensions of our technology development. Here we describe our Virtual Notebook system, a conceptual and technologic framework for task coordination and information management in biomedical work groups. When fully developed and deployed, the Virtual Notebook will improve the functioning of basic and clinical research groups in the college, and it currently serves as a model for the longer-term development of our entire information management environment. PMID:3046694
Commercial Uses of Broadband Communications.
ERIC Educational Resources Information Center
Kahn, Ephraim
The need for commercial communications is expected to grow substantially in the future. Whether telephone companies meet most of this demand seems to depend on three major factors: regulatory actions, the development of alternative technology, and the telephone companies themselves. The Federal Communications Commission is considering requiring…
Machines that Go 'Ping': Medical Technology and Health Expenditures in OECD Countries.
Willemé, Peter; Dumont, Michel
2015-08-01
Technology is believed to be a major determinant of increasing health spending. The main difficulty to quantify its effect is to find suitable proxies to measure medical technological innovation. This paper's main contribution is the use of data on approved medical devices and drugs to proxy for medical technology. The effects of these variables on total real per capita health spending are estimated using a panel model for 18 Organisation for Economic Co-operation and Development (OECD) countries covering the period 1981-2012. The results confirm the substantial cost-increasing effect of medical technology, which accounts for almost 50% of the explained historical growth of spending. Despite the overall net positive effect of technology, the effect of two subgroups of approvals on expenditure is significantly negative. These subgroups can be thought of as representing 'incremental medical innovation', whereas the positive effects are related to radically innovative pharmaceutical products and devices. A separate time series model was estimated for the USA because the FDA approval data in fact only apply to the USA, while they serve as proxies for the other OECD countries. Our empirical model includes an indicator of obesity, and estimations confirm the substantial contribution of this lifestyle variable to health spending growth in the countries studied. Copyright © 2014 John Wiley & Sons, Ltd.
NASA's Role in Aeronautics: A Workshop. Volume 4: General aviation
NASA Technical Reports Server (NTRS)
1981-01-01
A substantially improved flow of new technology is imperative if the general aviation industry is to maintain a strong world position. Although NASA is the most eminently suited entity available to carry out the necessary research and technology development effort because of its facilities, expertise, and endorsement by the aircraft industry, less than 3% of its aeronautical R&T budget is devoted to general aviation aeronautics. It is recommended that (1) a technology program, particularly one that focuses on improving fuel efficienty and safety, be aggressively pursued by NASA; (2) NASA be assigned the role of leading basic research technology effort in general aviation up through technology demonstration; (3) a strategic plan be developed by NASA, in cooperation with the industry, and implemented in time for the 1982 budget cycle; and (4) a NASA R&T budget be allocated for general aviation adequate to support the proposed plan.
FY 2014 Annual Progress Report - Advanced Combustion Engine Research and Development (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
The Interdependence of Leisure Activity and Cultural Values.
ERIC Educational Resources Information Center
Asker, Don
Important contributors to significant changes occurring worldwide are: the emergence of a global economy; substantial political and social change; new transmigration; and enormous technological development. The effects of these changes on cultural values, both at small community and national levels, are far reaching. National boundaries are no…
Issues in Strategic Planning for Vocational Education: Lessons from Algeria, Egypt, and Morocco.
ERIC Educational Resources Information Center
Salmi, Jamil
1991-01-01
Although Algeria, Egypt, and Morocco have followed substantially different development strategies, they exhibit similar signs of crisis in vocational education. An integrated approach to planning that acknowledges social, financial, technological, and economic constraints could help coordinate general and vocational education and specialized…
ERIC Educational Resources Information Center
Hughes, Julie
2012-01-01
Initial Teacher Education (ITE) for the post-compulsory sector (PCE) in the UK is currently under review. Despite earlier plans to substantially increase the use of technology in ITE the Lifelong Learning UK (LLUK) consultation findings recommend that "we will expect that teachers do develop their skills in this area to a limited extent on a…
Emerging electrochemical energy conversion and storage technologies
NASA Astrophysics Data System (ADS)
Badwal, Sukhvinder; Giddey, Sarbjit; Munnings, Christopher; Bhatt, Anand; Hollenkamp, Tony
2014-09-01
Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation and storage; pollution control / monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.
Emerging electrochemical energy conversion and storage technologies
Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.
2014-01-01
Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Okojie, Robert S.; Krasowski, Michael J.; Beheim, Glenn M.; Fralick, Gustave C.; Wrbanek, John D.; Greenberg, Paul S.; Xu, Jennifer
2007-01-01
NASA Glenn Research Center is presently developing and applying a range of sensor and electronic technologies that can enable future planetary missions. These include space qualified instruments and electronics, high temperature sensors for Venus missions, mobile sensor platforms, and Microsystems for detection of a range of chemical species and particulates. A discussion of each technology area and its level of maturity is given. It is concluded that there is a strong need for low power devices which can be mobile and provide substantial characterization of the planetary environment where and when needed. While a given mission will require tailoring of the technology for the application, basic tools which can enable new planetary missions are being developed.
VLSI technology for smaller, cheaper, faster return link systems
NASA Technical Reports Server (NTRS)
Nanzetta, Kathy; Ghuman, Parminder; Bennett, Toby; Solomon, Jeff; Dowling, Jason; Welling, John
1994-01-01
Very Large Scale Integration (VLSI) Application-specific Integrated Circuit (ASIC) technology has enabled substantially smaller, cheaper, and more capable telemetry data systems. However, the rapid growth in available ASIC fabrication densities has far outpaced the application of this technology to telemetry systems. Available densities have grown by well over an order magnitude since NASA's Goddard Space Flight Center (GSFC) first began developing ASIC's for ground telemetry systems in 1985. To take advantage of these higher integration levels, a new generation of ASIC's for return link telemetry processing is under development. These new submicron devices are designed to further reduce the cost and size of NASA return link processing systems while improving performance. This paper describes these highly integrated processing components.
Comparison of high-speed rail and maglev systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Najafi, F.T.; Nassar, F.E.
1996-07-01
European and Japanese high-speed rail (HSR) and magnetically levitated (maglev) systems were each developed to respond to specific transportation needs within local economic, social, and political constraints. Not only is maglev technology substantially different from that of HSR, but also HSR and maglev systems differ in trainset design, track characteristics, cost structure, and cost sensitivity to design changes. This paper attempts to go beyond the traditional technology comparison table and focuses on the characteristics and conditions for which existing European and Japanese systems were developed. The technologies considered are the French train a grand vitesse (TGV), the Swedish X2000, themore » German Intercity Express (ICE) and Transrapid, and the Japanese Shinkansen, MLU, and high-speed surface train (HSST).« less
Improved heavy-duty vehicle fuel efficiency in India, benefits, costs and environmental impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, Anand R.; Karali, Nihan; Sharpe, Ben
The main objectives of this analysis are to examine the benefits and costs of fuel-saving technologies for new heavy-duty vehicles (HDVs) in India over the next 10 years and, to explore how various scenarios for the deployment of vehicles with these technologies will impact petroleum consumption and carbon dioxide (CO 2) emissions over the next three decades. The study team developed simulation models for three representative HDV types—a 40-tonne tractor-trailer, 25-tonne rigid truck, and 16-tonne transit bus—based on top-selling vehicle models in the Indian market. The baseline technology profiles for all three vehicles were developed using India-specific engine data andmore » vehicle specification information from manufacturer literature and input from industry experts. For each of the three vehicles we developed a comprehensive set of seven efficiency technology packages drawing from five major areas: engine, transmission and driveline, tires, aerodynamics, and weight reduction. Our analysis finds that India has substantial opportunity to improve HDV fuel efficiency levels using cost-effective technologies. Results from our simulation modeling of three representative HDV types—a tractor-trailer, rigid truck, and transit bus—reveal that per-vehicle fuel consumption reductions between roughly 20% and 35% are possible with technologies that provide a return on the initial capital investment within 1 to 2 years. Though most of these technologies are currently unavailable in India, experiences in other more advanced markets such as the US and EU suggest that with sufficient incentives and robust regulatory design, significant progress can be made in developing and deploying efficiency technologies that can provide real-world fuel savings for new commercial vehicles in India over the next 10 years. Bringing HDVs in India up to world-class technology levels will yield substantial petroleum and GHG reductions. By 2030, the fuel and CO2 reductions of the scenarios range from 10% to 34%, and at the end of 2050, these reductions grow to 13% and 41%. If we constrain the analysis to select the most efficient technology package that provides the fleets with payback times of 3 years or less, there are annual fleet-wide savings of roughly 11 MTOE of diesel and 34 MMT of CO 2 in 2030, and this grows to 31 MTOE and 97 MMT by 2050.« less
Transferring technology to the public sector.
NASA Technical Reports Server (NTRS)
Alper, M. E.
1972-01-01
Approximately four years ago the Jet Propulsion Laboratory, under NASA sponsorship, began to devote some of its resources to examining ways to transfer space technology to the civil sector. As experience accumulated under this program, certain principles basic to success in technology transfer became apparent. An adequate definition of each problem must be developed before any substantial effort is expended on a solution. In most instances, a source of funds other than the potential user is required to support the problem definition phase of the work. Sensitivity to the user's concerns and effective interpersonal communications between the user and technical personnel are essential to success.
NASA programs in advanced sensors and measurement technology for aeronautical applications
NASA Astrophysics Data System (ADS)
Conway, Bruce A.
NASA involvement in the development, implementation, and experimental use of advanced aeronautical sensors and measurement technologies is presently discussed within the framework of specific NASA research centers' activities. The technology thrusts are in the fields of high temperature strain gages and microphones, laser light-sheet flow visualization, LTA, LDV, and LDA, tunable laser-based aviation meteorology, and fiber-optic CARS measurements. IR thermography and close-range photogrammetry are undergoing substantial updating and application. It is expected that 'smart' sensors will be increasingly widely used, especially in conjunction with smart structures in aircraft and spacecraft.
Integrative knowledge management to enhance pharmaceutical R&D.
Marti-Solano, Maria; Birney, Ewan; Bril, Antoine; Della Pasqua, Oscar; Kitano, Hiroaki; Mons, Barend; Xenarios, Ioannis; Sanz, Ferran
2014-04-01
Information technologies already have a key role in pharmaceutical research and development (R&D), but achieving substantial advances in their use and effectiveness will depend on overcoming current challenges in sharing, integrating and jointly analysing the range of data generated at different stages of the R&D process.
On the Role of Engineering in Mathematical Development
ERIC Educational Resources Information Center
Fernandez, Isabel; Pacheco, Jose
2005-01-01
It is customary for engineering syllabuses to include a substantial amount of mathematics, a fact traditionally justified through their usefulness in the analysis and resolution of many technological problems. In other words, usually the role of mathematics in engineering is emphasized. Nevertheless, the opposite viewpoint could be considered as…
Psychology for the Classroom: E-Learning
ERIC Educational Resources Information Center
Woollard, John
2011-01-01
"Psychology for the Classroom: E-Learning" is a lively and accessible introduction to the field of technology-supported teaching and learning and the educational psychology associated with those developments. Offering a substantial and useful analysis of e-learning, this practical book includes current research, offers a grounding in both theory…
Risk Management for Enterprise Resource Planning System Implementations in Project-Based Firms
ERIC Educational Resources Information Center
Zeng, Yajun
2010-01-01
Enterprise Resource Planning (ERP) systems have been regarded as one of the most important information technology developments in the past decades. While ERP systems provide the potential to bring substantial benefits, their implementations are characterized with large capital outlay, long duration, and high risks of failure including…
Gender Differences in Science Career Choice.
ERIC Educational Resources Information Center
Zewotir, Temesgen
Although a number of female students in the entry-level of tertiary education has increased substantially in recent years, the proportion of incoming females in the fields of science and technology is low. Government and non-government organizations encourage females to enter tertiary level education for career development. However, judging by…
Advanced technology for America's future in space
NASA Technical Reports Server (NTRS)
1990-01-01
In response to Recommendation 8 of the Augustine Committee Report, NASA's Office of Aeronautics, Exploration and Technology (OAET) developed a proposed 'Integrated Technology Plan for the Civil Space Program' that entails substantial changes in the processes, structure and the content of NASA's space research and technology program. The Space Systems and Technology Advisory Committee (SSTAC, a subcommittee of the NASA Advisory Committee) and several other senior, expert, informed advisory groups conducted a review of NASA's proposed Integrated Technology Plan (ITP). This review was in response to the specific request in Recommendation 8 that 'NASA utilize an expert, outside review process, managed from headquarters, to assist in the allocation of technology funds'. This document, the final report from that review, addresses: (1) summary recommendations; (2) mission needs; (3) the integrated technology plan; (4) summary reports of the technical panels; and (5) conclusions and observations.
Fabrication of the V-22 composite AFT fuselage using automated fiber placement
NASA Technical Reports Server (NTRS)
Pinckney, Robert L.
1991-01-01
Boeing Helicopters and its subcontractors are working together under an Air Force Wright Research and Development Center (WRDC)-Manufacturing-Technology Large-Composite Primary Structure Fuselage program to develop and demonstrate new manufacturing techniques for producing composite fuselage skin and frame structures. Three sets of aft fuselage skins and frames have been fabricated and assembled, and substantial reductions in fabrication and assembly costs demonstrated.
High brightness x ray source for directed energy and holographic imaging applications, phase 2
NASA Astrophysics Data System (ADS)
McPherson, Armon; Rhodes, Charles K.
1992-03-01
Advances in x-ray imaging technology and x-ray sources are such that a new technology can be brought to commercialization enabling the three-dimensional (3-D) microvisualization of hydrated biological specimens. The Company is engaged in a program whose main goal is the development of a new technology for direct three dimensional (3-D) x-ray holographic imaging. It is believed that this technology will have a wide range of important applications in the defense, medical, and scientific sectors. For example, in the medical area, it is expected that biomedical science will constitute a very active and substantial market, because the application of physical technologies for the direct visualization of biological entities has had a long and extremely fruitful history.
Hospital inpatient prospective payment system: incorporating new technology.
Durthaler, Jeffrey M; Miller, Alicia
2003-11-01
New technologies in the impatient prospective payment system are discussed. On December 21, 2000, Congress passed Public Law 106-554 that includes a requirement to establish a mechanism to more expeditiously incorporate the costs and establish qualifying criteria for payment of new services and technologies into the hospital inpatient prospective payment system. The final ruling of this law states that a new service or technology must demonstrate substantial improvement, be inadequately paid under the DRG system, and be "new." The intent of these criteria is to identify new technologies that offer substantial improvement over existing technologies and to provide supplemental payment that encourages physicians and hospitals to utilize the new technology. In November 2001, drotrecogin alfa (activated) received fast-track FDA approval because of the robust findings from the PROWESS trial. Drotrecogin alfa (activated) is the first agent proven to reduce mortality in patients suffering from severe sepsis associated with acute organ dysfunction who are at a high risk of death (i.e., APACHE II score > 24). In August 2002, drotrecogin alfa (activated) was one of four such new technologies and the first agent approved for new technology payment under the prospective payment system (PPS). This decision offers confidence that the PPS is effectively striving to incorporate new medical services and technologies at a pace similar to that of innovation. Providers may receive up to $3400 in additional reimbursement when drotrecogin alfa (activated) is administered in the Medicare population. Pharmacy and patient accounting personnel should develop a collaborative process to identify, document, and capture this new source of payment.
2009-01-01
interface, mechatronics, video games 1. INTRODUCTION Engineering methods have substantially and continuously evolved over the past 40 years. In the past...1970s, video games have pioneered interactive simulation and laid the groundwork for inexpensive computing that individuals, corporations, and...purposes. This has not gone unnoticed, and software technology and techniques evolved for video games are beginning to have extraordinary impact in
Current Laminar Flow Control Experiments at NASA Dryden
NASA Technical Reports Server (NTRS)
Bowers, Al
2010-01-01
An experiment to demonstrate laminar flow over the swept wing of a subsonic transport is being developed. Discrete Roughness Elements are being used to maintain laminar flow over a substantial portion of a wing glove. This passive laminar flow technology has only come to be recognized as a significant player in airliner drag reduction in the last few years. NASA is implementing this experiment and is planning to demonstrate this technology at full-scale Bight cruise conditions of a small-to-medium airliner.
Hyper-X Stage Separation: Background and Status
NASA Technical Reports Server (NTRS)
Reubush, David E.
1999-01-01
This paper provides an overview of stage separation activities for NASA's Hyper-X program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an account of the development of the current stage separation concept, highlights of wind tunnel experiments and computational fluid dynamics investigations being conducted to define the separation event, results from ground tests of separation hardware, schedule and status. Substantial work has been completed toward reducing the risk associated with stage separation.
GMOs in Russia: Research, Society and Legislation.
Korobko, I V; Georgiev, P G; Skryabin, K G; Kirpichnikov, M P
2016-01-01
Russian legislation lags behind the rapid developments witnessed in genetic engineering. Only a scientifically based and well-substantiated policy on the place of organisms that are created with the use of genetic engineering technologies and an assessment of the risks associated with them could guarantee that the breakthroughs achieved in modern genetic engineering technologies are effectively put to use in the real economy. A lack of demand for such breakthroughs in the practical field will lead to stagnation in scientific research and to a loss of expertise.
Surveillance of Space in Australia
NASA Astrophysics Data System (ADS)
Newsam, G.
Australia's geography and technology base got it off to a flying start in the early days of surveillance of space, starting with CSIRO's first radio telescope in the 1940's and climaxing in NASA's establishment of station 43 in the Deep Space Network at Tidbinbilla in 1965. But Britain's exit from space and the subsequent closure of the Woomera launch range and associated space tracking facilities in the early 1970's saw the start of a long draw-down of capability. Programs such as CSIRO's radio astronomy telescopes, Electro-Optic Systems' adoption of laser technology for satellite laser ranging and tracking system, and the exploration of the use of technology developed in Australia's over-the-horizon-radar program for surveillance of space, kept some interest in the problem alive, but there has been no serious national investment in the area for the last thirty years. Recently, however, increased awareness of the vulnerability of space systems and the need to include potential opponents' space capabilities in operations planning has led to a revival of interest in space situational awareness within the Australian Defence Organisation. While firm commitments to new systems must wait on the next Defence White Paper due out at the end of 2007 and the policy directions it formally endorses, discussions have already started with the US on participating in the Space Surveillance Network (SSN) and developing a comprehensive space situational awareness capability. In support of these initiatives the Defence Science and Technology Organisation (DSTO) is drawing up an inventory of relevant Australian capabilities, technologies and activities: the paper will describe the findings of this inventory, and in particular local technologies and systems that might be deployed in Australia to contribute to the SSN. In the optical regime the available options are rather limited; they centre primarily on the satellite laser ranging technology developed by Electro-Optic Systems and operating in stations at Yarragadee, Western Australia and Mt Stromlo, Australian Capital Territory. Recently, however, Australia has also agreed to host a node of AFRL's Extended HANDS telescope network in Learmonth, Western Australia, and discussions are underway with researchers in Australian academia about also participating in this research program. In the RF regime, however, DSTO has substantial HF and microwave radar programs, elements of which could be readily adapted to surveillance of space. Proposals have already been developed internally within both programs for various forms of space surveillance systems including both broad area surveillance and imaging along with some very initial technology concept demonstrator systems. Recently proposals have also been floated to substantially increase Australia's civilian space surveillance programs including the Ionospheric Prediction Service's longstanding program to monitor the ionosphere and space weather, meteor radars and other systems. Finally Australia's bid to host the international Square Kilometre Array radio telescope has already generated concrete commitments to establish several very substantial RF arrays in Western Australia that may also provide instruments of unprecedented sensitivity and resolution for surveillance of space. The paper will survey these technology development programs and associated progress on integrating them into some sort of national program for space situational awareness.
The aluminum smelting process.
Kvande, Halvor
2014-05-01
This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.
2014-01-01
This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722
Fifty years of herbicide research: comparing the discovery of trifluralin and halauxifen-methyl.
Epp, Jeffrey B; Schmitzer, Paul R; Crouse, Gary D
2018-01-01
Fifty years separate the commercialization of the herbicides trifluralin and halauxifen-methyl. Despite the vast degree of technological change that occurred over that time frame, some aspects of their discovery stories are remarkably similar. For example, both herbicides were prepared very early in the iterative discovery process and both were developed from known lead compound structures by hypothesis-driven research efforts without the use of in vitro assays or computer-aided molecular design. However, there are aspects of the halauxifen-methyl and trifluralin discovery stories that are substantially different. For example, the chemical technology required for the cost-effective production of halauxifen-methyl simply did not exist just two decades prior to its commercial launch. By contrast, the chemical technology required for the cost-effective production of trifluralin was reported in the chemical literature more than two decades prior to its commercial launch. In addition, changes in regulatory environment since the early 1960s ensured that their respective discovery to commercial launch stories would also differ in substantial ways. Ultimately, the time and cost required to develop and register halauxifen-methyl demanded a global initial business case while the lower registration hurdles that trifluralin cleared enabled a narrow initial business case mainly focused on the USA. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Drug versus vaccine investment: a modelled comparison of economic incentives
2013-01-01
Background Investment by manufacturers in research and development of vaccines is relatively low compared with that of pharmaceuticals. If current evaluation technologies favour drugs over vaccines, then the vaccines market becomes relatively less attractive to manufacturers. Methods We developed a mathematical model simulating the decision-making process of regulators and payers, in order to understand manufacturers’ economic incentives to invest in vaccines rather than curative treatments. We analysed the objectives and strategies of manufacturers and payers when considering investment in technologies to combat a disease that affects children, and the interactions between them. Results The model confirmed that, for rare diseases, the economically justifiable prices of vaccines could be substantially lower than drug prices, and that, for diseases spread across multiple cohorts, the revenues derived from vaccinating one cohort per year (routine vaccination) could be substantially lower than those generated by treating sick individuals. Conclusions Manufacturers may see higher incentives to invest in curative treatments rather than in routine vaccines. To encourage investment in vaccines, health authorities could potentially revise their incentive schemes by: (1) committing to vaccinate all susceptible cohorts in the first year (catch-up campaign); (2) choosing a long-term horizon for health technology evaluation; (3) committing higher budgets for vaccines than for treatments; and (4) taking into account all intangible values derived from vaccines. PMID:24011090
Adeleke, Rasheed A
2014-12-01
The quest for quality mineral resources has led to the development of many technologies that can be used to refine minerals. Biohydrometallurgy is becoming an increasingly acceptable technology worldwide because it is cheap and environmentally friendly. This technology has been successfully developed for some sulphidic minerals such as gold and copper. In spite of wide acceptability of this technology, there are limitations to its applications especially in the treatment of non-sulphidic minerals such as iron ore minerals. High levels of elements such as potassium (K) and phosphorus (P) in iron ore minerals are known to reduce the quality and price of these minerals. Hydrometallurgical methods that are non-biological involving the use of chemicals are usually used to deal with this problem. However, recent advances in mining technologies favour green technologies, known as biohydrometallurgy, with minimal impact on the environment. This technology can be divided into two, namely bioleaching and biobeneficiation. This review focuses on Biobeneficiation of iron ore minerals. Biobeneficiation of iron ore is very challenging due to the low price and chemical constitution of the ore. There are substantial interests in the exploration of this technology for improving the quality of iron ore minerals. In this review, current developments in the biobeneficiation of iron ore minerals are considered, and potential solutions to challenges faced in the wider adoption of this technology are proposed.
Space Resource Requirements for Future In-Space Propellant Production Depots
NASA Technical Reports Server (NTRS)
Smitherman, David; Fikes, John; Roy, Stephanie; Henley, Mark W.; Potter, Seth D.; Howell, Joe T. (Technical Monitor)
2001-01-01
In 2000 and 2001 studies were conducted at the NASA Marshall Space Flight Center on the technical requirements and commercial potential for propellant production depots in low Earth orbit (LEO) to support future commercial, NASA, and other Agency missions. Results indicate that propellant production depots appear to be technically feasible given continued technology development, and there is a substantial growing market that depots could support. Systems studies showed that the most expensive part of transferring payloads to geosynchronous orbit (GEO) is the fuel. A cryogenic propellant production and storage depot stationed in LEO could lower the cost of missions to GEO and beyond. Propellant production separates water into hydrogen and oxygen through electrolysis. This process utilizes large amounts of power, therefore a depot derived from advanced space solar power technology was defined. Results indicate that in the coming decades there could be a significant demand for water-based propellants from Earth, moon, or asteroid resources if in-space transfer vehicles (upper stages) transitioned to reusable systems using water based propellants. This type of strategic planning move could create a substantial commercial market for space resources development, and ultimately lead toward significant commercial infrastructure development within the Earth-Moon system.
Characterisation of adopters and non-adopters of dairy technologies in Ethiopia and Kenya.
Kebebe, E G; Oosting, S J; Baltenweck, I; Duncan, A J
2017-04-01
While there is a general consensus that using dairy technologies, such as improved breeds of dairy cows, can substantially increase farm productivity and income, adoption of such technologies has been generally low in developing countries. The underlying reasons for non-adoption of beneficial technologies in the dairy sector are not fully understood. In this study, we characterised adopters and non-adopters of dairy technologies in Ethiopia and Kenya based on farmers' resources ownership in order to identify why many farmers in Ethiopia and Kenya have not adopted improved dairy technologies. As compared to non-adopters, farmers who adopt dairy technology own relatively more farm resources. The result signals that differences in resource endowments could lead to divergent technology adoption scenarios. Results show that a higher proportion of sample smallholders in Kenya have adopted dairy technologies than those in Ethiopia. Except for the use of veterinary services, fewer than 10% of sample farmers in Ethiopia have adopted dairy technologies-less than half the number of adopters in Kenya. The higher level of dairy technology adoption in Kenya can be ascribed partly to the long history of dairy development, including improvements in the value chain for the delivery of inputs, services and fluid milk marketing. Interventions that deal with the constraints related to access to farm resources and input and output markets could facilitate uptake of dairy technology in developing countries.
KURTI, ALLISON N.; DALLERY, JESSE
2015-01-01
The use of mobile devices is growing worldwide in both industrialized and developing nations. Alongside the worldwide penetration of web-enabled devices, the leading causes of morbidity and mortality are increasingly modifiable lifestyle factors (e.g., improving one’s diet and exercising more). Behavior analysts have the opportunity to promote health by combining effective behavioral methods with technological advancements. The objectives of this paper are (1) to highlight the public health gains that may be achieved by integrating technology with a behavior analytic approach to developing interventions, and (2) to review some of the currently, under-examined issues related to merging technology and behavior analysis (enhancing sustainability, obtaining frequent measures of behavior, conducting component analyses, evaluating cost-effectiveness, incorporating behavior analysis in the creation of consumer-based applications, and reducing health disparities). Thorough consideration of these issues may inspire the development, implementation, and dissemination of innovative, efficacious interventions that substantially improve global public health. PMID:25774070
Continuing Evolution of Mars Sample Return
NASA Technical Reports Server (NTRS)
Mattingly, Richard; Matousek, Steve; Jordan, Frank
2004-01-01
This paper addresses the continued evolution of the Groundbreaking MSR concept over the last year. One of the tenets of the low-cost approach is to use substantial heritage from an earlier mission, Mars Science Laboratory (MSL). Recently, the MSL project developed and switched to a revolutionary landing approach, coined 'sky-crane' where the MSL, which is a rover, is lowered gently to the Martian surface from a hovering vehicle. MSR has adopted this approach, again continuing to capitalize on the heritage for a significant portion of the new lander. In parallel, a MSR Technology Board was formed to reexamine MSR technology needs and participate in a continuing refinement of architectural trades. While the focused technology program continues to be definitized through the remainder of this year, the current assessment of what technology development is required, is discussed in this paper. In addition, the results of new trade studies and considerations will be discussed.
The German R&D Program for CO2 Utilization-Innovations for a Green Economy.
Mennicken, Lothar; Janz, Alexander; Roth, Stefanie
2016-06-01
Carbon capture and utilization (CCU) is a field of key emerging technologies. CCU can support the economy to decrease the dependency on fossil carbon raw materials, to stabilize electricity grids and markets with respect to a growing share of fluctuating renewable energy. Furthermore, it can contribute to mitigate anthropogenic CO2 emissions. The German Federal Ministry of Education and Research has provided substantial financial support for research and development projects, stimulating research, development, and innovations in the field of CO2 utilization. This review provides an overview over the most relevant funding measures in this field. Examples of successful projects demonstrate that CCU technologies are already economically viable or technologically ready for industrial application. CCU technologies as elements of a future "green economy" can contribute to reach the ambitious German sustainability targets with regard to climate protection as well as raw material productivity.
Practical applications of new research information in the practice of bovine embryo transfer.
Looney, C R; Pryor, J H
2010-01-01
For more than 40 years, practitioners have sought to improve all aspects of commercial bovine embryo transfer. The development of new technologies for this industry has been substantial, with recent focus on cryopreservation techniques and the in vitro production of embryos fertilised with sexed spermatozoa. When these and other new technologies are developed, the following questions remain: (1) is said technology regulated or does it require licensing; and (2) is it applicable and, if so, is it financially feasible? Computer access to published research and the advancement of data software programs conducive to the industry for data procurement have been essential for helping practitioners answer these questions by enhancing their ability to analyse and apply data. The focus of the present paper is to aid commercial embryo transfer practitioners in determining new technologies that are available and whether they can be implemented effectively, benefiting their programs.
Development of an Inhaled Dry-Powder Formulation of Tobramycin Using PulmoSphere™ Technology
Weers, Jeffry; Heuerding, Silvia
2011-01-01
Abstract At present, the only approved inhaled antipseudomonal antibiotics for chronic pulmonary infections in patients with cystic fibrosis (CF) are nebulized solutions. However, prolonged administration and cleaning times, high administration frequency, and cumbersome delivery technologies with nebulizers add to the high treatment burden in this patient population. PulmoSphere™ technology is an emulsion-based spray-drying process that enables the production of light porous particle, dry-powder formulations, which exhibit improved flow and dispersion from passive dry powder inhalers. This review explores the fundamental characteristics of PulmoSphere technology, focusing on the development of a dry powder formulation of tobramycin for the treatment of chronic pulmonary Pseudomonas aeruginosa (Pa) infection in CF patients. This dry powder formulation provides substantially improved intrapulmonary deposition efficiency, faster delivery, and more convenient administration over nebulized formulations. The availability of more efficient and convenient treatment options may improve treatment compliance, and thereby therapeutic outcomes in CF. PMID:21395432
Technological Advances in Stent Therapies: a Year in Review.
Raffoul, Jad; Nasir, Ammar; Klein, Andrew J P
2018-04-07
Stent technology has rapidly evolved since the first stainless steel bare metal stents with substantial developments in scaffolding, polymer, drug choice, drug delivery, and elution mechanisms. Most recently, there has been the evolution of bioabsorbable vascular scaffolds, potentially eliminating the need for long-term foreign object retention. These rapid developments have led to an ever-expanding selection of new stents, making the choice of which to use in which patient challenging. Operators must balance potential short- and long-term clinical ramifications, namely stent thrombosis, in-stent restenosis, target lesion revascularization, and target lesion failure. In this review, we hope to provide insight for interventional cardiologists on the details of stent technology and how this impacts outcomes, stent selection, and duration of dual-antiplatelet therapy duration post drug-eluting stent implantation.
Genome Editing and Its Applications in Model Organisms.
Ma, Dongyuan; Liu, Feng
2015-12-01
Technological advances are important for innovative biological research. Development of molecular tools for DNA manipulation, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas), has revolutionized genome editing. These approaches can be used to develop potential therapeutic strategies to effectively treat heritable diseases. In the last few years, substantial progress has been made in CRISPR/Cas technology, including technical improvements and wide application in many model systems. This review describes recent advancements in genome editing with a particular focus on CRISPR/Cas, covering the underlying principles, technological optimization, and its application in zebrafish and other model organisms, disease modeling, and gene therapy used for personalized medicine. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Nkonki, Vuyisile; Ntlabathi, Siyanda
2016-01-01
This study is an Information and Computer Technology evaluation of the Blackboard Learning Management System into teaching and learning at an institution of higher education in South Africa. In view of the institution's objective of developing a context-driven, transformative, and innovative teaching and learning practices involving the…
Releasing Stored Solar Energy within Pond Scum: Biodiesel from Algal Lipids
ERIC Educational Resources Information Center
Blatti, Jillian L.; Burkart, Michael D.
2012-01-01
Microalgae have emerged as an attractive feedstock for the mass production of renewable transportation fuels due to their fast growth rate, flexible habitat preferences, and substantial oil yields. As an educational tool, a laboratory was developed that mimics emerging algal biofuel technology, including the extraction of algal lipids and…
Enhancing "ICT Teaching" in English Schools: Vital Lessons
ERIC Educational Resources Information Center
Twining, Peter; Henry, Fiona
2014-01-01
Despite substantial investments in digital technology in schools the impact has been less than advocates anticipated. This raises issues about the effectiveness of past approaches to the continuing professional development (CPD) of teachers. Vital was a £9.4million programme, funded by English governments between 2009 and 2013, to enhance the use…
Water Quality and Sustainable Environmental Health
NASA Astrophysics Data System (ADS)
Setegn, S. G.
2014-12-01
Lack of adequate safe water, the pollution of the aquatic environment and the mismanagement of resources are major causes of ill-health and mortality, particularly in the developing countries. In order to accommodate more growth, sustainable fresh water resource management will need to be included in future development plans. One of the major environmental issues of concern to policy-makers is the increased vulnerability of ground water quality. The main challenge for the sustainability of water resources is the control of water pollution. To understand the sustainability of the water resources, one needs to understand the impact of future land use and climate changes on the natural resources. Providing safe water and basic sanitation to meet the Millennium Development Goals will require substantial economic resources, sustainable technological solutions and courageous political will. A balanced approach to water resources exploitation for development, on the one hand, and controls for the protection of health, on the other, is required if the benefits of both are to be realized without avoidable detrimental effects manifesting themselves. Meeting the millennium development goals for water and sanitation in the next decade will require substantial economic resources, sustainable technological solutions and courageous political will. In addition to providing "improved" water and "basic" sanitation services, we must ensure that these services provide: safe drinking water, adequate quantities of water for health, hygiene, agriculture and development and sustainable sanitation approaches to protect health and the environment.
Unresolved issues in excimer laser corneal surgery
NASA Astrophysics Data System (ADS)
Trokel, Stephen L.
1991-06-01
More than one hundred fifty clinical excimer laser units designed for corneal surgery have been developed and sold commercially. Manufacturers include Meditec Lasers in Germany, Summit Engineering, Taunton Technologies, and Visx in the United States, and Synthelabo in France. Furthermore a number of prototypes have been built in the USSR and other countries which are being investigated for their clinical use. While in the United States and Canada, substantial regulation of these devices has limited their distribution and use, sales in other parts of the world have been restricted only by market forces. Early clinical successes have created an enthusiasm for this new technology. In spite of this, substantial technical issues remain uncertain and have not been carefully studied. Indeed we have accepted certain parameters for on an almost serendipitous, empirical basis. It is a proper time to pause and consider the bases for these laser techniques.
Review of infrared technology in The Netherlands
NASA Astrophysics Data System (ADS)
de Jong, Arie N.
1993-11-01
The use of infrared sensors in the Netherlands is substantial. Users can be found in a variety of disciplines, military as well as civil. This need for IR sensors implied a long history on IR technology and development. The result was a large technological-capability allowing the realization of IR hardware: specialized measuring equipment, engineering development models, prototype and production sensors for different applications. These applications range from small size, local radiometry up to large space-borne imaging. Large scale production of IR sensors has been realized for army vehicles. IR sensors have been introduced now in all of the armed forces. Facilities have been built to test the performance of these sensors. Models have been developed to predict the performance of a new sensor. A great effort has been spent on atmospheric research, leading to knowledge upon atmospheric- and background limitations of IR sensors.
NASA Astrophysics Data System (ADS)
Boyle, Godfrey
2004-05-01
Stimulated by recent technological developments and increasing concern over the sustainability and environmental impact of conventional fuel usage, the prospect of producing clean, sustainable power in substantial quantities from renewable energy sources arouses interest around the world. This book provides a comprehensive overview of the principal types of renewable energy--including solar, thermal, photovoltaics, bioenergy, hydro, tidal, wind, wave, and geothermal. In addition, it explains the underlying physical and technological principles of renewable energy and examines the environmental impact and prospects of different energy sources. With more than 350 detailed illustrations, more than 50 tables of data, and a wide range of case studies, Renewable Energy, 2/e is an ideal choice for undergraduate courses in energy, sustainable development, and environmental science. New to the Second Edition ·Full-color design ·Updated to reflect developments in technology, policy, attitides ·Complemented by Energy Systems and Sustainability edited by Godfrey Boyle, Bob Everett and Janet Ramage, all of the Open University, U.K.
