Sample records for substituted urea herbicide

  1. Synthesis of Ureas from CO2.

    PubMed

    Wang, Hua; Xin, Zhuo; Li, Yuehui

    2017-04-01

    Ureas are an important class of bioactive organic compounds in organic chemistry and exist widely in natural products, agricultural pesticides, uron herbicides, pharmaceuticals. Even though urea itself has been synthesized from CO 2 and ammonia for a long time, the selective and efficient synthesis of substituted ureas is still challenging due to the difficulty of dehydration processes. Efficient and economic fixation of CO 2 is of great importance in solving the problems of resource shortages, environmental issues, global warming, etc. During recent decades, chemists have developed different catalytic systems to synthesize ureas from CO 2 and amines. Herein, we focus on catalytic synthesis of ureas using CO 2 and amines.

  2. Isolation from Agricultural Soil and Characterization of a Sphingomonas sp. Able To Mineralize the Phenylurea Herbicide Isoproturon

    PubMed Central

    Sørensen, Sebastian R.; Ronen, Zeev; Aamand, Jens

    2001-01-01

    A soil bacterium (designated strain SRS2) able to metabolize the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was isolated from a previously IPU-treated agricultural soil. Based on a partial analysis of the 16S rRNA gene and the cellular fatty acids, the strain was identified as a Sphingomonas sp. within the α-subdivision of the proteobacteria. Strain SRS2 was able to mineralize IPU when provided as a source of carbon, nitrogen, and energy. Supplementing the medium with a mixture of amino acids considerably enhanced IPU mineralization. Mineralization of IPU was accompanied by transient accumulation of the metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, and 4-isopropyl-aniline identified by high-performance liquid chromatography analysis, thus indicating a metabolic pathway initiated by two successive N-demethylations, followed by cleavage of the urea side chain and finally by mineralization of the phenyl structure. Strain SRS2 also transformed the dimethylurea-substituted herbicides diuron and chlorotoluron, giving rise to as-yet-unidentified products. In addition, no degradation of the methoxy-methylurea-substituted herbicide linuron was observed. This report is the first characterization of a pure bacterial culture able to mineralize IPU. PMID:11722885

  3. Transcriptional profile of diurnon-induces toxicity on the urinary bladder of male wistar rats to inform mode of action

    EPA Science Inventory

    Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is a substituted urea herbicide that induces rat urinary bladder urothelial tumors at high dietary levels (2500 ppm). The specific mode of action and molecular alterations triggered by diuron, however, have not been clarified. Th...

  4. Transcriptomic dose-and-time-course indicators of early key events in a cytotoxicity-mediated mode of action for rodent urinary bladder tumorigenesis

    EPA Science Inventory

    TRANSCRIPTOMIC DOSE- AND TIME-COURSE INDICATORS OF EARLY KEY EVENTS IN A CYTOTOXICITY-MEDIATED MODE OF ACTION FOR RODENT URINARY BLADDER TUMORIGENESISDiuron is a substituted urea compound used globally as an herbicide. Urinary bladder tumors were induced in rats after chronic die...

  5. Leaching and persistence of herbicides for kudzu (Pueraria montana) control on pine regeneration sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berisford, Yvette, C.; Bush, Parshall, B.; Taylor, John, W.

    Kudzu is an exotic vine that threatens forests in the southeastern United States. It can climb, overtop, and subsequently kill new seedlings or mature trees. Herbicides are commonly used to control kudzu; however, eradication might require retreatment for 3 to 10 yr in young stands and 7 to 10 yr for mature stands. Clopyralid, picloram, triclopyr, metsulfuron, and tebuthiuron exert various degrees of control, depending on soil type, meteorological conditions, herbicide formulation, seasonal application, characteristics of the kudzu stand, and frequency and number of herbicide. Field residue data for soil or leachate are lacking for all of these herbicides whenmore » they are used in actual forest regeneration programs in the Coastal Plain. These data are needed to assess the relative potential for the herbicides to leach into groundwater or to move off-site into sensitive ecological areas of the Coastal Plain in which sandy soils predominate and the groundwater tends to be shallow. As part of an integrated pest management program to control kudzu on forest regeneration areas at the Savannah River Site near New Ellenton, SC, five herbicides were evaluated from the standpoints of herbicide leaching, kudzu control, and plant community development. Three herbicide chemical families were represented. This included pyridinecarboxylic acid herbicides (clopyralid, picloram 1 2,4-D, and triclopyr), a sulfonylurea herbicide (metsulfuron), and a substituted urea herbicide (tebuthiuron).« less

  6. Mechanism of isoproturon resistance in Phalaris minor: in silico design, synthesis and testing of some novel herbicides for regaining sensitivity.

    PubMed

    Singh, Durg Vijay; Adeppa, Kuruba; Misra, Krishna

    2012-04-01

    Isoproturon, 3-p-cumenyl-1 dimethylurea was the only herbicide controlling Phalaris minor, a major weed growing in wheat fields till the early 1980s. Since it has acquired resistance against isoproturon, like other substituted urea herbicides, where the identified target site for isoproturon is in the photosynthetic apparatus at D1 protein of Photosystem-II (PS-II). Nucleotide sequence of susceptible and resistant psbA gene of P. minor has been reported to have four point mutations. During the present work D1 protein of both susceptible and resistant biotypes of P Minor has been modeled. Transmembrane segments of amino acids were predicted by comparing with the nearest homolog of bacterial D1 protein. Volume and area of active site of both susceptible and resistant biotypes has been simulated. Isoproturon was docked at the active site of both, susceptible and resistant D1 proteins. Modeling and simulation of resistance D1 protein indicates that the resistance is due to alteration in secondary structure near the binding site, resulting in loss in cavity area, volume and change in binding position, loss of hydrogen bonds, hydrophobic interaction and complete loss of hydrophobic sites. To regain sensitivity in resistant biotype new derivatives of isoproturon molecules have been proposed, synthesized and tested. Among the 17 derivatives we found that the N-methyl triazole substituted isoproturon is a potential substitute for isoproturon.

  7. DETERMINATION OF CARBAMATE, UREA, AND THIOUREA PESTICIDES AND HERBICIDES IN WATER

    EPA Science Inventory

    Microbe liquid chromatography and positive ion electrospray mass spectrometry are applied to the determination of 16 carbamate, urea, and thiourea pesticides and herbicides in water. The electrospray mass spectra of the analytes were measured and are discussed and mobile phase m...

  8. Assessing single and joint toxicity of three phenylurea herbicides using Lemna minor and Vibrio fischeri bioassays.

    PubMed

    Gatidou, Georgia; Stasinakis, Athanasios S; Iatrou, Evangelia I

    2015-01-01

    Single and joint toxicity of three substituted urea herbicides, namely monolinuron [3-(4-chlorophenyl)-1-methoxy-1-methylurea], linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea] and diuron [1-(3,4 dichlorophenyl)-3,3 dimethyl urea], were studied. The duckweed Lemna minor and the luminescent bacterium Vibrio fischeri were used for the toxicity assessment and they were exposed to various concentrations of the herbicides, individually and in binary mixtures. The exposure time was 7d for the duckweed and 30 min for the bacterium. Estimation of EC50 values was performed by frond counting and reduction in light output for Lemna minor and Vibrio fischeri, respectively. Lemna minor was found to be much more sensitive than Vibrio fischeri to target compounds. The toxicity of the three herbicides applied solely was estimated to be in decreasing order: diuron (EC50=28.3 μg L(-1))≈linuron (EC50=30.5 μg L(-1))>monolinuron (EC50=300 μg L(-1)) for the duckweed and linuron (EC50=8.2 mg L(-1))>diuron (EC50=9.2 mg L(-1))>monolinuron (EC50=11.2 mg L(-1)) for the bacterium. Based on the environmental concentrations reported in the literature and EC50 values obtained from Lemna minor experiments, Risk Quotients (RQ) much higher than 1 were calculated for diuron and linuron. In Lemna minor experiments, combination of target compounds resulted to additive effects due to their same mode of phenylurea action on photosynthetic organisms. Regarding Vibrio fischeri, synergistic, additive and antagonistic effects were observed, which varied according to the concentrations of target compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Mechanism of resistance to cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees).

    PubMed

    Yu, Jiaxing; Gao, Haitao; Pan, Lang; Yao, Zhenwei; Dong, Liyao

    2017-11-01

    Chinese sprangletop (Leptochloa chinensis (L.) Nees) is a serious grass weed in rice paddies. In some areas, L. chinensis has become resistant to the herbicide cyhalofop-butyl because of its frequent and extensive use over the past five years. In this study, whole-plant dose-response assays were conducted, and a L. chinensis population (ZHYH) had a 75.8-fold resistance index to cyhalofop-butyl. Molecular analyses revealed that this resistance was attributed to a tryptophan (Trp)-2027-to-cysteine (Cys) substitution in the CT domain of the ACCase gene. To our knowledge, this is the first report revealing the mechanism underlying cyhalofop-butyl resistance in L. chinensis. Furthermore, a derived cleaved amplified polymorphic (dCAPS) assay was developed to rapidly detect the Trp-2027-Cys mutation. Of the 100 ZHYH plants analyzed, 52 were heterozygous mutants and 48 were susceptible homozygous plants. In addition, the cyhalofop-butyl-resistant L. chinensis was cross-resistant to aryloxyphenoxypropionate and phenylpyrazoline herbicides, but not to cyclohexanedione, acetolactate synthase-inhibiting, protoporphyrinogen oxidase, and urea herbicides, and had only slight resistance to the hormonal herbicide quinclorac. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Enrichment and Molecular Characterization of a Bacterial Culture That Degrades Methoxy-Methyl Urea Herbicides and Their Aniline Derivatives

    PubMed Central

    El-Fantroussi, Said

    2000-01-01

    Soil treated with linuron for more than 10 years showed high biodegradation activity towards methoxy-methyl urea herbicides. Untreated control soil samples taken from the same location did not express any linuron degradation activity, even after 40 days of incubation. Hence, the occurrence in the field of a microbiota having the capacity to degrade a specific herbicide was related to the long-term treatment of the soil. The enrichment culture isolated from treated soil showed specific degradation activity towards methoxy-methyl urea herbicides, such as linuron and metobromuron, while dimethyl urea herbicides, such as diuron, chlorotoluron, and isoproturon, were not transformed. The putative metabolic intermediates of linuron and metobromuron, the aniline derivatives 3,4-dichloroaniline and 4-bromoaniline, were also degraded. The temperature of incubation drastically affected degradation of the aniline derivatives. Whereas linuron was transformed at 28 and 37°C, 3,4-dichloroaniline was transformed only at 28°C. Monitoring the enrichment process by reverse transcription-PCR and denaturing gradient gel electrophoresis (DGGE) showed that a mixture of bacterial species under adequate physiological conditions was required to completely transform linuron. This research indicates that for biodegradation of linuron, several years of adaptation have led to selection of a bacterial consortium capable of completely transforming linuron. Moreover, several of the putative species appear to be difficult to culture since they were detectable by DGGE but were not culturable on agar plates. PMID:11097876

  11. 40 CFR 180.229 - Fluometuron; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combined residues of the herbicide fluometuron, N, N-dimethyl-N'-[3-(trifluoromethyl)phenyl]urea, and its... established for the combined residues of the herbicide fluometuron, N,N-dimethyl-N'-[3-(trifluoromethyl)phenyl... established for the combined residues of the herbicide fluometuron, N, N-dimethyl-N'-[3-(trifluoromethyl...

  12. 40 CFR 180.229 - Fluometuron; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combined residues of the herbicide fluometuron, N, N-dimethyl-N'-[3-(trifluoromethyl)phenyl]urea, and its... established for the combined residues of the herbicide fluometuron, N,N-dimethyl-N'-[3-(trifluoromethyl)phenyl... established for the combined residues of the herbicide fluometuron, N, N-dimethyl-N'-[3-(trifluoromethyl...

  13. 40 CFR 180.229 - Fluometuron; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combined residues of the herbicide fluometuron, N, N-dimethyl-N'-[3-(trifluoromethyl)phenyl]urea, and its... established for the combined residues of the herbicide fluometuron, N,N-dimethyl-N'-[3-(trifluoromethyl)phenyl... established for the combined residues of the herbicide fluometuron, N, N-dimethyl-N'-[3-(trifluoromethyl...

  14. 40 CFR 180.229 - Fluometuron; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combined residues of the herbicide fluometuron, N, N-dimethyl-N'-[3-(trifluoromethyl)phenyl]urea, and its... established for the combined residues of the herbicide fluometuron, N,N-dimethyl-N'-[3-(trifluoromethyl)phenyl... established for the combined residues of the herbicide fluometuron, N, N-dimethyl-N'-[3-(trifluoromethyl...

  15. 40 CFR 180.229 - Fluometuron; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combined residues of the herbicide fluometuron, N, N-dimethyl-N'-[3-(trifluoromethyl)phenyl]urea, and its... established for the combined residues of the herbicide fluometuron, N,N-dimethyl-N'-[3-(trifluoromethyl)phenyl... established for the combined residues of the herbicide fluometuron, N, N-dimethyl-N'-[3-(trifluoromethyl...

  16. Modeling of flux, binding and substitution of urea molecules in the urea transporter dvUT.

    PubMed

    Zhang, Hai-Tian; Wang, Zhe; Yu, Tao; Sang, Jian-Ping; Zou, Xian-Wu; Zou, Xiaoqin

    2017-09-01

    Urea transporters (UTs) are transmembrane proteins that transport urea molecules across cell membranes and play a crucial role in urea excretion and water balance. Modeling the functional characteristics of UTs helps us understand how their structures accomplish the functions at the atomic level, and facilitates future therapeutic design targeting the UTs. This study was based on the crystal structure of Desulfovibrio vulgaris urea transporter (dvUT). To model the binding behavior of urea molecules in dvUT, we constructed a cooperative binding model. To model the substitution of urea by the urea analogue N,N'-dimethylurea (DMU) in dvUT, we calculated the occupation probability of DMU along the urea pore and the ratio of the occupation probabilities of DMU at the external (S ext ) and internal (S int ) binding sites, and we established the mutual substitution rule for binding and substitution of urea and DMU. Based on these calculations and modelings, together with the use of the Monte Carlo (MC) method, we further modeled the urea flux in dvUT, equilibrium urea binding to dvUT, and the substitution of urea by DMU in the dvUT. Our modeling results are in good agreement with the existing experimental functional data. Furthermore, the modelings have discovered the microscopic process and mechanisms of those functional characteristics. The methods and the results would help our future understanding of the underlying mechanisms of the diseases associated with impaired UT functions and rational drug design for the treatment of these diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Changes in non-pine woody species density, composition, and diversity following herbicide and fertilization application to mid-rotation loblolly pine stands

    Treesearch

    Hal O. Liechty; Conner Fristoe

    2012-01-01

    We monitored woody vegetation (dbh>1.0 in) response for up to six years following a herbicide (16 ounces imazapyr /acre), a fertilizer (365 pounds urea and 175 pounds diammonium phosphate/acre ) and a combined fertilizer and herbicide application in four mid-rotation loblolly pine stands located within the Upper Gulf Coastal Plain in Arkansas. Approximately 60-80%...

  18. The herbicide linuron reduces testosterone production from the fetal rat testis both in utero and in vitro

    EPA Science Inventory

    In utero exposure to linuron, an urea-based herbicide, results in a pattern of malformations of androgen-dependent tissues in adult male rat offspring resembling that produced by some phthalate esters which are known to decrease fetal testosterone production. This study investiga...

  19. THE HERBICIDE LINURON REDUCES FETAL TESTOSTERONE PRODUCTION DURING BOTH IN UTERO AND IN VITRO EXPOSURES

    EPA Science Inventory

    Linuron, a urea-based herbicide, is a weak antagonist for the androgen receptor. Previous studies in our lab have shown that in utero exposureresults in malformations of androgen dependent tissues in adult male offspring. The pattern of malformations, however, differs somewha...

  20. Biodegradation of sulfosulphuron in agricultural soil by Trichoderma sp.

    PubMed

    Yadav, U; Choudhury, P P

    2014-11-01

    Sulfosulphuron-degrading fungus was isolated by enrichment technique from the sulfosulphuron-contaminated soil of wheat rhizosphere. To assess the biodegradation potential of isolated Trichoderma sp., minimal potato dextrose agar broth with different levels of sulfosulphuron (up to 2 g l(-1) ) was evaluated in the growth and biotransformation experiments. ESI LC-MS/MS analysis revealed the presence of degradation products 2-amino-4,6-dimethoxypyrimidine (I) and 2-ethylsulfonyl imidazo{1,2-a} pyridine-3-sulfonamide-2-ethylsulfonyl imidazo{1,2-a} pyridine-3-sulfonamide (II) indicating the cleavage of the urea bridge and the presence of the by-product N-(4,6-dimethoxypyrimidin-2-yl)urea (III) indicating the degradation of sulfonylamide linkage. Two other metabolites, N-(4,6-dimethoxypyrimidin-2-yl)-N'-hydroxyurea (IV) and N, N'-bis(4,6-dimethoxypyrimidin-2-yl)urea (V), were also identified. From the previous reports, it was found that the degradation of sulfonyl urea herbicides took place through the chemical degradation of the sulfonylurea bridge followed by microbial degradation. During this investigation, Trichoderma sp. grew well with and degraded sulfosulphuron via both the decarboxylation on the sulphonyl urea bridge and the hydrolytic cleavage of the sulfonylamide linkage as demonstrated by the formation of metabolites. Trichoderma is nonphytopathogenic in nature, and some species of it restrict the growth of soil-dwelling phytopathogens. Therefore, it is a promising candidate for the decontamination of soil from sulfosulphuron residues. The degradation of sulfosulphuron by any individual fungus is being reported for the first time. Trichoderma sp. isolated from wheat-rhizospheric soil could survive in minimal broth rich in sulfosulphuron. Previous reports have described the complete degradation of any sulfonyl urea herbicides by micro-organisms only after the pH-dependent chemical hydrolysis of the sulfonyl urea bridge of the herbicide. This study demonstrates the novel result that the Trichoderma sp. utilized the sulfosulphuron as a sole carbon source and degraded it by cleaving sulfonyl urea bridge and sulfonylamide linkage. Thus, the application of Trichoderma sp., which is nonphytopathogenic, has the potential to decontaminate agricultural soil from sulfosulphuron load. © 2014 The Society for Applied Microbiology.

  1. PRESENTED AT SOCIETY OF TOXICOLOGY 2006: THE HERBICIDE LINURON REDUCES FETAL TESTOSTERONE PRODUCTION DURING BOTH IN UTERO AND IN VITRO EXPOSURES

    EPA Science Inventory

    Previous studies in our lab have shown that in utero exposure to Linuron, a urea-based herbicide, results in malformations of androgen dependent tissues in adult male offspring. The pattern of malformations, however, differs somewhat from that typically seen with a pure androgen...

  2. Kinetic barriers in the isomerization of substituted ureas: implications for computer-aided drug design.

    PubMed

    Loeffler, Johannes R; Ehmki, Emanuel S R; Fuchs, Julian E; Liedl, Klaus R

    2016-05-01

    Urea derivatives are ubiquitously found in many chemical disciplines. N,N'-substituted ureas may show different conformational preferences depending on their substitution pattern. The high energetic barrier for isomerization of the cis and trans state poses additional challenges on computational simulation techniques aiming at a reproduction of the biological properties of urea derivatives. Herein, we investigate energetics of urea conformations and their interconversion using a broad spectrum of methodologies ranging from data mining, via quantum chemistry to molecular dynamics simulation and free energy calculations. We find that the inversion of urea conformations is inherently slow and beyond the time scale of typical simulation protocols. Therefore, extra care needs to be taken by computational chemists to work with appropriate model systems. We find that both knowledge-driven approaches as well as physics-based methods may guide molecular modelers towards accurate starting structures for expensive calculations to ensure that conformations of urea derivatives are modeled as adequately as possible.

  3. INTERLABORATORY STUDY OF A THERMOSPRAY-LIQUID CHROMATOGRAPHIC/MASS SPECTROMETRIC METHOD FOR SELECTED N-METHYL CARBAMATES, N-METHYL CARBAMOYLOXIMES, AND SUBSTITUTED UREA PESTICIDES

    EPA Science Inventory

    A thermospray-liquid chromatographic/mass spectrometric (TS-LC/MS) method was evaluated in an interlaboratory study for determining 3 N-methyl carbamates (bendiocarb, carbaryl, and carbofuran), 3-N-methyl carbamoyloximes (aldicarb, methomyl, and oxamyl), 2 substituted urea pestic...

  4. α-(Substituted-phenoxyacetoxy)-α-heterocyclylmethylphosphonates: synthesis, herbicidal activity, inhibition on pyruvate dehydrogenase complex (PDHc), and application as postemergent herbicide against broadleaf weeds.

    PubMed

    He, Hong-Wu; Peng, Hao; Wang, Tao; Wang, Chubei; Yuan, Jun-Lin; Chen, Ting; He, Junbo; Tan, Xiaosong

    2013-03-13

    Pyruvate dehydrogenase complex (PDHc) is the site of action of a new class of herbicides. On the basis of the previous work for O,O'-dimethyl α-(substituted-phenoxyacetoxy)alkylphosphonates (I), further synthetic modifications were made by introducing a fural and a thienyl group to structure I. A series of α-(substituted-phenoxyacetoxy)-α-heterocyclylmethylphosphonate derivatives (II) were synthesized as potential inhibitors of PDHc. The postemergent activity of the title compounds II was evaluated in greenhouse experiments. The in vitro efficacy of II against PDHc was also examined. Compounds II with fural as R(3) and 2,4-dichloro as X and Y showed significant herbicidal activity and effective inhibition against PDHc from plants. O,O'-Dimethyl α-(2,4-dichlorophenoxyacetoxy)-α-(furan-2-yl)methylphosphonate II-17 had higher inhibitory potency against PDHc from Pisum sativum than against PDHc from Oryza sativa in vitro and was most effective against broadleaf weeds at 50 and 300 ai g/ha. II-17 was safe for maize and rice even at the dose of 900-1200 ai g/ha. Field trials at different regions in China showed that II-17 (HWS) could control a broad spectrum of broad-leaved and sedge weeds at the rate of 225-375 ai g/ha for postemergent applications in maize fields. II-17 (HWS) displayed potential utility as a selective herbicide.

  5. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis).

    PubMed

    Li, Jian; Li, Mei; Gao, Xingxiang; Fang, Feng

    2017-12-01

    Crabgrass (Digitaria sanguinalis) is an annual monocotyledonous weed. In recent years, field applications of nicosulfuron have been ineffective in controlling crabgrass populations in Shandong Province, China. To investigate the mechanisms of resistance to nicosulfuron in crabgrass populations, the acetolactate synthase (ALS) gene fragment covering known resistance-confering mutation sites was amplified and sequenced. Dose-response experiments suggested that the resistant population SD13 (R) was highly resistant to nicosulfuron (resistance index R/S = 43.7) compared with the sensitive population SD22 (S). ALS gene sequencing revealed a Trp574Arg substitution in the SD13 population, and no other known resistance-conferring mutations were found. In vitro ALS enzyme assays further confirmed that the SD13 population was resistant to all tested ALS-inhibiting herbicides. The resistance pattern experiments revealed that, compared with SD22, the SD13 population exhibited broad-spectrum resistance to nicosulfuron (43.7-fold), imazethapyr (11.4-fold) and flumetsulam (16.1-fold); however, it did not develop resistance to atrazine, mesotrione and topramezone. This study demonstrated that Trp574Arg substitution was the main reason for crabgrass resistance to ALS-inhibiting herbicides. To our knowledge, this is the first report of Trp574Arg substitution in a weed species, and is the first report of target-site mechanisms of herbicide resistance for crabgrass. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. N,N-Dimethyl-N′-[3-(trifluoro­methyl)­phenyl]­urea

    PubMed Central

    Yu, Da-sheng; Li, Fang-shi; Yao, Wei; Liu, Yin-hong; Lu, Chui

    2008-01-01

    The title compound, C10H11F3N2O, is an important urea-based herbicide. In the crystal structure, the mol­ecular packing is stabilized by two intra­molecular C—H⋯O hydrogen bonds and one inter­molecular N—H⋯O hydrogen bond, generating a C(4) graph-set motif running parallel to the [001] direction. The F atoms are disordered over two sites, with occupancies of 0.176 (9) and 0.824 (9). PMID:21202857

  7. A Comparison of the Ecological Effects of Herbicide and Prescribed Fire in a Mature Longleaf Pine Forest: Response of Juvenile and Overstory Pine

    Treesearch

    Jennifer L. Gagnon; Steven B. Jack

    2004-01-01

    Prescribed fire may be removed as a forest management tool by regulatory agencies concerned about air quality issues. Herbicides have been proposed as substitutes for prescribed fires in southern pine forests, but we are aware of no studies that examine the effects of herbicide application in mature, fire maintained longleaf pine (Pinus palustris...

  8. Cuphea tolerates clopyralid

    USDA-ARS?s Scientific Manuscript database

    Cuphea is a new crop of temperate regions that produces seed oil with medium-chain length fatty acids, which can substitute for imported coconut and palm kernels oils. Only four herbicides are known to be tolerated by cuphea to date. More herbicides, especially POST products, are needed for continue...

  9. Simazine biodegradation in soil: analysis of bacterial community structure by in situ hybridization.

    PubMed

    Caracciolo, Anna Barra; Grenni, Paola; Ciccoli, Roberto; Di Landa, Giuseppe; Cremisini, Carlo

    2005-09-01

    Pesticide and nitrate contamination of soil and groundwater from agriculture is an environmental and public health concern worldwide. Simazine, 6-chloro-N2,N4-diethyl-1,3,5-triazine-2,4-diamine, is a triazine herbicide used in agriculture for selective weed control with several types of crops and it is frequently applied to soils receiving N-fertilizers. Degradation experiments were performed in the laboratory to assess whether the biodegradation of simazine in soil may be influenced by the presence of urea. Simazine degradation rates under different experimental conditions (presence/absence of urea, microbiologically active/sterilized soil) were assessed together with the formation, degradation and transformation of its main metabolites in soil. Simazine degradation was affected by the presence of urea, in terms both of a smaller half-life (t(1/2)) and of a higher amount of desethyl-simazine formed. The soil bacterial community was also studied. Microbial abundances were determined by epifluorescence direct counting. Moreover in situ hybridization with rRNA-targeted fluorescent oligonucleotide probes was used to analyze the bacterial community structure. Fluorescent in situ hybridization (FISH) was used to detect specific groups of bacteria such as the alpha,beta,gamma-subdivisions of Proteobacteria, Gram-positive bacteria with a high G + C DNA content, Planctomycetes, Betaproteobacterial ammonia-oxidizing bacteria and nitrifying bacteria. The presence of the herbicide and/or urea affected the bacterial community structure, showing that FISH is a valuable tool for determining the response of bacterial populations to different environmental conditions. Copyright 2005 Society of Chemical Industry

  10. Herbicide use on railway tracks for safety reasons in Germany?

    PubMed

    Schweinsberg, F; Abke, W; Rieth, K; Rohmann, U; Zullei-Seibert, N

    1999-06-30

    A short overview on the occurrence of herbicides in groundwater and drinking water located in the vicinity of railway tracks in Germany is presented. The study has been conducted using the experience of various water supply companies and includes a literature research on the subject. It has been documented that in Germany only 1% of the total area treated with pesticides was under management of the former Deutsche Bundesbahn before 1990. The specific amount applied on the railway tracks was, however, a factor of 6 higher than that used in agriculture, although it must be borne in mind that the retaining capacity of railway tracks for pesticides is much lower. The herbicides applied ranged from 2,4-D and 2,4,5-T, triazine derivatives, e.g. atrazine and urea derivatives such as diuron. Traces of almost all of the herbicides applied could be detected in samples of groundwater and drinking water in the vicinity of railway tracks. Since 1997 only glyphosate has been used.

  11. Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides

    PubMed Central

    Brown, Alfred E.; Gilbert, Carl W.; Guy, Rachel; Arntzen, Charles J.

    1984-01-01

    The photoaffinity herbicide azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine) selectively labels the L subunit of the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Herbicide-resistant mutants retain the L subunit and have altered binding properties for methylthio- and chloro-substituted triazines as well as altered equilibrium constants for electron transfer between primary and secondary electron acceptors. We suggest that a subtle alteration in the L subunit is responsible for herbicide resistance and that the L subunit is the functional analog of the 32-kDa QB protein of chloroplast membranes. Images PMID:16593520

  12. Analysis of selected herbicide metabolites in surface and ground water of the United States

    USGS Publications Warehouse

    Scribner, E.A.; Thurman, E.M.; Zimmerman, L.R.

    2000-01-01

    One of the primary goals of the US Geological Survey (USGS) Laboratory in Lawrence, Kansas, is to develop analytical methods for the analysis of herbicide metabolites in surface and ground water that are vital to the study of herbicide fate and degradation pathways in the environment. Methods to measure metabolite concentrations from three major classes of herbicides - triazine, chloroacetanilide and phenyl-urea - have been developed. Methods for triazine metabolite detection cover nine compounds: six compounds are detected by gas chromatography/mass spectrometry; one is detected by high-performance liquid chromatography with diode-array detection; and eight are detected by liquid chromatography/mass spectrometry. Two metabolites of the chloroacetanilide herbicides - ethane sulfonic acid and oxanilic acid - are detected by high-performance liquid chromatography with diode-array detection and liquid chromatography/mass spectrometry. Alachlor ethane sulfonic acid also has been detected by solid-phase extraction and enzyme-linked immunosorbent assay. Six phenylurea metabolites are all detected by liquid chromatography/mass spectrometry; four of the six metabolites also are detected by gas chromatography/mass spectrometry. Additionally, surveys of herbicides and their metabolites in surface water, ground water, lakes, reservoirs, and rainfall have been conducted through the USGS laboratory in Lawrence. These surveys have been useful in determining herbicide and metabolite occurrence and temporal distribution and have shown that metabolites may be useful in evaluation of non-point-source contamination. Copyright (C) 2000 Elsevier Science B.V.

  13. A Powerful Molecular Engineering Tool Provided Efficient Chlamydomonas Mutants as Bio-Sensing Elements for Herbicides Detection

    PubMed Central

    Lambreva, Maya D.; Giardi, Maria Teresa; Rambaldi, Irene; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Husu, Ivan; Johanningmeier, Udo; Rea, Giuseppina

    2013-01-01

    This study was prompted by increasing concerns about ecological damage and human health threats derived by persistent contamination of water and soil with herbicides, and emerging of bio-sensing technology as powerful, fast and efficient tool for the identification of such hazards. This work is aimed at overcoming principal limitations negatively affecting the whole-cell-based biosensors performance due to inadequate stability and sensitivity of the bio-recognition element. The novel bio-sensing elements for the detection of herbicides were generated exploiting the power of molecular engineering in order to improve the performance of photosynthetic complexes. The new phenotypes were produced by an in vitro directed evolution strategy targeted at the photosystem II (PSII) D1 protein of Chlamydomonas reinhardtii, using exposures to radical-generating ionizing radiation as selection pressure. These tools proved successful to identify D1 mutations conferring enhanced stability, tolerance to free-radical-associated stress and competence for herbicide perception. Long-term stability tests of PSII performance revealed the mutants capability to deal with oxidative stress-related conditions. Furthermore, dose-response experiments indicated the strains having increased sensitivity or resistance to triazine and urea type herbicides with I50 values ranging from 6×10−8 M to 2×10−6 M. Besides stressing the relevance of several amino acids for PSII photochemistry and herbicide sensing, the possibility to improve the specificity of whole-cell-based biosensors, via coupling herbicide-sensitive with herbicide-resistant strains, was verified. PMID:23613953

  14. Characterization of a higher plant herbicide-resistant phytoene desaturase and its use as a selectable marker

    USDA-ARS?s Scientific Manuscript database

    Three natural somatic mutations at codon 304 of the phytoene desaturase gene (pds) of Hydrilla verticillata ( L. f. Royle) have been reported to provide resistance to the herbicide fluridone. We substituted the arginine 304 present in the wild-type H. verticillata phytoene desaturase (PDS) with all...

  15. DIURON OCCURRENCE AND DISTRIBUTION IN SOIL AND SURFACE AND GROUND WATER ASSOCIATED WITH GRASS SEED PRODUCTION

    EPA Science Inventory

    Diuron (3-(3,4-dichlorophenyl)-1,1-dimethyl urea) is the principal herbicide used in grass seed production. The occurrence and distribution of diuron was investigated at a poorly-drained field site located along an intermittent tributary of Lake Creek in the southern Willamette ...

  16. The Novel Bacterial N-Demethylase PdmAB Is Responsible for the Initial Step of N,N-Dimethyl-Substituted Phenylurea Herbicide Degradation

    PubMed Central

    Gu, Tao; Zhou, Chaoyang; Sørensen, Sebastian R.; Zhang, Ji; He, Jian; Yu, Peiwen; Li, Shunpeng

    2013-01-01

    The environmental fate of phenylurea herbicides has received considerable attention in recent decades. The microbial metabolism of N,N-dimethyl-substituted phenylurea herbicides can generally be initiated by mono-N-demethylation. In this study, the molecular basis for this process was revealed. The pdmAB genes in Sphingobium sp. strain YBL2 were shown to be responsible for the initial mono-N-demethylation of commonly used N,N-dimethyl-substituted phenylurea herbicides. PdmAB is the oxygenase component of a bacterial Rieske non-heme iron oxygenase (RO) system. The genes pdmAB, encoding the α subunit PdmA and the β subunit PdmB, are organized in a transposable element flanked by two direct repeats of an insertion element resembling ISRh1. Furthermore, this transposable element is highly conserved among phenylurea herbicide-degrading sphingomonads originating from different areas of the world. However, there was no evidence of a gene for an electron carrier (a ferredoxin or a reductase) located in the immediate vicinity of pdmAB. Without its cognate electron transport components, expression of PdmAB in Escherichia coli, Pseudomonas putida, and other sphingomonads resulted in a functional enzyme. Moreover, coexpression of a putative [3Fe-4S]-type ferredoxin from Sphingomonas sp. strain RW1 greatly enhanced the catalytic activity of PdmAB in E. coli. These data suggested that PdmAB has a low specificity for electron transport components and that its optimal ferredoxin may be the [3Fe-4S] type. PdmA exhibited low homology to the α subunits of previously characterized ROs (less than 37% identity) and did not cluster with the RO group involved in O- or N-demethylation reactions, indicating that PdmAB is a distinct bacterial RO N-demethylase. PMID:24123738

  17. Site-Specific Description of the Enhanced Recognition Between Electrogenerated Nitrobenzene Anions and Dihomooxacalix[4]arene Bidentate Ureas.

    PubMed

    Martínez-González, Eduardo; Armendáriz-Vidales, Georgina; Ascenso, José R; Marcos, Paula M; Frontana, Carlos

    2015-05-01

    Electron transfer controlled hydrogen bonding was studied for a series of nitrobenzene derivative radical anions, working as large guest anions, and substituted ureas, including dihomooxacalix[4]arene bidentate urea derivatives, in order to estimate binding constants (Kb) for the hydrogen-bonding process. Results showed enhanced Kb values for the interaction with phenyl-substituted bidentate urea, which is significantly larger than for the remaining compounds, e.g., in the case of 4-methoxynitrobenzene a 28-fold larger Kb value was obtained for the urea bearing a phenyl (Kb ∼ 6888) vs tert-butyl (Kb ∼ 247) moieties. The respective nucleophilic and electrophilic characters of the participant anion radical and urea hosts were parametrized with global and local electrodonating (ω(-)) and electroaccepting (ω(+)) powers, derived from DFT calculations. ω(-) data were useful for describing trends in structure–activity relationships when comparing nitrobenzene radical anions. However, ω(+) for the host urea structures lead to unreliable explanations of the experimental data. For the latter case, local descriptors ωk(+)(r) were estimated for the atoms within the urea region in the hosts [∑kωk(+)(r)]. By compiling all the theoretical and experimental data, a Kb-predictive contour plot was built considering ω(-) for the studied anion radicals and ∑kωk(+)(r) which affords good estimations.

  18. Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates

    PubMed Central

    Knowles, Jonathan C; Rehman, Ihtesham; Darr, Jawwad A

    2013-01-01

    A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO3-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO3-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO3-HA. For silicate-substituted hydroxyapatite (SiO4-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO4-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy. PMID:22983020

  19. Stabilization of an α/β-hydrolase by introducing proline residues: salicylic binding protein 2 from tobacco

    PubMed Central

    Huang, Jun; Jones, Bryan J.; Kazlauskas, Romas J.

    2015-01-01

    α/β-Hydrolases are important enzymes for biocatalysis, but their stability often limits their application. As a model α/β-hydrolase, we investigated a plant esterase, salicylic acid binding protein 2 (SABP2). SABP2 shows typical stability to urea (unfolding free energy 6.9±1.5 kcal/mol) and to heat inactivation (T1/215 min 49.2±0.5 °C). Denaturation in urea occurs in two steps, but heat inactivation occurs in a single step. The first unfolding step in urea eliminates catalytic activity. Surprisingly, we found that the first unfolding likely corresponds to the unfolding of the larger catalytic domain. Replacing selected amino acid residues with proline stabilized SABP2. Proline restricts the flexibility of the unfolded protein, thereby shifting the equilibrium toward the folded conformation. Seven locations for proline substitution were chosen either by amino acid sequence alignment with a more stable homolog or by targeting flexible regions in SABP2. Introducing proline in the catalytic domain stabilized SABP2 to the first unfolding in urea for three of five cases: L46P (+0.2 M urea), S70P (+0.1) and E215P (+0.9). Introducing proline in the cap domain did not (two of two cases), supporting the assignment that the first unfolding corresponds to the catalytic domain. Proline substitutions in both domains stabilized SABP2 to heat inactivation: L46P (ΔT1/215 min = +6.4 °C), S70P (+5.4), S115P (+1.8), S141P (+4.9), and E215P (+4.2). Combining substitutions did not further increase the stability to urea denaturation, but dramatically increased resistance to heat inactivation: L46P-S70P ΔT1/215 min = +25.7 °C. This straightforward proline substitution approach may also stabilize other α/β-hydrolases. PMID:26110207

  20. Solution-phase parallel syntheses of herbicidal 1-phenyl-2,4,5- imidazolidinetriones and 2-thioxo-4,5-imidazolidinediones.

    PubMed

    Li, Bin; Man, Ying; Bai, Li-Ping; Ji, Hai-Ying; Shi, Xue-Geng; Cui, Dong-Liang

    2013-01-01

    In order to find new herbicidally active compounds, a fifteen-member library, focusing on the variation of 3- position substituents of 2,4,5-imidazolidine-trione or 2-thioxo-4,5-imidazolidinedione, was designed and prepared in parallel by the reaction of various ureas or thioureas with oxalyl chloride using solution-phase technology. An interesting and, to the best of our knowledge, unprecedented finding is that a by-product of 1-phenyl-3-propylcarbodiimide was formed during the addition of oxalyl chloride into the solution of 1-phenyl-3-propylthiourea in the presence of triethylamine in dichloromethane. It has been shown that the herbicidal activity of 2,4,5-imidazolidinetriones is about the same as that of their analogous 2-thioxo-4,5-imidazolidinediones. Compound with propyl or isopropyl group at the 3- position of 2,4,5-imidazolidinetrione ring demonstrated good herbicidal activity. The most active compound, 1-(2-fluoro- 4-chloro-5-propargyloxy)-phenyl-3-propyl-2-thioxo-4,5-imidazolidinedione, gave 95% control of the growth of velvetleaf at 200 g/ha in the post-emergence test.

  1. METHOD 535: MEASUREMENT OF CHLOROACETANILIDE AND CHLOROACETAMIDE HERBICIDE DEGRADATES IN DRINKING WATER BY SOLID PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY (LC/MS/MS)

    EPA Science Inventory

    Over the past several years, ethanesulfonic acid (ESA) and oxanilic acid (OA) degradation products of acetanilide/acetamide herbicides have been found in U.S. ground waters and surface waters. The substitution of the sulfonic acid or the carbonic acid for the chlorine atom great...

  2. Design, synthesis, and herbicidal activity of novel substituted 3-(pyridin-2-yl)benzenesulfonamide derivatives.

    PubMed

    Xie, Yong; Chi, Hui-Wei; Guan, Ai-Ying; Liu, Chang-Ling; Ma, Hong-Juan; Cui, Dong-Liang

    2014-12-31

    A series of novel substituted 3-(pyridin-2-yl)benzenesulfonamide derivatives were designed and synthesized using 2-phenylpridines as the lead compound by intermediate derivatization methods in an attempt to obtain novel compound candidates for weed control. The herbicidal activity assay in glasshouse tests showed several compounds (II6, II7, II8, II9, II10, II11, III2, III3, III4, and III5) could efficiently control velvet leaf, youth-and-old age, barnyard grass, and foxtail at the 37.5 g/ha active substance. Especially, the activities of II6, II7, III2, and III4 were proved roughly equivalent to the saflufenacil and better than 95% sulcotrione at the same concentration. The result of the herbicidal activity assay in field tests demonstrated that II7 at 60 g/ha active substance could give the same effect as bentazon at 1440 g/ha active substance to control dayflower and nightshade, meanwhile II7 showed better activity than oxyfluorfen to control arrowhead and security to rice. The present work indicates that II7 may be a novel compound candidate for potential herbicide.

  3. Toxicovigilance: new biochemical tool used in sulfonylurea herbicides toxicology studies.

    PubMed

    Belhadj-Tahar, Hafid; Adamczewski, Nicolas; Nassar, Bertrand; Coulais, Yvon

    2003-06-01

    In vitro toxic effects of sulfonylurea herbicides (thifensulfuron-methyl and metsulfuron-methyl) were evaluated according to a new protocol. Physiological conditions were reproduced in order to boost toxicovigilance. Sulfonylureas and their hydrolysis products were added to biological substrates such as urea, alanine, aspartic acid, alpha-ketoglutarate, oxaloacetate, pyruvate and then incubated with some specific enzymes. Addition of these sulfonylureas and their degradation products did not significantly change the enzymatic activity of the urease, aspartate-aminotransferase, glutamate dehydrogenase, malate dehydrogenase and lactate dehydrogenase. However, the acid hydrolysis products inhibited up to 95% of the activity of the alanine-aminotransferase at low concentrations (0.27 micromol L(-1)). Inhibition did not affect the mitochondrial aspartate-aminotransferase.

  4. Simazine degradation in bioaugmented soil: urea impact and response of ammonia-oxidizing bacteria and other soil bacterial communities.

    PubMed

    Guo, Qingwei; Wan, Rui; Xie, Shuguang

    2014-01-01

    The objective of this study was to investigate the impact of exogenous urea nitrogen on ammonia-oxidizing bacteria (AOB) and other soil bacterial communities in soil bioaugmented for simazine remediation. The previously isolated simazine-degrading Arthrobacter sp. strain SD1 was used to degrade the herbicide. The effect of urea on the simazine degradation capacity of the soil bioaugmented with Arthrobacter strain SD1 was assessed using quantitative PCR targeting the s-triazine-degrading trzN and atzC genes. Structures of bacterial and AOB communities were characterized using terminal restriction fragment length polymorphism. Urea fertilizer could affect simazine biodegradation and decreased the proportion of its trzN and atzC genes in soil augmented with Arthrobacter strain SD1. Bioaugmentation process could significantly alter the structures of both bacterial and AOB communities, which were strongly affected by urea amendment, depending on the dosage. This study could provide some new insights towards s-triazine bioremediation and microbial ecology in a bioaugmented system. However, further studies are necessary in order to elucidate the impact of different types and levels of nitrogen sources on s-triazine-degraders and bacterial and AOB communities in bioaugmented soil.

  5. Reactions of thiocarbamate, triazine and urea herbicides, RDX and benzenes on EPA Contaminant Candidate List with ozone and with hydroxyl radicals

    EPA Science Inventory

    Second-order rate constants of the direct ozone reactions (kO3,M) and the indirect OH radical reactions (kOH,M) for nine chemicals on the US EPA’s Drinking Water Contaminant Candidate List (CCL) were studied during the ozonation and ozone/hydrogen peroxide a...

  6. Comparative effects of glyphosate and atrazine in chloroplast ultrastructure of wheat and downy brome. [Triticum aestivum; Bromus tectorum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auge, R.M.; Gealy, D.R.; Ogg, A.G.

    1987-04-01

    Developing and mature leaves of winter wheat (Triticum aestivum L. var. Daws) and the weed species downy brome (Bromus tectorum L.) were subjected to 10 mM (foliar application) and 1 mM (root application) herbicide solutions. Glyphosate (N-(phosphonomethyl) glycine) and atrazine (2-chloro-4-(ethyl-amino)-6-(isopropylamino)-s-triazine) were prepared in a carrier composed of 5% soybean oil concentrate, 35% acetone and 60% water. Penetration experiments with /sup 3/H-labelled herbicides assessed what percentage of herbicide entered leaves, and microautoradiography was used to determine qualitatively how much herbicide was present in the sections viewed with TEM. Tissue was excised at 4, 18, 62 and 200 hours, and thenmore » either freeze-substituted or fixed chemically. Ultrastructural effects of each herbicide on chloroplasts from leaves of newly-germinated seedlings and of well-tillered plants are depicted and discussed. Temporal differences in response of chloroplasts to each herbicide are noted.« less

  7. DNA analysis of herbarium Specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated herbicides.

    PubMed

    Délye, Christophe; Deulvot, Chrystel; Chauvel, Bruno

    2013-01-01

    Acetyl-CoA carboxylase (ACCase) alleles carrying one point mutation that confers resistance to herbicides have been identified in arable grass weed populations where resistance has evolved under the selective pressure of herbicides. In an effort to determine whether herbicide resistance evolves from newly arisen mutations or from standing genetic variation in weed populations, we used herbarium specimens of the grass weed Alopecurus myosuroides to seek mutant ACCase alleles carrying an isoleucine-to-leucine substitution at codon 1781 that endows herbicide resistance. These specimens had been collected between 1788 and 1975, i.e., prior to the commercial release of herbicides inhibiting ACCase. Among the 734 specimens investigated, 685 yielded DNA suitable for PCR. Genotyping the ACCase locus using the derived Cleaved Amplified Polymorphic Sequence (dCAPS) technique identified one heterozygous mutant specimen that had been collected in 1888. Occurrence of a mutant codon encoding a leucine residue at codon 1781 at the heterozygous state was confirmed in this specimen by sequencing, clearly demonstrating that resistance to herbicides can pre-date herbicides in weeds. We conclude that point mutations endowing resistance to herbicides without having associated deleterious pleiotropic effects can be present in weed populations as part of their standing genetic variation, in frequencies higher than the mutation frequency, thereby facilitating their subsequent selection by herbicide applications.

  8. Long-term control of root growth

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1992-05-26

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl-2,6-dinitro-aniline, commonly known as trifluralin.

  9. Method for disposing of hazardous wastes

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  10. Chlorbromuron urea herbicide removal by electro-Fenton reaction in aqueous effluents.

    PubMed

    Martínez, Susana Silva; Bahena, Cristina Lizama

    2009-01-01

    The removal of low concentration of chlorbromuron herbicide in aqueous systems was carried out by electro-Fenton process comprised of three-electrode divided and undivided cell with a reticulated vitreous carbon cathode and platinum anode. The electro-Fenton was also carried out in a two-electrode undivided cell in which ferrous ion forms from a sacrificial iron anode. It was observed that the total organic carbon (TOC) removal efficiency was influenced by the cell voltage, the pH of the solution and initial herbicide concentration during the electro-Fenton treatment with a stainless steel anode. The Fe(2+)/Fe(3+) activity in the Fenton chemistry (regardless if it is hydroxyl radical or ferryl ion) was improved by the electrochemical catalysis leading to a TOC analysis below the detection limit (0.2 mg l(-1)) corresponding to a TOC removal over 98%. It was found that TOC removal during chlorbromuron degradation followed apparent first order kinetics. The rate constant was increased by decreasing the initial concentration of chlorbromuron.

  11. Effects of the herbicide isoproturon on metallothioneins, growth, and antioxidative defenses in the aquatic worm Tubifex tubifex (Oligochaeta, Tubificidae).

    PubMed

    Mosleh, Yahia Y; Paris-Palacios, Séverine; Couderchet, Michel; Biagianti-Risbourg, Sylvie; Vernet, Guy

    2005-07-01

    Metallothioneins (MTs) are low molecular weight proteins, mainly implicated in metal ion detoxification. Increase in MT contents is considered to be a specific biomarker of metal exposure. Recently it has been demonstrated that MTs participate in several cellular functions such as regulation of growth, and antioxidative defenses. Therefore, the induction of MTs as biomarkers of exposure to the pesticide isoproturon has been investigated in the aquatic worms Tubifex tubifex. MT levels in exposed worms increased significantly (p < 0.05) after 2, 4, and 7 days of exposure to different concentrations of isoproturon (maximum increase compared to unexposed controls: +148.56% for 10 mg l(-1) after 4 days of exposure). In response to isoproturon, the activity of glutathione-S-transferase (max. +52%), glutathione-reductase (max. +100%), and catalase (max. +117%) increased, demonstrating the occurrence of an oxidative stress response to the herbicide. Thus, the increase in MT contents caused by isoproturon was interpreted as a defense response towards increased oxidative stress generated by the herbicide. Residues of isoproturon and its metabolites, 1-(4-isopropylphenyl)-3-methylurea, 1-(4-isopropylphenyl) urea, and 4-isopropylanilin were detected in the worm growth medium. Half-life of the herbicide was shorter at a low (0.1 mg l(-1)) initial concentration. The herbicide accumulated in T. tubifex but no metabolite could be detected.

  12. Counterterrorism: U.S. Agencies Face Challenges Countering the Use of Improvised Explosive Devices in the Afghanistan/Pakistan Region

    DTIC Science & Technology

    2012-07-12

    make IEDs. According to DOD, other products available in Pakistan—such as potassium chlorate , used in making matches, and urea, another commonly used...IED precursor chemicals. According to State officials, other substitutes for CAN, including potassium chlorate and urea, are exported by countries

  13. Characterization of an isoproturon mineralizing bacterial culture enriched from a French agricultural soil.

    PubMed

    Hussain, Sabir; Sørensen, Sebastian R; Devers-Lamrani, Marion; El-Sebai, Talaat; Martin-Laurent, Fabrice

    2009-11-01

    The phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was found to be rapidly mineralized by a bacterial culture isolated from an agricultural soil regularly exposed to IPU. Molecular analysis of the bacterial culture by DNA fingerprinting, cloning and sequencing of the 16S rRNA genes revealed that it consisted of six different members among whom the dominant was related to Sphingomonas sp. Six bacterial strains belonging to genera Ancylobacter, Pseudomonas, Stenotrophomonas, Methylobacterium, Variovorax and Agrobacterium were isolated from the IPU-degrading culture. None of these were able to degrade IPU in pure culture and only the intact culture sustained the ability to mineralize IPU. The composition of the culture appeared stable suggesting that yet unknown interactions are involved in the IPU mineralization. IPU degradation involved the transitory accumulation of three known IPU metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, and 4-isopropylaniline and their further degradation. Thus, it indicates a metabolic pathway initiated by two successive N-demethylations, followed by cleavage of the urea side chain. This culture did not degrade other structurally related phenylurea herbicides. The degrading activity of the bacterial culture was deeply influenced by the pH, being completely inhibited at pH 5.5 and optimal at pH 7.5.

  14. A comparison of choline:urea and choline:oxalic acid deep eutectic solvents at 338 K

    NASA Astrophysics Data System (ADS)

    Gilmore, Mark; Moura, Leila M.; Turner, Adam H.; Swadźba-Kwaśny, Małgorzata; Callear, Samantha K.; McCune, Jade A.; Scherman, Oren A.; Holbrey, John D.

    2018-05-01

    1:2 choline chloride:urea and 1:1 choline chloride:oxalic acid deep eutectic solvents are compared at 338 K using liquid-phase neutron diffraction with H/D isotopic substitution to obtain differential neutron scattering cross sections and fitting of models to the experimental data using Empirical Potential Structure Refinement. In comparison to the previously reported study of choline chloride:urea at 303 K, we observed significant weakening and lengthening of choline-OH⋯Cl- and choline-OH⋯hydrogen-bond acceptor correlations.

  15. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility.

    PubMed

    Li, Haitao; Li, Juanjuan; Zhao, Bo; Wang, Jing; Yi, Licong; Liu, Chao; Wu, Jiangsheng; King, Graham J; Liu, Kede

    2015-01-01

    Identification and molecular analysis of four tribenuron-methyl resistant mutants in Brassica napus , which would be very useful in hybrid production using a Chemically induced male sterility system. Chemically induced male sterility (CIMS) systems dependent on chemical hybridization agents (CHAs) like tribenuron-methyl (TBM) represent an important approach for practical utilization of heterosis in rapeseed. However, when spraying the female parents with TBM to induce male sterility the male parents must be protected with a shield to avoid injury to the stamens, which would otherwise complicate the seed production protocol and increase the cost of hybrid seed production. Here we report the first proposed application of a herbicide-resistant cultivar in hybrid production, using a CIMS system based on identifying four TBM-resistant mutants in Brassica napus. Genetic analysis indicated that the TBM resistance was controlled by a single dominant nuclear gene. An in vitro enzyme activity assay for acetohydroxyacid synthase (AHAS) suggested that the herbicide resistance is caused by a gain-of-function mutation in a copy of AHAS genes. Comparative sequencing of the mutants and wild type BnaA.AHAS.a coding sequences identified a C-to-T transition at either position 535 or 536 from the translation start site, which resulted in a substitution of proline with serine or leucine at position 197 according to the Arabidopsis thaliana protein sequence. An allele-specific dCAPS marker developed from the C536T variation co-segregated with the herbicide resistance. Transgenic A. thaliana plants expressing BnaA.ahas3.a conferred herbicide resistance, which confirmed that the P197 substitution in BnaA.AHAS.a was responsible for the herbicide resistance. Moreover, the TBM-resistant lines maintain normal male fertility under TBM treatment and can be of practical value in hybrid seed production using CIMS.

  16. Design, synthesis and biological evaluation of di-substituted cinnamic hydroxamic acids bearing urea/thiourea unit as potent histone deacetylase inhibitors.

    PubMed

    Ning, Chengqing; Bi, Yanjing; He, Yujun; Huang, WenYuan; Liu, Lifei; Li, Yi; Zhang, Sihan; Liu, Xiaoyu; Yu, Niefang

    2013-12-01

    A novel class of di-substituted cinnamic hydroxamic acid derivatives containing urea or thiourea unit was designed, synthesized and evaluated as HDAC inhibitors. All tested compounds demonstrated significant HDAC inhibitory activities and anti-proliferative effects against diverse human tumor cell lines. Among them, 7l exhibited most potent pan-HDAC inhibitory activity, with an IC50 value of 130 nM. It also showed strong cellular inhibition against diverse cell lines including HCT-116, MCF-7, MDB-MB-435 and NCI-460, with GI50 values of 0.35, 0.22, 0.51 and 0.48 μM, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Evolution of herbicide resistance mechanisms in grass weeds.

    PubMed

    Matzrafi, Maor; Gadri, Yaron; Frenkel, Eyal; Rubin, Baruch; Peleg, Zvi

    2014-12-01

    Herbicide resistant weeds are becoming increasingly common, threatening global food security. Here, we present BrIFAR: a new model system for the functional study of mechanisms of herbicide resistance in grass weeds. We have developed a large collection of Brachypodium accessions, the BrI collection, representing a wide range of habitats. Wide screening of the responses of the accessions to four major herbicide groups (PSII, ACCase, ALS/AHAS and EPSPS inhibitors) identified 28 herbicide-resistance candidate accessions. Target-site resistance to PSII inhibitors was found in accessions collected from habitats with a known history of herbicide applications. An amino acid substitution in the psbA gene (serine264 to glycine) conferred resistance and also significantly affected the flowering and shoot dry weight of the resistant accession, as compared to the sensitive accession. Non-target site resistance to ACCase inhibitors was found in accessions collected from habitats with a history of herbicide application and from a nature reserve. In-vitro enzyme activity tests and responses following pre-treatment with malathion (a cytochrome-P450 inhibitor) indicated sensitivity at the enzyme level, and give strong support to diclofop-methyl and pinoxaden enhanced detoxification as NTS resistance mechanism. BrIFAR can promote better understanding of the evolution of mechanisms of herbicide resistance and aid the implementation of integrative management approaches for sustainable agriculture. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Characterisation of ALS genes in the polyploid species Schoenoplectus mucronatus and implications for resistance management.

    PubMed

    Scarabel, Laura; Locascio, Antonella; Furini, Antonella; Sattin, Maurizio; Varotto, Serena

    2010-03-01

    The polyploid weed Schoenoplectus mucronatus (L.) Palla has evolved target-site resistance to ALS-inhibiting herbicides in Italian rice crops. Molecular and genetic characterisation of the resistance mechanism is relevant to the evolution and management of herbicide resistance. The authors aimed (a) to study the organisation of the target-site loci in two field-selected S. mucronatus populations with different cross-resistance patterns, (b) to identify the mutations endowing resistance to ALS inhibitors and determine the role of these mutations by using transgenesis and (c) to analyse the implications for the management of the S. mucronatus populations. Two complete ALS genes (ALS1 and ALS2) having an intron and a third partial intronless ALS gene (ALS3) were identified. The presence of multiple ALS genes was confirmed by Southern blot analyses, and ALS loci were characterised by examining cytosine methylation. In S. mucronatus leaves, the transcripts of ALS1, ALS2 and ALS3 were detected. Two mutations endowing resistance (Pro(197) to His and Trp(574) to Leu) were found in both resistant populations, but at different frequencies. Tobacco plants transformed with the two resistant alleles indicated that the Pro(197)-to-His substitution conferred resistance to SU and TP herbicides, while the allele with the Trp(574)-to-Leu substitution conferred cross-resistance to SU, TP, IMI and PTB herbicides. Schoenoplectus mucronatus has multiple ALS genes characterised by methylated sites that can influence the expression profile. The two mutated alleles proved to be responsible for ALS resistance. At population level, the resistance pattern depends on the frequency of various resistant genotypes, and this influences the efficacy of various ALS-inhibiting herbicides.

  19. Adsorption of chloroacetanilide herbicides on soil and its components. III. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays.

    PubMed

    Liu, Wei-ping; Fang, Zhuo; Liu, Hui-jun; Yang, Wei-chun

    2002-04-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca(2+)-, Mg(2+)-, Al(3+)- and Fe(3+)-saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ < or = Fe3+ which coincided with the increasing acidity of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  20. Modified melanocortin tetrapeptide Ac-His-dPhe-Arg-Trp-NH at the arginine side chain with ureas and thioureas.

    PubMed

    Joseph, C G; Sorensen, N B; Wood, M S; Xiang, Z; Moore, M C; Haskell-Luevano, C

    2005-11-01

    The Ac-His-dPhe-Arg-Trp-NH2 tetrapeptide is a nonselective melanocortin agonist and replacement of Arg in the tetrapeptide with acidic, basic or neutral amino acids results in reduced potency at the melanocortin receptor (MCR) isoforms (MC1R and MC3-5R). To determine the importance of the positive charge and the guanidine moiety for melanocortin activity, a series of urea- and thiourea-substituted tetrapeptides were designed. Replacement of Arg with Lys or ornithine reduced agonist activity at the mouse mMC1 and mMC3-5 receptors, thus supporting the hypothesis that the guanidine moiety is important for receptor potency, particularly at the MC3-5 receptors. The Arg side chain-modified tetrapeptides examined in this study include substituted phenyl, naphthyl, and aliphatic urea and thiourea residues using a Lys side-chain template. These ligands elicit full-agonist pharmacology at the mouse MCRs examined in this study.

  1. Competition between Hydrogen Bonding and Proton Transfer during Specific Anion Recognition by Dihomooxacalix[4]arene Bidentate Ureas.

    PubMed

    Martínez-González, Eduardo; González, Felipe J; Ascenso, José R; Marcos, Paula M; Frontana, Carlos

    2016-08-05

    Competition between hydrogen bonding and proton transfer reactions was studied for systems composed of electrogenerated dianionic species from dinitrobenzene isomers and substituted dihomooxacalix[4]arene bidentate urea derivatives. To analyze this competition, a second-order ErCrCi mechanism was considered where the binding process is succeeded by proton transfer and the voltammetric responses depend on two dimensionless parameters: the first related to hydrogen bonding reactions, and the second one to proton transfer processes. Experimental results indicated that, upon an increase in the concentration of phenyl-substituted dihomooxacalix[4]arene bidentate urea, voltammetric responses evolve from diffusion-controlled waves (where the binding process is at chemical equilibrium) into irreversible kinetic responses associated with proton transfer. In particular, the 1,3-dinitrobenzene isomer showed a higher proton transfer rate constant (∼25 M(-1) s(-1)) compared to that of the 1,2-dinitrobenzene (∼5 M(-1) s(-1)), whereas the 1,4-dinitrobenzene did not show any proton transfer effect in the experimental conditions employed.

  2. Design, synthesis, and anti-HIV-1 activity of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives.

    PubMed

    Sakakibara, Norikazu; Baba, Masanori; Okamoto, Mika; Toyama, Masaaki; Demizu, Yosuke; Misawa, Takashi; Kurihara, Masaaki; Irie, Kohji; Kato, Yoshihisa; Maruyama, Tokumi

    2015-02-01

    A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure-activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Design, synthesis, and anti-HIV-1 activity of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives

    PubMed Central

    Sakakibara, Norikazu; Baba, Masanori; Okamoto, Mika; Toyama, Masaaki; Demizu, Yosuke; Misawa, Takashi; Kurihara, Masaaki; Irie, Kohji; Kato, Yoshihisa; Maruyama, Tokumi

    2015-01-01

    Background A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. Methods A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. Results Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure–activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. Conclusion The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants. PMID:26149262

  4. Peanut cake as a substitute for soybean meal in the diet of goats.

    PubMed

    Silva, T Mariniello; de Medeiros, A Nunes; Oliveira, R Lopes; Gonzaga Neto, S; Ribeiro, M Divino; Bagaldo, A Regina; Ribeiro, O Lolato

    2015-06-01

    This study aimed to test the hypothesis that peanut cake can substitute for soybean meal in the feed of ruminants on the basis of the intake, performance, digestion, and serum urea and glucose concentration in crossbred Boer × indigenous goat kids. Forty intact vaccinated and dewormed crossbred Boer × indigenous goat kids (average age = 5 mo, average BW = 15.6 ± 2.7 kg) were used. The goats were fed Tifton-85 (Cynodon dactylon) hay and concentrate mixes of corn bran, soybean meal, premix mineral, and peanut cake substituted for soybean meal at rates of 0.0%, 33.33%, 66.67%, and 100%. The animals were confined for 62 d, and the digestibility trial was performed from d 27 to 31 of confinement. Samples of orts and feces were quantified and collected from each animal during this period. On the d 32 of confinement, a blood sample was taken from animals to measure urea N and glucose. Data were analyzed with a regression model. Substitution of soybean meal with peanut cake in the diet of the animals resulted in a reduction in intake of DM (P = 0.02), CP (P = 0.03), NDF (P = 0.03), nonfiber carbohydrate (NFC; P = 0.01), and TDN (P = 0.02) and an increase in intake of ether extract (P < 0.001). The total and daily average weight gains decreased (P = 0.02) with substitution, whereas G:F was not influenced (P = 0.11). With the exception of ether extract digestibility, which increased (P < 0.001) with substitution, digestibility of DM (P = 0.13), OM (P = 0.18), CP (P = 0.54), NDF (P = 0.20), and NFC (P = 0.73) was not influenced by diets. The concentration of serum urea N was influenced quadratically by the postprandial time for treatments with 33.33%, 66.67%, and 100.00% substitution. Peanut cake is not a complete, equal substitute for soybean meal in goat feed. However, peanut cake may represent an eventual replacer able to reduce goat producers’ dependence on traditional ingredients in the feed of growing goat kids.

  5. Novel α-Tubulin Mutations Conferring Resistance to Dinitroaniline Herbicides in Lolium rigidum

    PubMed Central

    Chu, Zhizhan; Chen, Jinyi; Nyporko, Alex; Han, Heping; Yu, Qin; Powles, Stephen

    2018-01-01

    The dinitroaniline herbicides (particularly trifluralin) have been globally used in many crops for selective grass weed control. Consequently, trifluralin resistance has been documented in several important crop weed species and has recently reached a level of concern in Australian Lolium rigidum populations. Here, we report novel mutations in the L. rigidum α-tubulin gene which confer resistance to trifluralin and other dinitroaniline herbicides. Nucleotide mutations at the highly conserved codon Arg-243 resulted in amino acid substitutions of Met or Lys. Rice calli transformed with the mutant 243-Met or 243-Lys α-tubulin genes were 4- to 8-fold more resistant to trifluralin and other dinitroaniline herbicides (e.g., ethalfluralin and pendimethalin) compared to calli transformed with the wild type α-tubulin gene from L. rigidum. Comprehensive modeling of molecular docking predicts that Arg-243 is close to the trifluralin binding site on the α-tubulin surface and that replacement of Arg-243 by Met/Lys-243 results in a spatial shift of the trifluralin binding domain, reduction of trifluralin-tubulin contacts, and unfavorable interactions. The major effect of these substitutions is a significant rise of free interaction energy between α-tubulin and trifluralin, as well as between trifluralin and its whole molecular environment. These results demonstrate that the Arg-243 residue in α-tubulin is a determinant for trifluralin sensitivity, and the novel Arg-243-Met/Lys mutations may confer trifluralin resistance in L. rigidum. PMID:29472938

  6. A New F131V Mutation in Chlamydomonas Phytoene Desaturase Locates a Cluster of Norflurazon Resistance Mutations near the FAD-Binding Site in 3D Protein Models

    PubMed Central

    Suarez, Julio V.; Banks, Stephen; Thomas, Paul G.; Day, Anil

    2014-01-01

    The green alga Chlamydomonas reinhardtii provides a tractable genetic model to study herbicide mode of action using forward genetics. The herbicide norflurazon inhibits phytoene desaturase, which is required for carotenoid synthesis. Locating amino acid substitutions in mutant phytoene desaturases conferring norflurazon resistance provides a genetic approach to map the herbicide binding site. We isolated a UV-induced mutant able to grow in very high concentrations of norflurazon (150 µM). The phytoene desaturase gene in the mutant strain contained the first resistance mutation to be localised to the dinucleotide-binding Rossmann-likedomain. A highly conserved phenylalanine amino acid at position 131 of the 564 amino acid precursor protein was changed to a valine in the mutant protein. F131, and two other amino acids whose substitution confers norflurazon resistance in homologous phytoene desaturase proteins, map to distant regions in the primary sequence of the C. reinhardtii protein (V472, L505) but in tertiary models these residues cluster together to a region close to the predicted FAD binding site. The mutant gene allowed direct 5 µM norflurazon based selection of transformants, which were tolerant to other bleaching herbicides including fluridone, flurtamone, and diflufenican but were more sensitive to beflubutamid than wild type cells. Norflurazon resistance and beflubutamid sensitivity allow either positive or negative selection against transformants expressing the mutant phytoene desaturase gene. PMID:24936791

  7. Degradation and movement in soil of the herbicide isoproturon analyzed by a Photosystem II-based biosensor.

    PubMed

    Malý, J; Klem, K; Lukavská, A; Masojídek, J

    2005-01-01

    We have examined the persistence and movement of a urea-type herbicide, isoproturon [IPU; 3-(4-isopropylphenyl)-1,1'-dimethylurea], in soil using a novel herbicide-detection device, the prototype of a portable electrochemical biosensor based on Photosystem II particles immobilized on printed electrodes, and evaluated its results against two other methods: (i) chlorophyll-fluorescence bioassay based on polyphasic induction curves, and (ii) standard analysis represented by liquid chromatography. The data of the herbicide's content determined in soil extracts from field experiments correlated in all three methods. The biosensor assay was effective in determining the herbicide's concentration to as low as 10(-7) M. The results of our experiments also showed the kinetics of movement, degradation, and persistence of isoproturon in various depths of soil. After 6 to 9 wk, almost half of the isoproturon was still actively present in the upper soil layers (0-10 and 10-20 cm) and only 5 to 10% of biological activity was inhibited in the deeper soil layer tested (20-30 cm). Thus, inhibition within the limit of detection of both bioassays could be observed up to 9 wk after application in all profiles (0-30 cm), whereas inhibition persisted for up to 11 wk in the upper soil profile (0-10 cm). The use of the biosensor demonstrated its possibility for making rapid and cheap phytotoxicity tests. Our biosensor can give preliminary information about the biological activity of isoproturon in hours--much faster than growth biotests that may take several days or more.

  8. Iron-catalyzed urea synthesis: dehydrogenative coupling of methanol and amines† †Electronic supplementary information (ESI) available: Experimental details, characterization data, and select NMR spectra. See DOI: 10.1039/c8sc00775f

    PubMed Central

    Lane, Elizabeth M.; Hazari, Nilay

    2018-01-01

    Substituted ureas have numerous applications but their synthesis typically requires the use of highly toxic starting materials. Herein we describe the first base-metal catalyst for the selective synthesis of symmetric ureas via the dehydrogenative coupling of methanol with primary amines. Using a pincer supported iron catalyst, a range of ureas was generated with isolated yields of up to 80% (corresponding to a catalytic turnover of up to 160) and with H2 as the sole byproduct. Mechanistic studies indicate a stepwise pathway beginning with methanol dehydrogenation to give formaldehyde, which is trapped by amine to afford a formamide. The formamide is then dehydrogenated to produce a transient isocyanate, which reacts with another equivalent of amine to form a urea. These mechanistic insights enabled the development of an iron-catalyzed method for the synthesis of unsymmetric ureas from amides and amines. PMID:29780531

  9. Pigments as biomarkers of exposure to the vineyard herbicide flazasulfuron in freshwater algae.

    PubMed

    Couderchet, Michel; Vernet, Guy

    2003-07-01

    Weed control in Champagne vineyards has long relied on the use of diuron and substituted triazines; these compounds are now being replaced by flazasulfuron, a sulfonylurea that is used at a much lower dosage. The vineyards of Champagne are planted on steep slopes and runoff is important, and even though low doses of these herbicides are used, they may present some potential risk for freshwater ecosystems. Therefore, the effects of the sulfonylurea herbicide, flazasulfuron (formulated as Katana) was investigated on the unicellular green alga Scenedesmus obliquus. The pigment content of the algal suspensions was followed as a biomarker of exposure to the herbicide. The results demonstrate that flazasulfuron induced a reduction in chlorophyll content at concentrations of 10 microg/L, while the increase of pigment content in the culture was reduced with the lowest concentration tested (0.1 microg/L). Among the three pigments tested, chlorophyll a appeared to be the most sensitive biomarker. In the algal medium, flazasulfuron was slowly degraded (DT(50) approximately 8 days) in a compound that was tentatively identified. The toxicity of this herbicide for the algae was comparable to that of older herbicides which are used at a much higher rate. Therefore, we may speculate that even if flazasulfuron comes into contact with freshwater ecosystems, its effects on algae will be less deleterious than that of traditional herbicides.

  10. Use of different organic wastes as strategy to mitigate the leaching potential of phenylurea herbicides through the soil.

    PubMed

    Fenoll, José; Garrido, Isabel; Hellín, Pilar; Flores, Pilar; Vela, Nuria; Navarro, Simón

    2015-03-01

    In this study, the leaching of 14 substituted phenylurea herbicides (PUHs) through disturbed soil columns packed with three different soils was investigated in order to determine their potential for groundwater pollution. Simultaneously, a series of experiments were conducted to demonstrate the effect of four different organic wastes (composted sheep manure (CSM), composted pine bark (CPB), spent coffee grounds (SCG) and coir (CR)) on their mobility. All herbicides, except difenoxuron, showed medium/high leachability through the unamended soils. In general, addition of agro-industrial and composted organic wastes at a rate of 10% (w/w) increased the adsorption of PUHs and decreased their mobility in the soil, reducing their leaching. In all cases, the groundwater ubiquity score (GUS) index was calculated for each herbicide on the basis of its persistence (as t ½) and mobility (as K OC). The results obtained point to the interest in the use of agro-industrial and composted organic wastes in reducing the risk of groundwater pollution by pesticide drainage.

  11. Paraquat prohibition and change in the suicide rate and methods in South Korea.

    PubMed

    Myung, Woojae; Lee, Geung-Hee; Won, Hong-Hee; Fava, Maurizio; Mischoulon, David; Nyer, Maren; Kim, Doh Kwan; Heo, Jung-Yoon; Jeon, Hong Jin

    2015-01-01

    The annual suicide rate in South Korea is the highest among the developed countries. Paraquat is a highly lethal herbicide, commonly used in South Korea as a means for suicide. We have studied the effect of the 2011 paraquat prohibition on the national suicide rate and method of suicide in South Korea. We obtained the monthly suicide rate from 2005 to 2013 in South Korea. In our analyses, we adjusted for the effects of celebrity suicides, and economic, meteorological, and seasonal factors on suicide rate. We employed change point analysis to determine the effect of paraquat prohibition on suicide rate over time, and the results were verified by structural change analysis, an alternative statistical method. After the paraquat prohibition period in South Korea, there was a significant reduction in the total suicide rate and suicide rate by poisoning with herbicides or fungicides in all age groups and in both genders. The estimated suicide rates during this period decreased by 10.0% and 46.1% for total suicides and suicides by poisoning of herbicides or fungicides, respectively. In addition, method substitution effect of paraquat prohibition was found in suicide by poisoning by carbon monoxide, which did not exceed the reduction in the suicide rate of poisoning with herbicides or fungicides. In South Korea, paraquat prohibition led to a lower rate of suicide by paraquat poisoning, as well as a reduction in the overall suicide rate. Paraquat prohibition should be considered as a national suicide prevention strategy in developing and developed countries alongside careful observation for method substitution effects.

  12. Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum.

    PubMed

    Yu, Qin; Abdallah, Ibrahim; Han, Heping; Owen, Mechelle; Powles, Stephen

    2009-09-01

    This study investigates mechanisms of multiple resistance to glyphosate, acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS)-inhibiting herbicides in two Lolium rigidum populations from Australia. When treated with glyphosate, susceptible (S) plants accumulated 4- to 6-fold more shikimic acid than resistant (R) plants. The resistant plants did not have the known glyphosate resistance endowing mutation of 5-enolpyruvylshikimate-3 phosphate synthase (EPSPS) at Pro-106, nor was there over-expression of EPSPS in either of the R populations. However, [(14)C]-glyphosate translocation experiments showed that the R plants in both populations have altered glyphosate translocation patterns compared to the S plants. The R plants showed much less glyphosate translocation to untreated young leaves, but more to the treated leaf tip, than did the S plants. Sequencing of the carboxyl transferase domain of the plastidic ACCase gene revealed no resistance endowing amino acid substitutions in the two R populations, and the ALS in vitro inhibition assay demonstrated herbicide-sensitive ALS in the ALS R population (WALR70). By using the cytochrome P450 inhibitor malathion and amitrole with ALS and ACCase herbicides, respectively, we showed that malathion reverses chlorsulfuron resistance and amitrole reverses diclofop resistance in the R population examined. Therefore, we conclude that multiple glyphosate, ACCase and ALS herbicide resistance in the two R populations is due to the presence of distinct non-target site based resistance mechanisms for each herbicide. Glyphosate resistance is due to reduced rates of glyphosate translocation, and resistance to ACCase and ALS herbicides is likely due to enhanced herbicide metabolism involving different cytochrome P450 enzymes.

  13. Effects of herbicide applications in wheat fields

    PubMed Central

    Varshney, Sugandha; Hayat, Shamshul; Alyemeni, Mohammed Nasser; Ahmad, Aqil

    2012-01-01

    The present review encompasses the physiological and yield constraints of herbicide applications with special reference to wheat productivity. Post-independence lagging of Indian agriculture to feed its population led to haphazard use of chemical pesticides and weedicides which deteriorated the productivity pay-off particularly of wheat and rice. Past some decades witnessed the potential use of certain phytohormones in augmenting abiotic stress to get rid of yield gap and productivity constraints. We summed up with reviewing the potential role of these natural regulators in overcoming above mentioned drawbacks to substitute or to integrate these chemicals with the use of plant hormones. PMID:22516826

  14. Carboxymethyl starch/montmorillonite composite microparticles: Properties and controlled release of isoproturon.

    PubMed

    Wilpiszewska, Katarzyna; Spychaj, Tadeusz; Paździoch, Waldemar

    2016-01-20

    Preparation of novel high substituted carboxymethyl starch-based microparticles containing sodium montmorillonite (MMT) by crosslinking with Al(3+) was described. For preparing nanocomposite granules carboxymethyl starch (CMS) from native potato starch as well as CMS from amylopectin has been used. The hydrophilic CMS/MMT composite systems were used for herbicide, i.e. isoproturon encapsulation (ca. 75% encapsulation efficiency). The herbicide release rate from CMS/MMT composites in water was significantly reduced when compared to commercial isoproturon: 95% released after ca. 700 h and ca. 24h, respectively. Leaching in soil from composite systems was relatively slower than release in water. After a series of eight irrigations leached about 10% of isoproturon loaded. The CMS/MMT carriers could reduce the potential leaching of herbicide and beneficially reduce pollution of the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Development of imidazolinone herbicide tolerant borage (Borago officinalis L.).

    PubMed

    Song, Dongyan; Wu, Guohai; Vrinten, Patricia; Qiu, Xiao

    2017-09-01

    Borage (Borago officinalis) is an annual herb that produces a high level of gamma-linolenic acid (GLA) in its seed oil. Due to the recognized health benefits of GLA, borage is now commercially cultivated worldwide. However, an herbicide-tolerant variety for effective weed management has not yet been developed. Here we report the generation and characterization of ethyl methanesulfonate (EMS) induced borage mutant lines tolerant to the herbicide imidazolinone. An EMS-mutagenized borage population was generated by using a series of concentrations of EMS to treat mature borage seeds. Screening of the M2 and M3 borage plants using an herbicide treatment resulted in the identification of two imidazolinone-tolerant lines. Sequence analysis of two acetohydroxyacid synthase (AHAS) genes, AHAS1 and AHAS2, from the mutant (tolerant) and wild type (susceptible) borage plants showed that single nucleotide substitutions which resulted in amino acid changes occurred in AHAS1 and AHAS2, respectively in the two tolerant lines. A KASP marker was then developed to differentiate the homozygous susceptible, homozygous tolerant and heterozygous borage plants. An in vitro assay showed that homozygous tolerant borage carrying the AHAS1 mutation retained significantly higher AHAS activity than susceptible borage across different imazamox concentrations. A herbicide dose response test indicated that the line with the AHAS1 mutation could tolerate four times the normally used field concentration of "Solo" herbicide. Copyright © 2017. Published by Elsevier B.V.

  16. Chemical exposure reduction: Factors impacting on South African herbicide sprayers' personal protective equipment compliance and high risk work practices.

    PubMed

    Andrade-Rivas, Federico; Rother, Hanna-Andrea

    2015-10-01

    The high exposure risks of workers to herbicides in low- and middle-income countries is an important public health concern because of the potential resulting negative impacts on workers' health. This study investigated workers' personal protective equipment (PPE) compliance as a risk mitigation measure; particularly workers who apply herbicides for Working for Water (WfW) - a South African invasive alien vegetation control programme. The study aim was to understand workers' low PPE compliance by analysing their risk perceptions of herbicide use, working conditions and socio-cultural context. Research methods included ethnographic observations, informal interviews, visual media, questionnaires and a focus group. Study results indicated that low PPE compliance persists despite workers' awareness of herbicide exposure risks and as a result of the influence from workers' socio-cultural context (i.e. gender dynamics and social status), herbicide risk perceptions and working conditions (i.e. environmental and logistical). Interestingly, teams comprised of mostly women had the highest compliance rate. These findings highlighted that given the complexity of PPE compliance, especially in countries with several economic and social constraints, exposure reduction interventions should not rely solely on PPE use promotion. Instead, other control strategies requiring less worker input for effectiveness should be implemented, such as elimination and substitution of highly hazardous pesticides, and altering application methods. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The role of nickel in urea assimilation by algae.

    PubMed

    Rees, T A; Bekheet, I A

    1982-12-01

    Nickel is required for urease synthesis by Phaeodactylum tricornutum and Tetraselmis subcordiformis and for growth on urea by Phaeodactylum. There is no requirement for nickel for urea amidolyase synthesis by Chlorella fusca var. vacuolata. Neither copper nor palladium can substitute for nickel but cobalt partially restored urease activity in Phaeodactylum. The addition of nickel to nickel-deficient cultures of Phaeodactylum or Tetraselmis resulted in a rapid increase of urease activity to 7-30 times the normal level; this increase was not inhibited by cycloheximide. It is concluded that nickel-deficient cells over-produce a non-functional urease protein and that either nickel or the functional urease enzyme participates in the regulation of the production of urease protein.

  18. Recognition of anions using urea and thiourea substituted calixarenes: A density functional theory study of non-covalent interactions

    NASA Astrophysics Data System (ADS)

    Athar, Mohd; Lone, Mohsin Y.; Jha, Prakash C.

    2018-02-01

    Designing of new calixarene receptors for the selective binding of anions is an age-old concept; even though expected outcomes from this field are at premature stage. Herein, we have performed quantum chemical calculations to provide structural basis of anion binding with urea and thiourea substituted calixarenes (1, 2, and 3). In particular, spherical halides (F-, Cl-, Br-) and linear anions (CN-, N3-, SCN-) were modelled for calculating binding energies with receptor 1, 2 and 3 followed by their marked IR vibrations; taking the available experimental information into account. We found that the thiourea substitutions have better capability to stabilize the anions. Results have suggested that the structural behaviour of macrocyclic motifs were responsible for displaying the anion binding potentials. Moreover, second order "charge transfer" interactions of n-σ∗NH and n-σ∗OH type along the H-bond axis played critical role in developing hydrogen bonds. The present work also examines the role of non-covalent interactions (NCI) and their effects on thermodynamic and chemical-reactivity descriptors.

  19. Adsorption of acetanilide herbicides on soil and its components. II. Adsorption and catalytic hydrolysis of diethatyl-ethyl on saturated Na(+)-, K(+)-, Ca(2+)-, and Mg(2+)-montmorillonite.

    PubMed

    Liu, W P; Fang, Z; Liu, H J; Yang, W C

    2001-04-01

    Adsorption and catalytic hydrolysis of the herbicide diethatyl-ethyl [N-chloroacetyl-N-(2,6-diethylphenyl)glycine ethyl ester] on homoionic Na(+)-, K(+)-, Ca(2+)-, and Mg(2+)-montmorillonite clays were investigated in water solution. The Freundlich adsorption coefficient, Ki, got from isotherms on clay followed the order of Na+ approximately K+ > Mg2+ approximately Ca2+. Analysis of FT-IR spectra of diethatyl-ethyl adsorbed on clay suggests probable bonding at the carboxyl and amide carbonyl groups of the herbicide. The rate of herbicide hydrolysis in homoionic clay suspensions followed the same order as that for adsorption, indicating that adsorption may have preceded and thus caused hydrolysis. Preliminary product identification showed that hydrolysis occurred via nucleophilic substitution at the carboxyl carbon, causing the cleavage of the ester bond and formation of diethatyl and its dechlorinated derivative, and at the amide carbon, yielding an ethyl ester derivative and its acid. These pathways also suggest that hydrolysis of diethatyl-ethyl was catalyzed by adsorption on the clay surface.

  20. Bioengineering resistance to phytoene desaturase inhibitors in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    Three natural somatic mutations at codon 304 of the phytoene desaturase gene (pds) of Hydrilla verticillata ( L. f. Royle) have been reported to provide resistance to the herbicide fluridone. We substituted the arginine 304 present in the wild-type H. verticillata phytoene desaturase (PDS) with all...

  1. Stabilized filter-supported bilayer lipid membranes (BLMs) for automated flow monitoring of compounds of clinical, pharmaceutical, environmental and industrial interest

    PubMed Central

    Siontorou, Christina G.

    1997-01-01

    This paper describes the results of analytical applications of electrochemical biosensors based on bilayer lipid membranes (BLMs) for the automated rapid and sensitive flow monitoring of substrates of hydrolytic enzymes, antigens and triazine herbicides. BLMs, composed of mixtures of egg phosphatidylcholine (egg PC) and dipalmitoylphosphatidic acid (DPPA), were supported on ultrafiltration membranes (glass microfibre or polycarbonate filters) which were found to enhance their stability for flow experiments. The proteins (enzymes, antibodies) were incorporated into a floating lipid matrix at an air-electrolyte interface, and then a casting procedure was used to deliver the lipid onto the filter supports for BLM formation. Injections of the analyte were made into flowing streams of the carrier electrolyte solution and a current transient signal was obtained with a magnitude related to the analyte concentration. Substrates of hydrolytic enzyme reactions (acetylcholine, urea and penicillin) could be determined at the micromolar level with a maximum rate of 220 samples/h, whereas antigens (thyroxin) and triazine herbicides (simazine, atrazine and propazine) could be monitored at the nanomolar level in less than 2 min. The time of appearance of the transient response obtained for herbicides was increased to the order of simazine, atrazine and propazine which has permitted analysis of these triazines in mixtures. PMID:18924789

  2. A geographic information system for characterizing exposure to Agent Orange and other herbicides in Vietnam.

    PubMed

    Stellman, Jeanne Mager; Stellman, Steven D; Weber, Tracy; Tomasallo, Carrie; Stellman, Andrew B; Christian, Richard

    2003-03-01

    Between 1961 and 1971, U.S. military forces dispersed more than 19 million gallons of phenoxy and other herbicidal agents in the Republic of Vietnam, including more than 12 million gallons of dioxin-contaminated Agent Orange, yet only comparatively limited epidemiologic and environmental research has been carried out on the distribution and health effects of this contamination. As part of a response to a National Academy of Sciences' request for development of exposure methodologies for carrying out epidemiologic research, a conceptual framework for estimating exposure opportunity to herbicides and a geographic information system (GIS) have been developed. The GIS is based on a relational database system that integrates extensive data resources on dispersal of herbicides (e.g., HERBS records of Ranch Hand aircraft flight paths, gallonage, and chemical agent), locations of military units and bases, dynamic movement of combat troops in Vietnam, and locations of civilian population centers. The GIS can provide a variety of proximity counts for exposure to 9,141 herbicide application missions. In addition, the GIS can be used to generate a quantitative exposure opportunity index that accounts for quantity of herbicide sprayed, distance, and environmental decay of a toxic factor such as dioxin, and is flexible enough to permit substitution of other mathematical exposure models by the user. The GIS thus provides a basis for estimation of herbicide exposure for use in large-scale epidemiologic studies. To facilitate widespread use of the GIS, a user-friendly software package was developed to permit researchers to assign exposure opportunity indexes to troops, locations, or individuals.

  3. A Tightly Regulated Genetic Selection System with Signaling-Active Alleles of Phytochrome B.

    PubMed

    Hu, Wei; Lagarias, J Clark

    2017-01-01

    Selectable markers derived from plant genes circumvent the potential risk of antibiotic/herbicide-resistance gene transfer into neighboring plant species, endophytic bacteria, and mycorrhizal fungi. Toward this goal, we have engineered and validated signaling-active alleles of phytochrome B (eYHB) as plant-derived selection marker genes in the model plant Arabidopsis (Arabidopsis thaliana). By probing the relationship of construct size and induction conditions to optimal phenotypic selection, we show that eYHB-based alleles are robust substitutes for antibiotic/herbicide-dependent marker genes as well as surprisingly sensitive reporters of off-target transgene expression. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. A Tightly Regulated Genetic Selection System with Signaling-Active Alleles of Phytochrome B1[OPEN

    PubMed Central

    2017-01-01

    Selectable markers derived from plant genes circumvent the potential risk of antibiotic/herbicide-resistance gene transfer into neighboring plant species, endophytic bacteria, and mycorrhizal fungi. Toward this goal, we have engineered and validated signaling-active alleles of phytochrome B (eYHB) as plant-derived selection marker genes in the model plant Arabidopsis (Arabidopsis thaliana). By probing the relationship of construct size and induction conditions to optimal phenotypic selection, we show that eYHB-based alleles are robust substitutes for antibiotic/herbicide-dependent marker genes as well as surprisingly sensitive reporters of off-target transgene expression. PMID:27881727

  5. Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron.

    PubMed

    Ellegaard-Jensen, Lea; Aamand, Jens; Kragelund, Birthe B; Johnsen, Anders H; Rosendahl, Søren

    2013-11-01

    Microbial pesticide degradation studies have until now mainly focused on bacteria, although fungi have also been shown to degrade pesticides. In this study we clarify the background for the ability of the common soil fungus Mortierella to degrade the phenylurea herbicide diuron. Diuron degradation potentials of five Mortierella strains were compared, and the role of carbon and nitrogen for the degradation process was investigated. Results showed that the ability to degrade diuron varied greatly among the Mortierella strains tested, and the strains able to degrade diuron were closely related. Degradation of diuron was fastest in carbon and nitrogen rich media while suboptimal nutrient levels restricted degradation, making it unlikely that Mortierella utilize diuron as carbon or nitrogen sources. Degradation kinetics showed that diuron degradation was followed by formation of the metabolites 1-(3,4-dichlorophenyl)-3-methylurea, 1-(3,4-dichlorophenyl)urea and an hitherto unknown metabolite suggested to be 1-(3,4-dichlorophenyl)-3-methylideneurea.

  6. METHOD OF SUPPRESSING GASTROINTESTINAL UREASE ACTIVITY

    DOEpatents

    Visek, W.J.

    1963-04-23

    This patent shows a method of increasing the growth rate of chicks. Certain diacyl substituted ureas such as alloxan, murexide, and barbituric acid are added to their feed, thereby suppressing gastrointestinal urease activity and thus promoting growth. (AEC)

  7. Ile-1781-Leu and Asp-2078-Gly Mutations in ACCase Gene, Endow Cross-resistance to APP, CHD, and PPZ in Phalaris minor from Mexico

    PubMed Central

    Cruz-Hipolito, Hugo; Fernandez, Pablo; Alcantara, Ricardo; Gherekhloo, Javid; Osuna, Maria Dolores; De Prado, Rafael

    2015-01-01

    Herbicides that inhibit acetyl coenzyme A carboxylase (ACCase) are commonly used in Mexico to control weedy grasses such as little seed canarygrass (Phalaris minor). These herbicides are classified into three major families (ariloxyphenoxypropionates (APP), cyclohexanodiones (CHD), and, recently, phenylpyrazolines (PPZ)). In this work, the resistance to ACCase (APP, CHD, and PPZ) inhibiting herbicides was studied in a biotype of Phalaris minor (P. minor) from Mexico, by carrying out bioassays at the whole-plant level and investigating the mechanism behind this resistance. Dose-response and ACCase in vitro activity assays showed cross-resistance to all ACCase herbicides used. There was no difference in the absorption, translocation, and metabolism of the 14C-diclofop-methyl between the R and S biotypes. The PCR generated CT domain fragments of ACCase from the R biotype and an S reference were sequenced and compared. The Ile-1781-Leu and Asp-2078-Gly point mutations were identified. These mutations could explain the loss of affinity for ACCase by the ACCase-inhibing herbicides. This is the first report showing that this substitution confers resistance to APP, CHD, and PPZ herbicides in P. minor from Mexico. The mutations have been described previously only in a few cases; however, this is the first study reporting on a pattern of cross-resistance with these mutations in P. minor. The findings could be useful for better management of resistant biotypes carrying similar mutations. PMID:26370967

  8. Linifanib--a multi-targeted receptor tyrosine kinase inhibitor and a low molecular weight gelator.

    PubMed

    Marlow, Maria; Al-Ameedee, Mohammed; Smith, Thomas; Wheeler, Simon; Stocks, Michael J

    2015-04-14

    In this study we demonstrate that linifanib, a multi-targeted receptor tyrosine kinase inhibitor, with a key urea containing pharmacophore, self-assembles into a hydrogel in the presence of low amounts of solvent. We demonstrate the role of the urea functional group and that of fluorine substitution on the adjacent aromatic ring in promoting self-assembly. We have also shown that linifanib has superior mechanical strength to two structurally related analogues and hence increased potential for localisation at an injection site for drug delivery applications.

  9. Band-gap modulation via gallium substitution in cerium doped gadolinium aluminum garnet using a mixed fuel combustion approach

    NASA Astrophysics Data System (ADS)

    Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan; Shinde, Seema

    2014-04-01

    Cerium doped Gadolinium garnets (Gd3AlxGa5-xO12 where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.

  10. Metal-Free Approaches to Sterically-Hindered Bonds

    NASA Astrophysics Data System (ADS)

    Dunham, Veronica Vin-yi

    Developing methods to perform cross coupling reactions by means of catalysis is highly desirable in chemistry. Many industries in today's society, such as the petroleum, agriculture, pharmaceutical, electronics, and polymer industry, use catalysis to some extent whether it is to make molecules that offer crop protection or toward the synthesis of the active ingredient of a medication. It is noteworthy that over 90% of chemicals are made through catalytic processes and that the catalyst market reached $17 billion in 2014, which demonstrates the demand for such methods. While transition metal catalysts have advantages such as low catalyst loading, broad reactivity, and that they have been well studied, some disadvantages are that they can be relatively expensive and sometimes air sensitive which can make them challenging to use. Organocatalysis, specifically noncovalent catalysis operating through hydrogen bond donating interactions, offers an environmentally-friendly alternative to transition metal catalysis. Our lab utilizes organocatalysis as a strategy to synthesize challenging, sterically-hindered bonds. Nitrimines have been identified as powerful coupling partners for the sustainable construction of new sterically congested carbon-carbon and carbon-heteroatom bonds. Using urea catalysis, a metal-free method to synthesize previously inaccessible enamines has been developed. Conventional routes to synthesize enamines as important building blocks toward target molecules generally require Lewis/Bronsted acids or expensive transition metals; however, these methods are often unsuccessful when stericallyhindered substrates are used. To address this synthetic challenge, it was hypothesized that hydrogen bonding interactions between a urea organocatalyst and nitrimine would generate a reactive species suited for the effective carbon-nitrogen coupling with amines to give the desired enamine products. This reaction provides high yields (up to 99%) of enamines using a variety of nitrimines and amines including piperidine, pyrrolidine, dibenzylamine, substituted indolines, and substituted N-methylanilines. Further investigations into the applicability of nitrimines for the synthesis of sterically-hindered bonds led to the discovery of formal carbon-carbon cross coupling reactions involving nitrimines and carbon nucleophiles such as indole, pyrrole, and hydroxycoumarin. Under optimized conditions, moderate to high yields of the desired dior tri-substituted alkene product were obtained with electron-rich and electron-poor nitrimines. Furthermore, by strategic modification of the reaction conditions, control over the E/Z selectivity of the tri-substituted alkene products gave up to 19:1 ratio of Z:E isomers. This nitrimine-based formal carbon-carbon cross coupling methodology was then applied to the synthesis of a small target molecule, phenprocoumon, which was obtained in an overall 67% yield. The undeniable utility of urea catalysis operating through hydrogen bond donor (HBD) interactions has prompted the examination into enhanced HBD catalysts. Through the incorporation of a strategically placed Lewis acid on a urea scaffold, a new family of highly tunable HBD catalysts benefitting from enhanced activity was established. After determining the pKa of various urea catalysts using Bordwell's method of overlapping indicators and comparing catalysts in two reaction systems, it was observed that the choice of Lewis acid and its associated ligands had an effect on urea reactivity, acidity, and polarization. In addition to Lewis acid assisted urea catalysts, silanediols have been discovered to participate as enhanced HBD catalysts. Taking advantage of the ability of our silanediol catalysts to participate in asymmetric anion-binding catalysis, a strategy toward an enantioselective synthesis of the sterically-encumbered molecule gonytolide A, an innate immune promoter, is underway.

  11. Discovery and structural optimization of 1-phenyl-3-(1-phenylethyl)urea derivatives as novel inhibitors of CRAC channel.

    PubMed

    Zhang, Hai-zhen; Xu, Xiao-lan; Chen, Hua-yan; Ali, Sher; Wang, Dan; Yu, Jun-wei; Xu, Tao; Nan, Fa-jun

    2015-09-01

    Ca(2+)-release-activated Ca(2+) (CRAC) channel, a subfamily of store-operated channels, is formed by calcium release-activated calcium modulator 1 (ORAI1), and gated by stromal interaction molecule 1 (STIM1). CRAC channel may be a novel target for the treatment of immune disorders and allergy. The aim of this study was to identify novel small molecule CRAC channel inhibitors. HEK293 cells stably co-expressing both ORAI1 and STIM1 were used for high-throughput screening. A hit, 1-phenyl-3-(1-phenylethyl)urea, was identified that inhibited CRAC channels by targeting ORAI1. Five series of its derivatives were designed and synthesized, and their primary structure-activity relationships (SARs) were analyzed. All derivatives were assessed for their effects on Ca(2+) influx through CRAC channels on HEK293 cells, cytotoxicity in Jurkat cells, and IL-2 production in Jurkat cells expressing ORAI1-SS-eGFP. A total of 19 hits were discovered in libraries containing 32 000 compounds using the high-throughput screening. 1-Phenyl-3-(1-phenylethyl)urea inhibited Ca(2+) influx with IC50 of 3.25±0.17 μmol/L. SAR study on its derivatives showed that the alkyl substituent on the α-position of the left-side benzylic amine (R1) was essential for Ca(2+) influx inhibition and that the S-configuration was better than the R-configuration. The derivatives in which the right-side R3 was substituted by an electron-donating group showed more potent inhibitory activity than those that were substituted by electron-withdrawing groups. Furthermore, the free N-H of urea was not necessary to maintain the high potency of Ca(2+) influx inhibition. The N,N'-disubstituted or N'-substituted derivatives showed relatively low cytotoxicity but maintained the ability to inhibit IL-2 production. Among them, compound 5b showed an improved inhibition of IL-2 production and low cytotoxicity. 1-Phenyl-3-(1-phenylethyl)urea is a novel CRAC channel inhibitor that specifically targets ORAI1. This study provides a new chemical scaffold for design and development of CRAC channel inhibitors with improved Ca(2+) influx inhibition, immune inhibition and low cytotoxicity.