NASA Technical Reports Server (NTRS)
1993-01-01
The primary roles and missions of JSC incorporate all aspects of human presence in space. Therefore, the Center is involved in the development of technology that will allow humans to stay longer in Earth orbit, allow safe flight in space, and provide capabilities to explore the Moon and Mars. The Center's technology emphasis areas include human spacecraft development, human support systems and infrastructure, and human spacecraft operations. Safety and reliability are critical requirements for the technologies that JSC pursues for long-duration use in space. One of the objectives of technology development at the Center is to give employees the opportunity to enhance their technological expertise and project management skills by defining, designing, and developing projects that are vital to the Center's strategy for the future. This report is intended to communicate within and outside the Agency our research and technology (R&T) accomplishments, as well as inform Headquarters program managers and their constituents of the significant accomplishments that have promise for future Agency programs. While not inclusive of all R&T efforts, the report presents a comprehensive summary of JSC projects in which substantial progress was made in the 1992 fiscal year. At the beginning of each project description, names of the Principal Investigator (PI) and the Technical Monitor (TM) are given, followed by their JSC mail codes or their company or university affiliations. The funding sources and technology focal points are identified in the index.
Exploration Life Support Technology Development for Lunar Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey
2009-01-01
Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.
NASA Technical Reports Server (NTRS)
Keys, Andrew S.
2006-01-01
Aeroassist technology development is a vital part of the NASA In-Space Propulsion Technology (ISPT) Program. One of the main focus areas of ISPT is aeroassist technologies through the Aerocapture Technology (AT) Activity. Within the ISPT, the current aeroassist technology development focus is aerocapture. Aerocapture relies on the exchange of momentum with an atmosphere to achieve thrust, in this case a decelerating thrust leading to orbit capture. Without aerocapture, a substantial propulsion system would be needed on the spacecraft to perform the same reduction of velocity. This could cause reductions in the science payload delivered to the destination, increases in the size of the launch vehicle (to carry the additional fuel required for planetary capture) or could simply make the mission impossible due to additional propulsion requirements. The AT is advancing each technology needed for the successful implementation of aerocapture in future missions. The technology development focuses on both rigid aeroshell systems as well as the development of inflatable aerocapture systems, advanced aeroshell performance sensors, lightweight structure and higher temperature adhesives. Inflatable systems such as tethered trailing ballutes ('balloon parachutes'), clamped ballutes, and inflatable aeroshells are also under development. Aerocapture-specific computational tools required to support future aerocapture missions are also an integral part of the ATP. Tools include: engineering reference atmosphere models, guidance and navigation, aerothermodynamic modeling, radiation modeling and flight simulation. Systems analysis plays a key role in the AT development process. The NASA in-house aerocapture systems analysis team has been taken with multiple systems definition and concept studies to complement the technology development tasks. The team derives science requirements, develops guidance and navigation algorithms, as well as engineering reference atmosphere models and aeroheating specifications. The study team also creates designs for the overall mission spacecraft. Presentation slides are provided to further describe the aerocapture project.
NASA Technical Reports Server (NTRS)
Barnett, John W.
1991-01-01
Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.
Health care technology adoption and diffusion in a social context.
Coyte, Peter C; Holmes, Dave
2007-02-01
This article highlights mechanisms that may further sustainable technological development for the 21st century. The distributional effects associated with the adoption and diffusion of health care technologies are addressed wherein the capacity to capitalize on the health gains from the adoption of technology varies in society. These effects are caused by the actions of individuals as they segment themselves into distinct social groups. The circumstances under which social institutions are further segmented are explored and may motivate public sector limits on the funding for and diffusion of health care technologies. Safety and efficacy benchmarks are necessary but insufficient conditions for sustainability as product advantage on grounds of cost-effectiveness must also be demonstrated. Furthermore, given the substantial role played by public sector decision makers in purchasing health care technologies, the distributional consequences associated with the uptake and diffusion of technology need to be gauged by product designers and those responsible for marketing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Kai; Kim, Donghoe; Whitaker, James B
Rapid development of perovskite solar cells (PSCs) during the past several years has made this photovoltaic (PV) technology a serious contender for potential large-scale deployment on the terawatt scale in the PV market. To successfully transition PSC technology from the laboratory to industry scale, substantial efforts need to focus on scalable fabrication of high-performance perovskite modules with minimum negative environmental impact. Here, we provide an overview of the current research and our perspective regarding PSC technology toward future large-scale manufacturing and deployment. Several key challenges discussed are (1) a scalable process for large-area perovskite module fabrication; (2) less hazardous chemicalmore » routes for PSC fabrication; and (3) suitable perovskite module designs for different applications.« less
Large Composite Structures Processing Technologies for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Vickers, J. H.; McMahon, W. M.; Hulcher, A. B.; Johnston, N. J.; Cano, R. J.; Belvin, H. L.; McIver, K.; Franklin, W.; Sidwell, D.
2001-01-01
Significant efforts have been devoted to establishing the technology foundation to enable the progression to large scale composite structures fabrication. We are not capable today of fabricating many of the composite structures envisioned for the second generation reusable launch vehicle (RLV). Conventional 'aerospace' manufacturing and processing methodologies (fiber placement, autoclave, tooling) will require substantial investment and lead time to scale-up. Out-of-autoclave process techniques will require aggressive efforts to mature the selected technologies and to scale up. Focused composite processing technology development and demonstration programs utilizing the building block approach are required to enable envisioned second generation RLV large composite structures applications. Government/industry partnerships have demonstrated success in this area and represent best combination of skills and capabilities to achieve this goal.
Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants.
Taheri, Sima; Lee Abdullah, Thohirah; Yusop, Mohd Rafii; Hanafi, Mohamed Musa; Sahebi, Mahbod; Azizi, Parisa; Shamshiri, Redmond Ramin
2018-02-13
Microsatellites, or simple sequence repeats (SSRs), are one of the most informative and multi-purpose genetic markers exploited in plant functional genomics. However, the discovery of SSRs and development using traditional methods are laborious, time-consuming, and costly. Recently, the availability of high-throughput sequencing technologies has enabled researchers to identify a substantial number of microsatellites at less cost and effort than traditional approaches. Illumina is a noteworthy transcriptome sequencing technology that is currently used in SSR marker development. Although 454 pyrosequencing datasets can be used for SSR development, this type of sequencing is no longer supported. This review aims to present an overview of the next generation sequencing, with a focus on the efficient use of de novo transcriptome sequencing (RNA-Seq) and related tools for mining and development of microsatellites in plants.
[Between sancticity and value of human life: in perspective of human cloning].
Dyk, W
2001-01-01
The more we know, the more duties and greater responsibility we have. The dynamic development of biology carries a lot of hope for the freeing of mankind from genetic diseases. But the introduction of scientific thought necessarily has to be bound with the development of technology. It is wrong when technology dictates science a direction of development; when technique comes before ethics; and when technology does not respect the essence of a human being. The uncritical introduction of eugenics, especially cloning of people and rejecting all moral arguments, recalls inglorious acts of science when the ideology of progress determined the range of problems that researchers focused on. The same ideology of progress, although originating from other sources, pushes science toward a second extreme, into utilitarianism. In the article the author wishes to substantiate the necessity for researchers to respect ethical norms. Recognition of natural laws alone does not provide science with full development if the rights of conscience are violated.
Advanced Fuel Cell System Thermal Management for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
2009-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.
2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satyapal, Sunita
In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
Electrostatic levitation technology for thermophysical properties of molten materials
NASA Technical Reports Server (NTRS)
Rhim, Won-Kyu
1993-01-01
Measurements of thermophysical properties of undercooled liquids often require some kind of levitator which isolates samples from container walls. We introduce in this presentation a high temperature/high vacuum electrostatic levitator (HTHVESL) which promises some unique capabilities for the studies of thermophysical properties of molten materials. Although substantial progress has been made in the past several months, this technology is still in the development stage, therefore, in this presentation we only focus on the present state of the HTHVESL(1) and point out other capabilities which might be realized in the near future.
2010 Annual Progress Report: DOE Hydrogen Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
Annotated bibliography of software engineering laboratory literature
NASA Technical Reports Server (NTRS)
Buhler, Melanie; Valett, Jon
1989-01-01
An annotated bibliography is presented of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. The bibliography was updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials were grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.
2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovich, Neil
In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
NASA Technical Reports Server (NTRS)
1981-01-01
Francis M. Rogallo and his wife Gertrude researched flexible controllable fabric airfoils with a delta, V-shaped, configuration for use on inexpensive private aircraft. They were issued a flex-wing patent and refined their designs. Development of Rogallo wings, used by U.S. Moyes, Inc. substantially broadened the flexible airfoil technology base which originated from NASA's reentry parachute. The Rogallo technology, particularly the airfoil frame was incorporated in the design of a kite by John Dickenson. The Dickenson kite served as prototype for the Australian Moyes line of hang gliders. Company no longer exists.
GMOs in Russia: Research, Society and Legislation
Korobko, I. V.; Georgiev, P. G.; Skryabin, K. G.; Kirpichnikov, M. P.
2016-01-01
Russian legislation lags behind the rapid developments witnessed in genetic engineering. Only a scientifically based and well-substantiated policy on the place of organisms that are created with the use of genetic engineering technologies and an assessment of the risks associated with them could guarantee that the breakthroughs achieved in modern genetic engineering technologies are effectively put to use in the real economy. A lack of demand for such breakthroughs in the practical field will lead to stagnation in scientific research and to a loss of expertise. PMID:28050262
2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
NASA Technical Reports Server (NTRS)
Ando, K.
1982-01-01
A substantial technology base of solid state pushbroom sensors exists and is in the process of further evolution at both GSFC and JPL. Technologies being developed relate to short wave infrared (SWIR) detector arrays; HgCdTe hybrid detector arrays; InSb linear and area arrays; passive coolers; spectral beam splitters; the deposition of spectral filters on detector arrays; and the functional design of the shuttle/space platform imaging spectrometer (SIS) system. Spatial and spectral characteristics of field, aircraft and space multispectral sensors are summaried. The status, field of view, and resolution of foreign land observing systems are included.
Overview of nanotechnology and its applicability to the Department of Defense
NASA Astrophysics Data System (ADS)
Hernandez, Allison; Stevens, Rick; Thorson, Kevin; Whaley, Gregory J.
2005-08-01
Advances in a wide variety of nanotechnologies are expected to substantially benefit future military weapon systems. The technology development cycle for military platforms requires a given technology to reach a defined state of maturity before its use in a deployable system. Nanotechnologies such as quantum dots and carbon nanotubes, while showing great promise of performance benefits, are still considered too immature for immediate use. Defense contractors are in active research of applications of nanoscale engineered materials and devices and are beginning to engage nanotechnology suppliers for future military platforms.
Automated driving and autonomous functions on road vehicles
NASA Astrophysics Data System (ADS)
Gordon, T. J.; Lidberg, M.
2015-07-01
In recent years, road vehicle automation has become an important and popular topic for research and development in both academic and industrial spheres. New developments have received extensive coverage in the popular press, and it may be said that the topic has captured the public imagination. Indeed, the topic has generated interest across a wide range of academic, industry and governmental communities, well beyond vehicle engineering; these include computer science, transportation, urban planning, legal, social science and psychology. While this follows a similar surge of interest - and subsequent hiatus - of Automated Highway Systems in the 1990s, the current level of interest is substantially greater, and current expectations are high. It is common to frame the new technologies under the banner of 'self-driving cars' - robotic systems potentially taking over the entire role of the human driver, a capability that does not fully exist at present. However, this single vision leads one to ignore the existing range of automated systems that are both feasible and useful. Recent developments are underpinned by substantial and long-term trends in 'computerisation' of the automobile, with developments in sensors, actuators and control technologies to spur the new developments in both industry and academia. In this paper, we review the evolution of the intelligent vehicle and the supporting technologies with a focus on the progress and key challenges for vehicle system dynamics. A number of relevant themes around driving automation are explored in this article, with special focus on those most relevant to the underlying vehicle system dynamics. One conclusion is that increased precision is needed in sensing and controlling vehicle motions, a trend that can mimic that of the aerospace industry, and similarly benefit from increased use of redundant by-wire actuators.
Engaging Pupils in the Science, Engineering and Technology of a Low-Energy School
ERIC Educational Resources Information Center
Charnley, Fiona; Fleming, Paul; Fleming, Margaret; Mill, Greig
2010-01-01
The UK Government's Building Schools for the Future programme has provided schools with a unique opportunity to improve education for sustainable development substantially by giving pupils the chance to study within a real-life context. This article documents an engagement project in which experts in low-energy building design are facilitating…
Engineering in Scotland's Colleges: A Report by HM Inspectors for the Scottish Funding Council
ERIC Educational Resources Information Center
Her Majesty's Inspectorate of Education, 2007
2007-01-01
Engineering has played an important role in Scotland's industrial history. Over the years, the skills requirements of industry have changed as the technology has progressed and the industrial base of the country has developed. Over the past decade, there have been substantial changes in the employment opportunities for people with engineering…
Southern Forest Resource Assessment and Linkages to the National RPA
Fredrick Cubbage; Jacek Siry; Steverson Moffat; David N. Wear; Robert Abt
1998-01-01
We developed a Southern Forest Resource Assessment Consortium (SOFAC) in 1994, which is designed to enhance our capabilities to analyze and model the southern forest and timber resources. Southern growth and yield analyses prepared for the RPA via SOFAC indicate that substantial increases in timber productivity can occur given current technology. A survey about NIPF...
iSTART-ALL: Confronting Adult Low Literacy with Intelligent Tutoring for Reading Comprehension
ERIC Educational Resources Information Center
Johnson, Amy M.; Guerrero, Tricia A.; Tighe, Elizabeth L.; McNamara, Danielle S.
2017-01-01
There is little empirical research available on the substantial problem of adult low literacy rates, and limited educational technologies are available to address distinct instructional needs of this population. This paper reports on development and testing of a version of Interactive Strategy Training for Active Reading and Thinking (iSTART) for…
Assistive technology and home modification for people with neurovisual deficits.
Copolillo, Al; Ivanoff, Synneve Dahlin
2011-01-01
People with neurovisual deficits from acquired brain injuries and other neurological disabilities can benefit from the array of assistive technologies and home modifications available to the larger vision impairment population, especially when symptoms are mild and associated neurological conditions are few. Optics, proper lighting, and magnification to increase the perceived size of both objects and reading material and to improve contrast sensitivity have been shown to be beneficial. Innovative technologies, universally designed for safe independent living and community participation are gradually developing and show promise for addressing the needs of this population. This article highlights technologies that may be useful for people with neurovisual deficits and describes the evidence to support their training and use. The use of various types of eyewear to reduce falls; prisms and telescopic lenses to improve visual attention and minimize the impact of visual field deficits; and technologies to improve computer use, wayfinding, and home safety are discussed. While there remains substantial need for further research and development focusing on the needs of people with vision impairments from neurological conditions, practitioners can use technology with caution to improve functional outcomes.
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.
2010-01-01
The National Aeronautics and Space Administration (NASA) is currently undergoing a substantial redirection. Notable among the changes occurring within NASA is the stated emphasis on technology development, integration, and demonstration. These new changes within the Agency should have a positive impact on the GN&C discipline given the potential for sizeable investments for technology development and in-space demonstrations of both Autonomous Rendezvous & Docking (AR&D) systems and Autonomous Precision Landing (APL) systems. In this paper the NASA Technical Fellow for Guidance, Navigation and Control (GN&C) provides a summary of the present technical challenges, critical needs, and future technological directions for NASA s GN&C engineering discipline. A brief overview of the changes occurring within NASA that are driving a renewed emphasis on technology development will be presented as background. The potential benefits of the planned GN&C technology developments will be highlighted. This paper will provide a GN&C State-of-the-Discipline assessment. The discipline s readiness to support the goals & objectives of each of the four NASA Mission Directorates is evaluated and the technical challenges and barriers currently faced by the discipline are summarized. This paper will also discuss the need for sustained investments to sufficiently mature the several classes of GN&C technologies required to implement NASA crewed exploration and robotic science missions.
Research and development of antibiotics: insights from patents and citation network.
Zhang, Meng; Kong, Xiangjun; Zheng, Jun; Wan, Jian-Bo; Wang, Yitao; Hu, Yuanjia; Shao, Rong
2016-05-01
Bacterial resistance to antibiotics develops at an alarming rate and leads to the increasing morbidity and health-care costs in recent years. However, the global research and development (R&D) of antibiotics has fallen behind the emergence and spread of bacterial resistance and the world is heading towards a 'post-antibiotic era'. In this context, systematic understanding of the technology landscape and evolving process of antibiotic R&D may help to provide insights for discovering future antibiotics more rationally. Patents and patent citations are broadly believed to be powerful tools in representing the technology advances and capturing technology flows. In all, 707 U.S. patents related to antibiotic R&D are collected and analyzed. Furthermore, patent citations are visualized by a network-based approach, while the inter-relationship between patented technologies on antibiotics is further revealed. The current dry pipeline of antibiotic development requires substantial awareness and political support. It is essential to build an attractive and supportive environment for investment. Thus, a new antibiotic business model is needed to chase the balance between the market-oriented investment and public health goals. Additionally, drug development targeting Gram-negative bacteria, especially resistant Gram-negative bacteria, demands attentions from stakeholders because of their unmet medical needs.
Terrestrial Planet Finder: Technology Development Plans
NASA Technical Reports Server (NTRS)
Lindensmith, Chris
2004-01-01
One of humanity's oldest questions is whether life exists elsewhere in the universe. The Terrestrial Planet Finder (TPF) mission will survey stars in our stellar neighborhood to search for planets and perform spectroscopic measurements to identify potential biomarkers in their atmospheres. In response to the recently published President's Plan for Space Exploration, TPF has plans to launch a visible-light coronagraph in 2014, and a separated-spacecraft infrared interferometer in 2016. Substantial funding has been committed to the development of the key technologies that are required to meet these goals for launch in the next decade. Efforts underway through industry and university contracts and at JPL include a number of system and subsystem testbeds, as well as components and numerical modeling capabilities. The science, technology, and design efforts are closely coupled to ensure that requirements and capabilities will be consistent and meet the science goals.
Hyper-X: Flight Validation of Hypersonic Airbreathing Technology
NASA Technical Reports Server (NTRS)
Rausch, Vincent L.; McClinton, Charles R.; Crawford, J. Larry
1997-01-01
This paper provides an overview of NASA's focused hypersonic technology program, i.e. the Hyper-X program. This program is designed to move hypersonic, air breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. This paper presents some history leading to the flight test program, research objectives, approach, schedule and status. Substantial experimental data base and concept validation have been completed. The program is concentrating on Mach 7 vehicle development, verification and validation in preparation for wind tunnel testing in 1998 and flight testing in 1999. It is also concentrating on finalization of the Mach 5 and 10 vehicle designs. Detailed evaluation of the Mach 7 vehicle at the flight conditions is nearing completion, and will provide a data base for validation of design methods once flight test data are available.
Technology, health and the home: eHealth and the community nurse.
Peate, Ian
2013-05-01
Twenty-first century methods of communication are changing. Technology and the way it is used has the potential to revolutionise health care. In the same way information technology (IT) has had a massive impact on commerce and industry, it is also having a substantial impact on the practice of community nurses and the ways in which care is delivered. In order for the impact of IT to be a positive one, community nurses and other health professionals will have to learn and develop a range of new skills. Nurses can and should be directing and becoming involved in the ways in which the IT revolution unfolds. Nurses working with systems development teams also need to make known their needs making clear what information the various IT systems have to contain and how these will fit in with their nursing practice.
[Application of computer-assisted 3D imaging simulation for surgery].
Matsushita, S; Suzuki, N
1994-03-01
This article describes trends in application of various imaging technology in surgical planning, navigation, and computer aided surgery. Imaging information is essential factor for simulation in medicine. It includes three dimensional (3D) image reconstruction, neuro-surgical navigation, creating substantial model based on 3D imaging data and etc. These developments depend mostly on 3D imaging technique, which is much contributed by recent computer technology. 3D imaging can offer new intuitive information to physician and surgeon, and this method is suitable for mechanical control. By utilizing simulated results, we can obtain more precise surgical orientation, estimation, and operation. For more advancement, automatic and high speed recognition of medical imaging is being developed.
Space power system design and development from an economic point of view
NASA Technical Reports Server (NTRS)
Hazelrigg, G. A., Jr.
1977-01-01
The concept of a satellite solar power system offers a feasible, but unproven, long-range energy alternative. While the basic physics of these systems is understood, many developments are necessary in order to reduce the system cost to the point of being cost-competitive with alternative energy sources. Thus, a substantial technology advancement and verification program, plus test and demonstration satellite programs are necessary before a full-scale satellite can be designed and built. It is important to properly identify those elements of the technology that should be subject to development efforts, the goals of the corresponding development programs and the appropriate funding levels and schedules. Systems studies and designs play a major role in rationally formulating a development program. This paper uses an economic approach to place these studies into a framework for formulating a viable satellite solar power system development plan.
NASA Technical Reports Server (NTRS)
1992-01-01
Engineering Development Lab., Inc.'s E-2000 Neck Baro Reflex System was developed for cardiovascular studies of astronauts. It is regularly used on Space Shuttle Missions, and a parallel version has been developed as a research tool to facilitate studies of blood pressure reflex controls in patients with congestive heart failure, diabetes, etc. An advanced version, the PPC-1000, was developed in 1991, and the technology has been refined substantially. The PPC provides an accurate means of generating pressure for a broad array of laboratory applications. An improved version, the E2010 Barosystem, is anticipated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, John; Fanselow, Dan; Abbas, Charles
2014-08-06
3M and Archer Daniels Midland (ADM) collaborated with the U.S. Department of Energy (DOE) to develop and demonstrate a novel membrane solvent extraction (MSE) process that can substantially reduce energy and water consumption in ethanol production, and accelerate the fermentation process. A cross-flow membrane module was developed, using porous membrane manufactured by 3M. A pilot process was developed that integrates fermentation, MSE and vacuum distillation. Extended experiments of 48-72 hours each were conducted to develop the process, verify its performance and begin establishing commercial viability.
X-33/RLV Program Aerospike Engines
NASA Technical Reports Server (NTRS)
1999-01-01
Substantial progress was made during the past year in support of the X-33/RLV program. X-33 activity was directed towards completing the remaining design work and building hardware to support test activities. RLV work focused on the nozzle ramp and powerpack technology tasks and on supporting vehicle configuration studies. On X-33, the design activity was completed to the detail level and the remainder of the drawings were released. Component fabrication and engine assembly activity was initiated, and the first two powerpacks and the GSE and STE needed to support powerpack testing were completed. Components fabrication is on track to support the first engine assembly schedule. Testing activity included powerpack testing and component development tests consisting of thrust cell single cell testing, CWI system spider testing, and EMA valve flow and vibration testing. Work performed for RLV was divided between engine system and technology development tasks. Engine system activity focused on developing the engine system configuration and supporting vehicle configuration studies. Also, engine requirements were developed, and engine performance analyses were conducted. In addition, processes were developed for implementing reliability, mass properties, and cost controls during design. Technology development efforts were divided between powerpack and nozzle ramp technology tasks. Powerpack technology activities were directed towards the development of a prototype powerpack and a ceramic turbine technology demonstrator (CTTD) test article which will allow testing of ceramic turbines and a close-coupled gas generator design. Nozzle technology efforts were focused on the selection of a composite nozzle supplier and on the fabrication and test of composite nozzle coupons.
Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications
NASA Technical Reports Server (NTRS)
Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.
1987-01-01
Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.
Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications
NASA Technical Reports Server (NTRS)
Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.
1987-01-01
Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMICs to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMICs is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.
Report explores Congress' science policy
NASA Astrophysics Data System (ADS)
Jones, Richard
Scientists interested in understanding how Congress develops science policy would find it useful to read a recent report by the Carnegie Commission on Science, Technology, and Government. “Science, Technology and Congress: Analysis and Advice from the Congressional Support Agencies” contains revealing insights about the often hard-pressed system that Congress uses to analyze science and technology issues.“Congress is on the front line of many battles over the directions of science and technology,” says the 70-page report. “The quality of congressional decisions on these issues often depends on the quality and usefulness of information and analysis made available to Congress.” The report describes the overwhelming amount of information received by members of Congress, few of whom have “substantial training or experience” in science and technology. Making this information understandable and useful is the role of the Office of Technology Assessment, the Congressional Research Service, the General Accounting Office, and the Congressional Budget Office.
Sex, gender, and health biotechnology: points to consider
2009-01-01
Background Reproductive technologies have been extensively debated in the literature. As well, feminist economists, environmentalists, and agriculturalists have generated substantial debate and literature on gender. However, the implications for women of health biotechnologies have received relatively less attention. Surprisingly, while gender based frameworks have been proposed in the context of public health policy, practice, health research, and epidemiological research, we could identify no systematic framework for gender analysis of health biotechnology in the developing world. Discussion We propose sex and gender considerations at five critical stages of health biotechnology research and development: priority setting; technology design; clinical trials; commercialization, and health services delivery. Summary Applying a systematic sex and gender framework to five key process stages of health biotechnology research and development could be a first step towards unlocking the opportunities of this promising science for women in the developing world. PMID:19622163
The reusable launch vehicle technology program
NASA Astrophysics Data System (ADS)
Cook, S.
Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).
The reusable launch vehicle technology program
NASA Technical Reports Server (NTRS)
Cook, S.
1995-01-01
Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).
NASA Technical Reports Server (NTRS)
Ferber, R. R.; Costogue, E. N.; Thornhill, J. W.; Shimada, K.
1981-01-01
The National Photovoltaics Program of the United States Department of Energy has the objective of bringing photovoltaic power systems to a point where they can supply a significant portion of the United States energy requirements by the year 2000. This is planned to be accomplished through substantial research and technology development activities aimed at achieving major cost reductions and market penetration. This paper presents information derived from a limited survey performed to obtain photovoltaic industry attitudes concerning industrialization, and to determine current industry plans to meet the DOE program goals. Silicon material production, a key photovoltaic manufacturing industry, is highlighted with regards to implementation of technology improvement and silicon material supply outlook.
Microfluidic technology for molecular diagnostics.
Robinson, Tom; Dittrich, Petra S
2013-01-01
Molecular diagnostics have helped to improve the lives of millions of patients worldwide by allowing clinicians to diagnose patients earlier as well as providing better ongoing therapies. Point-of-care (POC) testing can bring these laboratory-based techniques to the patient in a home setting or to remote settings in the developing world. However, despite substantial progress in the field, there still remain many challenges. Progress in molecular diagnostics has benefitted greatly from microfluidic technology. This chapter aims to summarise the more recent advances in microfluidic-based molecular diagnostics. Sections include an introduction to microfluidic technology, the challenges of molecular diagnostics, how microfluidic advances are working to solve these issues, some alternative design approaches, and detection within these systems.
Grimm, Sabine Elisabeth; Strong, Mark; Brennan, Alan; Wailoo, Allan J
2017-12-01
Recent changes to the regulatory landscape of pharmaceuticals may sometimes require reimbursement authorities to issue guidance on technologies that have a less mature evidence base. Decision makers need to be aware of risks associated with such health technology assessment (HTA) decisions and the potential to manage this risk through managed entry agreements (MEAs). This work develops methods for quantifying risk associated with specific MEAs and for clearly communicating this to decision makers. We develop the 'HTA risk analysis chart', in which we present the payer strategy and uncertainty burden (P-SUB) as a measure of overall risk. The P-SUB consists of the payer uncertainty burden (PUB), the risk stemming from decision uncertainty as to which is the truly optimal technology from the relevant set of technologies, and the payer strategy burden (PSB), the additional risk of approving a technology that is not expected to be optimal. We demonstrate the approach using three recent technology appraisals from the UK National Institute for Health and Clinical Excellence (NICE), each of which considered a price-based MEA. The HTA risk analysis chart was calculated using results from standard probabilistic sensitivity analyses. In all three HTAs, the new interventions were associated with substantial risk as measured by the P-SUB. For one of these technologies, the P-SUB was reduced to zero with the proposed price reduction, making this intervention cost effective with near complete certainty. For the other two, the risk reduced substantially with a much reduced PSB and a slightly increased PUB. The HTA risk analysis chart shows the risk that the healthcare payer incurs under unresolved decision uncertainty and when considering recommending a technology that is not expected to be optimal given current evidence. This allows the simultaneous consideration of financial and data-collection MEA schemes in an easily understood format. The use of HTA risk analysis charts will help to ensure that MEAs are considered within a standard utility-maximising health economic decision-making framework.
Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars
Berkowitz, Steven A.; Engen, John R.; Mazzeo, Jeffrey R.; Jones, Graham B.
2013-01-01
Biologics such as monoclonal antibodies are much more complex than small-molecule drugs, which raises challenging questions for the development and regulatory evaluation of follow-on versions of such biopharmaceutical products (also known as biosimilars) and their clinical use once patent protection for the pioneering biologic has expired. With the recent introduction of regulatory pathways for follow-on versions of complex biologics, the role of analytical technologies in comparing biosimilars with the corresponding reference product is attracting substantial interest in establishing the development requirements for biosimilars. Here, we discuss the current state of the art in analytical technologies to assess three characteristics of protein biopharmaceuticals that regulatory authorities have identified as being important in development strategies for biosimilars: post-translational modifications, three-dimensional structures and protein aggregation. PMID:22743980
The process group approach to reliable distributed computing
NASA Technical Reports Server (NTRS)
Birman, Kenneth P.
1992-01-01
The difficulty of developing reliable distribution software is an impediment to applying distributed computing technology in many settings. Experience with the ISIS system suggests that a structured approach based on virtually synchronous process groups yields systems that are substantially easier to develop, exploit sophisticated forms of cooperative computation, and achieve high reliability. Six years of research on ISIS, describing the model, its implementation challenges, and the types of applications to which ISIS has been applied are reviewed.
Technology Development for AGIS (Advanced Gamma-ray Imaging System).
NASA Astrophysics Data System (ADS)
Krennrich, Frank
2008-04-01
Next-generation arrays of atmospheric Cherenkov telescopes are at the conceptual planning stage and each could consist of on the order of 100 telescopes. The two currently-discussed projects AGIS in the US and CTA in Europe, have the potential to achieve an order of magnitude better sensitivity for Very High Energy (VHE) gamma-ray observations over state-to-the-art observatories. These projects require a substantial increase in scale from existing 4-telescope arrays such as VERITAS and HESS. The optimization of a large array requires exploring cost reduction and research and development for the individual elements while maximizing their performance as an array. In this context, the technology development program for AGIS will be discussed. This includes developing new optical designs, evaluating new types of photodetectors, developing fast trigger systems, integrating fast digitizers into highly-pixilated cameras, and reliability engineering of the individual components.
SiC Integrated Circuits for Power Device Drivers Able to Operate in Harsh Environments
NASA Astrophysics Data System (ADS)
Godignon, P.; Alexandru, M.; Banu, V.; Montserrat, J.; Jorda, X.; Vellvehi, M.; Schmidt, B.; Michel, P.; Millan, J.
2014-08-01
The currently developed SiC electronic devices are more robust to high temperature operation and radiation exposure damage than correspondingly rated Si ones. In order to integrate the existent SiC high power and high temperature electronics into more complex systems, a SiC integrated circuit (IC) technology capable of operation at temperatures substantially above the conventional ones is required. Therefore, this paper is a step towards the development of ICs-control electronics that have to attend the harsh environment power applications. Concretely, we present the development of SiC MESFET-based digital circuitry, able to integrate gate driver for SiC power devices. Furthermore, a planar lateral power MESFET is developed with the aim of its co-integration on the same chip with the previously mentioned SiC digital ICs technology. And finally, experimental results on SiC Schottky-gated devices irradiated with protons and electrons are presented. This development is based on the Tungsten-Schottky interface technology used for the fabrication of stable SiC Schottky diodes for the European Space Agency Mission BepiColombo.
The Mind Bending Quest for Cognitive Enhancers
Arce, E
2016-01-01
Adequate cognitive functioning is essential for daily activities. When there is an insult to the brain, cognitive abilities can suffer, which, in turn, produce substantial medical and functional impairment. Advances in neurobiology, circuit neuroscience, and clinical assessment technology are converging in a manner that holds promise for the development of new pharmacological agents for cognitive enhancement in neuropsychiatric disease. PMID:27706806
Pastime--A System for File Compression.
ERIC Educational Resources Information Center
Hultgren, Jan; Larsson, Rolf
An interactive search and editing system, 3RIP, is being developed at the library of the Royal Institute of Technology in Stockholm for large files of textual and numeric data. A substantial part (on the order of 10-E9 characters) of the primary file of the search system will consist of bibliographic references from a wide range of sources. If the…
ERIC Educational Resources Information Center
Henry, Sara Kathleen
2010-01-01
Postsecondary education marks a transitional time in the lives of young adults. During this time, traditional-aged college students confront a substantial number of developmental challenges that are extraordinarily diverse and complex (Evans, Forney, & Guido-DiBrito, 1998). Erikson's (1968) theory of psychosocial development posited that the major…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway, R.
This article describes a petrol (gasoline) engine development project to combine the duel technologies of an Otto cycle engine with a modified cooling system and a high-tech processor-controlled bottoming cycle to harness not only the waste heat from the exhaust gases but also a significant proportion of the heat lost by a conventional petrol engine to the water coolant, resulting in a very substantial increase in energy conversion efficiency.
Personnel Requirements for an Advanced Shipyard Technology.
1979-09-01
emergence of Japan as an aggressive and highly successful competitor for western vessel orders and the determination of some less-developed countries...continental United States and the Virgin Islands is specifically excluded from the Jones Act. Participation in Great Lakes international service between U.S...Input-Output Analysis (Washington: Maritime Administration, May 1977), p. 33. 34 In addition, the shipbuilding industry makes substantial positive
Evaluation of Technologies to Prevent Precipitation During Water Recovery from Urine
NASA Technical Reports Server (NTRS)
Broyan, James L., Jr.; Pickering, Karen D.; Adam, Niklas M.; Mitchell, Julie L.; Anderson, Molly S.; Carter, Layne; Muirhead, Dean; Gazda, Daniel B.
2011-01-01
The International Space Station (ISS) Urine Processor Assembly (UPA) experienced a hardware failure in the Distillation Assembly (DA) in October 2010. Initially the UPA was operated to recover 85% of the water from urine through distillation, concentrating the contaminants in the remaining urine. The DA failed due to precipitation of calcium sulfate (gypsum) which caused a loss of UPA function. The ISS UPA operations have been modified to only recover 70% of the water minimizing gypsum precipitation risk but substantially increasing water resupply needs. This paper describes the feasibility assessment of several technologies (ion exchange, chelating agents, threshold inhibitors, and Lorentz devices) to prevent gypsum precipitation. The feasibility assessment includes the development of assessment methods, chemical modeling, bench top testing, and validation testing in a flight-like ground UPA unit. Ion exchange technology has been successfully demonstrated and has been recommended for further development. The incorporation of the selected technology will enable water recovery to be increased from 70% back to the original 85% and improve the ISS water balance.
Options for a lunar base surface architecture
NASA Technical Reports Server (NTRS)
Roberts, Barney B.
1992-01-01
The Planet Surface Systems Office at the NASA Johnson Space Center has participated in an analysis of the Space Exploration Initiative architectures described in the Synthesis Group report. This effort involves a Systems Engineering and Integration effort to define point designs for evolving lunar and Mars bases that support substantial science, exploration, and resource production objectives. The analysis addresses systems-level designs; element requirements and conceptual designs; assessments of precursor and technology needs; and overall programmatics and schedules. This paper focuses on the results of the study of the Space Resource Utilization Architecture. This architecture develops the capability to extract useful materials from the indigenous resources of the Moon and Mars. On the Moon, a substantial infrastructure is emplaced which can support a crew of up to twelve. Two major process lines are developed: one produces oxygen, ceramics, and metals; the other produces hydrogen, helium, and other volatiles. The Moon is also used for a simulation of a Mars mission. Significant science capabilities are established in conjunction with resource development. Exploration includes remote global surveys and piloted sorties of local and regional areas. Science accommodations include planetary science, astronomy, and biomedical research. Greenhouses are established to provide a substantial amount of food needs.
Exploring the resilience of Bt cotton's "pro-poor success story".
Glover, Dominic
2010-01-01
Expectations play a powerful role in driving technological change. Expectations are often encapsulated in narratives of technological promise that emphasize potential benefits and downplay potential negative impacts. Genetically modified (GM, transgenic) crops have been framed by expectations that they would be an intrinsically "pro-poor" innovation that would contribute powerfully to international agricultural development. However, expectations typically have to be scaled back in the light of experience. Published reviews of the socio-economic impacts of GM crops among poor, small-scale farmers in the developing world indicate that these effects have been very mixed and contingent on the agronomic, socio-economic and institutional settings where the technology has been applied. These conclusions should modulate expectations about the pro-poor potential of GM crop technology and focus attention on the conditions under which it might deliver substantial and sustainable benefits for poor farmers. However, the idea of GM crop technology as an intrinsically pro-poor developmental success story has been sustained in academic, public and policy arenas. This narrative depends upon an analysis that disembeds the technology from the technical, social and institutional contexts in which it is applied. Agricultural development policy should be based on a more rigorous and dispassionate analysis, rather than optimistic expectations alone.