  12. Degradation of herbicide 2,4-dichlorophenoxybutanoic acid in the photolysis of [FeOH]2+ and [Fe(Ox)3]3- complexes: A mechanistic study.

    PubMed

    Pozdnyakov, Ivan; Sherin, Peter; Grivin, Vjacheslav; Plyusnin, Victor

    2016-03-01

    In the present work the Fe(III)-assisted photodegradation of the herbicide 2,4-dichlorophenoxybutanoic acid (2,4-DB) has been studied by means of stationary (308 nm) and laser flash (355 nm) photolysis. The initial quantum yield of 2,4-DB photodegradation in [FeOH](2+) and [Fe(Ox)3](3-) systems was evaluated to be 0.11 and 0.17 upon 308 nm exposure, respectively. The prolonged photolysis of [FeOH](2+) and [Fe(Ox)3](3-) systems results in the complete degradation of 2,4-DB with almost complete mineralization of herbicide and its aromatic products in the case of [FeOH](2+) photolysis and the accumulation of some persistent aromatic products in the case of [Fe(Ox)3](3-) photolysis. For both systems the main primary products of 2,4-DB photolysis determined by liquid chromatography - mass spectrometry are products of the hydroxylation, the substitution of chlorine atom to OH group, the loss of aliphatic tail and the opening of benzene ring. The obtained results indicate ROS species (mainly OH radical) to be responsible for the herbicide photodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Antioxidant Activity, Acetylcholinesterase, and Carbonic Anhydrase Inhibitory Properties of Novel Ureas Derived from Phenethylamines.

    PubMed

    Aksu, Kadir; Özgeriş, Bünyamin; Taslimi, Parham; Naderi, Ali; Gülçin, İlhami; Göksu, Süleyman

    2016-12-01

    A series of ureas derived from phenethylamines were synthesized and evaluated for human carbonic anhydrase (hCA) I and II, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzyme inhibitory activities and antioxidant properties. The ureas were synthesized from the reactions of substituted phenethylamines with N,N-dimethylcarbamoyl chloride; then, the synthesized compounds were converted to their corresponding phenolic derivatives via O-demethylation. hCA I and II were effectively inhibited by the newly synthesized compounds, with K i values in the range of 0.307-0.432 nM for hCA I and 0.149-0.278 nM for hCA II. On the other hand, the K i parameters of these compounds for AChE and BChE were determined in the range of 0.129-0.434 and 0.095-0.207 nM, respectively. Phenolic ureas also showed good antioxidant activities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp.

    PubMed

    Badawi, Nora; Rønhede, Stig; Olsson, Stefan; Kragelund, Birthe B; Johnsen, Anders H; Jacobsen, Ole Stig; Aamand, Jens

    2009-10-01

    Phenylurea herbicides are used worldwide, and often pollute surface- and groundwater in concentrations exceeding the limit value for drinking water (0.1 microg l(-1)). Bacteria degrade phenylurea herbicides by successive N-dealkylation to substituted aniline products. Little is known about the corresponding fungal pathways, however. We here report degradation of chlorotoluron, diuron, isoproturon and linuron by the soil fungus Mortierella sp. Gr4. Degradation was fastest with linuron and resulted in successively dealkylated metabolites and 3,4-dichloroaniline. A major new metabolite was detected that has not yet been fully identified. Thin layer chromatography and nuclear magnetic resonance spectroscopy indicate that it is a non-aromatic diol. Degradation of isoproturon, chlorotoluron and diuron involved successive N-demethylation and, in the case of isoproturon and chlorotoluron, additional hydroxylation. A new hydroxylated isoproturon metabolite was detected. The study thus shows that the fungal pathways differ from the bacterial pathways and yield new metabolites of possible environmental concern.

  15. In-Field Spatial Variability in the Degradation of the Phenyl-Urea Herbicide Isoproturon Is the Result of Interactions between Degradative Sphingomonas spp. and Soil pH

    PubMed Central

    Bending, Gary D.; Lincoln, Suzanne D.; Sørensen, Sebastian R.; Morgan, J. Alun W.; Aamand, Jens; Walker, Allan

    2003-01-01

    Substantial spatial variability in the degradation rate of the phenyl-urea herbicide isoproturon (IPU) [3-(4-isopropylphenyl)-1,1-dimethylurea] has been shown to occur within agricultural fields, with implications for the longevity of the compound in the soil, and its movement to ground- and surface water. The microbial mechanisms underlying such spatial variability in degradation rate were investigated at Deep Slade field in Warwickshire, United Kingdom. Most-probable-number analysis showed that rapid degradation of IPU was associated with proliferation of IPU-degrading organisms. Slow degradation of IPU was linked to either a delay in the proliferation of IPU-degrading organisms or apparent cometabolic degradation. Using enrichment techniques, an IPU-degrading bacterial culture (designated strain F35) was isolated from fast-degrading soil, and partial 16S rRNA sequencing placed it within the Sphingomonas group. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified bacterial community 16S rRNA revealed two bands that increased in intensity in soil during growth-linked metabolism of IPU, and sequencing of the excised bands showed high sequence homology to the Sphingomonas group. However, while F35 was not closely related to either DGGE band, one of the DGGE bands showed 100% partial 16S rRNA sequence homology to an IPU-degrading Sphingomonas sp. (strain SRS2) isolated from Deep Slade field in an earlier study. Experiments with strains SRS2 and F35 in soil and liquid culture showed that the isolates had a narrow pH optimum (7 to 7.5) for metabolism of IPU. The pH requirements of IPU-degrading strains of Sphingomonas spp. could largely account for the spatial variation of IPU degradation rates across the field. PMID:12571001

  16. Interactions of tillage and cover crop on water, sediment, and pre-emergence herbicide loss in glyphosate-resistant cotton: implications for the control of glyphosate-resistant weed biotypes.

    PubMed

    Krutz, L Jason; Locke, Martin A; Steinriede, R Wade

    2009-01-01

    The need to control glyphosate [N-(phosphonomethyl)glycine]-resistant weed biotypes with tillage and preemergence herbicides in glyphosate-resistant crops (GRCs) is causing a reduction in no-tillage hectarage thereby threatening the advances made in water quality over the past decade. Consequently, if environmental gains afforded by GRCs are to be maintained, then an in-field best management practice (BMP) compatible with tillage is required for hectarage infested with glyphosate-resistant weed biotypes. Thus, 1 d after a preemergent application of fluometuron [N,N-dimethyl-N'-(3-(trifluoromethyl)phenyl)urea] (1.02 kg ha(-1)) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] (1.18 kg ha(-1)) to a Dundee silt loam (fine-silty, mixed, active, thermic Typic Endoaqualf), simulated rainfall (60 mm h(-1)) was applied to 0.0002-ha microplots for approximately 1.25 h to elucidate tillage (no tillage [NT] and reduced tillage [RT])and cover crop (no cover [NC] and rye cover [RC]) effects on water, sediment, and herbicide loss in surface runoff. Regardless of tillage, RC delayed time-to-runoff 1.3-fold, reduced cumulative runoff volume 1.4-fold, and decreased cumulative sediment loss 4.7-fold. Cumulative fluometuron loss was not affected by tillage or cover crop. Conversely, total metolachlor loss was 1.3-fold lower in NT than RT and 1.4-fold lower in RC than NC. These data indicate that RC can be established in hectarage requiring tillage and potentially curtail water, sediment, and preemergence herbicide losses in the spring to levels equivalent to or better than that of NT, thereby protecting environmental gains provided by GRCs.

  17. Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer: Agronomic performance, odours, and ammonia emission impacts.

    PubMed

    Riva, C; Orzi, V; Carozzi, M; Acutis, M; Boccasile, G; Lonati, S; Tambone, F; D'Imporzano, G; Adani, F

    2016-03-15

    Anaerobic digestion produces a biologically stable and high-value fertilizer product, the digestate, which can be used as an alternative to mineral fertilizers on crops. However, misuse of digestate can lead to annoyance for the public (odours) and to environmental problems such as nitrate leaching and ammonia emissions into the air. Full field experimental data are needed to support the use of digestate in agriculture, promoting its correct management. In this work, short-term experiments were performed to substitute mineral N fertilizers (urea) with digestate and products derived from it to the crop silage maize. Digestate and the liquid fraction of digestate were applied to soil at pre-sowing and as topdressing fertilizers in comparison with urea, both by surface application and subsurface injection during the cropping seasons 2012 and 2013. After each fertilizer application, both odours and ammonia emissions were measured, giving data about digestate and derived products' impacts. The AD products could substitute for urea without reducing crop yields, apart from the surface application of AD-derived fertilizers. Digestate and derived products, because of high biological stability acquired during the AD, had greatly reduced olfactometry impact, above all when they were injected into soils (82-88% less odours than the untreated biomass, i.e. cattle slurry). Ammonia emission data indicated, as expected, that the correct use of digestate and derived products required their injection into the soil avoiding, ammonia volatilization into the air and preserving fertilizer value. Sub-surface injection allowed ammonia emissions to be reduced by 69% and 77% compared with surface application during the 2012 and 2013 campaigns. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Band-gap modulation via gallium substitution in cerium doped gadolinium aluminum garnet using a mixed fuel combustion approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan

    2014-04-24

    Cerium doped Gadolinium garnets (Gd{sub 3}Al{sub x}Ga{sub 5−x}O{sub 12} where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.

  19. Microwave-assisted synthesis of N-pyrazole ureas and the p38alpha inhibitor BIRB 796 for study into accelerated cell ageing.

    PubMed

    Bagley, Mark C; Davis, Terence; Dix, Matthew C; Widdowson, Caroline S; Kipling, David

    2006-11-21

    Microwave irradiation of substituted hydrazines and beta-ketoesters gives 5-aminopyrazoles in excellent yield, which can be transformed to the corresponding N-carbonyl derivatives by treatment with an isocyanate or chloroformate. Derivatization of 4-nitronaphth-1-ol using predominantly microwave heating methods and reaction with an N-pyrazole carbamate provides a rapid route to the N-pyrazole urea BIRB 796 in high purity, as a potent and selective inhibitor of p38alpha mitogen-activated protein kinase for the study of accelerated ageing in Werner syndrome cells.

  20. Synthesis and characterization of chitosan alkyl urea.

    PubMed

    Wang, Jing; Jiang, Ji-Zhou; Chen, Wei; Bai, Zheng-Wu

    2016-07-10

    Chitosan is a versatile material employed for various purposes in many fields including the development of chiral stationary phases for enantioseparation. Chitosan alkyl urea is a kind of intermediate used to prepare enantioseparation materials. In order to synthesize the intermediates, in the present work, a new way to prepare chitosan alkyl urea has been established: chitosan was first reacted with methyl chloroformate yielding N-methoxyformylated chitosan, which was then converted to chitosan alkyl urea through amine-ester exchange reaction. With a large excess of methyl chloroformate and primary amine of low stereohindrance, the amino group in chitosan could be almost completely converted to ureido group. The as-prepared chitosan alkyl urea derivatives were characterized by IR, (1)H NMR, (13)C NMR,(1)H-(1)H COSY and (1)H-(13)C HSQC NMR spectra. The chemical shifts of hydrogen and carbon atoms of glucose unit were assigned. It was found that the degree of substitution was obviously lower if cyclopropyl amine, aniline, tert-butyl amine and diethyl amine were used as reactants for the amine-ester exchange reaction. The reason was explained with the aid of theoretical calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Degradation of Substituted Phenylurea Herbicides by Arthrobacter globiformis Strain D47 and Characterization of a Plasmid-Associated Hydrolase Gene, puhA

    PubMed Central

    Turnbull, Gillian A.; Ousley, Margaret; Walker, Allan; Shaw, Eve; Morgan, J. Alun W.

    2001-01-01

    Arthrobacter globiformis D47 was shown to degrade a range of substituted phenylurea herbicides in soil. This strain contained two plasmids of approximately 47 kb (pHRIM620) and 34 kb (pHRIM621). Plasmid-curing experiments produced plasmid-free strains as well as strains containing either the 47- or the 34-kb plasmid. The strains were tested for their ability to degrade diuron, which demonstrated that the degradative genes were located on the 47-kb plasmid. Studies on the growth of these strains indicated that the ability to degrade diuron did not offer a selective advantage to A. globiformis D47 on minimal medium designed to contain the herbicide as a sole carbon source. The location of the genes on a plasmid and a lack of selection would explain why the degradative phenotype, as with many other pesticide-degrading bacteria, can be lost on subculture. A 22-kb EcoRI fragment of plasmid pHRIM620 was expressed in Escherichia coli and enabled cells to degrade diuron. Transposon mutagenesis of this fragment identified one open reading frame that was essential for enzyme activity. A smaller subclone of this gene (2.5 kb) expressed in E. coli coded for the protein that degraded diuron. This gene and its predicted protein sequence showed only a low level of protein identity (25% over ca. 440 amino acids) to other database sequences and was named after the enzyme it encoded, phenylurea hydrolase (puhA gene). PMID:11319111

  2. N-Alkyl Urea Hydroxamic Acids as a New Class of Peptide Deformylase Inhibitors with Antibacterial Activity

    PubMed Central

    Hackbarth, Corinne J.; Chen, Dawn Z.; Lewis, Jason G.; Clark, Kirk; Mangold, James B.; Cramer, Jeffrey A.; Margolis, Peter S.; Wang, Wen; Koehn, Jim; Wu, Charlotte; Lopez, S.; Withers III, George; Gu, Helen; Dunn, Elina; Kulathila, R.; Pan, Shi-Hao; Porter, Wilma L.; Jacobs, Jeff; Trias, Joaquim; Patel, Dinesh V.; Weidmann, Beat; White, Richard J.; Yuan, Zhengyu

    2002-01-01

    Peptide deformylase (PDF) is a prokaryotic metalloenzyme that is essential for bacterial growth and is a new target for the development of antibacterial agents. All previously reported PDF inhibitors with sufficient antibacterial activity share the structural feature of a 2-substituted alkanoyl at the P1′ site. Using a combination of iterative parallel synthesis and traditional medicinal chemistry, we have identified a new class of PDF inhibitors with N-alkyl urea at the P1′ site. Compounds with MICs of ≤4 μg/ml against gram-positive and gram-negative pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae, have been identified. The concentrations needed to inhibit 50% of enzyme activity (IC50s) for Escherichia coli Ni-PDF were ≤0.1 μM, demonstrating the specificity of the inhibitors. In addition, these compounds were very selective for PDF, with IC50s of consistently >200 μM for matrilysin and other mammalian metalloproteases. Structure-activity relationship analysis identified preferred substitutions resulting in improved potency and decreased cytotoxity. One of the compounds (VRC4307) was cocrystallized with PDF, and the enzyme-inhibitor structure was determined at a resolution of 1.7 Å. This structural information indicated that the urea compounds adopt a binding position similar to that previously determined for succinate hydroxamates. Two compounds, VRC4232 and VRC4307, displayed in vivo efficacy in a mouse protection assay, with 50% protective doses of 30.8 and 17.9 mg/kg of body weight, respectively. These N-alkyl urea hydroxamic acids provide a starting point for identifying new PDF inhibitors that can serve as antimicrobial agents. PMID:12183225

  3. Discovery of novel alkylated (bis)urea and (bis)thiourea polyamine analogues with potent antimalarial activities.

    PubMed

    Verlinden, Bianca K; Niemand, Jandeli; Snyman, Janette; Sharma, Shiv K; Beattie, Ross J; Woster, Patrick M; Birkholtz, Lyn-Marie

    2011-10-13

    A series of alkylated (bis)urea and (bis)thiourea polyamine analogues were synthesized and screened for antimalarial activity against chloroquine-sensitive and -resistant strains of Plasmodium falciparum in vitro. All analogues showed growth inhibitory activity against P. falciparum at less than 3 μM, with the majority having effective IC(50) values in the 100-650 nM range. Analogues arrested parasitic growth within 24 h of exposure due to a block in nuclear division and therefore asexual development. Moreover, this effect appears to be cytotoxic and highly selective to malaria parasites (>7000-fold lower IC(50) against P. falciparum) and is not reversible by the exogenous addition of polyamines. With this first report of potent antimalarial activity of polyamine analogues containing 3-7-3 or 3-6-3 carbon backbones and substituted terminal urea- or thiourea moieties, we propose that these compounds represent a structurally novel class of antimalarial agents.

  4. N-Guanidino Derivatives of 1,5-Dideoxy-1,5-imino-d-xylitol are Potent, Selective, and Stable Inhibitors of β-Glucocerebrosidase.

    PubMed

    Sevšek, Alen; Šrot, Luka; Rihter, Jakob; Čelan, Maša; van Ufford, Linda Quarles; Moret, Ed E; Martin, Nathaniel I; Pieters, Roland J

    2017-04-06

    A series of lipidated guanidino and urea derivatives of 1,5-dideoxy-1,5-imino-d-xylitol were prepared from d-xylose using a concise synthetic protocol. Inhibition assays with a panel of glycosidases revealed that the guanidino analogues display potent inhibition against human recombinant β-glucocerebrosidase with IC 50 values in the low nanomolar range. Related urea analogues of 1,5-dideoxy-1,5-imino-d-xylitol were also synthesized and evaluated in the same fashion and found to be selective for β-galactosidase from bovine liver. No inhibition of human recombinant β-glucocerebrosidase was observed for the urea analogues. Computational studies provided insight into the potent activity of analogues bearing the substituted guanidine moiety in the inhibition of lysosomal glucocerebrosidase (GBA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Pyridylthiazole-based ureas as inhibitors of Rho associated protein kinases (ROCK1 and 2)†

    PubMed Central

    Pireddu, Roberta; Forinash, Kara D.; Sun, Nan N.; Martin, Mathew P.; Sung, Shen-Shu; Alexander, Brian; Zhu, Jin-Yi; Guida, Wayne C.; Schönbrunn, Ernst; Sebti, Saïd M.; Lawrence, Nicholas J.

    2012-01-01

    Potent ROCK inhibitors of a new class of 1-benzyl-3-(4-pyridylthiazol-2-yl)ureas have been identified. Remarkable differences in activity were observed for ureas bearing a benzylic stereogenic center. Derivatives with hydroxy, methoxy and amino groups at the meta position of the phenyl ring give rise to the most potent inhibitors (low nM). Substitutions at the para position result in substantial loss of potency. Changes at the benzylic position are tolerated resulting in significant potency in the case of methyl and methylenehydroxy groups. X-Ray crystallography was used to establish the binding mode of this class of inhibitors and provides an explanation for the observed differences of the enantiomer series. Potent inhibition of ROCK in human lung cancer cells was shown by suppression of the levels of phosphorylation of the ROCK substrate MYPT-1. PMID:23275831

  6. Synthesis of some N-substituted indole derivatives and their biological activities.

    PubMed

    el-Diwani, H; Nakkady, S S; Hishmat, O H; el-Shabrawy, O A; Mahmoud, S S

    1992-03-01

    Acylation of 2,3-diphenyl-5-methoxy-indole using ethyl chloroformate or chloroacetyl chloride in dimethylformamide and sodium hydride yielded the N-substituted derivatives 1 and 2, respectively. While Friedel-Crafts acylation using chloroacetyl chloride afforded di-4,6-chloroacetyl derivative 3, the reaction of the N-chloroacetyl derivative 2 with amines, hydrazines, urea, semicarbazide hydrochloride, thiophenol, benzimidazole-2-thiol, thiosemicarbazide, 2-mercaptoethanol and thioglycolic acid was studied. Several of the compounds were tested for their effect on arterial blood pressure, antiinflammatory and ulcerogenic activities.

  7. Hydroxyl radical induced transformation of phenylurea herbicides: A theoretical study

    NASA Astrophysics Data System (ADS)

    Mile, Viktória; Harsányi, Ildikó; Kovács, Krisztina; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László

    2017-03-01

    Aromatic ring hydroxylation reactions occurring during radiolysis of aqueous solutions are studied on the example of phenylurea herbicides by Density Functional Theory calculations. The effect of the aqueous media is taken into account by using the Solvation Model Based on Density model. Hydroxyl radical adds to the ring because the activation free energies (0.4-47.2 kJ mol-1) are low and also the Gibbs free energies have high negative values ((-27.4) to (-5.9) kJ mol-1). According to the calculations in most of cases the ortho- and para-addition is preferred in agreement with the experimental results. In these reactions hydroxycyclohexadienyl type radicals form. In a second type reaction, when loss of chlorine atom takes place, OH/Cl substitution occurs without cyclohexadienyl type intermediate.

  8. Novel urea and bis-urea primaquine derivatives with hydroxyphenyl or halogenphenyl substituents: Synthesis and biological evaluation.

    PubMed

    Perković, I; Antunović, M; Marijanović, I; Pavić, K; Ester, K; Kralj, M; Vlainić, J; Kosalec, I; Schols, D; Hadjipavlou-Litina, D; Pontiki, E; Zorc, B

    2016-11-29

    A series of novel compounds 3a-j and 6a-j with primaquine and hydroxyl or halogen substituted benzene moieties bridged by urea or bis-urea functionalities were designed, synthesized and evaluated for biological activity. The title compounds were prepared using benzotriazole as the synthon, through several synthetic steps. 3-[3,5-Bis(trifluoromethyl)phenyl]-1-{4-[(6-methoxyquinolin-8-yl)amino]pentyl}urea (3j) was the most active urea and 1-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]-3-[3-(trifluoromethyl)phenyl]urea (6h) the most active bis-urea derivative in antiproliferative screening in vitro against eight tested cancer cell lines. Urea derivatives 3a-g with hydroxy group or one halogen atom showed moderate antiproliferative effects against all the tested cell lines, but stronger activity against breast carcinoma MCF-7 cell line, while trifluoromethyl derivatives 3h-j showed antiproliferative effects against all the tested cell lines in low micromolar range. Finally, bis-ureas with hydroxy and fluoro substituents 6a-d showed extreme selectivity and chloro or bromo derivatives 6e-g high selectivity against MCF-7 cells (IC 50 0.1-2.6 μM). p-Fluoro derivative 6d, namely 3-(4-fluorophenyl)-1-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]urea, is the most promising compound. Further biological experiments showed that 6d affected cell cycle and induced cell death of MCF-7 cell line. Due to its high activity against MCF-7 cell line (IC 50 0.31 μM), extreme selectivity and full agreement with the Lipinski's and Gelovani's rules for prospective small molecular drugs, 6d may be considered as a lead compound in development of breast carcinoma drugs. Urea 3b and almost all bis-ureas showed high antioxidant activity in DPPH assay, but urea derivatives were more active in lipid peroxidation test. Only few compounds exhibited weak inhibition of soybean lipoxygenase. Compound 3j exhibited the strongest antimicrobial activity in susceptibility assay in vitro (MIC = 1.6-12.5 μg ml -1 ). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Occupational exposure to pesticides and lymphoid neoplasms among men: results of a French case-control study

    PubMed Central

    Orsi, Laurent; Delabre, Laurene; Monnereau, Alain; Delval, Philippe; Berthou, Christian; Fenaux, Pierre; Marit, Gerald; Soubeyran, Pierre; Huguet, Francoise; Milpied, Noel; Leporrier, Michel; Hemon, Denis; Troussard, Xavier; Clavel, Jacqueline

    2009-01-01

    Objectives Investigating the relationship between occupational exposure to pesticides and the risk of lymphoid neoplasms (LN) in men. Methods A hospital-based case-control study was conducted in six centres in France between 2000 and 2004. The cases were incident cases with a diagnosis of lymphoid neoplasm aged 18 to 75 years. During the same period, controls of the same age and gender as the cases were recruited in the same hospital, mainly in the orthopaedic and rheumatological departments. Exposures to pesticides were evaluated through specific interviews and case-by-case expert reviews. Four hundred and ninety-one cases (244 cases of non-Hodgkin’s lymphoma (NHL), 87 of Hodgkin’s lymphoma (HL), 104 of lymphoproliferative syndromes (LPS) and 56 of multiple myeloma (MM) cases) and 456 controls were included in the analyses. The odds ratios (OR) and 95% confidence intervals (95% CI) were estimated using unconditional logistic regressions. Results Positive associations between HL and occupational exposure to triazole fungicides and urea herbicides were observed (OR=8.4 [2.2–32.4], 10.8 [2.4–48.1] respectively). Exposure to insecticides, fungicides and herbicides were linked to a three-fold increases in MM risk (OR=2.8 [1.2–6.5], 3.2 [1.4–7.2], 2.9 [1.3–6.5]). For LPS subtypes, associations restricted to hairy-cell leukaemia (HCL) were evidenced for exposure to organochlorine insecticides, phenoxy herbicides and triazine herbicides (OR=4.9 [1.1–21.2], 4.1 [1.1–15.5], 5.1 [1.4–19.3]), although based on small numbers. Lastly, despite the increased odds ratios for organochlorine and organophosphate insecticides, carbamate fungicides and triazine herbicides, no significant associations were evidenced for NHL. Conclusions The results, based on case-by-case expert review of occupation-specific questionnaires, support the hypothesis that occupational pesticide exposures may be involved in HL, MM and HCL and do not rule out a role in NHL. The analyses identified specific pesticides that deserve further investigation and the findings were consistent with those of previous studies. PMID:19017688

  10. A Structure-Activity Study with Aryl Acylamidases

    PubMed Central

    Villarreal, David T.; Turco, Ronald F.; Konopka, Allan

    1994-01-01

    We examined the relationship between chemical structure and biodegradability of acylanilide herbicides by using a set of model compounds. Four bacterial isolates (one gram-negative and three gram-positive) that grew on acetanilide were used. These soil isolates cleaved the amide bond of acetanilide via an aryl acylamidase reaction, producing aniline and the organic acid acetate. A series of acetanilide analogs with alkyl substitutions on the nitrogen atom or the aromatic ring were tested for their ability to induce aryl acylamidase activity and act as substrates for the enzyme. The substrate range, in general, was limited to those analogs not disubstituted in the ortho position of the benzene ring or which did not contain an alkyl group on the nitrogen atom. These same N-substituted compounds did not induce enzyme activity either, whereas the ortho-substituted compounds could in some cases. PMID:16349428

  11. Combating Terrorism: State Should Enhance Its Performance Measures for Assessing Efforts in Pakistan to Counter Improvised Explosive Devices

    DTIC Science & Technology

    2012-05-01

    readily switch to another precursor chemical to make IEDs. According to DOD, other products available in Pakistan such as potassium chlorate , used in...chemicals. According to State officials, other substitutes for CAN, including urea and potassium chlorate , are exported by countries other than Pakistan

  12. Explorations of Substituted Urea Functionality for Discovery of New Activators of the Heme Regulated Inhibitor Kinase

    PubMed Central

    Chen, Ting; Takrouri, Khuloud; Hee-Hwang, Sung; Rana, Sandeep; Yefidoff-Freedman, Revital; Halperin, Jose; Natarajan, Amarnath; Morisseau, Christophe; Hammock, Bruce; Chorev, Michael; Aktas, Bertal H.

    2014-01-01

    Heme-regulated inhibitor kinase (HRI), an eukaryotic translation initiation factor 2 alpha (eIF2α) kinase, plays critical roles in cell proliferation, differentiation, and adaptation to cytoplasmic stress. HRI is also a critical modifier of hemoglobin disorders such as β-thalassemia. We previously identified N,N′-diarylureas as potent activators of HRI suitable for studying biology of this important kinase. To expand the repertoire of chemotypes that activate HRI we screened a ~1,900 member N,N′-disubstituted urea library in the surrogate eIF2α phosphorylation assay identifying N-aryl,N′-cyclohexylphenoxyurea as a promising scaffold. We validated hit compounds as a bona-fide HRI activators in secondary assays and explored contributions of substitutions on the N-aryl and N′-cyclohexylphenoxy groups to their activity by studying focused libraries of complementing analogs. We tested these N-aryl,N′-cyclohexylphenoxyureas in the surrogate eIF2α phosphorylation and cell proliferation assays, demonstrating significantly improved bioactivities and specificities. We consider these compounds to represent lead candidates for the development of potent and specific HRI activators. PMID:24261904

  13. Degradation of Diuron by Phanerochaete chrysosporium: Role of Ligninolytic Enzymes and Cytochrome P450

    PubMed Central

    Coelho-Moreira, Jaqueline da Silva; de Souza, Aline Cristine da Silva; Oliveira, Roselene Ferreira; de Sá-Nakanishi, Anacharis Babeto; de Souza, Cristina Giatti Marques; Peralta, Rosane Marina

    2013-01-01

    The white-rot fungus Phanerochaete chrysosporium was investigated for its capacity to degrade the herbicide diuron in liquid stationary cultures. The presence of diuron increased the production of lignin peroxidase in relation to control cultures but only barely affected the production of manganese peroxidase. The herbicide at the concentration of 7 μg/mL did not cause any reduction in the biomass production and it was almost completely removed after 10 days. Concomitantly with the removal of diuron, two metabolites, DCPMU [1-(3,4-dichlorophenyl)-3-methylurea] and DCPU [(3,4-dichlorophenyl)urea], were detected in the culture medium at the concentrations of 0.74 μg/mL and 0.06 μg/mL, respectively. Crude extracellular ligninolytic enzymes were not efficient in the in vitro degradation of diuron. In addition, 1-aminobenzotriazole (ABT), a cytochrome P450 inhibitor, significantly inhibited both diuron degradation and metabolites production. Significant reduction in the toxicity evaluated by the Lactuca sativa L. bioassay was observed in the cultures after 10 days of cultivation. In conclusion, P. chrysosporium can efficiently metabolize diuron without the accumulation of toxic products. PMID:24490150

  14. Synthesis, structural elucidation and pharmacological properties of some 5-acetyl-3,4-dihydro-6-methyl-4-(substituted phenyl)-2(1H) -pyrimidinones.

    PubMed

    Yarim, M; Sarac, S; Ertan, M; Batu, O S; Erol, K

    1999-06-30

    In this study, the synthesis of some new 5-acetyl-3,4-dihydro-6-methyl-4-(substituted phenyl)-2(1H)-pyrimidinones has been reported. The compounds were prepared by the Biginelli reaction of acetylacetone with aromatic aldehydes and urea. The structures of the compounds were characterized by UV, IR, 1H NMR, 13C NRM, mass spectra and elementary analysis. The calcium antagonistic activity of these compounds was tested in vitro on rat ileum precontracted with 4 x 10(-3) M barium chloride.

  15. Herbicide Transformation

    PubMed Central

    Lanzilotta, R. P.; Pramer, David

    1970-01-01

    Replacement cultures liberated 3,4-dichloroaniline (DCA) from 3,4-dichloropropionanilide (propanil). The kinetics of the conversion suggest a requirement for de novo enzyme synthesis, but the system was not influenced by chloramphenicol or puromycin. Enzyme activity was detected when acetanilide (Km = 0.195 mm) was used to replace propanil as substrate. Fungal acylamidase (E.C. 3.5.1., an aryl acylamine amidohydrolase) was concentrated by salt precipitation and characterized. The Fusarium solani acylamidase exhibited an optimum at pH 7.5 to 9.0 and was inactivated in 10 min at 50 C. The enzyme was not sensitive to methyl-carbamate or organophosphate insecticides, but the herbicide, Ramrod (N-isopropyl-2-chloroacetanilide), acted as a competitive inhibitor of acetanilide hydrolysis (Ki = 0.167 mm). Hydrolysis rates were decreased by various para substitutions of acetanilide. Chloro substitution in the acyl moiety of acetanilide also reduced the rate of hydrolysis. 3,4-Dichloroacetanilide was less susceptible to enzyme action than acetanilide, but 3,4-dichloropropionanilide was hydrolyzed much more rapidly than propionanilide. The fungal acylamidase was highly specific for N-acetylarylamines. It did not catalyze hydrolysis of formanilide, butyranilide, dicryl, Karsil, fenuron, monuron, or isopropyl-N-phenylcarbamate. It appears to differ from acylamidases that have been isolated from rice, rat liver, chick kidney, and Neurospora. PMID:5437306

  16. Apoprotein isolation and activation, and vibrational structure of the Helicobacter mustelae iron urease

    PubMed Central

    Carter, Eric L.; Proshlyakov, Denis A.; Hausinger, Robert P.

    2011-01-01

    The micro-aerophilic pathogen Helicobacter mustelae synthesizes an oxygen-labile, iron-containing urease (UreA2B2) in addition to its standard nickel-containing enzyme (UreAB). An apoprotein form of the iron urease was prepared from ureA2B2-expressing recombinant Escherichia coli cells that were grown in minimal medium. Temperature-dependent circular dichroism measurements of holoprotein and apoprotein demonstrate an enhancement of thermal stability associated with the UreA2B2 metallocenter. In parallel to the situation reported for nickel activation of the standard urease apoprotein, incubation of UreA2B2 apoprotein with ferrous ions and bicarbonate generated urease activity in a portion of the nascent active sites. In addition, ferrous ions were shown to be capable of reductively activating the oxidized metallocenter. Resonance Raman spectra of the inactive, aerobically-purified UreA2B2 holoprotein exhibit vibrations at 495 cm−1 and 784 cm−1, consistent with νs and νas modes of an Fe(III)-O-Fe(III) center; these modes undergo downshifts upon binding of urea and were unaffected by changes in pH. The low-frequency mode also exhibits an isotopic shift from 497 to 476 cm−1 upon 16O/18O bulk water isotope substitution. Expression of subunits of the conventional nickel-containing Klebsiella aerogenes urease in cells grown in rich medium without nickel resulted in iron incorporation into a portion of the protein. The inactive iron-loaded species exhibited a UV-visible spectrum similar to oxidized UreA2B2 and was capable of being reductively activated under anoxic conditions. Results from these studies more clearly define the formation and unique properties of the iron urease metallocenter. PMID:22196017

  17. Decadal-scale changes of pesticides in ground water of the United States, 1993-2003.

    PubMed

    Bexfield, Laura M

    2008-01-01

    Pesticide data for ground water sampled across the United States between 1993-1995 and 2001-2003 by the U.S. Geological Survey National Water-Quality Assessment Program were evaluated for trends in detection frequency and concentration. The data analysis evaluated samples collected from a total of 362 wells located in 12 local well networks characterizing shallow ground water in agricultural areas and six local well networks characterizing the drinking water resource in areas of variable land use. Each well network was sampled once during 1993-1995 and once during 2001-2003. The networks provide an overview of conditions across a wide range of hydrogeologic settings and in major agricultural areas that vary in dominant crop type and pesticide use. Of about 80 pesticide compounds analyzed, only six compounds were detected in ground water from at least 10 wells during both sampling events. These compounds were the triazine herbicides atrazine, simazine, and prometon; the acetanilide herbicide metolachlor; the urea herbicide tebuthiuron; and an atrazine degradate, deethylatrazine (DEA). Observed concentrations of these compounds generally were < 0.12 microg L(-1). At individual wells, changes in concentrations typically were < 0.02 microg L(-1). Data analysis incorporated adjustments for changes in laboratory recovery as assessed through laboratory spikes. In wells yielding detectable concentrations of atrazine, DEA, and prometon, concentrations were significantly lower (alpha = 0.1) in 2001-2003 than in 1993-1995, whereas detection frequency of these compounds did not change significantly. Trends in atrazine concentrations at shallow wells in agricultural areas were found to be consistent overall with recent atrazine use data.

  18. Growth in coculture stimulates metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2.

    PubMed

    Sørensen, Sebastian R; Ronen, Zeev; Aamand, Jens

    2002-07-01

    Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the beta-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of (14)C-labeled isoproturon to (14)CO(2) and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent.

  19. Growth in Coculture Stimulates Metabolism of the Phenylurea Herbicide Isoproturon by Sphingomonas sp. Strain SRS2

    PubMed Central

    Sørensen, Sebastian R.; Ronen, Zeev; Aamand, Jens

    2002-01-01

    Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the β-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of 14C-labeled isoproturon to 14CO2 and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent. PMID:12089031

  20. Synthesis and Biological Activity of Substituted Urea and Thiourea Derivatives Containing 1,2,4-Triazole Moieties

    DTIC Science & Technology

    2013-03-19

    vine grape production in the United States of America and Europe, while P. obscurans causes Phomopsis leaf blight and fruit rot of strawberry ... strawberry fruit rot diseases in Louisiana and Mississippi. Crop Protect. 2007, 26, 1449–1458. 25. Denny, W.A.; Cain, B.F.; Atwell, G.J.; Hansch, C

  1. Limited seed and seed yield response of calendula to applied nitrogen does not justify risk of environmental damage from high urea application rates

    USDA-ARS?s Scientific Manuscript database

    Calendula (Calendula officinalis L.) is a source of industrial oil, which can serve as a domestic substitute for petroleum or imported specialty crop oils. Traditionally, calendula has been grown for medicinal or ornamental properties. However, little is known about nitrogen (N) requirement of growi...

  2. A safer, urea-based in situ hybridization method improves detection of gene expression in diverse animal species.

    PubMed

    Sinigaglia, Chiara; Thiel, Daniel; Hejnol, Andreas; Houliston, Evelyn; Leclère, Lucas

    2018-02-01

    In situ hybridization is a widely employed technique allowing spatial visualization of gene expression in fixed specimens. It has greatly advanced our understanding of biological processes, including developmental regulation. In situ protocols are today routinely followed in numerous laboratories, and although details might change, they all include a hybridization step, where specific antisense RNA or DNA probes anneal to the target nucleic acid sequence. This step is generally carried out at high temperatures and in a denaturing solution, called hybridization buffer, commonly containing 50% (v/v) formamide - a hazardous chemical. When applied to the soft-bodied hydrozoan medusa Clytia hemisphaerica, we found that this traditional hybridization approach was not fully satisfactory, causing extensive deterioration of morphology and tissue texture which compromised our observation and interpretation of results. We thus tested alternative solutions for in situ detection of gene expression and, inspired by optimized protocols for Northern and Southern blot analysis, we substituted the 50% formamide with an equal volume of 8M urea solution in the hybridization buffer. Our new protocol not only yielded better morphologies and tissue consistency, but also notably improved the resolution of the signal, allowing more precise localization of gene expression and reducing aspecific staining associated with problematic areas. Given the improved results and reduced manipulation risks, we tested the urea protocol on other metazoans, two brachiopod species (Novocrania anomala and Terebratalia transversa) and the priapulid worm Priapulus caudatus, obtaining a similar reduction of aspecific probe binding. Overall, substitution of formamide by urea during in situ hybridization offers a safer alternative, potentially of widespread use in research, medical and teaching contexts. We encourage other workers to test this approach on their study organisms, and hope that they will also obtain better sample preservation, more precise expression patterns and fewer problems due to aspecific staining, as we report here for Clytia medusae and Novocrania and Terebratalia developing larvae. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Synthesis of 4-substituted pyrido[2,3-d]pyrimidin-4(1H)-one as analgesic and anti-inflammatory agents.

    PubMed

    El-Gazzar, Abdel-Rahman B A; Hafez, Hend N

    2009-07-01

    4-Substituted-pyrido[2,3-d]pyrimidin-4(1H)-ones 4a-c were synthesized by oxidation of 4-substituted-dihydropyrido[2,3-d]pyrimidin-4(1H)-ones 3a-c which were in turn prepared from arylidenemalononitriles 1a-c and 6-aminothiouracil 2. The reactivity of compounds 4a-c towards some reagents such as formamide, carbon disulfide, urea, thiourea, formic and acetic acids were studied. All the synthesized compounds were characterized by spectroscopic means and elemental analysis. Compound 4c exhibited 64% and 72% analgesic activity. Also, compound 4b showed 50% and 65% anti-inflammatory activity. Interestingly these compounds showed one-third of ulcer index of the reference aspirin and diclofenac.

  4. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains

    NASA Astrophysics Data System (ADS)

    Bhatia, A.; Pathak, H.; Jain, N.; Singh, P. K.; Singh, A. K.

    Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice-wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH 4 emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH 4 emissions. The carbon equivalent emission from rice-wheat systems varied between 3816 and 4886 kg C equivalent ha -1 depending upon fertilizer and organic amendment. GWP of rice-wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice-wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.

  5. Effect of Selected Pyrazine Derivatives on the Production of Phenolics and Rutin in Urtica dioica and Fagopyrum esculentum.

    PubMed

    Moravcová, Sárka; Fiedlerová, Vendula; Tůma, Jirí; Musil, Karel; Tůmová, Lenka

    2016-04-01

    The effect of four pyrazine derivatives on the content of phenolic compounds in Urtica dioica L. and rutin in Fagopyrum esculentum Moench was studied. Pyrazine derivatives H1 and H2 were used on U. dioica, and derivatives S1 and S2 on F. esculentum, both separately and in combination with urea. The content of phenolic compounds in the stems of U. dioica after treatment with H2 at a concentration of 10(-3) M significantly increased compared with the control and to a lower concentration of the same pyrazine derivative. In the case of S1 and S2 for F. esculentum, rutin content also increased in stems, mainly after treatment together with urea. By contrast, rutin and phenolics contents in the leaves did not change in comparison with controls after application of H1, H2, S I and S2. Treatment with H1 and H2 in two chosen concentrations resulted in a significant increase in the net photosynthetic rate, transpiration rate and stomatal conductance. A slight increase in the rate of photosynthesis was observed also after application of variants of S1 and S1 with urea. Pyrazine derivatives did not show any effect on either the relative content of chlorophyll or chlorophyll fluorescence. A slight weight reduction of above ground biomass was shown only after application of Si and S2. Dark necrosis on the edges and center of the leaves was observed in all treated plants after pyrazine application. The results suggest that all the pyrazine derivatives possess herbicidal effects.

  6. In vitro and in vivo metabolism of N-adamantyl substituted urea-based soluble epoxide hydrolase inhibitors.

    PubMed

    Liu, Jun-Yan; Tsai, Hsing-Ju; Morisseau, Christophe; Lango, Jozsef; Hwang, Sung Hee; Watanabe, Takaho; Kim, In-Hae; Hammock, Bruce D

    2015-12-15

    N,N'-disubstituted urea-based soluble epoxide hydrolase (sEH) inhibitors are promising therapeutics for hypertension, inflammation, and pain in multiple animal models. The drug absorption and pharmacological efficacy of these inhibitors have been reported extensively. However, the drug metabolism of these inhibitors is not well described. Here we reported the metabolic profile and associated biochemical studies of an N-adamantyl urea-based sEH inhibitor 1-adamantan-1-yl-3-(5-(2-(2-ethoxyethoxy)ethoxy)pentyl)urea (AEPU) in vitro and in vivo. The metabolites of AEPU were identified by interpretation of liquid chromatography-mass spectrometry (LC-MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS) and/or NMR. In vitro, AEPU had three major positions for phase I metabolism including oxidations on the adamantyl moiety, urea nitrogen atoms, and cleavage of the polyethylene glycol chain. In a rodent model, the metabolites from the hydroxylation on the adamantyl group and nitrogen atom were existed in blood while the metabolites from cleavage of polyethylene glycol chain were not found in urine. The major metabolite found in rodent urine was 3-(3-adamantyl-ureido)-propanoic acid, a presumably from cleavage and oxidation of the polyethylene glycol moiety. All the metabolites found were active but less potent than AEPU at inhibiting human sEH. Furthermore, cytochrome P450 (CYP) 3A4 was found to be a major enzyme mediating AEPU metabolism. In conclusion, the metabolism of AEPU resulted from oxidation by CYP could be shared with other N-adamantyl-urea-based compounds. These findings suggest possible therapeutic roles for AEPU and new strategies for drug design in this series of possible drugs. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Fluometuron and pendimethalin runoff from strip and conventionally tilled cotton in the southern atlantic coastal plain.

    PubMed

    Potter, Thomas L; Truman, Clint C; Bosch, David D; Bednarz, Craig

    2004-01-01

    In the Atlantic Coastal Plain region of southern Georgia (USA), cotton (Gossypium hirsutum L.) acreage increased threefold in the past decade. To more effectively protect water quality in the region, best management practices are needed that reduce pesticide runoff from fields in cotton production. This study compared runoff of two herbicides, fluometuron [N,N-dimethyl-N'-[3-(trifluoromethyl)-phenyl]-urea] and pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitro-benzenamine], from plots in strip-tillage (ST) and conventional-tillage (CT) management near Tifton, GA. Rainfall simulations were conducted one day after preemergence herbicide applications to 0.0006-ha plots and runoff from 0.15-ha plots due to natural rainfall following preemergence pendimethalin and fluometuron and postemergence fluometuron use was monitored. Pendimethalin runoff was greater under CT than ST due to strong pendimethalin soil sorption and higher erosion and runoff under CT. The highest losses, 1.3% of applied in CT and 0.22% of applied in ST, were observed during rainfall simulations conducted 1 DAT. Fluometuron runoff from natural rainfall was substantially lower from ST than from CT plots but the trend was reversed in rainfall simulations. In all studies, fluometuron runoff was also relatively low (<1% of applied), and on plots under natural rainfall, desmethylfluometuron (DMF) represented about 50% of total fluometuron runoff. Fluometuron's relatively low runoff rate appeared linked to its rapid leaching, and high DMF detection rates in runoff support DMF inclusion in fluometuron risk assessments. Results showed that ST has the potential to reduce runoff of both herbicides, but fluometuron leaching may be a ground water quality concern.

  8. Decadal-scale changes of pesticides in ground water of the United States, 1993-2003

    USGS Publications Warehouse

    Bexfield, L.M.

    2008-01-01

    Pesticide data for ground water sampled across the United States between 1993-1995 and 2001-2003 by the U.S. Geological Survey National Water-Quality Assessment Program were evaluated for trends in detection frequency and concentration. The data analysis evaluated samples collected from a total of 362 wells located in 12 local well networks characterizing shallow ground water in agricultural areas and six local well networks characterizing the drinking water resource in areas of variable land use. Each well network was sampled once during 1993-1995 and once during 2001-2003. The networks provide an overview of conditions across a wide range of hydrogeologic settings and in major agricultural areas that vary in dominant crop type and pesticide use. Of about 80 pesticide compounds analyzed, only six compounds were detected in ground water from at least 10 wells during both sampling events. These compounds were the triazine herbicides atrazine, simazine, and prometon; the acetanilide herbicide metolachlor; the urea herbicide tebuthiuron; and an atrazine degradate, deethylatrazine (DEA). Observed concentrations of these compounds generally were <0.12 ??g L-1. At individual wells, changes in concentrations typically were <0.02 ??g L-1. Data analysis incorporated adjustments for changes in laboratory recovery as assessed through laboratory spikes. In wells yielding detectable concentrations of atrazine, DEA, and prometon, concentrations were significantly lower (?? = 0.1) in 2001-2003 than in 1993-1995, whereas detection frequency of these compounds did not change significantly. Trends in atrazine concentrations at shallow wells in agricultural areas were found to be consistent overall with recent atrazine use data. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  9. Changes to the structure of Sphingomonas spp. communities associated with biodegradation of the herbicide isoproturon in soil.

    PubMed

    Shi, Shengjing; Bending, Gary D

    2007-04-01

    The phenyl-urea herbicide isoproturon is a major contaminant of surface and ground-water in agricultural catchments. Earlier work suggested that within-field spatial variation of isoproturon degradation rate resulted from interactions between catabolizing Sphingomonas spp. and pH. In the current study, changes to the structure of Sphingomonas communities during isoproturon catabolism were investigated using Sphingomonas-specific 16S rRNA gene primers. Growth-linked catabolism at high-pH (>7.5) sites was associated with the appearance of multiple new denaturing gradient gel electrophoresis (DGGE) bands. At low-pH sites, there was no change in DGGE banding at sites in which there was cometabolism, but at sites in which there was growth-linked catabolism, degradation was associated with the appearance of a new band not present at high pH sites. Sequencing of DGGE bands indicated that a strain related to Sphingomonas mali proliferated at low pH sites, while strain Sphingomonas sp. SRS2, a catabolic strain identified in earlier work, together with several further Sphingomonas spp., proliferated at high-pH sites. The data indicate that degradation was associated with complex changes to the structure of Sphingomonas spp. communities, the precise nature of which was spatially variable.

  10. Generation and Characterization of Environmentally Sensitive Variants of the β-Galactosidase from Lactobacillus delbrueckii subsp. bulgaricus

    PubMed Central

    Yoast, Sienna; Adams, Robin M.; Mainzer, Stanley E.; Moon, Keith; Palombella, Anthony L.; Schmidt, Brian F.

    1994-01-01

    A method is described for generating and screening variants of the β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus sensitive to several environmental stresses, with potential application in the food industry. Chemical mutagenesis with hydroxylamine or methoxylamine was performed on the β-galactosidase gene carried on an Escherichia coli expression vector. Mutants sensitive to cold, heat, low pH, low magnesium concentration, and the presence of urea were isolated by screening for reduced color development on β-galactosidase indicator plates. The mutations responsible for three variant β-galactosidases were localized, and the base substitutions were determined by DNA sequencing. The amino acid alterations associated with one low-pH-sensitive (pHs) and two urea-sensitive (Us) variants correspond to P584L (pHs1), G400S/R479Q (Us26), and G167E/E168K/E363K/V492M (Us17), respectively. Mutant pHs1 is also heat, cold, low magnesium, and urea sensitive; Us26 is also cold sensitive; and Us17 is also low-pH sensitive. PMID:16349230

  11. Synthesis and reactions of C-phosphanylated thiazol-2-thiones.

    PubMed

    Begum, I; Schnakenburg, G; Streubel, R

    2016-02-21

    The facile regioselective synthesis of the P(iii) substituted thiazol-2-thione 2 is presented. Reaction of 2 with hydrogenperoxide-urea, elemental sulfur and selenium resulted in P(v) chalcogenide thiazol-2-thiones 3-5. All compounds were characterized using (31)P, (1)H, (13)C NMR, IR and elemental analyses and, additionally, by the single-crystal X-ray diffraction technique. Oxidative desulfurization of the 5-phosphinoylated thiazol-2-thione 3 using hydrogenperoxide led to the first C-phosphanoyl substituted thiazolium salt (6). Deprotonation of 6 and in situ reaction with the cyclooctadiene rhodium(i) chloride dimer yielded thiazol-2-ylidene rhodium(i) complex 7 which was confirmed by NMR spectroscopy and ESI-MS spectrometry.

  12. Interactions of Nitrogen Source and Rate and Weed Removal Timing Relative to Nitrogen Content in Corn and Weeds and Corn Grain Yield.

    PubMed

    Knight, Alexandra M; Everman, Wesley J; Jordan, David L; Heiniger, Ronnie W; Smyth, T Jot

    2017-01-01

    Adequate fertility combined with effective weed management is important in maximizing corn ( Zea mays L.) grain yield. Corn uptake of nitrogen (N) is dependent upon many factors including weed species and density and the rate and formulation of applied N fertilizer. Understanding interactions among corn, applied N, and weeds is important in developing management strategies. Field studies were conducted in North Carolina to compare corn and weed responses to urea ammonium nitrate (UAN), sulfur-coated urea (SCU), and composted poultry litter (CPL) when a mixture of Palmer amaranth ( Amaranthus palmeri S. Wats.) and large crabgrass ( Digitaria sanguinalis L.) was removed with herbicides at heights of 8 or 16 cm. These respective removal timings corresponded with 22 and 28 days after corn planting or V2 and V3 stages of growth, respectively. Differences in N content in above-ground biomass of corn were noted early in the season due to weed interference but did not translate into differences in corn grain yield. Interactions of N source and N rate were noted for corn grain yield but these factors did not interact with timing of weed control. These results underscore that timely implementation of control tactics regardless of N fertility management is important to protect corn grain yield.

  13. Comparative effects of precommercial thinning, urea fertilizer, and red alder in a site II, coast Douglas-fir plantation.

    Treesearch

    Richard E. Miller; Edmund L. Obermeyer; Harry W. Anderson

    1999-01-01

    We varied the number of red alder retained with 300 Douglas-fir per acre on a high-quality site in coastal Oregon. Alder densities of 0, 20, 40, and 80 per acre were tested. Our fifth treatment eliminated nitrogen-fixing alder, but substituted nitrogen fertilizer. Treatment 6 had neither thinning nor alder control. Treatments were randomly assigned within each of three...

  14. The impact of urea-induced unfolding on the redox process of immobilised cytochrome c.

    PubMed

    Monari, Stefano; Millo, Diego; Ranieri, Antonio; Di Rocco, Giulia; van der Zwan, Gert; Gooijer, Cees; Peressini, Silvia; Tavagnacco, Claudio; Hildebrandt, Peter; Borsari, Marco

    2010-11-01

    We have studied the effect of urea-induced unfolding on the electron transfer process of yeast iso-1-cytochrome c and its mutant K72AK73AK79A adsorbed on electrodes coated by mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol self-assembled monolayers. Electrochemical measurements, complemented by surface enhanced resonance Raman studies, indicate two distinct states of the adsorbed proteins that mainly differ with respect to the ligation pattern of the haem. The native state, in which the haem is axially coordinated by Met80 and His18, displays a reduction potential that slightly shifts to negative values with increasing urea concentration. At urea concentrations higher than 6 M, a second state prevails in which the Met80 ligand is replaced by an additional histidine residue. This structural change in the haem pocket is associated with an approximately 0.4 V shift of the reduction potential to negative values. These two states were found for both the wild-type protein and the mutant in which lysine residues 72, 73 and 79 had been substituted by alanines. The analysis of the reduction potentials, the reaction enthalpies and entropies as well as the rate constants indicates that these three lysine residues have an important effect on stabilising the protein structure in the adsorbed state and facilitating the electron transfer dynamics.

  15. Ryecyanatines A and B and ryecarbonitrilines A and B, substituted cyanatophenol, cyanatobenzo[1,3]dioxole, and benzo[1,3]dioxolecarbonitriles from rye (Secale cereale L.) root exudates: Novel metabolites with allelopathic activity on Orobanche seed germination and radicle growth.

    PubMed

    Cimmino, Alessio; Fernández-Aparicio, Mónica; Avolio, Fabiana; Yoneyama, Koichi; Rubiales, Diego; Evidente, Antonio

    2015-01-01

    Orobanche and Phelipanche species (the broomrapes) are root parasitic plants, some of which represent serious weed problems causing heavy yield losses on important crops. Current control relies on the use of certain agronomic practices, resistant crop varieties, and herbicides, albeit success has been marginal. Agronomic practices such as the use of allelopathic species in intercropping or cover crops, or the use of direct seedling over residues of allelopathic species incorporate the principle of allelopathy exerted by molecules exuded from roots or released by crop residues to control broomrapes. In addition, the isolation of natural substances from root exudates of plants with potential to inhibit broomrape development opens the door to the design of new herbicides based on natural and benign sources. Ryecyanatines A and B and ryecarbonitrilines A and B, the first new substituted cyanatophenol, substituted cyanatobenzo[1,3]dioxole, and the latter two new substituted benzo[1,3]dioxolecarbonitriles were isolated from rye (Secale cereale L.) root exudates. They were characterized as 4-cyanato-2-methoxyphenol, 2-cyanato-benzo[1,3]dioxole, 2-methoxybenzo[1,3]dioxole-5-carbonitrile and benzo[1,3]dioxole-2-carbonitrile by spectroscopic (essentially NMR and HRESI MS spectra) methods. These compounds were investigated for allelopathic activity on Orobanche germination and development. Ryecarbonitriline A induced germination of Orobanche cumana seeds, and this germination can be considered as suicidal because O. cumana does not parasite rye roots and cannot survive without host resources beyond germination stage. In addition, ryecyanatine A promotes a rapid cessation of O. cumana, Orobanche crenata and Orobanche minor radicle growth with the promotion of a layer of papillae at the radicle tip in O. cumana and O. crenata hampering the contact of the parasite to the host. Ryecarbonitriline B also displayed the same activity although being less active than ryecyanatine A and mainly restricted to O. cumana. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Effects of Substituted Pyridazinones (San 6706, San 9774, San 9785) on Glycerolipids and Their Associated Fatty Acids in the Leaves of Vicia faba and Hordeum vulgare1

    PubMed Central

    Khan, Mobashsher-Uddin; Lem, Nora W.; Chandorkar, Kashinath R.; Williams, John P.

    1979-01-01

    The fatty acids of the major glycerolipids from the leaves of Vicia faba and Hordeum vulgare plants treated with three different concentrations of pyridazinone derivatives were analyzed. These compounds showed multiple effects on the levels of lipids and pigments. At low concentrations, the primary effect of San 9785 was on the level of linolenic acid (18:3) in the galactolipids of V. faba, whereas the effect of San 6706 was primarily on the trans-Δ3-hexadecenoic acid (16:1) content in phosphatidylglycerol. At higher concentrations, the two compounds reduced the content of both fatty acids in the leaves. The results appear to indicate a differential effect of these herbicides on fatty acid accumulation and a difference in susceptibility of two fatty acids in the species examined. Electron microscopic studies revealed that two herbicides caused different abnormalities in V. faba chloroplast ultrastructure. Images PMID:16660953

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapoport, J.; Abuful, A.; Chaimovitz, C.

    Urea is actively transported inwardly (J{sub i}) across the skin of the green toad Bufo viridis. J{sub i} is markedly enhanced in toads adapted to hypertonic saline. The authors studied urea transport across the skin of Bufo viridis under a variety of experimental conditions, including treatment with amiloride and phloretin, agents that inhibit urea permeability in the bladder of Bufo marinus. Amiloride (10{sup {minus}4} M) significantly inhibited J{sub i} in both adapted and unadapted animals and was unaffected by removal of sodium from the external medium. Phloretin (10{sup {minus}4} M) significantly inhibited J{sub i} in adapted animals by 23-46%; theremore » was also a reduction in J{sub i} in unadapted toads at 10{sup {minus}4} and 5 {times} 10{sup {minus}4} M phloretin. A dose-response study revealed that the concentration of phloretin causing half-maximal inhibition (K{sub {1/2}}) was 5 {times} 10{sup {minus}4} M for adapted animals. J{sub i} was unaffected by the substitution of sucrose for Ringer solution or by ouabain. They conclude (1) the process of adaptation appears to involve an increase in the number of amiloride- and phloretin-inhibitable urea transport sites in the skin, with a possible increase in the affinity of the sites for phloretin; (2) the adapted skin resembles the Bufo marinus urinary bladder with respect to amiloride and phloretin-inhibitable sites; (3) they confirm earlier observations that J{sub i} is independent of sodium transport.« less

  18. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    NASA Astrophysics Data System (ADS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-05-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  19. Interactions of Nitrogen Source and Rate and Weed Removal Timing Relative to Nitrogen Content in Corn and Weeds and Corn Grain Yield

    PubMed Central

    Knight, Alexandra M.; Heiniger, Ronnie W.; Smyth, T. Jot

    2017-01-01

    Adequate fertility combined with effective weed management is important in maximizing corn (Zea mays L.) grain yield. Corn uptake of nitrogen (N) is dependent upon many factors including weed species and density and the rate and formulation of applied N fertilizer. Understanding interactions among corn, applied N, and weeds is important in developing management strategies. Field studies were conducted in North Carolina to compare corn and weed responses to urea ammonium nitrate (UAN), sulfur-coated urea (SCU), and composted poultry litter (CPL) when a mixture of Palmer amaranth (Amaranthus palmeri S. Wats.) and large crabgrass (Digitaria sanguinalis L.) was removed with herbicides at heights of 8 or 16 cm. These respective removal timings corresponded with 22 and 28 days after corn planting or V2 and V3 stages of growth, respectively. Differences in N content in above-ground biomass of corn were noted early in the season due to weed interference but did not translate into differences in corn grain yield. Interactions of N source and N rate were noted for corn grain yield but these factors did not interact with timing of weed control. These results underscore that timely implementation of control tactics regardless of N fertility management is important to protect corn grain yield. PMID:28487878

  20. Synthesis and anti-microbial activity of some 1- substituted amino-4,6-dimethyl-2-oxo-pyridine-3-carbonitrile derivatives.

    PubMed

    Khidre, Rizk E; Abu-Hashem, Ameen A; El-Shazly, Mohamed

    2011-10-01

    A new series of 1- substituted amino-4,6-dimethyl-2-oxo-pyridine-3-carbonitrile such as hydrazide hydrazones 3a-h; ethane-1,2-diaminopyridine 6; phthalimidopyridines 8a,b; hydrazides 10a,b; urea 11a and thiourea 11b were synthesized in a good to excellent yield in step efficient process, using 1-amino-4,6-dimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (1) as a key intermediate. The antibacterial and antifungal activities of the synthesized compounds were evaluated. The obtained data indicated that the majority of the tested compounds exhibited both antibacterial and antifungal activities, particularly compounds 8a and 8b showed a comparable effect to a well known antibacterial and antifungal agents. Published by Elsevier Masson SAS.

  1. Controlled release formulations of Atrazine and Mesotrione: characterization and sorption on soils

    NASA Astrophysics Data System (ADS)

    Pinheiro Dick, D.; Gomes de Ávila, L.; Benvenuti Leite, S.; Raffin Pohlmann, A.

    2009-04-01

    Atrazine is a widely used herbicide on corn and sugar cane plantations, which, along with soybeans, are the most productive crops in Brazil and are responsible for 36.5% of the annual national consumption of herbicides. Mesotrione is a new herbicide registered in the last years used for controlling weeds in corn plantations as a tentative substitution for atrazine. After its application in the field, reactions between the herbicide and chemical groups from the soil matrix surface occur, and this complexed form remains in the soil, representing a potential source for environmental contamination and also affecting its agronomic efficiency. Therefore, the application of herbicides associated to carrier systems may represent an alternative to mitigate the environmental impact caused by their intense usage, considering that the interaction between the soil matrix and the xenobiotic is reduced, and thus, diminishes the recommended dosis and reduces the environmental pollution. The objectives of this study are to evaluate the chemical and morphological characteristics of controlled release formulations of atrazine (ATZ) and of mesotrione (MES) and to investigate their sorptive behavior in three representative Brazilian soils. To assess the feasibility of using these associated systems, four formulations (SGATZ) containing different concentrations of atrazine and four formulations (SGMES) containing different levels of mesotrione (MES) were synthesized by the sol-gel method (SG), using tetraetil-ortho-silicate as precursor and NaF as catalyst. The formulations were characterized by elemental analysis, adsorption and desorption isotherms of nitrogen, thermal analysis (DSC), scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). For comparison, samples of pure xerogel (SG), commercial MES (Callisto-Syngenta), pure ATZ (99% of active principle, Milênia), granulated ATZ (Gesaprim GrDA Syngenta) and dried commercial ATZ (Nortox 500 SC) were analyzed. The herbicides release from the formulations and from the commercial products in CaCl2 0,01 mol.L-1 medium was quantified by UV/vis spectroscopy along 24 hours. Mathematical models were tested in order to establish the release kinetics. Sorption isotherms of the formulations SGATZ150 and of the SGMES150 and of the comercial products were determined in three types of soil. The ATZ yields in the formulations were around 60%, while for MES the values reached 80%. In all formulations, ATZ was physically dispersed on the Si-polymer, and the dispersion grade decreased with increasing amount of added herbicide. The same behaviour was shown by MES. Both dissolution and diffusion processes controlled the release kinetics of ATZ from the formulations, whose data was fitted to the Korsmeyer-Peppas model. With the decrease of ATZ dispersion, the mechanism of dissolution assumes a more important role. In the case of MES, the dissolution to the aqueous media was rapidly achieved and the hebiced was located mostly outside the carrier polymer. Nevertheles, both herbicides in the form of xerogel presented a lower affinity for soil than in the commercial form. However, in soils with high contents of organic matter, the retention of ATZ in high affinity sorptive sites occurs both with the herbicide in molecular form as well as bound to the sol-gel matrix.

  2. Growth of Pure Cultures of Marine Phytoplankton in the Presence of Toxicants

    PubMed Central

    Ukeles, Ravenna

    1962-01-01

    The effects of 17 toxicants on the growth of five species of algae in pure culture were studied. The two species displaying the greatest sensitivity to the action of each of the compounds tested were Monochrysis lutheri and Phaeodactylum tricornutum, and the most resistant species was Protococcus. Of eight different classes of toxicants tested, substituted urea compounds and a mercuric compound were most effective in inhibiting growth of all algal species at the lowest concentrations. PMID:13995259

  3. Aryldiones incorporating a [1,4,5]oxadiazepane ring. Part 2: chemistry and biology of the cereal herbicide pinoxaden.

    PubMed

    Muehlebach, Michel; Cederbaum, Fredrik; Cornes, Derek; Friedmann, Adrian A; Glock, Jutta; Hall, Gavin; Indolese, Adriano F; Kloer, Daniel P; Le Goupil, Gael; Maetzke, Thomas; Meier, Hans; Schneider, Rudolf; Stoller, André; Szczepanski, Henry; Wendeborn, Sebastian; Widmer, Hansjuerg

    2011-12-01

    Pinoxaden is a new cereal herbicide that provides outstanding levels of post-emergence activity against a broad spectrum of grass weed species for worldwide selective use in both wheat and barley. Factors influencing activity and tolerance to pinoxaden were in part linked to distinct structural parts of the active ingredient. Three complementary contributions that decisively impact upon the herbicidal potency against grasses were identified: a preferred 2,6-diethyl-4-methyl aromatic substitution pattern, a dione area suitable for proherbicide formation and beneficial adjuvant effects. The uptake and translocation pattern of pinoxaden when coapplied with its tailored adjuvant were analysed by autoradiography, indicating extensive and rapid penetration, followed by effective distribution throughout the plant. Crop injury reduction on incorporation of the [1,4,5]oxadiazepane ring into the aryldione template was reinforced with safener technology. Comparative studies on the behaviour of pinoxaden applied either alone or in combination with the safener cloquintocet-mexyl demonstrated that addition of the safener resulted in significant enhancement of metabolic degradation in wheat and barley, providing excellent crop tolerance and a substantial selectivity margin without adverse effects on weed control. The biological potential of pinoxaden and its active principle pinoxaden dione in terms of grass weed control and tolerance in cereals was fully exploited by inclusion of the safener cloquintocet-mexyl in the formulation in combination with a specific and tailor-made tank-mix adjuvant based on methylated rape seed oil. Copyright © 2011 Society of Chemical Industry.

  4. Different Mutations Endowing Resistance to Acetyl-CoA Carboxylase Inhibitors Results in Changes in Ecological Fitness of Lolium rigidum Populations

    PubMed Central

    Matzrafi, Maor; Gerson, Ofri; Rubin, Baruch; Peleg, Zvi

    2017-01-01

    Various mutations altering the herbicide target site (TS), can lead to structural modifications that decrease binding efficiency and results in herbicide resistant weed. In most cases, such a mutation will be associated with ecological fitness penalty under herbicide free environmental conditions. Here we describe the effect of various mutations, endowing resistance to acetyl-CoA carboxylase (ACCase) inhibitors, on the ecological fitness penalty of Lolium rigidum populations. The TS resistant populations, MH (substitution of isoleucine 1781 to leucine) and NO (cysteine 2088 to arginine), were examined and compared to a sensitive population (AL). Grain weight (GW) characterization of individual plants from both MH and NO populations, showed that resistant individuals had significantly lower GW compared with sensitive ones. Under high temperatures, both TS resistant populations exhibited lower germination rate as compared with the sensitive (AL) population. Likewise, early vigor of plants from both TS resistant populations was significantly lower than the one measured in plants of the sensitive population. Under crop-weed intra-species competition, we found an opposite trend in the response of plants from different populations. Relatively to inter-population competition conditions, plants of MH population were less affected and presented higher reproduction abilities compared to plants from both AL and NO populations. On the basis of our results, a non-chemical approach can be taken to favor the sensitive individuals, eventually leading to a decline in resistant individuals in the population. PMID:28690621

  5. Discovery of 1-(3-(benzyloxy)pyridin-2-yl)-3-(2-(piperazin-1-yl)ethyl)urea: A new modulator for amyloid beta-induced mitochondrial dysfunction.

    PubMed

    Elkamhawy, Ahmed; Park, Jung-Eun; Hassan, Ahmed H E; Ra, Hyunhwa; Pae, Ae Nim; Lee, Jiyoun; Park, Beoung-Geon; Moon, Bongjin; Park, Hyun-Mee; Roh, Eun Joo

    2017-03-10

    Herein, we report a new series of aliphatic substituted pyridyl-urea small molecules synthesized as potential modulators for amyloid beta (Aβ) induced mitochondrial dysfunction. Their blocking activities against Aβ-induced mitochondrial permeability transition pore (mPTP) opening were evaluated by JC-1 assay which measures the change of mitochondrial membrane potential (ΔΨm). The inhibitory activity of sixteen compounds against Aβ-induced mPTP opening was superior or almost similar to that of the standard Cyclosporin A (CsA). Among them, 1-(3-(benzyloxy)pyridin-2-yl)-3-(2-(piperazin-1-yl)ethyl)urea (5x) effectively maintained mitochondrial function and cell viabilities on ATP assay, MTT assay, and ROS assay. Using CDocker algorithm, a molecular docking model presented a plausible binding mode for 5x with cyclophilin D (CypD) receptor as a major component of mPTP. Moreover, hERG and BBB-PAMPA assays presented safe cardiotoxicity and high CNS bioavailability profiles for 5x. Taken as a whole, this report presents compound 5x as a new nonpeptidyl mPTP blocker may hold a promise for further development of Alzheimer's disease (AD) therapeutics. Copyright © 2016. Published by Elsevier Masson SAS.

  6. Hepatotoxicity, Nephrotoxicity and Oxidative Stress in Rat Testis Following Exposure to Haloxyfop-p-methyl Ester, an Aryloxyphenoxypropionate Herbicide

    PubMed Central

    Olayinka, Ebenezer Tunde; Ore, Ayokanmi

    2015-01-01

    Haloxyfop-p-methyl ester (HPME) ((R)-2-{4-[3-chloro-5-(trifluoromethyl)-2-pyridyloxy]phenoxy}propionic acid), is a selective aryloxyphenoxypropionate (AOPP) herbicide. It exerts phytotoxicity through inhibition of lipid metabolism and induction of oxidative stress in susceptible plants. This study investigated the toxicological potentials of HPME in rats. Twenty-four male Wistar rats (170–210 g) were randomized into four groups (I–IV). Group I (control) received 1 mL of distilled water, while animals in Groups II, III and IV received 6.75, 13.5 and 27 mg/kg body weight HPME, respectively, for 21 days. There was a significant (p < 0.05) increase in renal and hepatic function biomarkers (urea, creatinine, total bilirubin, ALP, ALT, AST) in the plasma of treated animals compared to control. Levels of testicular antioxidants, ascorbic acid and glutathione, and activities of glutathione-S-transferase, superoxide dismutase and catalase were reduced significantly after 21 days of HPME administration in a dose-dependent manner. The testicular malondialdehyde level increased significantly in the HPME-treated rats relative to the control. A significant decrease in testicular lactate dehydrogenase, acid phosphatase and γ-glutamyl transferase was also observed in HPME-treated animals. Testicular histology revealed severe interstitial edema and sections of seminiferous tubules with necrotic and eroded germinal epithelium in the HPME-treated rats. Overall, data from this study suggest that HPME altered hepatic and renal function and induced oxidative stress and morphological changes in the testis of rats. PMID:29051470

  7. Effects of substitution of different levels of steam-flaked corn for finely ground corn on lactation and digestion in early lactation dairy cows.

    PubMed

    Zhong, R Z; Li, J G; Gao, Y X; Tan, Z L; Ren, G P

    2008-10-01

    Eight multiparous Holstein cows, 4 of them fitted with rumen cannulas, were used to test the effects of substitution of steam-flaked corn (SFC) for equal amounts of finely ground corn (FGC) in diets on feed intake and digestion, blood metabolites, and lactation performance in early lactation dairy cows. Cows were fed 4 diets in a replicated 4 x 4 Latin square design. The fistulated cows formed 1 replicate. Each experimental period lasted for 3 wk. The 4 diets contained 0, 10, 20, or 40% SFC and 40, 30, 20, or 0% FGC (dry matter basis), respectively. The milk protein content and yield, milk solid nonfat content and yield, plasma glucose concentration, and dry matter intake increased as the proportion of SFC increased in diets. Apparent total tract digestibilities of dry matter, organic matter, neutral detergent fiber, acid detergent fiber, and average ruminal fluid NH(3)-N concentration decreased with increasing levels of SFC. The ruminal fluid pH was not affected by the substitution of SFC for FGC. The 20% SFC substitution improved digestion of crude protein, yield of fat-corrected milk, milk lactose content, fat, and fat yield. The 40% SFC substitution increased urea concentration in both plasma and milk. It was concluded that 20% of SFC substitution for FGC appeared to be an appropriate level in diet for early lactation dairy cows.

  8. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.

    PubMed

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R Douglas; Powles, Stephen B

    2015-04-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Evolution of a Double Amino Acid Substitution in the 5-Enolpyruvylshikimate-3-Phosphate Synthase in Eleusine indica Conferring High-Level Glyphosate Resistance1

    PubMed Central

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R. Douglas; Powles, Stephen B.

    2015-01-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I + P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. PMID:25717039

  10. Interaction of Diuron and Related Substituted Phenylureas with the Ah Receptor Pathway

    PubMed Central

    Zhao, Bin; Baston, David S.; Hammock, Bruce; Denison, Michael S.

    2011-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates many of the biological and toxicological actions of structurally diverse chemicals, including the ubiquitous environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Here, we have examined the ability of diuron, a widely used herbicide, and several structurally related substituted phenylureas to bind to and activate/inhibit the AhR and AhR signal transduction. Diuron induced CYP1A1 mRNA levels in mouse hepatoma (Hepa1c1c7) cells and AhR-dependent luciferase reporter gene expression in stably transfected mouse, rat, guinea pig, and human cell lines. In addition, ligand binding and gel retardation analysis demonstrated the ability of diuron to competitively bind to and stimulate AhR transformation and DNA binding in vitro and in intact cells. Several structurally related substituted phenylureas competitively bound to the guinea pig hepatic cytosolic AhR, inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced AhR-dependent luciferase reporter gene expression in a species-specific manner and stimulated AhR transformation and DNA binding, consistent with their role as partial AhR agonists. These results demonstrate not only that diuron and related substituted phenylureas are AhR ligands but also that exposure to these chemicals could induce/inhibit AhR-dependent biological effects. PMID:16788953

  11. Design and synthesis of 1-(benzothiazol-5-yl)-1H-1,2,4-triazol-5-ones as protoporphyrinogen oxidase inhibitors.

    PubMed

    Zuo, Yang; Yang, Sheng-Gang; Luo, Yan-Ping; Tan, Ying; Hao, Ge-Fei; Wu, Qiong-You; Xi, Zhen; Yang, Guang-Fu

    2013-06-01

    Protoporphyrinogen oxidase (PPO, E.C. 1.3.3.4) is the action target for several structurally diverse herbicides. A series of novel 4-(difluoromethyl)-1-(6-halo-2-substituted-benzothiazol-5-yl)-3-methyl-1H-1,2,4-triazol-5(4H)-ones 2a-z were designed and synthesized via the ring-closure of two ortho-substituents. The in vitro bioassay results indicated that the 26 newly synthesized compounds exhibited good PPO inhibition effects with K(i) values ranging from 0.06 to 17.79 μM. Compound 2e, ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzo-thiazol-2-yl]thio}acetate, was the most potent inhibitor with K(i) value of 0.06 μM against mtPPO, comparable to (K(i)=0.03 μM) sulfentrazone. Further green house assays showed that compound 2f (K(i)=0.24 μM, mtPPO), ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzothiazol-2-yl]thio}propanoate, showed the most promising post-emergence herbicidal activity with broad spectrum even at concentrations as low as 37.5 gai/ha. Soybean exhibited tolerance to compound 2f at the dosages of 150 gai/ha, whereas they are susceptible to sulfentrazone even at 75 gai/ha. Thus, compound 2f might be a potential candidate as a new herbicide for soybean fields. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Facile synthesis of fluoro, methoxy, and methyl substituted ferrocene-based urea complexes as potential therapeutic agents.

    PubMed

    Asghar, Faiza; Badshah, Amin; Lal, Bhajan; Zubair, Shumaila; Fatima, Saira; Butler, Ian S

    2017-06-01

    In the present work, the synthesis, characterization (FT-IR, multinuclear ( 1 H and 13 C) NMR, AAS, Raman, and elemental analysis), DNA binding (cyclic voltammetry, UV-Vis spectroscopy and viscometry), and in vitro biological assessment of nine new ferrocene-based ureas are reported. The desulphurization of ferrocenyl thioureas to the corresponding oxo analogues using aqueous sodium hydroxide and mercuric chloride led to the ferrocenyl ureas (F1-F9) in high yields. The DNA binding studies performed by cyclic voltammetry and UV-Vis spectroscopy produced results that are in close agreement with one another for the binding constants (K) and an electrostatic mode of interaction was observed. The nature and the extent of interaction with DNA was further investigated by viscometry. The DFT/B3LYP method was used to determine the charge distribution and HOMO/LUMO energies of the optimized structure. The DFT calculated HOMO and LUMO energies correlate well with the experimentally determined redox potential values. The synthesized ferrocenyl derivatives exhibited good scavenging activity against 1,1-diphenyl-2-picrylhydrazyl radical (DPPH). These complexes were also scanned for their in vitro cytotoxicity against human carcinoma cell line THP-1 (leukemia cells). The results showed a moderate level of cytotoxicity against the subjected cancer cell line as compared with the standard chemotherapeutic drug (cisplatin). Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Carbon footprint as an environmental sustainability indicator for the particleboard produced in Pakistan.

    PubMed

    Hussain, Majid; Naseem Malik, Riffat; Taylor, Adam

    2017-05-01

    This study quantified the carbon footprint of particleboard production in Pakistan using a cradle-to-gate life cycle assessment approach. The system boundary comprised raw materials acquisition, transport, particleboard manufacture and finished product distribution. Primary data were collected through surveys and meetings with particleboard manufacturers. Secondary data were taken from the literature. Greenhouse gas emissions from off-site industrial operations of the particleboard industry represented 52% of the total emissions from the production of 1.0m 3 of particleboard in Pakistan. The on-site industrial operations cause direct greenhouse gas emissions and accounted for 48% of the total emissions. These operations included energy consumption in stationary sources, the company-owned vehicle fleet, and the distribution and marketing of the finished product. The use of natural gas combustion in the stationary and mobile sources, raw material transport and urea-formaldehyde resin production chain accounted for the highest emissions from the particleboard production chain in Pakistan. The identification of the major hotspots in the particleboard production chain can assist the wood panel industry to improve their environmental profile. More efforts are needed to investigate the urea-formaldehyde resin production chain and substitution of roundwood with wood and agri-residues to assess the potential improvements. In addition, renewable energy sources should be encouraged to avoid greenhouse gas emissions by substituting fossil energy. This study also provides a benchmark for future research work to formulate comprehensive greenhouse gas emissions reduction plans, because no previous research work is available on the carbon footprint of particleboard production in Pakistan. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Pressure-assisted cold denaturation of hen egg white lysozyme: the influence of co-solvents probed by hydrogen exchange nuclear magnetic resonance.

    PubMed

    Vogtt, K; Winter, R

    2005-08-01

    COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL) in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80 degrees C) and under high pressure conditions at low temperature (3.75 kbar, -13 degrees C). Moreover, the influence of co-solvents (sorbitol, urea) on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM) led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.

  15. Precision Herbicide Application Technologies To Decrease Herbicide Losses in Furrow Irrigation Outflows in a Northeastern Australian Cropping System.

    PubMed

    Davis, Aaron M; Pradolin, Jordan

    2016-05-25

    This study compared water quality benefits of using precision herbicide application technologies in relation to traditional spraying approaches across several pre- and postemergent herbicides in furrow-irrigated canefarming systems. The use of shielded sprayers (herbicide banding) provided herbicide load reductions extending substantially beyond simple proportionate decreases in amount of active herbicide ingredient applied to paddocks. These reductions were due largely to the extra management control available to irrigating growers in relation to where both herbicides and irrigation water can be applied to paddocks, coupled with knowledge of herbicide toxicological and physicochemical properties. Despite more complex herbicide mixtures being applied in banded practices, banding provided capacity for greatly reduced environmental toxicity in off-paddock losses. Similar toxicological and loss profiles of alternative herbicides relative to recently regulated pre-emergent herbicides highlight the need for a carefully considered approach to integrating alternative herbicides into improved pest management.

  16. CADDIS Volume 2. Sources, Stressors and Responses: Herbicides

    EPA Pesticide Factsheets

    Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.

  17. CADDIS Volume 2. Sources, Stressors and Responses: Herbicides - Detailed Conceptual Diagram

    EPA Pesticide Factsheets

    Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.

  18. CADDIS Volume 2. Sources, Stressors and Responses: Herbicides - Simple Conceptual Diagram

    EPA Pesticide Factsheets

    Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.

  19. Identifying Chloris Species from Cuban Citrus Orchards and Determining Their Glyphosate-Resistance Status

    PubMed Central

    Bracamonte, Enzo R.; Fernández-Moreno, Pablo T.; Bastida, Fernando; Osuna, María D.; Alcántara-de la Cruz, Ricardo; Cruz-Hipolito, Hugo E.; De Prado, Rafael

    2017-01-01

    The Chloris genus is a C4 photosynthetic species mainly distributed in tropical and subtropical regions. Populations of three Chloris species occurring in citrus orchards from central Cuba, under long history glyphosate-based weed management, were studied for glyphosate-resistant status by characterizing their herbicide resistance/tolerance mechanisms. Morphological and molecular analyses allowed these species to be identified as C. ciliata Sw., Chloris elata Desv., and Chloris barbata Sw. Based on the glyphosate rate that causes 50% mortality of the treated plants, glyphosate resistance (R) was confirmed only in C. elata, The R population was 6.1-fold more resistant compared to the susceptible (S) population. In addition, R plants of C. elata accumulated 4.6-fold less shikimate after glyphosate application than S plants. Meanwhile, populations of C. barbata and C. ciliata with or without glyphosate application histories showed similar LD50 values and shikimic acid accumulation rates, demonstrating that resistance to glyphosate have not evolved in these species. Plants of R and S populations of C. elata differed in 14C-glyphosate absorption and translocation. The R population exhibited 27.3-fold greater 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) activity than the S population due to a target site mutation corresponding to a Pro-106-Ser substitution found in the EPSPS gene. These reports show the innate tolerance to glyphosate of C. barbata and C. ciliata, and confirm the resistance of C. elata to this herbicide, showing that both non-target site and target-site mechanisms are involved in its resistance to glyphosate. This is the first case of herbicide resistance in Cuba. PMID:29187862

  20. Effect of isoproturon pretreatment on the biochemical toxicodynamics of anilofos in male rats.

    PubMed

    Hazarika, A; Sarkar, S N

    2001-08-28

    Anilofos and isoproturon are important herbicides of organophosphorus and substituted phenylurea groups, respectively. Isoproturon is an inducer of hepatic drug-metabolizing enzymes. Animals and humans have the potential to be exposed to the mixture of these intentionally introduced environmental xenobiotics, but toxicological interactions between these herbicides are not known. Effects of isoproturon pretreatment (675 mg/kg/day for 3 consecutive days) on the toxic actions of anilofos administered orally as a single dose (850 mg/kg) were evaluated by determining some biochemical attributes in blood (erythrocyte/plasma), brain and liver of rats. Anilofos or isoproturon alone or in combination failed to produce any noticeable signs of cholinergic hyperactivity and behavioural alterations. Isoproturon did not potentiate the anticholinesterase action of anilofos in blood and liver. Inhibition of brain acetylcholinesterase was significantly protected. No significant alteration in anilofos-mediated production of lipid peroxidation was observed in erythrocyte and brain of isoproturon-pretreated rats, but it was significantly increased in liver. Anilofos did not affect GSH and GST. The isoproturon-mediated increase in GSH levels of brain (threefold) and liver (3.6-fold) was also not affected following combined administration. GST activity was increased in liver of rats given isoproturon alone (fourfold) or in combination with anilofos (2.8-fold). Activities of total ATPase, Mg2+-ATPase and Na+-K+-ATPase were not affected in rats given either anilofos alone or herbicides in sequence. With these treatments, there were no alterations in the protein content of plasma, brain and liver. Overall findings of the study indicate that isoproturon pretreatment does not alter the toxicity of anilofos, the GSH-GST metabolic pathway may not have a significant implication in the detoxification of anilofos and the production of a reactive oxygen species may be a factor in mediating anilofos toxicity.

  1. Heteroaryl ethers by oxidative palladium catalysis of pyridotriazol-1-yloxy pyrimidines with arylboronic acids.

    PubMed

    Bardhan, Sujata; Wacharasindhu, Sumrit; Wan, Zhao-Kui; Mansour, Tarek S

    2009-06-18

    The oxidative palladium-catalyzed cross-coupling of pyrimidines containing pyridotriazol-1-yloxy (OPt) as either a urea or an amide functional group with arylboronic acids in the presence of Cs(2)CO(3) in DME containing 0.6-1.0% H(2)O is described for the preparation of heteroaryl ethers. The bromo substitution in the case of 3-(5-bromo-pyrimidin-2-yloxy)-3H-[1,2,3]triazolo[4,5-b]pyridine 1 could serve as a handle for further elaborations such as Suzuki coupling for attaching varied aryl groups.

  2. Extracellular vesicles from human liver stem cells restore argininosuccinate synthase deficiency.

    PubMed

    Herrera Sanchez, Maria Beatriz; Previdi, Sara; Bruno, Stefania; Fonsato, Valentina; Deregibus, Maria Chiara; Kholia, Sharad; Petrillo, Sara; Tolosano, Emanuela; Critelli, Rossana; Spada, Marco; Romagnoli, Renato; Salizzoni, Mauro; Tetta, Ciro; Camussi, Giovanni

    2017-07-27

    Argininosuccinate synthase (ASS)1 is a urea cycle enzyme that catalyzes the conversion of citrulline and aspartate to argininosuccinate. Mutations in the ASS1 gene cause citrullinemia type I, a rare autosomal recessive disorder characterized by neonatal hyperammonemia, elevated citrulline levels, and early neonatal death. Treatment for this disease is currently restricted to liver transplantation; however, due to limited organ availability, substitute therapies are required. Recently, extracellular vesicles (EVs) have been reported to act as intercellular transporters carrying genetic information responsible for cell reprogramming. In previous studies, we isolated a population of stem cell-like cells known as human liver stem cells (HLSCs) from healthy liver tissue. Moreover, EVs derived from HLSCs were reported to exhibit regenerative effects on the liver parenchyma in models of acute liver injury. The aim of this study was to evaluate whether EVs derived from normal HLSCs restored ASS1 enzymatic activity and urea production in hepatocytes differentiated from HLSCs derived from a patient with type I citrullinemia. HLSCs were isolated from the liver of a patient with type I citrullinemia (ASS1-HLSCs) and characterized by fluorescence-activated cell sorting (FACS), immunofluorescence, and DNA sequencing analysis. Furthermore, their differentiation capabilities in vitro were also assessed. Hepatocytes differentiated from ASS1-HLSCs were evaluated by the production of urea and ASS enzymatic activity. EVs derived from normal HLSCs were purified by differential ultracentrifugation followed by floating density gradient. The EV content was analyzed to identify the presence of ASS1 protein, mRNA, and ASS1 gene. In order to obtain ASS1-depleted EVs, a knockdown of the ASS1 gene in HLSCs was performed followed by EV isolation from these cells. Treating ASS1-HLSCs with EVs from HLSCs restored both ASS1 activity and urea production mainly through the transfer of ASS1 enzyme and mRNA. In fact, EVs from ASS1-knockdown HLSCs contained low amounts of ASS1 mRNA and protein, and were unable to restore urea production in hepatocytes differentiated from ASS1-HLSCs. Collectively, these results suggest that EVs derived from normal HLSCs may compensate the loss of ASS1 enzyme activity in hepatocytes differentiated from ASS1-HLSCs.

  3. 4-Benzothiazole-7-hydroxyindolinyl diaryl ureas are potent P2Y1 antagonists with favorable pharmacokinetics: low clearance and small volume of distribution.

    PubMed

    Qiao, Jennifer X; Wang, Tammy C; Hiebert, Sheldon; Hu, Carol H; Schumacher, William A; Spronk, Steven A; Clark, Charles G; Han, Ying; Hua, Ji; Price, Laura A; Shen, Hong; Chacko, Silvi A; Everlof, Gerry; Bostwick, Jeffrey S; Steinbacher, Thomas E; Li, Yi-Xin; Huang, Christine S; Seiffert, Dietmar A; Rehfuss, Robert; Wexler, Ruth R; Lam, Patrick Y S

    2014-10-01

    Current antithrombotic discovery efforts target compounds that are highly efficacious in thrombus reduction with less bleeding liability than the standard of care. Preclinical data suggest that P2Y1 antagonists may have lower bleeding liabilities than P2Y12 antagonists while providing similar antithrombotic efficacy. This article describes our continuous SAR efforts in a series of 7-hydroxyindolinyl diaryl ureas. When dosed orally, 4-trifluoromethyl-7-hydroxy-3,3-dimethylindolinyl analogue 4 was highly efficacious in a model of arterial thrombosis in rats with limited bleeding. The chemically labile CF3 group in 4 was then transformed to various groups via a novel one-step synthesis, yielding a series of potent P2Y1 antagonists. Among them, the 4-benzothiazole-substituted indolines had desirable PK properties in rats, specifically, low clearance and small volume of distribution. In addition, compound 40 had high i.v. exposure and modest bioavailability, giving it the best overall profile. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Monitoring sodium removal and delivered dialysis by conductivity.

    PubMed

    Locatelli, F; Di Filippo, S; Manzoni, C; Corti, M; Andrulli, S; Pontoriero, G

    1995-11-01

    As cardiovascular stability and the delivery of the prescribed dialysis "dose" seem to be the main factors in determining the morbidity and mortality of hemodialyzer patients today, it is of paramount importance to match hydro-sodium removal with interdialytic load and to verify the delivered dialysis at each session. A specially designed Biofeedback Module (BM--COT Hospal) allows the automatic determination of plasma water conductivity and effective ionic dialysance with no need for blood samples. Using BM, we evaluated the validity of "conductivity kinetic modelling" (CKM) and the possibility that this may substitute "sodium kinetic modelling". Moreover, we evaluated the "in vivo" relationship between ionic dialysance and effective urea clearance. Our results demonstrate that: 1) CKM makes it possible to obtain programmed end-dialysis plasma water conductivity with an error of less than +/- 0.14 mS/cm, roughly equivalent to a sodium concentration of +/- 1.4 mEq/L. 2). Ionic dialysance and effective urea clearance are not equivalent but, as the interrelationship between these is known, the BM allows the routine monitoring of delivered dialysis.

  5. Interaction of chiral herbicides with soil microorganisms, algae and vascular plants.

    PubMed

    Asad, Muhammad Asad Ullah; Lavoie, Michel; Song, Hao; Jin, Yujian; Fu, Zhengwei; Qian, Haifeng

    2017-02-15

    Chiral herbicides are often used in agriculture as racemic mixtures, although studies have shown that the fate and toxicity of herbicide enantiomers to target and non-target plants can be enantioselective and that herbicide toxicity can be mediated by only one enantiomer. If one enantiomer is active against the target plant, the use of enantiomer-rich herbicide mixtures instead of racemic herbicides could decrease the amount of herbicide applied to a crop and the cost of herbicide application, as well as unintended toxic herbicide effects in the environment. Such a change in the management of herbicide applications requires in-depth knowledge and a critical analysis of the fate and effects of herbicide enantiomers in the environment. This review article first synthesizes the current state of knowledge on soil and plant biodegradation of herbicide enantiomers. Second, we discuss our understanding of the biochemical toxicity mechanisms associated with both enantiomers in target and non-target plants gained from state-of-the-art genomic, proteomic and metabolomic tools. Third, we present the emerging view on the "side effects" of herbicides in the root microbiome and their repercussions on target or non-target plant metabolism. Although our review of the literature indicates that the toxicity of herbicide enantiomers is highly variable depending on plant species and herbicides, we found general trends in the enantioselective toxic effects of different herbicides in vascular plants and algae. The present study will be helpful for pesticide risk assessments as well as for the management of applying enriched-enantiomer herbicides. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Herbicides and transformation products in surface waters of the Midwestern United States

    USGS Publications Warehouse

    Battaglin, W.A.; Thurman, E.M.; Kalkhoff, S.J.; Porter, S.D.

    2003-01-01

    Most herbicides applied to crops are adsorbed by plants or transformed (degraded) in the soil, but small fractions are lost from fields and either move to streams in overland runoff, near surface flow, or subsurface drains, or they infiltrate slowly to ground water. Herbicide transformation products (TPs) can be more or less mobile and more or less toxic in the environment than their source herbicides. To obtain information on the concentrations of selected herbicides and TPs in surface waters of the Midwestern United States, 151 water samples were collected from 71 streams and five reservoir outflows in 1998. These samples were analyzed for 13 herbicides and 10 herbicide TPs. Herbicide TPs were found to occur as frequently or more frequently than source herbicides and at concentrations that were often larger than their source herbicides. Most samples contained a mixture of more than 10 different herbicides or TPs. The ratios of TPs to herbicide concentrations can be used to determine the source of herbicides in streams. Results of a two-component mixing model suggest that on average 90 percent or more of the herbicide mass in Midwestern streams during early summer runoff events originates from the runoff and 10 percent or less comes from increased ground water discharge.

  7. Measuring Rates of Herbicide Metabolism in Dicot Weeds with an Excised Leaf Assay.

    PubMed

    Ma, Rong; Skelton, Joshua J; Riechers, Dean E

    2015-09-07

    In order to isolate and accurately determine rates of herbicide metabolism in an obligate-outcrossing dicot weed, waterhemp (Amaranthus tuberculatus), we developed an excised leaf assay combined with a vegetative cloning strategy to normalize herbicide uptake and remove translocation as contributing factors in herbicide-resistant (R) and -sensitive (S) waterhemp populations. Biokinetic analyses of organic pesticides in plants typically include the determination of uptake, translocation (delivery to the target site), metabolic fate, and interactions with the target site. Herbicide metabolism is an important parameter to measure in herbicide-resistant weeds and herbicide-tolerant crops, and is typically accomplished with whole-plant tests using radiolabeled herbicides. However, one difficulty with interpreting biokinetic parameters derived from whole-plant methods is that translocation is often affected by rates of herbicide metabolism, since polar metabolites are usually not mobile within the plant following herbicide detoxification reactions. Advantages of the protocol described in this manuscript include reproducible, accurate, and rapid determination of herbicide degradation rates in R and S populations, a substantial decrease in the amount of radiolabeled herbicide consumed, a large reduction in radiolabeled plant materials requiring further handling and disposal, and the ability to perform radiolabeled herbicide experiments in the lab or growth chamber instead of a greenhouse. As herbicide resistance continues to develop and spread in dicot weed populations worldwide, the excised leaf assay method developed and described herein will provide an invaluable technique for investigating non-target site-based resistance due to enhanced rates of herbicide metabolism and detoxification.

  8. A study on adsorption mechanism of organoarsenic compounds on ferrihydrite by XAFS

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Takahashi, Y.; Yamaguchi, N.

    2013-04-01

    Anthropogenic organoarsenic compounds which were used such as agrochemicals, pesticides, and herbicides can have a potential as a source of arsenic pollution in water. In the process, the adsorption of arsenic onto mineral surface in soil may play an important role to affect arsenic distribution in solid-water interface. However, adsorption structures of organoarsenic compounds on the iron-(oxyhydr)oxides are not well known. In this study, extended X-ray absorption fine structure (EXAFS) spectroscopy was employed to know the adsorption structure of methyl- and phenyl-substituted organoarsenic compounds (methylarsonic acid (MMA), dimethylarsinic acid (DMA), phenylarsonic acid (PAA), and diphenylarsinic acid (DPAA) onto ferrihydrite which can be a strong adsorbent of arsenic. EXAFS analysis suggests that the formation of inner-sphere surface complex for all organoarsenic compounds with ferrihydrite regardless of the organic functional groups and the number of substitution. The As-Fe distances are around 3.27 , which suggests both mono-and bi-dentate inner-sphere complexes by DFT calculations. The corresponding coordination numbers (CNs) are less than two, suggesting that coexistence of both structures of inner-sphere complexes.

  9. A case for technofix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufman, W.

    If this decade is indeed the critical one for deciding how to save the earth, we need to chose appropriate responses. The call for a simpler life style is a typically human reaction of trying to atone for imperfection by worshipping an impossible ideal. Technology has answers and there is a rising tide of consumer morality regarding environmental issues. From the prospective of forest and the wood industry, three types of response are taking place. First, more efficient production, making more things with less material, is taking place: more efficient equipment, use of scrap wood for fuel, replanted forests. Second,more » new products are being substituted for old e.g. wood substitutes for many things; new types of biodegradable packing materials, etc. New, kinder, gentler technologies are being invented and used: recycling technologies; environment clean-up technologies for everything from oil spills to herbicides and chlorinated organic chemicals. No perfect solutions exist; consumer demand can overcome business self-interest and greed, but only if the capacity of business to respond to demand is not limited by regulations and crippling taxes.« less

  10. Synthesis and biological activities of novel 5-substituted-1,3,4-oxadiazole Mannich bases and bis-Mannich bases as ketol-acid reductoisomerase inhibitors.