Space Transportation System Technology Symposium. Volume 4; Propulsion
NASA Technical Reports Server (NTRS)
1970-01-01
The prospect of undertaking a reusable launch vehicle development led the NASA Office of Manned Space Flight (OMSF) to request the Office of Advanced Research and Technology (OART) to organize and direct a program to develop the technology that would aid in selecting the best system alternatives and that would support the ultimate development of an earth-to-orbit shuttle. Such a Space Transportation System Technology Program has been initiated. OART, OMSF, and NASA Flight and Research Centers with the considerable inputs of Department of Defense personnel have generated the program through the efforts of several Technology Working Groups and a Technology Steering Group. Funding and management of the recommended efforts is being accomplished through the normal OAR T and OMSF line management channels. The work is being done in government laboratories and under contract with industry and universities. Foreign nations have been invited to participate in this work as well. Substantial funding, from both OART and OMSF, was applied during the second half of fiscal year 1970. The Space Transportation System Technology Symposium held at the NASA Lewis Research Center, Cleveland, Ohio, July 15-17, 1970, was the first public report on that program. The Symposium goals were to consider the technology problems, their status, and the prospective program outlook for the benefit of the industry, government, university, and foreign participants considered to be contributors to the program. In addition, it offered an opportunity to identify the responsible individuals already engaged in the program. The Symposium sessions were intended to confront each presenter with his technical peers as listeners, and this, I believe, was substantially accomplished. Because of the high interest in the material presented, and also because the people who could edit the output are already deeply involved in other important tasks, we have elected to publish the material essentially as it was presented, utilizing mainly the illustrations used by the presenters along with brief words of explanation. Those who heard the presentations, and those who are technically astute in specialty areas, can probably put this story together again. We hope that more will be gained by compiling the information in this form now than by spending the time and effort to publish a more finished compendium later.
Space Transportation System Technology Symposium. Volume 7; Biotechnology
NASA Technical Reports Server (NTRS)
1970-01-01
The prospect of undertaking a reusable launch vehicle development led the NASA Office of Manned Space Flight (OMSF) to request the Office of Advanced Research and Technology (OART) to organize and direct a program to develop the technology that would aid in selecting the best system alternatives and that would support the ultimate development of an earth-to-orbit shuttle. Such a Space Transportation System Technology Program has been initiated. OART, OMSF, and NASA Flight and Research Centers with the considerable inputs of Department of Defense personnel have generated the program through the efforts of several Technology Working Groups and a Technology Steering Group. Funding and management of the recommended efforts is being accomplished through the normal OART and OMSF line management channels. The work is being done in government laboratories and under contract with industry and universities. Foreign nations have been invited to participate in this work as well. Substantial funding, from both OART and OMSF, was applied during the second half of fiscal year 1970. The Space Transportation System Technology Symposium held at the NASA Lewis Research Center, Cleveland, Ohio, July 15-17, 1970, was the first public report on that program. The Symposium goals were to consider the technology problems, their status, and the prospective program outlook for the benefit of the industry, government, university, and foreign participants considered to be contributors to the program. In addition, it offered an opportunity to identify the responsible individuals already engaged in the program. The Symposium sessions were intended to confront each presenter with his technical peers as listeners, and this, I believe, was substantially accomplished. Because of the high interest in the material presented, and also because the people who could edit the output are already deeply involved in other important tasks, we have elected to publish the material essentially as it was presented, utilizing mainly the illustrations used by the presenters along with brief words of explanation. Those who heard the presentations, and those who are technically astute in specialty areas, can probably put this story together again. We hope that more will be gained by compiling the information in this form now than by spending the time and effort to publish a more finished compendium later.
NASA Technical Reports Server (NTRS)
1970-01-01
The prospect of undertaking a reusable launch vehicle development led the NASA Office of Manned Space Flight (OMSF) to request the Office of Advanced Research and Technology (OART) to organize and direct a program to develop the technology that would aid in selecting the best system alternatives and that would support the ultimate development of an earth-to-orbit shuttle. Such a Space Transportation System Technology Program has been initiated. OART, OMSF, and NASA Flight and Research Centers with the considerable inputs of Department of Defense personnel have generated the program through the efforts of several Technology Working Groups and a Technology Steering Group. Funding and management of the recommended efforts is being accomplished through the normal OART and OMSF line management channels. The work is being done in government laboratories and under contract with industry and universities. Foreign nations have been invited to participate in this work as well. Substantial funding, from both OART and OMSF, was applied during the second half of fiscal year 1970. The Space Transportation System Technology Symposium held at the NASA Lewis Research Center, Cleveland, Ohio, July 15-17, 1970, was the first public report on that program. The Symposium goals were to consider the technology problems, their status, and the prospective program outlook for the benefit of the industry, government, university, and foreign participants considered to be contributors to the program. In addition, it offered an opportunity to identify the responsible individuals already engaged in the program. The Symposium sessions were intended to confront each presenter with his technical peers as listeners, and this, I believe, was substantially accomplished. Because of the high interest in the material presented, and also because the people who could edit the output are already deeply involved in other important tasks, we have elected to publish the material essentially as it was presented, utilizing mainly the illustrations used by the presenters along with brief words of explanation. Those who heard the presentations, and those who are technically astute in specialty areas, can probably put this story together again. We hope that more will be gained by compiling the information in this form now than by spending the time and effort to publish a more finished compendium later.
Sensitivity of climate mitigation strategies to natural disturbances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Page, Yannick LB; Hurtt, George; Thomson, Allison M.
2013-02-19
The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon12 efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because ofmore » potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and on the global economy. Understanding the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies« less
Jones, Peter D; Stelzle, Martin
2016-01-01
Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology-rather than microfluidic-will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission. This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years.
Research on the theory and application of adsorbed natural gas used in new energy vehicles: A review
NASA Astrophysics Data System (ADS)
Nie, Zhengwei; Lin, Yuyi; Jin, Xiaoyi
2016-09-01
Natural gas, whose primary constituent is methane, has been considered a convincing alternative for the growth of the energy supply worldwide. Adsorbed natural gas (ANG), the most promising methane storage method, has been an active field of study in the past two decades. ANG constitutes a safe and low-cost way to store methane for natural gas vehicles at an acceptable energy density while working at substantially low pressures (3.5-4.0 MPa), allowing for conformable store tank. This work serves to review the state-of-the-art development reported in the scientific literature on adsorbents, adsorption theories, ANG conformable tanks, and related technologies on ANG vehicles. Patent literature has also been searched and discussed. The review aims at illustrating both achievements and problems of the ANG technologies- based vehicles, as well as forecasting the development trends and critical issues to be resolved of these technologies.
Designs and Technology Requirements for Civil Heavy Lift Rotorcraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.
2006-01-01
The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.
Geothermal research and development program of the US Atomic Energy Commission
NASA Technical Reports Server (NTRS)
Werner, L. B.
1974-01-01
Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.
Thermal and Mechanical Microspacecraft Technologies for X-2000 Future Deliveries
NASA Technical Reports Server (NTRS)
Birur, Gaj; Bruno, Robin
1999-01-01
Thermal and mechanical technologies are an important part of the X-2000 Future Delivery (X-2000 FD) microspacecraft. A wide range of future space missions are expected to utilize the technologies and the architecture developed by the X-2000 FD. These technologies, besides being small in physical size, make the tiny spacecraft robust and flexible. The X2000 FD architecture is designed to be highly reliable and suitable for a wide range of missions such as planetary landers/orbiters/flybys, earth orbiters, cometary flybys/landers/sample returns, etc. One of the key ideas used in the development of these technologies and architecture is that several functions be in included in each of the thermal and mechanical elements. One of the thermal architecture being explored for the X-2000 FD microspacecraft is integrated thermal energy management of the complete spacecraft using a fluid loop. The robustness and the simplicity of the loop and the flexibility with which it can be integrated in the spacecraft have made it attractive for applications to X-2000 FD. Some of the thermal technologies to be developed as a part of this architecture are passive and active cooling loops, electrically variable emittance surfaces, miniature thermal switches, and specific high density electronic cooling technologies. In the mechanical area, multifunction architecture for the structural elements will be developed. The multifunction aspect is expected to substantially reduce the mass and volume of the spacecraft. Some of the technologies that will be developed are composite material panels incorporating electronics, cabling, and thermal elements in them. The paper to be presented at the 1999 conference, will describe the progress made so far in the microspacecraft thermal and mechanical technologies and approaches for the X2000 Future Deliveries microspacecraft.
MILSTAR's flexible substrate solar array: Lessons learned, addendum
NASA Technical Reports Server (NTRS)
Gibb, John
1990-01-01
MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.
2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the past year, the DOE Hydrogen and Fuel Cells Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
Inertial upper stage - Upgrading a stopgap proves difficult
NASA Astrophysics Data System (ADS)
Geddes, J. P.
The technological and project management difficulties associated with the Inertial Upper Stage's (IUS) development and performance to date are assessed, with a view to future prospects for this system. The IUS was designed for use both on the interim Titan 34D booster and the Space Shuttle Orbiter. The IUS malfunctions and cost overruns reported are substantially due to the system's reliance on novel propulsion and avionics technology. Its two solid rocket motors, which were selected on the basis of their inherent safety for use on the Space Shuttle, have the longest burn time extant. A three-dimensional carbon/carbon nozzle throat had to be developed to sustain this long burn, as were lightweight composite wound cases and shirts, insulation, igniters, and electromechanical thrust vector control.
Establishing Substantial Equivalence: Metabolomics
NASA Astrophysics Data System (ADS)
Beale, Michael H.; Ward, Jane L.; Baker, John M.
Modern ‘metabolomic’ methods allow us to compare levels of many structurally diverse compounds in an automated fashion across a large number of samples. This technology is ideally suited to screening of populations of plants, including trials where the aim is the determination of unintended effects introduced by GM. A number of metabolomic methods have been devised for the determination of substantial equivalence. We have developed a methodology, using [1H]-NMR fingerprinting, for metabolomic screening of plants and have applied it to the study of substantial equivalence of field-grown GM wheat. We describe here the principles and detail of that protocol as applied to the analysis of flour generated from field plots of wheat. Particular emphasis is given to the downstream data processing and comparison of spectra by multivariate analysis, from which conclusions regarding metabolome changes due to the GM can be assessed against the background of natural variation due to environment.
An Approach to Establishing System Benefits for Technology in NASA's Hypersonics Investment Area
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Pannell, Bill; Cook, Stephen (Technical Monitor)
2001-01-01
NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current systems. The Advanced Space Transportation Program (ASTP) Office at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Hypersonics Investment Area, third generation technologies are being pursued. The Hypersonics Investment Area's primary objective is to mature vehicle technologies to enable substantial increases in the design and operating margins of third generation RLVs (current Space Shuttle is considered the first generation RLV) by incorporating advanced propulsion systems, materials, structures, thermal protection systems, power, and avionics technologies. The paper describes the system process, tools and concepts used to determine the technology benefits. Preliminary results will be presented along with the current technology investments that are being made by ASTP's Hypersonics Investment Area.
High reflectance coatings for space applications in the EUV
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A. M.; Gum, Jeffrey S.; Osantowski, John F.; Fleetwood, Charles M.
1993-01-01
Advances in optical coating and materials technology have made possible the development of instruments with substantially improved efficiency and made possible to consider more complex optical designs in the EUV. The importance of recent developments in chemical vapor deposited silicon carbide (CVD-SiC), SiC films and multilayer coatings is discussed in the context of EUV instrumentation design. The EUV performance of these coatings as well as some strengths and problem areas for their use in space will be addressed.
SS/RCS surface tension propellant acquisition/expulsion tankage technology
NASA Technical Reports Server (NTRS)
1975-01-01
The analysis, design, fabrication, and testing of a propellant tank that satisfies the requirements of the space shuttle is presented. This mission presents very stringent and sometimes conflicting requirements. A compartmented-tank device was developed and various ground and drop tower test techniques were employed to verify the design using both subscale and full-scale hardware. Performance was established with scale models and further substantiation was obtained with the full-scale tankage. Fabrication, acceptance, fill and drain, inspection, and other ground handling procedures were developed.
Future Challenges and Opportunities in Aerodynamics
NASA Technical Reports Server (NTRS)
Kumar, Ajay; Hefner, Jerry N.
2000-01-01
Investments in aeronautics research and technology have declined substantially over the last decade, in part due to the perception that technologies required in aircraft design are fairly mature and readily available. This perception is being driven by the fact that aircraft configurations, particularly the transport aircraft, have evolved only incrementally, over last several decades. If however, one considers that the growth in air travel is expected to triple in the next 20 years, it becomes quickly obvious that the evolutionary development of technologies is not going to meet the increased demands for safety, environmental compatibility, capacity, and economic viability. Instead, breakthrough technologies will he required both in traditional disciplines of aerodynamics, propulsion, structures, materials, controls, and avionics as well as in the multidisciplinary integration of these technologies into the design of future aerospace vehicles concepts. The paper discusses challenges and opportunities in the field of aerodynamics over the next decade. Future technology advancements in aerodynamics will hinge on our ability, to understand, model, and control complex, three-dimensional, unsteady viscous flow across the speed range. This understanding is critical for developing innovative flow and noise control technologies and advanced design tools that will revolutionize future aerospace vehicle systems and concepts. Specifically, the paper focuses on advanced vehicle concepts, flow and noise control technologies, and advanced design and analysis tools.
Review of the magnetic fusion program by the 1986 ERAB Fusion Panel
NASA Astrophysics Data System (ADS)
Davidson, Ronald C.
1987-09-01
The 1986 ERAB Fusion Panel finds that fusion energy continues to be an attractive energy source with great potential for the future, and that the magnetic fusion program continues to make substantial technical progress. In addition, fusion research advances plasma physics, a sophisticated and useful branch of applied science, as well as technologies important to industry and defense. These factors fully justify the substantial expenditures by the Department of Energy in fusion research and development (R&D). The Panel endorses the overall program direction, strategy, and plans, and recognizes the importance and timeliness of proceeding with a burning plasma experiment, such as the proposed Compact Ignition Tokamak (CIT) experiment.
Transport composite fuselage technology: Impact dynamics and acoustic transmission
NASA Technical Reports Server (NTRS)
Jackson, A. C.; Balena, F. J.; Labarge, W. L.; Pei, G.; Pitman, W. A.; Wittlin, G.
1986-01-01
A program was performed to develop and demonstrate the impact dynamics and acoustic transmission technology for a composite fuselage which meets the design requirements of a 1990 large transport aircraft without substantial weight and cost penalties. The program developed the analytical methodology for the prediction of acoustic transmission behavior of advanced composite stiffened shell structures. The methodology predicted that the interior noise level in a composite fuselage due to turbulent boundary layer will be less than in a comparable aluminum fuselage. The verification of these analyses will be performed by NASA Langley Research Center using a composite fuselage shell fabricated by filament winding. The program also developed analytical methodology for the prediction of the impact dynamics behavior of lower fuselage structure constructed with composite materials. Development tests were performed to demonstrate that the composite structure designed to the same operating load requirement can have at least the same energy absorption capability as aluminum structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, L.H.
In its beginning, the U.S. Department of Energy (DOE) Office of Environmental Management (EM) viewed private industry as lacking adequate technology know-how to meet demands of hazardous and radioactive waste problems at the DOE`s laboratories and nuclear weapons production facilities. In November 1989, EM`s Office of Technology Development (recently renamed the Office of Science and Technology) embarked on a bold program of developing and demonstrating {open_quotes}innovative{close_quotes} waste cleanup technologies that would be safer, faster, more effective, and less expensive than the {open_quotes}baseline{close_quotes} commercial methods. This program has engaged DOE sites, national laboratories, and universities to produce preferred solutions to the problems of handling and treating DOE wastes. More recently, much of this work has shifted to joint efforts with private industry partners to accelerate the use of newly developed technologies and to enhance existing commercial methods. To date, the total funding allocation to the Office of Science and Technology program has been aboutmore » $2.8 billion. If the technology applications` projects of the EM Offices of Environmental Restoration and Waste Management are included, the total funding is closer to $$4 billion. Yet, the environmental industry generally has not been very receptive to EM`s innovative technology offerings. And, essentially the same can be said for DOE sites. According to the U.S. General Accounting Office in an August 1994 report, {open_quotes}Although DOE has spent a substantial amount to develop waste cleanup technologies, little new technology finds its way into the agency`s cleanup actions{close_quotes}. The DOE Baseline Environmental Management Report estimated cleanups of DOE`s Cold War legacy of wastes to require the considerable cost of $$226 billion over a period of 75 years. 1 tab.« less
Alternative nuclear technologies
NASA Astrophysics Data System (ADS)
Schubert, E.
1981-10-01
The lead times required to develop a select group of nuclear fission reactor types and fuel cycles to the point of readiness for full commercialization are compared. Along with lead times, fuel material requirements and comparative costs of producing electric power were estimated. A conservative approach and consistent criteria for all systems were used in estimates of the steps required and the times involved in developing each technology. The impact of the inevitable exhaustion of the low- or reasonable-cost uranium reserves in the United States on the desirability of completing the breeder reactor program, with its favorable long-term result on fission fuel supplies, is discussed. The long times projected to bring the most advanced alternative converter reactor technologies the heavy water reactor and the high-temperature gas-cooled reactor into commercial deployment when compared to the time projected to bring the breeder reactor into equivalent status suggest that the country's best choice is to develop the breeder. The perceived diversion-proliferation problems with the uranium plutonium fuel cycle have workable solutions that can be developed which will enable the use of those materials at substantially reduced levels of diversion risk.
Persistence Factors Associated with First-Year Engineering Technology Learners
ERIC Educational Resources Information Center
Christe, Barbara
2015-01-01
Engineering technology learners are understudied group that comprise the "T" of the science, technology, engineering, and mathematics disciplines. Attrition from engineering technology majors is a profound and complex challenge, as substantially less than half of students who begin an engineering technology major persist through the…
28 CFR 115.118 - Upgrades to facilities and technologies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Upgrades to facilities and technologies... and technologies. (a) When designing or acquiring any new lockup and in planning any substantial... monitoring technology, the agency shall consider how such technology may enhance the agency's ability to...
28 CFR 115.118 - Upgrades to facilities and technologies.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Upgrades to facilities and technologies... and technologies. (a) When designing or acquiring any new lockup and in planning any substantial... monitoring technology, the agency shall consider how such technology may enhance the agency's ability to...
28 CFR 115.118 - Upgrades to facilities and technologies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Upgrades to facilities and technologies... and technologies. (a) When designing or acquiring any new lockup and in planning any substantial... monitoring technology, the agency shall consider how such technology may enhance the agency's ability to...
NASA Technical Reports Server (NTRS)
Taylor, A. B.
1984-01-01
Work done under the Energy Efficient Transport project in the field of advanced aerodynamics and active controls is summarized. The project task selections focused on the following: the investigation of long-duct nacelle shape variation on interference drag; the investigation of the adequacy of a simple control law for the elastic modes of a wing; the development of the aerodynamic technology at cruise and low speed of high-aspect-ratio supercritical wings of high performance; and the development of winglets for a second-generation jet transport. All the tasks involved analysis and substantial wind tunnel testing. The winglet program also included flight evaluation. It is considered that the technology base has been built for the application of high-aspect-ratio supercritical wings and for the use of winglets on second-generation transports.
2004-04-15
Dr. Robert H. Goddard loading a 1918 version of the Bazooka of World War II. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology
Bioreactor Yields Extracts for Skin Cream
NASA Technical Reports Server (NTRS)
2015-01-01
Johnson Space Flight Center researchers created a unique rotating-wall bioreactor that simulates microgravity conditions, spurring innovations in drug development and medical research. Renuèll Int'l Inc., based in Aventure, Florida, licensed the technology and used it to produce a healing skin care product, RE`JUVEL. In a Food and Drug Administration test, RE`JUVEL substantially increased skin moisture and elasticity while reducing dark blotches and wrinkles.
2011-10-01
Diabetic Retinopathy Study Research Group, 1981; Early Treatment Diabetic Retinopathy Research Group, 1991). Diabetes -related vision loss is often...2001; Chow et al., 2006). For diagnosis of diabetic retinopathy and diabetic macular edema, the telehealth eye care assessments agree substantially...with mydriatic seven-standard field Early Treatment Diabetic Retinopathy Study (ETDRS) protocol photography (Bursell et al., 2001) and with dilated
ERIC Educational Resources Information Center
Mattern, Krista; Radunzel, Justine; Westrick, Paul
2015-01-01
Although about 40% of high school graduates who take the ACT® test express interest in pursuing a career in a science, technology, engineering, and mathematics (STEM) field, the percentage of first-year students in college who declare a STEM major is substantially lower. The pool of prospective STEM workers shrinks further as the majority of STEM…
ERIC Educational Resources Information Center
Oleson, Amanda K.; Hora, Matthew T.; Benbow, Ross J.
2014-01-01
The fields of science, technology, engineering, and mathematics, more ubiquitously known by the acronym "STEM," have received a substantial amount of attention in recent years. As part of a research study investigating the alignment (or lack thereof) between the goals and priorities of educators and employers, we found it difficult to…
Ronald S., Jr. Zalesny; Rob Mitchell; Jim, eds. Richardson
2008-01-01
The goal of this conference was to initiate and provide opportunities for an international forum on the science and application of producing both agricultural and forest crops for biofuels, bioenergy, and bioproducts. There is a substantial global need for development of such systems and technologies that can economically and sustainably produce short rotation crops...
ERIC Educational Resources Information Center
Hadullo, Kennedy; Oboko, Robert; Omwenga, Elijah
2018-01-01
There is a substantial increase in the use of learning management systems (LMSs) to support e-learning in higher education institutions, particularly in developing countries. This has been done with some measures of success and failure as well. There is evidence from literature that the provision of e-learning faces several quality issues relating…
Comparison of Solar Electric and Chemical Propulsion Missions
NASA Technical Reports Server (NTRS)
Freeh, Joshua E.; Burke, Laura M.; Sjauw, Waldy K.; McGuire, Melissa L.; Smith, Bryan K.
2015-01-01
Solar Electric Propulsion (SEP) offers fuel efficiency and mission robustness for spacecraft. The combination of solar power and electric propulsion engines is currently used for missions ranging from geostationary stationkeeping to deep space science because of these benefits. Both solar power and electric propulsion technologies have progressed to the point where higher electric power systems can be considered, making substantial cargo missions and potentially human missions viable. This paper evaluates and compares representative lunar, Mars, and Sun-Earth Langrangian point missions using SEP and chemical propulsion subsystems. The potential benefits and limitations are discussed along with technology gaps that need to be resolved for such missions to become possible. The connection to NASA's human architecture and technology development efforts will be discussed.
Commercial technologies from the SP-100 program
NASA Astrophysics Data System (ADS)
Truscello, Vincent C.; Fujita, Toshio; Mondt, Jack F.
1995-01-01
For more than a decade, the Jet Propulsion Labortory (JPL) and Los Alamos National Laboratory (LANL) have managed a multi-agency funded effort to develop a space reactor power system. This SP-100 Program has developed technologies required for space power systems that can be implemented in the industrial and commercial sectors to improve our competitiveness in the global economy. Initial steps taken to transfer this technology from the laboratories to industrial and commercial entities within the United States include: (1) identifying specific technologies having commercial potential; (2) distributing information describing the identified technologies and interacting with interested commercial and industrial entities to develop application-specific details and requirements; and (3) providing a technological data base that leads to transfer of technology or the forming of teaming arrangements to accomplish the transfer by tailoring the technology to meet application-specific requirements. SP-100 technologies having commercial potential encompass fabrication processes, devices, and components. Examples are a process for bonding refractory metals to graphite, a device to sense the position of an actuator and a component to enable rotating machines to operate without supplying lubrication ( a self-lubricating ball bearing). Shortly after the National Aeronautics and Space Administration (NASA) Regional Technology Transfer Centers widely disseminated information covering SP-100 technologies, over one hundred expressions of interest were received. These early responses indicate that there is a large potential benefit in transferring SP-100 technology. Interactions with industrial and commercial entities have identified a substantial need for creating teaming arrangements involving the interested entity and personnel from laboratories and their contractors, who have the knowledge and ability to tailor the technology to meet application-specific requirements.
Habitat loss and modification due to gas development in the Fayetteville shale.
Moran, Matthew D; Cox, A Brandon; Wells, Rachel L; Benichou, Chloe C; McClung, Maureen R
2015-06-01
Hydraulic fracturing and horizontal drilling have become major methods to extract new oil and gas deposits, many of which exist in shale formations in the temperate deciduous biome of the eastern United States. While these technologies have increased natural gas production to new highs, they can have substantial environmental effects. We measured the changes in land use within the maturing Fayetteville Shale gas development region in Arkansas between 2001/2002 and 2012. Our goal was to estimate the land use impact of these new technologies in natural gas drilling and predict future consequences for habitat loss and fragmentation. Loss of natural forest in the gas field was significantly higher compared to areas outside the gas field. The creation of edge habitat, roads, and developed areas was also greater in the gas field. The Fayetteville Shale gas field fully developed about 2% of the natural habitat within the region and increased edge habitat by 1,067 linear km. Our data indicate that without shale gas activities, forest cover would have increased slightly and edge habitat would have decreased slightly, similar to patterns seen recently in many areas of the southern U.S. On average, individual gas wells fully developed about 2.5 ha of land and modified an additional 0.5 ha of natural forest. Considering the large number of wells drilled in other parts of the eastern U.S. and projections for new wells in the future, shale gas development will likely have substantial negative effects on forested habitats and the organisms that depend upon them.
28 CFR 115.318 - Upgrades to facilities and technologies.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Upgrades to facilities and technologies... facilities and technologies. (a) When designing or acquiring any new facility and in planning any substantial... monitoring technology, the agency shall consider how such technology may enhance the agency's ability to...
28 CFR 115.318 - Upgrades to facilities and technologies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Upgrades to facilities and technologies... facilities and technologies. (a) When designing or acquiring any new facility and in planning any substantial... monitoring technology, the agency shall consider how such technology may enhance the agency's ability to...
28 CFR 115.318 - Upgrades to facilities and technologies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Upgrades to facilities and technologies... facilities and technologies. (a) When designing or acquiring any new facility and in planning any substantial... monitoring technology, the agency shall consider how such technology may enhance the agency's ability to...
NASA Astrophysics Data System (ADS)
Gilmanshin, I. R.; Gilmanshina, S. I.
2017-09-01
The urgency of the formation of competence in the field of energy saving in the process of studying engineering and technical disciplines at the university is substantiated. The author’s definition of the competence in the field of energy saving is given, allowing to consider the necessity of its formation among students - future engineers as a way to create technologies of a new generation. The essence of this competence is revealed. The system of work, pedagogical conditions and technologies of its formation in the conditions of the federal university is substantiated.
Automotive displays and controls : existing technology and future trends
DOT National Transportation Integrated Search
1987-11-01
This report presents overview information on high-technology displays and : controls that are having a substantial effect on the driving environment. Advances : in electronics and computers, in addition to cost advantages, increase the : technologies...
Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.
Ndikubwimana, Theoneste; Chang, Jingyu; Xiao, Zongyuan; Shao, Wenyao; Zeng, Xianhai; Ng, I-Son; Lu, Yinghua
2016-03-01
Microalgal biomass as renewable energy source is believed to be of great potential for reliable and sustainable biofuels production. However, microalgal biomass production is pinned by harvesting and dewatering stage thus hindering the developing and growing microalgae biotechnology industries. Flotation technology applied in mineral industry could be potentially applied in microalgae harvesting and dewatering, however substantial knowledge on different flotation units is essential. This paper presents an overview on different flotation units as promising cost-effective technologies for microalgae harvesting thus bestowing for further research in development and commercialization of microalgae based biofuels. Dispersed air flotation was found to be less energy consuming. Moreover, Jameson cell flotation and dispersed ozone flotation are believed to be energy efficient microalgae flotation approaches. Microalgae harvesting and dewatering by flotation is still at embryonic stage, therefore extended studies with the focus on life cycle assessment, sustainability of the flotation unit, optimization of the operating parameters using different algal species is imperative. Though there are a number of challenges in microalgae harvesting and dewatering, with well designed and developed cultivation, harvesting/dewatering, extraction and conversion technologies, progressively, microalgae technology will be of great potential for biological carbon sequestration, biofuels and biochemicals production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Birur, Gajanana C.; Bruno, Robin J.
1999-01-01
Thermal and mechanical technologies are an important part of the Deep Space Systems Technology (DSST) Program X2000 Future Deliveries (FD) microspacecraft. A wide range of future space missions are expected to utilize the technologies and the architecture developed by DSST FD. These technologies, besides being small in physical size, make the tiny spacecraft robust and flexible. The DSST FD architecture is designed to be highly reliable and suitable for a wide range of missions such as planetary landers/orbiters/flybys, earth orbiters, cometary flybys/landers/sample returns, etc. Two of the key ideas used in the development of thermal and mechanical technologies and architectures are: 1) to include several of the thermal and mechanical functions in any given single spacecraft element and 2) the architecture be modular so that it can easily be adapted to any of the future missions. One of the thermal architectures being explored for the DSST FD microspacecraft is the integrated thermal energy management of the complete spacecraft using a fluid loop. The robustness and the simplicity of the loop and the flexibility with which it can be integrated in the spacecraft have made it attractive for applications to DSST FD. Some of the thermal technologies to be developed as a part of this architecture are passive and active cooling loops, electrically variable emittance surfaces, miniature thermal switches, and specific high density electronic cooling technologies. In the mechanical area, multifunction architecture for the structural elements will be developed. The multifunction aspect is expected to substantially reduce the mass and volume of the spacecraft. Some of the technologies that will be developed are composite material panels incorporating electronics, cabling, and thermal elements in them. The paper describes the current state of the technologies and progress to be made in the thermal and mechanical technologies and approaches for the DSST Future Deliveries microspacecraft.
Results in standardization of FOS to support the use of SHM systems
NASA Astrophysics Data System (ADS)
Habel, Wolfgang R.; Krebber, Katerina; Daum, Werner
2016-05-01
Measurement and data recording systems are important parts of a holistic Structural Health Monitoring (SHM) system. New sensor technologies such as fiber-optic sensors are often used; however, standards (or at least guidelines) are not yet available or internationally approved. This lack in standardization makes the acceptance of FOS technologies in complex SHM systems substantially difficult. A standard family for different FOS technologies is therefore being developed that should help to design SHM systems in an optimal way. International standardization activities take place in several standardization bodies such as IEC and ASTM, and within SHM societies such as ISHMII. The paper reports on activities in standardization of fiber-optic sensors, on results already achieved, and on newly started projects. Combined activities of fiber sensor experts and SHM experts from Civil Engineering are presented. These contributions should help owners of structures as well as developers of sensors and monitoring systems to select effective and validated sensing technologies. Using these standards, both parties find recommendations how to proceed in development of SHM systems to evaluate the structural behavior based on e.g. standardized fiber optic sensors, and to derive necessary measures, e.g. the optimal maintenance strategy.
Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.
2018-01-01
This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements. PMID:29503479
Gentile, T R; Nacher, P J; Saam, B; Walker, T G
2017-01-01
This article reviews the physics and technology of producing large quantities of highly spin-polarized 3 He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3 He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.
NASA Astrophysics Data System (ADS)
Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.
2017-10-01
This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.
Technology, Teaching and Sanity.
ERIC Educational Resources Information Center
Coladarci, Arthur
Despite recent advances in instructional technology, there still exist substantial gaps between technology's promise and its achievement. This situation is partly due to the fact that teachers who have a clear conception of the teaching-learning interaction are not involved in the implementation of technological innovations. Teachers and teacher…
DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigali, Mark J.; Miller, James E.; Altman, Susan J.
Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documentsmore » Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.« less
Residential Central Air Conditioning and Heat Pump Installation – Workshop Outcomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Zogg, Robert; Young, Jim
DOE's Building Technologies Office works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption in residential and commercial buildings. This report aims to advance BTO’s energy savings, emissions reduction, and other program goals by identifying research and development (R&D), demonstration and deployment, and other non-regulatory initiatives for improving the design and installation of residential central air conditioners (CAC) and central heat pumps (CHP). Improving the adoption of CAC/CHP design and installation best practices has significant potential to reduce equipment costs, improve indoor air quality and comfort, improve system performance, and most importantly, reducemore » household energy consumption and costs for heating and cooling by addressing a variety of common installation issues.« less
Method of Optimizing the Construction of Machining, Assembly and Control Devices
NASA Astrophysics Data System (ADS)
Iordache, D. M.; Costea, A.; Niţu, E. L.; Rizea, A. D.; Babă, A.
2017-10-01
Industry dynamics, driven by economic and social requirements, must generate more interest in technological optimization, capable of ensuring a steady development of advanced technical means to equip machining processes. For these reasons, the development of tools, devices, work equipment and control, as well as the modernization of machine tools, is the certain solution to modernize production systems that require considerable time and effort. This type of approach is also related to our theoretical, experimental and industrial applications of recent years, presented in this paper, which have as main objectives the elaboration and use of mathematical models, new calculation methods, optimization algorithms, new processing and control methods, as well as some structures for the construction and configuration of technological equipment with a high level of performance and substantially reduced costs..
Artificial intelligence: contemporary applications and future compass.
Khanna, Sunali
2010-08-01
The clinical use of information technology in the dental profession has increased substantially in the past 10 to 20 years. In most developing countries an insufficiency of medical and dental specialists has increased the mortality of patients suffering from various diseases. Employing technology, especially artificial intelligence technology, in medical and dental application could reduce cost, time, human expertise and medical error. This approach has the potential to revolutionise the dental public health scenario in developing countries. Clinical decision support systems (CDSS) are computer programs that are designed to provide expert support for health professionals. The applications in dental sciences vary from dental emergencies to differential diagnosis of orofacial pain, radiographic interpretations, analysis of facial growth in orthodontia to prosthetic dentistry. However, despite the recognised need for CDSS, the implementation of these systems has been limited and slow. This can be attributed to lack of formal evaluation of the systems, challenges in developing standard representations, cost and practitioner scepticism about the value and feasibility of CDSS. Increasing public awareness of safety and quality has accelerated the adoption of generic knowledge based CDSS. Information technology applications for dental practice continue to develop rapidly and will hopefully contribute to reduce the morbidity and mortality of oral and maxillofacial diseases and in turn impact patient care.
Computers and videodiscs in pathology education: ECLIPS as an example of one approach.
Thursh, D R; Mabry, F; Levy, A H
1986-03-01
We have enumerated ways in which the evolving computer and videodisc technologies are being used in pathology education and discussed in some detail the particular use with which we are most familiar, text management. While it is probably premature to speculate as to how these technologies will ultimately affect pathology education, one recent trend--the convergence that seems to be developing between those working on expert consulting systems and those working primarily on educational applications--will probably influence this impact substantially. We believe that we are moving, from opposite directions, toward the same end result, namely, the use of machine intelligence to facilitate and augment human learning. We expect that, as the two groups come closer together, very powerful, interesting, and eminently useful educational tools will emerge. While this is occurring, we think that most would agree that one of the very urgent needs is to develop forums in which the academic and practice communities can interact with researchers and developers. With apologies to Clemenceau, computers are rapidly becoming too important to be left exclusively to computer scientists. Such forums would serve to give these communities a chance to learn what the new technologies have to offer and give developers a better idea of where these technologies can make the greatest contributions.
21st Century HVAC System for Future Naval Surface Combatants - Concept Development Report
2007-09-01
application of permanent magnet motors to ventilation fans3. The study emphasized reducing the motor size, incorporating variable speed operation to reduce...Incorporation of permanent magnet motors and variable speed is also feasible. Permanent magnet motor technology is ideally suited for variable...family incorporates high speed permanent magnet motors and further fan blade design improvements. The fan diameters will be reduced, substantially, at the
NASA Technical Reports Server (NTRS)
1975-01-01
It is shown that urban sprawl and the abuses of technological industries result in substantial environmental and economic costs at the expense of center city locations and populations. Socioeconomic deterioration and modification of the biosphere triggers climatic and environmental changes leading to ecosystem damage and destruction, health consequences and international conflict.
Air Force Research Laboratory Success Stories. A Review of 2001
2001-01-01
object damage (FOD) and less risk to aircraft and pilots. This technology provides a cost avoidance of over $100 million above and beyond the savings in...semiconductor devices. Consequently, this new generation of lasers results in a substantial reduction of risk in developing compact, efficient sources for...Operational Toxicology Branch in the IPSC ensures that research conducted provides risk managers (Air Force/insulation and logistics, and base
Dr. Goddard and a 1918 version of 'Bazooka'
NASA Technical Reports Server (NTRS)
2004-01-01
Dr. Robert H. Goddard loading a 1918 version of the Bazooka of World War II. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology
Evolution of Ada technology in the flight dynamics area: Implementation/testing phase analysis
NASA Technical Reports Server (NTRS)
Quimby, Kelvin L.; Esker, Linda; Miller, John; Smith, Laurie; Stark, Mike; Mcgarry, Frank
1989-01-01
An analysis is presented of the software engineering issues related to the use of Ada for the implementation and system testing phases of four Ada projects developed in the flight dynamics area. These projects reflect an evolving understanding of more effective use of Ada features. In addition, the testing methodology used on these projects has changed substantially from that used on previous FORTRAN projects.
Kamm, B; Kamm, M
2004-04-01
Sustainable economic growth requires safe, sustainable resources for industrial production. For the future re-arrangement of a substantial economy to biological raw materials, completely new approaches in research and development, production and economy are necessary. Biorefineries combine the necessary technologies between biological raw materials and industrial intermediates and final products. The principal goal in the development of biorefineries is defined by the following: (biomass) feedstock-mix + process-mix --> product-mix. Here, particularly the combination between biotechnological and chemical conversion of substances will play an important role. Currently the "whole-crop biorefinery", "green biorefinery" and "lignocellulose-feedstock biorefinery" systems are favored in research and development.
48 CFR 3052.204-70 - Security requirements for unclassified information technology resources.
Code of Federal Regulations, 2011 CFR
2011-10-01
... unclassified information technology resources. 3052.204-70 Section 3052.204-70 Federal Acquisition Regulations... for unclassified information technology resources. As prescribed in (HSAR) 48 CFR 3004.470-3, insert a clause substantially the same as follows: Security Requirements for Unclassified Information Technology...
48 CFR 3052.204-70 - Security requirements for unclassified information technology resources.
Code of Federal Regulations, 2012 CFR
2012-10-01
... unclassified information technology resources. 3052.204-70 Section 3052.204-70 Federal Acquisition Regulations... for unclassified information technology resources. As prescribed in (HSAR) 48 CFR 3004.470-3, insert a clause substantially the same as follows: Security Requirements for Unclassified Information Technology...
48 CFR 3052.204-70 - Security requirements for unclassified information technology resources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... unclassified information technology resources. 3052.204-70 Section 3052.204-70 Federal Acquisition Regulations... for unclassified information technology resources. As prescribed in (HSAR) 48 CFR 3004.470-3, insert a clause substantially the same as follows: Security Requirements for Unclassified Information Technology...
Commercial Aircraft Protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehst, David A.
This report summarizes the results of theoretical research performed during 3 years of P371 Project implementation. In results of such research a new scientific conceptual technology of quasi-passive individual infrared protection of heat-generating objects – Spatial Displacement of Thermal Image (SDTI technology) was developed. Theoretical substantiation and description of working processes of civil aircraft individual IR-protection system were conducted. The mathematical models and methodology were presented, there were obtained the analytical dependencies which allow performing theoretical research of the affect of intentionally arranged dynamic field of the artificial thermal interferences with variable contrast onto main parameters of optic-electronic tracking andmore » homing systems.« less
NASA Astrophysics Data System (ADS)
Varfolomeev, M. S.; Moiseev, V. S.; Shcherbakova, G. I.
2017-01-01
A technology is developed to produce highly thermoresistant ceramic monoxide corundum molds using investment casting and an aluminum-organic binder. This technology is a promising trend in creating ceramic molds for precision complex-shape casting of important ingots made of high-alloy steels, high-temperature and titanium alloys, and refractory metals. The use of the casting molds that have a high thermal and chemical resistance to chemically active metals and alloys under high-temperature casting minimizes the physicochemical interaction and substantially decreases the depth of the hard-to-remove metal oxide layer on important products, which increases their service properties.
Hsieh, Chang-tseh; Lin, Binshan
2011-01-01
The utilisation of IS/IT could offer a substantial competitive advantage to healthcare service providers through the realisation of improved clinical, financial, and administrative outcomes. In this study, 42 journal articles were reviewed and summarised with respect to identified benefits and challenges of the development and implementation of electronic medical records, tele-health, and electronic appointment reminders. Results of this study help pave the knowledge foundation for management of the behavioural healthcare to learn how to apply state-of-the-art information technology to offer higher quality, clinically proven effective services at lower costs than those of their competitors.
Annotated bibliography of software engineering laboratory literature
NASA Technical Reports Server (NTRS)
Groves, Paula; Valett, Jon
1990-01-01
An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory-software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. Subject and author indexes further classify these documents by specific topic and individual author.
Annotated bibliography of Software Engineering Laboratory literature
NASA Technical Reports Server (NTRS)
Morusiewicz, Linda; Valett, Jon
1993-01-01
This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory: software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. This document contains an index of these publications classified by individual author.
NASA Astrophysics Data System (ADS)
Paustian, Keith; Lehmann, Johannes; Ogle, Stephen; Reay, David; Robertson, G. Philip; Smith, Pete
2016-04-01
Soils are integral to the function of all terrestrial ecosystems and to food and fibre production. An overlooked aspect of soils is their potential to mitigate greenhouse gas emissions. Although proven practices exist, the implementation of soil-based greenhouse gas mitigation activities are at an early stage and accurately quantifying emissions and reductions remains a substantial challenge. Emerging research and information technology developments provide the potential for a broader inclusion of soils in greenhouse gas policies. Here we highlight ‘state of the art’ soil greenhouse gas research, summarize mitigation practices and potentials, identify gaps in data and understanding and suggest ways to close such gaps through new research, technology and collaboration.
[Review of Second Generation Sequencing and Its Application in Forensic Genetics].
Zhang, S H; Bian, Y N; Zhao, Q; Li, C T
2016-08-01
The rapid development of second generation sequencing (SGS) within the past few years has led to the increasement of data throughput and read length while at the same time brought down substantially the sequencing cost. This made new breakthrough in the area of biology and ushered the forensic genetics into a new era. Based on the history of sequencing application in forensic genetics, this paper reviews the importance of sequencing technologies for genetic marker detection. The application status and potential of SGS in forensic genetics are discussed based on the already explored SGS platforms of Roche, Illumina and Life Technologies. With these platforms, DNA markers (SNP, STR), RNA markers (mRNA, microRNA) and whole mtDNA can be sequenced. However, development and validation of application kits, maturation of analysis software, connection to the existing databases and the possible ethical issues occurred with big data will be the key factors that determine whether this technology can substitute or supplement PCR-CE, the mature technology, and be widely used for cases detection. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Schaper, Louise K; Pervan, Graham P
2007-06-01
There is evidence to suggest that health professionals are reluctant to accept and utilise information and communication technologies (ICT) and concern is growing within health informatics research that this is contributing to the lag in adoption and utilisation of ICT across the health sector. Technology acceptance research within the field of information systems has been limited in its application to health and there is a concurrent need to develop and gain empirical support for models of technology acceptance within health and to examine acceptance and utilisation issues amongst health professionals to improve the success of information system implementation in this arena. This paper outlines a project that examines ICT acceptance and utilisation by Australian occupational therapists. It describes the theoretical basis behind the development of a research model and the methodology being employed to empirically validate the model using substantial quantitative, qualitative and longitudinal data. Preliminary results from Phase II of the study are presented. The theoretical significance of this work is that it uses a thoroughly constructed research model, with potentially the largest sample size ever tested, to extend technology acceptance research into the health sector.
Research and Technology Development for Construction of 3d Video Scenes
NASA Astrophysics Data System (ADS)
Khlebnikova, Tatyana A.
2016-06-01
For the last two decades surface information in the form of conventional digital and analogue topographic maps has been being supplemented by new digital geospatial products, also known as 3D models of real objects. It is shown that currently there are no defined standards for 3D scenes construction technologies that could be used by Russian surveying and cartographic enterprises. The issues regarding source data requirements, their capture and transferring to create 3D scenes have not been defined yet. The accuracy issues for 3D video scenes used for measuring purposes can hardly ever be found in publications. Practicability of development, research and implementation of technology for construction of 3D video scenes is substantiated by 3D video scene capability to expand the field of data analysis application for environmental monitoring, urban planning, and managerial decision problems. The technology for construction of 3D video scenes with regard to the specified metric requirements is offered. Technique and methodological background are recommended for this technology used to construct 3D video scenes based on DTM, which were created by satellite and aerial survey data. The results of accuracy estimation of 3D video scenes are presented.
When you reach a fork in the road, take it: science and product development as linked paths.
Keusch, Gerald T
2008-01-01
There is a simple underlying message in this discussion, which has three parts. First, science has the capacity to generate new knowledge and harness that knowledge in the cause of developing products and technology that can reduce disease burdens among developing nation populations. Second, intellectual property is a tool to use in order to insure that new knowledge is not expropriated and exploited in a manner that threatens the ability to provide products and technology to poor people at an affordable price. Third, and finally, academic scientists need to understand that they can stride both pathways of the R&D road, remaining involved in generating basic knowledge while participating in the application of that knowledge towards product development and, through the use of best practice IP management, making it available in resource-poor environments. In order for this to happen, academia needs to maintain bridges to the private sector, while assiduously avoiding financial conflicts of interest, a topic not discussed in this paper. Academic scientists, whether already established or still completing their education, need access to training modules that allows them to define the challenges of the high disease burdens in the third world in human, and not just in consumption or dollar, terms. They also need education regarding the problems they work on, in order to engage them in the technology transfer from academia to the private sector; promote collaboration with scientists in the developing world; provide them with enough insights into the process and how it operates so that they know about the terms of any agreements with the private sector that would prevent poor people from accessing the ultimate product; and finally "reward" them in the academic system by advancement based on applied and field-based international translational and operational applied research. If these education programs develop and expand to increasing numbers of people in the research sector of academia, the number of people taking both paths described here will substantially increase. With that, the amount of research relevant to improving the health status--and indirectly, development--of developing countries will have been substantially increased.
Visioning technology for the future of telehealth.
Brennan, David M; Holtz, Bree E; Chumbler, Neale R; Kobb, Rita; Rabinowitz, Terry
2008-11-01
By its very nature, telehealth relies on technology. Throughout history, as new technologies emerged and afforded people the ability to send information across distances, it was not long before this capability was applied to the most basic need of all: maintaining health. While much of the early work in telehealth was driven by technology (e.g., making opportunistic use of the systems and devices that were available at the time), recent trends are beginning to push the demand for and the development of new technologies specific to the individual needs of telehealth applications. The future of telehealth will benefit greatly from this technology innovation, in particular, in areas such as home telehealth and remote monitoring, e-health and patient portal applications, personal health records, interactive Internet technologies, and robotics. Telehealth, while not a panacea for all of the challenges facing modern healthcare systems, has a substantial and ever-expanding potential to revolutionize the ways in which people receive medical care while offering the possibility to contain costs, manage chronic diseases, and prevent secondary complications. By demanding innovative solutions and speaking out in support of the field, the telehealth community can and should be leading the charge for greater attention to human factors in technology development, interoperable medical records, staff training and competencies, standards and guidelines, and support for expanded telehealth coverage at the national, state, and local levels.
Computational Fluid Dynamics of Whole-Body Aircraft
NASA Astrophysics Data System (ADS)
Agarwal, Ramesh
1999-01-01
The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.
Synthetic and Enhanced Vision System for Altair Lunar Lander
NASA Technical Reports Server (NTRS)
Prinzell, Lawrence J., III; Kramer, Lynda J.; Norman, Robert M.; Arthur, Jarvis J., III; Williams, Steven P.; Shelton, Kevin J.; Bailey, Randall E.
2009-01-01
Past research has demonstrated the substantial potential of synthetic and enhanced vision (SV, EV) for aviation (e.g., Prinzel & Wickens, 2009). These augmented visual-based technologies have been shown to significantly enhance situation awareness, reduce workload, enhance aviation safety (e.g., reduced propensity for controlled flight -into-terrain accidents/incidents), and promote flight path control precision. The issues that drove the design and development of synthetic and enhanced vision have commonalities to other application domains; most notably, during entry, descent, and landing on the moon and other planetary surfaces. NASA has extended SV/EV technology for use in planetary exploration vehicles, such as the Altair Lunar Lander. This paper describes an Altair Lunar Lander SV/EV concept and associated research demonstrating the safety benefits of these technologies.
The emerging story of emerging technologies in neuropsychiatry.
Coffey, M Justin; Coffey, C Edward
2016-06-01
The growth of new technologies in health care is exponential, and the impact of such rapid technological innovation on health care delivery is substantial. This review describes two emerging technologies-mobile applications and wearable technologies-and uses a virtual case report to illustrate the impact of currently available technologies on the health care experience of a patient with neuropsychiatric illness.
University Technology Transfer Information Processing from the Attention Based View
ERIC Educational Resources Information Center
Hamilton, Clovia
2015-01-01
Between 2005 and 2011, there was no substantial growth in licenses executed by university technology transfer offices. Since the passage of the Bayh Dole Act of 1980, universities have owned technological inventions afforded by federal research funding. There are still university technology transfer offices that struggle with increasing their…
Education and Technology: Critical Perspectives, Possible Futures
ERIC Educational Resources Information Center
Kritt, David W., Ed.; Winegar, Lucien T., Ed.
2007-01-01
This book offers a truly learner-centered and learning-centered approach to educational technology. In substantial and interdisciplinary ways it carefully builds a foundation not just for rethinking the potential for technology in light of educational principles but, more importantly, rethinking teaching and learning in light of technology's…
The process group approach to reliable distributed computing
NASA Technical Reports Server (NTRS)
Birman, Kenneth P.
1991-01-01
The difficulty of developing reliable distributed software is an impediment to applying distributed computing technology in many settings. Experience with the ISIS system suggests that a structured approach based on virtually synchronous process groups yields systems which are substantially easier to develop, fault-tolerance, and self-managing. Six years of research on ISIS are reviewed, describing the model, the types of applications to which ISIS was applied, and some of the reasoning that underlies a recent effort to redesign and reimplement ISIS as a much smaller, lightweight system.
SHARP: Spacecraft Health Automated Reasoning Prototype
NASA Technical Reports Server (NTRS)
Atkinson, David J.
1991-01-01
The planetary spacecraft mission OPS as applied to SHARP is studied. Knowledge systems involved in this study are detailed. SHARP development task and Voyager telecom link analysis were examined. It was concluded that artificial intelligence has a proven capability to deliver useful functions in a real time space flight operations environment. SHARP has precipitated major change in acceptance of automation at JPL. The potential payoff from automation using AI is substantial. SHARP, and other AI technology is being transferred into systems in development including mission operations automation, science data systems, and infrastructure applications.
Received optical power calculations for optical communications link performance analysis
NASA Technical Reports Server (NTRS)
Marshall, W. K.; Burk, B. D.
1986-01-01
The factors affecting optical communication link performance differ substantially from those at microwave frequencies, due to the drastically differing technologies, modulation formats, and effects of quantum noise in optical communications. In addition detailed design control table calculations for optical systems are less well developed than corresponding microwave system techniques, reflecting the relatively less mature state of development of optical communications. Described below are detailed calculations of received optical signal and background power in optical communication systems, with emphasis on analytic models for accurately predicting transmitter and receiver system losses.
Parameter Studies, time-dependent simulations and design with automated Cartesian methods
NASA Technical Reports Server (NTRS)
Aftosmis, Michael
2005-01-01
Over the past decade, NASA has made a substantial investment in developing adaptive Cartesian grid methods for aerodynamic simulation. Cartesian-based methods played a key role in both the Space Shuttle Accident Investigation and in NASA's return to flight activities. The talk will provide an overview of recent technological developments focusing on the generation of large-scale aerodynamic databases, automated CAD-based design, and time-dependent simulations with of bodies in relative motion. Automation, scalability and robustness underly all of these applications and research in each of these topics will be presented.
The role of surgeons in identifying emerging technologies for health technology assessment.
Stafinski, Tania; Topfer, Leigh-Ann; Zakariasen, Ken; Menon, Devidas
2010-04-01
Health technology assessment (HTA) is a tool intended to help policy-makers decide which technologies to fund. However, given the proliferation of new technologies, it is not possible to undertake an HTA of each one before it becomes funded. Consequently, "horizon-scanning" processes have been developed to identify emerging technologies that are likely to have a substantial impact on clinical practice. Although the importance of physicians in the adoption of new technologies is well recognized, their role in horizon scanning in Canada has been limited. The purpose of this project was to pilot an approach to engage physicians, specifically surgeons, in provincial horizon-scanning activities. We invited 18 surgeons from Alberta's 2 medical schools to a horizon-scanning workshop to solicit their views on emerging technologies expected to impact surgical practice within the next 5 years and/or the importance of different attributes or characteristics of new technologies. Surgeons, regardless of specialty, identified developments designed to enhance existing minimally invasive surgical techniques, such as endoscopic, robotic and image-guided surgery. Several nonsurgical areas, including molecular genetics and nano technology, were also identified. Of the 13 technology attributes discussed, safety or risk, effectiveness and feasibility were rated as most important. Lastly, participating surgeons expressed an interest in becoming further involved in local HTA initiatives. Surgeons, as adopters and users of health technologies, represent an important and accessible information source for identifying emerging technologies for HTA. A more formal, ongoing relationship between the government, HTA and surgeons may help to optimize the use of HTA resources.
Review of flat panel display programs and defense applications
NASA Astrophysics Data System (ADS)
Gnade, Bruce; Schulze, Raymond; Henderson, Girardeau L.; Hopper, Darrel G.
1997-07-01
Flat panel display research has comprised a substantial portion of the national investment in new technology for economic and national security for the past nine years. These investments have ben made principally via several Defense Advanced Research Projects Agency (DARPA) programs, known collectively as the continuing High Definition Systems Program, and the Office of the Secretary of Defense Production Act Title III Program. Using input from the Army, Navy, and Air Force to focus research and identify insertion opportunities, DARPA and the Title III Program Office have made investments to develop the national technology base and manufacturing infrastructure necessary to meet the twin challenge of providing affordable displays in current systems and enabling the DoD strategy of winning future conflicts by getting more information to all participants during the battle. These research programs are reviewed and opportunities for applications are described. Future technology development, transfer, and transition requirements are identified. Strategy and vision are documented to assist the identification of areas meriting further consideration.
Point-of-Care Technologies for Precision Cardiovascular Care and Clinical Research
King, Kevin; Grazette, Luanda P.; Paltoo, Dina N.; McDevitt, John T.; Sia, Samuel K.; Barrett, Paddy M.; Apple, Fred S.; Gurbel, Paul A.; Weissleder, Ralph; Leeds, Hilary; Iturriaga, Erin J.; Rao, Anupama; Adhikari, Bishow; Desvigne-Nickens, Patrice; Galis, Zorina S.; Libby, Peter
2016-01-01
Point-of-care technologies (POC or POCT) are enabling innovative cardiovascular diagnostics that promise to improve patient care across diverse clinical settings. The National Heart, Lung, and Blood Institute convened a working group to discuss POCT in cardiovascular medicine. The multidisciplinary working group, which included clinicians, scientists, engineers, device manufacturers, regulatory officials, and program staff, reviewed the state of the POCT field; discussed opportunities for POCT to improve cardiovascular care, realize the promise of precision medicine, and advance the clinical research enterprise; and identified barriers facing translation and integration of POCT with existing clinical systems. A POCT development roadmap emerged to guide multidisciplinary teams of biomarker scientists, technologists, health care providers, and clinical trialists as they: 1) formulate needs assessments; 2) define device design specifications; 3) develop component technologies and integrated systems; 4) perform iterative pilot testing; and 5) conduct rigorous prospective clinical testing to ensure that POCT solutions have substantial effects on cardiovascular care. PMID:26977455
Human antibody technology and the development of antibodies against cytomegalovirus.
Ohlin, Mats; Söderberg-Nauclér, Cecilia
2015-10-01
Cytomegalovirus (CMV) is a virus that causes chronic infections in a large set of the population. It may cause severe disease in immunocompromised individuals, is linked to immunosenescence and implied to play an important role in the pathogenesis of cardiovascular diseases and cancer. Modulation of the immune system's abilities to manage the virus represent a highly viable therapeutic option and passive immunotherapy with polyclonal antibody preparations is already in clinical use. Defined monoclonal antibodies offer many advantages over polyclonal antibodies purified from serum. Human CMV-specific monoclonal antibodies have consequently been thoroughly investigated with respect to their potential in the treatment of diseases caused by CMV. Recent advances in human antibody technology have substantially expanded the breadth of antibodies for such applications. This review summarizes the fundamental basis for treating CMV disease by use of antibodies, the basic technologies to be used to develop such antibodies, and relevant human antibody specificities available to target this virus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Technology readiness assessments: A retrospective
NASA Astrophysics Data System (ADS)
Mankins, John C.
2009-11-01
The development of new system capabilities typically depends upon the prior success of advanced technology research and development efforts. These systems developments inevitably face the three major challenges of any project: performance, schedule and budget. Done well, advanced technology programs can substantially reduce the uncertainty in all three of these dimensions of project management. Done poorly, or not at all, and new system developments suffer from cost overruns, schedule delays and the steady erosion of initial performance objectives. It is often critical for senior management to be able to determine which of these two paths is more likely—and to respond accordingly. The challenge for system and technology managers is to be able to make clear, well-documented assessments of technology readiness and risks, and to do so at key points in the life cycle of the program. In the mid 1970s, the National Aeronautics and Space Administration (NASA) introduced the concept of "technology readiness levels" (TRLs) as a discipline-independent, programmatic figure of merit (FOM) to allow more effective assessment of, and communication regarding the maturity of new technologies. In 1995, the TRL scale was further strengthened by the articulation of the first definitions of each level, along with examples (J. Mankins, Technology readiness levels, A White Paper, NASA, Washington, DC, 1995. [1]). Since then, TRLs have been embraced by the U.S. Congress' General Accountability Office (GAO), adopted by the U.S. Department of Defense (DOD), and are being considered for use by numerous other organizations. Overall, the TRLs have proved to be highly effective in communicating the status of new technologies among sometimes diverse organizations. This paper will review the concept of "technology readiness assessments", and provide a retrospective on the history of "TRLs" during the past 30 years. The paper will conclude with observations concerning prospective future directions for the important discipline of technology readiness assessments.
Increasing the Cryogenic Toughness of Steels
NASA Technical Reports Server (NTRS)
Rush, H. F.
1986-01-01
Grain-refining heat treatments increase toughness without substantial strength loss. Five alloys selected for study, all at or near technological limit. Results showed clearly grain sizes of these alloys refined by such heat treatments and grain refinement results in large improvement in toughness without substantial loss in strength. Best improvements seen in HP-9-4-20 Steel, at low-strength end of technological limit, and in Maraging 200, at high-strength end. These alloys, in grain refined condition, considered for model applications in high-Reynolds-number cryogenic wind tunnels.
Rotec Theory: planning tool to position hospitals on the technology curve.
Roberts, R
1990-06-01
The mission statement of a prominent California hospital has been revised as part of a strategic planning process less than two years before the hospital began experiencing substantial financial difficulties. When the "red numbers" began to appear, management was quick to blame changing demographic patterns and the competitive environment. Those were not the only problems. A major contributing factor that management failed to recognize was a delay in how quickly the hospital moved to adopt high technology or new medical procedures. In a few short years, it had changed from being the first community hospital to implement state-of-the-art programs to one that was slow to introduce technology. In retrospect, the hospital's mission statement did not address the role of technology and therefore it could not detect the movement away from one of its critical success factors. The Rotec Theory was developed to assist this hospital to understand the economics of technology on its current and planned operations.
Production of substantially pure fructose
Hatcher, Herbert J.; Gallian, John J.; Leeper, Stephen A.
1990-01-01
A process is disclosed for the production of substantially pure fructose from sucrose-containing substrates. The process comprises converting the sucrose to levan and glucose, purifying the levan by membrane technology, hydrolyzing the levan to form fructose monomers, and recovering the fructose.
Brunner, Melissa; Hemsley, Bronwyn; Togher, Leanne; Palmer, Stuart
2017-01-01
To review the literature on communication technologies in rehabilitation for people with a traumatic brain injury (TBI), and: (a) determine its application to cognitive-communicative rehabilitation, and b) develop a model to guide communication technology use with people after TBI. This integrative literature review of communication technology in TBI rehabilitation and cognitive-communication involved searching nine scientific databases and included 95 studies. Three major types of communication technologies (assistive technology, augmentative and alternative communication technology, and information communication technology) and multiple factors relating to use of technology by or with people after TBI were categorized according to: (i) individual needs, motivations and goals; (ii) individual impairments, activities, participation and environmental factors; and (iii) technologies. While there is substantial research relating to communication technologies and cognitive rehabilitation after TBI, little relates specifically to cognitive-communication rehabilitation. Further investigation is needed into the experiences and views of people with TBI who use communication technologies, to provide the 'user' perspective and influence user-centred design. Research is necessary to investigate the training interventions that address factors fundamental for success, and any impact on communication. The proposed model provides an evidence-based framework for incorporating technology into speech pathology clinical practice and research.
Overview of Research for Lunar Oxygen Processing at Carbotek Development Laboratories
NASA Astrophysics Data System (ADS)
Ortego, J. D., Jr.; Sorge, L. L.; Guo-Murray, M.; Gibson, M. A.; Knudsen, C. W.
1997-01-01
Oxygen production from indigenous lunar material is considered an enabling technology for future solar system exploration. Lunar derived oxygen provides many lunar base program enhancements. A great mass benefit can be derived when Earth return propellant oxidizer is not manifested for transit vehicles traveling to the moon. This results in substantial cost savings to the overall space transportation infrastructure. In addition, lunar produced oxygen can be used to supplement life support systems. Finally, many of the lunar oxygen processes under development produce by-products which are excellent construction materials, rich in iron and titanium, for shielding habitats and lunar surface equipment from cosmic radiation and more lethal solar flares. As a result of the apparent benefits of lunar derived oxygen, NASA has funded research for the development of promising techniques since the mid- 1980's in order for the technology to be available for lunar return missions. Carbotek, with funding and technical assistance f om NASA Johnson Space Center and the Shimizu Corporation, Space Systems Division, has been developing oxygen producing technology since 1984. This paper describes past and future work by Carbotek on two processes, hydrogen reduction of ilmenite and magma electrolysis.
The Development of Modal Testing Technology for Wind Turbines: A Historical Perspective
NASA Technical Reports Server (NTRS)
James, George H., III; Carne, Thomas G.
2007-01-01
Wind turbines are very large, flexible structures, with aerodynamic forces on the rotating blades producing periodic forces with frequencies at the harmonics of the rotation frequency. Due to design consideration, these rotational frequencies are comparable to the modal frequencies; thus avoiding resonant conditions is a critical consideration. Consequently, predicting and experimentally validating the modal frequencies of wind turbines has been important to their successful design and operation. Performing modal tests on flexible structures over 120 meters tall is a substantial challenge, which has inspired innovative developments in modal test technology. A further trial to the analyst and experimentalist is that the modal frequencies are dependent on the turbine rotation speed, so testing a parked turbine does not fully validate the analytical predictions. The history and development of this modal testing technology will be reviewed, showing historical tests and techniques, ranging from two-meter to 100-meter turbines for both parked and rotating tests. The NExT (Natural Excitation Technique) was developed in the 1990's, as a predecessor to OMA to overcome these challenges. We will trace the difficulties and successes of wind turbine modal testing over the past twenty-five years from 1982 to the present.
The role of surgeons in identifying emerging technologies for health technology assessment
Stafinski, Tania; Topfer, Leigh-Ann; Zakariasen, Ken; Menon, Devidas
2010-01-01
Background Health technology assessment (HTA) is a tool intended to help policy-makers decide which technologies to fund. However, given the proliferation of new technologies, it is not possible to undertake an HTA of each one before it becomes funded. Consequently, “horizon-scanning” processes have been developed to identify emerging technologies that are likely to have a substantial impact on clinical practice. Although the importance of physicians in the adoption of new technologies is well recognized, their role in horizon scanning in Canada has been limited. The purpose of this project was to pilot an approach to engage physicians, specifically surgeons, in provincial horizon-scanning activities. Methods We invited 18 surgeons from Alberta’s 2 medical schools to a horizon-scanning workshop to solicit their views on emerging technologies expected to impact surgical practice within the next 5 years and/or the importance of different attributes or characteristics of new technologies. Results Surgeons, regardless of specialty, identified developments designed to enhance existing minimally invasive surgical techniques, such as endoscopic, robotic and image-guided surgery. Several nonsurgical areas, including molecular genetics and nanotechnology, were also identified. Of the 13 technology attributes discussed, safety or risk, effectiveness and feasibility were rated as most important. Lastly, participating surgeons expressed an interest in becoming further involved in local HTA initiatives. Conclusion Surgeons, as adopters and users of health technologies, represent an important and accessible information source for identifying emerging technologies for HTA. A more formal, ongoing relationship between the government, HTA and surgeons may help to optimize the use of HTA resources. PMID:20334740
Magnetic suspension - Today's marvel, tomorrow's tool
NASA Technical Reports Server (NTRS)
Lawing, Pierce L.
1989-01-01
NASA's Langley facility has through constant advocacy of magnetic suspension systems (MSSs) for wind-tunnel model positioning obtained a technology-development status for the requisite large magnets, computers, automatic control techniques, and apparatus configurations, to contemplate the construction of MSSs for large wind tunnels. Attention is presently given to the prospects for MSSs in wind tunnels employing superfluid helium atmospheres to obtain very high Reynolds numbers, where the MSS can yield substantial enhancements of wind tunnel productivity.
TPF coronagraph instrument design
NASA Technical Reports Server (NTRS)
Shaklan, S B.; Balasubramanian, K.; Ceperly, D.; Green, J.; Hoppe, D.; Lay, O. P.; Lisman, P. D.; Mouroulis, P. Z.
2005-01-01
For the past 2 years, NASA has invested substantial resources to study the design and performance of the Terrestrial Planet Finder Coronagraph (TPF-C). The work, led by the Jet Propulsion Laboratory with collaboration from Goddard Space Flight Center and several university and commercial entities, encompasses observatory design, performance modeling, materials characterization, primary mirror studies, and a significant technology development effort including a high-contrast imaging testbed that has achieved 1e-9 contrast in a laboratory experiment.
The FY 1979 Department of Defense Program for Research, Development, and Acquisition
1978-02-01
in mobile SA~s, diversity. -- U.S. leads in look-down/shoot-down interceptor technology. -- USSR is making a substantial effort to advance ABM ...penetrate advanced SAM and ABM systems without loss of the overall system accuracy now achievable only with ballistic reentry systems. Later AMaRV...not witnessed a corresponding decrease in the level of Soviet BMD activity. In addition to continuing the operation of their Moscow ABM System, the
Waste recycling issues in bioregenerative life support
NASA Technical Reports Server (NTRS)
Macelroy, R. D.; Wang, D.
1989-01-01
Research and technology development issues centering on the recycling of materials within a bioregenerative life support system are reviewed. The importance of recovering waste materials for subsequent use is emphasized. Such material reclamation will substantially decrease the energy penalty paid for bioregenerative life support systems, and can potentially decrease the size of the system and its power demands by a significant amount. Reclamation of fixed nitrogen and the sugars in cellulosic materials is discussed.
1940-03-21
Goddard rocket in launching tower at Roswell, New Mexico, March 21, 1940. Fuel was injected by pumps from the fueling platform at left. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology
2004-04-15
Goddard rocket with four rocket motors. This rocket attained an altitude of 200 feet in a flight, November 1936, at Roswell, New Mexico. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology
Secure Biometric E-Voting Scheme
NASA Astrophysics Data System (ADS)
Ahmed, Taha Kh.; Aborizka, Mohamed
The implementation of the e-voting becomes more substantial with the rapid increase of e-government development. The recent growth in communications and cryptographic techniques facilitate the implementation of e-voting. Many countries introduced e-voting systems; unfortunately most of these systems are not fully functional. In this paper we will present an e-voting scheme that covers most of the e-voting requirements, smart card and biometric recognition technology were implemented to guarantee voter's privacy and authentication.
Examining the Relationship between Technology Leadership Behaviors and Project Success
ERIC Educational Resources Information Center
Bolman, David B.
2012-01-01
Organizations invest substantial resources into technology initiatives intended to generate advantages associated with improved use of human resources, increased operational efficiencies, and creating new capacities within processes and products; however, there is limited knowledge regarding how technology leadership behaviors influence project…
3D physical modeling for patterning process development
NASA Astrophysics Data System (ADS)
Sarma, Chandra; Abdo, Amr; Bailey, Todd; Conley, Will; Dunn, Derren; Marokkey, Sajan; Talbi, Mohamed
2010-03-01
In this paper we will demonstrate how a 3D physical patterning model can act as a forensic tool for OPC and ground-rule development. We discuss examples where the 2D modeling shows no issues in printing gate lines but 3D modeling shows severe resist loss in the middle. In absence of corrective measure, there is a high likelihood of line discontinuity post etch. Such early insight into process limitations of prospective ground rules can be invaluable for early technology development. We will also demonstrate how the root cause of broken poly-line after etch could be traced to resist necking in the region of STI step with the help of 3D models. We discuss different cases of metal and contact layouts where 3D modeling gives an early insight in to technology limitations. In addition such a 3D physical model could be used for early resist evaluation and selection for required ground-rule challenges, which can substantially reduce the cycle time for process development.
Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu; Vepsäläinen, Mikko
2018-01-01
Natural organic matter (NOM) is a complex matrix of organic substances produced in (or channeled to) aquatic ecosystems via various biological, geological and hydrological cycles. Such variability is posing a serious challenge to most water treatment technologies, especially the ones designed to treat drinking water supplies. Lately, in addition to the fluctuating composition of NOM, a substantial increase of its concentration in fresh waters, and also municipal wastewater effluents, has been reported worldwide, which justifies the urgent need to develop highly efficient and versatile water treatment processes. Coagulation is among the most applied processes for water and wastewater treatment. The application of coagulation to remove NOM from drinking water supplies has received a great deal of attention from researchers around the world because it was efficient and helped avoiding the formation of disinfection by products (DBPs). Nonetheless, with the increased fluctuation of NOM in water (concentration and composition), the efficiency of conventional coagulation was substantially reduced, hence the need to develop enhanced coagulation processes by optimizing the operating conditions (mainly the amount coagulants and pH), developing more efficient inorganic or organic coagulants, as well as coupling coagulation with other water treatment technologies. In the present review, recent research studies dealing with the application of coagulation for NOM removal from drinking water supplies are presented and compared. In addition, integration schemes combining coagulation and other water treatment processes are presented, including membrane filtration, oxidation, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Human genetic technology: who shall control?
Blank, R H
1984-01-01
The biotechnical "revolution" has fast come upon us. It promises to produce both substantial benefits and difficult dilemmas for individuals and society. Despite the growing attention being paid to biotechnology, a major unanswered question is who shall control the development and use of the powerful array of human genetic and reproductive innovations. Should the decisions be left to individual consumers and private industry or should they be made by the government or other social institutions? After briefly reviewing development in human genetics and reproduction and describing trends toward commercialization of them, this article discusses the dilemmas these trends raise for a democratic society. It argues for the urgent need to delineate societal goals and priorities for the future and for technology assessment as early as possible in the developmental process. The article concludes by presenting some examples of the social policy problems now emerging.
Shale Gas Implications for C2-C3 Olefin Production: Incumbent and Future Technology.
Stangland, Eric E
2018-06-07
Substantial natural gas liquids recovery from tight shale formations has produced a significant boon for the US chemical industry. As fracking technology improves, shale liquids may represent the same for other geographies. As with any major industry disruption, the advent of shale resources permits both the chemical industry and the community an excellent opportunity to have open, foundational discussions on how both public and private institutions should research, develop, and utilize these resources most sustainably. This review summarizes current chemical industry processes that use ethane and propane from shale gas liquids to produce the two primary chemical olefins of the industry: ethylene and propylene. It also discusses simplified techno-economics related to olefins production from an industry perspective, attempting to provide a mutually beneficial context in which to discuss the next generation of sustainable olefin process development.
Virtual reality for health care: a survey.
Moline, J
1997-01-01
This report surveys the state of the art in applications of virtual environments and related technologies for health care. Applications of these technologies are being developed for health care in the following areas: surgical procedures (remote surgery or telepresence, augmented or enhanced surgery, and planning and simulation of procedures before surgery); medical therapy; preventive medicine and patient education; medical education and training; visualization of massive medical databases; skill enhancement and rehabilitation; and architectural design for health-care facilities. To date, such applications have improved the quality of health care, and in the future they will result in substantial cost savings. Tools that respond to the needs of present virtual environment systems are being refined or developed. However, additional large-scale research is necessary in the following areas: user studies, use of robots for telepresence procedures, enhanced system reality, and improved system functionality.
NASA Astrophysics Data System (ADS)
Barr, David; Basden, Alastair; Dipper, Nigel; Schwartz, Noah; Vick, Andy; Schnetler, Hermine
2014-08-01
We present wavefront reconstruction acceleration of high-order AO systems using an Intel Xeon Phi processor. The Xeon Phi is a coprocessor providing many integrated cores and designed for accelerating compute intensive, numerical codes. Unlike other accelerator technologies, it allows virtually unchanged C/C++ to be recompiled to run on the Xeon Phi, giving the potential of making development, upgrade and maintenance faster and less complex. We benchmark the Xeon Phi in the context of AO real-time control by running a matrix vector multiply (MVM) algorithm. We investigate variability in execution time and demonstrate a substantial speed-up in loop frequency. We examine the integration of a Xeon Phi into an existing RTC system and show that performance improvements can be achieved with limited development effort.
National Launch System: Structures and materials
NASA Technical Reports Server (NTRS)
Bunting, Jack O.
1993-01-01
The National Launch System provides an opportunity to realize the potential of Al-Li. Advanced structures can reduce weights by 5-40 percent as well as relax propulsion system performance specifications and reduce requirements for labor and materials. The effect on costs will be substantial. Advanced assembly and process control technologies also offer the potential for greatly reduced labor during the manufacturing and inspection processes. Current practices are very labor-intensive and, as a result, labor costs far outweigh material costs for operational space transportation systems. The technological readiness of new structural materials depends on their commercial availability, producibility and materials properties. Martin Marietta is vigorously pursuing the development of its Weldalite 049 Al-Li alloys in each of these areas. Martin Marietta is also preparing to test an automated work cell concept that it has developed using discrete event simulation.
Development of nanostructured antireflection coatings for infrared technologies and applications
NASA Astrophysics Data System (ADS)
Pethuraja, Gopal G.; Zeller, John W.; Welser, Roger E.; Efstathiadis, Harry; Haldar, Pradeep; Wijewarnasuriya, Priyalal S.; Dhar, Nibir K.; Sood, Ashok K.