    PubMed

    Zhang, Yan; Liu, Xing-Hai; Zhan, Yi-Zhou; Zhang, Li-Yuan; Li, Zheng-Ming; Li, Yong-Hong; Zhang, Xiao; Wang, Bao-Lei

    2016-10-01

    A series of novel 5-substituted-1,3,4-oxadiazole Mannich bases and bis-Mannich bases have been conveniently synthesized in good yields. Their structures were characterized by IR, (1)H NMR, (13)C NMR and elemental analysis. The preliminary bioassay results indicated that some of the compounds showed promising in vitro fungicidal activities towards several test plant fungi; some of them exhibited significant herbicidal activities against Brassica campestris and excellent in vitro inhibitory activities against rice ketol-acid reductoisomerase (KARI). Among 14 novel compounds, 8c, 8d and 8m showed potent KARI inhibitory activities with Ki value of (0.96±0.42), (3.86±0.49) and (3.10±0.71) μmol/L, respectively, and were comparable with IpOHA. These compounds could be novel KARI inhibitors for further investigation. The density functional theory (DFT) calculations and molecular docking were carried out to study the structure-activity relationship (SAR) of the active inhibitors in this Letter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Soil carbon fractions under maize-wheat system: effect of tillage and nutrient management.

    PubMed

    Sandeep, S; Manjaiah, K M; Pal, Sharmistha; Singh, A K

    2016-01-01

    Soil organic carbon plays a major role in sustaining agroecosystems and maintaining environmental quality as it acts as a major source and sink of atmospheric carbon. The present study aims to assess the impact of agricultural management practices on soil organic carbon pools in a maize-wheat cropping system of Indo-Gangetic Plains, India. Soil samples from a split plot design with two tillage systems (bed planting and conventional tillage) and six nutrient treatments (T1 = control, T2 = 120 kg urea-N ha(-1), T3 = T2 (25 % N substituted by FYM), T4 = T2 (25 % N substituted by sewage sludge), T5 = T2 + crop residue, T6 = 100 % organic source (50 % FYM + 25 % biofertilizer + 25 % crop residue) were used for determining the organic carbon pools. Results show that there was a significant improvement in Walkley and Black carbon in soil under integrated and organic nutrient management treatments. KMnO4-oxidizable carbon content of soil varied from 0.63 to 1.50 g kg(-1) in soils and was found to be a better indicator for monitoring the impact of agricultural management practices on quality of soil organic carbon than microbial biomass carbon. Tillage and its interaction were found to significantly influence only those soil organic carbon fractions closely associated with aggregate stability viz, labile polysaccharides and glomalin. The highest amount of C4-derived carbon was found to be in plots receiving recommended doses of N as urea (29 %) followed by control plots (25 %). The carbon management index ranged between 82 to 195 and was better in integrated nutrient sources than ones receiving recommended doses of nutrients through mineral fertilizers alone.

  12. Molecular characterization of four beta-tubulin genes from dinitroaniline susceptible and resistant biotypes of Eleusine indica.

    PubMed

    Yamamoto, E; Baird, W V

    1999-01-01

    Dinitroaniline herbicides are antimicrotubule drugs that bind to tubulins and inhibit polymerization. As a result of repeated application of dinitroaniline herbicides, resistant biotypes of goosegrass (Eleusine indica) developed in previously susceptible wild-type populations. We have previously reported that alpha-tubulin missense mutations correlate with dinitroaniline response phenotypes (Drp) (Plant Cell 10: 297-308, 1998). In order to ascertain associations of other tubulins with dinitroaniline resistance, four beta-tubulin cDNA classes (designated TUB1, TUB2, TUB3, and TUB4) were isolated from dinitroaniline-susceptible and -resistant biotypes. Sequence analysis of the four beta-tubulin cDNA classes identified no missense mutations. Identified nucleotide substitutions did not result in amino acid replacements. These results suggest that the molecular basis of dinitroaniline resistance in goosegrass differs from those of colchicine/dinitroaniline cross-resistant Chlamydomonas reinhardtii and benzimidazole-resistant fungi and yeast. Expression of the four beta-tubulins was highest in inflorescences. This is in contrast to alpha-tubulin TUA1 that is expressed predominantly in roots. Collectively, these results imply that beta-tubulin genes are not associated with dinitroaniline resistance in goosegrass. Phylogenetic analysis of the four beta-tubulins, together with three alpha-tubulins, suggests that the resistant biotype developed independently in multiple locations rather than spreading from one location.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Exon, J.H.

    The chlorinated phenols are a group of 19 isomers composed of phenol with substituted chlorines. These chemicals are readily soluble in organic solvents but only slightly soluble in water, except for the chlorophenate salts. Chlorophenols with less than 3 chlorines are not used extensively except in the production of higher chlorophenols and chlorophenyloxyacetic acid herbicides. Pentachlorophenol and some tetrachlorophenols are used worldwide, primarily as wood preservatives or fungicides. Residues of chlorophenols have been found worldwide in soil, water and air samples, in food products, and in human and animal tissues and body fluids. Environmental contamination with these chemicals occurs frommore » industrial effluents, agricultural runoff, breakdown of chlorophenyloxyacetic acid herbicides and hexachlorobenzene, and from spontaneous formation following chlorination of water for disinfection and deodorization. The acute toxicity of these chemicals is relatively low and little is known concerning their chronic effects. Chlorophenols have not been shown conclusively to be mutagens, teratogens or carcinogens. However, these compounds may act as promotors or cocarcinogens and the immune system is particularly sensitive to their toxic effects. Transplacental exposure to chlorophenols may result in embryotoxicity and abortion. The major mode of toxic action is as uncouplers of oxidative phosphorylation. The toxicity of chlorophenols decreases with decreasing chlorination. These chemicals are mild hepatotoxins and are stored mainly in hepatic and renal tissues.« less

  14. Are shifts in herbicide use reflected in concentration changes in Midwestern rivers?

    USGS Publications Warehouse

    Battaglin, W.A.; Goolsby, D.A.

    1999-01-01

    In many Midwestern rivers, elevated concentrations of herbicides occur during runoff events for 1-3 months following application. The highest or 'peak' herbicide concentration often occurs during one of these runoff events. Herbicide concentrations in rivers are affected by a number of factors, including herbicide use patterns within the associated basin. Changing agricultural practices, reductions in recommended and permitted herbicide applications, shifts to new herbicides, and greater environmental awareness in the agricultural community have resulted in changes to herbicide use patterns. In the Midwestern United States, alachlor use was much larger in 1989 than in 1995, while acetochlor was not used in 1989, and commonly used in 1995. Use of atrazine, cyanazine, and metolachlor was about the same in 1989 and 1995. Herbicide concentrations were measured in samples from 53 Midwestern rivers during the first major runoff event that occurred after herbicide application (postapplication) in 1989, 1990, 1994, and 1995. The median concentrations of atrazine, alachlor, cyanazine, metribuzin, metolachlor, propazine, and simazine all were significantly higher in 1989/90 than in 1994/95. The median acetochlor concentration was higher in 1995 than in 1994. Estimated daily yields for all herbicides and degradation products measured, with the exception of acetochlor, were higher in 1989/90 than in 1994/95. The differences in concentration and yield do not always parallel changes in herbicide use, suggesting that other changes in herbicide or crop management are affecting concentrations in Midwestern rivers during runoff events.In many Midwestern rivers, elevated concentrations of herbicides occur during runoff events for 1-3 months following application. The highest or `peak' herbicide concentration often occurs during one of these runoff events. Herbicide concentrations in rivers are affected by a number of factors, including herbicide use patterns within the associated basin. Changing agricultural practices, reductions in recommended and permitted herbicide applications, shifts to new herbicides, and greater environmental awareness in the agricultural community have resulted in changes to herbicide use patterns. In the Midwestern United States, alachlor use was much larger in 1989 than in 1995, while acetochlor was not used in 1989, and commonly used in 1995. Use of atrazine, cyanazine, and metolachlor was about the same in 1989 and 1995. Herbicide concentrations were measured in samples from 53 Midwestern rivers during the first major runoff event that occurred after herbicide application (postapplication) in 1989, 1990, 1994, and 1995. The median concentrations of atrazine, alachlor, cyanazine, metribuzin, metolachlor, propazine, and simazine all were significantly higher in 1989/90 than in 1994/95. The median acetochlor concentration was higher in 1995 than in 1994. Estimated daily yields for all herbicides and degradation products measured, with the exception of acetochlor, were higher in 1989/90 than in 1994/95. The differences in concentration and yield do not always parallel changes in herbicide use, suggesting that other changes in herbicide or crop management are affecting concentrations in Midwestern rivers during runoff events.

  15. Inheritance of evolved resistance to a novel herbicide (pyroxasulfone).

    PubMed

    Busi, Roberto; Gaines, Todd A; Vila-Aiub, Martin M; Powles, Stephen B

    2014-03-01

    Agricultural weeds have rapidly adapted to intensive herbicide selection and resistance to herbicides has evolved within ecological timescales. Yet, the genetic basis of broad-spectrum generalist herbicide resistance is largely unknown. This study aims to determine the genetic control of non-target-site herbicide resistance trait(s) that rapidly evolved under recurrent selection of the novel lipid biosynthesis inhibitor pyroxasulfone in Lolium rigidum. The phenotypic segregation of pyroxasulfone resistance in parental, F1 and back-cross (BC) families was assessed in plants exposed to a gradient of pyroxasulfone doses. The inheritance of resistance to chemically dissimilar herbicides (cross-resistance) was also evaluated. Evolved resistance to the novel selective agent (pyroxasulfone) is explained by Mendelian segregation of one semi-dominant allele incrementally herbicide-selected at higher frequency in the progeny. In BC families, cross-resistance is conferred by an incompletely dominant single major locus. This study confirms that herbicide resistance can rapidly evolve to any novel selective herbicide agents by continuous and repeated herbicide use. The results imply that the combination of herbicide options (rotation, mixtures or combinations) to exploit incomplete dominance can provide acceptable control of broad-spectrum generalist resistance-endowing monogenic traits. Herbicide diversity within a set of integrated management tactics can be one important component to reduce the herbicide selection intensity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Metabolism-Based Herbicide Resistance and Cross-Resistance in Crop Weeds: A Threat to Herbicide Sustainability and Global Crop Production1

    PubMed Central

    Yu, Qin; Powles, Stephen

    2014-01-01

    Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance. However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical review to current understanding of metabolic herbicide resistance evolution in weedy plant species. PMID:25106819

  17. Natural Compounds as Next-Generation Herbicides

    PubMed Central

    Dayan, Franck E.; Duke, Stephen O.

    2014-01-01

    Herbicides with new modes of action (MOAs) are badly needed due to the rapidly evolving resistance to commercial herbicides, but a new MOA has not been introduced in over 20 years. The greatest pest management challenge for organic agriculture is the lack of effective natural product herbicides. The structural diversity and evolved biological activity of natural phytotoxins offer opportunities for the development of both directly used natural compounds and synthetic herbicides with new target sites based on the structures of natural phytotoxins. Natural phytotoxins are also a source for the discovery of new herbicide target sites that can serve as the focus of traditional herbicide discovery efforts. There are many examples of strong natural phytotoxins with MOAs other than those used by commercial herbicides, which indicates that there are molecular targets of herbicides that can be added to the current repertoire of commercial herbicide MOAs. PMID:24784133

  18. Natural compounds as next-generation herbicides.

    PubMed

    Dayan, Franck E; Duke, Stephen O

    2014-11-01

    Herbicides with new modes of action (MOAs) are badly needed due to the rapidly evolving resistance to commercial herbicides, but a new MOA has not been introduced in over 20 years. The greatest pest management challenge for organic agriculture is the lack of effective natural product herbicides. The structural diversity and evolved biological activity of natural phytotoxins offer opportunities for the development of both directly used natural compounds and synthetic herbicides with new target sites based on the structures of natural phytotoxins. Natural phytotoxins are also a source for the discovery of new herbicide target sites that can serve as the focus of traditional herbicide discovery efforts. There are many examples of strong natural phytotoxins with MOAs other than those used by commercial herbicides, which indicates that there are molecular targets of herbicides that can be added to the current repertoire of commercial herbicide MOAs. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. Measuring Rates of Herbicide Metabolism in Dicot Weeds with an Excised Leaf Assay

    PubMed Central

    Ma, Rong; Skelton, Joshua J.; Riechers, Dean E.

    2015-01-01

    In order to isolate and accurately determine rates of herbicide metabolism in an obligate-outcrossing dicot weed, waterhemp (Amaranthus tuberculatus), we developed an excised leaf assay combined with a vegetative cloning strategy to normalize herbicide uptake and remove translocation as contributing factors in herbicide-resistant (R) and –sensitive (S) waterhemp populations. Biokinetic analyses of organic pesticides in plants typically include the determination of uptake, translocation (delivery to the target site), metabolic fate, and interactions with the target site. Herbicide metabolism is an important parameter to measure in herbicide-resistant weeds and herbicide-tolerant crops, and is typically accomplished with whole-plant tests using radiolabeled herbicides. However, one difficulty with interpreting biokinetic parameters derived from whole-plant methods is that translocation is often affected by rates of herbicide metabolism, since polar metabolites are usually not mobile within the plant following herbicide detoxification reactions. Advantages of the protocol described in this manuscript include reproducible, accurate, and rapid determination of herbicide degradation rates in R and S populations, a substantial decrease in the amount of radiolabeled herbicide consumed, a large reduction in radiolabeled plant materials requiring further handling and disposal, and the ability to perform radiolabeled herbicide experiments in the lab or growth chamber instead of a greenhouse. As herbicide resistance continues to develop and spread in dicot weed populations worldwide, the excised leaf assay method developed and described herein will provide an invaluable technique for investigating non-target site-based resistance due to enhanced rates of herbicide metabolism and detoxification. PMID:26383604

  20. Distinct Secondary Structures of the Leucine-Rich Repeat Proteoglycans Decorin and Biglycan: Glycosylation-Dependent Conformational Stability

    NASA Technical Reports Server (NTRS)

    Krishnan, Priya; Hocking, Anne M.; Scholtz, J. Martin; Pace, C. Nick; Holik, Kimberly K.; McQuillan, David J.

    1998-01-01

    Biglycan and decorin, closely related small leucine-rich repeat proteoglycans, have been overexpressed in eukaryotic cers and two major glycoforms isolated under native conditions: a proteoglycan substituted with glycosaminoglycan chains; and a core protein form secreted devoid of glycosaminoglycans. A comparative biophysical study of these glycoforms has revealed that the overall secondary structures of biglycan and decorin are different. Far-UV Circular Dichroism (CD) spectroscopy of decorin and biglycan proteoglycans indicates that, although they are predominantly Beta-sheet, biglycan has a significantly higher content of alpha-helical structure. Decorin proteoglycan and core protein are very similar, whereas the biglycan core protein exhibits closer similarity to the decorin glycoforms than to. the biglycan proteoglycan form. However, enzymatic removal of the chondroitin sulfate chains from biglycan proteoglycan does not induce a shift to the core protein structure, suggesting that the fmal form is influenced by polysaccharide addition only during biosynthesis. Fluorescence emission spectroscopy demonstrated that the single tryptophan residue, which is at a conserved position at the C-terminal domain of both biglycan and decorin, is found in similar microenvironments. This indicates that at least in this specific domain, the different glycoforms do exhibit apparent conservation of structure. Exposure of decorin and biglycan to 10 M urea resulted in an increase in fluorescent intensity, which indicates that the emission from tryptophan in the native state is quenched. Comparison of urea-induced protein unfolding curves provided further evidence that decorin and biglycan assume different structures in solution. Decorin proteoglycan and core protein unfold in a manner similar to a classic two-state model, in which there is a steep transition to an unfolded state between 1-2 M urea. The biglycan core protein also shows a similar steep transition. However, biglycan proteoglycan shows a broad unfolding transition between 1-6 M urea, probably indicating the presence of stable unfolding intermediates.

  1. Herbicides and their transformation products in source-water aquifers tapped by public-supply wells in Illinois, 2001-02

    USGS Publications Warehouse

    Mills, Patrick C.; McMillan, William D.

    2004-01-01

    During 2001-02, ground-water samples were collected from 117 public-supply wells distributed throughout Illinois to evaluate the occurrence of herbicides and their transformation products in the State?s source-water aquifers. Wells were selected using a stratified-random method to ensure representation of the major types of source-water aquifers in the State. Samples were analyzed for 18 herbicides and 18 transformation products, including 3 triazine and 14 chloroacetanilide products. Herbicide compounds (field-applied parent herbicides and their transformation products) were detected in 34 percent of samples. A subset of samples was collected unfiltered to determine if analytical results for herbicides in unfiltered samples are similar to those in paired filtered samples and, thus, can be considered equally representative of herbicide concentrations in ground water supplied to the public. The study by the U.S. Geological Survey was done in cooperation with the Illinois Environmental Protection Agency. Parent herbicides were detected in only 4 percent of all samples. The six most frequently detected herbicide compounds (from 5 to 28 percent of samples) were chloroacetanilide transformation products. The frequent occurrence of transformation products and their higher concentrations relative to those of most parent herbicides confirm the importance of obtaining information on transformation products to understand the mobility and fate of herbicides in ground-water systems. No sample concentrations determined during this study exceeded current (2003) Federal or State drinking-water standards; however, standards are established for only seven parent herbicides. Factors related to the occurrence of herbicide compounds in the State?s source-water aquifers include unconsolidated and unconfined conditions, various hydrogeologic characteristics and well-construction aspects at shallow depths, and proximity to streams. Generally, the closer an aquifer (or well location) is to a recharge area and (or) the stronger the hydraulic connection between an aquifer and a recharge area, the younger the ground water and the more vulnerable the aquifer will be to contamination by herbicide compounds. The weak relation between current (2001) statewide application rates of herbicides and current (2001-02) occurrence of herbicide compounds in source-water aquifers indicates that additional factors must be considered when relating herbicide-application rates to occurrence. These factors include historical application rates and the mobility and persistence of the various herbicide compounds in ground-water systems. Frequency of detection and concentrations of herbicides compounds in the State?s source-water aquifers are indicated to be highest during the spring, when crops are planted and herbicides primarily are applied. Excess nitrate (concentrations of nitrate, as nitrogen, higher than 3 milligrams per liter) in ground water strongly indicates the co-occurrence of herbicide compounds. However, nitrate concentrations are not a reliable indicator of herbicide-compound concentrations. The inverse relation found between current use of land for corn and soybean production and current occurrence of herbicide compounds in underlying aquifers indicates that various factors, along with current agricultural land use, contribute to herbicide occurrence. These factors include, among others, land-use history, ground-water age, ground-water-flow patterns, geology, soil microbiology, and chemistry and persistence of the herbicide compounds. Detection of agriculture-specific herbicide compounds in 71 percent of samples from urban areas with no current or recent agricultural land use near the sampled wells indicates that recharge to certain high-capacity supply wells may originate at considerable distances (up to about 10 miles) from the wells. Essentially no difference was found between the analytical results for herbicides in paired unfiltered and filtered samples,

  2. How benthic diatoms within natural communities respond to eight common herbicides with different modes of action.

    PubMed

    Wood, Rebecca J; Mitrovic, Simon M; Lim, Richard P; Kefford, Ben J

    2016-07-01

    Herbicides are common pollutants of rivers in agricultural regions. These contaminants include various types of chemicals with different modes of toxic action. Herbicides can have toxic effects on freshwater benthic diatoms, the base of the aquatic food web. We examined the effects of (non-mixture) herbicide exposure to the health of diatoms for eight common herbicides with three different modes of action; the photosystem II (PSII) inhibitors: atrazine, simazine, hexazinone, tebuthiuron and diuron; two auxinic herbicides: MCPA and 2,4-D; and the EPSP synthase inhibitor: glyphosate. Benthic diatoms within riverine communities were exposed to each herbicide in rapid toxicity tests at concentrations of 50, 200 and 500μgL(-1). The most sensitive taxa were Gomphonema spp. and Encyonema gracilis. Navicula cryptotenella was the most tolerant to herbicide exposure. There was no significant effect of the different herbicide modes of action at the community level. Herbicide mode of action did not alter which taxa were most sensitive within the community and sensitivity rankings of the dominant diatom taxa were similar for each of the eight herbicides. The consistency of the results between herbicides suggests that freshwater benthic diatoms may be suitable in situ indicators for detecting the toxicity of herbicides with differing modes of action. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production.

    PubMed

    Yu, Qin; Powles, Stephen

    2014-11-01

    Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance. However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical review to current understanding of metabolic herbicide resistance evolution in weedy plant species. © 2014 American Society of Plant Biologists. All Rights Reserved.

  4. Enzyme effects on extruded diets for dogs with soybean meal as a substitute for poultry by-product meal.

    PubMed

    Tortola, L; Souza, N G; Zaine, L; Gomes, M O S; Matheus, L F O; Vasconcellos, R S; Pereira, G T; Carciofi, A C

    2013-05-01

    The effects of exogenous enzymes supplementation on kibble diets for dogs formulated with soybean meal (SBM) as a substitute for poultry by-product meal (PM) was investigated on nutrient digestibility, fermentation products formation, post-prandial urea response and selected faecal bacteria counts. Two kibble diets with similar compositions were used in two trials: PM-based diet (28.9% of PM; soybean hulls as a fibre source) and SBM-based diet (29.9% of SBM). In experiment 1, the SBM diet was divided into three diets: SBM-0, without enzyme addition; SBM-1, covered after extrusion with 7500 U protease/kg and 45 U cellulase/kg; and SBM-2, covered with 15,000 U protease/kg and 90 U cellulase/kg. In experiment 2, the SBM diet was divided into three diets: SBM-0; SBM-1, covered with 140 U protease/kg; 8 U cellulase/kg, 800 U pectinase/kg, 60 U phytase/kg, 40 U betaglucanase/kg and 20 U xylanase/kg; and SMB-2, covered with 700 U protease/kg, 40 U cellulase/kg, 4000 U pectinase/kg, 300 U phytase/kg, 200 U betaglucanase/kg and 100 U xylanase/kg. Each experiment followed a block design with six dogs per diet. Data were submitted to analysis of variance and means compared by orthogonal and polynomial contrasts (p < 0.05). In both experiments, nutrients and energy digestibility did not differ between diets (p > 0.05). SBM consumption resulted in increased faecal moisture and production (p < 0.05), without effect on faecal score. Higher concentration of propionate, acetate and lactate, and lower ammonia and pH were found in the faeces of dogs fed SBM (p < 0.05). Higher post-prandial urea was verified in dogs fed SBM (p < 0.05). In experiment 2, the addition of enzymes increased faecal concentration of propionate, acetate and total short-chain fatty acid (p < 0.05) and tended to reduce post-prandial urea concentration (p = 0.06). Although with similar digestibility, SBM shows a worse utilization of absorbed amino acids than the PM. Soybean oligosaccharides can beneficially change gut fermentation product formation. Enzymes can increase the gut fermentation activity and improve the SBM proteic value. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  5. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    PubMed

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.

  6. 77 FR 10472 - Dow AgroScience LLC; Availability of Petition, Plant Pest Risk Assessment, and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... herbicides in the phenoxy auxin group (such as the herbicide 2,4-D) and resistance to grass herbicides in the... phenoxy auxin group (such as the herbicide 2,4-D) and resistance to grass herbicides in the...

  7. Identification of new human pregnane X receptor ligands among pesticides using a stable reporter cell system.

    PubMed

    Lemaire, Géraldine; Mnif, Wissem; Pascussi, Jean-Marc; Pillon, Arnaud; Rabenoelina, Fanja; Fenet, Hélène; Gomez, Elena; Casellas, Claude; Nicolas, Jean-Claude; Cavaillès, Vincent; Duchesne, Marie-Josèphe; Balaguer, Patrick

    2006-06-01

    Pregnane X receptor (PXR, NR1I2) is activated by various chemically unrelated compounds, including environmental pollutants and drugs. We proceeded here to in vitro screening of 28 pesticides with a new reporter system that detects human pregnane X receptor (hPXR) activators. The cell line was obtained by a two-step stable transfection of cervical cancer HeLa cells. The first transfected cell line, HG5LN, contained an integrated luciferase reporter gene under the control of a GAL4 yeast transcription factor-binding site. The second cell line HGPXR was derived from HG5LN and stably expressed hPXR ligand-binding domain fused to GAL4 DNA-binding domain (DBD). The HG5LN cells were used as a control to detect nonspecific activities. Pesticides from various chemical classes were demonstrated, for the first time, to be hPXR activators: (1) herbicides: pretilachlor, metolachlor, and alachlor chloracetanilides, oxadiazon oxiconazole, and isoproturon urea; (2) fungicides: bupirimate and fenarimol pyrimidines, propiconazole, fenbuconazole, prochloraz conazoles, and imazalil triazole; and (3) insecticides: toxaphene organochlorine, permethrin pyrethroid, fipronil pyrazole, and diflubenzuron urea. Pretilachlor, metolachlor, bupirimate, and oxadiazon had an affinity for hPXR equal to or greater than the positive control rifampicin. Some of the newly identified hPXR activators were also checked for their ability to induce cytochrome P450 3A4 expression in a primary culture of human hepatocytes. HGPXR, with HG5LN as a reference, was grafted onto nude mice to assess compound bioavailability through in vivo quantification of hPXR activation. Altogether, our data indicate that HGPXR cells are an efficient tool for identifying hPXR ligands and establishing pesticides as hPXR activators.

  8. Research methods in weed science: herbicide absorption and translocation in plants using radioisotopes

    USDA-ARS?s Scientific Manuscript database

    Herbicide absorption and translocation in plants is a key component in the study of herbicide physiology, mode of action, selectivity, resistance mechanisms, and in the registration process. Radioactive herbicides have been in use for over half-a-century in the research and study of herbicide absorp...

  9. Bioactivity of Several Herbicides on the Nanogram Level Under Different Soil Moisture Conditions.

    PubMed

    Jung, S C; Kuk, Y I; Senseman, S A; Ahn, H G; Seong, C N; Lee, D J

    2015-01-01

    In this study, a double-tube centrifuge method was employed to determine the effects of soil moisture on the bioactivity of cafenstrole, pretilachlor, benfuresate, oxyfluorfen and simetryn. In general, the available herbicide concentration in soil solution (ACSS) showed little change as soil moisture increased for herbicides. The total available herbicide in soil solution (TASS) typically increased as soil moisture increased for all herbicides. The relationship between TASS and % growth rate based on dry weight showed strong linear relationships for both cafenstrole and pretilachlor, with r2 values of 0.95 and 0.84, respectively. Increasing TASS values were consistent with increasing herbicide water solubility, with the exception of the ionizable herbicide simetryn. Plant absorption and % growth rate exhibited a strong linear relationship with TASS. According to the results suggested that TASS was a better predictor of herbicidal bioactivity than ACSS for all herbicides under unsaturated soil moisture conditions.

  10. Long-term trends in the intensity and relative toxicity of herbicide use

    NASA Astrophysics Data System (ADS)

    Kniss, Andrew R.

    2017-04-01

    Herbicide use is among the most criticized aspects of modern farming, especially as it relates to genetically engineered (GE) crops. Many previous analyses have used flawed metrics to evaluate herbicide intensity and toxicity trends. Here, I show that herbicide use intensity increased over the last 25 years in maize, cotton, rice and wheat. Although GE crops have been previously implicated in increasing herbicide use, herbicide increases were more rapid in non-GE crops. Even as herbicide use increased, chronic toxicity associated with herbicide use decreased in two out of six crops, while acute toxicity decreased in four out of six crops. In the final year for which data were available (2014 or 2015), glyphosate accounted for 26% of maize, 43% of soybean and 45% of cotton herbicide applications. However, due to relatively low chronic toxicity, glyphosate contributed only 0.1, 0.3 and 3.5% of the chronic toxicity hazard in those crops, respectively.

  11. Why have no new herbicide modes of action appeared in recent years?

    PubMed

    Duke, Stephen O

    2012-04-01

    Herbicides with new modes of action are badly needed to manage the evolution of resistance of weeds to existing herbicides. Yet no major new mode of action has been introduced to the market place for about 20 years. There are probably several reasons for this. New potential products may have remained dormant owing to concerns that glyphosate-resistant (GR) crops have reduced the market for a new herbicide. The capture of a large fraction of the herbicide market by glyphosate with GR crops led to significantly diminished herbicide discovery efforts. Some of the reduced herbicide discovery research was also due to company consolidations and the availability of more generic herbicides. Another problem might be that the best herbicide molecular target sites may have already been discovered. However, target sites that are not utilized, for which there are inhibitors that are highly effective at killing plants, suggests that this is not true. Results of modern methods of target site discovery (e.g. gene knockout methods) are mostly not public, but there is no evidence of good herbicides with new target sites coming from these approaches. In summary, there are several reasons for a long dry period for new herbicide target sites; however, the relative magnitude of each is unclear. The economic stimulus to the herbicide industry caused by the evolution of herbicide-resistant weeds, especially GR weeds, may result in one or more new modes of action becoming available in the not too distant future. Copyright © 2011 Society of Chemical Industry.

  12. Agricultural herbicide transport in a first-order intermittent stream, Nebraska, USA

    USGS Publications Warehouse

    Vogel, J.R.; Linard, J.I.

    2011-01-01

    The behavior of herbicides in surface waters is a function of many variables, including scale of the watershed, physical and chemical properties of the herbicide, physical and chemical properties of the soil, rainfall intensity, and time of year. In this study, the transport of 6 herbicides and 12 herbicide degradates was examined during the 2004 growing season in an intermediate-scale agricultural watershed (146 ha) that is drained by a first-order intermittent stream, and the mass load for each herbicide in the stream was estimated. The herbicide load during the first week of storm events after application ranged from 17% of annual load for trifluralin to 84% of annual load for acetochlor. The maximum weekly herbicide load in the stream was generally within the first 3 weeks after application for those compounds that were applied within the watershed during 2004, and later for herbicides not applied within the watershed during 2004 but still detected in the stream. The apparent dominant mode of herbicide transport in the stream-determined by analysis amongst herbicide and conservative ion concentrations at different points in the hydrograph and in base flow samples-was either overland runoff or shallow subsurface flow, depending on the elapsed time after application and type of herbicide. The load as a percentage of use (LAPU) for the parent compounds in this study was similar to literature values for those compounds applied by the farmer within the watershed, but smaller for those herbicides that had rainfall as their only source within the watershed.

  13. HERBICIDE SENSITIVITY OF ECHINOCHLOA CRUS-GALLI POPULATIONS: A COMPARISON BETWEEN CROPPING SYSTEMS.

    PubMed

    Claerhout, S; De Cauwer, B; Reheul, D

    2014-01-01

    Echinochloa crus-galli populations exhibit high morphological variability and their response to herbicides varies from field to field. Differential response to herbicides could reflect differences in selection pressure, caused by years of cropping system related herbicide usage. This study investigates the relation between herbicide sensitivity of Echinochloa crus-galli populations and the cropping system to which they were subjected. The herbicide sensitivity of Echinochloa crus-galli was evaluated for populations collected on 18 fields, representing three cropping systems, namely (1) a long-term organic cropping system, (2) a conventional cropping system with corn in crop rotation or (3) a conventional cropping system with long-term monoculture of corn. Each cropping system was represented by 6 E. crus-galli populations. All fields were located on sandy soils. Dose-response pot experiments were conducted in the greenhouse to assess the effectiveness of three foliar-applied corn herbicides: nicosulfuron (ALS-inhibitor), cycloxydim (ACCase-inhibitor) and topramezone (HPPD-inhibitor), and two soil-applied corn herbicides: S-metolachlor and dimethenamid-P (both VLCFA-inhibitors). Foliar-applied herbicides were tested at a quarter, half and full recommended doses. Soil-applied herbicides were tested within a dose range of 0-22.5 g a.i. ha(-1) for S-metolachlor and 0-45 g a.i. ha(-1) for dimethenamid-P. Foliar-applied herbicides were applied at the three true leaves stage. Soil-applied herbicides were treated immediately after sowing the radicle-emerged seeds. All experiments were performed twice. The foliage dry weight per pot was determined four weeks after treatment. Plant responses to herbicides were expressed as biomass reduction (%, relative to the untreated control). Sensitivity to foliar-applied herbicides varied among cropping systems. Compared to populations from monoculture corn fields, populations originating from organic fields were significantly more sensitive to cycloxydim, topramezone and nicosulfuron (resp. 5.3%, 5.9% and 12.3%). Populations from the conventional crop rotation system showed intermediate sensitivity levels. Contrary to foliar-applied herbicides, the effectiveness of soil-applied herbicides was not affected by cropping system. Integrated weed management may be necessary to preserve herbicide efficacy on the long term.

  14. Aspartate-90 and arginine-269 of hamster aspartate transcarbamylase affect the oligomeric state of a chimaeric protein with an Escherichia coli maltose-binding domain.

    PubMed Central

    Qiu, Y; Davidson, J N

    1998-01-01

    Residues Asp-90 and Arg-269 of Escherichia coli aspartate transcarbamylase seem to interact at the interface of adjacent catalytic subunits. Alanine substitutions at the analogous positions in the hamster aspartate transcarbamylase of a chimaeric protein carrying an E. coli maltose-binding domain lead to changes in both the kinetics of the enzyme and the quaternary structure of the protein. The Vmax for the Asp-90-->Ala and Arg-269-->Ala substitutions is decreased to 1/21 and 1/50 respectively, the [S]0.5 for aspartate is increased 540-fold and 826-fold respectively, and the [S]0.5 for carbamoyl phosphate is increased 60-fold for both. These substitutions decrease the oligomeric size of the protein. Whereas the native chimaeric protein behaves as a pentamer, the Asp-90 variant is a trimer and the Arg-269 variant is a dimer. The altered enzymes also exhibit marked decreases in thermal stability and are inactivated at much lower concentrations of urea than is the unaltered enzyme. Taken together, these results are consistent with the hypothesis that both Asp-90 and Arg-269 have a role in the enzymic function and structural integrity of hamster aspartate transcarbamylase. PMID:9425105

  15. Homogeneous synthesis of quaternized chitin in NaOH/urea aqueous solution as a potential gene vector.

    PubMed

    Peng, Na; Ai, Ziye; Fang, Zehong; Wang, Yanfeng; Xia, Zhiping; Zhong, Zibiao; Fan, Xiaoli; Ye, Qifa

    2016-10-05

    Water-soluble quaternized chitins (QCs) were homogeneously synthesized by reacting chitin with (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) in 8wt% NaOH/4wt% urea aqueous solutions. The chemical structure and solution properties of the quaternized chitins were characterized by (1)H NMR, FT-IR, elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The results demonstrated that the water-soluble QCs, with a degree of substitution (DS) values of 0.27-0.54, could be obtained by varying the concentration of chitin, the molar ratio of CHPTAC to chitin unit, and the reaction time at room temperature (25°C). Two QCs (DS=0.36 and 0.54) were selected and studied as gene carriers. Agarose gel retardation assay revealed that both QCs could condense DNA efficiently when N/P ratio>3. The results of particle size and zeta potential indicated that both QCs had a good ability of condensing plasmid DNA into compact nanoparticles with the size of 100-200nm and zeta potential of +18 to +36mV. Compared to polyethylenimine (PEI, 25kDa), the QCs exhibited outstanding low cytotoxicity. Transfection efficiencies of the QCs/DNA complexes were measured using pGL-3 encoding luciferase as the foreign DNA, and the QCs/DNA complexes showed effective transfection efficiencies in 293T cells. These results revealed that the QCs prepared in NaOH/urea aqueous solutions could be used as promising non-viral gene carriers owing to their excellent characteristics. Copyright © 2016. Published by Elsevier Ltd.

  16. Quantitative Evaluation of the Environmental Impact Quotient (EIQ) for Comparing Herbicides

    PubMed Central

    Kniss, Andrew R.; Coburn, Carl W.

    2015-01-01

    Various indicators of pesticide environmental risk have been proposed, and one of the most widely known and used is the environmental impact quotient (EIQ). The EIQ has been criticized by others in the past, but it continues to be used regularly in the weed science literature. The EIQ is typically considered an improvement over simply comparing the amount of herbicides applied by weight. Herbicides are treated differently compared to other pesticide groups when calculating the EIQ, and therefore, it is important to understand how different risk factors affect the EIQ for herbicides. The purpose of this work was to evaluate the suitability of the EIQ as an environmental indicator for herbicides. Simulation analysis was conducted to quantify relative sensitivity of the EIQ to changes in risk factors, and actual herbicide EIQ values were used to quantify the impact of herbicide application rate on the EIQ Field Use Rating. Herbicide use rate was highly correlated with the EIQ Field Use Rating (Spearman’s rho >0.96, P-value <0.001) for two herbicide datasets. Two important risk factors for herbicides, leaching and surface runoff potential, are included in the EIQ calculation but explain less than 1% of total variation in the EIQ. Plant surface half-life was the risk factor with the greatest relative influence on herbicide EIQ, explaining 26 to 28% of the total variation in EIQ for actual and simulated EIQ values, respectively. For herbicides, the plant surface half-life risk factor is assigned values without any supporting quantitative data, and can result in EIQ estimates that are contrary to quantitative risk estimates for some herbicides. In its current form, the EIQ is a poor measure of herbicide environmental impact. PMID:26121252

  17. Quantitative Evaluation of the Environmental Impact Quotient (EIQ) for Comparing Herbicides.

    PubMed

    Kniss, Andrew R; Coburn, Carl W

    2015-01-01

    Various indicators of pesticide environmental risk have been proposed, and one of the most widely known and used is the environmental impact quotient (EIQ). The EIQ has been criticized by others in the past, but it continues to be used regularly in the weed science literature. The EIQ is typically considered an improvement over simply comparing the amount of herbicides applied by weight. Herbicides are treated differently compared to other pesticide groups when calculating the EIQ, and therefore, it is important to understand how different risk factors affect the EIQ for herbicides. The purpose of this work was to evaluate the suitability of the EIQ as an environmental indicator for herbicides. Simulation analysis was conducted to quantify relative sensitivity of the EIQ to changes in risk factors, and actual herbicide EIQ values were used to quantify the impact of herbicide application rate on the EIQ Field Use Rating. Herbicide use rate was highly correlated with the EIQ Field Use Rating (Spearman's rho >0.96, P-value <0.001) for two herbicide datasets. Two important risk factors for herbicides, leaching and surface runoff potential, are included in the EIQ calculation but explain less than 1% of total variation in the EIQ. Plant surface half-life was the risk factor with the greatest relative influence on herbicide EIQ, explaining 26 to 28% of the total variation in EIQ for actual and simulated EIQ values, respectively. For herbicides, the plant surface half-life risk factor is assigned values without any supporting quantitative data, and can result in EIQ estimates that are contrary to quantitative risk estimates for some herbicides. In its current form, the EIQ is a poor measure of herbicide environmental impact.

  18. Glyphosate and dicamba herbicide tank mixture effects on native plant and non-genetically engineered soybean seedlings.

    PubMed

    Olszyk, David; Pfleeger, Thomas; Lee, E Henry; Plocher, Milton

    2015-07-01

    Crops engineered to contain genes for tolerance to multiple herbicides may be treated with several herbicides to manage weeds resistant to each herbicide. Thus, nearby non-target plants may be subjected to increased exposure to several herbicides used in combination. Of particular concern are native plants, as well as adjacent crops which have not been genetically engineered for tolerance to herbicides. We evaluated responses of seven species of native plants grown in a greenhouse and treated less than field application rates of glyphosate and/or dicamba: Andropogon gerardii, Asclepias syriaca, Eutrochium purpureum, Oenothera biennis, Polyganum lapathifolium, Solidago canadensis and Tridens flavus, and non-herbicide resistant soybean (Glycine max, Oregon line M4). Herbicide concentrations were 0.03 or 0.1 × field application rates of 1122 g ha(-1) active ingredient (a.i) (831 g ha(-1) acid glyphosate) for glyphosate and 562 g ha(-1) a.i. for dicamba. In general, plant growth responses to combinations of glyphosate and dicamba were less than the sum of growth responses to the individual herbicides (i.e., antagonistic effect), primarily when one or both herbicides alone caused a large reduction in growth. E. purpureum, P. lapathifolium and S. canadensis were the most sensitive species to both herbicides, while A. gerardii was the most tolerant, with no response to either herbicide. The combinations of herbicides resulted in responses most similar to that from dicamba alone for G. max and from glyphosate alone for T. flavus. The results of this study indicated the need for more data such as effects on native plants in the field to assess risks to non-target plants from combinations of herbicides.

  19. Herbicides and plant hormesis.

    PubMed

    Belz, Regina G; Duke, Stephen O

    2014-05-01

    Herbicide hormesis is commonly observed at subtoxic doses of herbicides and other phytotoxins. The occurrence and magnitude of this phenomenon are influenced by plant growth stage and physiological status, environmental factors, the endpoint measured and the timing between treatment and endpoint measurement. The mechanism in some cases of herbicide hormesis appears to be related to the target site of the herbicide, whereas in other examples hormesis may be by overcompensation to moderate stress induced by the herbicides or a response to disturbed homeostasis. Theoretically, herbicide hormesis could be used in crop production, but this has been practical only in the case of the use of herbicides as sugar cane 'ripeners' to enhance sucrose accumulation. The many factors that can influence the occurrence, the magnitude and the dose range of hormetic increases in yield for most crops make it too unpredictable and risky as a production practice with the currently available knowledge. Herbicide hormesis can cause undesired effects in situations in which weeds are unintentionally exposed to hormetic doses (e.g. in adjacent fields, when shielded by crop vegetation). Some weeds that have evolved herbicide resistance may have hormetic responses to recommended herbicide application rates. Little is known about such effects under field conditions. A more complete understanding of herbicide hormesis is needed to exploit its potential benefits and to minimize its potential harmful effects in crop production. © 2014 Society of Chemical Industry.

  20. Effects of herbicide-treated host plants on the development of Mamestra brassicae L. caterpillars.

    PubMed

    Hahn, Melanie; Geisthardt, Martin; Brühl, Carsten A

    2014-11-01

    Herbicides are widely used pesticides that affect plants by changing their chemistry. In doing so, herbicides might also influence the quality of plants as food for herbivores. To study the effects of herbicides on host plant quality, 3 plant species (Plantago lanceolata L., P. major L., and Ranunculus acris L.) were treated with sublethal rates of either a sulfonylurea (Atlantis WG, Bayer CropScience) or a glyphosate (Roundup LB Plus, Monsanto) herbicide, and the development of caterpillars of the cabbage moth Mamestra brassicae L. that fed on these plants was observed. Of the 6 tested plant-herbicide combinations, 1 combination (R. acris + sulfonylurea herbicide) resulted in significantly lower caterpillar weight, increased time to pupation, and increased overall development time compared with larvae that were fed unsprayed plants. These results might be caused by a lower nutritional value of these host plants or increased concentrations of secondary metabolites that are involved in plant defense. The results of the present and other studies suggest potential risks to herbivores that feed on host plants treated with sublethal rates of herbicides. However, as the effects of herbicides on host plant quality appear to be species-specific and as there are numerous plant-herbicide-herbivore relationships in agricultural landscapes, a general reduction in herbicide contamination of nontarget habitats (e.g., field margins) might mitigate the negative effects of herbicides on host plant quality. © 2014 SETAC.

  1. Analysis of transcriptomic changes in Echinochloa colona in response to treatment with the herbicide imazamox

    USDA-ARS?s Scientific Manuscript database

    Herbicides are the most frequently used means of controlling weeds. For many herbicides the target site is known; however, it is considerably less clear how plant gene expression changes in response to herbicide exposure. Understanding which genes are activated in response to herbicides provides i...

  2. Real World of Industrial Chemistry: The Challenge of Herbicides for Aquatic Weeds.

    ERIC Educational Resources Information Center

    Martin, Dean F.; Martin, Barbara B.

    1985-01-01

    Discusses problems in selecting the correct herbicide for use in controlling aquatic weeds, considering specificity, size of the market, fear of trace contaminants, and herbicide resistance in weeds. Also summarizes some successful herbicides, providing a table listing mode of action of some herbicides used for control of aquatic plants. (JN)

  3. 77 FR 41361 - Dow AgroSciences LLC; Availability of Petition for Determination of Nonregulated Status of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Genetically Engineered for Herbicide Tolerance AGENCY: Animal and Plant Health Inspection Service, USDA... broadleaf herbicides in the phenoxy auxin group (such as the herbicide 2,4-D) and the herbicides glyphosate...-44406-6, which has been genetically engineered for tolerance to broadleaf herbicides in the phenoxy...

  4. The Use of Protein Hydrolysates for Weed Control

    NASA Astrophysics Data System (ADS)

    Christians, Nick; Liu, Dianna; Unruh, Jay Bryan

    Corn gluten meal, the protein fraction of corn (Zea mays L.) grain, is commercially used as a natural weed control agent and nitrogen source in horticultural crops and in the turf and ornamental markets. Corn gluten hydrolysate, a water soluble form of gluten meal, has also been proposed for the same purpose, although it could be sprayed on the soil rather than applied in the granular form. Five depeptides, glutaminyl-glutamine (Gln-Gln), glycinyl-alanine (Gly-Ala), alanyl-­glutamine (Ala-Glu), alanyl-asparagine (Ala-Asp), and alaninyl-alanine (Ala-Ala) and a pentapeptide leucine-serine-proline-alanine-glutamine (Leu-Ser-Pro-Ala-Gln) were identified as the active components of the hydrolysate. Microscopic analysis revealed that Ala-Ala acted on some metabolic process rather than directly on the mitotic apparatus. Similar to the chloracetamides and sulfonyl-urea hebicides, Ala-Ala inhibits cell division rather than disrupting of cell division processes. Cellular ultrastructure changes caused by exposure to Ala-Ala implicate Ala-Ala as having membrane-disrupting characteristics similar to several synthetic herbicides. The potential use of the hydrolysate and the peptides as weed controls is discussed.

  5. DFT-assisted spectroscopic characterization of pyrazosulfuron-ethyl: FT-Raman, FTIR and UV-vis studies of a sulfonyl urea herbicide

    NASA Astrophysics Data System (ADS)

    Monicka, J. Clemy; James, C.

    2014-10-01

    Raman and IR spectra of pyrazosulfuron-ethyl have been reported here, and it is shown that the spectra has been fully interpreted in terms of assigning normal modes to the various spectral features by using density functional theory calculations. The Raman bands observed for PY in solid phase are characteristic for the carbonyl group, Csbnd C, Csbnd H and Nsbnd H stretching and deformation vibrations. The dimer structure of PY was optimized, including the Nsbnd H…N and Csbnd H…O intermolecular interactions. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity and charge delocalization have been analyzed using natural bond orbital analysis. Spectral analysis reveals the substantial effect of non-bonding interaction, conjugation and induction effects in the molecule which in turn influences the bioactivity of the compound. Red shifting of (∼94 cm-1) Nsbnd H stretching band substantiates the presence of strong Nsbnd H…N intramolecular hydrogen bonding in the molecule. The aromatic behavior of pyrimidine and pyrazole ring has been calculated using the HOMA method.

  6. Fabrication of few-layer graphene film based field effect transistor and its application for trace-detection of herbicide atrazine

    NASA Astrophysics Data System (ADS)

    Thanh Cao, Thi; Chuc Nguyen, Van; Binh Nguyen, Hai; Thang Bui, Hung; Thu Vu, Thi; Phan, Ngoc Hong; Thang Phan, Bach; Hoang, Le; Bayle, Maxime; Paillet, Matthieu; Sauvajol, Jean Louis; Phan, Ngoc Minh; Tran, Dai Lam

    2016-09-01

    We describe the fabrication of highly sensitive graphene-based field effect transistor (FET) enzymatic biosensor for trace-detection of atrazine. The few-layers graphene films were prepared on polycrystalline copper foils by atmospheric pressure chemical vapor deposition method using an argon/hydrogen/methane mixture. The characteristics of graphene films were investigated by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The results indicated low uniformity of graphene layers, which is probably induced by heterogeneous distribution of graphene nucleation sites on the Cu surface. The pesticide detection is accomplished through the measurement of the drain-source current variations of the FET sensor upon the urea enzymatic hydrolysis reaction. The obtained biosensor is able to detect atrazine with a sensitivity of 56 μA/logCATZ in range between 2 × 10-4 and 20 ppb and has a limit of detection as low as 0.05 ppt. The elaboration of such highly sensitive biosensors will provide better biosensing performances for the detection of biochemical targets.

  7. Trends in pesticide concentrations in urban streams in the United States, 1992-2008

    USGS Publications Warehouse

    Ryberg, Karen R.; Vecchia, Aldo V.; Martin, Jeffrey D.; Gilliom, Robert J.