2017-09-01
Infrared (IR) sensing technologies and systems operating from the near-infrared (NIR) to long-wave infrared (LWIR) spectra are being developed for a variety of defense and commercial systems applications. Reflection losses affecting a significant portion of the incident signal limits the performance of IR sensing systems. One of the critical technologies that will overcome this limitation and enhance the performance of IR sensing systems is the development of advanced antireflection (AR) coatings. Magnolia is actively involved in the development and advancement of ultrahigh performance AR coatings for a wide variety of defense and commercial applications. Ultrahigh performance nanostructured AR coatings have been demonstrated for UV to LWIR spectral bands using various substrates. The AR coatings enhance the optical transmission through optical components and devices by significantly minimizing reflection losses, a substantial improvement over conventional thin-film AR coating technologies. Nanostructured AR coatings are fabricated using a tunable self-assembly process on substrates that are transparent for a given spectrum of interest ranging from UV to LWIR. The nanostructured multilayer structures have been designed, developed and optimized for various optoelectronic applications. The optical properties of the AR-coated optical components and sensor substrates have been measured and fine-tuned to achieve a predicted high level of performance of the coatings. In this paper, we review our latest work on high quality nanostructure-based AR coatings, including recent efforts towards the development of nanostructured AR coatings on IR-transparent substrates.
Proceedings of the sixth annual conference on fossil energy materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, N.C.; Judkins, R.R.
1992-07-01
The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) asmore » the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.« less
Evaluating waste printed circuit boards recycling: Opportunities and challenges, a mini review.
Awasthi, Abhishek Kumar; Zlamparet, Gabriel Ionut; Zeng, Xianlai; Li, Jinhui
2017-04-01
Rapid generation of waste printed circuit boards has become a very serious issue worldwide. Numerous techniques have been developed in the last decade to resolve the pollution from waste printed circuit boards, and also recover valuable metals from the waste printed circuit boards stream on a large-scale. However, these techniques have their own certain specific drawbacks that need to be rectified properly. In this review article, these recycling technologies are evaluated based on a strength, weaknesses, opportunities and threats analysis. Furthermore, it is warranted that, the substantial research is required to improve the current technologies for waste printed circuit boards recycling in the outlook of large-scale applications.
Annotated bibliography of software engineering laboratory literature
NASA Technical Reports Server (NTRS)
Kistler, David; Bristow, John; Smith, Don
1994-01-01
This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.
Time to reorganize federal Earth system science and technology?
NASA Astrophysics Data System (ADS)
Kisslinger, Carl
My usual reaction to plans to reorganize activities in the federal government is that these are the last resort of a bureaucrat who is faced with a tough problem and has no idea how to solve it. However, this may be the time to consider seriously a reorganization that would assemble key elements of Earth-oriented science and technology into a single federal agency. This is not a new idea, as proposals to achieve this goal have been formulated in the past and wiring diagrams for a new agency have been developed. These proposals have faded away in the face of resistance to substantial structural change that characterizes the federal bureaucracy.
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.
2011-01-01
NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.
TESSX: A Mission for Space Exploration with Tethers
NASA Technical Reports Server (NTRS)
Cosmo, Mario L.; Lorenzini, Enrico C.; Gramer, Daniel J.; Hoffman, John H.; Mazzoleni, Andre P.
2005-01-01
Tethers offer significant potential for substantially increasing payload mass fraction, increasing spacecraft lifetime, enhancing long-term space travel, and enabling the understanding and development of gravity-dependent technologies required for Moon and Mars exploration. The development of the Tether Electrodynamic Spin-up and Survivability Experiment (TESSX) will support applications relevant to NASA's new exploration initiative, including: artificial gravity generation, formation flying, electrodynamic propulsion, momentum exchange, and multi-amp current collection and emission. Under the broad term TESSX, we are currently evaluating several different tether system configurations and operational modes. The initial results of this work are presented, including hardware development, orbital dynamics simulations, and electrodynamics design and analysis.
Cyberinfrastructure: empowering a "third way" in biomedical research.
Buetow, Kenneth H
2005-05-06
Biomedicine has experienced explosive growth, fueled in parts by the substantial increase of government support, continued development of the biotechnology industry, and the increasing adoption of molecular-based medicine. At its core, it is composed of fiercely independent, innovative, entrepreneurial individuals, organizations, and institutions. The field has developed unprecedented capacity to characterize biologic systems at their most fundamental levels with the use of tools and technologies almost unimaginable a generation ago. Biomedicine is at the precipice of unlocking the very essence of biologic life and enabling a new generation of medicine. Development and deployment of cyberinfrastructure may prove to be on the critical path to obtaining these goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu T; Lantz, Eric J; Mowers, Matthew
Improvements to wind technologies have, in part, led to substantial deployment of U.S. wind power in recent years. The degree to which technology innovation will continue is highly uncertain adding to uncertainties in future wind deployment. We apply electric sector modeling to estimate the potential wind deployment opportunities across a range of technology advancement projections. The suite of projections considered span a wide range of possible cost and technology innovation trajectories, including those from a recent expert elicitation of wind energy experts, a projection based on the broader literature, and one reflecting estimates based on a U.S. DOE research initiative.more » In addition, we explore how these deployment pathways may impact the electricity system, electricity consumers, the environment, and the wind-related workforce. Overall, our analysis finds that wind technology innovation can have consequential implications for future wind power development throughout the United States, impact the broader electricity system, lower electric system and consumer costs, provide potential environmental benefits, and grow the U.S. wind workforce.« less
Current advances and future perspectives in extrusion-based bioprinting.
Ozbolat, Ibrahim T; Hospodiuk, Monika
2016-01-01
Extrusion-based bioprinting (EBB) is a rapidly growing technology that has made substantial progress during the last decade. It has great versatility in printing various biologics, including cells, tissues, tissue constructs, organ modules and microfluidic devices, in applications from basic research and pharmaceutics to clinics. Despite the great benefits and flexibility in printing a wide range of bioinks, including tissue spheroids, tissue strands, cell pellets, decellularized matrix components, micro-carriers and cell-laden hydrogels, the technology currently faces several limitations and challenges. These include impediments to organ fabrication, the limited resolution of printed features, the need for advanced bioprinting solutions to transition the technology bench to bedside, the necessity of new bioink development for rapid, safe and sustainable delivery of cells in a biomimetically organized microenvironment, and regulatory concerns to transform the technology into a product. This paper, presenting a first-time comprehensive review of EBB, discusses the current advancements in EBB technology and highlights future directions to transform the technology to generate viable end products for tissue engineering and regenerative medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Development of SIS Mixers for 1 THz
NASA Technical Reports Server (NTRS)
Zmuidzinas, J.; Kooi, J.; Chattopadhyay, G.; Bumble, B.; LeDuc, H. G.; Stern, J. A.
1998-01-01
SIS heterodyne mixer technology based on niobium tunnel junctions has now been pushed to frequencies over 1 THz, clearly demonstrating that the SIS junctions are capable of mixing at frequencies up to twice the energy gap frequency (4 Delta/h). However, the performance degrades rapidly above the gap frequency of niobium (2 Delta/h approx. 700 GHz) due to substantial ohmic losses in the on-chip tuning circuit. To solve this problem, the tuning circuit should be fabricated using a superconducting film with a larger energy gap, such as NbN; unfortunately, NbN films often have a substantial excess surface resistance in the submillimeter band. In contrast, the SIS mixer measurements we present in this paper indicate that the losses for NbTiN thin films can be quite low.
Recent developments in microfluidic large scale integration.
Araci, Ismail Emre; Brisk, Philip
2014-02-01
In 2002, Thorsen et al. integrated thousands of micromechanical valves on a single microfluidic chip and demonstrated that the control of the fluidic networks can be simplified through multiplexors [1]. This enabled realization of highly parallel and automated fluidic processes with substantial sample economy advantage. Moreover, the fabrication of these devices by multilayer soft lithography was easy and reliable hence contributed to the power of the technology; microfluidic large scale integration (mLSI). Since then, mLSI has found use in wide variety of applications in biology and chemistry. In the meantime, efforts to improve the technology have been ongoing. These efforts mostly focus on; novel materials, components, micromechanical valve actuation methods, and chip architectures for mLSI. In this review, these technological advances are discussed and, recent examples of the mLSI applications are summarized. Copyright © 2013 Elsevier Ltd. All rights reserved.
Consumer involvement in the health technology assessment program.
Royle, Jane; Oliver, Sandy
2004-01-01
This study aims to describe a cycle of development leading to sustainable methods for involving consumers in the management of a program commissioning health technology assessment. Staff time was dedicated to developing procedures for recruiting and briefing consumers to participate in prioritizing, commissioning, and reporting research. Resources and support were developed in light of early feedback from consumers and those working with them. These were piloted and amended before being used routinely. Over 4 years, procedures and resources have been developed to support six consumers attending seven to eight prioritization meetings a year; thirty to forty-five consumers each year commenting on research need for particular topics; thirty consumers a year commenting on research proposals, and twenty a year commenting on research reports. The procedures include clear job descriptions, induction and development days, clear briefing materials, payment for substantial tasks, and regularly seeking feedback to improve procedures. Explicit, inclusive, and reproducible methods for supporting consumer involvement that satisfy National Health Service policy recommendations for involving consumers in research require dedicated staff time to support a cycle of organizational development.
Dewhurst, David; Borgstein, Eric; Grant, Mary E; Begg, Michael
2009-08-01
The development of online virtual patients has proved to be an effective vehicle for pedagogical and technological skills transfer and capacity building for medical and healthcare educators in Malawi. A project between the University of Edinburgh and the University of Malawi has delivered more than 20 collaboratively developed, virtual patients, contextualised for in-country medical and healthcare education and, more significantly, a cadre of healthcare professionals skilled in developing digital resources and integrating these into their emerging curricula. The process of engaging with new approaches to teaching and delivering personalised, context sensitive content via a game-informed, technology-supported process has contributed to the ability of healthcare educators in Malawi to drive pedagogical change, meet the substantial challenges of delivering new curricula, cope with increasing student numbers and promote teacher professional development. This initial phase of the project has laid the foundation for a broader second phase that focuses on promoting curriculum change, developing educational infrastructure and in-country capacity to create, and integrate digital resources into education and training across multi-professional groups and across educational levels.
Ngai, Tommy K K; Shrestha, Roshan R; Dangol, Bipin; Maharjan, Makhan; Murcott, Susan E
2007-10-01
In the last 20 years, the widespread adoption of shallow tubewells in Nepal Terai region enabled substantial improvement in access to water, but recent national water quality testing showed that 3% of these sources contain arsenic above the Nepali interim guideline of 50 microg/L, and up to 60% contain unsafe microbial contamination. To combat this crisis, MIT, ENPHO and CAWST together researched, developed and implemented a household water treatment technology by applying an iterative, learning development framework. A pilot study comparing 3 technologies against technical, social, and economic criteria showed that the Kanchan Arsenic Filter (KAF) is the most promising technology for Nepal. A two-year technical and social evaluation of over 1000 KAFs deployed in rural villages of Nepal determined that the KAF typically removes 85-90% arsenic, 90-95% iron, 80-95% turbidity, and 85-99% total coliforms. Then 83% of the households continued to use the filter after 1 year, mainly motivated by the clean appearance, improved taste, and reduced odour of the filtered water, as compared to the original water source. Although over 5,000 filters have been implemented in Nepal by January 2007, further research rooted in sustainable development is necessary to understand the technology diffusion and scale-up process, in order to expand access to safe water in the country and beyond.
Distance Technology in Nursing Education. AACN White Paper.
ERIC Educational Resources Information Center
American Association of Colleges of Nursing, Washington, DC.
Careful use of technology in education may enhance the ability of the nursing education profession to educate nurses for practice, prepare future nurse educators, and advance nursing science. To take full advantage of technology, several factors must be addressed. Superior distance education programs require substantial institutional financial…
Building Technology Literacy into the Curriculum
ERIC Educational Resources Information Center
Boone, Kathy
2009-01-01
Today's students face a world where revolutionary changes in technology; the global marketplace; and significant social, political, and environment issues dramatically affect what they must learn. Teaching students to think and act critically, creatively, and ethically--and to use technology to this end--will endow them with substantial economic…
Environmental engineering education for developing countries: framework for the future.
Ujang, Z; Henze, M; Curtis, T; Schertenleib, R; Beal, L L
2004-01-01
This paper presents the existing philosophy, approach, criteria and delivery of environmental engineering education (E3) for developing countries. In general, environmental engineering is being taught in almost all major universities in developing countries, mostly under civil engineering degree programmes. There is an urgent need to address specific inputs that are particularly important for developing countries with respect to the reality of urbanisation and industrialisation. The main component of E3 in the near future will remain on basic sanitation in most developing countries, with special emphasis on the consumer-demand approach. In order to substantially overcome environmental problems in developing countries, E3 should include integrated urban water management, sustainable sanitation, appropriate technology, cleaner production, wastewater minimisation and financial framework.
CVX Damage Control Information Technology Evolutionary Model
1999-03-01
technology -based learning generally) may be exciting technically, it does not automatically lead to better educational programs. Good instructional design...expected to act on the first Aircraft Carrier to attempt substantial manning reductions if nothing is learned from Smart Ship. Beyond the technologies ... technology of the day. Many of the lessons learned then are in use today. However, technology breakthroughs we are now experiencing invite us to
Dr. Robert H. Goddard and His Rocket
NASA Technical Reports Server (NTRS)
2004-01-01
Goddard rocket with four rocket motors. This rocket attained an altitude of 200 feet in a flight, November 1936, at Roswell, New Mexico. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology
Dr. Robert H. Goddard and His Rocket
NASA Technical Reports Server (NTRS)
1940-01-01
Goddard rocket in launching tower at Roswell, New Mexico, March 21, 1940. Fuel was injected by pumps from the fueling platform at left. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology
This proposal develops scalable R / Bioconductor software infrastructure and data resources to integrate complex, heterogeneous, and large cancer genomic experiments. The falling cost of genomic assays facilitates collection of multiple data types (e.g., gene and transcript expression, structural variation, copy number, methylation, and microRNA data) from a set of clinical specimens. Furthermore, substantial resources are now available from large consortium activities like The Cancer Genome Atlas (TCGA).
Laboratory medicine: challenges and opportunities.
Bossuyt, Xavier; Verweire, Kurt; Blanckaert, Norbert
2007-10-01
Technologic innovations have substantially improved the productivity of clinical laboratories, but the services provided by clinical laboratories are increasingly becoming commoditized. We reflect on how current developments may affect the future of laboratory medicine and how to deal with these changes. We argue that to be prepared for the future, clinical laboratories should enhance efficiency and reduce costs by forming alliances and networks; consolidating, integrating, or outsourcing; and more importantly, create additional value by providing knowledge services related to in vitro diagnostics.
2001-04-01
part of the following report: TITLE: New Information Processing Techniques for Military Systems [les Nouvelles techniques de traitement de l’information...rapidly developing information increasing amount of time is needed for gathering and technology has until now not yet resulted in a substantial...Information Processing Techniques for Military Systems", held in Istanbul, Turkey, 9-11 October 2000, and published in RTO MP-049. 23-2 organisations. The
Jeskey, Mary; Card, Elizabeth; Nelson, Donna; Mercaldo, Nathaniel D; Sanders, Neal; Higgins, Michael S; Shi, Yaping; Michaels, Damon; Miller, Anne
2011-10-01
To report an exploratory action-research process used during the implementation of continuous patient monitoring in acute post-surgical nursing units. Substantial US Federal funding has been committed to implementing new health care technology, but failure to manage implementation processes may limit successful adoption and the realisation of proposed benefits. Effective approaches for managing barriers to new technology implementation are needed. Continuous patient monitoring was implemented in three of 13 medical/surgical units. An exploratory action-feedback approach, using time-series nurse surveys, was used to identify barriers and develop and evaluate responses. Post-hoc interviews and document analysis were used to describe the change implementation process. Significant differences were identified in night- and dayshift nurses' perceptions of technology benefits. Research nurses' facilitated the change process by evolving 'clinical nurse implementation specialist' expertise. Health information technology (HIT)-related patient outcomes are mediated through nurses' acting on new information but HIT designed for critical care may not transfer to acute care settings. Exploratory action-feedback approaches can assist nurse managers in assessing and mitigating the real-world effects of HIT implementations. It is strongly recommended that nurse managers identify stakeholders and develop comprehensive plans for monitoring the effects of HIT in their units. © 2011 Blackwell Publishing Ltd.
Smart wheelchairs: A literature review.
Simpson, Richard C
2005-01-01
Several studies have shown that both children and adults benefit substantially from access to a means of independent mobility. While the needs of many individuals with disabilities can be satisfied with traditional manual or powered wheelchairs, a segment of the disabled community finds it difficult or impossible to use wheelchairs independently. To accommodate this population, researchers have used technologies originally developed for mobile robots to create "smart wheelchairs." Smart wheelchairs have been the subject of research since the early 1980s and have been developed on four continents. This article presents a summary of the current state of the art and directions for future research.
Remote Sensing: A valuable tool in the Forest Service decision making process. [in Utah
NASA Technical Reports Server (NTRS)
Stanton, F. L.
1975-01-01
Forest Service studies for integrating remotely sensed data into existing information systems highlight a need to: (1) re-examine present methods of collecting and organizing data, (2) develop an integrated information system for rapidly processing and interpreting data, (3) apply existing technological tools in new ways, and (4) provide accurate and timely information for making right management decisions. The Forest Service developed an integrated information system using remote sensors, microdensitometers, computer hardware and software, and interactive accessories. Their efforts substantially reduce the time it takes for collecting and processing data.
Strategic Research Directions in Microgravity Materials Science
NASA Technical Reports Server (NTRS)
Clinton, Raymond G.; Semmes, Ed; Cook, Beth; Wargo, Michael J.; Marzwell, Neville
2003-01-01
The next challenge of space exploration is the development of the capabilities for long-term missions beyond low earth orbit. NASA s scientific advisory groups and internal mission studies have identified several fundamental issues which require substantial advancements in new technology if these goals are to be accomplished. Crews must be protected from the severe radiation environment beyond the earth s magnetic field. Chemical propulsion must be replaced by systems that require less mass and are more efficient. The overall launch complement must be reduced by developing repair and fabrication techniques which utilize or recycle available materials.
Structures, Material and Processes Technology in the Future Launchers Preparatory Program
NASA Astrophysics Data System (ADS)
Baiocco, P.; Ramusat, G.; Breteau, J.; Bouilly, Th.; Lavelle, Fl.; Cardone, T.; Fischer, H.; Appel, S.; Block, U.
2014-06-01
In the frame of the technology / demonstration activity for European launchers developments and evolutions, a top-down / bottom-up approach has been employed to identify promising technologies and alternative conception. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been devoted to structures, material and process technology.Preliminary specifications have been used in order to permit sub-system design with the goal to find the major benefit for the overall launch system. In this respect competitiveness factors have been defined to down- select the technology and the corresponding optimized design. The development cost, non-recurring cost, industrialization and operational aspects have been considered for the identification of the most interesting solutions. The TRL/IRL has been assessed depending on the manufacturing company and a preliminary development plan has been issued for some technology.The reference launch systems for the technology and demonstration programs are mainly Ariane 6 with its evolutions, VEGA C/E and others possible longer term systems. Requirements and reference structures architectures have been considered in order to state requirements for representative subscale or full scale demonstrators. The major sub-systems and structures analyzed are for instance the upper stage structures, the engine thrust frame (ETF), the inter stage structures (ISS), the cryogenic propellant tanks, the feeding lines and their attachments, the pressurization systems, the payload adapters and fairings. A specific analysis has been devoted to the efficiency of production processes associated to technologies and design features.The paper provides an overview of the main results of the technology and demonstration activities with the associated system benefits. The materials used for the main structures are metallic and composite owing to sub-systems or sub-assemblies proposed for the European launch systems in development and their evolutions.
Breakthrough Capability for UVOIR Space Astronomy: Reaching the Darkest Sky
NASA Technical Reports Server (NTRS)
Greenhouse, Matthew A.; Benson, Scott W.; Englander, Jacob; Falck, Robert D.; Fixsen, Dale J.; Gardner, Jonathan P.; Kruk, Jeffery W.; Oleson, Steven R.; Thronson, Harley A.
2015-01-01
We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present two case studies in which SEP is used to enable a 700 kg Explorer-class and 7000 kg flagship-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point (SEL2) orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. Similarly, we find that astrophysics utilization of high power SEP being developed for the Asteroid Redirect Robotics Mission (ARRM) can have a substantial impact on the sensitivity performance of heavier flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope.
Balanced Flow Metering and Conditioning: Technology for Fluid Systems
NASA Technical Reports Server (NTRS)
Kelley, Anthony R.
2006-01-01
Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.
NASA Astrophysics Data System (ADS)
Yeo, Leslie; Rezk, Amgad
2017-11-01
The low take-up of microfluidic technology at the laboratory bench despite 25 years of advances can be attributed to the reluctance of practitioners to adopt new and sophisticated technology, which requires substantial retraining, as well as the large investments that have already been made in the vast array of existing laboratory equipment. A way to circumvent this is to design microfluidic technology to retrofit existing laboratory technology such as microscope stages, microplate readers, etc. This is however not without challenge as existing microfluidic devices themselves often require large ancillary equipment to drive fluidic actuation/detection, which are not always amenable to integration into these existing laboratory formats. We have developed a low-cost and scalable modular plug-and-play microplatform that facilitates individual addressability of each well in a microarray plate for sample dispensing, mixing and preconcentration, as well as its ejection via jetting/nebulisation for subsequent analysis. As this cannot be achieved using standard acoustofluidics, we have developed a new electroacoustic mechanism that allows the transmission of high frequency sound waves into each well while uniquely confining the electric field off the piezoelectric chip.
Net-Zero Building Technologies Create Substantial Energy Savings -
-by-step information for decision making around net-zero energy building technologies. The past three improved insulation, windows, and heating and cooling systems. Despite these strides, energy use by energy building methodologies and technologies during a tour of the RSF's rooftop PV system. Photo by
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fri, R.W.
Now that analysts have had seven months to ponder the achievements of the Earth Summit, it is time to consider the next step in attaining sustainable development. As the summit revealed, the big issues are formidable - among them, overconsumption in the North, overpopulation in the South, insufficient resource transfers from North to South, and limited resources to devote to global environmental problems. Each of these issues requires a trade-off between long-term global concerns and immediate national interests. Since technological solutions to the dilemma of furthering economic development are neither quick nor cheap, this political reality suggests that progress maymore » hinge on attention to some modest goals. Helping developing countries to define and balance their own economic and environmental priorities, and using these priorities to guide the planning of both public and private sector investments, would be welcome signs of progress. Such feasible and inexpensive assistance would exert useful leverage over the substantial transfers of financial and technological resources that are already taking place, especially in the private sector. Equally encouraging would be growing investments in the development of technology to use natural and environmental resources more efficiently and in creating the market and other institutional mechanisms needed to assure use of these technologies. Efficient resource use may not prove to be a complete answer to the big questions of environment and development, much less one with no regrets. However, it will at least reduce the cost of dealing with the hard issues, and so make them more tractable.« less
ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project
NASA Technical Reports Server (NTRS)
Baresi, Larry
1989-01-01
The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.
ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project
NASA Astrophysics Data System (ADS)
Baresi, Larry
1989-03-01
The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.
Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank
NASA Astrophysics Data System (ADS)
Szelinski, B.; Lange, H.; Röttger, C.; Sacher, H.; Weiland, S.; Zell, D.
2012-12-01
In the frame of the Future Launcher Preparatory Program (FLPP) investigating advancing technologies for the Next Generation of Launchers (NGL) a number of novel key technologies are presently under development for significantly improving vehicle performance in terms of payload capacity and mission versatility. As a respective ESA guided technology development program, Cryogenic Upper Stage Technologies (CUST) has been launched within FLPP that hosts among others the development of a common bulkhead to separate liquid hydrogen from the liquid oxygen compartment. In this context, MT Aerospace proposed an advanced sandwich design concept which is currently in the development phase reaching for TRL4 under MT Aerospace responsibility. Key components of this sandwich common bulkhead are a specific core material, situated in-between two thin aluminum face sheets, and an innovative thermal decoupling element at the equatorial region. The combination of these elements provides excellent thermal insulation capabilities and mechanical performance at a minimum weight, since mechanical and thermal functions are merged in the same component. This improvement is expressed by substantial performance figures of the proposed concept that include high resistance against reverse pressure, an optimized heat leak and minimized mass, involving the sandwich dome structure and the adjacent interface rings. The development of single sub-technologies, all contributing to maturate the sandwich common bulkhead towards the desired technology readiness level (TRL), is described in the context of the given design constraints as well as technical, functional and programmatic requirements, issued from the stage level. This includes the thermal and mechanical characterization of core materials, manufacturing issues as well as non-destructive testing and the thermal and structural analyses and dimensioning of the complete common bulkhead system. Dedicated TRL assessments in the Ariane 5 Mid-life Evolution (A5-ME) program track the progress of these technology developments and analyze their applicability in time for A5-ME. In order to approximate A5-ME concerned preconditions, activities are initiated aiming at harmonization of the available specifications. Hence, a look-out towards a further technology step approaching TRL6 in a subsequent phase is given, briefly addressing topics of full scale manufacture and appropriate thermo-mechanical testing of an entire sandwich common bulkhead.
NASA Astrophysics Data System (ADS)
Jack-Scott, E.; Arnott, J. C.; Katzenberger, J.; Davis, S. J.; Delman, E.
2015-12-01
It has been a generational challenge to simultaneously meet the world's energy requirements, while remaining within the bounds of acceptable cost and environmental impact. To this end, substantial research has explored various energy futures on a global scale, leaving decision-makers and the public overwhelmed by information on energy options. In response, this interactive energy table was developed as a comprehensive resource through which users can explore the availability, scalability, and growth potentials of all energy technologies currently in use or development. Extensive research from peer-reviewed papers and reports was compiled and summarized, detailing technology costs, technical considerations, imminent breakthroughs, and obstacles to integration, as well as political, social, and environmental considerations. Energy technologies fall within categories of coal, oil, natural gas, nuclear, solar, wind, hydropower, ocean, geothermal and biomass. In addition to 360 expandable cells of cited data, the interactive table also features educational windows with background information on each energy technology. The table seeks not to advocate for specific energy futures, but to succinctly and accurately centralize peer-reviewed research and information in an interactive, accessible resource. With this tool, decision-makers, researchers and the public alike can explore various combinations of energy technologies and their quantitative and qualitative attributes that can satisfy the world's total primary energy supply (TPES) while making progress towards a near zero carbon future.
Composite Cryotank Technologies and Development 2.4 and 5.5M out of Autoclave Tank Test Results
NASA Technical Reports Server (NTRS)
Jackson, Justin R.; Vickers, John; Fikes, John
2015-01-01
The Composite Cryotank Technologies and Demonstration (CCTD) project substantially matured composite, cryogenic propellant tank technology. The project involved the design, analysis, fabrication, and testing of large-scale (2.4-m-diameter precursor and 5.5-m-diameter) composite cryotanks. Design features included a one-piece wall design that minimized tank weight, a Y-joint that incorporated an engineered material to alleviate stress concentration under combined loading, and a fluted core cylindrical section that inherently allows for venting and purging. The tanks used out-of-autoclave (OoA) cured graphite/epoxy material and processes to enable large (up to 10-m-diameter) cryotank fabrication, and thin-ply prepreg to minimize hydrogen permeation through tank walls. Both tanks were fabricated at Boeing using automated fiber placement on breakdown tooling. A fluted core skirt that efficiently carried axial loads and enabled hydrogen purging was included on the 5.5-m-diameter tank. Ultrasonic inspection was performed, and a structural health monitoring system was installed to identify any impact damage during ground processing. The precursor and 5.5-m-diameter tanks were tested in custom test fixtures at the National Aeronautics and Space Administration Marshall Space Flight Center. The testing, which consisted of a sequence of pressure and thermal cycles using liquid hydrogen, was successfully concluded and obtained valuable structural, thermal, and permeation performance data. This technology can be applied to a variety of aircraft and spacecraft applications that would benefit from 30 to 40% weight savings and substantial cost savings compared to aluminum lithium tanks.
The Future of Air Conditioning for Buildings - Executive Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Guernsey, Matt; Young, J.
2016-07-01
The Building Technologies Office (BTO), within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy, works with researchers and industry to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. Air conditioning (A/C) systems in buildings contribute to GHG emissions both directly through refrigerant emissions, as well as indirectly through fossil fuel combustion for power generation. BTO promotes pre-competitive research and development (R&D) on next-generation HVAC technologies that support the phase down of hydrofluorocarbon (HFC) production and consumption, as well as cost-effective energy efficiency improvements.more » Over the past several decades, product costs and lifecycle cooling costs have declined substantially in many global markets due to improved, higher-volume manufacturing and higher energy efficiency driven by R&D investments and efficiency policies including minimum efficiency standards and labeling programs.1 This report characterizes the current landscape and trends in the global A/C market, including discussion of both direct and indirect climate impacts, and potential global warming impacts from growing global A/C usage. The report also documents solutions that can help achieve international goals for energy efficiency and GHG emissions reductions. The solutions include pathways related to low-global warming potential2 (GWP) refrigerants, energy efficiency innovations, long-term R&D initiatives, and regulatory actions. DOE provides, with this report, a fact-based vision for the future of A/C use around the world. DOE intends for this vision to reflect a broad and balanced aggregation of perspectives. DOE brings together this content in an effort to support dialogue within the international community and help keep key facts and objectives at the forefront among the many important discussions.« less
Synopsis of Precision Landing and Hazard Avoidance (PL&HA) Capabilities for Space Exploration
NASA Technical Reports Server (NTRS)
Robertson, Edward A.
2017-01-01
Until recently, robotic exploration missions to the Moon, Mars, and other solar system bodies relied upon controlled blind landings. Because terrestrial techniques for terrain relative navigation (TRN) had not yet been evolved to support space exploration, landing dispersions were driven by the capabilities of inertial navigation systems combined with surface relative altimetry and velocimetry. Lacking tight control over the actual landing location, mission success depended on the statistical vetting of candidate landing areas within the predicted landing dispersion ellipse based on orbital reconnaissance data, combined with the ability of the spacecraft to execute a controlled landing in terms of touchdown attitude, attitude rates, and velocity. In addition, the sensors, algorithms, and processing technologies required to perform autonomous hazard detection and avoidance in real time during the landing sequence were not yet available. Over the past decade, NASA has invested substantial resources on the development, integration, and testing of autonomous precision landing and hazard avoidance (PL&HA) capabilities. In addition to substantially improving landing accuracy and safety, these autonomous PL&HA functions also offer access to targets of interest located within more rugged and hazardous terrain. Optical TRN systems are baselined on upcoming robotic landing missions to the Moon and Mars, and NASA JPL is investigating the development of a comprehensive PL&HA system for a Europa lander. These robotic missions will demonstrate and mature PL&HA technologies that are considered essential for future human exploration missions. PL&HA technologies also have applications to rendezvous and docking/berthing with other spacecraft, as well as proximity navigation, contact, and retrieval missions to smaller bodies with microgravity environments, such as asteroids.
The emerging story of emerging technologies in neuropsychiatry
Coffey, M. Justin; Coffey, C. Edward
2016-01-01
The growth of new technologies in health care is exponential, and the impact of such rapid technological innovation on health care delivery is substantial. This review describes two emerging technologies—mobile applications and wearable technologies—and uses a virtual case report to illustrate the impact of currently available technologies on the health care experience of a patient with neuropsychiatric illness. PMID:27489452
Schultz, Simon R; Copeland, Caroline S; Foust, Amanda J; Quicke, Peter; Schuck, Renaud
2017-01-01
Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this article we will review some key recent advances: improved fluorophores for single cell resolution functional neuroimaging using a two photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity, that scale well with pattern size.
Schultz, Simon R.; Copeland, Caroline S.; Foust, Amanda J.; Quicke, Peter; Schuck, Renaud
2017-01-01
Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this article we will review some key recent advances: improved fluorophores for single cell resolution functional neuroimaging using a two photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity, that scale well with pattern size. PMID:28757657
Human genetics and genomics a decade after the release of the draft sequence of the human genome.
Naidoo, Nasheen; Pawitan, Yudi; Soong, Richie; Cooper, David N; Ku, Chee-Seng
2011-10-01
Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade.
Human genetics and genomics a decade after the release of the draft sequence of the human genome
2011-01-01
Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade. PMID:22155605
Global climate change and the mitigation challenge.
Princiotta, Frank
2009-10-01
Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO2), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8 degrees C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO2 emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5 degrees C in 2100, the recent annual 3% CO2 emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required.
Bits and bytes: the future of radiology lies in informatics and information technology.
Brink, James A; Arenson, Ronald L; Grist, Thomas M; Lewin, Jonathan S; Enzmann, Dieter
2017-09-01
Advances in informatics and information technology are sure to alter the practice of medical imaging and image-guided therapies substantially over the next decade. Each element of the imaging continuum will be affected by substantial increases in computing capacity coincident with the seamless integration of digital technology into our society at large. This article focuses primarily on areas where this IT transformation is likely to have a profound effect on the practice of radiology. • Clinical decision support ensures consistent and appropriate resource utilization. • Big data enables correlation of health information across multiple domains. • Data mining advances the quality of medical decision-making. • Business analytics allow radiologists to maximize the benefits of imaging resources.
The clinical benefit and safety of current and future assisted reproductive technology.
Brown, Rachel; Harper, Joyce
2012-08-01
Since the first birth by IVF was achieved in 1978, the techniques involved in assisted reproductive technology have grown at an enormous rate. However, new technology has rarely been robustly validated before clinical use and developing scientific understanding of the available techniques has done little to alter their use. Furthermore, there are inconsistencies in the available clinical studies and endpoints. The benefits of some technologies already established for routine use are currently dubious and there are clear ethical concerns with providing them to patients when their scientific basis is not clear. As the uptake of assisted reproductive technology increases and newer technologies continue to push the boundaries of science, it is important to consider the clinical benefits and safety of all assisted reproductive technologies. This review will discuss aspects of some of the more recent techniques, including sperm DNA-damage tests, intracytoplasmic morphologically selected sperm injection, amino acid and metabolomics profiling, preimplantation genetic screening and time-lapse imaging, and those that may have substantial impacts on the field of reproductive medicine in the future including artificial gametes, ovarian transplantation and gene therapy. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Vacuum cooling of meat products: current state-of-the-art research advances.
Feng, Chaohui; Drummond, Liana; Zhang, Zhihang; Sun, Da-Wen; Wang, Qijun
2012-01-01
Vacuum cooling (VC) is commonly applied for cooling of several foodstuffs, to provide exceptionally rapid cooling rates with low energy consumption and resulting in high-quality food products. However, for products such as meat and cooked meat products, the higher cooling loss of vacuum cooling compared with established methods still means lower yields, and important meat quality parameters can be negatively affected. Substantial efforts during the past ten years have aimed to improve the technology in order to offer the meat industry, especially the cooked meat industry, optimized production in terms of safety regulations and guidelines, as well as meat quality. This review presents and discusses recent VC developments directed to the cooked meat industry. The principles of VC, and the basis for improvements of this technology, are firstly discussed; future prospects for research and development in this area are later explored, particularly in relation to cooling of cooked meat and meat products.
Chondrogenesis and cartilage tissue engineering: the longer road to technology development.
Mahmoudifar, Nastaran; Doran, Pauline M
2012-03-01
Joint injury and disease are painful and debilitating conditions affecting a substantial proportion of the population. The idea that damaged cartilage in articulating joints might be replaced seamlessly with tissue-engineered cartilage is of obvious commercial interest because the market for such treatments is large. Recently, a wealth of new information about the complex biology of chondrogenesis and cartilage has emerged from stem cell research, including increasing evidence of the role of physical stimuli in directing differentiation. The challenge for the next generation of tissue engineers is to identify the key elements in this new body of knowledge that can be applied to overcome current limitations affecting cartilage synthesis in vitro. Here we review the status of cartilage tissue engineering and examine the contribution of stem cell research to technology development for cartilage production. Copyright © 2011 Elsevier Ltd. All rights reserved.
Next-generation Digital Earth.
Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter
2012-07-10
A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.
Long-term follow-up of children conceived through assisted reproductive technology.
Lu, Yue-hong; Wang, Ning; Jin, Fan
2013-05-01
Children conceived via assisted reproductive technologies (ART) are nowadays a substantial proportion of the population. It is important to follow up these children and evaluate whether they have elevated health risks compared to naturally conceived (NC) children. In recent years there has been a lot of work in this field. This review will summarize what is known about the health of ART-conceived children, encompassing neonatal outcomes, birth defects, growth and gonadal developments, physical health, neurological and neurodevelopmental outcomes, psychosocial developments, risk for cancer, and epigenetic abnormalities. Most of the children conceived after ART are normal. However, there is increasing evidence that ART-conceived children are at higher risk of poor perinatal outcome, birth defects, and epigenetic disorders, and the mechanism(s) leading to these changes have not been elucidated. Continuous follow-up of children after ART is of great importance as they progress through adolescence into adulthood, and new ART techniques are constantly being introduced.
NASA Heavy Lift Rotorcraft Systems Investigation
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.