    2010-01-01

    Pesticide concentration trends in streams dominated by urban land use were assessed using data from 27 urban streams sampled as part of the U.S. Geological Survey National Water-Quality Assessment Program. The sites were divided into four regions, Northeast, South, Midwest, and West, to examine possible regional patterns. Three partially overlapping 9-year periods (1992-2000, 1996-2004, and 2000-2008) were examined for eight herbicides and one degradation product (simazine, prometon, atrazine, deethylatrazine, metolachlor, trifluralin, pendimethalin, tebuthiuron, and Dacthal), and five insecticides and two degradation products (chlorpyrifos, malathion, diazinon, fipronil, fipronil sulfide, desulfinylfipronil, and carbaryl). The data were analyzed for trends in concentration using a parametric regression model with seasonality, flow-related variability, and trend, called SEAWAVE-Q. The SEAWAVE-Q model also was used to generate estimated daily concentration percentiles for each analysis period to provide a summary of concentration magnitudes. For herbicides, the largest 90th percentiles of estimated concentrations for simazine were in the South, prometon at some sites in all of the regions, atrazine and deethylatrazine in the South and Midwest, metolachlor in the Midwest and a few sites in the South, pendimethalin at scattered sites in all of the regions, and tebuthiuron in the South and a few sites in the Midwest and West. For insecticides, the largest 90th percentiles of estimated concentrations for diazinon and carbaryl were distributed among various sites in all regions (especially during 1996-2004), and fipronil at isolated sites in all of the regions during 2000-2008. Trend analysis results for the herbicides indicated many significant trends, both upward and downward, with varying patterns depending on period, region, and herbicide. Overall, deethylatrazine showed the most consistent pattern of upward trends, especially in the Northeast (2000-2008), South (1996-2004 and 2000-2008), and Midwest (1996-2004 and 2000-2008). Other herbicides showed less consistent upward trends, including simazine in the South (1996-2004), prometon in the Midwest (2000-2008), and atrazine in the South (1996-2004). The most consistent downward trends were for simazine in the Northeast and Midwest (1996-2004), prometon in the Northeast and Midwest (1996-2004) and West (1996-2004 and 2000-2008), and tebuthiuron in the South (1996-2004 and 2000-2008) and West (2000-2008). Strong similarity existed between the trends for atrazine and deethylatrazine during 1996-2004. During 2000-2008, however, there were mixed upward and downward trends in atrazine and predominantly upward trends in deethylatrazine. Ten sites with a downward trend in atrazine were paired with an upward trend in deethylatrazine and for three of these sites (1 in the South and 2 in the Midwest) both opposing trends were significant. Opposing trends showing a decrease in atrazine and an increase in deethylatrazine may indicate that decreases in atrazine from surface runoff are being offset in some cases by increases in deethylatrazine from groundwater for the latter analysis period. Trend results for insecticides indicated widespread significant downward trends for chlorpyrifos (especially 1996-2004), diazinon (1996-2004 and 2000-2008), and malathion (especially 1996-2004); widespread significant upward trends for fipronil and its degradation products (2000-2008); and mostly nonsignificant trends for carbaryl (1996-2004 and 2000-2008). The downward trends for chlorpyrifos and diazinon were consistent with the regulatory phaseout of residential uses of these insecticides and the upward trends for fipronil and its degradation products were consistent with its introduction in 1996 and subsequent increasing use as a possible substitute for chlorpyrifos and diazinon. The downward trends in malathion may be caused by voluntary substitution of pyrethroids or fipronil for malathio

  8. A comparison of the herbicide tolerances of rare and common plants in an agricultural landscape.

    PubMed

    Egan, J Franklin; Graham, Ian M; Mortensen, David A

    2014-03-01

    Declining plant biodiversity in agroecosystems has often been attributed to escalating use of chemical herbicides, but other changes in farming systems, including the clearing of seminatural habitat fragments, confound the influence of herbicides. The present study introduces a new approach to evaluate the impacts of herbicide pollution on plant communities at landscape or regional scales. If herbicides are in fact a key factor shaping agricultural plant diversity, one would expect to see the signal of past herbicide impacts in the current plant community composition of an intensively farmed region, with common, successful species more tolerant to widely used herbicides than rare or declining species. Data from an extensive field survey of plant diversity in Lancaster County, Pennsylvania, USA, were compared with herbicide bioassay experiments in a greenhouse to test the hypothesis that common species possess higher herbicide tolerances than rare species. Five congeneric pairs of rare and common species were treated with 3 commonly used herbicide modes of action in bioassay experiments, and few significant differences were found in the tolerances of rare species relative to common species. These preliminary results suggest that other factors beyond herbicide exposure may be more important in shaping the distribution and abundance of plant species diversity across an agricultural landscape. © 2014 SETAC.

  9. A generalised individual-based algorithm for modelling the evolution of quantitative herbicide resistance in arable weed populations.

    PubMed

    Liu, Chun; Bridges, Melissa E; Kaundun, Shiv S; Glasgow, Les; Owen, Micheal Dk; Neve, Paul

    2017-02-01

    Simulation models are useful tools for predicting and comparing the risk of herbicide resistance in weed populations under different management strategies. Most existing models assume a monogenic mechanism governing herbicide resistance evolution. However, growing evidence suggests that herbicide resistance is often inherited in a polygenic or quantitative fashion. Therefore, we constructed a generalised modelling framework to simulate the evolution of quantitative herbicide resistance in summer annual weeds. Real-field management parameters based on Amaranthus tuberculatus (Moq.) Sauer (syn. rudis) control with glyphosate and mesotrione in Midwestern US maize-soybean agroecosystems demonstrated that the model can represent evolved herbicide resistance in realistic timescales. Sensitivity analyses showed that genetic and management parameters were impactful on the rate of quantitative herbicide resistance evolution, whilst biological parameters such as emergence and seed bank mortality were less important. The simulation model provides a robust and widely applicable framework for predicting the evolution of quantitative herbicide resistance in summer annual weed populations. The sensitivity analyses identified weed characteristics that would favour herbicide resistance evolution, including high annual fecundity, large resistance phenotypic variance and pre-existing herbicide resistance. Implications for herbicide resistance management and potential use of the model are discussed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants.

    PubMed

    Schütte, Gesine; Eckerstorfer, Michael; Rastelli, Valentina; Reichenbecher, Wolfram; Restrepo-Vassalli, Sara; Ruohonen-Lehto, Marja; Saucy, Anne-Gabrielle Wuest; Mertens, Martha

    2017-01-01

    Farmland biodiversity is an important characteristic when assessing sustainability of agricultural practices and is of major international concern. Scientific data indicate that agricultural intensification and pesticide use are among the main drivers of biodiversity loss. The analysed data and experiences do not support statements that herbicide-resistant crops provide consistently better yields than conventional crops or reduce herbicide amounts. They rather show that the adoption of herbicide-resistant crops impacts agronomy, agricultural practice, and weed management and contributes to biodiversity loss in several ways: (i) many studies show that glyphosate-based herbicides, which were commonly regarded as less harmful, are toxic to a range of aquatic organisms and adversely affect the soil and intestinal microflora and plant disease resistance; the increased use of 2,4-D or dicamba, linked to new herbicide-resistant crops, causes special concerns. (ii) The adoption of herbicide-resistant crops has reduced crop rotation and favoured weed management that is solely based on the use of herbicides. (iii) Continuous herbicide resistance cropping and the intensive use of glyphosate over the last 20 years have led to the appearance of at least 34 glyphosate-resistant weed species worldwide. Although recommended for many years, farmers did not counter resistance development in weeds by integrated weed management, but continued to rely on herbicides as sole measure. Despite occurrence of widespread resistance in weeds to other herbicides, industry rather develops transgenic crops with additional herbicide resistance genes. (iv) Agricultural management based on broad-spectrum herbicides as in herbicide-resistant crops further decreases diversity and abundance of wild plants and impacts arthropod fauna and other farmland animals. Taken together, adverse impacts of herbicide-resistant crops on biodiversity, when widely adopted, should be expected and are indeed very hard to avoid. For that reason, and in order to comply with international agreements to protect and enhance biodiversity, agriculture needs to focus on practices that are more environmentally friendly, including an overall reduction in pesticide use. (Pesticides are used for agricultural as well non-agricultural purposes. Most commonly they are used as plant protection products and regarded as a synonym for it and so also in this text.).

  11. Silvicultural use of herbicides in Pacific Northwest forests.

    Treesearch

    H. Gratkowski

    1975-01-01

    After a brief description of silvicultural problems, the author tells how to prescribe herbicidal sprays for aerial, application in Pacific Northwest forests. The publication offers a detailed discussion of the five basic considerations: (1) selection of the best herbicide or herbicides, (2) amount of herbicide to be applied per acre, (3) carriers, (4) volume of spray...

  12. Development of reproduction in Allegheny hardwood stands after herbicide-clearcuts and herbicide-shelterwood cuts

    Treesearch

    Stephen B. Horsley

    1982-01-01

    Dense ground covers of fern and grass interfere with the regeneration of Allegheny hardwoods. An herbicide containing N-phosphonomethyl glycine controls the fern and grass, but also kills advance reproduction of desirable tree species. Preliminary results of an experiment comparing regeneration 3 years after herbicide-clearcuts and herbicide-shelterwood seed cuts...

  13. Hybridization using cytoplasmic male sterility, cytoplasmic herbicide tolerance, and herbicide tolerance from nuclear genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beversdorf, W.D.; Erickson, L.R.; Grant, I.

    An improved process is described for producing a substantially homogeneous population of plants of a predetermined hybrid variety of crop which is capable of undergoing self-pollination and cross-pollination. The process comprises: growing in a first planting area a substantially random population of cytoplasmic male sterile plants which exhibit cytoplasmic herbicide tolerance to at least one Type A herbicide and exhibit tolerance to at least one Type B herbicide which is attributable solely to homozygous dominant nuclear genes and male fertile plants which are homozygous recessive maintainer plants for the cytoplasmic male sterile plants and which lack the cytoplasmic herbicide tolerancemore » to at least one Type A herbicide and exhibit tolerance to at least one Type B herbicide attributable solely to the homozygous dominant nuclear genes.« less

  14. Management of herbicide resistance in wheat cropping systems: learning from the Australian experience.

    PubMed

    Walsh, Michael J; Powles, Stephen B

    2014-09-01

    Herbicide resistance continues to escalate in weed populations infesting global wheat (Triticum aestivum L.) crops, threatening grain production and thereby food supply. Conservation wheat production systems are reliant on the use of efficient herbicides providing low-cost, selective weed control in intensive cropping systems. The resistance-driven loss of herbicide resources combined with limited potential for new herbicide molecules means greater emphasis must be placed on preserving existing herbicides. For more than two decades, since the initial recognition of the dramatic consequences of herbicide resistance, the challenge of introducing additional weed control strategies into herbicide-based weed management programmes has been formidable. Throughout this period, herbicide resistance has expanded unabated across the world's wheat production regions. However, in Australia, where herbicide resources have become desperately depleted, the adoption of harvest weed seed control is evidence, at last, of a successful approach to sustainable weed management in wheat production systems. Growers routinely including strategies to target weed seeds during crop harvest, as part of herbicide-based weed management programmes, are now realising significant weed control and crop production benefits. When combined with an attitude of zero weed tolerance, there is evidence of a sustainable weed control future for wheat production systems. The hard-learned lessons of Australian growers can now be viewed by global wheat producers as an example of how to stop the continual loss of herbicide resources in productive cropping systems. © 2013 Society of Chemical Industry.

  15. Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice.

    PubMed

    Zaller, Johann G; Cantelmo, Clemens; Santos, Gabriel Dos; Muther, Sandrina; Gruber, Edith; Pallua, Paul; Mandl, Karin; Friedrich, Barbara; Hofstetter, Ingrid; Schmuckenschlager, Bernhard; Faber, Florian

    2018-06-03

    Herbicides are increasingly applied in vineyards worldwide. However, not much is known on potential side effects on soil organisms or on the nutrition of grapevines (Vitis vinifera). In an experimental vineyard in Austria, we examined the impacts of three within-row herbicide treatments (active ingredients: flazasulfuron, glufosinate, glyphosate) and mechanical weeding on grapevine root mycorrhization; soil microorganisms; earthworms; and nutrient concentration in grapevine roots, leaves, xylem sap and grape juice. The three herbicides reduced grapevine root mycorrhization on average by 53% compared to mechanical weeding. Soil microorganisms (total colony-forming units, CFU) were significantly affected by herbicides with highest CFUs under glufosinate and lowest under glyphosate. Earthworms (surface casting activity, density, biomass, reproduction) or litter decomposition in soil were unaffected by herbicides. Herbicides altered nutrient composition in grapevine roots, leaves, grape juice and xylem sap that was collected 11 months after herbicide application. Xylem sap under herbicide treatments also contained on average 70% more bacteria than under mechanical weeding; however, due to high variability, this was not statistically significant. We conclude that interdisciplinary approaches should receive more attention when assessing ecological effects of herbicides in vineyard ecosystems.

  16. Integrated pest management and weed management in the United States and Canada.

    PubMed

    Owen, Micheal D K; Beckie, Hugh J; Leeson, Julia Y; Norsworthy, Jason K; Steckel, Larry E

    2015-03-01

    There is interest in more diverse weed management tactics because of evolved herbicide resistance in important weeds in many US and Canadian crop systems. While herbicide resistance in weeds is not new, the issue has become critical because of the adoption of simple, convenient and inexpensive crop systems based on genetically engineered glyphosate-tolerant crop cultivars. Importantly, genetic engineering has not been a factor in rice and wheat, two globally important food crops. There are many tactics that help to mitigate herbicide resistance in weeds and should be widely adopted. Evolved herbicide resistance in key weeds has influenced a limited number of growers to include a more diverse suite of tactics to supplement existing herbicidal tactics. Most growers still emphasize herbicides, often to the exclusion of alternative tactics. Application of integrated pest management for weeds is better characterized as integrated weed management, and more typically integrated herbicide management. However, adoption of diverse weed management tactics is limited. Modifying herbicide use will not solve herbicide resistance in weeds, and the relief provided by different herbicide use practices is generally short-lived at best. More diversity of tactics for weed management must be incorporated in crop systems. © 2014 Society of Chemical Industry.

  17. Herbicides as Weed Control Agents: State of the Art: II. Recent Achievements[C

    PubMed Central

    Kraehmer, Hansjoerg; van Almsick, Andreas; Beffa, Roland; Dietrich, Hansjoerg; Eckes, Peter; Hacker, Erwin; Hain, Ruediger; Strek, Harry John; Stuebler, Hermann; Willms, Lothar

    2014-01-01

    In response to changing market dynamics, the discovery of new herbicides has declined significantly over the past few decades and has only seen a modest upsurge in recent years. Nevertheless, the few introductions have proven to be interesting and have brought useful innovation to the market. In addition, herbicide-tolerant or herbicide-resistant crop technologies have allowed the use of existing nonselective herbicides to be extended into crops. An increasing and now major challenge is being posed by the inexorable increase in biotypes of weeds that are resistant to herbicides. This problem is now at a level that threatens future agricultural productivity and needs to be better understood. If herbicides are to remain sustainable, then it is a must that we adopt diversity in crop rotation and herbicide use as well as increase the use of nonchemical measures to control weeds. Nevertheless, despite the difficulties posed by resistant weeds and increased regulatory hurdles, new screening tools promise to provide an upsurge of potential herbicide leads. Our industry urgently needs to supply agriculture with new, effective resistance-breaking herbicides along with strategies to sustain their utility. PMID:25104721

  18. Broad resistance to acetohydroxyacid-synthase-inhibiting herbicides in feral radish (Raphanus sativus L.) populations from Argentina.

    PubMed

    Pandolfo, Claudio E; Presotto, Alejandro; Moreno, Florencia; Dossou, Ida; Migasso, Juan P; Sakima, Ernesto; Cantamutto, Miguel

    2016-02-01

    Soon after the commercial release of sunflower cultivars resistant to imidazolinone herbicides, several uncontrolled feral radish (Raphanus sativus L.) populations were found in south-eastern Buenos Aires, Argentina. These populations were studied in field, glasshouse and laboratory experiments aiming to characterise their resistance profile and to develop management tools. Three feral radish accessions were highly resistant to ten active ingredients of five families of acetohydroxyacid synthase (AHAS)-inhibiting herbicides. Sequence analysis of the AHAS gene detected a Trp574Leu mutation in all resistant accessions. One accession with an intermediate level of resistance was heterozygous for this mutation, probably owing to gene exchange with a susceptible subpopulation located in the field margin. Herbicide-resistant and herbicide-susceptible radish could be controlled in sunflower by alternative herbicides. This is the first report of feral radish with resistance to herbicides belonging to all the AHAS-inhibiting herbicide families, conferred by Trp574Leu mutation in the AHAS gene. An appropriate herbicide rotation with alternative herbicides such as fluorochloridone or aclonifen and an increase in the diversity of cropping systems are important for minimising the prevalence of these biotypes. © 2015 Society of Chemical Industry.

  19. Influence of an experimental herbicide on soil nitrogen-fixing bacteria and other microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, L.M. Jr.; Hedrick, H.G.

    Influence of an experimental herbicide on two isolates of soil nitrogen-fixing bacteria Rhizobium japonicum 3I1b110 and Azotobacter vinelandii ATCC 12837, was determined using a bioresponse assay, thin-layer chromatographic analysis, and changes in viable cells on the herbicide as the sole source of organic carbon. Seven bacterial and nine fungus isolates were also found by a soil enrichment technique to show utilization of the herbicide. A. vinelandii showed stimulation of growth in the first 4 days of exposure on the herbicide at 1,000 ppM. The herbicide then became toxic or was metabolized into toxic by-products. R. japonicum showed utilization of themore » herbicide by changes in growth rate as influenced by the inoculum concentration, the thoroughness of inoculum washing, and the concentration of herbicide. Using TLC assay techniques, the herbicide was found to be depleted in laboratory experiments by R. japonicum following 10 days of growth, without detectable nonmetabolic by-products. These findings suggested that the addition of the experimental herbicide to soils planted with bean crops could possibly influence the metabolic activity of R. japonicum as a symbiotic nitrogen-fixing bacterium. 5 figures, 1 table.« less

  20. Herbicides as weed control agents: state of the art: II. Recent achievements.

    PubMed

    Kraehmer, Hansjoerg; van Almsick, Andreas; Beffa, Roland; Dietrich, Hansjoerg; Eckes, Peter; Hacker, Erwin; Hain, Ruediger; Strek, Harry John; Stuebler, Hermann; Willms, Lothar

    2014-11-01

    In response to changing market dynamics, the discovery of new herbicides has declined significantly over the past few decades and has only seen a modest upsurge in recent years. Nevertheless, the few introductions have proven to be interesting and have brought useful innovation to the market. In addition, herbicide-tolerant or herbicide-resistant crop technologies have allowed the use of existing nonselective herbicides to be extended into crops. An increasing and now major challenge is being posed by the inexorable increase in biotypes of weeds that are resistant to herbicides. This problem is now at a level that threatens future agricultural productivity and needs to be better understood. If herbicides are to remain sustainable, then it is a must that we adopt diversity in crop rotation and herbicide use as well as increase the use of nonchemical measures to control weeds. Nevertheless, despite the difficulties posed by resistant weeds and increased regulatory hurdles, new screening tools promise to provide an upsurge of potential herbicide leads. Our industry urgently needs to supply agriculture with new, effective resistance-breaking herbicides along with strategies to sustain their utility. © 2014 American Society of Plant Biologists. All Rights Reserved.

  1. Delayed degradation in soil of foliar herbicides glyphosate and sulcotrione previously absorbed by plants: consequences on herbicide fate and risk assessment.

    PubMed

    Doublet, Jérémy; Mamy, Laure; Barriuso, Enrique

    2009-10-01

    Following application, pesticides can be intercepted and absorbed by weeds and/or crops. Plants containing pesticides residues may then reach the soil during the crop cycle or after harvest. However, the fate in soil of pesticides residues in plants is unknown. Two commonly used foliar herbicides, glyphosate and sulcotrione, (14)C-labeled, were applied on leaves of oilseed rape and/or maize, translocation was studied, and then soil incubations of aerial parts of plants containing herbicides residues were performed. Soil treated directly with herbicides was used as control. The effects of adjuvants on herbicide plant-absorption and subsequent soil-degradation were also investigated comparing herbicides application as active ingredients and as commercial formulations. The fate in soil of herbicides residues in plants was different from that of control, and different for glyphosate and sulcotrione. Mineralization in soil of glyphosate in crops decreased compared to control, and amounts of (14)C-extractable residues, mainly composed by the metabolite aminomethylphosphonic acid (AMPA), and non-extractable residues (NER) increased. In contrast, mineralization in soil of sulcotrione in maize increased compared to control, with a decrease in the (14)C-extractable residues and an increase in NER. The fate of both herbicides was influenced by the type of plant organ in which herbicide was incorporated, because of differences in herbicides bioavailability and organs biodegradability, but not by adjuvants. Absorption of both herbicides in plant delays their subsequent soil-degradation, and particularly, glyphosate persistence in soil could increase from two to six times. The modifications of herbicide degradation in soil due to interception by plants should be considered for environmental risks assessment.

  2. Phytotoxicity of Four Photosystem II Herbicides to Tropical Seagrasses

    PubMed Central

    Flores, Florita; Collier, Catherine J.; Mercurio, Philip; Negri, Andrew P.

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zostera muelleri and Halodule uninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m ′), indicating reduced photosynthesis and maximum effective yields (Fv/Fm) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows of the GBR from further decline. PMID:24098726

  3. SulE, a Sulfonylurea Herbicide De-Esterification Esterase from Hansschlegelia zhihuaiae S113

    PubMed Central

    Hang, Bao-Jian; Hong, Qing; Xie, Xiang-Ting; Huang, Xing; Wang, Cheng-Hong; Li, Shun-Peng

    2012-01-01

    De-esterification is an important degradation or detoxification mechanism of sulfonylurea herbicide in microbes and plants. However, the biochemical and molecular mechanisms of sulfonylurea herbicide de-esterification are still unknown. In this study, a novel esterase gene, sulE, responsible for sulfonylurea herbicide de-esterification, was cloned from Hansschlegelia zhihuaiae S113. The gene contained an open reading frame of 1,194 bp, and a putative signal peptide at the N terminal was identified with a predicted cleavage site between Ala37 and Glu38, resulting in a 361-residue mature protein. SulE minus the signal peptide was synthesized in Escherichia coli BL21 and purified to homogeneity. SulE catalyzed the de-esterification of a variety of sulfonylurea herbicides that gave rise to the corresponding herbicidally inactive parent acid and exhibited the highest catalytic efficiency toward thifensulfuron-methyl. SulE was a dimer without the requirement of a cofactor. The activity of the enzyme was completely inhibited by Ag+, Cd2+, Zn2+, methamidophos, and sodium dodecyl sulfate. A sulE-disrupted mutant strain, ΔsulE, was constructed by insertion mutation. ΔsulE lost the de-esterification ability and was more sensitive to the herbicides than the wild type of strain S113, suggesting that sulE played a vital role in the sulfonylurea herbicide resistance of the strain. The transfer of sulE into Saccharomyces cerevisiae BY4741 conferred on it the ability to de-esterify sulfonylurea herbicides and increased its resistance to the herbicides. This study has provided an excellent candidate for the mechanistic study of sulfonylurea herbicide metabolism and detoxification through de-esterification, construction of sulfonylurea herbicide-resistant transgenic crops, and bioremediation of sulfonylurea herbicide-contaminated environments. PMID:22247165

  4. Phytotoxicity of four photosystem II herbicides to tropical seagrasses.

    PubMed

    Flores, Florita; Collier, Catherine J; Mercurio, Philip; Negri, Andrew P

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zosteramuelleri and Haloduleuninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m '), indicating reduced photosynthesis and maximum effective yields (Fv/Fm ) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows of the GBR from further decline.

  5. NOVEL HERBICIDES

    EPA Science Inventory

    Low-dose, high-potency herbicides are defined as those herbicides with a maximum label application rate of 0.5 pounds of active ingredient per acre. Several classes of chemicals fall into this category, including the acetolactate synthase (ALSase) inhibitor herbicides, imidazoli...

  6. Structural and functional effects of herbicides on non-target organisms in aquatic ecosystems with an emphasis on atrazine

    USGS Publications Warehouse

    Fairchild, James; Kortekamp, Andreas

    2011-01-01

    Herbicide use has increased dramatically around the world over the past 6 decades (Gianessi and Reigner, 2007). Few herbicides were in use in the 1950s. However, by 2001 approximately 1.14 billion kilograms of herbicides were applied globally for the control of undesireable vegetation in agricultural, silvicultural, lawncare, aquacultural, and irrigation/recreational water management activities (Kiely et al., 2004). Twenty-eight percent of the total mass of herbicides is applied in the United States, with the remaining 72 percent being applied elsewhere around the globe (Kiely et al., 2004). Herbicides represent 36% of global pesticide use, followed by insecticides (25%), fungicides (10%) and other chemical classes (Kiely et al., 2004). Agricultural production accounts for approximately 90% of herbicide use in the U.S. (Kiely et al., 2004). Gianessi and Reigner (2007) indicated that herbicides are routinely used on more than 90% of the area designated for large commercial crops including corn, soybeans, cotton, sugar beets, peanuts, and rice. Increased farm mechanization, technological advancements in production of inexpensive sources of inorganic nitrogen fertilizer (e.g., anhydrous ammonia), and conversion of forest, grassland, and wetland habitats to cropland has led to a tremendous increase in global food production over the past half-century. Herbicides have augmented advances in large-scale agricultural systems and have largely replaced mechanical and hand-weeding control mechanisms (Gianessi and Reigner, 2007). The wide-spread use of herbicides in agriculture has resulted in frequent chemical detections in surface and groundwaters (Gilliom, 2007). The majority of herbicides used are highly water soluble and are therefore prone to runoff from terrestrial environments. In additon, spray drift and atmospheric deposition can contribute to herbicide contamination of aquatic environments. Lastly, selected herbicides are deliberately applied to aquatic environments for controlling nuisance aquatic vegetation. Although aquatic herbicide exposure has been widely documented, these exposures are not necessarily related to adverse non-target ecological effects on natural communities in aquatic environments. This chapter evaluates the potential for effects of herbicides on the structure and function of aquatic envrionments at the population, community, and ecosystem levels of biological organization. In this manuscript I examine several critical aspects of the subject matter area: primary herbicides in use and chemical modes of action; the regulatory process used for registration and risk assessment of herbicides; data regarding non-target risks and the relative sensitivity of aquatic plants, inveretebrates, and fish to herbicides; and emerging areas of science regarding the potential for endocrine-disrupting effects of herbicides on aquatic vertebrates. Much of the focus of this paper is on atrazine due to the extensive database which exists regarding its fate and effects. 

  7. Herbicide Persistence in Seawater Simulation Experiments

    PubMed Central

    Mercurio, Philip; Mueller, Jochen F.; Eaglesham, Geoff; Flores, Florita; Negri, Andrew P.

    2015-01-01

    Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes transporting a high proportion of the original herbicide from rivers into the GBR lagoon. PMID:26313296

  8. Herbicide Persistence in Seawater Simulation Experiments.

    PubMed

    Mercurio, Philip; Mueller, Jochen F; Eaglesham, Geoff; Flores, Florita; Negri, Andrew P

    2015-01-01

    Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes transporting a high proportion of the original herbicide from rivers into the GBR lagoon.

  9. Structural and functional effects of herbicides on non-target organisms in aquatic ecosystems with an emphasis on atrazine

    USGS Publications Warehouse

    Fairchild, James; Kortekamp, Andreas

    2011-01-01

    Agricultural production accounts for approximately 90% of herbicide use in the U.S. (Kiely et al., 2004). Gianessi and Reigner (2007) indicated that herbicides are routinely used on more than 90% of the area designated for large commercial crops including corn, soybeans, cotton, sugar beets, peanuts, and rice. Increased farm mechanization, technological advancements in production of inexpensive sources of inorganic nitrogen fertilizer (e.g., anhydrous ammonia), and conversion of forest, grassland, and wetland habitats to cropland has led to a tremendous increase in global food production over the past half-century. Herbicides have augmented advances in large-scale agricultural systems and have largely replaced mechanical and hand-weeding control mechanisms (Gianessi and Reigner, 2007). The wide-spread use of herbicides in agriculture has resulted in frequent chemical detections in surface and groundwaters (Gilliom, 2007). The majority of herbicides used are highly water soluble and are therefore prone to runoff from terrestrial environments. In additon, spray drift and atmospheric deposition can contribute to herbicide contamination of aquatic environments. Lastly, selected herbicides are deliberately applied to aquatic environments for controlling nuisance aquatic vegetation. Although aquatic herbicide exposure has been widely documented, these exposures are not necessarily related to adverse non-target ecological effects on natural communities in aquatic environments. This chapter evaluates the potential for effects of herbicides on the structure and function of aquatic envrionments at the population, community, and ecosystem levels of biological organization. In this manuscript I examine several critical aspects of the subject matter area: primary herbicides in use and chemical modes of action; the regulatory process used for registration and risk assessment of herbicides; data regarding non-target risks and the relative sensitivity of aquatic plants, inveretebrates, and fish to herbicides; and emerging areas of science regarding the potential for endocrine-disrupting effects of herbicides on aquatic vertebrates. Much of the focus of this paper is on atrazine due to the extensive database which exists regarding its fate and effects.

  10. Intelligent herbicide application system for reduced herbicide vegetation control : phase II-commercialization

    DOT National Transportation Integrated Search

    2008-12-01

    This report describes the development of a commercial prototype intelligent herbicide application system : (IHAS). The improved design incorporates a parallel add-on type fluid handling system to allow existing : variable-rate herbicide injecti...

  11. Fourier transform of delayed fluorescence as an indicator of herbicide concentration.

    PubMed

    Guo, Ya; Tan, Jinglu

    2014-12-21

    It is well known that delayed fluorescence (DF) from Photosystem II (PSII) of plant leaves can be potentially used to sense herbicide pollution and evaluate the effect of herbicides on plant leaves. The research of using DF as a measure of herbicides in the literature was mainly conducted in time domain and qualitative correlation was often obtained. Fourier transform is often used to analyze signals. Viewing DF signal in frequency domain through Fourier transform may allow separation of signal components and provide a quantitative method for sensing herbicides. However, there is a lack of an attempt to use Fourier transform of DF as an indicator of herbicide. In this work, the relationship between the Fourier transform of DF and herbicide concentration was theoretically modelled and analyzed, which immediately yielded a quantitative method to measure herbicide concentration in frequency domain. Experiments were performed to validate the developed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Alpha-tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica.

    PubMed Central

    Yamamoto, E; Zeng, L; Baird, W V

    1998-01-01

    Dinitroaniline herbicides are antimicrotubule drugs that bind to tubulins and inhibit polymerization. As a result of repeated application of dinitroaniline herbicides, highly resistant and intermediately resistant biotypes of goosegrass (Eleusine indica) developed in previously wild-type populations. Three alpha-tubulin cDNA classes (designated TUA1, TUA2, and TUA3) were isolated from each biotype. Nucleotide differences between the susceptible and the resistant (R) alpha-tubulins were identified in TUA1 and TUA2. The most significant differences were missense mutations that occurred in TUA1 of the R and intermediately resistant (I) biotypes. Such mutations convert Thr-239 to Ile in the R biotype and Met-268 to Thr in the I biotype. These amino acid substitutions alter hydrophobicity; therefore, they may alter the dinitroaniline binding property of the protein. These mutations were correlated with the dinitroaniline response phenotypes (Drp). Plants homozygous for susceptibility possessed the wild-type TUA1 allele; plants homozygous for resistance possessed the mutant tua1 allele; and plants heterozygous for susceptibility possessed both wild-type and mutant alleles. Thus, we conclude that TUA1 is at the Drp locus. Using polymerase chain reaction primer-introduced restriction analysis, we demonstrated that goosegrass genomic DNA can be diagnosed for Drp alleles. Although not direct proof, these results suggest that a mutation in an alpha-tubulin gene confers resistance to dinitroanilines in goosegrass. PMID:9490751

  13. Alpha-tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica.

    PubMed

    Yamamoto, E; Zeng, L; Baird, W V

    1998-02-01

    Dinitroaniline herbicides are antimicrotubule drugs that bind to tubulins and inhibit polymerization. As a result of repeated application of dinitroaniline herbicides, highly resistant and intermediately resistant biotypes of goosegrass (Eleusine indica) developed in previously wild-type populations. Three alpha-tubulin cDNA classes (designated TUA1, TUA2, and TUA3) were isolated from each biotype. Nucleotide differences between the susceptible and the resistant (R) alpha-tubulins were identified in TUA1 and TUA2. The most significant differences were missense mutations that occurred in TUA1 of the R and intermediately resistant (I) biotypes. Such mutations convert Thr-239 to Ile in the R biotype and Met-268 to Thr in the I biotype. These amino acid substitutions alter hydrophobicity; therefore, they may alter the dinitroaniline binding property of the protein. These mutations were correlated with the dinitroaniline response phenotypes (Drp). Plants homozygous for susceptibility possessed the wild-type TUA1 allele; plants homozygous for resistance possessed the mutant tua1 allele; and plants heterozygous for susceptibility possessed both wild-type and mutant alleles. Thus, we conclude that TUA1 is at the Drp locus. Using polymerase chain reaction primer-introduced restriction analysis, we demonstrated that goosegrass genomic DNA can be diagnosed for Drp alleles. Although not direct proof, these results suggest that a mutation in an alpha-tubulin gene confers resistance to dinitroanilines in goosegrass.

  14. Delivery of calibration workshops covering herbicide application equipment : final report.

    DOT National Transportation Integrated Search

    2014-03-31

    Proper herbicide sprayer set-up and calibration are critical to the success of the Oklahoma Department of Transportation (ODOT) herbicide program. Sprayer system set-up and calibration training is provided in annual continuing education herbicide wor...

  15. Herbicide Resistant Weed Management

    USDA-ARS?s Scientific Manuscript database

    Metribuzin and rimsulfuron are the only two herbicides registered for postemergence broadleaf weed control in potatoes, and represent the two classes of herbicides, triazines and ALS inhibitors, with the most reported cases of resistant weeds world wide. Other postemergence grass herbicides belongin...

  16. Molecular docking of Glycine max and Medicago truncatula ureases with urea; bioinformatics approaches.

    PubMed

    Filiz, Ertugrul; Vatansever, Recep; Ozyigit, Ibrahim Ilker

    2016-03-01

    Urease (EC 3.5.1.5) is a nickel-dependent metalloenzyme catalyzing the hydrolysis of urea into ammonia and carbon dioxide. It is present in many bacteria, fungi, yeasts and plants. Most species, with few exceptions, use nickel metalloenzyme urease to hydrolyze urea, which is one of the commonly used nitrogen fertilizer in plant growth thus its enzymatic hydrolysis possesses vital importance in agricultural practices. Considering the essentiality and importance of urea and urease activity in most plants, this study aimed to comparatively investigate the ureases of two important legume species such as Glycine max (soybean) and Medicago truncatula (barrel medic) from Fabaceae family. With additional plant species, primary and secondary structures of 37 plant ureases were comparatively analyzed using various bioinformatics tools. A structure based phylogeny was constructed using predicted 3D models of G. max and M. truncatula, whose crystallographic structures are not available, along with three additional solved urease structures from Canavalia ensiformis (PDB: 4GY7), Bacillus pasteurii (PDB: 4UBP) and Klebsiella aerogenes (PDB: 1FWJ). In addition, urease structures of these species were docked with urea to analyze the binding affinities, interacting amino acids and atom distances in urease-urea complexes. Furthermore, mutable amino acids which could potentially affect the protein active site, stability and flexibility as well as overall protein stability were analyzed in urease structures of G. max and M. truncatula. Plant ureases demonstrated similar physico-chemical properties with 833-878 amino acid residues and 89.39-90.91 kDa molecular weight with mainly acidic (5.15-6.10 pI) nature. Four protein domain structures such as urease gamma, urease beta, urease alpha and amidohydro 1 characterized the plant ureases. Secondary structure of plant ureases also demonstrated conserved protein architecture, with predominantly α-helix and random coil structures. In structure-based phylogeny, plant ureases from G. max, M. truncatula and C. ensiformis were clearly diverged from bacterial ureases of B. pasteurii and K. aerogenes. Glu, Thr, His and Gly were commonly found as interacting residues in most urease-urea docking complexes while Glu was available in all docked structures. Besides, Ala and Arg residues, which are reported in active-site architecture of plant and bacterial ureases were present in G. max urea-urease complex but not present in others. Moreover, Arg435 and Arg437 in M. truncatula and G. max, respectively were identified as highly mutable hotspot residues residing in amidohydro 1 domain of enzyme. In addition, a number of stabilizing residues were predicted upon mutation of these hotspot residues however Cys and Thr made strong implications since they were also found in codon-aligned sequences as substitutions of hotspot residues. Comparative analyses of primary sequence and secondary structure in 37 different plants demonstrated quite conserved natures of ureases in plant kingdom. Structure-based phylogeny indicated the presence of a possible prokaryote-eukaryote split and implicated the subjection of bacterial ureases to heavy selection in prokaryotic evolution compared to plants. Urea-urease docking complexes suggested that different species could share common interacting residues as well as may have some other uncommon residues at species-dependent way. In silico mutation analyses identified mutable amino acids, which were predicted to reside in catalytic site of enzyme therefore mutagenesis at these sites seemed to have adverse effects on enzyme efficiency or function. This study findings will become valuable preliminary resource for future studies to further understand the primary, secondary and tertiary structures of urease sequences in plants as well as it will provide insights about various binding features of urea-urease complexes.

  17. Herbicide residues in grapes and wine.

    PubMed

    Ying, G G; Williams, B

    1999-05-01

    The persistence of several common herbicides from grapes to wine has been studied. Shiraz, Tarrango and Doradillo grapes were separately sprayed with either norflurazon, oxyfluorfen, oxadiazon or trifluralin-persistent herbicides commonly used for weed control in vineyards. The dissipation of the herbicides from the grapes was followed for 28 days following treatment. Results showed that norflurazon was the most persist herbicide although there were detectable residues of all the herbicides on both red and white grapes at the end of the study period. The penetration of herbicides into the flesh of the grapes was found to be significantly greater for white grapes than for red grapes. Small-lot winemaking experiments showed that norflurazon persisted at levels close to the initial concentration through vinification and into the finished wine. The other herbicides degraded, essentially via first-order kinetics, within the period of "first fermentation" and had largely disappeared after 28 days. The use of charcoal together with filter pads, or with diatomaceous earth was shown to be very effective in removing herbicide residues from the wine. A 5% charcoal filter removed more than 96% of the norflurazon persisting in the treated wine.

  18. Occurrence of selected herbicides and herbicide degradation products in Iowa's Ground Water, 1995

    USGS Publications Warehouse

    Kolpin, D.W.; Kalkhoff, S.J.; Goolsby, D.A.; Sneck-Fahrer, D. A.; Thurman, E.M.

    1997-01-01

    The occurrence of herbicide compounds had a significant, inverse relation to well depth and a significant, positive relation to dissolved-oxygen concentration. It is felt that both well depth and dissolved oxygen are acting as rough surrogates to ground-water age, with younger ground water being more likely to contain herbicide compounds. The occurrence of herbicide compounds was substantially different among the major aquifer types across Iowa, being detected in 82.5% of the alluvial, 81.8% of the bedrock/ karst region, 40.0% of the glacial-drift, and 25.0% of the bedrock/nonkarst region aquifers. The observed distribution was partially attributed to variations in general ground-water age among these aquifer types. A significant, inverse relation was determined between total herbicide compound concentrations in ground water and the average soil slope within a 2-km radius of sampled wells. Steeper soil slopes may increase the likelihood of surface runoff occurring rather than ground-water infiltration–decreasing the transport of herbicide compounds to ground water. As expected, a significant positive relation was determined between intensity of herbicide use and herbicide concentrations in ground water.

  19. A herbicide structure-activity analysis of the antimalarial lead compound MMV007978 against Arabidopsis thaliana.

    PubMed

    Corral, Maxime G; Leroux, Julie; Tresch, Stefan; Newton, Trevor; Stubbs, Keith A; Mylne, Joshua S

    2018-07-01

    To fight herbicide-resistant weeds, new herbicides are needed; particularly ones with new modes of action. Building on the revelation that many antimalarial drugs are herbicidal, here we focus on the Medicines for Malaria Venture antimalarial lead compound MMV007978 that has herbicidal activity against the model plant Arabidopsis thaliana. Twenty-two variations of the lead compound thiophenyl motif revealed that change was tolerated provided ring size and charge were retained. MMV007978 was active against select monocot and dicot weeds, and physiological profiling indicated that its mode of action is related to germination and cell division. Of interest is the fact that the compound has a profile that is currently not found among known herbicides. We demonstrate that the antimalarial compound MMV007978 is also herbicidal and that exploiting lead compounds that are often understudied could lead to the identification of interesting herbicidal scaffolds. Further structural investigation of MMV007978 could provide improved herbicidal chemistries with a potential new mode of action. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  20. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava.

    PubMed

    Hummel, Aaron W; Chauhan, Raj Deepika; Cermak, Tomas; Mutka, Andrew M; Vijayaraghavan, Anupama; Boyher, Adam; Starker, Colby G; Bart, Rebecca; Voytas, Daniel F; Taylor, Nigel J

    2017-12-09

    Effective weed control can protect yields of cassava (Manihot esculenta) storage roots. Farmers could benefit from using herbicide with a tolerant cultivar. We applied traditional transgenesis and gene editing to generate robust glyphosate tolerance in cassava. By comparing promoters regulating expression of transformed 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes with various paired amino acid substitutions, we found that strong constitutive expression is required to achieve glyphosate tolerance during in vitro selection and in whole cassava plants. Using strategies that exploit homologous recombination (HR) and nonhomologous end-joining (NHEJ) DNA repair pathways, we precisely introduced the best-performing allele into the cassava genome, simultaneously creating a promoter swap and dual amino acid substitutions at the endogenous EPSPS locus. Primary EPSPS-edited plants were phenotypically normal, tolerant to high doses of glyphosate, with some free of detectable T-DNA integrations. Our methods demonstrate an editing strategy for creating glyphosate tolerance in crop plants and demonstrate the potential of gene editing for further improvement of cassava. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Herbicides and nitrate in near-surface aquifers in the midcontinental United States, 1991

    USGS Publications Warehouse

    Kolpin, Dana W.; Burkart, Michael R.; Thurman, E. Michael

    1994-01-01

    Hydrogeologic factors, land use, agricultural practices, local features, and water chemistry were analyzed for possible relation to herbicide and excess-nitrate detections. Herbicides and excess nitrate were detected more frequently in near-surface unconsolidated aquifers than in nearsurface bedrock aquifers. The depth to the top of the aquifer was inversely related to the frequency of detection of herbicides and excess nitrate. The proximity of streams to sampled wells also affected the frequency of herbicide detection. Significant seasonal differences were determined for the frequency of herbicide detection, but not for the frequency of excess nitrate.

  2. Acute and additive toxicity of ten photosystem-II herbicides to seagrass

    NASA Astrophysics Data System (ADS)

    Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Negri, Andrew P.

    2015-11-01

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (ΔF/Fm‧) by 50% at concentrations ranging from 3.5 μg l-1 (ametryn) to 132 μg l-1 (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ΔF/Fm‧.

  3. Acute and additive toxicity of ten photosystem-II herbicides to seagrass

    PubMed Central

    Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Negri, Andrew P.

    2015-01-01

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/Fm′) by 50% at concentrations ranging from 3.5 μg l−1 (ametryn) to 132 μg l−1 (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/Fm′. PMID:26616444

  4. Acute and additive toxicity of ten photosystem-II herbicides to seagrass.

    PubMed

    Wilkinson, Adam D; Collier, Catherine J; Flores, Florita; Negri, Andrew P

    2015-11-30

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/F(m)') by 50% at concentrations ranging from 3.5 μg l(-1) (ametryn) to 132 μg l(-1) (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/F(m)'.

  5. Low temperature synthesis and characterization of carbonated hydroxyapatite nanocrystals

    NASA Astrophysics Data System (ADS)

    Anwar, Aneela; Asghar, Muhammad Nadeem; Kanwal, Qudsia; Kazmi, Mohsin; Sadiqa, Ayesha

    2016-08-01

    Carbonate substituted hydroxyapatite (CHA) nanorods were synthesized via coprecipitation method from aqueous solution of calcium nitrate tetrahydrate and diammonium hydrogen phosphate (with urea as carbonate ion source) in the presence of ammonium hydroxide solution at 70 °C at the conditions of pH 11. The obtained powders were physically characterized using transmission electron microscopy (TEM), X-ray powder diffraction analysis (XRD), and FTIR and Raman spectroscopy. The particle size was evaluated by Dynamic light scattering (DLS). The chemical structural analysis of as prepared sample was performed using X-ray photoelectron spectroscopy (XPS). After ageing for 12 h, and heat treatment at 1000 °C for 1 h, the product was obtained as highly crystalline nanorods of CHA.

  6. Glyphosate-Resistant Goosegrass. Identification of a Mutation in the Target Enzyme 5-Enolpyruvylshikimate-3-Phosphate Synthase

    PubMed Central

    Baerson, Scott R.; Rodriguez, Damian J.; Tran, Minhtien; Feng, Yongmei; Biest, Nancy A.; Dill, Gerald M.

    2002-01-01

    The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD50 value approximately 2- to 4-fold greater than the sensitive biotype collected from the same region. A comparison of the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity by glyphosate in extracts prepared from the resistant (R) and sensitive (S) biotypes revealed an approximately 5-fold higher IC50(glyphosate) for the (R) biotype. Sequence comparisons of the predicted EPSPS mature protein coding regions from both biotypes revealed four single-nucleotide differences, two of which result in amino acid changes. One of these changes, a proline to serine substitution at position 106 in the (R) biotype, corresponds to a substitution previously identified in a glyphosate-insensitive EPSPS enzyme from Salmonella typhimurium. Kinetic data generated for the recombinant enzymes suggests that the second substitution identified in the (R) EPSPS does not contribute significantly to its reduced glyphosate sensitivity. Escherichia coli aroA− (EPSPS deficient) strains expressing the mature EPSPS enzyme from the (R) biotype exhibited an approximately 3-fold increase in glyphosate tolerance relative to strains expressing the mature EPSPS from the (S) biotype. These results provide the first evidence for an altered EPSPS enzyme as an underlying component of evolved glyphosate resistance in any plant species. PMID:12114580

  7. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase.

    PubMed

    Baerson, Scott R; Rodriguez, Damian J; Tran, Minhtien; Feng, Yongmei; Biest, Nancy A; Dill, Gerald M

    2002-07-01

    The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD(50) value approximately 2- to 4-fold greater than the sensitive biotype collected from the same region. A comparison of the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity by glyphosate in extracts prepared from the resistant (R) and sensitive (S) biotypes revealed an approximately 5-fold higher IC(50)(glyphosate) for the (R) biotype. Sequence comparisons of the predicted EPSPS mature protein coding regions from both biotypes revealed four single-nucleotide differences, two of which result in amino acid changes. One of these changes, a proline to serine substitution at position 106 in the (R) biotype, corresponds to a substitution previously identified in a glyphosate-insensitive EPSPS enzyme from Salmonella typhimurium. Kinetic data generated for the recombinant enzymes suggests that the second substitution identified in the (R) EPSPS does not contribute significantly to its reduced glyphosate sensitivity. Escherichia coli aroA- (EPSPS deficient) strains expressing the mature EPSPS enzyme from the (R) biotype exhibited an approximately 3-fold increase in glyphosate tolerance relative to strains expressing the mature EPSPS from the (S) biotype. These results provide the first evidence for an altered EPSPS enzyme as an underlying component of evolved glyphosate resistance in any plant species.

  8. The direct and indirect effects of a glyphosate-based herbicide and nutrients on Chironomidae (Diptera) emerging from small wetlands.

    PubMed

    Baker, Leanne F; Mudge, Joseph F; Houlahan, Jeff E; Thompson, Dean G; Kidd, Karen A

    2014-09-01

    Laboratory and mesocosm experiments have demonstrated that some glyphosate-based herbicides can have negative effects on benthic invertebrate species. Although these herbicides are among the most widely used in agriculture, there have been few multiple-stressor, natural system-based investigations of the impacts of glyphosate-based herbicides in combination with fertilizers on the emergence patterns of chironomids from wetlands. Using a replicated, split-wetland experiment, the authors examined the effects of 2 nominal concentrations (2.88 mg acid equivalents/L and 0.21 mg acid equivalents/L) of the glyphosate herbicide Roundup WeatherMax, alone or in combination with nutrient additions, on the emergence of Chironomidae (Diptera) before and after herbicide-induced damage to macrophytes. There were no direct effects of treatment on the structure of the Chironomidae community or on the overall emergence rates. However, after macrophyte cover declined as a result of herbicide application, there were statistically significant increases in emergence in all but the highest herbicide treatment, which had also received no nutrients. There was a negative relationship between chironomid abundance and macrophyte cover on the treated sides of wetlands. Fertilizer application did not appear to compound the effects of the herbicide treatments. Although direct toxicity of Roundup WeatherMax was not apparent, the authors observed longer-term impacts, suggesting that the indirect effects of this herbicide deserve more consideration when assessing the ecological risk of using herbicides in proximity to wetlands. © 2014 SETAC.