2005-01-01
The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1982-01-01
The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.
Lega, Federico; Calciolari, Stefano
2012-01-01
Over the last 20 years, hospitals have revised their organizational structures in response to new environmental pressures. Today, demographic and epidemiologic trends and recent technological advances call for new strategies to cope with ultra-elderly frail patients characterized by chronic conditions, high-severity health problems, and complex social situations. The main areas of change surround new ways of managing emerging clusters of patients whose needs are not efficiently or effectively met within traditional hospital organizations. Following the practitioner and academic literature, we first identify the most relevant clusters of new kinds of patients who represent an increasingly larger share of the hospital population in developed countries. Second, we propose a framework that synthesizes the major organizational innovations adopted by successful organizations around the world. We conclude by substantiating the trends of and the reasoning behind the prospective pattern of hospital organizational development.
NASA Astrophysics Data System (ADS)
Fernández, E.; Pelayo, F.; Romero, S.; Bongard, M.; Marin, C.; Alfaro, A.; Merabet, L.
2005-12-01
Clinical applications such as artificial vision require extraordinary, diverse, lengthy and intimate collaborations among basic scientists, engineers and clinicians. In this review, we present the state of research on a visual neuroprosthesis designed to interface with the occipital visual cortex as a means through which a limited, but useful, visual sense could be restored in profoundly blind individuals. We review the most important physiological principles regarding this neuroprosthetic approach and emphasize the role of neural plasticity in order to achieve desired behavioral outcomes. While full restoration of fine detailed vision with current technology is unlikely in the immediate near future, the discrimination of shapes and the localization of objects should be possible allowing blind subjects to navigate in a unfamiliar environment and perhaps even to read enlarged text. Continued research and development in neuroprosthesis technology will likely result in a substantial improvement in the quality of life of blind and visually impaired individuals.
The Future of Air Conditioning for Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Guernsey, Matt; Young, Jim
BTO works with researchers and industry to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. Air conditioning systems in buildings contribute to GHG emissions both directly through refrigerant emissions, as well as indirectly through fossil fuel combustion for power generation. BTO promotes pre-competitive research and development on next-generation HVAC technologies that support the phase down of hydrofluorocarbon (HFC) production and consumption, as well as cost-effective energy efficiency improvements. DOE provides, with this report, a fact-based vision for the future of A/C use around the world. DOE intends formore » this vision to reflect a broad and balanced aggregation of perspectives. DOE brings together this content in an effort to support dialogue within the international community and help keep key facts and objectives at the forefront among the many important discussions.« less
Comparative evaluation of surface and downhole steam-generation techniques
NASA Astrophysics Data System (ADS)
Hart, C.
The application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. The technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses are compared. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality.
Perovskite- and Heusler based materials for thermoelectric converters
NASA Astrophysics Data System (ADS)
Weidenkaff, Anke
2015-03-01
The broad application of thermoelectric converters in future energy technologies requires the development of active, stable, low cost and sustainable materials. Semiconductors based on perovskite and heusler structures show substantial potential for thermoelectric energy conversion processes. Their good performance can be explained based on their suitable band structure, adjusted charge carrier density, mass and mobility, limited phonon transport, electron filtering possibilities, strongly correlated electronic systems, etc. These properties are widely tuneable by following theoretical concepts and a deep composition-structure-property understanding to change the composition, structure and size of the crystallites in innovative scalable synthesis procedures. Improved thermoelectric materials are developed, synthesised and tested in diverse high temperature applications to improve the efficiency and energy density of the thermoelectric conversion process. The lecture will provide a summary on the field of advanced perovskite-type ceramics and Heusler compounds gaining importance for a large number of future energy technologies.
Stuckey, Melanie; Fulkerson, Robyn; Read, Emily; Russell-Minda, Elizabeth; Munoz, Claudio; Kleinstiver, Peter; Petrella, Robert
2011-07-01
Remote monitoring technologies are ideally suited for rural communities with limited access to health care. In an 8-week pilot study, we examined the feasibility of implementing and conducting a technology-intensive intervention in an underserviced rural setting. Our goal was to test the utility of self-monitoring technologies, physical activity, and education as tools to manage health indicators for the development of the cardiovascular complications (CVCs) of type 2 diabetes. The Diabetes and Technology for Increased Activity study was an open single-center study conducted in a community-based research setting. All 24 participants were provided with a Blackberry™ Smartphone, blood pressure monitor, glucometer, and pedometer. Smartphones transmitted measurements and survey results to the database, interfaced participants with the clinical team, and allowed for self-monitoring. Outcomes were improved body composition, improved markers of CVC risk factors, increased daily exercise, and interest in or awareness of lifestyle changes that impact health outcomes. Participants had excellent compliance for measurements, as self-monitoring provided a sense of security that improved from week 4 to week 8. Our team gained substantial insight into the operational requirements of technology-facilitated health care, including redefined hours of service; data reporting, management, and access protocols; and the utility of real-time clinical measures by remote monitoring. We developed an understanding of knowledge translation strategies as well as successful motivational and educational tools. Importantly, remote monitoring technology was found to be feasible and accepted in a rural setting. © 2011 Diabetes Technology Society.
System driven technology selection for future European launch systems
NASA Astrophysics Data System (ADS)
Baiocco, P.; Ramusat, G.; Sirbi, A.; Bouilly, Th.; Lavelle, F.; Cardone, T.; Fischer, H.; Appel, S.
2015-02-01
In the framework of the next generation launcher activity at ESA, a top-down approach and a bottom-up approach have been performed for the identification of promising technologies and alternative conception of future European launch vehicles. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been focused on the future launch vehicle technologies. Preliminary specifications have been used in order to permit sub-system design to find the major benefit for the overall launch system. The development cost, non-recurring and recurring cost, industrialization and operational aspects have been considered as competitiveness factors for the identification and down-selection of the most interesting technologies. The recurring cost per unit payload mass has been evaluated. The TRL/IRL has been assessed and a preliminary development plan has been traced for the most promising technologies. The potentially applicable launch systems are Ariane and VEGA evolution. The main FLPP technologies aim at reducing overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic hydrogen and oxygen propellants, propellant management subsystems, elements significantly reducing fabrication and operational costs, avionics, pyrotechnics, etc. to derive performing upper and booster stages. Application of the system driven approach allows creating performing technology demonstrators in terms of need, demonstration objective, size and cost. This paper outlines the process of technology down selection using a system driven approach, the accomplishments already achieved in the various technology fields up to now, as well as the potential associated benefit in terms of competitiveness factors.
Solar thermal technologies benefits assessment: Objectives, methodologies and results for 1981
NASA Technical Reports Server (NTRS)
Gates, W. R.
1982-01-01
The economic and social benefits of developing cost competitive solar thermal technologies (STT) were assessed. The analysis was restricted to STT in electric applications for 16 high insolation/high energy price states. Three fuel price scenarios and three 1990 STT system costs were considered, reflecting uncertainty over fuel prices and STT cost projections. After considering the numerous benefits of introducing STT into the energy market, three primary benefits were identified and evaluated: (1) direct energy cost savings were estimated to range from zero to $50 billion; (2) oil imports may be reduced by up to 9 percent, improving national security; and (3) significant environmental benefits can be realized in air basins where electric power plant emissions create substantial air pollution problems. STT research and development was found to be unacceptably risky for private industry in the absence of federal support. The normal risks associated with investments in research and development are accentuated because the OPEC cartel can artificially manipulate oil prices and undercut the growth of alternative energy sources.
Design colloidal particle morphology and self-assembly for coating applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Shan; Van Dyk, Antony; Maurice, Alvin
The progressive replacement of organic solvent-based coatings by waterborne latex polymer coatings has substantially renovated the coating industry, and generated huge environmental and health benefits. Today, on top of the continuing demand for higher performance and lower costs, the coating industry faces tighter regulation and higher sustainability standards. In addition, the new waterborne coatings have created unique opportunities and challenges in terms of fundamental understanding and research development. To address these challenges, polymer latex binders with diverse particle morphologies have been developed to improve coating performance. Furthermore, colloidal self-assembly has been utilized to help manufacturers make better paint with lessmore » cost. In this report, we review the recent progress in both fundamental study and industrial application in the context of developing new generation architectural coating materials. We introduce the basic concepts in coating materials and showcase several key technologies that have been implemented to improve coating performance. As a result, these technologies also represent the most important considerations in architectural coating design.« less
Using a formal requirements management tool for system engineering: first results at ESO
NASA Astrophysics Data System (ADS)
Zamparelli, Michele
2006-06-01
The attention to proper requirement analysis and maintenance is growing in modern astronomical undertakings. The increasing degree of complexity that current and future generations of projects have reached requires substantial system engineering efforts and the usage of all available technology to keep project development under control. One such technology is a tool which helps managing relationships between deliverables at various development stages, and across functional subsystems and disciplines as different as software, mechanics, optics and electronics. The immediate benefits are traceability and the possibility to do impact analysis. An industrially proven tool for requirements management is presented together with the first results across some projects at ESO and a cost/benefit analysis of its usage. Experience gathered so far shows that the extensibility and configurability of the tool from one hand, and integration with common documentation formats and standards on the other, make it appear as a promising solution for even small scale system development.
Design colloidal particle morphology and self-assembly for coating applications
Jiang, Shan; Van Dyk, Antony; Maurice, Alvin; ...
2017-05-04
The progressive replacement of organic solvent-based coatings by waterborne latex polymer coatings has substantially renovated the coating industry, and generated huge environmental and health benefits. Today, on top of the continuing demand for higher performance and lower costs, the coating industry faces tighter regulation and higher sustainability standards. In addition, the new waterborne coatings have created unique opportunities and challenges in terms of fundamental understanding and research development. To address these challenges, polymer latex binders with diverse particle morphologies have been developed to improve coating performance. Furthermore, colloidal self-assembly has been utilized to help manufacturers make better paint with lessmore » cost. In this report, we review the recent progress in both fundamental study and industrial application in the context of developing new generation architectural coating materials. We introduce the basic concepts in coating materials and showcase several key technologies that have been implemented to improve coating performance. As a result, these technologies also represent the most important considerations in architectural coating design.« less
Solar thermal technologies benefits assessment: Objectives, methodologies and results for 1981
NASA Astrophysics Data System (ADS)
Gates, W. R.
1982-07-01
The economic and social benefits of developing cost competitive solar thermal technologies (STT) were assessed. The analysis was restricted to STT in electric applications for 16 high insolation/high energy price states. Three fuel price scenarios and three 1990 STT system costs were considered, reflecting uncertainty over fuel prices and STT cost projections. After considering the numerous benefits of introducing STT into the energy market, three primary benefits were identified and evaluated: (1) direct energy cost savings were estimated to range from zero to $50 billion; (2) oil imports may be reduced by up to 9 percent, improving national security; and (3) significant environmental benefits can be realized in air basins where electric power plant emissions create substantial air pollution problems. STT research and development was found to be unacceptably risky for private industry in the absence of federal support. The normal risks associated with investments in research and development are accentuated because the OPEC cartel can artificially manipulate oil prices and undercut the growth of alternative energy sources.
NASA Astrophysics Data System (ADS)
Beyle, A. I.; Gustafson, C. G.; Kulakov, V. L.; Tarnopol'skii, Yu. M.
1997-09-01
Prospects for the application of advanced composites in the offshore technology of oil production are considered. The use of composites in vertical pipelines-risers seems to be the most efficient. The operating loads are studied and the attendant problems are formulated. A comparative analysis of the characteristics of metal, composite, and metal-composite deep-water risers is presented. A technique is developed for designing multilayered risers, taking into account the action of internal and external pressures, gravity, and the axial tensile force created by tensioners, as well as the residual technological stresses due to the difference in coefficients of thermal expansion, physical-chemical shrinkage, and force winding. Numerical estimations are given for a two-layered riser with an inner metal layer of steel, titanium, or aluminum alloys and a composite layer of glass- or carbon-fiber plastics formed by circumferential winding. It is shown that the technological stresses substantially affect the characteristics of the riser.
The Datafication of Everything - Even Toilets.
Lun, Kwok-Chan
2018-04-22
Health informatics has benefitted from the development of Info-Communications Technology (ICT) over the last fifty years. Advances in ICT in healthcare have now started to spur advances in Data Technology as hospital information systems, electronic health and medical records, mobile devices, social media and Internet Of Things (IOT) are making a substantial impact on the generation of data. It is timely for healthcare institutions to recognize data as a corporate asset and promote a data-driven culture within the institution. It is both strategic and timely for IMIA, as an international organization in health informatics, to take the lead to promote a data-driven culture in healthcare organizations. This can be achieved by expanding the terms of reference of its existing Working Group on Data Mining and Big Data Analysis to include (1) data analytics with special reference to healthcare, (2) big data tools and solutions, (3) bridging information technology and data technology and (4) data quality issues and challenges. Georg Thieme Verlag KG Stuttgart.
Production of Substitute Natural Gas from Coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew Lucero
2009-01-31
The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon frommore » the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.« less
Towards an Analytical Framework for Evaluating the Impact of Technology on Future Contexts
2004-02-01
truly revolutionary ( disruptive ) technologies that have the potential to substantially impact on future warfighting operations. It also discusses the roles of and relationships between the various participants in such a process.
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; Whitley, Ryan; Klem, Mark D.; Johnson, Wesley; Alexander, Leslie; D'Aversa, Emanuela; Ruault, Jean-Marc; Manfletti, Chiara; Caruana, Jean-Noel; Ueno, Hiroshi;
2016-01-01
As part of the Global Exploration Roadmap (GER), the International Space Exploration Coordination Group (ISECG) formed two technology gap assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. The participating agencies were ASI, CNES, DLR, ESA, JAXA, and NASA. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Critical Technology Needs reflected within the GER Technology Development Map (GTDM): Dust Mitigation and LOX/Methane Propulsion. LOx/Methane propulsion systems are enabling for future human missions Mars by significantly reducing the landed mass of the Mars ascent stage through the use of in-situ propellant production, for improving common fluids for life support, power and propulion thus allowing for diverse redundancy, for eliminating the corrosive and toxic propellants thereby improving surface operations and resusabilty, and for inceasing the performance of propulsion systems. The goals and objectives of the international team are to determine the gaps in technology that must be closed for LOx/Methane to be used in human exploration missions in cis-lunar, lunar, and Mars mission applications. An emphasis is placed on near term lunar lander applications with extensibility to Mars. Each agency provided a status of the substantial amount of Lox/Methane propulsion system development to date and their inputs on the gaps in the technology that are remaining. The gaps, which are now opportunities for collaboration, are then discussed.
NASA Astrophysics Data System (ADS)
Carlson, Paul T.
1995-04-01
The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in referred journals, full-length papers in published proceedings of conferences, full-length papers in unreferred journals, and books and book articles.
Titmarsh, Drew M.; Chen, Huaying; Glass, Nick R.; Cooper-White, Justin J.
2014-01-01
Stem cells are a powerful resource for producing a variety of cell types with utility in clinically associated applications, including preclinical drug screening and development, disease and developmental modeling, and regenerative medicine. Regardless of the type of stem cell, substantial barriers to clinical translation still exist and must be overcome to realize full clinical potential. These barriers span processes including cell isolation, expansion, and differentiation; purification, quality control, and therapeutic efficacy and safety; and the economic viability of bioprocesses for production of functional cell products. Microfluidic systems have been developed for a myriad of biological applications and have the intrinsic capability of controlling and interrogating the cellular microenvironment with unrivalled precision; therefore, they have particular relevance to overcoming such barriers to translation. Development of microfluidic technologies increasingly utilizes stem cells, addresses stem cell-relevant biological phenomena, and aligns capabilities with translational challenges and goals. In this concise review, we describe how microfluidic technologies can contribute to the translation of stem cell research outcomes, and we provide an update on innovative research efforts in this area. This timely convergence of stem cell translational challenges and microfluidic capabilities means that there is now an opportunity for both disciplines to benefit from increased interaction. PMID:24311699
Developing America's Shale Reserves - Water Strategies For A Sustainable Future (Invited)
NASA Astrophysics Data System (ADS)
Shephard, L. E.; Oshikanlu, T.
2013-12-01
The development of shale oil and gas reserves over the last several years has had a significant impact on securing America's energy future while making substantial contributions to our nation's economic prosperity. These developments have also raised serious concerns about potential detrimental impacts to our environment (i.e., land, air and water) with much media attention focused on the impacts to our nation's fresh water supply. These concerns are being discussed across the nation often with little or no distinction that the nature of the water issues vary depending on local circumstances (e.g., depth of aquifer and reservoir zone, water demand and availability, availability of discharge wells, regulatory framework, etc.) and regional shale reservoir development strategies (depth of wells, length of laterals, fluid-type used for fracturing, etc.). Growing concerns over long standing drought conditions in some areas and competing demands for water from other sectors (e.g., agriculture, domestic, etc.) add even greater uncertainty relative to fresh water. Water demands for gas and oil wells vary from region to region but nominally range from 10 to 15 acre feet of water (4 to 6 million gallons) for drilling and hydraulic fracturing applications. Flowback water from the hydraulic fracturing process varies and can range from 5 to 40 % of the water used for drilling and 'fracing'. Produced water can be substantial, leading to significant volumes of 'disposed water' where injection wells are available. A science-based systems approach to water lifecycle management that incorporates leading-edge technology development and considers economic and social impacts is critical for the long-term sustainable development of shale reserves. Various water recycling and reuse technologies are being deployed within select regions across the nation with each having limited success depending on region. The efficacy of reuse technology will vary based on produced water quantity and quality, flow back rates and the associated economics. A significant contributor to the economics can be offsite transportation costs from hauling water to and from the drill site. While economics often drive decisions on technology and reuse, available water and infrastructure (water pipelines, injection wells, etc.) are also important contributors. In some regions effluent water (i.e., treated or untreated waste water) is playing an increasing role to reduce impacting 'fresh' water supplies for communities in regions where supply is limited and demand continues to increase. In many communities effluent water provides additional revenue to support infrastructure needs arising from accelerated population growth and economic expansion. The development strategy for shale reservoirs can be optimized to assure a sustainable future for water resources. A systems-based sustainable water strategy should be integrated into the regional reservoir development approach at the earliest possible stage with full consideration of the nature of regional water issues and reservoir development strategies impacting water demand and supply, available technology and potential social and economic impacts.
Progress on ten-meter optical receiver telescope
NASA Technical Reports Server (NTRS)
Shaik, Kamran
1992-01-01
A ten-meter hexagonally segmented Cassegrain optical telescope is being considered at the Jet Propulsion Laboratory for use as a research and development facility for optical communications technology. The goal of the study is to demonstrate technology which can eventually be used to develop a network of such telescopes to continuously track and communicate with the spacecraft. Hence, the technology has to be economical enough to allow replication for a ground or space based network. As we need to collect signal photons only, the telescope cost can be substantially reduced by accepting lower image quality. An important design consideration for the telescope is its ability to look very close to the sun. The telescope for optical communications must function during the daytime. Indeed, for some planetary missions it may be necessary that the system be capable of looking within a few degrees of the sun. To enable this, a unique sunshade consisting of hexagonal tubes in precise alignment with the mirror segments has been proposed which will also serve as the support for the secondary. Recent progress on the design and analysis of such an optical reception station is discussed here.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1994-01-01
Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.
10 CFR 603.875 - Foreign access to technology and U.S. competitiveness provisions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... INVESTMENT AGREEMENTS Award Terms Related to Other Administrative Matters Intellectual Property § 603.875... through the use of, any created intellectual property, will be manufactured substantially in the United... property counsel, may waive or modify the requirement of substantial manufacture in the United States at...
The International AIDS Vaccine Initiative's Capacity Building Activities in East Africa
Cochrane, Gavin; Robin, Enora; Hanlin, Rebecca; Castle-Clarke, Sophie; MacLure, Calum; Parks, Sarah; Chataway, Joanna
2016-01-01
Abstract The International AIDS Vaccine Initiative (IAVI) is one of a number of Product Development Partnerships created to bridge the gap between scientific and technological potential and the needs of low income populations in low and middle income countries. Specifically IAVI is focused on creating a preventative vaccine for HIV/AIDS. Whilst the remit of IAVI is to create new science, technology and products, its work necessarily involves a wide range of stakeholders and different constituencies in industrially developing and developed countries. Its capacity building activities relate to strengthening the ability to conduct clinical trials and are broad based, spanning scientific and technological capacity through to organisational, advocacy and broader development capabilities. The aim of this study was to deepen IAVI's understanding of how it contributes to capacity building activities in East Africa (Uganda, Kenya and Rwanda), spanning scientific and technological capacity through to organisational, advocacy and broader development capabilities. IAVI's mission to develop an HIV vaccine has become increasingly connected to wider health systems strengthening, through its clinical research activities in East Africa. Since it began its operations in the region, IAVI has made a significant contribution to training interventions to support scientific excellence and good clinical practice and invested in infrastructure and laboratories at Clinical Research Centres in East Africa. Although clear challenges still exist with ensuring sustained investment, accessing marginalized populations and demonstrating progress in capacity building, the experiences of IAVI to date suggest that substantial progress is being made towards wider health systems strengthening in the region. PMID:28083400
Educational Technology Use and Design for Improved Learning Opportunities
ERIC Educational Resources Information Center
Khosrow-Pour, Mehdi, Ed.
2014-01-01
The rise of technology within educational settings has allowed for a substantial shift in the way in which educators teach learners of all ages. In order to implement these new learning tools, school administrators and teachers alike must seek new research outlining the latest innovations in the field. "Educational Technology Use and Design…
The Use of Technology to Enhance the Learning Experience of ESL Students
ERIC Educational Resources Information Center
Diallo, Abdoulaye
2014-01-01
The growing numbers of ELLs (English language learners) makes the search for new effective and efficient instructional methods a priority. While several teaching methods and tools are used to help ELLs succeed in becoming proficient English speakers, technology has gained substantial attention due to the abundance of new technology tools, which…
Patrons and Pedagogy: A Look at the Theory of Connectivism
ERIC Educational Resources Information Center
Guder, Christopher, Ed.
2010-01-01
At a recent conference on technology and education, the theory of connectivism was a hot topic. Proponents of this educational theory argue that technology has changed so substantially in the past several decades that they must review previous learning theories to ensure that they accommodate new processes that technology makes possible.…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... FY 2015 new medical services and technologies applications meet the substantial clinical improvement... new medical services and technologies under Medicare. Effective for discharges beginning on or after... specifies that a medical service or technology will be considered ``new'' if it meets criteria established...
A Comparative Study of Aerocapture Missions with a Mars Destination
NASA Technical Reports Server (NTRS)
Vaughan, Diane; Miller, Heather C.; Griffin, Brand; James, Bonnie F.; Munk, Michelle M.
2005-01-01
Conventional interplanetary spacecraft use propulsive systems to decelerate into orbit. Aerocapture is an alternative approach for orbit capture, in which the spacecraft makes a single pass through a target destination's atmosphere. Although this technique has never been performed, studies show there are substantial benefits of using aerocapture for reduction of propellant mass, spacecraft size, and mission cost. The In-Space Propulsion (ISP) Program, part of NASA's Science Mission Directorate, has invested in aerocapture technology development since 2002. Aerocapture investments within ISP are largely driven by mission systems analysis studies, The purpose of this NASA-funded report is to identify and document the fundamental parameters of aerocapture within previous human and robotic Mars mission studies which will assist the community in identifying technology research gaps in human and robotic missions, and provide insight for future technology investments. Upon examination of the final data set, some key attributes within the aerocapture disciplines are identified.
Botkin, Jeffrey R.; Belmont, John W.; Berg, Jonathan S.; Berkman, Benjamin E.; Bombard, Yvonne; Holm, Ingrid A.; Levy, Howard P.; Ormond, Kelly E.; Saal, Howard M.; Spinner, Nancy B.; Wilfond, Benjamin S.; McInerney, Joseph D.
2015-01-01
In 1995, the American Society of Human Genetics (ASHG) and American College of Medical Genetics and Genomics (ACMG) jointly published a statement on genetic testing in children and adolescents. In the past 20 years, much has changed in the field of genetics, including the development of powerful new technologies, new data from genetic research on children and adolescents, and substantial clinical experience. This statement represents current opinion by the ASHG on the ethical, legal, and social issues concerning genetic testing in children. These recommendations are relevant to families, clinicians, and investigators. After a brief review of the 1995 statement and major changes in genetic technologies in recent years, this statement offers points to consider on a broad range of test technologies and their applications in clinical medicine and research. Recommendations are also made for record and communication issues in this domain and for professional education. PMID:26140447
NASA's Morphing Project Research Summaries in Fiscal Year 2002
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria R.; Waszak, Martin R.
2005-01-01
The Morphing Project at the National Aeronautics and Space Agency s (NASA) Langley Research Center (LaRC) is part of the Breakthrough Vehicle Technologies Project, Vehicle Systems Program that conducts fundamental research on advanced technologies for future flight vehicles. The objectives of the Morphing Project are to develop and assess the advanced technologies and integrated component concepts to enable efficient, multi-point adaptability of flight vehicles; primarily through the application of adaptive structures and adaptive flow control to substantially alter vehicle performance characteristics. This document is a compilation of research summaries and other information on the project for fiscal year 2002. The focus is to provide a brief overview of the project content, technical results and lessons learned. At the time of publication, the Vehicle Systems Program (which includes the Morphing Project) is undergoing a program re-planning and reorganization. Accordingly, the programmatic descriptions of this document pertain only to the program as of fiscal year 2002.
NASA Astrophysics Data System (ADS)
Prucha, R. H.; Dayton, C. S.; Hawley, C. M.
2002-12-01
The Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, a former Department of Energy nuclear weapons manufacturing facility, is currently undergoing closure. The natural semi-arid interaction between surface and subsurface flow at RFETS is complex and complicated by the industrial modifications to the flow system. Using a substantial site data set, a distributed parameter, fully-integrated hydrologic model was developed to assess the hydrologic impact of different hypothetical site closure configurations on the current flow system and to better understand the integrated hydrologic behavior of the system. An integrated model with this level of detail has not been previously developed in a semi-arid area, and a unique, but comprehensive, approach was required to calibrate and validate the model. Several hypothetical scenarios were developed to simulate hydrologic effects of modifying different aspects of the site. For example, some of the simulated modifications included regrading the current land surface, changing the existing surface channel network, removing subsurface trenches and gravity drain flow systems, installing a slurry wall and geotechnical cover, changing the current vegetative cover, and converting existing buildings and pavement to permeable soil areas. The integrated flow model was developed using a rigorous physically-based code so that realistic design parameters can simulate these changes. This code also permitted evaluation of changes to complex integrated hydrologic system responses that included channelized and overland flow, pond levels, unsaturated zone storage, groundwater heads and flow directions, and integrated water balances for key areas. Results generally show that channel flow offsite decreases substantially for different scenarios, while groundwater heads generally increase within the reconfigured industrial area most of which is then discharged as evapotranspiration. These changes have significant implications to site closure and operation.
Johnson, Kevin B; Lorenzi, Nancy M
2011-01-01
Objective The goal of this study was to develop an in-depth understanding of how a health information exchange (HIE) fits into clinical workflow at multiple clinical sites. Materials and Methods The ethnographic qualitative study was conducted over a 9-month period in six emergency departments (ED) and eight ambulatory clinics in Memphis, Tennessee, USA. Data were collected using direct observation, informal interviews during observation, and formal semi-structured interviews. The authors observed for over 180 h, during which providers used the exchange 130 times. Results HIE-related workflow was modeled for each ED site and ambulatory clinic group and substantial site-to-site workflow differences were identified. Common patterns in HIE-related workflow were also identified across all sites, leading to the development of two role-based workflow models: nurse based and physician based. The workflow elements framework was applied to the two role-based patterns. An in-depth description was developed of how providers integrated HIE into existing clinical workflow, including prompts for HIE use. Discussion Workflow differed substantially among sites, but two general role-based HIE usage models were identified. Although providers used HIE to improve continuity of patient care, patient–provider trust played a significant role. Types of information retrieved related to roles, with nurses seeking to retrieve recent hospitalization data and more open-ended usage by nurse practitioners and physicians. User and role-specific customization to accommodate differences in workflow and information needs may increase the adoption and use of HIE. Conclusion Understanding end users' perspectives towards HIE technology is crucial to the long-term success of HIE. By applying qualitative methods, an in-depth understanding of HIE usage was developed. PMID:22003156
Full Scale Advanced Systems Testbed (FAST): Capabilities and Recent Flight Research
NASA Technical Reports Server (NTRS)
Miller, Christopher
2014-01-01
At the NASA Armstrong Flight Research Center research is being conducted into flight control technologies that will enable the next generation of air and space vehicles. The Full Scale Advanced Systems Testbed (FAST) aircraft provides a laboratory for flight exploration of these technologies. In recent years novel but simple adaptive architectures for aircraft and rockets have been researched along with control technologies for improving aircraft fuel efficiency and control structural interaction. This presentation outlines the FAST capabilities and provides a snapshot of the research accomplishments to date. Flight experimentation allows a researcher to substantiate or invalidate their assumptions and intuition about a new technology or innovative approach Data early in a development cycle is invaluable for determining which technology barriers are real and which ones are imagined Data for a technology at a low TRL can be used to steer and focus the exploration and fuel rapid advances based on real world lessons learned It is important to identify technologies that are mature enough to benefit from flight research data and not be tempted to wait until we have solved all the potential issues prior to getting some data Sometimes a stagnated technology just needs a little real world data to get it going One trick to getting data for low TRL technologies is finding an environment where it is okay to take risks, where occasional failure is an expected outcome Learning how things fail is often as valuable as showing that they work FAST has been architected to facilitate this type of testing for control system technologies, specifically novel algorithms and sensors Rapid prototyping with a quick turnaround in a fly-fix-fly paradigm Sometimes it's easier and cheaper to just go fly it than to analyze the problem to death The goal is to find and test control technologies that would benefit from flight data and find solutions to the real barriers to innovation. The FAST vehicle is a flexible laboratory for nascent technologies that would benefit from early life cycle flight research data It provides a robust and safe environment where innovative techniques can be explored in a fly-fix-fly rapid prototyping paradigm IRAC Simple adaptive control technologies can provide real benefits without undo complexity Adverse pilot/adaptive system interactions can be mitigated and tools have been developed to evaluate those interactions ICP Substantial fuel savings can be achieved over a broad range of vehicles and configurations with intelligent control solutions LVAC The AAC design is robust and effective for the SLS mission, and promises to provide benefits to other platforms as well OCLA Hopefully will show that structural feedback can be seamlessly integrated with performance and stability objectives All of these control technologies have been implemented into the same baseline control law and could be combined into one control solution that answers many pressing questions for modern vehicle configurations
The Impact of Novel Technologies on the Environment Throughout History
NASA Astrophysics Data System (ADS)
Ilyinskii, P.
Several known historical processes or events, especially those with a manifest environmental impact will be assessed from a technological standpoint. Recent technological advances made results of technological intervention into the nature much more rapid than before and therefore the assessment of prior experiences is both helpful and necessary. Three types of consequences of technological intervention are discerned: (1) ‘slow progressors’, i.e., such risks that accumulate throughout substantial time spans and are not instantaneously obvious, and those of (2) intermediate and (3) immediate impact. The capacity to reverse the negative consequences of each type of intervention inversely correlates with their manifestation speed. Specifically, the events of the third type often result from the ‘interaction with the absolutely unknown’ often need to be remedied in an urgent manner. Each of these types of environmental impacts will be illustrated with a known historical event. It is likely that the same three types of negative consequences will be seen in the nearest future upon the development and utilization of novel bio-organical and biotechnological products. These risks will be also discussed in a historical perspective.
WTEC panel report on research submersibles and undersea technologies
NASA Technical Reports Server (NTRS)
Seymore, Richard J.; Blidberg, D. Richard; Brancart, Claude P.; Gentry, Larry L.; Kalvaitis, Algis N.; Lee, Michael J.; Mooney, Brad; Walsh, Don
1994-01-01
This report covers research submersibles and related subsea technologies in Finland, France, Russia, Ukraine and the United Kingdom. Manned, teleoperated, and autonomous submersibles were of interest. The panel found that, in contrast to the United States, Europe is making substantial progress in cooperative and coordinated research in subsea technology, including the development of standards. France is a leader in autonomous vehicle technology. Because much less was known a priori about the technologies in Russia and Ukraine, there were more new findings in those countries than in those Western European nations visited. However, Russia and Ukraine have a sizeable (and currently underutilized) infrastructure in this field, including a highly educated and experienced manpower pool, impressive (in some cases unique) facilities for physical testing, extensive fleets of seagoing research vessels capable of long voyages, and state-of-the-art facilities for conducting oceanographic investigations. The panel visited newly-formed commercial companies associated with long-standing submersible R&D and production centers in Russia and Ukraine. So far, these new efforts are undercapitalized, and as such represent opportunities at very low cost for Western nations, as detailed in the site reports.
WTEC panel report on research submersibles and undersea technologies
NASA Astrophysics Data System (ADS)
Seymore, Richard J.; Blidberg, D. Richard; Brancart, Claude P.; Gentry, Larry L.; Kalvaitis, Algis N.; Lee, Michael J.; Mooney, Brad; Walsh, Don
1994-06-01
This report covers research submersibles and related subsea technologies in Finland, France, Russia, Ukraine and the United Kingdom. Manned, teleoperated, and autonomous submersibles were of interest. The panel found that, in contrast to the United States, Europe is making substantial progress in cooperative and coordinated research in subsea technology, including the development of standards. France is a leader in autonomous vehicle technology. Because much less was known a priori about the technologies in Russia and Ukraine, there were more new findings in those countries than in those Western European nations visited. However, Russia and Ukraine have a sizeable (and currently underutilized) infrastructure in this field, including a highly educated and experienced manpower pool, impressive (in some cases unique) facilities for physical testing, extensive fleets of seagoing research vessels capable of long voyages, and state-of-the-art facilities for conducting oceanographic investigations. The panel visited newly-formed commercial companies associated with long-standing submersible R&D and production centers in Russia and Ukraine. So far, these new efforts are undercapitalized, and as such represent opportunities at very low cost for Western nations, as detailed in the site reports.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torrens, I.M.; Stenzel, W.C.
Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would bemore » measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.« less
Introducing Large-Scale Innovation in Schools
NASA Astrophysics Data System (ADS)
Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.
2016-08-01
Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.
Compacted graphite iron: Cast iron makes a comeback
NASA Astrophysics Data System (ADS)
Dawson, S.
1994-08-01
Although compacted graphite iron has been known for more than four decades, the absence of a reliable mass-production technique has resulted in relatively little effort to exploit its operational benefits. However, a proven on-line process control technology developed by SinterCast allows for series production of complex components in high-quality CGI. The improved mechanical properties of compacted graphite iron relative to conventional gray iron allow for substantial weight reduction in gasoline and diesel engines or substantial increases in horsepower, or an optimal combination of both. Concurrent with these primary benefits, CGI also provides significant emissions and fuel efficiency benefits allowing automakers to meet legislated performance standards. The operational and environmental benefits of compacted graphite iron together with its low cost and recyclability reinforce cast iron as a prime engineering material for the future.
A Trial of Physics Education for Liberal Arts Students Using the Advancing Physics
NASA Astrophysics Data System (ADS)
Ochi, Nobuaki
A new approach to physics education for liberal arts students was performed in a Japanese university. The Advancing Physics, a modern textbook developed by the Institute of Physics, was employed as the base of this approach. The textbook includes a variety of modern topics about science and technology with beautiful pictures, while the use of math is kept to a minimum. From results of the questionnaire after one-semester lectures, it turned out that students' interest in science and technology rose substantially. On the other hand, there were some difficulties in lecturing, mathematical techniques in particular, which should be modified by the next trial. This result is an indication of a potential of the Advancing Physics for liberal arts education.
Synthesis of aluminum-based scandium-yttrium master alloys
NASA Astrophysics Data System (ADS)
Bazhin, V. Yu.; Kosov, Ya. I.; Lobacheva, O. L.; Dzhevaga, N. V.
2015-07-01
The preparation technology for an Al-2% Sc-0.5% Y master alloy using aluminum-manganese alloys has been developed and tested. The microstructure of the prepared master alloy is studied and the compositions of intermetallics is determined. The efficient technological parameters of the synthesis are determined. It is shown that varying the compositions of starting reagents and alloying additions and optimizing the process conditions (temperature, mixing, etc.) allow us to forecast the manufacturing and operating characteristics of aluminum-based master alloys. Joint additions of scandium and yttrium oxides to a charge favor a substantial decrease in the grain size of the formed intermetallics; this effect appears to the utmost in the case of microallying with yttrium up to 0.5 wt %.
NASA Astrophysics Data System (ADS)
Oziel, M.; Hjouj, M.; Gonzalez, C. A.; Lavee, J.; Rubinsky, B.
2016-02-01
Monitoring changes in non-ionizing radiofrequency electromagnetic waves as they traverse the brain can detect the effects of stimuli employed in cerebrovascular autoregulation (CVA) tests on the brain, without contact and in real time. CVA is a physiological phenomenon of importance to health, used for diagnosis of a number of diseases of the brain with a vascular component. The technology described here is being developed for use in diagnosis of injuries and diseases of the brain in rural and economically underdeveloped parts of the world. A group of nine subjects participated in this pilot clinical evaluation of the technology. Substantial research remains to be done on correlating the measurements with physiology and anatomy.
NASA Technical Reports Server (NTRS)
Freeman, Delman C., Jr.; Reubush, Daivd E.; McClinton, Charles R.; Rausch, Vincent L.; Crawford, J. Larry
1997-01-01
This paper provides an overview of NASA's Hyper-X Program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an overview of the flight test program, research objectives, approach, schedule and status. Substantial experimental database and concept validation have been completed. The program is currently concentrating on the first, Mach 7, vehicle development, verification and validation in preparation for wind-tunnel testing in 1998 and flight testing in 1999. Parallel to this effort the Mach 5 and 10 vehicle designs are being finalized. Detailed analytical and experimental evaluation of the Mach 7 vehicle at the flight conditions is nearing completion, and will provide a database for validation of design methods once flight test data are available.
NASA Technical Reports Server (NTRS)
Morusiewicz, Linda; Valett, Jon
1992-01-01
This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) the Software Engineering Laboratory; (2) the Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.
Xiao, Ying; Kry, Stephen F; Popple, Richard; Yorke, Ellen; Papanikolaou, Niko; Stathakis, Sotirios; Xia, Ping; Huq, Saiful; Bayouth, John; Galvin, James; Yin, Fang-Fang
2015-05-08
This report describes the current state of flattening filter-free (FFF) radiotherapy beams implemented on conventional linear accelerators, and is aimed primarily at practicing medical physicists. The Therapy Emerging Technology Assessment Work Group of the American Association of Physicists in Medicine (AAPM) formed a writing group to assess FFF technology. The published literature on FFF technology was reviewed, along with technical specifications provided by vendors. Based on this information, supplemented by the clinical experience of the group members, consensus guidelines and recommendations for implementation of FFF technology were developed. Areas in need of further investigation were identified. Removing the flattening filter increases beam intensity, especially near the central axis. Increased intensity reduces treatment time, especially for high-dose stereotactic radiotherapy/radiosurgery (SRT/SRS). Furthermore, removing the flattening filter reduces out-of-field dose and improves beam modeling accuracy. FFF beams are advantageous for small field (e.g., SRS) treatments and are appropriate for intensity-modulated radiotherapy (IMRT). For conventional 3D radiotherapy of large targets, FFF beams may be disadvantageous compared to flattened beams because of the heterogeneity of FFF beam across the target (unless modulation is employed). For any application, the nonflat beam characteristics and substantially higher dose rates require consideration during the commissioning and quality assurance processes relative to flattened beams, and the appropriate clinical use of the technology needs to be identified. Consideration also needs to be given to these unique characteristics when undertaking facility planning. Several areas still warrant further research and development. Recommendations pertinent to FFF technology, including acceptance testing, commissioning, quality assurance, radiation safety, and facility planning, are presented. Examples of clinical applications are provided. Several of the areas in which future research and development are needed are also indicated.
[Meta-legal paradigms of nanomedicine].
Pérez Alvarez, Salvador
2012-01-01
Nanomedicine is the Nanotechnology applied in the field of Medicine. Nanomedicine includes a wide range of technologies applied to devices, materials, medical procedures and treatment modalities are being developed, in some cases, through the convergence of living and nonliving materials. The developments in this scientific field are the prelude of a new era in health where Nanotechnology will provide, in a short period of time, substantial benefits for the general welfare and health of people with serious and incurable diseases using other more traditional medical treatments. This is, in brief, the object of this research that has been focused in the study of the ethical-legal paradigms that should inform the developments and expectations generated by medical applications of Nanotechnology.
DUV light source sustainability achievements and next steps
NASA Astrophysics Data System (ADS)
Roman, Yzzer; Cacouris, Ted; Raju, Kumar Raja Guvindan; Kanawade, Dinesh; Gillespie, Walt; Luo, Siqi; Mason, Eric; Manley, David; Das, Saptaparna
2018-03-01
Key sustainability opportunities have been executed in support of corporate initiatives to reduce the environmental footprint and decrease the running cost of DUV light sources. Previously, substantial neon savings were demonstrated over several years through optimized gas management technologies. Beyond this work, Cymer is developing the XLGR 100, a self-contained neon recycling system, to enable minimal gas consumption. The high efficiency results of the XLGR 100 in a production factory are validated in this paper. Cymer has also developed new light source modules with 33% longer life in an effort to reduce raw and associated resource consumption. In addition, a progress report is included regarding the improvements developed to reduce light source energy consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, N.C.; Judkins, R.R.
1992-07-01
The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy`s Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program, and ASM International. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technicalmore » support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.« less
High-performance visible/UV CCD focal plane technology for spacebased applications
NASA Technical Reports Server (NTRS)
Burke, B. E.; Mountain, R. W.; Gregory, J. A.; Huang, J. C. M.; Cooper, M. J.; Savoye, E. D.; Kosicki, B. B.
1993-01-01
We describe recent technology developments aimed at large CCD imagers for space based applications in the visible and UV. Some of the principal areas of effort include work on reducing device degradation in the natural space-radiation environment, improvements in quantum efficiency in the visible and UV, and larger-device formats. One of the most serious hazards for space based CCD's operating at low signal levels is the displacement damage resulting from bombardment by energetic protons. Such damage degrades charge-transfer efficiency and increases dark current. We have achieved improved hardness to proton-induced displacement damage by selective ion implants into the CCD channel and by reduced temperature of operation. To attain high quantum efficiency across the visible and UV we have developed a technology for back-illuminated CCD's. With suitable antireflection (AR) coatings such devices have quantum efficiencies near 90 percent in the 500-700-nm band. In the UV band from 200 to 400 nm, where it is difficult to find coatings that are sufficiently transparent and can provide good matching to the high refractive index of silicon, we have been able to substantially increase the quantum efficiency using a thin film of HfO2 as an AR coating. These technology efforts were applied to a 420 x 420-pixel frame-transfer imager, and future work will be extended to a 1024 x 1024-pixel device now under development.
Integrated Spatial Modeling using Geoinformatics: A Prerequisite for Natural Resources Management
NASA Astrophysics Data System (ADS)
Katpatal, Y. B.
2014-12-01
Every natural system calls for complete visualization for its holistic and sustainable development. Many a times, especially in developing countries, the approaches deviate from this basic paradigm and results in ineffective management of the natural resources. This becomes more relevant in these countries which are witnessing heavy exodus of the rural population to urban areas increasing the pressures on the basic commodities. Spatial technologies which provide the opportunity to enhance the knowledge visualization of the policy makers and administrators which facilitates technical and scientific management of the resources. Increasing population has created negative impacts on the per capita availability of several resources, which has been well accepted in the statistical records of several developing countries. For instance, the per capita availability of water in India has decreased substantially in last decade and groundwater depletion is on the rise. There is hence a need of tool which helps in restoring the resource through visualization and evaluation temporally. Geological parameters play an important role in operation of several natural systems and earth sciences parameters may not be ignored. Spatial technologies enables application of 2D as well as 3D modeling taking into account variety of natural parameters related to diverse areas. The paper presents case studies where spatial technology has helped in not only understanding the natural systems but also providing solutions, especially in Indian context. The case studies relate to Groundwater Management, Watershed and Basin Management, Groundwater recharge, Environment sustainability using spatial technology. Key Words: Spatial model, Groundwater, Hydrogeology, Geoinformatics, Sustainable Development.
Stuckey, Melanie; Fulkerson, Robyn; Read, Emily; Russell-Minda, Elizabeth; Munoz, Claudio; Kleinstiver, Peter; Petrella, Robert
2011-01-01
Objectives Remote monitoring technologies are ideally suited for rural communities with limited access to health care. In an 8-week pilot study, we examined the feasibility of implementing and conducting a technology-intensive intervention in an underserviced rural setting. Our goal was to test the utility of self-monitoring technologies, physical activity, and education as tools to manage health indicators for the development of the cardiovascular complications (CVCs) of type 2 diabetes. Research Design and Methods The Diabetes and Technology for Increased Activity study was an open single-center study conducted in a community-based research setting. All 24 participants were provided with a Blackberry™ Smartphone, blood pressure monitor, glucometer, and pedometer. Smartphones transmitted measurements and survey results to the database, interfaced participants with the clinical team, and allowed for self-monitoring. Results Outcomes were improved body composition, improved markers of CVC risk factors, increased daily exercise, and interest in or awareness of lifestyle changes that impact health outcomes. Participants had excellent compliance for measurements, as self-monitoring provided a sense of security that improved from week 4 to week 8. Conclusions Our team gained substantial insight into the operational requirements of technology-facilitated health care, including redefined hours of service; data reporting, management, and access protocols; and the utility of real-time clinical measures by remote monitoring. We developed an understanding of knowledge translation strategies as well as successful motivational and educational tools. Importantly, remote monitoring technology was found to be feasible and accepted in a rural setting. PMID:21880237
NASA Astrophysics Data System (ADS)
Crippa, Monica; Janssens-Maenhout, Greet; Dentener, Frank; Guizzardi, Diego; Sindelarova, Katerina; Muntean, Marilena; Van Dingenen, Rita; Granier, Claire
2016-03-01
The EDGARv4.3.1 (Emissions Database for Global Atmospheric Research) global anthropogenic emissions inventory of gaseous (SO2, NOx, CO, non-methane volatile organic compounds and NH3) and particulate (PM10, PM2.5, black and organic carbon) air pollutants for the period 1970-2010 is used to develop retrospective air pollution emissions scenarios to quantify the roles and contributions of changes in energy consumption and efficiency, technology progress and end-of-pipe emission reduction measures and their resulting impact on health and crop yields at European and global scale. The reference EDGARv4.3.1 emissions include observed and reported changes in activity data, fuel consumption and air pollution abatement technologies over the past 4 decades, combined with Tier 1 and region-specific Tier 2 emission factors. Two further retrospective scenarios assess the interplay of policy and industry. The highest emission STAG_TECH scenario assesses the impact of the technology and end-of-pipe reduction measures in the European Union, by considering historical fuel consumption, along with a stagnation of technology with constant emission factors since 1970, and assuming no further abatement measures and improvement imposed by European emission standards. The lowest emission STAG_ENERGY scenario evaluates the impact of increased fuel consumption by considering unchanged energy consumption since the year 1970, but assuming the technological development, end-of-pipe reductions, fuel mix and energy efficiency of 2010. Our scenario analysis focuses on the three most important and most regulated sectors (power generation, manufacturing industry and road transport), which are subject to multi-pollutant European Union Air Quality regulations. Stagnation of technology and air pollution reduction measures at 1970 levels would have led to 129 % (or factor 2.3) higher SO2, 71 % higher NOx and 69 % higher PM2.5 emissions in Europe (EU27), demonstrating the large role that technology has played in reducing emissions in 2010. However, stagnation of energy consumption at 1970 levels, but with 2010 fuel mix and energy efficiency, and assuming current (year 2010) technology and emission control standards, would have lowered today's NOx emissions by ca. 38 %, SO2 by 50 % and PM2.5 by 12 % in Europe. A reduced-form chemical transport model is applied to calculate regional and global levels of aerosol and ozone concentrations and to assess the associated impact of air quality improvements on human health and crop yield loss, showing substantial impacts of EU technologies and standards inside as well as outside Europe. We assess that the interplay of policy and technological advance in Europe had substantial benefits in Europe, but also led to an important improvement of particulate matter air quality in other parts of the world.
NASA Technical Reports Server (NTRS)
Clark, John S.; George, Jeffrey A.; Gefert, Leon P.; Doherty, Michael P.; Sefcik, Robert J.
1994-01-01
NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for 'split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with 'reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower 'initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power, and small NEP systems for interplanetary probes. System upgrades are expected to evolve that will result in even shorter trip times, improved payload capabilities, and enhanced safety and reliability.
The True Cost of Tomorrow's Educational Technology--Money Isn't Everything.
ERIC Educational Resources Information Center
Spina, Peter A.
Computers have brought substantial changes to schools and colleges, and the current acceleration of technological change is beginning to be seen in education. A new appreciation for technology comes at a time when education is under criticism for failing to address a rising tide of mediocrity. However, the U.S. educational system still operates…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-03
... Dietary Supplement Claims Made Under the Federal Food, Drug, and Cosmetic Act AGENCY: Food and Drug... of information technology. Substantiation for Dietary Supplement Claims Made Under the Federal Food...) of the FD&C Act (21 U.S.C. 343(r)(6)) requires that a manufacturer of a dietary supplement making a...
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.; Schreiber, Jeffrey G.
2005-01-01
A high-efficiency, 110-W(sub e) (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 W(sub e) per kilogram. GRC has performed random vibration testing of a lowerpower version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed.
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.; Schreiber, Jeffrey G.
2005-01-01
A high-efficiency, 110-We (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 We/kg. GRC has performed random vibration testing of a lower-power version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed.
The data base management system alternative for computing in the human services.
Sircar, S; Schkade, L L; Schoech, D
1983-01-01
The traditional incremental approach to computerization presents substantial problems as systems develop and grow. The Data Base Management System approach to computerization was developed to overcome the problems resulting from implementing computer applications one at a time. The authors describe the applications approach and the alternative Data Base Management System (DBMS) approach through their developmental history, discuss the technology of DBMS components, and consider the implications of choosing the DBMS alternative. Human service managers need an understanding of the DBMS alternative and its applicability to their agency data processing needs. The basis for a conscious selection of computing alternatives is outlined.
Exosomes in Cancer Nanomedicine and Immunotherapy: Prospects and Challenges.
Syn, Nicholas L; Wang, Lingzhi; Chow, Edward Kai-Hua; Lim, Chwee Teck; Goh, Boon-Cher
2017-07-01
Exosomes (versatile, cell-derived nanovesicles naturally endowed with exquisite target-homing specificity and the ability to surmount in vivo biological barriers) hold substantial promise for developing exciting approaches in drug delivery and cancer immunotherapy. Specifically, bioengineered exosomes are being successfully deployed to deliver potent tumoricidal drugs (siRNAs and chemotherapeutic compounds) preferentially to cancer cells, while a new generation of exosome-based therapeutic cancer vaccines has produced enticing results in early-phase clinical trials. Here, we review the state-of-the-art technologies and protocols, and discuss the prospects and challenges for the clinical development of this emerging class of therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Quinn; Jerry Mauck; Richard Bockhorst
The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.
NASA Astrophysics Data System (ADS)
Siegfried, Tobias
2016-04-01
In developing and transition countries and despite significant global investments in hydrometeorology, data on water remain scarce/fragmented. One key reason is that traditional sensing in hydrology, hydro- and agro-meteorology does not scale because of high investment costs and difficult maintenance of traditional technology, esp. in remote and/or poor regions. Even where there are data, these are often difficult to access and interpret for local stakeholders due outdated data transmission and the lack of access to modern tools for data management/analysis/synthesis and exchange. In recent years, there have been substantial technology developments in environmental sensing and mobile communication technology that enable the application and deployment of affordable and scalable high-tech solutions for better water monitoring at different scales (local to transboundary levels). The WMO is acknowledging and promoting the potential for application of these technologies. One key aspect is to anchor these technologies in local communities that perform crowd-sensing tasks on a regular basis. The merits as well as challenges (including introduction of human factor, less accuracy as compared to traditional sensing, intermittency of data, …) of such approaches will be discussed in the context of the WMO-led Global iMoMo Initiative and its numerous activities on the ground in Eastern and Southern Africa as well as in Central Asia.
Continuing challenges for computer-based neuropsychological tests.
Letz, Richard
2003-08-01
A number of issues critical to the development of computer-based neuropsychological testing systems that remain continuing challenges to their widespread use in occupational and environmental health are reviewed. Several computer-based neuropsychological testing systems have been developed over the last 20 years, and they have contributed substantially to the study of neurologic effects of a number of environmental exposures. However, many are no longer supported and do not run on contemporary personal computer operating systems. Issues that are continuing challenges for development of computer-based neuropsychological tests in environmental and occupational health are discussed: (1) some current technological trends that generally make test development more difficult; (2) lack of availability of usable speech recognition of the type required for computer-based testing systems; (3) implementing computer-based procedures and tasks that are improvements over, not just adaptations of, their manually-administered predecessors; (4) implementing tests of a wider range of memory functions than the limited range now available; (5) paying more attention to motivational influences that affect the reliability and validity of computer-based measurements; and (6) increasing the usability of and audience for computer-based systems. Partial solutions to some of these challenges are offered. The challenges posed by current technological trends are substantial and generally beyond the control of testing system developers. Widespread acceptance of the "tablet PC" and implementation of accurate small vocabulary, discrete, speaker-independent speech recognition would enable revolutionary improvements to computer-based testing systems, particularly for testing memory functions not covered in existing systems. Dynamic, adaptive procedures, particularly ones based on item-response theory (IRT) and computerized-adaptive testing (CAT) methods, will be implemented in new tests that will be more efficient, reliable, and valid than existing test procedures. These additional developments, along with implementation of innovative reporting formats, are necessary for more widespread acceptance of the testing systems.
MacLachlan, Malcolm; Banes, David; Bell, Diane; Borg, Johan; Donnelly, Brian; Fembek, Michael; Ghosh, Ritu; Gowran, Rosemary Joan; Hannay, Emma; Hiscock, Diana; Hoogerwerf, Evert-Jan; Howe, Tracey; Kohler, Friedbert; Layton, Natasha; Long, Siobhán; Mannan, Hasheem; Mji, Gubela; Odera Ongolo, Thomas; Perry, Katherine; Pettersson, Cecilia; Power, Jessica; Delgado Ramos, Vinicius; Slepičková, Lenka; Smith, Emma M; Tay-Teo, Kiu; Geiser, Priscille; Hooks, Hilary
2018-07-01
Increased awareness, interest and use of assistive technology (AT) presents substantial opportunities for many citizens to become, or continue being, meaningful participants in society. However, there is a significant shortfall between the need for and provision of AT, and this is patterned by a range of social, demographic and structural factors. To seize the opportunity that assistive technology offers, regional, national and sub-national assistive technology policies are urgently required. This paper was developed for and through discussion at the Global Research, Innovation and Education on Assistive Technology (GREAT) Summit; organized under the auspices of the World Health Organization's Global Collaboration on Assistive Technology (GATE) program. It outlines some of the key principles that AT polices should address and recognizes that AT policy should be tailored to the realities of the contexts and resources available. AT policy should be developed as a part of the evolution of related policy across a number of different sectors and should have clear and direct links to AT as mediators and moderators for achieving the Sustainable Development Goals. The consultation process, development and implementation of policy should be fully inclusive of AT users, and their representative organizations, be across the lifespan, and imbued with a strong systems-thinking ethos. Six barriers are identified which funnel and diminish access to AT and are addressed systematically within this paper. We illustrate an example of good practice through a case study of AT services in Norway, and we note the challenges experienced in less well-resourced settings. A number of economic factors relating to AT and economic arguments for promoting AT use are also discussed. To address policy-development the importance of active citizenship and advocacy, the need to find mechanisms to scale up good community practices to a higher level, and the importance of political engagement for the policy process, are highlighted. Policy should be evidence-informed and allowed for evidence-making; however, it is important to account for other factors within the given context in order for policy to be practical, authentic and actionable. Implications for Rehabilitation The development of policy in the area of asssitive technology is important to provide an overarching vision and outline resourcing priorities. This paper identifies some of the key themes that should be addressed when developing or revising assistive technology policy. Each country should establish a National Assistive Technology policy and develop a theory of change for its implementation.
Current and long-term technologies of laser therapy
NASA Astrophysics Data System (ADS)
Ulashcyk, Vladimir S.; Volotovskaya, Anna V.
2007-06-01
Laser therapy, using low-energy laser radiation, is being more and more applied. The most applied technology is transcutaneous radiation of tissues by laser radiation. Originally, a direct action on a pathological site was mostly used, but recently more attention is given to reflexogenic areas, acupuncture points, and endocrine organ projection sites. The development of light-conductive engineering made it possible to practically apply intraorgan laser therapy. This technology is widely spread in gynecology, otorhinolaryngology, urology, gastroenterology, etc. Close to it are different versions of intratissue laser therapy (intraosteal, periosteal, myofascial). A special kind of laser therapy is laser hemotherapy. Depending on the techniques and protocol of its application, there are extracorporeal, intravascular, and supravenous ways of action. According to our comparative investigations, supravenous hemotherapy by its therapeutic efficacy and major medicinal effects can be well compared with intravascular laser hemotherapy. With good prospects and efficiency is laser therapy as a combination of laser and other physical factors. Magnetolaser therapy has been scientifically substantiated and practically applied so far. Theoretically and experimentally substantiated is a combined application of laser radiation and physical factors such as ultrasound, direct current field, vacuum, cryotherapy, etc. Experimental research and few so far clinical observations are indicative of prospects of a complex application of laser radiation and drugs. To improve light absorption, laser radiation is combined with different dyes. Photodynamic therapy, originally used in oncology, is applied today in treating different diseases. We showed a possibility of using a number of drugs possessing simultaneously photosensitizing properties to this end. Laser radiation significantly influences pharmacokinetics and pharmacodynamics of drugs, which gives reason to practically implement laser technologies, based on pharmacomodulating action of laser radiation, to practical medicine.
NASA Astrophysics Data System (ADS)
Mittchell, Richard L.; Symko-Davies, Martha; Thomas, Holly P.; Witt, C. Edwin
1999-03-01
The Photovoltaic Manufacturing Technology (PVMaT) Project is a government/industry research and development (R&D) partnership between the U.S. federal government (through the U.S. Department of Energy [DOE]) and members of the U.S. PV industry. The goals of PVMaT are to assist the U.S. PV industry improve module manufacturing processes and equipment; accelerate manufacturing cost reductions for PV modules, balance-of-systems components, and integrated systems; increase commercial product performance and reliability; and enhance investment opportunities for substantial scale-ups of U.S.-based PV manufacturing plant capacities. The approach for PVMaT has been to cost-share the R&D risk as industry explores new manufacturing options and ideas for improved PV modules and components, advances system and product integration, and develops new system designs. These activities will lead to overall reduced system life-cycle costs for reliable PV end-products. The 1994 PVMaT Product-Driven BOS and Systems activities, as well as Product-Driven Module Manufacturing R&D activities, are just being completed. Fourteen new subcontracts have just been awarded in the areas of PV System and Component Technology and Module Manufacturing Technology. Government funding, subcontractor cost-sharing, and a comparison of the relative efforts by PV technology throughout the PVMaT project are also discussed.
Improving Fatigue Performance of AHSS Welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhili; Yu, Xinghua; Erdman, III, Donald L.
Reported herein is technical progress on a U.S. Department of Energy CRADA project with industry cost-share aimed at developing the technical basis and demonstrate the viability of innovative in-situ weld residual stresses mitigation technology that can substantially improve the weld fatigue performance and durability of auto-body structures. The developed technology would be costeffective and practical in high-volume vehicle production environment. Enhancing weld fatigue performance would address a critical technology gap that impedes the widespread use of advanced high-strength steels (AHSS) and other lightweight materials for auto body structure light-weighting. This means that the automotive industry can take full advantage ofmore » the AHSS in strength, durability and crashworthiness without the concern of the relatively weak weld fatigue performance. The project comprises both technological innovations in weld residual stress mitigation and due-diligence residual stress measurement and fatigue performance evaluation. Two approaches were investigated. The first one was the use of low temperature phase transformation (LTPT) weld filler wire, and the second focused on novel thermo-mechanical stress management technique. Both technical approaches have resulted in considerable improvement in fatigue lives of welded joints made of high-strength steels. Synchrotron diffraction measurement confirmed the reduction of high tensile weld residual stresses by the two weld residual stress mitigation techniques.« less
ROSA, Wellington Luiz de Oliveira; SILVA, Tiago Machado; LIMA, Giana da Silveira; SILVA, Adriana Fernandes; PIVA, Evandro
2016-01-01
ABSTRACT Objective A systematic review was conducted to analyze Brazilian scientific and technological production related to the dental materials field over the past 50 years. Material and Methods This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (Prisma) statement. Searches were performed until December 2014 in six databases: MedLine (PubMed), Scopus, LILACS, IBECS, BBO, and the Cochrane Library. Additionally, the Brazilian patent database (INPI - Instituto Nacional de Propriedade Industrial) was screened in order to get an overview of Brazilian technological development in the dental materials field. Two reviewers independently analyzed the documents. Only studies and patents related to dental materials were included in this review. Data regarding the material category, dental specialty, number of documents and patents, filiation countries, and the number of citations were tabulated and analyzed in Microsoft Office Excel (Microsoft Corporation, Redmond, Washington, United States). Results A total of 115,806 studies and 53 patents were related to dental materials and were included in this review. Brazil had 8% affiliation in studies related to dental materials, and the majority of the papers published were related to dental implants (1,137 papers), synthetic resins (681 papers), dental cements (440 papers), dental alloys (392 papers) and dental adhesives (361 papers). The Brazilian technological development with patented dental materials was smaller than the scientific production. The most patented type of material was dental alloys (11 patents), followed by dental implants (8 patents) and composite resins (7 patents). Conclusions Dental materials science has had a substantial number of records, demonstrating an important presence in scientific and technological development of dentistry. In addition, it is important to approximate the relationship between academia and industry to expand the technological development in countries such as Brazil. PMID:27383712
Rosa, Wellington Luiz de Oliveira; Silva, Tiago Machado; Lima, Giana da Silveira; Silva, Adriana Fernandes; Piva, Evandro
2016-01-01
A systematic review was conducted to analyze Brazilian scientific and technological production related to the dental materials field over the past 50 years. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (Prisma) statement. Searches were performed until December 2014 in six databases: MedLine (PubMed), Scopus, LILACS, IBECS, BBO, and the Cochrane Library. Additionally, the Brazilian patent database (INPI - Instituto Nacional de Propriedade Industrial) was screened in order to get an overview of Brazilian technological development in the dental materials field. Two reviewers independently analyzed the documents. Only studies and patents related to dental materials were included in this review. Data regarding the material category, dental specialty, number of documents and patents, filiation countries, and the number of citations were tabulated and analyzed in Microsoft Office Excel (Microsoft Corporation, Redmond, Washington, United States). A total of 115,806 studies and 53 patents were related to dental materials and were included in this review. Brazil had 8% affiliation in studies related to dental materials, and the majority of the papers published were related to dental implants (1,137 papers), synthetic resins (681 papers), dental cements (440 papers), dental alloys (392 papers) and dental adhesives (361 papers). The Brazilian technological development with patented dental materials was smaller than the scientific production. The most patented type of material was dental alloys (11 patents), followed by dental implants (8 patents) and composite resins (7 patents). Dental materials science has had a substantial number of records, demonstrating an important presence in scientific and technological development of dentistry. In addition, it is important to approximate the relationship between academia and industry to expand the technological development in countries such as Brazil.
Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pena, Federico
1997-10-01
This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.
Pediatric palliative care and eHealth opportunities for patient-centered care.
Madhavan, Subha; Sanders, Amy E; Chou, Wen-Ying Sylvia; Shuster, Alex; Boone, Keith W; Dente, Mark A; Shad, Aziza T; Hesse, Bradford W
2011-05-01
Pediatric palliative care currently faces many challenges including unnecessary pain from insufficiently personalized treatment, doctor-patient communication breakdowns, and a paucity of usable patient-centric information. Recent advances in informatics for consumer health through eHealth initiatives have the potential to bridge known communication gaps, but overall these technologies remain under-utilized in practice. This paper seeks to identify effective uses of existing and developing health information technology (HIT) to improve communications and care within the clinical setting. A needs analysis was conducted by surveying seven pediatric oncology patients and their extended support network at the Lombardi Pediatric Clinic at Georgetown University Medical Center in May and June of 2010. Needs were mapped onto an existing inventory of emerging HIT technologies to assess what existing informatics solutions could effectively bridge these gaps. Through the patient interviews, a number of communication challenges and needs in pediatric palliative cancer care were identified from the interconnected group perspective surrounding each patient. These gaps mapped well, in most cases, to existing or emerging cyberinfrastructure. However, adoption and adaptation of appropriate technologies could improve, including for patient-provider communication, behavioral support, pain assessment, and education, all through integration within existing work flows. This study provides a blueprint for more optimal use of HIT technologies, effectively utilizing HIT standards-based technology solutions to improve communication. This research aims to further stimulate the development and adoption of interoperable, standardized technologies and delivery of context-sensitive information to substantially improve the quality of care patients receive within pediatric palliative care clinics and other settings. Copyright © 2011 American Journal of Preventive Medicine. All rights reserved.
NASA's In-Space Propulsion Technology Program: A Step Toward Interstellar Exploration
NASA Technical Reports Server (NTRS)
Johnson, Les; James, Bonnie; Baggett, Randy; Montgomery, Sandy
2005-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space. The maximum theoretical efficiencies have almost been reached and are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program is laying the technological foundation for travel to nearby interstellar space. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion systems operating in the 5-10 kW range, to solar sail propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called "propellantless" because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations, such as solar sails, electrodynamic and momentum transfer tethers, and aerocapture. This paper will provide an overview of those propellantless and propellant-based advanced propulsion technologies that will most significantly advance our exploration of deep space.
NASA Technical Reports Server (NTRS)
Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl
2002-01-01
The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd-generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.
NASA Technical Reports Server (NTRS)
Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl
2002-01-01
The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.
Stone tools, language and the brain in human evolution.
Stout, Dietrich; Chaminade, Thierry
2012-01-12
Long-standing speculations and more recent hypotheses propose a variety of possible evolutionary connections between language, gesture and tool use. These arguments have received important new support from neuroscientific research on praxis, observational action understanding and vocal language demonstrating substantial functional/anatomical overlap between these behaviours. However, valid reasons for scepticism remain as well as substantial differences in detail between alternative evolutionary hypotheses. Here, we review the current status of alternative 'gestural' and 'technological' hypotheses of language origins, drawing on current evidence of the neural bases of speech and tool use generally, and on recent studies of the neural correlates of Palaeolithic technology specifically.
UCMP and the Internet help hospital libraries share resources.
Dempsey, R; Weinstein, L
1999-07-01
The Medical Library Center of New York (MLCNY), a medical library consortium founded in 1959, has specialized in supporting resource sharing and fostering technological advances. In 1961, MLCNY developed and continues to maintain the Union Catalog of Medical Periodicals (UCMP), a resource tool including detailed data about the collections of more than 720 medical library participants. UCMP was one of the first library tools to capitalize on the benefits of computer technology and, from the beginning, invited hospital libraries to play a substantial role in its development. UCMP, beginning with products in print and later in microfiche, helped to create a new resource sharing environment. Today, UCMP continues to capitalize on new technology by providing access via the Internet and an Oracle-based search system providing subscribers with the benefits of: a database that contains serial holdings information on an issue specific level, a database that can be updated in real time, a system that provides multi-type searching and allows users to define how the results will be sorted, and an ordering function that can more precisely target libraries that have a specific issue of a medical journal. Current development of a Web-based system will ensure that UCMP continues to provide cost effective and efficient resource sharing in future years.
UCMP and the Internet help hospital libraries share resources.
Dempsey, R; Weinstein, L
1999-01-01
The Medical Library Center of New York (MLCNY), a medical library consortium founded in 1959, has specialized in supporting resource sharing and fostering technological advances. In 1961, MLCNY developed and continues to maintain the Union Catalog of Medical Periodicals (UCMP), a resource tool including detailed data about the collections of more than 720 medical library participants. UCMP was one of the first library tools to capitalize on the benefits of computer technology and, from the beginning, invited hospital libraries to play a substantial role in its development. UCMP, beginning with products in print and later in microfiche, helped to create a new resource sharing environment. Today, UCMP continues to capitalize on new technology by providing access via the Internet and an Oracle-based search system providing subscribers with the benefits of: a database that contains serial holdings information on an issue specific level, a database that can be updated in real time, a system that provides multi-type searching and allows users to define how the results will be sorted, and an ordering function that can more precisely target libraries that have a specific issue of a medical journal. Current development of a Web-based system will ensure that UCMP continues to provide cost effective and efficient resource sharing in future years. PMID:10427426
Technology Development and Design of a Hybrid Mars Ascent Vehicle Concept
NASA Technical Reports Server (NTRS)
Karp, Ashley C.; Redmond, Matt; Nakazono, Barry; Vaughan, David; Shotwell, Robert; Story, George; Jackson, Dale; Young, David
2016-01-01
Hybrid propulsion has been investigated as an enhancing technology for a Mars Ascent Vehicle (MAV) concept as part of potential Mars Sample Return (MSR) because of its high specific impulse, restartability, and the ability to operate and survive at extremely low temperatures. A new wax-based hybrid fuel formulation has been developed that could withstand the harsh and variable Mars environment protected solely by a minimal layer of passive insulation. This formulation could provide substantial energy savings for a notional lander and is critical for rover mobility. Preliminary thermal cycle testing has determined that the formulation can survive the expected temperature extremes and lifetime thermal testing is currently underway. A complete preliminary design using this new fuel formulation combined with a low temperature oxidizer such as Mixed Oxides of Nitrogen (MON30) is presented. Several key features associated with a complete hybrid MAV concept are investigated to determine their mission suitability (e.g. Thrust Vector Control and restartable ignition options). Potential challenges along a path towards developing such a system are outlined and future work is suggested as a means of technology maturation. The hybrid design presented here was the lowest Gross Lift Off Mass (GLOM) result of a 2015 Jet Propulsion Laboratory (JPL) led MAV concept study.
Breakthrough Capability for UVOIR Space Astronomy: Reaching the Darkest Sky
NASA Technical Reports Server (NTRS)
Greenhouse, Matthew A.; Benson, Scott W.; Englander, Jacob; Falck, Robert D.; Fixsen, Dale J.; Gardner, Jonathan P.; Kruk, Jeffrey W.; Oleson, Steven R.; Thronson, Harley A.
2014-01-01
We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present a proof of concept case study in which SEP is used to enable a 700 kg Explorer-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. We also present flight dynamics analysis which illustrates that this concept can be extended beyond Explorers to substantially improve the sensitivity performance of heavier (7000 kg) flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope by using high power SEP that is being developed for the Asteroid Redirect Robotics Mission.
The Inception of OMA in the Development of Modal Testing Technology for Wind Turbines
NASA Technical Reports Server (NTRS)
James, George H., III; Carne. Thomas G.
2008-01-01
Wind turbines are immense, flexible structures with aerodynamic forces acting on the rotating blades at harmonics of the turbine rotational frequency, which are comparable to the modal frequencies of the structure. Predicting and experimentally measuring the modal frequencies of wind turbines has been important to their successful design and operation. Performing modal tests on wind turbine structures over 100 meters tall is a substantial challenge, which has inspired innovative developments in modal test technology. For wind turbines, a further complication is that the modal frequencies are dependent on the turbine rotation speed. The history and development of a new technique for acquiring the modal parameters using output-only response data, called the Natural Excitation Technique (NExT), will be reviewed, showing historical tests and techniques. The initial attempts at output-only modal testing began in the late 1980's with the development of NExT in the 1990's. NExT was a predecessor to OMA, developed to overcome these challenges of testing immense structures excited with environmental inputs. We will trace the difficulties and successes of wind turbine modal testing from 1982 to the present. Keywords: OMA, Modal Analysis, NExT, Wind Turbines, Wind Excitation
Moving toward energy security and sustainability in 2050 by reconfiguring biofuel production
USDA-ARS?s Scientific Manuscript database
To achieve energy security and sustainability by 2050 requires reconfiguring biofuel production both by building on current infrastructure and existing technology and also by making substantial improvements and changes in the feedstocks used, the process technologies applied, and the fuels produced....
EPA Research Highlights: Minimizing SO3 Emissions from Coal-Fired Power Plants
There have been substantial reductions in emissions of particulate matter, nitrogen oxides, and sulfur dioxide through the application of control technologies and strategies. The installation of control technologies has added to the complexity of coal-fired boilers and their ope...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-02
... new information and environmental technologies that have substantially affected marine transportation..., including the use of automated collection techniques or other forms of information technology. A comment to...; Agency Information Collection Activity Under OMB Review AGENCY: Maritime Administration, DOT. ACTION...
Antitrypanosomatid drug discovery: an ongoing challenge and a continuing need
Field, Mark C.; Horn, David; Fairlamb, Alan H.; Ferguson, Michael A. J.; Gray, David W.; Read, Kevin D.; De Rycker, Manu; Torrie, Leah S.; Wyatt, Paul G.; Wyllie, Susan; Gilbert, Ian H.
2017-01-01
The World Health Organization recognizes human African trypanosomiasis, Chagas’ disease and the leishmaniases as neglected tropical diseases. These diseases are caused by parasitic trypanosomatids and range in severity from mild and self-curing to near invariably fatal. Public health advances have substantially decreased the impact of these diseases in recent decades, but alone will not eliminate these diseases. Here we discuss why new drugs against trypanosomatids are needed, approaches that are under investigation to develop new drugs and why the drug discovery pipeline remains essentially unfilled. Additionally, we consider the important challenges to drug discovery strategies and the new technologies that can address them. The combination of new drugs, new technologies and public health initiatives are essential for the management and hopefully eventual elimination of trypanosomatid diseases from the human population. PMID:28239154
Reduction of aircraft gas turbine engine pollutant emissions
NASA Technical Reports Server (NTRS)
Diehl, L. A.