  9. 75 FR 4384 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... Park, NC 27709. Product name: Indaziflam 500 SC Herbicide. Active ingredient: Herbicide with Indaziflam.... Alexander Drive, Research Triangle Park, NC 27709. Product name: Indaziflam 200 SC Herbicide. Active ingredient: Herbicide with Indaziflam at 19.05%. Proposed use: Preemergent control of annual [[Page 4386...

  10. Herbicide Trials in Intensively Cultured Populus Plantations in Northern Wisconsin

    Treesearch

    Daniel A. Netzer; Nonan V. Noste

    1978-01-01

    Populus had good survival and growth when planting sites had been treated with linuron, a pre-emergent herbicide, alone or in combination with paraquat, a post-emergent herbicide. the herbicide treatments that are most effective in intensive culture are discussed.

  11. Degradation of Herbicides in the Tropical Marine Environment: Influence of Light and Sediment.

    PubMed

    Mercurio, Philip; Mueller, Jochen F; Eaglesham, Geoff; O'Brien, Jake; Flores, Florita; Negri, Andrew P

    2016-01-01

    Widespread contamination of nearshore marine systems, including the Great Barrier Reef (GBR) lagoon, with agricultural herbicides has long been recognised. The fate of these contaminants in the marine environment is poorly understood but the detection of photosystem II (PSII) herbicides in the GBR year-round suggests very slow degradation rates. Here, we evaluated the persistence of a range of commonly detected herbicides in marine water under field-relevant concentrations and conditions. Twelve-month degradation experiments were conducted in large open tanks, under different light scenarios and in the presence and absence of natural sediments. All PSII herbicides were persistent under control conditions (dark, no sediments) with half-lives of 300 d for atrazine, 499 d diuron, 1994 d hexazinone, 1766 d tebuthiuron, while the non-PSII herbicides were less persistent at 147 d for metolachlor and 59 d for 2,4-D. The degradation of herbicides was 2-10 fold more rapid in the presence of a diurnal light cycle and coastal sediments; apart from 2,4-D which degraded more slowly in the presence of light. Despite the more rapid degradation observed for most herbicides in the presence of light and sediments, the half-lives remained > 100 d for the PS II herbicides. The effects of light and sediments on herbicide persistence were likely due to their influence on microbial community composition and its ability to utilise the herbicides as a carbon source. These results help explain the year-round presence of PSII herbicides in marine systems, including the GBR, but more research on the transport, degradation and toxicity on a wider range of pesticides and their transformation products is needed to improve their regulation in sensitive environments.

  12. Effects of glyphosate and two herbicide mixtures on microbial communities in prairie wetland ecosystems: a mesocosm approach.

    PubMed

    Sura, Srinivas; Waiser, Marley; Tumber, Vijay; Lawrence, John R; Cessna, Allan J; Glozier, Nancy

    2012-01-01

    A multitrophic outdoor mesocosm system was used to mimic a wetland ecosystem and to investigate the effects of glyphosate and two herbicide mixtures on wetland microbial communities. The glyphosate concentration used was 1000 times the environmentally relevant concentration (ERC). One herbicide mixture consisted of six auxin-type herbicides (2,4-D, MCPA, clopyralid, dicamba, dichlorprop, mecoprop), each at 1000 times the ERC. The second mixture was comprised of eight herbicides, including the six auxin-type herbicides as well as bromoxynil and glyphosate. For this mixture, a dose-response approach was used to treat mesocosms with the ERCs of each herbicide as the base concentration. Algal biomass and production and bacterial production and numbers for pelagic and attached communities were measured at different times over a 22-d period. The experimental results indicate that the eight-herbicide mixture, even at low concentrations, produced negative effects on microbial communities. Glyphosate on its own suppressed algal biomass and production for the duration of the study in pelagic and biofilm communities. Algal biomass and production, although initially depressed in the auxin-type herbicide treatment, were stimulated from Day 9 until experiment end. Due to their similar modes of action, the effects of this herbicide mixture appear to be a result of concentration addition. Such negative effects, however, were brief, and microbial communities recovered from herbicide exposure. Based on evidence presented in this study, it appears that glyphosate has a higher potential to inhibit primary production and chlorophyll content in pelagic and attached wetland algal communities than the auxin-type herbicide mixture. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Degradation of Herbicides in the Tropical Marine Environment: Influence of Light and Sediment

    PubMed Central

    Mercurio, Philip; Mueller, Jochen F.; Eaglesham, Geoff; O'Brien, Jake; Flores, Florita; Negri, Andrew P.

    2016-01-01

    Widespread contamination of nearshore marine systems, including the Great Barrier Reef (GBR) lagoon, with agricultural herbicides has long been recognised. The fate of these contaminants in the marine environment is poorly understood but the detection of photosystem II (PSII) herbicides in the GBR year-round suggests very slow degradation rates. Here, we evaluated the persistence of a range of commonly detected herbicides in marine water under field-relevant concentrations and conditions. Twelve-month degradation experiments were conducted in large open tanks, under different light scenarios and in the presence and absence of natural sediments. All PSII herbicides were persistent under control conditions (dark, no sediments) with half-lives of 300 d for atrazine, 499 d diuron, 1994 d hexazinone, 1766 d tebuthiuron, while the non-PSII herbicides were less persistent at 147 d for metolachlor and 59 d for 2,4-D. The degradation of herbicides was 2–10 fold more rapid in the presence of a diurnal light cycle and coastal sediments; apart from 2,4-D which degraded more slowly in the presence of light. Despite the more rapid degradation observed for most herbicides in the presence of light and sediments, the half-lives remained > 100 d for the PS II herbicides. The effects of light and sediments on herbicide persistence were likely due to their influence on microbial community composition and its ability to utilise the herbicides as a carbon source. These results help explain the year-round presence of PSII herbicides in marine systems, including the GBR, but more research on the transport, degradation and toxicity on a wider range of pesticides and their transformation products is needed to improve their regulation in sensitive environments. PMID:27806103

  14. Molecular Modeling and Experimental Study of Nonlinear Optical Compounds: Mono-Substituted Derivatives of Dicyanovinylbenzene

    NASA Technical Reports Server (NTRS)

    Timofeeva, Tatyana V.; Nesterov, Vladimir N.; Antipin, Mikhael Y.; Clark, R. D.; Sanghadasa, M.; Cardelino, B. H.; Moore, C. E.; Frazier, Donald O.

    2000-01-01

    A search for potential nonlinear optical (NLO) compounds has been performed using the Cambridge Structural Database and molecular modeling. We have studied a series of mono-substituted derivatives of dicyanovinylbenzene as the NLO properties of one of its derivatives (o-methoxy-dicyanovinylbenzene, DIVA) were described earlier. The molecular geometry in the series of the compounds studied was investigated with an X- ray analysis and discussed along with results of molecular mechanics and ab initio quantum chemical calculations. The influence of crystal packing on the molecular planarity has been revealed. Two new compounds from the series studied were found to be active for second harmonic generation (SHG) in the powder. The measurements of SHG efficiency have shown that the o-F- and p-Cl-derivatives of dicyanovinylbenzene are about 10 and 20- times more active than urea, respectively. The peculiarities of crystal structure formation in the framework of balance between the van der Waals and electrostatic interactions have been discussed. The crystal morphology of DIVA and two new SHG-active compounds have been calculated on the basis of their known crystal structures.

  15. Upregulation of CYP 450s expression of immortalized hepatocyte-like cells derived from mesenchymal stem cells by enzyme inducers

    PubMed Central

    2011-01-01

    Background The strenuous procurement of cultured human hepatocytes and their short lives have constrained the cell culture model of cytochrome P450 (CYP450) induction, xenobiotic biotransformation, and hepatotoxicity. The development of continuous non-tumorous cell line steadily containing hepatocyte phenotypes would substitute the primary hepatocytes for these studies. Results The hepatocyte-like cells have been developed from hTERT plus Bmi-1-immortalized human mesenchymal stem cells to substitute the primary hepatocytes. The hepatocyte-like cells had polygonal morphology and steadily produced albumin, glycogen, urea and UGT1A1 beyond 6 months while maintaining proliferative capacity. Although these hepatocyte-like cells had low basal expression of CYP450 isotypes, their expressions could be extensively up regulated to 80 folds upon the exposure to enzyme inducers. Their inducibility outperformed the classical HepG2 cells. Conclusion The hepatocyte-like cells contained the markers of hepatocytes including CYP450 isotypes. The high inducibility of CYP450 transcripts could serve as a sensitive model for profiling xenobiotic-induced expression of CYP450. PMID:21961524

  16. Level of UV-B radiation influences the effects of glyphosate-based herbicide on the spotted salamander.

    PubMed

    Levis, Nicholas A; Johnson, Jarrett R

    2015-07-01

    Glyphosate-based herbicides are the number one pesticide in the United States and are used commonly around the world. Understanding the affects of glyphosate-based herbicides on non-target wildlife, for example amphibians, is critical for evaluation of regulations pertaining to the use of such herbicides. Additionally, it is important to understand how variation in biotic and abiotic environmental conditions, such as UV-B light regime, could potentially affect how glyphosate-based herbicides interact with non-target species. This study used artificial pond mesocosms to identify the effects of generic glyphosate-based herbicide (GLY-4 Plus) on mortality, cellular immune response, body size, and morphological plasticity of larvae of the spotted salamander (Ambystoma maculatum) under conditions that reflect moderate (UV(M)) and low (UV(L)) UV-B light regimes. Survival within a given UV-B level was unaffected by herbicide presence or absence. However, when herbicide was present, survival varied between UV-B levels with higher survival in UV(M) conditions. Herbicide presence in the UV(M) treatments also decreased body size and reduced cellular immune response. In the UV(L) treatments, the presence of herbicide increased body size and affected tail morphology. Finally, in the absence of herbicide, body size and cellular immune response were higher in UV(M) treatments compared to UV(L) treatments. Thus, the effects of herbicide on salamander fitness were dependent on UV-B level. As anthropogenic habitat modifications continue to alter landscapes that contain amphibian breeding ponds, salamanders may increasingly find themselves in locations with reduced canopy cover and increased levels of UV light. Our findings suggest that the probability of surviving exposure to the glyphosate-based herbicide used in this study may be elevated in more open canopy ponds, but the effects on other components of fitness may be varied and unexpected.

  17. 77 FR 30526 - Product Cancellation Order for Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... Chemical name 000264-00438 Bronate Herbicide... MCPA,2-ethylhexyl ester. Bromoxynil octanoate. 000264-00477 Buctril + Atrazine Bromoxynil octanoate Herbicide. Atrazine. 000264-00586 Sedagri Batril 20W Bromoxynil Herbicide. octanoate. 000264-00650 Silverado Herbicide. Fenoxaprop-p-ethyl. 000264-00699 Rhino Brand MCPA,2...

  18. Bioassay techniques for detecting root leakage of auxinic herbicides

    USDA-ARS?s Scientific Manuscript database

    Biological assay (bioassay) techniques are a simple way to determine the presence of herbicides in soil or other potting media. Understanding the fate of herbicides after absorption is important when guidelines for use are developed. Greenhouse studies were conducted with the herbicide aminocyclopyr...

  19. In vitro studies on the effect of physical cross-linking on the biological performance of aliphatic poly(urethane urea) for blood contact applications.

    PubMed

    Thomas, V; Kumari, T V; Jayabalan, M

    2001-01-01

    The effect of physical cross-linking in candidate cycloaliphatic and hydrophobic poly(urethane urea) (4,4'-methylenebis(cyclohexylisocyanate), H(12)MDI/hydroxy-terminated polybutadiene, HTPBD/hexamethylenediamine, HDA) and poly(ether urethane urea)s (H(12)MDI/HTPBD-PTMG/HDA) on the in vitro calcification and blood-material interaction was studied. All the candidate poly(urethane urea)s and poly(ether urethane urea)s elicit acceptable hemolytic activity, cytocompatibility, calcification, and blood compatibility in vitro. The studies on blood-material interaction reveal that the present poly(urethane urea)s are superior to polystyrene microtiter plates which were used for the studies on blood-material interaction. The present investigation reveals the influence of physical cross-link density on biological interaction differently with poly(urethane urea) and poly(ether urethane urea)s. The higher the physical cross-link density in the poly(urethane urea)s, the higher the calcification and consumption of WBC in whole blood. On the other hand, the higher the physical cross-link density in the poly(ether urethane urea)s, the lesser the calcification and consumption of WBC in whole blood. However a reverse of the above trend has been observed with the platelet consumption in the poly(urethane urea)s and poly(ether urethane urea)s.

  20. Techno-economic evaluation of an inclusion body solubilization and recombinant protein refolding process.

    PubMed

    Freydell, Esteban J; van der Wielen, Luuk A M; Eppink, Michel H M; Ottens, Marcel

    2011-01-01

    Expression of recombinant proteins in Escherichia coli is normally accompanied by the formation of inclusion bodies (IBs). To obtain the protein product in an active (native) soluble form, the IBs must be first solubilized, and thereafter, the soluble, often denatured and reduced protein must be refolded. Several technically feasible alternatives to conduct IBs solubilization and on-column refolding have been proposed in recent years. However, rarely these on-column refolding alternatives have been evaluated from an economical point of view, questioning the feasibility of their implementation at a preparative scale. The presented study assesses the economic performance of four distinct process alternatives that include pH induced IBs solubilization and protein refolding (pH_IndSR); IBs solubilization using urea, dithiothreitol (DTT), and alkaline pH followed by batch size-exclusion protein refolding; inclusion bodies (IBs) solubilization using urea, DTT, and alkaline pH followed by simulated moving bed (SMB) size-exclusion protein refolding, and IBs solubilization using urea, DTT and alkaline pH followed by batch dilution protein refolding. The economic performance was judged on the basis of the direct fixed capital, and the production cost per unit of product (P(C)). This work shows that (1) pH_IndSR system is a relatively economical process, because of the low IBs solubilization cost; (2) substituting β-mercaptoethanol for dithiothreithol is an attractive alternative, as it significantly decreases the product cost contribution from the IBs solubilization; and (3) protein refolding by size-exclusion chromatography becomes economically attractive by changing the mode of operation of the chromatographic reactor from batch to continuous using SMB technology. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  1. Expanding the eco-evolutionary context of herbicide resistance research.

    PubMed

    Neve, Paul; Busi, Roberto; Renton, Michael; Vila-Aiub, Martin M

    2014-09-01

    The potential for human-driven evolution in economically and environmentally important organisms in medicine, agriculture and conservation management is now widely recognised. The evolution of herbicide resistance in weeds is a classic example of rapid adaptation in the face of human-mediated selection. Management strategies that aim to slow or prevent the evolution of herbicide resistance must be informed by an understanding of the ecological and evolutionary factors that drive selection in weed populations. Here, we argue for a greater focus on the ultimate causes of selection for resistance in herbicide resistance studies. The emerging fields of eco-evolutionary dynamics and applied evolutionary biology offer a means to achieve this goal and to consider herbicide resistance in a broader and sometimes novel context. Four relevant research questions are presented, which examine (i) the impact of herbicide dose on selection for resistance, (ii) plant fitness in herbicide resistance studies, (iii) the efficacy of herbicide rotations and mixtures and (iv) the impacts of gene flow on resistance evolution and spread. In all cases, fundamental ecology and evolution have the potential to offer new insights into herbicide resistance evolution and management. © 2014 Society of Chemical Industry.

  2. Questions concerning the potential impact of glyphosate-based herbicides on amphibians.

    PubMed

    Wagner, Norman; Reichenbecher, Wolfram; Teichmann, Hanka; Tappeser, Beatrix; Lötters, Stefan

    2013-08-01

    Use of glyphosate-based herbicides is increasing worldwide. The authors review the available data related to potential impacts of these herbicides on amphibians and conduct a qualitative meta-analysis. Because little is known about environmental concentrations of glyphosate in amphibian habitats and virtually nothing is known about environmental concentrations of the substances added to the herbicide formulations that mainly contribute to adverse effects, glyphosate levels can only be seen as approximations for contamination with glyphosate-based herbicides. The impact on amphibians depends on the herbicide formulation, with different sensitivity of taxa and life stages. Effects on development of larvae apparently are the most sensitive endpoints to study. As with other contaminants, costressors mainly increase adverse effects. If and how glyphosate-based herbicides and other pesticides contribute to amphibian decline is not answerable yet due to missing data on how natural populations are affected. Amphibian risk assessment can only be conducted case-specifically, with consideration of the particular herbicide formulation. The authors recommend better monitoring of both amphibian populations and contamination of habitats with glyphosate-based herbicides, not just glyphosate, and suggest including amphibians in standardized test batteries to study at least dermal administration. Copyright © 2013 SETAC.

  3. Phorate can reverse P450 metabolism-based herbicide resistance in Lolium rigidum.

    PubMed

    Busi, Roberto; Gaines, Todd Adam; Powles, Stephen

    2017-02-01

    Organophosphate insecticides can inhibit specific cytochrome P450 enzymes involved in metabolic herbicide resistance mechanisms, leading to synergistic interactions between the insecticide and the herbicide. In this study we report synergistic versus antagonistic interactions between the organophosphate insecticide phorate and five different herbicides observed in a population of multiple herbicide-resistant Lolium rigidum. Phorate synergised with three different herbicide modes of action, enhancing the activity of the ALS inhibitor chlorsulfuron (60% LD 50 reduction), the VLCFAE inhibitor pyroxasulfone (45% LD 50 reduction) and the mitosis inhibitor trifluralin (70% LD 50 reduction). Conversely, phorate antagonised the two thiocarbamate herbicides prosulfocarb and triallate with a 12-fold LD 50 increase. We report the selective reversal of P450-mediated metabolic multiple resistance to chlorsulfuron and trifluralin in the grass weed L. rigidum by synergistic interaction with the insecticide phorate, and discuss the putative mechanistic basis. This research should encourage diversity in herbicide use patterns for weed control as part of a long-term integrated management effort to reduce the risk of selection of metabolism-based multiple herbicide resistance in L. rigidum. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Herbicide-related signaling in plants reveals novel insights for herbicide use strategies, environmental risk assessment and global change assessment challenges.

    PubMed

    Alberto, Diana; Serra, Anne-Antonella; Sulmon, Cécile; Gouesbet, Gwenola; Couée, Ivan

    2016-11-01

    Herbicide impact is usually assessed as the result of a unilinear mode of action on a specific biochemical target with a typical dose-response dynamics. Recent developments in plant molecular signaling and crosstalk between nutritional, hormonal and environmental stress cues are however revealing a more complex picture of inclusive toxicity. Herbicides induce large-scale metabolic and gene-expression effects that go far beyond the expected consequences of unilinear herbicide-target-damage mechanisms. Moreover, groundbreaking studies have revealed that herbicide action and responses strongly interact with hormone signaling pathways, with numerous regulatory protein-kinases and -phosphatases, with metabolic and circadian clock regulators and with oxidative stress signaling pathways. These interactions are likely to result in mechanisms of adjustment that can determine the level of sensitivity or tolerance to a given herbicide or to a mixture of herbicides depending on the environmental and developmental status of the plant. Such regulations can be described as rheostatic and their importance is discussed in relation with herbicide use strategies, environmental risk assessment and global change assessment challenges. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Herbicides do not ensure for higher wheat yield, but eliminate rare plant species

    PubMed Central

    Gaba, Sabrina; Gabriel, Edith; Chadœuf, Joël; Bonneu, Florent; Bretagnolle, Vincent

    2016-01-01

    Weed control is generally considered to be essential for crop production and herbicides have become the main method used for weed control in developed countries. However, concerns about harmful environmental consequences have led to strong pressure on farmers to reduce the use of herbicides. As food demand is forecast to increase by 50% over the next century, an in-depth quantitative analysis of crop yields, weeds and herbicides is required to balance economic and environmental issues. This study analysed the relationship between weeds, herbicides and winter wheat yields using data from 150 winter wheat fields in western France. A Bayesian hierarchical model was built to take account of farmers’ behaviour, including implicitly their perception of weeds and weed control practices, on the effectiveness of treatment. No relationship was detected between crop yields and herbicide use. Herbicides were found to be more effective at controlling rare plant species than abundant weed species. These results suggest that reducing the use of herbicides by up to 50% could maintain crop production, a result confirmed by previous studies, while encouraging weed biodiversity. Food security and biodiversity conservation may, therefore, be achieved simultaneously in intensive agriculture simply by reducing the use of herbicides. PMID:27453451

  6. Limited fitness costs of herbicide-resistance traits in Amaranthus tuberculatus facilitate resistance evolution.

    PubMed

    Wu, Chenxi; Davis, Adam S; Tranel, Patrick J

    2018-02-01

    The fitness cost of herbicide resistance (HR) in the absence of herbicide selection plays a key role in HR evolution. Quantifying the fitness cost of resistance, however, is challenging, and there exists a knowledge gap in this area. A synthetic (artificially generated) Amaranthus tuberculatus population segregating for five types of HR was subjected to competitive growth conditions in the absence of herbicide selection for six generations. Fitness costs were quantified by using a combination of phenotyping and genotyping to monitor HR frequency changes over generations. In the absence of herbicide selection, a significant fitness cost was observed for resistance to acetolactate synthase-inhibiting herbicides, but not for resistances to atrazine (non-target-site resistance mechanism), protoporphyrinogen oxidase inhibitors, 4-hydroxyphenylpryuvate dioxygenase inhibitors or glyphosate. Glyphosate resistance was conferred by multiple mechanisms in the synthetic population, and further analysis revealed that one mechanism, amplification of the 5-enolypyruvylshikimate-3-phosphate synthase gene, did decrease in frequency. Our results indicate that herbicide-resistance mitigation strategies (e.g. herbicide rotation) that rely on the existence of fitness costs in the absence of herbicide selection likely will be largely ineffective in many cases. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. 75 FR 17857 - Removal of Obsolete References to Herbicides Containing Dioxin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... Herbicides Containing Dioxin AGENCY: Department of Veterans Affairs. ACTION: Final rule. SUMMARY: The... health effects of exposure to herbicides containing dioxin and radiation to remove the obsolete references to herbicides containing dioxin. This final rule reflects changes made by the Agent Orange Act of...

  8. Herbicide-Resistance in Crops and Weeds: A Historical and Current Perspective

    USDA-ARS?s Scientific Manuscript database

    Herbicides are the principal economic means of weed management on >90% of U.S. farmland. Herbicide-resistant crop cultivars have been used widely since 1995. Pest disciplines and other life sciences have various definitions of resistance that share commonalities. Development of herbicide resistant w...

  9. Transcript markers of herbicide stress in Arabidopsis and their cross-species extrapolation to Brassica

    EPA Science Inventory

    Low concentrations and short environmental persistence times of some herbicides make it difficult to develop analytical methods to detect herbicide residues in plants or soils. In contrast, genomics may provide tools to identify herbicide exposure to plants in field settings. Usi...

  10. Reducing Freshwater Toxicity while Maintaining Weed Control, Profits, And Productivity: Effects of Increased Crop Rotation Diversity and Reduced Herbicide Usage.

    PubMed

    Hunt, Natalie D; Hill, Jason D; Liebman, Matt

    2017-02-07

    Increasing crop rotation diversity while reducing herbicide applications may maintain effective weed control while reducing freshwater toxicity. To test this hypothesis, we applied the model USEtox 2.0 to data from a long-term Iowa field experiment that included three crop rotation systems: a 2-year corn-soybean sequence, a 3-year corn-soybean-oat/red clover sequence, and 4-year corn-soybean-oat/alfalfa-alfalfa sequence. Corn and soybean in each rotation were managed with conventional or low-herbicide regimes. Oat, red clover, and alfalfa were not treated with herbicides. Data from 2008-2015 showed that use of the low-herbicide regime reduced freshwater toxicity loads by 81-96%, and that use of the more diverse rotations reduced toxicity and system dependence on herbicides by 25-51%. Mean weed biomass in corn and soybean was <25 kg ha -1 in all rotation × herbicide combinations except the low-herbicide 3-year rotation, which contained ∼110 kg ha -1 of weed biomass. Corn and soybean yields and net returns were as high or higher for the 3- and 4-year rotations managed with the low-herbicide regime as for the conventional-herbicide 2-year rotation. These results indicate that certain forms of cropping system diversification and alternative weed management strategies can maintain yield, profit, and weed suppression while delivering enhanced environmental performance.

  11. Response to low-dose herbicide selection in self-pollinated Avena fatua.

    PubMed

    Busi, Roberto; Girotto, Marcelo; Powles, Stephen B

    2016-03-01

    When applied at the correct plant stage and dose, herbicides are highly toxic to plants. At reduced, low herbicide doses (below the recommended dose) plants can survive and display continuous and quantitative variation in dose-survival responses. Recurrent (directional) selection studies can reveal whether such a phenotypic variation in plant survival response to low herbicide dose is heritable and leads to herbicide resistance. In a common experimental garden study, we have subjected a susceptible population of self-pollinated hexaploid Avena fatua to low-dose recurrent selection with the ACCase-inhibiting herbicide diclofop-methyl for three consecutive generations. Significant differences in response to low-dose diclofop-methyl selection were observed between the selected progenies and parent plants, with a twofold diclofop-methyl resistance and cross-resistance to ALS-inhibiting herbicides. Thus, the capacity of self-pollinated A. fatua to respond to low-dose herbicide selection is marginal, and it is much lower than in cross-pollinated L. rigidum. Lolium rigidum in the same experiment evolved 40-fold diclofop-methyl resistance by progressive enrichment of quantitative resistance-endowing traits. Cross-pollination rate, genetic variation and ploidy levels are identified as possible drivers affecting the contrasting capacity of Avena versus Lolium plants to respond to herbicide selection and the subsequent likelihood of resistance evolution at low herbicide dose usage. © 2015 Society of Chemical Industry.

  12. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact.

    PubMed

    Bonny, Sylvie

    2016-01-01

    Genetically modified (GM) crops have been and continue to be a subject of controversy despite their rapid adoption by farmers where approved. For the last two decades, an important matter of debate has been their impact on pesticide use, particularly for herbicide-tolerant (HT) crops. Some claim that these crops bring about a decrease in herbicide use, while others claim the opposite. In fact, since 1996, most cultivated GMOs have been GMHT crops, which involve the use of an associated herbicide, generally glyphosate. In their very first years of adoption, HT crops often led to some decrease in herbicide use. However, the repetition of glyphosate-tolerant crops and of glyphosate only applications in the same fields without sufficient alternation and herbicide diversity has contributed to the appearance of glyphosate-resistant weeds. These weeds have resulted in a rise in the use of glyphosate and other herbicides. This article explores this situation and the impacts of herbicide-resistant weeds, using an interdisciplinary approach and drawing on recent data. The paper analyzes the spread of GMHT crops worldwide and their consequences on herbicide use in the USA in particular. It then addresses the global development of glyphosate-resistant weeds and their impact, particularly focusing on the USA. Finally, the last section explores how industry, farmers, and weed scientists are coping with the spread of resistant weeds. The concluding comments deal more widely with trends in GM crops.

  13. Plan of study to determine the effect of changes in herbicide use on herbicide concentrations in Midwestern streams, 1989-94

    USGS Publications Warehouse

    Goolsby, Donald A.; Boyer, Laurie L.; Battaglin, William A.

    1994-01-01

    An approach was developed to determine if recent changes in the use of herbicides has affected herbicide concentrations in Midwestern streams. This approach also provides a plan to determine if the abnormally high rainfall and flooding in 1993 has an effect on nitrate concentrations in 1994 in streams that flooded in 1993. The approach involves sampling 53 stream sites, 50 of which were sampled in 1989 and 1990 as part of a reconnaissance to determine the geographic and seasonal distribution of herbicides in 10 Midwestern States. Sites will be sampled twice, once prior to application of herbicides, in March or early April, and once during the first runoff event after application of herbicides. Samples will be analyzed for 11 herbicide and 2 atrazine metabolites by gas chromatography/mass spectrometry. Samples will also be analyzed for ESA (an alachlor metabolite), two cyanazine metabolites, and nutrients. Changes to the manufacturers' label have decreased the maximum recommended application rate for atrazine on com and sorghum by about 50 percent since the 1989-90 study. Conversely, the use of other herbicides, such as cyanazine, has increased by more than 25 percent since 1989. Statistical procedures such as Wilcoxon signed rank tests for paired samples will be used to determine if the distributions of herbicide and nitrate concentrations in 1994 are different from those measured in 1989 and 1990.

  14. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact

    NASA Astrophysics Data System (ADS)

    Bonny, Sylvie

    2016-01-01

    Genetically modified (GM) crops have been and continue to be a subject of controversy despite their rapid adoption by farmers where approved. For the last two decades, an important matter of debate has been their impact on pesticide use, particularly for herbicide-tolerant (HT) crops. Some claim that these crops bring about a decrease in herbicide use, while others claim the opposite. In fact, since 1996, most cultivated GMOs have been GMHT crops, which involve the use of an associated herbicide, generally glyphosate. In their very first years of adoption, HT crops often led to some decrease in herbicide use. However, the repetition of glyphosate-tolerant crops and of glyphosate only applications in the same fields without sufficient alternation and herbicide diversity has contributed to the appearance of glyphosate-resistant weeds. These weeds have resulted in a rise in the use of glyphosate and other herbicides. This article explores this situation and the impacts of herbicide-resistant weeds, using an interdisciplinary approach and drawing on recent data. The paper analyzes the spread of GMHT crops worldwide and their consequences on herbicide use in the USA in particular. It then addresses the global development of glyphosate-resistant weeds and their impact, particularly focusing on the USA. Finally, the last section explores how industry, farmers, and weed scientists are coping with the spread of resistant weeds. The concluding comments deal more widely with trends in GM crops.

  15. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide.

    PubMed

    Song, Yaling

    2014-02-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) was the first synthetic herbicide to be commercially developed and has commonly been used as a broadleaf herbicide for over 60 years. It is a selective herbicide that kills dicots without affecting monocots and mimics natural auxin at the molecular level. Physiological responses of dicots sensitive to auxinic herbicides include abnormal growth, senescence, and plant death. The identification of auxin receptors, auxin transport carriers, transcription factors response to auxin, and cross-talk among phytohormones have shed light on the molecular action mode of 2,4-D as a herbicide. Here, the molecular action mode of 2,4-D is highlighted according to the latest findings, emphasizing the physiological process, perception, and signal transduction under herbicide treatment. © 2013 Institute of Botany, Chinese Academy of Sciences.

  16. Analysis of sugarcane herbicides in marine turtle nesting areas and assessment of risk using in vitro toxicity assays.

    PubMed

    Allan, Hannah L; van de Merwe, Jason P; Finlayson, Kimberly A; O'Brien, Jake W; Mueller, Jochen F; Leusch, Frederic D L

    2017-10-01

    Agricultural processes are associated with many different herbicides that can contaminate surrounding environments. In Queensland, Australia, herbicides applied to agricultural crops may pose a threat to valuable coastal habitats including nesting beaches for threatened loggerhead turtles (Caretta caretta). This study 1) measured concentrations of herbicides in the beach sand of Mon Repos, an important marine turtle nesting beach in Australia that is adjacent to significant sugarcane crops, and 2) investigated the toxicity of these herbicides to marine turtles using a cell-based assay. Samples of sand from turtle nest depth and water from surrounding agricultural drains and wetlands were collected during the wet season when herbicide runoff was expected to be the greatest and turtles were nesting. Samples were extracted using solid phase extraction and extracts were analysed using chemical analysis targeting herbicides, as well as bioanalytical techniques (IPAM-assay and loggerhead turtle skin cell cytotoxicity assay). Twenty herbicides were detected in areas between sugarcane crops and the nesting beach, seven of which were also detected in the sand extracts. Herbicides present in the nearby wetland were also detected in the beach sand, indicating potential contamination of the nesting beach via the river outlet as well as ground water. Although herbicides were detected in nesting sand, bioassays using loggerhead turtle skin cells indicated a low risk of acute toxicity at measured environmental concentrations. Further research should investigate potentially more subtle effects, such as endocrine disruption and mixture effects, to better assess the threat that herbicides pose to this population of marine turtles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Thermodynamic effects of replacements of Pro residues in helix interiors of maltose-binding protein.

    PubMed

    Prajapati, R S; Lingaraju, G M; Bacchawat, Kiran; Surolia, Avadhesha; Varadarajan, Raghavan

    2003-12-01

    Introduction of Pro residues into helix interiors results in protein destabilization. It is currently unclear if the converse substitution (i.e., replacement of Pro residues that naturally occur in helix interiors would be stabilizing). Maltose-binding protein is a large 370-amino acid protein that contains 21 Pro residues. Of these, three nonconserved residues (P48, P133, and P159) occur at helix interiors. Each of the residues was replaced with Ala and Ser. Stabilities were characterized by differential scanning calorimetry (DSC) as a function of pH and by isothermal urea denaturation studies as a function of temperature. The P48S and P48A mutants were found to be marginally more stable than the wild-type protein. In the pH range of 5-9, there is an average increase in T(m) values of P48A and P48S of 0.4 degrees C and 0.2 degrees C, respectively, relative to the wild-type protein. The other mutants are less stable than the wild type. Analysis of the effects of such Pro substitutions in MBP and in three other proteins studied to date suggests that substitutions are more likely to be stabilizing if the carbonyl group i-3 or i-4 to the mutation site is not hydrogen bonded in the wild-type protein. Copyright 2003 Wiley-Liss, Inc.

  18. Corn silage replacement with barley silage in dairy cows' diet does not change milk quality, cheese quality and yield.

    PubMed

    Migliorati, Luciano; Boselli, Leonardo; Pirlo, Giacomo; Moschini, Maurizio; Masoero, Francesco

    2017-08-01

    Considering that water availability for agricultural needs is being restricted, an alternative to corn in animal nutrition should be explored in the Po Valley. The present study aimed to evaluate the effects of either a partial (Trial I) or a total (Trial II) corn silage substitution with barley silage in dairy cows' diet on milk yield and composition, its coagulation properties, cheese yield and the sensorial profile of 16-month-aged Grana Padano cheese. A partial or a total substitution of corn silage with barley silage had no effect on milk yield. Milk fat content in Trial I and milk urea content in both trials were higher with barley silage based diets than in corn silage based diets. No effects were observed concerning the lactodinamographic profile for milk aptitude to cheese-making, cheese yield and its organoleptic traits between feed treatments in Trials I and II. In both trials, hardness, friability and solubility scores were generally lower than reference values, whereas deformability, elasticity and stickiness scores were generally higher than reference values. A partial or a total substitution of corn silage with barley silage in diets for dairy cows did not induce any negative effects on animal performance, nor on milk-quality traits, cheese quality and yield. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Potential organic herbicides for squash production: Pelargonic acid herbicides AXXE (registered trademark) and Scythe (registered trademark)

    USDA-ARS?s Scientific Manuscript database

    Organic squash (Cucurbita pepo L.) producers need appropriate herbicides that can effectively provide season- long weed control. Research was conducted in southeast Oklahoma (Atoka County, Lane, OK) to determine the impact of potential organic herbicides on weed control efficacy, crop injury, and y...

  20. Potential organic herbicides for squash production: Pelargonic acid herbicides AXXE® and Scythe®

    USDA-ARS?s Scientific Manuscript database

    Organic squash (Cucurbita pepo L.) producers need appropriate herbicides that can effectively provide season-long weed control. Although corn gluten meal has shown promise as an early-season pre-emergent organic herbicide in squash production, any uncontrolled weeds can inflict serious yield reducti...

  1. Discovery of new herbicide modes of action with natural phytotoxins

    USDA-ARS?s Scientific Manuscript database

    About 20 modes of action (MOAs) are utilized by commercial herbicides, and almost 30 years have passed since the last new MOA was introduced. Rapidly increasing evolution of resistance to herbicides with these MOAs has greatly increased the need for herbicides with new MOAs. Combinatorial chemistry ...

  2. Vegetable Response to Herbicides Applied to Low-Density Polyethylene Mulch Prior to Transplant

    USDA-ARS?s Scientific Manuscript database

    Few herbicides are available for weed control in vegetables. The elimination of methyl bromide increases the need for herbicides. An experiment was conducted to evaluate crop injury from herbicides applied to LDPE mulch prior to transplant. Irrigation (1 cm) or no irrigation following crop transplan...

  3. 33 CFR 273.16 - Operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (b) Safety in use of herbicides. Use of herbicides will be in accordance with the Occupational Safety and Health Act of 1970, reference § 273.12 (d) and (e). Some herbicides are toxic chemicals and must...; and eye protection. Some of the primary precautions which must be observed in handling herbicides are...

  4. 33 CFR 273.16 - Operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (b) Safety in use of herbicides. Use of herbicides will be in accordance with the Occupational Safety and Health Act of 1970, reference § 273.12 (d) and (e). Some herbicides are toxic chemicals and must...; and eye protection. Some of the primary precautions which must be observed in handling herbicides are...

  5. 33 CFR 273.16 - Operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (b) Safety in use of herbicides. Use of herbicides will be in accordance with the Occupational Safety and Health Act of 1970, reference § 273.12 (d) and (e). Some herbicides are toxic chemicals and must...; and eye protection. Some of the primary precautions which must be observed in handling herbicides are...

  6. 33 CFR 273.16 - Operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (b) Safety in use of herbicides. Use of herbicides will be in accordance with the Occupational Safety and Health Act of 1970, reference § 273.12 (d) and (e). Some herbicides are toxic chemicals and must...; and eye protection. Some of the primary precautions which must be observed in handling herbicides are...

  7. 33 CFR 273.16 - Operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (b) Safety in use of herbicides. Use of herbicides will be in accordance with the Occupational Safety and Health Act of 1970, reference § 273.12 (d) and (e). Some herbicides are toxic chemicals and must...; and eye protection. Some of the primary precautions which must be observed in handling herbicides are...

  8. Tolerance evaluation of vegetatively established Miscanthus x giganteus to herbicides

    USDA-ARS?s Scientific Manuscript database

    In spite of the recent focus on herbicide resistant weeds, herbicide resistant weeds are not new to agriculture; the first herbicide resistant weed was documented in 1957, with the first widespread resistance occurring in common groundsel with atrazine in the early 1970’s. Glyphosate resistant weed...

  9. Effectiveness of Glyphosate Mixed With Soil-Active Herbicides

    Treesearch

    James D. Haywood; Thomas W. Melder

    1991-01-01

    Broadcasting mixtures of glyphosate and soil-active herbicides over loblolly pine (Pinus taeda L.) seedlings may control established weeds and emerging weed seedlings better than either glyphosate or soil-active herbicides alone. However, herbicides will injure young pines if applied improperly. To examine seedling injury, we broadcast two rates of...

  10. Antigenic and functional properties of the human red blood cell urea transporter hUT-B1.

    PubMed

    Lucien, Nicole; Sidoux-Walter, Frédéric; Roudier, Nathalie; Ripoche, Pierre; Huet, Martine; Trinh-Trang-Tan, Marie-Marcelle; Cartron, Jean-Pierre; Bailly, Pascal

    2002-09-13

    The Kidd (JK) blood group locus encodes the urea transporter hUT-B1, which is expressed on human red blood cells and other tissues. The common JK*A/JK*B blood group polymorphism is caused by a single nucleotide transition G838A changing Asp-280 to Asn-280 on the polypeptide, and transfection of erythroleukemic K562 cells with hUT-B1 cDNAs carrying either the G838 or the A838 nucleotide substitutions resulted in the isolation of stable clones that expressed the Jk(a) or Jk(b) antigens, respectively, thus providing the first direct demonstration that the hUT-B1 gene encodes the Kidd blood group antigens. In addition, immunochemical analysis of red blood cells demonstrated that hUT-B1 also exhibits ABO determinants attached to the single N-linked sugar chain at Asn-211. Moreover, immunoadsorption studies, using inside-out and right-side-out red cell membrane vesicles as competing antigen, demonstrated that the C- and N-terminal ends of hUT-B1 are oriented intracellularly. Mutagenesis and functional studies by expression in Xenopus oocytes revealed that both cysteines Cys-25 and Cys-30 (but not alone) are essential for plasma membrane addressing. Conversely, the transport function was not affected by the JK*A/JK*B polymorphism, C-terminal deletion (residues 360-389), or mutation of the extracellular N-glycosylation consensus site and remains poorly para-chloromercuribenzene sulfonate (pCMBS)-sensitive. However, transport studies by stopped flow light scattering using Jk-K562 transfectants demonstrated that the hUT-B1-mediated urea transport is pCMBS-sensitive in an erythroid context, as reported previously for the transporter of human red blood cells. Mutagenesis analysis also indicated that Cys-151 and Cys-236, at least alone, are not involved in pCMBS inhibition. Altogether, these antigenic, topologic, and functional properties might have implications into the physiology of hUT-B1 and other members of the urea transporter family.

  11. Shredded beet pulp substituted for corn silage in diets fed to dairy cows under ambient heat stress: Feed intake, total-tract digestibility, plasma metabolites, and milk production.

    PubMed

    Naderi, N; Ghorbani, G R; Sadeghi-Sefidmazgi, A; Nasrollahi, S M; Beauchemin, K A

    2016-11-01

    The effects of substituting increasing concentrations of dried, shredded beet pulp for corn silage on dry matter intake, nutrient digestibility, rumen fermentation, blood metabolites, and milk production of lactating dairy cows was evaluated under conditions of ambient heat stress. Four multiparous (126±13d in milk) and 4 primiparous (121±11d in milk) Holstein cows were used in a 4×4 Latin square design experiment with 4 periods of 21d. Each period had 14d of adaptation and 7d of sampling, and parity was the square. Dietary treatments were (dry matter basis): 16% of dietary dry matter as corn silage without BP (0BP, control diet); 8% corn silage and 8% beet pulp (8BP); 4% corn silage and 12% beet pulp (12BP); and 0% corn silage and 16% beet pulp (16BP). Alfalfa hay was included in all diets (24% dietary dry matter). Dietary concentrations of forage neutral detergent fiber and nonfiber carbohydrates were 21.3 and 39.2% (0BP), 16.5 and 40.9% (8BP), 14.1 and 42.2% (12BP), and 11.7 and 43.4% (16BP), respectively (dry matter basis). The ambient temperature-humidity index indicated that the cows were in heat stress for almost the entire duration of the study. Dry matter intake and nutrient digestibilities were similar across treatments and between multi- and primiparous cows. Mean rumen pH tended to decrease with increasing proportions of beet pulp in the diet. Also, increasing proportions of beet pulp in the diet linearly decreased acetate and butyrate concentrations in the rumen and increased propionate concentrations, leading to a linear decrease in acetate:propionate ratio. Milk yield linearly increased (38.5, 39.3, 40.9, and 39.6kg/d for 0BP, 8BP, 12BP, and 16BP, respectively), but fat content linearly decreased (3.46, 3.47, 3.27, and 2.99), such that we observed no effect on fat-corrected milk. Substituting beet pulp for corn silage increased the neutral detergent insoluble crude protein content of the diet, leading to a decrease in rumen concentration of ammonia-nitrogen and milk concentration of urea, corresponding to an increase in percentage of protein in milk. Compared with multiparous cows, primiparous cows had greater rumen pH, metabolite concentrations in plasma (glucose, cholesterol, urea nitrogen, total protein, and globulins), milk production, and concentrations of milk components. Substituting beet pulp for corn silage at up to 12% of dietary dry matter can be beneficial during heat stress conditions. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Substitution of a single amino acid residue in the aromatic/arginine selectivity filter alters the transport profiles of tonoplast aquaporin homologs.

    PubMed

    Azad, Abul Kalam; Yoshikawa, Naoki; Ishikawa, Takahiro; Sawa, Yoshihiro; Shibata, Hitoshi

    2012-01-01

    Aquaporins are integral membrane proteins that facilitate the transport of water and some small solutes across cellular membranes. X-ray crystallography of aquaporins indicates that four amino acids constitute an aromatic/arginine (ar/R) pore constriction known as the selectivity filter. On the basis of these four amino acids, tonoplast aquaporins called tonoplast intrinsic proteins (TIPs) are divided into three groups in Arabidopsis. Herein, we describe the characterization of two group I TIP1s (TgTIP1;1 and TgTIP1;2) from tulip (Tulipa gesneriana). TgTIP1;1 and TgTIP1;2 have a novel isoleucine in loop E (LE2 position) of the ar/R filter; the residue at LE2 is a valine in all group I TIPs from model plants. The homologs showed mercury-sensitive water channel activity in a fast kinetics swelling assay upon heterologous expression in Pichia pastoris. Heterologous expression of both homologs promoted the growth of P. pastoris on ammonium or urea as sole sources of nitrogen and decreased growth and survival in the presence of H(2)O(2). TgTIP1;1- and TgTIP1;2-mediated H(2)O(2) conductance was demonstrated further by a fluorescence assay. Substitutions in the ar/R selectivity filter of TgTIP1;1 showed that mutants that mimicked the ar/R constriction of group I TIPs could conduct the same substrates that were transported by wild-type TgTIP1;1. In contrast, mutants that mimicked group II TIPs showed no evidence of urea or H(2)O(2) conductance. These results suggest that the amino acid residue at LE2 position is critical for the transport selectivity of the TIP homologs and group I TIPs might have a broader spectrum of substrate selectivity than group II TIPs. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Anomalous regioselective four-member multicomponent Biginelli reaction II: one-pot parallel synthesis of spiro heterobicyclic aliphatic rings.

    PubMed

    Byk, Gerardo; Kabha, Eihab

    2004-01-01

    In a previous preliminary study, we found that a cyclic five-member ring beta-keto ester (lactone) reacts with one molecule of urea and two of aldehyde to give a new family of spiro heterobicyclic aliphatic rings in good yields with no traces of the expected dihydropyrimidine (Biginelli) products. The reaction is driven by a regiospecific condensation of two molecules of aldehyde with urea and beta-keto-gamma-lactone to afford only products harboring substitutions exclusively in a syn configuration (Byk, G.; Gottlieb, H. E.; Herscovici, J.; Mirkin, F. J. Comb. Chem. 2000, 2, 732-735). In the present work ((a) Presented in part at ISCT Combitech, October 15, 2002, Israel, and Eurocombi-2, Copenhagen 2003 (oral and poster presentation). (b) Also in American Peptide Society Symposium, Boston, 2003 (poster presentation). (c) Abstract in Biopolymers 2003, 71 (3), 354-355), we report a large and exciting extension of this new reaction utilizing parallel organic synthesis arrays, as demonstrated by the use of chiral beta-keto-gamma-lactams, derived from natural amino acids, instead of tetronic acid (beta-keto-gamma-lactone) and the potential of the spirobicyclic products for generating "libraries from libraries". Interestingly, we note an unusual and important anisotropy effect induced by perpendicular interactions between rigid pi systems and different groups placed at the alpha position of the obtained spirobicyclic system. Stereo/regioselectivity of the aldehyde condensation is driven by the nature of the substitutions on the starting beta-keto-gamma-lactam. Aromatic aldehydes can be used as starting reagents with good yields; however, when aliphatic aldehydes are used, the desired products are obtained in poor yields, as observed in the classical Biginelli reaction. The possible reasons for these poor yields are addressed and clarify, to some extent, the complexity of the Biginelli multicomponent reaction mechanism and, in particular, the mechanism of the present reaction. Finally, we have investigated and proposed a mechanism for this new reaction by intercepting several intermediates.

  14. Lipozyme RM IM-catalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids.

    PubMed

    Zou, Xian-Guo; Hu, Jiang-Ning; Zhao, Man-Li; Zhu, Xue-Mei; Li, Hong-Yan; Liu, Xiao-Ru; Liu, Rong; Deng, Ze-Yuan

    2014-10-29

    In the present study, a human milk fat substitute (HMFS) enriched in medium-chain fatty acids (MCFAs) was synthesized through acidolysis reaction from Cinnamomum camphora seed oil (CCSO) with oleic acid in a solvent-free system. A commercial immobilized lipase, Lipozyme RM IM, from Rhizomucor miehei, was facilitated as a biocatalyst. Effects of different reaction conditions, including substrate molar ratio, enzyme concentration, reaction temperature, and reaction time were investigated using response surface methodology (RSM) to obtain the optimal oleic acid incorporation. After optimization, results showed that the maximal incorporation of oleic acid into HMFS was 59.68%. Compared with CCSO, medium-chain fatty acids at the sn-2 position of HMFS accounted for >70%, whereas oleic acid was occupied predominantly at the sn-1,3 position (78.69%). Meanwhile, triacylglycerol (TAG) components of OCO (23.93%), CCO (14.94%), LaCO (13.58%), OLaO (12.66%), and OOO (11.13%) were determined as the major TAG species in HMFS. The final optimal reaction conditions were carried out as follows: substrate molar ratio (oleic acid/CCSO), 5:1; enzyme concentration, 12.5% (w/w total reactants); reaction temperature, 60 °C; and reaction time, 28 h. The reusability of Lipozyme RM IM in the acidolysis reaction was also evaluated, and it was found that it could be reused up to 9 times without significant loss of activities. Urea inclusion method was used to separate and purify the synthetic product. As the ratio of HMFS/urea increased to 1:2, the acid value lowered to the minimum. In a scale-up experiment, the contents of TAG and total tocopherols in HMFS (modified CCSO) were 77.28% and 12.27 mg/100 g, respectively. All of the physicochemical indices of purified product were within food standards. Therefore, such a MCFA-enriched HMFS produced by using the acidolysis method might have potential application in the infant formula industry.