1978-01-01
To accomplish simultaneous reduction of unburned hydrocarbons, carbon monoxide, and oxides of nitrogen, required major modifications to the combustor. The modification most commonly used was a staged combustion technique. While these designs are more complicated than production combustors, no insurmountable operational difficulties were encountered in either high pressure rig or engine tests which could not be resolved with additional normal development. The emission reduction results indicate that reductions in unburned hydrocarbons were sufficient to satisfy both near and far-termed EPA requirements. Although substantial reductions were observed, the success in achieving the CO and NOx standards was mixed and depended heavily on the engine/engine cycle on which it was employed. Technology for near term CO reduction was satisfactory or marginally satisfactory. Considerable doubt exists if this technology will satisfy all far-term requirements.
Data Acquisition and Linguistic Resources
NASA Astrophysics Data System (ADS)
Strassel, Stephanie; Christianson, Caitlin; McCary, John; Staderman, William; Olive, Joseph
All human language technology demands substantial quantities of data for system training and development, plus stable benchmark data to measure ongoing progress. While creation of high quality linguistic resources is both costly and time consuming, such data has the potential to profoundly impact not just a single evaluation program but language technology research in general. GALE's challenging performance targets demand linguistic data on a scale and complexity never before encountered. Resources cover multiple languages (Arabic, Chinese, and English) and multiple genres -- both structured (newswire and broadcast news) and unstructured (web text, including blogs and newsgroups, and broadcast conversation). These resources include significant volumes of monolingual text and speech, parallel text, and transcribed audio combined with multiple layers of linguistic annotation, ranging from word aligned parallel text and Treebanks to rich semantic annotation.
Snow as building material for construction of technological along-the-route roads of main pipelines
NASA Astrophysics Data System (ADS)
Merdanov, S. M.; Egorov, A. L.; Kostyrchenko, V. A.; Madyarov, T. M.
2018-05-01
The article deals with the process of compacting snow in a closed volume with the use of vacuum processing for the construction of technological along-the-route roads of main pipelines. The relevance of the chosen study is substantiated; methods and designs for snow compaction are considered. The publication activity and defenses of doctoral and candidate dissertations on the research subject are analyzed. Patent analysis of existing methods and equipment for snow compaction with indication of their disadvantages is carried out. A design calculation was carried out using computer programs in which a strength calculation was performed to identify the most stressed places in the construction of a vibrating hydraulic tyre-type roller. A 3D model of the experimental setup was developed.
The elephant graveyard - A planet-wide Mars sample return
NASA Astrophysics Data System (ADS)
Heinsheimer, T. F.; Corn, Barbara
1991-10-01
A method is presented for collecting documented Martian samples from the surface of the entire planet based partly on research done for a 1994 Mars balloon mission. Smart balloons are employed to collect samples from difficult terrains, fly 100-200 km with the sample to more manageable terrains, and are retrieved by a rover mission for return to earth. Elements of the sample-return method are described in detail with attention given to the projected rates of success for each portion of the technology. The SNAKE, Canniballoon, and 'Brilliant Ants' concepts are described in terms of level of development, function within the mission, and technological requirements. Substantial research presently exists in the areas of deployment, on-site sample assessment, pick-up, and designs for the ballons and ground-traversing guideropes.
Uncertainties in real-world decisions on medical technologies.
Lu, C Y
2014-08-01
Patients, clinicians, payers and policy makers face substantial uncertainties in their respective healthcare decisions as they attempt to achieve maximum value, or the greatest level of benefit possible at a given cost. Uncertainties largely come from incomplete information at the time that decisions must be made. This is true in all areas of medicine because evidence from clinical trials is often incongruent with real-world patient care. This article highlights key uncertainties around the (comparative) benefits and harms of medical technologies. Initiatives and strategies such as comparative effectiveness research and coverage with evidence development may help to generate reliable and relevant evidence for decisions on coverage and treatment. These efforts could result in better decisions that improve patient outcomes and better use of scarce medical resources. © 2014 John Wiley & Sons Ltd.
A mature Bosch CO2 reduction technology. [for long-duration space missions
NASA Technical Reports Server (NTRS)
King, C. D.; Holmes, R. F.
1976-01-01
The reduction of CO2 is one of the steps in closing the oxygen loop for long-duration manned space missions. Several units utilizing the Bosch process, which catalytically reduces CO2 with hydrogen, have been built and operated during the past decade. Each contributed substantial information affecting subsequent designs. Early challenges were primarily concerned with carbon control, materials durability, and reliability of reaction initiation. These were followed by concern about power consumption, expendable weight, volume, and process rate control. Suitable materials and techniques for carbon containment and process reliability have been demonstrated. Power requirements have been reduced by almost an order of magnitude. Methods for significant reductions in expendable weight and volume have been developed. The technology is at a state of maturity directly applicable to designs for space missions.
Genome Engineering for Personalized Arthritis Therapeutics.
Adkar, Shaunak S; Brunger, Jonathan M; Willard, Vincent P; Wu, Chia-Lung; Gersbach, Charles A; Guilak, Farshid
2017-10-01
Arthritis represents a family of complex joint pathologies responsible for the majority of musculoskeletal conditions. Nearly all diseases within this family, including osteoarthritis, rheumatoid arthritis, and juvenile idiopathic arthritis, are chronic conditions with few or no disease-modifying therapeutics available. Advances in genome engineering technology, most recently with CRISPR-Cas9, have revolutionized our ability to interrogate and validate genetic and epigenetic elements associated with chronic diseases such as arthritis. These technologies, together with cell reprogramming methods, including the use of induced pluripotent stem cells, provide a platform for human disease modeling. We summarize new evidence from genome-wide association studies and genomics that substantiates a genetic basis for arthritis pathogenesis. We also review the potential contributions of genome engineering in the development of new arthritis therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedict, Stanley H.; Bova, Frank J.; Clark, Brenda
This article is a tribute to the pioneering medical physicists over the last 50 years who have participated in the research, development, and commercialization of stereotactic radiosurgery (SRS) and stereotactic radiotherapy utilizing a wide range of technology. The authors have described the evolution of SRS through the eyes of physicists from its beginnings with the Gamma Knife in 1951 to proton and charged particle therapy; modification of commercial linacs to accommodate high precision SRS setups; the multitude of accessories that have enabled fine tuning patients for relocalization, immobilization, and repositioning with submillimeter accuracy; and finally the emerging technology of SBRT.more » A major theme of the article is the expanding role of the medical physicist from that of advisor to the neurosurgeon to the current role as a primary driver of new technology that has already led to an adaptation of cranial SRS to other sites in the body, including, spine, liver, and lung. SRS continues to be at the forefront of the impetus to provide technological precision for radiation therapy and has demonstrated a host of downstream benefits in improving delivery strategies for conventional therapy as well. While this is not intended to be a comprehensive history, and the authors could not delineate every contribution by all of those working in the pursuit of SRS development, including physicians, engineers, radiobiologists, and the rest of the therapy and dosimetry staff in this important and dynamic radiation therapy modality, it is clear that physicists have had a substantial role in the development of SRS and theyincreasingly play a leading role in furthering SRS technology.« less
The Evolution of Image-Free Robotic Assistance in Unicompartmental Knee Arthroplasty.
Lonner, Jess H; Moretti, Vincent M
2016-01-01
Semiautonomous robotic technology has been introduced to optimize accuracy of bone preparation, implant positioning, and soft tissue balance in unicompartmental knee arthroplasty (UKA), with the expectation that there will be a resultant improvement in implant durability and survivorship. Currently, roughly one-fifth of UKAs in the US are being performed with robotic assistance, and it is anticipated that there will be substantial growth in market penetration of robotics over the next decade. First-generation robotic technology improved substantially implant position compared to conventional methods; however, high capital costs, uncertainty regarding the value of advanced technologies, and the need for preoperative computed tomography (CT) scans were barriers to broader adoption. Newer image-free semiautonomous robotic technology optimizes both implant position and soft tissue balance, without the need for preoperative CT scans and with pricing and portability that make it suitable for use in an ambulatory surgery center setting, where approximately 40% of these systems are currently being utilized. This article will review the robotic experience for UKA, including rationale, system descriptions, and outcomes.
24 CFR 907.3 - Bases for substantial default.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Bases for substantial default. 907.3 Section 907.3 Housing and Urban Development REGULATIONS RELATING TO HOUSING AND URBAN DEVELOPMENT... DEVELOPMENT SUBSTANTIAL DEFAULT BY A PUBLIC HOUSING AGENCY § 907.3 Bases for substantial default. (a...
24 CFR 907.3 - Bases for substantial default.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Bases for substantial default. 907.3 Section 907.3 Housing and Urban Development REGULATIONS RELATING TO HOUSING AND URBAN DEVELOPMENT... DEVELOPMENT SUBSTANTIAL DEFAULT BY A PUBLIC HOUSING AGENCY § 907.3 Bases for substantial default. (a...
24 CFR 907.3 - Bases for substantial default.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Bases for substantial default. 907.3 Section 907.3 Housing and Urban Development REGULATIONS RELATING TO HOUSING AND URBAN DEVELOPMENT... DEVELOPMENT SUBSTANTIAL DEFAULT BY A PUBLIC HOUSING AGENCY § 907.3 Bases for substantial default. (a...
NASA Technical Reports Server (NTRS)
Simpson, Carol A.
1990-01-01
The U.S. Army Crew Station Research and Development Facility uses vintage 1984 speech recognizers. An evaluation was performed of newer off-the-shelf speech recognition devices to determine whether newer technology performance and capabilities are substantially better than that of the Army's current speech recognizers. The Phonetic Discrimination (PD-100) Test was used to compare recognizer performance in two ambient noise conditions: quiet office and helicopter noise. Test tokens were spoken by males and females and in isolated-word and connected-work mode. Better overall recognition accuracy was obtained from the newer recognizers. Recognizer capabilities needed to support the development of human factors design requirements for speech command systems in advanced combat helicopters are listed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, P.T.
1995-04-01
The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification,more » heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.« less
Mechanical regulation of cardiac development
Lindsey, Stephanie E.; Butcher, Jonathan T.; Yalcin, Huseyin C.
2014-01-01
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development. PMID:25191277
Prototype microprocessor controller. [for STDN antennas
NASA Technical Reports Server (NTRS)
Zarur, J.; Kraeuter, R.
1980-01-01
A microcomputer controller for STDN antennas was developed. The microcomputer technology reduces the system's physical size by the implementation in firmware of functions. The reduction in the number of components increases system reliability and similar benefit is derived when a graphic video display is substituted for several control and indicator panels. A substantial reduction in the number of cables, connectors, and mechanical switches is achieved. The microcomputer based system is programmed to perform calibration and diagnostics, to update the satellite orbital vector, and to communicate with other network systems. The design is applicable to antennas and lasers.
Achieving Weak Light Response with Plasmonic Nanogold-Decorated Organic Phototransistors.
Luo, Xiao; Du, Lili; Liang, Yuanlong; Zhao, Feiyu; Lv, Wenli; Xu, Kun; Wang, Ying; Peng, Yingquan
2018-05-09
Weak light response of organic photodetectors has fascinating potentials in fields of modern science and technology. However, their photoresponsivity is hindered by poor photocarrier excitation and transport. Decorating active-layer surface with plasmonic nanometals is considered a viable strategy to address this issue. Here, we demonstrate a plasmonic nanogold decorated organic phototransistor achieving remarkable enhancement of photoresponsivity. Meanwhile, the photoresponsive range is broadened by 4 orders of magnitude. The proposed design is substantiated by a schematic energy level model combined with theoretical simulation analysis, enabling the development of the advanced optoelectronics.
Robert H. Goddard and His Liquid-Gasoline Rocket
NASA Technical Reports Server (NTRS)
1926-01-01
Dr. Goddard's 1926 rocket configuration. Dr. Goddard's liquid oxygen-gasoline rocket was fired on March 16, 1926, at Auburn, Massachusetts. It flew for only 2.5 seconds, climbed 41 feet, and landed 184 feet away in a cabbage patch. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology
Asahi, Shigeo; Kusaki, Kazuki; Harada, Yukihiro; Kita, Takashi
2018-01-17
Development of high-efficiency solar cells is one of the attractive challenges in renewable energy technologies. Photon up-conversion can reduce the transmission loss and is one of the promising concepts which improve conversion efficiency. Here we present an analysis of the conversion efficiency, which can be increased by up-conversion in a single-junction solar cell with a hetero-interface that boosts the output voltage. We confirm that an increase in the quasi-Fermi gap and substantial photocurrent generation result in a high conversion efficiency.
An update of input instructions to TEMOD
NASA Technical Reports Server (NTRS)
1973-01-01
The theory and operation of a FORTRAN 4 computer code, designated as TEMOD, used to calcuate tubular thermoelectric generator performance is described in WANL-TME-1906. The original version of TEMOD was developed in 1969. A description is given of additions to the mathematical model and an update of the input instructions to the code. Although the basic mathematical model described in WANL-TME-1906 has remained unchanged, a substantial number of input/output options were added to allow completion of module performance parametrics as required in support of the compact thermoelectric converter system technology program.
Professional Advanced Research and Analysis
NASA Technical Reports Server (NTRS)
Coulman, George A.
1996-01-01
Reported here is a summary of studies examining some problems in an energy conversion system. Regenerative fuel cell systems have been suggested for future manned space missions, but to meet the needed specific power requirements substantial improvements in the state-of-the-art technologies are needed. Similar improvements are needed, with emphasis on cost reduction in addition to higher conversion efficiency, for fuel cell systems that have potential for terrestrial applications. Polymer Electrolyte Membrane (PEM) fuel cells have been identified as promising candidates for development that would lead to the desired cost reduction and increased efficiency.
The way forward for telemedicine in health care delivery.
Kwankam, S Yunkap
2013-01-01
Telemedicine has shown substantial growth recently both in terms of financial volume and numbers of people served. It also holds promise for even more growth in the future, driven by both epidemiological conditions and technological advancements. The spread of the mobile telephone into the remotest parts of developing countries, combined with its multiple applications in health and mobile financial services will extend telemedicine to vast swathes of the world's populations. However, some challenges, primarily in dealing with the regulatory environment, will need to be overcome for this potential to be fully realized.
Environment, Renewable Energy and Reduced Carbon Emissions
NASA Technical Reports Server (NTRS)
Sen, S.; Khazanov, G.; Kishimoto, Y.
2011-01-01
Increased energy security and reduced carbon emissions pose significant challenges for science and technology. However, they also create substantial opportunities for innovative research and development. In this review paper, we highlight some of the key opportunities and mention public policies that are needed to enable the efforts and to maximize the probability of their success. Climate is among the uttermost nonlinear behaviors found around us. As recent studies showed the possible effect of cosmic rays on the Earth's climate, we investigate how complex interactions between the planet and its environment can be responsible for climate anomalies.
Adoptive Immunotherapy for Cancer or Viruses
Maus, Marcela V.; Fraietta, Joseph A.; Levine, Bruce L.; Kalos, Michael; Zhao, Yangbing; June, Carl H.
2015-01-01
Adoptive immunotherapy, or the infusion of lymphocytes, is a promising approach for the treatment of cancer and certain chronic viral infections. The application of the principles of synthetic biology to enhance T cell function has resulted in substantial increases in clinical efficacy. The primary challenge to the field is to identify tumor-specific targets to avoid off-tissue, on-target toxicity. Given recent advances in efficacy in numerous pilot trials, the next steps in clinical development will require multicenter trials in order to establish adoptive immunotherapy as a mainstream technology. PMID:24423116
1926-03-16
Dr. Goddard's 1926 rocket configuration. Dr. Goddard's liquid oxygen-gasoline rocket was fired on March 16, 1926, at Auburn, Massachusetts. It flew for only 2.5 seconds, climbed 41 feet, and landed 184 feet away in a cabbage patch. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology
1926-03-16
Dr. Robert H. Goddard and liquid oxygen-gasoline rocket in the frame from which it was fired on March 16, 1926, at Auburn, Mass. It flew for only 2.5 seconds, climbed 41 feet, and landed 184 feet away in a cabbage patch. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology
Fico, Giuseppe; Fioravanti, Alessio; Arredondo, Maria Teresa; Gorman, Joe; Diazzi, Chiara; Arcuri, Giovanni; Conti, Claudio; Pirini, Giampiero
2016-01-01
The availability of new tools able to support patient monitoring and personalized care may substantially improve the quality of chronic disease management. A personalized healthcare pathway (PHP) has been developed for diabetes disease management and integrated into an information and communication technology system to accomplish a shift from organization-centered care to patient-centered care. A small-scale exploratory study was conducted to test the platform. Preliminary results are presented that shed light on how the PHP influences system usage and performance outcomes.
Synthesis and surface immobilization of antibacterial hybrid silver-poly(l-lactide) nanoparticles
NASA Astrophysics Data System (ADS)
Taheri, Shima; Baier, Grit; Majewski, Peter; Barton, Mary; Förch, Renate; Landfester, Katharina; Vasilev, Krasimir
2014-08-01
Infections associated with medical devices are a substantial healthcare problem. Consequently, there has been increasing research and technological efforts directed toward the development of coatings that are capable of preventing bacterial colonization of the device surface. Herein, we report on novel hybrid silver loaded poly(L-lactic acid) nanoparticles (PLLA-AgNPs) with narrowly distributed sizes (17 ± 3 nm) prepared using a combination of solvent evaporation and mini-emulsion technology. These particles were then immobilized onto solid surfaces premodified with a thin layer of allylamine plasma polymer (AApp). The antibacterial efficacy of the PLLA-AgNPs nanoparticles was studied in vitro against both gram-positive (Staphylococcus epidermidis) and gram-negative (Escherichia coli) bacteria. The minimal inhibitory concentration values against Staphylococcus epidermidis and Escherichia coli were 0.610 and 1.156 μg · mL-1, respectively. The capacity of the prepared coatings to prevent bacterial surface colonization was assessed in the presence of Staphylococcus epidermidis, which is a strong biofilm former that causes substantial problems with medical device associated infections. The level of inhibition of bacterial growth was 98%. The substrate independent nature and the high antibacterial efficacy of coatings presented in this study may offer new alternatives for antibacterial coatings for medical devices.
Healthcare technology: physician collaboration in reducing the surgical cost.
Olson, Steven A; Obremskey, William T; Bozic, Kevin J
2013-06-01
The increasing cost of providing health care is a national concern. Healthcare spending related to providing hospital care is one of the primary drivers of healthcare spending in the United States. Adoption of advanced medical technologies accounts for the largest percentage of growth in healthcare spending in the United States when compared with other developed countries. Within the specialty of orthopaedic surgery, a variety of implants can result in similar outcomes for patients in several areas of clinical care. However, surgeons often do not know the cost of implants used in a specific procedure or how the use of an implant or technology affects the overall cost of the episode of care. The purposes of this study were (1) to describe physician-led processes for introduction of new surgical products and technologies; and (2) to inform physicians of potential cost savings of physician-led product contract negotiations and approval of new technology. We performed a detailed review of the steps taken by two centers that have implemented surgeon-led programs to demonstrate responsibility in technology acquisition and product procurement decision-making. Each program has developed a physician peer review process in technology and new product acquisition that has resulted in a substantial reduction in spending for the respective hospitals in regard to surgical implants. Implant costs have decreased between 3% and 38% using different negotiating strategies. At the same time, new product requests by physicians have been approved in greater than 90% of instances. Hospitals need physicians to be engaged and informed in discussions concerning current and new technology and products. Surgeons can provide leadership for these efforts to reduce the cost of high-quality care.
Psychogios, Nikolaos; Hau, David D.; Peng, Jun; Guo, An Chi; Mandal, Rupasri; Bouatra, Souhaila; Sinelnikov, Igor; Krishnamurthy, Ramanarayan; Eisner, Roman; Gautam, Bijaya; Young, Nelson; Xia, Jianguo; Knox, Craig; Dong, Edison; Huang, Paul; Hollander, Zsuzsanna; Pedersen, Theresa L.; Smith, Steven R.; Bamforth, Fiona; Greiner, Russ; McManus, Bruce; Newman, John W.; Goodfriend, Theodore; Wishart, David S.
2011-01-01
Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca. PMID:21359215
Socioeconomic Strata, Mobile Technology, and Education: A Comparative Analysis
ERIC Educational Resources Information Center
Kim, Paul; Hagashi, Teresita; Carillo, Laura; Gonzales, Irina; Makany, Tamas; Lee, Bommi; Garate, Alberto
2011-01-01
Mobile devices are highly portable, easily distributable, substantially affordable, and have the potential to be pedagogically complementary resources in education. This study, incorporating mixed method analyses, discusses the implications of a mobile learning technology-based learning model in two public primary schools near the Mexico-USA…
The Future of Adaptive Learning: Does the Crowd Hold the Key?
ERIC Educational Resources Information Center
Heffernan, Neil T.; Ostrow, Korinn S.; Kelly, Kim; Selent, Douglas; Van Inwegen, Eric G.; Xiong, Xiaolu; Williams, Joseph Jay
2016-01-01
Due to substantial scientific and practical progress, learning technologies can effectively adapt to the characteristics and needs of students. This article considers how learning technologies can adapt over time by crowdsourcing contributions from teachers and students--explanations, feedback, and other pedagogical interactions. Considering the…
With Corporate Help, We're Building the School of the Future Right Now.
ERIC Educational Resources Information Center
Herlihy, John J.; Day, C. William
1989-01-01
When Toyota Motor Manufacturing moved into a Kentucky community, it provided technological expertise and substantial financial backing to the school system. "Smart classrooms" are being designed with a spectrum of technological tools including computerized science laboratories and electronically linked media centers. (MLF)
Development of Android Based Powered Intelligent Wheelchair for Quadriplegic Persons
NASA Astrophysics Data System (ADS)
Gupta, Ashutosh; Ghosh, Tathagata; Kumar, Pradeep; Bhawna, Shruthi. S.
2017-08-01
Several surveys give us the view that both children and adults benefit substantially from access towards independent mobility. With the inventions of technology, no individuals are satisfied with traditional manual operated machines. To accommodate population, researchers are using technology, originally developed for mobile robots to create ‘intelligent wheelchairs’. It’s a major challenge for quadriplegic persons as they really find it difficult to manipulate powered wheelchair during the activities of their daily living. As the Smartphone era has evolved with innovative android based applications, engineers are improving and trying to make such machines simple and cheap to the next level. In this paper, we present a development of android based powered intelligent wheelchair to assist the quadriplegic person by making them self sufficient in controlling the wheelchair. The wheels of the chair can be controlled by the voice or gesture movement or by touching the screen of the android app by the challenged persons. The system uses the Bluetooth communication to interface the microcontroller and the inbuilt sensors in the android Smartphone. According to the commands received from android phone, the kinematics of the wheels are controlled.
NASA Technical Reports Server (NTRS)
Tolliver, C. L.
1989-01-01
The quest for the highest resolution microwave imaging and principle of time-domain imaging has been the primary motivation for recent developments in time-domain techniques. With the present technology, fast time varying signals can now be measured and recorded both in magnitude and in-phase. It has also enhanced our ability to extract relevant details concerning the scattering object. In the past, the interface of object geometry or shape for scattered signals has received substantial attention in radar technology. Various scattering theories were proposed to develop analytical solutions to this problem. Furthermore, the random inversion, frequency swept holography, and the synthetic radar imaging, have two things in common: (1) the physical optic far-field approximation, and (2) the utilization of channels as an extra physical dimension, were also advanced. Despite the inherent vectorial nature of electromagnetic waves, these scalar treatments have brought forth some promising results in practice with notable examples in subsurface and structure sounding. The development of time-domain techniques are studied through the theoretical aspects as well as experimental verification. The use of time-domain imaging for space robotic vision applications has been suggested.
The effect of hospital-physician integration on health information technology adoption.
Lammers, Eric
2013-10-01
The US federal government has recently made a substantial investment to enhance the US health information technology (IT) infrastructure. Previous literature on the impact of IT on firm performance across multiple industries has emphasized the importance of a process of co-invention whereby organizations develop complementary practices to achieve greater benefit from their IT investments. In health care, employment of physicians by hospitals can confer greater administrative control to hospitals over physicians' actions and resources and thus enable the implementation of new technology and initiatives aimed at maximizing benefit from use of the technology. In this study, I tested for the relationship between hospital employment of physicians and hospitals' propensity to use health IT. I used state laws that prohibit hospital employment of physicians as an instrument to account for the endogenous relationship with hospital IT use. Hospital employment of physicians is associated with significant increases in the probability of hospital health IT use. Therefore, subsidization of health IT among hospitals not employing physicians may be less efficient. Furthermore, state laws prohibiting hospitals from employing physicians may inhibit adoption of health IT, thus working against policy initiatives aimed at promoting use of the technology. Copyright © 2012 John Wiley & Sons, Ltd.
Earth Science Enterprise Technology Strategy
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.
Phytoremediation of soils contaminated with toxic elements and radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornish, J.E.; Goldberg, W.C.; Levine, R.S.
1995-12-31
At many US Department of Energy (US DOE) facilities and other sites, surface soils over relatively large areas are contaminated with heavy metals, radionuclides, and other toxic elements, often at only a relatively small factor above regulatory action levels. Cleanup of such sites presents major challenges, because currently available soil remediation technologies can be very expensive. In response, the US DOE`s Office of Technology Development, through the Western Environmental Technology Office, is sponsoring research in the area of phytoremediation. Phytoremediation is an emerging technology that uses higher plants to transfer toxic elements and radionuclides from surface soils into aboveground biomass.more » Some plants, termed hyperaccumulators, take up toxic elements in substantial amounts, resulting in concentrations in aboveground biomass over 100 times those observed with conventional plants. After growth, the plant biomass is harvested, and the toxic elements are concentrated and reclaimed or disposed of. As growing, harvesting, and processing plant biomass is relatively inexpensive, phytoremediation can be a low-cost technology for remediation of extensive areas having lightly to moderately contaminated soils. This paper reviews the potential of hyper- and moderate accumulator plants in soil remediation, provides some comparative cost estimates, and outlines ongoing work initiated by the US DOE.« less
Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M
2009-11-01
This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.
Invited perspective: Why I am an optimist
NASA Astrophysics Data System (ADS)
Burges, Stephen J.
2011-03-01
I address a range of topics that provide the sociopolitical-technological setting for my professional life. I discuss some influential features of post-World War II world geopolitics, landmark technological developments of that era, and the resulting follow-up technologies that have made it possible to approach various problems in hydrology and water resources. I next address societal needs that have driven developments in hydrology and water resources engineering and follow with a discussion of the modern foundations of our science and what I think are the principal issues in hydrology. I pose three community challenges that when accomplished should advance hydrologic science: data network needs for improving the water budgets at all scales, characterizing subsurface water flow paths, and the information archiving and mining needs from instruments that will generate substantially richer data detail than have been used for most hydrologic work to the present. I then discuss several hydrologic and water resource risk-based decision issues that matter to society to illustrate how such risks have been addressed successfully in the past. I conclude with a long-term community "grand challenge," the coupled modeling of the ocean-atmosphere-landform hydrologic cycle for the purpose of long-lead time hydrologic prediction.
[Health technology assessment (HTA). Developments in healthcare and potential for radiology].
Gizewski, E R; Forsting, M; Krombach, G A; Schöffski, O
2014-06-01
Cost-intensive measures and procedures, such as also employed in radiology, have far-reaching economic implications in respect to increasing expenditure with limited resources. Health technology assessment (HTA) describes the systematic evaluation of medical procedures and technologies which in recent years has been introduced by many countries into healthcare politics. In many cases HTA analyses can be directly implemented into practice as shown by the examples given in this article; however, in the current form of HTA the practical implementation for radiology often presents the problem that the cost-benefit ratio does not yet have a comprehensive view in the HTA report but is limited to a subsection, e.g. current costs versus sensitivity of a method. Since its inception radiology has had a high power of innovation and new developments will also substantially determine the future years. These procedures must not only be evaluated with respect to feasibility but also in the sense of the HTA in the total concept. In radiology there are also a large number of possibilities for radiologists not only as passive consumers of HTA reports but also to become active participants in this process, an opportunity which should be taken advantage of.
Stålberg, Anna; Sandberg, Anette; Söderbäck, Maja; Larsson, Thomas
2016-06-01
During the last decade, interactive technology has entered mainstream society. Its many users also include children, even the youngest ones, who use the technology in different situations for both fun and learning. When designing technology for children, it is crucial to involve children in the process in order to arrive at an age-appropriate end product. In this study we describe the specific iterative process by which an interactive application was developed. This application is intended to facilitate young children's, three-to five years old, participation in healthcare situations. We also describe the specific contributions of the children, who tested the prototypes in a preschool, a primary health care clinic and an outpatient unit at a hospital, during the development process. The iterative phases enabled the children to be involved at different stages of the process and to evaluate modifications and improvements made after each prior iteration. The children contributed their own perspectives (the child's perspective) on the usability, content and graphic design of the application, substantially improving the software and resulting in an age-appropriate product. Copyright © 2016 Elsevier Inc. All rights reserved.
In-situ resource utilization technologies for Mars life support systems.
Sridhar, K R; Finn, J E; Kliss, M H
2000-01-01
The atmosphere of Mars has many of the ingredients that can be used to support human exploration missions. It can be "mined" and processed to produce oxygen, buffer gas, and water, resulting in significant savings on mission costs. The use of local materials, called ISRU (for in-situ resource utilization), is clearly an essential strategy for a long-term human presence on Mars from the standpoints of self-sufficiency, safety, and cost. Currently a substantial effort is underway by NASA to develop technologies and designs of chemical plants to make propellants from the Martian atmosphere. Consumables for life support, such as oxygen and water, will probably benefit greatly from this ISRU technology development for propellant production. However, the buffer gas needed to dilute oxygen for breathing is not a product of a propellant production plant. The buffer gas needs on each human Mars mission will probably be in the order of metric tons, primarily due to losses during airlock activity. Buffer gas can be separated, compressed, and purified from the Mars atmosphere. This paper discusses the buffer gas needs for a human mission to Mars and consider architectures for the generation of buffer gas including an option that integrates it to the propellant production plant.
Mattei, Tobias A; Rehman, Azeem A
2014-05-01
Graphene, a monolayer atomic-scale honeycomb lattice of carbon atoms, has been considered the greatest revolution in metamaterials research in the past 5 years. Its developers were awarded the Nobel Prize in Physics in 2010, and massive funding has been directed to graphene-based experimental research in the last years. For instance, an international scientific collaboration has recently received a €1 billion grant from the European Flagship Initiative, the largest amount of financial resources ever granted for a single research project in the history of modern science. Because of graphene's unique optical, thermal, mechanical, electronic, and quantum properties, the incorporation of graphene-based metamaterials to biomedical applications is expected to lead to major technological breakthroughs in the next few decades. Current frontline research in graphene technology includes the development of high-performance, lightweight, and malleable electronic devices, new optical modulators, ultracapacitors, molecular biodevices, organic photovoltaic cells, lithium-ion microbatteries, frequency multipliers, quantum dots, and integrated circuits, just to mention a few. With such advances, graphene technology is expected to significantly impact several areas of neurosurgery, including neuro-oncology, neurointensive care, neuroregeneration research, peripheral nerve surgery, functional neurosurgery, and spine surgery. In this topic review, the authors provide a basic introduction to the main electrophysical properties of graphene. Additionally, future perspectives of ongoing frontline investigations on this new metamaterial are discussed, with special emphasis on those research fields that are expected to most substantially impact experimental and clinical neurosurgery in the near future.
Effects of Deployment Investment on the Growth of the Biofuels Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, Laura J.; Bush, Brian W.
2013-12-01
In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstration and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scalemore » biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model -- a system dynamics model of the biomass to biofuels system -- that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial positive effect on the development of the biofuels industry. Results also show that other conditions, such as supportive policies, have major impacts on the effectiveness of such investments.« less
Recent advances in liquid-phase separations for clinical metabolomics.
Kohler, Isabelle; Giera, Martin
2017-01-01
Over the last decades, several technological improvements have been achieved in liquid-based separation techniques, notably, with the advent of fully porous sub-2 μm particles and superficially porous sub-3 μm particles, the comeback of supercritical fluid chromatography, and the development of alternative chromatographic modes such as hydrophilic interaction chromatography. Combined with mass spectrometry, these techniques have demonstrated their added value, substantially increasing separation efficiency, selectivity, and speed of analysis. These benefits are essential in modern clinical metabolomics typically involving the study of large-scale sample cohorts and the analysis of thousands of metabolites showing extensive differences in physicochemical properties. This review presents a brief overview of the recent developments in liquid-phase separation sciences in the context of clinical metabolomics, focusing on increased throughput as well as metabolite coverage. Relevant metabolomics applications highlighting the benefits of ultra-high performance liquid chromatography, core-shell technology, high-temperature liquid chromatography, capillary electrophoresis, supercritical fluid chromatography, and hydrophilic interaction chromatography are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Goodchild, Michael F.; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J.; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter
2012-01-01
A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of “big data” has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public’s access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation. PMID:22723346
Healthcare waste management in Asia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prem Ananth, A.; Prashanthini, V.; Visvanathan, C., E-mail: visu@ait.ac.t
The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper placesmore » recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.« less
Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies
Klein, Christian; Sustmann, Claudio; Thomas, Markus; Stubenrauch, Kay; Croasdale, Rebecca; Schanzer, Jürgen; Brinkmann, Ulrich; Kettenberger, Hubert; Regula, Jörg T.; Schaefer, Wolfgang
2012-01-01
The development of bispecific antibodies has attracted substantial interest, and many different formats have been described. Those specifically containing an Fc part are mostly tetravalent, such as stabilized IgG-scFv fusions or dual-variable domain (DVD) IgGs. However, although they exhibit IgG-like properties and technical developability, these formats differ in size and geometry from classical IgG antibodies. Thus, considerable efforts focus on bispecific heterodimeric IgG antibodies that more closely mimic natural IgG molecules. The inherent chain association problem encountered when producing bispecific heterodimeric IgG antibodies can be overcome by several methods. While technologies like knobs-into-holes (KiH) combined with a common light chain or the CrossMab technology enforce the correct chain association, other approaches, e.g., the dual-acting Fab (DAF) IgGs, do not rely on a heterodimeric Fc part. This review discusses the state of the art in bispecific heterodimeric IgG antibodies, with an emphasis on recent progress. PMID:22925968
Damage-Tolerant, Affordable Composite Engine Cases Designed and Fabricated
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Roberts, Gary D.; Pereira, J. Michael; Bowman, Cheryl L.
2005-01-01
An integrated team of NASA personnel, Government contractors, industry partners, and university staff have developed an innovative new technology for commercial fan cases that will substantially influence the safety and efficiency of future turbine engines. This effective team, under the direction of the NASA Glenn Research Center and with the support of the Federal Aviation Administration, has matured a new class of carbon/polymer composites and demonstrated a 30- to 50-percent improvement in specific containment capacity (blade fragment kinetic energy/containment system weight). As the heaviest engine component, the engine case/containment system greatly affects both the safety and efficiency of aircraft engines. The ballistic impact research team has developed unique test facilities and methods for screening numerous candidate material systems to replace the traditional heavy, metallic engine cases. This research has culminated in the selection of a polymer matrix composite reinforced with triaxially braided carbon fibers and technology demonstration through the fabrication of prototype engine cases for three major commercial engine manufacturing companies.
Wang, Shuqi; Hu, Wei
2014-01-01
Schistosomiasis, caused by dioecious flatworms in the genus Schistosoma, is torturing people from many developing countries nowadays and frequently leads to severe morbidity and mortality of the patients. Praziquantel based chemotherapy and morbidity control for this disease adopted currently necessitate viable and efficient diagnostic technologies. Fortunately, those “-omics” researches, which rely on high-throughput experimental technologies to produce massive amounts of informative data, have substantially contributed to the exploitation and innovation of diagnostic tools of schistosomiasis. In its first section, this review provides a concise conclusion on the progresses pertaining to schistosomal “-omics” researches to date, followed by a comprehensive section on the diagnostic methods of schistosomiasis, especially those innovative ones based on the detection of antibodies, antigens, nucleic acids, and metabolites with a focus on those achievements inspired by “-omics” researches. Finally, suggestions about the design of future diagnostic tools of schistosomiasis are proposed, in order to better harness those data produced by “-omics” studies. PMID:25018752
Readiness Assessment Towards Smart Manufacturing System for Tuna Processing Industry in Indonesia
NASA Astrophysics Data System (ADS)
Anggrahini, D.; Kurniati, N.; Karningsih, P. D.; Parenreng, S. M.; Syahroni, N.
2018-04-01
Marine product processing is one of the top priority clusters in the national development. Tuna, as a kind of deep ocean fishes, has the highest number of production that significantly increased throughout the years. Indonesia government encourages tuna processing industry, which are mostly dominated by small to medium enterprises, to grow continuously. Nowadays, manufacturers are facing substantial challenges in adopting modern system and technology that will lead a significant improvement through the internet of things (IoT). A smart factory transform integrated manufacturing process, in a high speed processing to respond customer needs. It has some positive impacts, such as increasing productivity, reducing set up time, shortening marketing and other support activities, hence the process is being more flexible and efficient. To implement smart manufacturing system, factories should know the readiness at any level of them, technology capability and strategy appropriateness. This exploratory study aims to identify the criterias, and develop an assessment tools to measure the level towards smart factory.
Healthcare waste management in Asia.
Ananth, A Prem; Prashanthini, V; Visvanathan, C
2010-01-01
The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper places recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.