  15. Carbon footprint as an environmental sustainability indicator for the particleboard produced in Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Majid

    This study quantified the carbon footprint of particleboard production in Pakistan using a cradle-to-gate life cycle assessment approach. The system boundary comprised raw materials acquisition, transport, particleboard manufacture and finished product distribution. Primary data were collected through surveys and meetings with particleboard manufacturers. Secondary data were taken from the literature. Greenhouse gas emissions from off-site industrial operations of the particleboard industry represented 52% of the total emissions from the production of 1.0 m{sup 3} of particleboard in Pakistan. The on-site industrial operations cause direct greenhouse gas emissions and accounted for 48% of the total emissions. These operations included energy consumptionmore » in stationary sources, the company-owned vehicle fleet, and the distribution and marketing of the finished product. The use of natural gas combustion in the stationary and mobile sources, raw material transport and urea-formaldehyde resin production chain accounted for the highest emissions from the particleboard production chain in Pakistan. The identification of the major hotspots in the particleboard production chain can assist the wood panel industry to improve their environmental profile. More efforts are needed to investigate the urea-formaldehyde resin production chain and substitution of roundwood with wood and agri-residues to assess the potential improvements. In addition, renewable energy sources should be encouraged to avoid greenhouse gas emissions by substituting fossil energy. This study also provides a benchmark for future research work to formulate comprehensive greenhouse gas emissions reduction plans, because no previous research work is available on the carbon footprint of particleboard production in Pakistan. - Highlights: • We conducted the first carbon footprint assessment of particleboard produced in Pakistan. • System boundary comprised raw materials acquisition, particleboard manufacture and distribution. • Off-site industrial operations were accounted for highest emissions (52%) followed by on-site operations (48%). • Natural gas, materials transport and UF resin use accounted for highest emissions. • Identified potential strategies for GHG emissions reductions from PB production in Pakistan.« less

  16. Herbicide Metabolites in Surface Water and Groundwater: Introduction and Overview

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.

    1996-01-01

    Several future research topics for herbicide metabolites in surface and ground water are outlined in this chapter. They are herbicide usage, chemical analysis of metabolites, and fate and transport of metabolites in surface and ground water. These three ideas follow the themes in this book, which are the summary of a symposium of the American Chemical Society on herbicide metabolites in surface and ground water. First, geographic information systems allow the spatial distribution of herbicide-use data to be combined with geochemical information on fate and transport of herbicides. Next these two types of information are useful in predicting the kinds of metabolites present and their probable distribution in surface and ground water. Finally, methods development efforts may be focused on these specific target analytes. This chapter discusses these three concepts and provides an introduction to this book on the analysis, chemistry, and fate and transport of herbicide metabolites in surface and ground water.

  17. The influence of reduced light intensity on the response of benthic diatoms to herbicide exposure.

    PubMed

    Wood, Rebecca J; Mitrovic, Simon M; Lim, Richard P; Kefford, Ben J

    2016-09-01

    Herbicide pollution events in aquatic ecosystems often coincide with increased turbidity and reduced light intensity. It is therefore important to determine whether reduced light intensity can influence herbicide toxicity, especially to primary producers such as benthic diatoms. Benthic diatoms collected from 4 rivers were exposed to herbicides in 48 h rapid toxicity tests under high light (100 µmol m(-2)  s(-1) ) and low light (20 µmol m(-2)  s(-1) ) intensities. The effects of 2 herbicides (atrazine and glyphosate) were assessed on 26 freshwater benthic diatom taxa. There was no significant interaction of light and herbicide effects at the community level or on the majority (22 of 26) of benthic diatom taxa. This indicates that low light levels will likely have only a minor influence on the response of benthic diatoms to herbicides. Environ Toxicol Chem 2016;35:2252-2260. © 2016 SETAC. © 2016 SETAC.

  18. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    PubMed Central

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-01-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services. PMID:25005713

  19. Three-parameter modeling of the soil sorption of acetanilide and triazine herbicide derivatives.

    PubMed

    Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson

    2014-02-01

    Herbicides have widely variable toxicity and many of them are persistent soil contaminants. Acetanilide and triazine family of herbicides have widespread use, but increasing interest for the development of new herbicides has been rising to increase their effectiveness and to diminish environmental hazard. The environmental risk of new herbicides can be accessed by estimating their soil sorption (logKoc), which is usually correlated to the octanol/water partition coefficient (logKow). However, earlier findings have shown that this correlation is not valid for some acetanilide and triazine herbicides. Thus, easily accessible quantitative structure-property relationship models are required to predict logKoc of analogues of the these compounds. Octanol/water partition coefficient, molecular weight and volume were calculated and then regressed against logKoc for two series of acetanilide and triazine herbicides using multiple linear regression, resulting in predictive and validated models.

  20. Using a Hydrological Model to Determine Environmentally Safer Windows for Herbicide Application

    Treesearch

    J.L. Michael; M.C. Smith; W.G. Knisel; D.G. Neary; W.P. Fowler; D.J. Turton

    1996-01-01

    A modification of the GLEAMS model was used to determine application windows which would optimise efficacy and environmental safety for herbicide application to a forest site. Herbicide/soil partition coefficients were determined using soil samples collected from the study site for two herbicides (imazapyr, Koc=46, triclopyr ester, K

  1. 77 FR 41367 - Dow AgroSciences LLC; Availability of Petition, Plant Pest Risk Assessment, and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Assessment for Determination of Nonregulated Status of Soybean Genetically Engineered for Herbicide Tolerance... been genetically engineered for tolerance to broadleaf herbicides in the phenoxy auxin group (such as the herbicide 2,4-D) and the herbicide glufosinate. The petition has been submitted in accordance with...

  2. 40 CFR 174.533 - Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Glycine max Herbicide-Resistant... Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from the requirement of a tolerance. Residues of Glycine max herbicide-resistant acetolactate synthase (GM-HRA) enzyme...

  3. 76 FR 70954 - Idaho Panhandle National Forests, Idaho; Idaho Panhandle National Forest Noxious Weed Treatment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... registered herbicides is one of the various treatment methods that are proposed. The overall project goal is... insects; and herbicides that target specific invasive plant species. The application of herbicides would... spraying would be the primary method of applying herbicide in order to target individual and groups of...

  4. 40 CFR 174.533 - Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Glycine max Herbicide-Resistant... Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from the requirement of a tolerance. Residues of Glycine max herbicide-resistant acetolactate synthase (GM-HRA) enzyme...

  5. 78 FR 34637 - Dow AgroSciences LLC; Notice of Intent To Prepare an Environmental Impact Statement for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... of Nonregulated Status of Herbicide Resistant Corn and Soybeans, and Notice of Virtual Public... determination of nonregulated status of three cultivars of herbicide resistant corn and soybeans produced by Dow... certain broadleaf herbicides in the auxin growth regulator group (particularly the herbicide 2,4-D). The...

  6. Effects of herbicide usage on water quality of selected streams in Wyoming

    USGS Publications Warehouse

    Butler, David L.

    1980-01-01

    During 1977 and 1978 the Wyoming Department of Agriculture, in conjunction with county weed and pest control districts, conducted a noxious-weed-control program in Wyoming. The herbicides primarily used were picloram, 2,4-D, and dicamba. The U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, sampled and analyzed water from selected streams for these herbicides plus silvex; 2,4,5-T; and 2,4-DP.This report contains data for samples collected during 1977 and 1978. The most commonly detected herbicides in water samples were 2,4-D with 41-percent nonzero values and picloram with 34.5-percent nonzero values. Herbicide occurrence in bottom-material samples was uncommon; dicamba was found with 9-percent nonzero values. The maximum herbicide concentration in water was 1.1 micrograms per liter of 2,4-D, and the maximum herbicide concentration in bottom material was 8.0 micrograms per kilogram of 2,4-D. Based on available toxicity data and water-quality criteria, these herbicide concentrations do not constitute dangerous or harmful concentrations to humans or to the environment.

  7. Population dynamics of weeds in oil palm (Elaeis guineensis Jacq.) circle weeding area affected by herbicide application

    NASA Astrophysics Data System (ADS)

    Sidik, S.; Purba, E.; Yakub, E. N.

    2018-02-01

    Weed problems in oil palm field were mainly overcomed by herbicide application. The application certain herbicides may lead to rapid population dynamic of certain species due to their different response to herbicides. Some species may less susceptible to certain herbicide whereas other species more susceptible. The objective of this study was to determine the population dynamic of weed species in circle weeding of oil palm in Serdang Bedagai, North Sumatra. Six treatments using glyphosate singly and mixture compared with manual weeding were evaluated for weed control. The treatments were arranged in a randomized block design with four replicates. Each treatment consisted of four circle weedings. The results showed that glyphosate 720 g a.i/ha + indaziflam 50 g a.i/hareduced seedbank and regrowth of weeds. Up to 12 weeks after application glyphosate 720 g a.i/ha + indaziflam 50 g a.i/ha is 29.46% total weeds dry weight compared to manual weeding. The effect of herbicide application on changes on the weed composition and weed seedbank are affected by the characteristic of herbicides and weed response to herbicide application.

  8. Effect of some herbicides on the toxicity of certain molluscacides against Biomphalaria alexandrina snails.

    PubMed

    el-Fiki, S A; Mohamed, A M

    1978-01-01

    Studies dealing with the effect of some herbicides on the molluscicidal action of certain molluscicides against B. alexandrina have been carried out. In the first part of the study the toxicity of 3 molluscicides (Copper sulphate, Niclosamide and Frescon) and 3 herbicides (Gramaxone, Preforan and Treflan) was tested individually. Results indicated that the molluscicides were more potent than the herbicides. In the second part, snails were exposed for 24 hr to one of the tested herbicides using LC0 or (Sub. lethal conc) then the toxicity of molluscicides was determined among the same snails. Data indicated that pre-exposure to herbicides caused a synergistic action with copper sulphate, while with Niclosamide and Frescon marked antagonistic effect was observed. In the third part molluscicides and herbicides were mixed in different ratios (1:2, 1:1 and 2:1) and the toxicity of the mixtures was tested. A synergistic effect was observed in the case of copper sulphate plus various herbicides especially with Treflan at 1:2 ratio. With Niclosamide and Frescon slight antagonistic effect was detected.

  9. Regional patterns of pesticide concentrations in surface waters of New York in 1997

    USGS Publications Warehouse

    Phillips, P.J.; Eckhardt, D.A.; Freehafer, D.A.; Wall, G.R.; Ingleston, H.H.

    2002-01-01

    The predominant mixtures of pesticides found in New York surface waters consist of five principal components. First, herbicides commonly used on corn (atrazine, metolachlor, alachlor, cyanazine) and a herbicide degradate (deethylatrazine) were positively correlated to a corn-herbicide component, and watersheds with the highest corn-herbicide component scores were those in which large amounts of row crops are grown. Second, two insecticides (diazinon and carbaryl) and one herbicide (prometon) widely used in urban and residential settings were positively correlated to an urban/residential component. Watersheds with the highest urban/residential component scores were those with large amounts of urban and residential land use. A third component was related to two herbicides (EPTC and cyanazine) used on dry beans and corn, the fourth to an herbicide (simazine) and an insecticide (carbaryl) commonly used in orchards and vineyards, and the fifth to an herbicide (DCPA). Results of this study indicate that this approach can be used to: (1) identify common mixtures of pesticides in surface waters, (2) relate these mixtures to land use and pesticide applications, and (3) indicate regions where these mixtures of pesticides are commonly found.

  10. Integration of agronomic practices with herbicides for sustainable weed management in aerobic rice.

    PubMed

    Anwar, M P; Juraimi, A S; Mohamed, M T M; Uddin, M K; Samedani, B; Puteh, A; Man, Azmi

    2013-01-01

    Till now, herbicide seems to be a cost effective tool from an agronomic view point to control weeds. But long term efficacy and sustainability issues are the driving forces behind the reconsideration of herbicide dependent weed management strategy in rice. This demands reappearance of physical and cultural management options combined with judicious herbicide application in a more comprehensive and integrated way. Keeping those in mind, some agronomic tools along with different manual weeding and herbicides combinations were evaluated for their weed control efficacy in rice under aerobic soil conditions. Combination of competitive variety, higher seeding rate, and seed priming resulted in more competitive cropping system in favor of rice, which was reflected in lower weed pressure, higher weed control efficiency, and better yield. Most of the herbicides exhibited excellent weed control efficiency. Treatments comprising only herbicides required less cost involvement but produced higher net benefit. On the contrary, treatments comprising both herbicide and manual weeding required high cost involvement and thus produced lower net benefit. Therefore, adoption of competitive rice variety, higher seed rate, and seed priming along with spraying different early-postemergence herbicides in rotation at 10 days after seeding (DAS) followed by a manual weeding at 30 DAS may be recommended from sustainability view point.

  11. Current state of herbicides in herbicide-resistant crops.

    PubMed

    Green, Jerry M

    2014-09-01

    Current herbicide and herbicide trait practices are changing in response to the rapid spread of glyphosate-resistant weeds. Growers urgently needed glyphosate when glyphosate-resistant crops became available because weeds were becoming widely resistant to most commonly used selective herbicides, making weed management too complex and time consuming for large farm operations. Glyphosate made weed management easy and efficient by controlling all emerged weeds at a wide range of application timings. However, the intensive use of glyphosate over wide areas and concomitant decline in the use of other herbicides led eventually to the widespread evolution of weeds resistant to glyphosate. Today, weeds that are resistant to glyphosate and other herbicide types are threatening current crop production practices. Unfortunately, all commercial herbicide modes of action are over 20 years old and have resistant weed problems. The severity of the problem has prompted the renewal of efforts to discover new weed management technologies. One technology will be a new generation of crops with resistance to glyphosate, glufosinate and other existing herbicide modes of action. Other technologies will include new chemical, biological, cultural and mechanical methods for weed management. From the onset of commercialization, growers must now preserve the utility of new technologies by integrating their use with other weed management technologies in diverse and sustainable systems. © 2014 Society of Chemical Industry.

  12. The experimental evolution of herbicide resistance in Chlamydomonas reinhardtii results in a positive correlation between fitness in the presence and absence of herbicides.

    PubMed

    Vogwill, T; Lagator, M; Colegrave, N; Neve, P

    2012-10-01

    Pleiotropic fitness trade-offs will be key determinants of the evolutionary dynamics of selection for pesticide resistance. However, for herbicide resistance, empirical support for a fitness cost of resistance is mixed, and it is therefore also questionable what further ecological trade-offs can be assumed to apply to herbicide resistance. Here, we test the existence of trade-offs by experimentally evolving herbicide resistance in Chlamydomonas reinhardtii. Although fitness costs are detected for all herbicides, we find that, counterintuitively, the most resistant populations also have the lowest fitness costs as measured by growth rate in the ancestral environment. Furthermore, after controlling for differences in the evolutionary dynamics of resistance to different herbicides, we also detect significant positive correlations between resistance, fitness in the ancestral environment and cross-resistance to other herbicides. We attribute this to the highest levels of nontarget-site resistance being achieved by fixing mutations that more broadly affect cellular physiology, which results in both more cross-resistance and less overall antagonistic pleiotropy on maximum growth rate. Consequently, the lack of classical ecological trade-offs could present a major challenge for herbicide resistance management. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  13. Integration of Agronomic Practices with Herbicides for Sustainable Weed Management in Aerobic Rice

    PubMed Central

    Anwar, M. P.; Juraimi, A. S.; Mohamed, M. T. M.; Uddin, M. K.; Samedani, B.; Puteh, A.; Man, Azmi

    2013-01-01

    Till now, herbicide seems to be a cost effective tool from an agronomic view point to control weeds. But long term efficacy and sustainability issues are the driving forces behind the reconsideration of herbicide dependent weed management strategy in rice. This demands reappearance of physical and cultural management options combined with judicious herbicide application in a more comprehensive and integrated way. Keeping those in mind, some agronomic tools along with different manual weeding and herbicides combinations were evaluated for their weed control efficacy in rice under aerobic soil conditions. Combination of competitive variety, higher seeding rate, and seed priming resulted in more competitive cropping system in favor of rice, which was reflected in lower weed pressure, higher weed control efficiency, and better yield. Most of the herbicides exhibited excellent weed control efficiency. Treatments comprising only herbicides required less cost involvement but produced higher net benefit. On the contrary, treatments comprising both herbicide and manual weeding required high cost involvement and thus produced lower net benefit. Therefore, adoption of competitive rice variety, higher seed rate, and seed priming along with spraying different early-postemergence herbicides in rotation at 10 days after seeding (DAS) followed by a manual weeding at 30 DAS may be recommended from sustainability view point. PMID:24223513

  14. A Novel Rice Cytochrome P450 Gene, CYP72A31, Confers Tolerance to Acetolactate Synthase-Inhibiting Herbicides in Rice and Arabidopsis1[C][W][OPEN

    PubMed Central

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-01-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. PMID:24406793

  15. Herbicide monitoring in soil, runoff waters and sediments in an olive orchard.

    PubMed

    Calderon, Maria Jesus; De Luna, Elena; Gomez, Jose Alfonso; Hermosin, M Carmen

    2016-11-01

    Occurrences of surface water contamination by herbicides in areas where olive orchards are established reveal a need to understand soil processes affecting herbicide fate at field scale for this popular Mediterranean crop. A monitoring study with two herbicides (terbuthylazine and oxyfluorfen) in the first 2cm of soil, runoff waters, and sediments, was carried out after under natural rainfall conditions following winter herbicide application. At the end of the 107day field experiment, no residues of the soil applied terbuthylazine were recovered, whereas 42% of the oxyfluorfen applied remained in the top soil. Very low levels of both herbicides were measured in runoff waters; however, concentrations were slightly higher for terbuthylazine (0.53% of applied) than for oxyfluorfen (0.03% of applied), relating to their respective water solubilities. Congruent with soil residue data, 38.15% of the applied oxyfluorfen was found in runoff-sediment, compared to only 0.46% for terbuthylazine. Accordingly, the herbicide soil distribution coefficients measured within runoff field tanks was much greater for oxyfluorfen (Kd=3098) than for terbuthylazine (Kd=1.57). The herbicide oxyfluorfen is co-transported with sediment in runoff, remaining trapped and/or adsorbed to soil particle aggregates, due in part to its low water solubility. In contrast, terbuthylazine soil dissipation may be associated more so with leaching processes, favored by its high water solubility, low sorption, and slow degradation. By comparing these two herbicides, our results reaffirm the importance of herbicide physico-chemical properties in dictating their behavior in soil and also suggest that herbicides with low solubility, as seen in the case oxyfluorfen, remain susceptible to offsite transport associated with sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Recurrent selection with reduced 2,4-D amine doses results in the rapid evolution of 2,4-D herbicide resistance in wild radish (Raphanus raphanistrum L.).

    PubMed

    Ashworth, Michael B; Walsh, Michael J; Flower, Ken C; Powles, Stephen B

    2016-11-01

    When used at effective doses, weed resistance to auxinic herbicides has been slow to evolve when compared with other modes of action. Here we report the evolutionary response of a herbicide-susceptible population of wild radish (Raphanus raphanistrum L.) and confirm that sublethal doses of 2,4-dichlorophenoxyacetic acid (2,4-D) amine can lead to the rapid evolution of 2,4-D resistance and cross-resistance to acetolactate synthase (ALS)-inhibiting herbicides. Following four generations of 2,4-D selection, the progeny of a herbicide-susceptible wild radish population evolved 2,4-D resistance, increasing the LD 50 from 16 to 138 g ha -1 . Along with 2,4-D resistance, cross-resistance to the ALS-inhibiting herbicides metosulam (4.0-fold) and chlorsulfuron (4.5-fold) was evident. Pretreatment of the 2,4-D-selected population with the cytochrome P450 inhibitor malathion restored chlorsulfuron to full efficacy, indicating that cross-resistance to chlorsulfuron was likely due to P450-catalysed enhanced rates of herbicide metabolism. This study is the first to confirm the rapid evolution of auxinic herbicide resistance through the use of low doses of 2,4-D and serves as a reminder that 2,4-D must always be used at highly effective doses. With the introduction of transgenic auxinic-herbicide-resistant crops in the Americas, there will be a marked increase in auxinic herbicide use and therefore the risk of resistance evolution. Auxinic herbicides should be used only at effective doses and with diversity if resistance is to remain a minimal issue. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing.

    PubMed

    Hu, Maolong; Pu, Huiming; Gao, Jianqin; Long, Weihua; Chen, Feng; Zhang, Wei; Zhou, Xiaoyin; Peng, Qi; Chen, Song; Zhang, Jiefu

    2017-01-01

    Acetohydroxyacid synthase (AHAS), also called acetolactate synthase, is a key enzyme involved in the first step of the biosynthesis of the branched-chain amino acids valine, isoleucine and leucine. Acetohydroxyacid synthase-inhibiting herbicides (AHAS herbicides) are five chemical families of herbicides that inhibit AHAS enzymes, including imidazolinones (IMI), sulfonylureas (SU), pyrimidinylthiobenzoates, triazolinones and triazolopyrimidines. Five AHAS genes have been identified in rapeseed, but little information is available regarding the role of miRNAs in response to AHAS herbicides. In this study, an AHAS herbicides tolerant genotype and a sensitive genotype were used for miRNA comparative analysis. A total of 20 small RNA libraries were obtained of these two genotypes at three time points (0h, 24 h and 48 h) after spraying SU and IMI herbicides with two replicates. We identified 940 conserved miRNAs and 1515 novel candidate miRNAs in Brassica napus using high-throughput sequencing methods combined with computing analysis. A total of 3284 genes were predicted to be targets of these miRNAs, and their functions were shown using GO, KOG and KEGG annotations. The differentiation expression results of miRNAs showed almost twice as many differentiated miRNAs were found in tolerant genotype M342 (309 miRNAs) after SU herbicide application than in sensitive genotype N131 (164 miRNAs). In additiond 177 and 296 miRNAs defined as differentiated in sensitive genotype and tolerant genotype in response to SU herbicides. The miR398 family was observed to be associated with AHAS herbicide tolerance because their expression increased in the tolerant genotype but decreased in the sensitive genotype. Moreover, 50 novel miRNAs from 39 precursors were predicted. There were 8 conserved miRNAs, 4 novel miRNAs and 3 target genes were validated by quantitative real-time PCR experiment. This study not only provides novel insights into the miRNA content of AHAS herbicides tolerant rapeseed in response to AHAS herbicides, but also demonstrates that miRNAs may be involved in AHAS herbicides tolerance.

  18. Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing

    PubMed Central

    Hu, Maolong; Pu, Huiming; Gao, Jianqin; Long, Weihua; Chen, Feng; Zhang, Wei; Zhou, Xiaoyin; Peng, Qi; Chen, Song; Zhang, Jiefu

    2017-01-01

    Acetohydroxyacid synthase (AHAS), also called acetolactate synthase, is a key enzyme involved in the first step of the biosynthesis of the branched-chain amino acids valine, isoleucine and leucine. Acetohydroxyacid synthase-inhibiting herbicides (AHAS herbicides) are five chemical families of herbicides that inhibit AHAS enzymes, including imidazolinones (IMI), sulfonylureas (SU), pyrimidinylthiobenzoates, triazolinones and triazolopyrimidines. Five AHAS genes have been identified in rapeseed, but little information is available regarding the role of miRNAs in response to AHAS herbicides. In this study, an AHAS herbicides tolerant genotype and a sensitive genotype were used for miRNA comparative analysis. A total of 20 small RNA libraries were obtained of these two genotypes at three time points (0h, 24 h and 48 h) after spraying SU and IMI herbicides with two replicates. We identified 940 conserved miRNAs and 1515 novel candidate miRNAs in Brassica napus using high-throughput sequencing methods combined with computing analysis. A total of 3284 genes were predicted to be targets of these miRNAs, and their functions were shown using GO, KOG and KEGG annotations. The differentiation expression results of miRNAs showed almost twice as many differentiated miRNAs were found in tolerant genotype M342 (309 miRNAs) after SU herbicide application than in sensitive genotype N131 (164 miRNAs). In additiond 177 and 296 miRNAs defined as differentiated in sensitive genotype and tolerant genotype in response to SU herbicides. The miR398 family was observed to be associated with AHAS herbicide tolerance because their expression increased in the tolerant genotype but decreased in the sensitive genotype. Moreover, 50 novel miRNAs from 39 precursors were predicted. There were 8 conserved miRNAs, 4 novel miRNAs and 3 target genes were validated by quantitative real-time PCR experiment. This study not only provides novel insights into the miRNA content of AHAS herbicides tolerant rapeseed in response to AHAS herbicides, but also demonstrates that miRNAs may be involved in AHAS herbicides tolerance. PMID:28950015

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Štengl, Václav, E-mail: stengl@iic.cas.cz; J.E. Purkyně University in Ústí nad Labem, Faculty of Environment, 400 96 Ústí nad Labem; Grygar, Tomáš Matys

    Graphical abstract: Display Omitted Highlights: ► New nanodispersive materials based on Fe and Mn oxides for degradations of warfare agents. ► The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min). ► One pot synthesis with friendly transformed to industrial conditions. -- Abstract: Substituted iron(III)–manganese(III, IV) oxides, ammonio-jarosite and birnessite, were prepared by a homogeneous hydrolysis of potassium permanganate and iron(III) sulphate with 2-chloroacetamide and urea, respectively. Synthesised oxides were characterised using Brunauer–Emmett–Teller (BET) surface area and Barrett–Joiner–Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), Raman spectroscopy and scanning electronmore » microscopy (SEM). The oxides were taken for an experimental evaluation of their reactivity against sulphur mustard (HD) and soman (GD). When ammonio-jarosite formation is suppressed by adding urea to the reaction mixture, the reaction products are mixtures of goethite, schwertmannite and ferrihydrite, and their degradation activity against soman considerably increases. The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min) were observed for FeMn{sub 7}5 with 32.6 wt.% Fe (36.8 wt.% Mn) and FeMn{sub 3}7U with 60.8 wt.% Fe (10.1 wt.% Mn) samples, respectively.« less

  20. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier.

    PubMed

    Singh, A K; Jain, A K; Mehtab, Sameena

    2007-08-06

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2x10(-7) to 1.0x10(-2) M (detection limit 5.5x10(-8) M) with a Nernstian slope of 19.7 mV decade(-1) of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb3+ ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples.

  1. Optimization of a low-cost hyperosmotic medium and establishing the fermentation kinetics of erythritol production by Yarrowia lipolytica from crude glycerol.

    PubMed

    Yang, Li-Bo; Zhan, Xiao-Bei; Zhu, Li; Gao, Min-Jie; Lin, Chi-Chung

    2016-05-18

    The production of erythritol by Yarrowia lipolytica from low-cost substitutable substrates for high yield was investigated. Crude glycerol, urea, and NaCl related to osmotic pressure were the most significant factors affecting erythritol production. An artificial neural network model and genetic algorithm were used to search the optimal composition of the significant factors and locate the resulting erythritol yield. Medium with 232.39 g/L crude glycerol, 1.57 g/L urea, and 31.03 g/L NaCl led to predictive maximum erythritol concentration of 110.7 g/L. The erythritol concentration improved from 50.4 g/L to 109.2 g/L with the optimized medium, which was reproducible. Erythritol fermentation kinetics were investigated in a batch system. Multistep fermentation kinetic models with hyperosmotic inhibitory effects were developed. The resulting mathematical equations provided a good description of temporal variations such as microbial growth (X), substrate consumption (S), and product formation (P) in erythritol fermentation. The accordingly derived model is the first reported model for fermentative erythritol production from glycerol, providing useful information to optimize the growth of Y. lipolytica and contributing visual description for the erythritol fermentation process under high osmotic pressure, as well as improvement of productivity and efficiency.

  2. 33 CFR Appendix E to Part 273 - Preventive Safety Measures in Handling of Herbicides

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Handling of Herbicides E Appendix E to Part 273 Navigation and Navigable Waters CORPS OF ENGINEERS...—Preventive Safety Measures in Handling of Herbicides 1. Follow the label on each container before using the... accidental poisoning to the public or domestic animals. 3. Smoking is not permitted while herbicides are...

  3. 75 FR 60807 - Notice of Availability of the Record of Decision for Vegetation Treatments Using Herbicides on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Herbicides on Bureau of Land Management Lands in Oregon Final Environmental Impact Statement AGENCY: Bureau... prepared a Record of Decision (ROD) for Vegetation Treatments Using Herbicides on Bureau of Land Management... Treatments Using Herbicides on Bureau of Land Management Lands in Oregon, notice of which was published in...

  4. 33 CFR Appendix E to Part 273 - Preventive Safety Measures in Handling of Herbicides

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Handling of Herbicides E Appendix E to Part 273 Navigation and Navigable Waters CORPS OF ENGINEERS...—Preventive Safety Measures in Handling of Herbicides 1. Follow the label on each container before using the... accidental poisoning to the public or domestic animals. 3. Smoking is not permitted while herbicides are...

  5. Herbicide options for hardwood management

    Treesearch

    Andrew W. Ezell; A. Brady Self

    2016-01-01

    The use of herbicides in hardwood management presents special problems in that many of the most effective herbicides are either designed to control hardwoods or the product is not labeled for such applications. Numerous studies involving herbicide application in hardwoods have been completed at Mississippi State University. This paper is a compilation of results from...

  6. 33 CFR Appendix E to Part 273 - Preventive Safety Measures in Handling of Herbicides

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Handling of Herbicides E Appendix E to Part 273 Navigation and Navigable Waters CORPS OF ENGINEERS...—Preventive Safety Measures in Handling of Herbicides 1. Follow the label on each container before using the... accidental poisoning to the public or domestic animals. 3. Smoking is not permitted while herbicides are...

  7. Midstory hardwood species respond differently to chainsaw girdle method and herbicide treatment

    Treesearch

    Ronald A. Rathfon; Michael R. Saunders

    2013-01-01

    Foresters in the Central Hardwoods Region commonly fell or girdle interfering trees and apply herbicide to the cut surface when performing intermediate silvicultural treatments. The objective of this study was to compare the use of single and double chainsaw girdle methods in combination with a herbicide treatment and, within the double girdle method, compare herbicide...

  8. Kudzu eradication trials testing fifteen herbicides

    Treesearch

    James H. Miller

    1986-01-01

    Two studies examined herbicide treatments for controlling kudzu [Pueraria lobata (Willd.) Ohwi]. In one study, fifteen herbicides were tested at 1 or 2 rates at 5 locations. Treatments and re-treatments occurred over a 2-yr period. The most effective herbicides were picloram pellets (4.7 and 5.8 lb ai/a), tebuthiuron pellets (6 lb ai/a), and picloram...

  9. Soil microbial community response to surfactants and herbicides in two soils

    USDA-ARS?s Scientific Manuscript database

    The impact of herbicides on more than just the target weed and the effect of some herbicides on the soil biota is of environmental interest. The surfactants that are often used with herbicides are also coming under fire as a potential harm to the soil life. We used a silt loam and a silty clay loam ...

  10. [Purification and structural identification of herbicides from Botrytis cinerea].

    PubMed

    Zheng, Meng; Xu, Kuo; Dong, Jingao

    2008-10-01

    Toxin produced by phytopathogenic fungi is one of the important microbial herbicides. We found a new compound with herbicidal activity. Five different ultraviolet absorption components were isolated from the filtrate of Botrytis cinerea isolate 7-3 culture. Of the five components, one showed strong inhibitory to Digitaria sanguinalis. The pure fraction with high herbicidal activity was obtained by HPLC purification. Its structure was identified as 10-syn-dihydrobotrydial by Ultraviolet and Visible Spectroscopy, Infrared Spectrum, Nuclear Magnetic Resonance Spectroscopy analysis. The findings are important for future preparation and application of the herbicide.

  11. Effect of Microbial Interaction on Urea Metabolism in Chinese Liquor Fermentation.

    PubMed

    Wu, Qun; Lin, Jianchun; Cui, Kaixiang; Du, Rubin; Zhu, Yang; Xu, Yan

    2017-12-20

    Urea is the primary precursor of the carcinogen ethyl carbamate in fermented foods. Understanding urea metabolism is important for controlling ethyl carbamate production. Using Chinese liquor as a model system, we used metatranscriptome analysis to investigate urea metabolism in spontaneous food fermentation processes. Saccharomyces cerevisiae was dominant in gene transcription for urea biosynthesis and degradation. Lysinibacillus sphaericus was dominant for urea degradation. S. cerevisiae degraded 18% and L. sphaericus degraded 13% of urea in their corresponding single cultures, whereas they degraded 56% of urea in coculture after 12 h. Compared to single cultures, transcription of CAR1, DAL2, and argA, which are related to urea biosynthesis, decreased by 51, 36, and 69% in coculture, respectively. Transcription of DUR1 and ureA, which are related to urea degradation, increased by 227 and 70%, respectively. Thus, coexistence of the two strains promoted degradation of urea via transcriptional regulation of genes related to urea metabolism.

  12. Raw or incubated olive-mill wastes and its biotransformed products as agricultural soil amendments-effect on sorption-desorption of triazine herbicides.

    PubMed

    Delgado-Moreno, Laura; Almendros, Gonzalo; Peña, Aránzazu

    2007-02-07

    Raw olive-mill waste and soil amendments obtained from their traditional composting or vermicomposting were added, at rates equivalent to 200 Mg ha-1, to a calcareous silty clay loam soil in a laboratory test, in order to improve its fertility and physicochemical characteristics. In particular, the effects on the sorption-desorption processes of four triazine herbicides have been examined. We found that comparatively hydrophobic herbicides terbuthylazine and prometryn increased their retention on amended soil whereas the more polar herbicides simazine and cyanazine were less affected. Soil application of olive cake, without transformation, resulted in the highest herbicide retention. Its relatively high content in aliphatic fractions and lipids could explain the increased herbicide retention through hydrophobic bonding and herbicide diffusion favored by poorly condensed macromolecular structures. On the other hand, the condensed aromatic structure of the compost and vermicompost from olive cake could hinder diffusion processes, resulting in lower herbicide sorption. In fact, the progressive humification in soil of olive-mill solid waste led to a decrease of sorption capacity, which suggested important changes in organic matter quality and interactions during the mineralization process. When soil amended with vermicompost was incubated for different periods of time, the enhanced herbicide sorption capacity persisted for 2 months. Pesticide desorption was reduced by the addition of fresh amendments but was enhanced during the transformation process of amendments in soil. Our results indicate the potential of soil amendments based on olive-mill wastes in the controlled, selective release of triazine herbicides, which varies depending on the maturity achieved by their biological transformation.

  13. Pre-breeding of lentil (Lens culinaris Medik.) for herbicide resistance through seed mutagenesis

    PubMed Central

    Rizwan, Muhammad; Aslam, Muhammad; Asghar, Muhammad Jawad; Abbas, Ghulam; Shah, Tariq Mahmud; Shimelis, Hussein

    2017-01-01

    Lentil is a poor competitor of weeds and its sensitivity to herbicides is a major hurdle for large scale production. The present study was conducted to select herbicide resistant lentil genotypes through seed mutagenesis. Seeds of three advanced lentil genotypes (LPP 11001, LPP 11100 and LPP 11116) were treated with two different concentrations of ethyl methanesulfonate (EMS; 0.1 and 0.2%), hydrazine hydrate (HH; 0.02 and 0.03%) and sodium azide (SA; 0.01 and 0.02%) to develop M1 seed. The M2 was screened against two herbicides including Ally Max 28.6% SG (X = 34.58 g/ha and 1.5X = 51.87 g/ha) and Atlantis 3.6% WG (X = 395.2 g/ha and 1.5X = 592.8 g/ha) using the following three screening methods: post plant emergence (PPE), pre-plant incorporation (PPI) and seed priming (SP). Data were recorded on survival index and survival percentage from each experimental unit of every population. Plants in all populations were categorized following their reaction to herbicides. The newly developed populations showed greater variation for herbicide resistance when compared to their progenitors. Phenotypic traits were significantly reduced in all the screening environments. Overall, 671 herbicide resistant mutants were selected from all testing environments. The seeds from selected plants were re-mutagenized at 150 Gy of gamma radiation and evaluated against higher dose of herbicides. This allowed selection of 134 herbicide resistant mutants. The selected mutants are useful germplasm for herbicide resistance breeding of lentil. PMID:28196091

  14. Pre-breeding of lentil (Lens culinaris Medik.) for herbicide resistance through seed mutagenesis.

    PubMed

    Rizwan, Muhammad; Aslam, Muhammad; Asghar, Muhammad Jawad; Abbas, Ghulam; Shah, Tariq Mahmud; Shimelis, Hussein

    2017-01-01

    Lentil is a poor competitor of weeds and its sensitivity to herbicides is a major hurdle for large scale production. The present study was conducted to select herbicide resistant lentil genotypes through seed mutagenesis. Seeds of three advanced lentil genotypes (LPP 11001, LPP 11100 and LPP 11116) were treated with two different concentrations of ethyl methanesulfonate (EMS; 0.1 and 0.2%), hydrazine hydrate (HH; 0.02 and 0.03%) and sodium azide (SA; 0.01 and 0.02%) to develop M1 seed. The M2 was screened against two herbicides including Ally Max 28.6% SG (X = 34.58 g/ha and 1.5X = 51.87 g/ha) and Atlantis 3.6% WG (X = 395.2 g/ha and 1.5X = 592.8 g/ha) using the following three screening methods: post plant emergence (PPE), pre-plant incorporation (PPI) and seed priming (SP). Data were recorded on survival index and survival percentage from each experimental unit of every population. Plants in all populations were categorized following their reaction to herbicides. The newly developed populations showed greater variation for herbicide resistance when compared to their progenitors. Phenotypic traits were significantly reduced in all the screening environments. Overall, 671 herbicide resistant mutants were selected from all testing environments. The seeds from selected plants were re-mutagenized at 150 Gy of gamma radiation and evaluated against higher dose of herbicides. This allowed selection of 134 herbicide resistant mutants. The selected mutants are useful germplasm for herbicide resistance breeding of lentil.

  15. Effects of Paraquat Ban on Herbicide Poisoning-Related Mortality.

    PubMed

    Ko, Dong Ryul; Chung, Sung Phil; You, Je Sung; Cho, Soohyung; Park, Yongjin; Chun, Byeongjo; Moon, Jeongmi; Kim, Hyun; Kim, Yong Hwan; Kim, Hyun Jin; Lee, Kyung Woo; Choi, SangChun; Park, Junseok; Park, Jung Soo; Kim, Seung Whan; Seo, Jeong Yeol; Park, Ha Young; Kim, Su Jin; Kang, Hyunggoo; Hong, Dae Young; Hong, Jung Hwa

    2017-07-01

    In Korea, registration of paraquat-containing herbicides was canceled in November 2011, and sales thereof were completely banned in November 2012. We evaluated the effect of the paraquat ban on the epidemiology and mortality of herbicide-induced poisoning. This retrospective study analyzed patients treated for herbicide poisoning at 17 emergency departments in South Korea between January 2010 and December 2014. The overall and paraquat mortality rates were compared pre- and post-ban. Factors associated with herbicide mortality were evaluated using logistic analysis. To determine if there were any changes in the mortality rates before and after the paraquat sales ban and the time point of any such significant changes in mortality, R software, version 3.0.3 (package, bcp) was used to perform a Bayesian change point analysis. We enrolled 2257 patients treated for herbicide poisoning (paraquat=46.8%). The overall and paraquat poisoning mortality rates were 40.6% and 73.0%, respectively. The decreased paraquat poisoning mortality rate (before, 75% vs. after, 67%, p=0.014) might be associated with increased intentionality. The multivariable logistic analysis revealed the paraquat ban as an independent predictor that decreased herbicide poisoning mortality (p=0.035). There were two major change points in herbicide mortality rates, approximately 3 months after the initial paraquat ban and 1 year after complete sales ban. This study suggests that the paraquat ban decreased intentional herbicide ingestion and contributed to lowering herbicide poisoning-associated mortality. The change point analysis suggests a certain timeframe was required for the manifestation of regulatory measures outcomes. © Copyright: Yonsei University College of Medicine 2017

  16. Possible source term of high concentrations of mecoprop-p in leachate and water quality: impact of climate change, public use and disposal.

    PubMed

    Idowu, I A; Alkhaddar, R M; Atherton, W

    2014-08-01

    Mecoprop-p herbicide is often found in wells and water abstractions in many areas around Europe, the UK inclusive. There is a growing environmental and public health concern about mecoprop-p herbicide pollution in ground and surface water in England. Reviews suggest that extensive work has been carried out on the contribution of mecoprop-p herbicides from agricultural use whilst more work needs to be carried out on the contribution of mecoprop-p herbicide from non-agricultural use. The study covers two landfill sites in Weaver/Gowy Catchment. Mecoprop-p herbicide concentrations in the leachate quality range between 0.06 and 290 microg l1 in cells. High concentration ofmecoprop-p herbicide in the leachate quality suggests that there is a possible source term in the waste stream. This paper addresses the gap by exploring possible source terms of mecoprop-p herbicide contamination on landfill sites and evaluates the impact of public purchase, use and disposal alongside climate change on seasonal variations in mecoprop-p concentrations. Mecoprop-p herbicide was found to exceed the EU drinking water quality standards at the unsaturated zone/aquifer with observed average concentrations ranging between 0.005 and 7.96 microg l1. A route map for mecoprop-p herbicide source term contamination is essential for mitigation and pollution management with emphasis on both consumer and producer responsibility towards use of mecoprop-p product. In addition, improvement in data collection on mecoprop-p concentrations and detailed seasonal herbicide sales for non-agricultural purposes are needed to inform the analysis and decision process.

  17. Laboratory study on leachability of five herbicides in South Australian soils.

    PubMed

    Ying, G G; Williams, B

    2000-03-01

    Norflurazon, oxadiazon, oxyfluorfen, trifluralin and simazine are herbicides widely used in the vineyards of the Barossa Valley, South Australia. The leaching behaviour of norflurazon, oxadiazon, oxyfluorfen and trifluralin was investigated on four key soils in the Barossa Valley. Leaching potential on packed soil columns and actual mobility using intact soil columns were investigated. On the packed soil columns, norflurazon was the most leachable herbicide. More of the herbicides were detected in the leachates from the sandy soils (Mountadam and Nuriootpa) than from the clayey soils (Lyndoch and Tanunda). Organic matter is generally low in soils in the Barossa region. Porosity and saturated conductivity significantly affect herbicide movement and in the sandy Mountadam and Nuriootpa soils, the water flux is greater than for the higher clay content Lyndoch and Tanunda soils. Increasing the time interval between herbicide application and the incidence of "rainfall" reduced the amounts of herbicides found in the leachates. The use of intact soil columns and including simazine for comparison showed that both norflurazon and simazine were present in the leachates. Simazine was the first herbicide to appear in leachates. Sectioning of the intact soil columns after leaching clearly demonstrated that norflurazon and simazine reached the bottom of the soil columns for all soils studied. Greater amounts of norflurazon were retained in the soil columns compared with simazine. The other herbicides were mostly retained in the initial sections of the soil columns.

  18. Herbicide impact on the growth and reproduction of characteristic and rare arable weeds of winter cereal fields.

    PubMed

    Rotchés-Ribalta, Roser; Boutin, Céline; Blanco-Moreno, José M; Carpenter, David; Sans, F Xavier

    2015-07-01

    The decline of arable species characteristic of winter cereal fields has often been attributed to different factors related to agricultural intensification but most importantly to herbicide use. Herbicide phytotoxicity is most frequently assessed using short-term endpoints, primarily aboveground biomass. However, short-term sensitivity is usually not sufficient to detect actual effects because plants may or may not recover over time following sublethal herbicide exposures. Therefore, it is important to assess the long-term effects of herbicide applications. Annual species rely on renewable seed production to ensure their persistence; hence, assessment of herbicide sensitivity is more accurately estimated through effects on reproduction. Here we aim to assess the phytotoxicity of two commonly used herbicides: tribenuron and 2,4-D on eight plant species belonging to four families, each with one rare and one more common species. Specifically we examined the pattern of sensitivity using short-term and long-term endpoints (total aboveground biomass, total seed biomass and number of seeds) of these species; we determined the levels of and time to recovery in terms of stem length and fruit number, and assessed whether their rarity relates to their sensitivity to herbicide application. Our results suggest that although differences in herbicide sensitivity are not a direct cause of rarity for all species, it may be an important driver of declining arable plants.

  19. Intensive herbicide use has selected for constitutively elevated levels of stress-responsive mRNAs and proteins in multiple herbicide-resistant Avena fatua L.

    PubMed

    Keith, Barbara K; Burns, Erin E; Bothner, Brian; Carey, Charles C; Mazurie, Aurélien J; Hilmer, Jonathan K; Biyiklioglu, Sezgi; Budak, Hikmet; Dyer, William E

    2017-11-01

    Intensive use of herbicides has led to the evolution of two multiple herbicide-resistant (MHR) Avena fatua (wild oat) populations in Montana that are resistant to members of all selective herbicide families available for A. fatua control in US small grain crops. We used transcriptome and proteome surveys to compare constitutive changes in MHR and herbicide-susceptible (HS) plants associated with non-target site resistance. Compared to HS plants, MHR plants contained constitutively elevated levels of differentially expressed genes (DEGs) with functions in xenobiotic catabolism, stress response, redox maintenance and transcriptional regulation that are similar to abiotic stress-tolerant phenotypes. Proteome comparisons identified similarly elevated proteins including biosynthetic and multifunctional enzymes in MHR plants. Of 25 DEGs validated by RT-qPCR assay, differential regulation of 21 co-segregated with flucarbazone-sodium herbicide resistance in F 3 families, and a subset of 10 of these were induced or repressed in herbicide-treated HS plants. Although the individual and collective contributions of these DEGs and proteins to MHR remain to be determined, our results support the idea that intensive herbicide use has selected for MHR populations with altered, constitutively regulated patterns of gene expression that are similar to those in abiotic stress-tolerant plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Enantioselective Phytotoxicity and the Relative Mechanism of Current Chiral Herbicides.

    PubMed

    Wang, Cui; Lu, Dezhao; Yang, Jinhuan; Xu, Yingling; Gong, Chenxue; Li, Zhuoyu

    2017-01-01

    Regardless of the achievable of chiral switch, most of the chiral nature agrochemical is still sold as racemate or enantiomer-enriched pesticides. Herbicides, accounted for a large proportion in pesticide market, are of great concern due to the frequent occurrence in environment and the structure selective phyto-biochemical impact on plants. We give a systematic search on the literature database and included approximately 50 papers which were related to the review. We do careful categories for the chiral herbicides according to their structure and listed out the acute phytotoxicity endpoints. The potential mechanism for the enantioselective toxicity was concluded into 5 main points. The enantiomer-specific toxicity on plant growth and flowers are limited on phenoxyalkanoic acid herbicide, aryloxyphenoxypropanoic acid, imidazolinone herbicide, and acetamide pesticide. Data available on the potential mechanism explanation of enantioselective phytotoxicity has been concerned on the genetic transcription, oxidative stress, and photosynthesis disruption, etc. A comparison between the two enantiomers' enantioselective effects identified an organ-specific and species-specific phenomenon for several herbicides. Moreover, a more herbicidal activity enantiomer is also displayed the more toxicity than its antipode. The review elucidated a paucity of information on the enantioselective effect research on various types of plants at the different life stages. It appealed us to conduct a more holistic approach to balance the benefit between herbicidal activity and phytotoxicity when try to develop an enantio-pure herbicide.

  1. Risk assessment of herbicides and booster biocides along estuarine continuums in the Bay of Vilaine area (Brittany, France).

    PubMed

    Caquet, Th; Roucaute, M; Mazzella, N; Delmas, F; Madigou, C; Farcy, E; Burgeot, Th; Allenou, J-P; Gabellec, R

    2013-02-01

    A 2-year study was implemented to characterize the contamination of estuarine continuums in the Bay of Vilaine area (NW Atlantic Coast, Southern Brittany, France) by 30 pesticide and biocide active substances and metabolites. Among these, 11 triazines (ametryn, atrazine, desethylatrazine, desethylterbuthylazine, desisopropyl atrazine, Irgarol 1051, prometryn, propazine, simazine, terbuthylazine, and terbutryn), 10 phenylureas (chlortoluron, diuron, 1-(3,4-dichlorophenyl)-3-methylurea, fenuron, isoproturon, 1-(4-isopropylphenyl)-3-methylurea, 1-(4-isopropylphenyl)-urea, linuron, metoxuron, and monuron), and 4 chloroacetanilides (acetochlor, alachlor, metolachlor, and metazachlor) were detected at least once. The objectives were to assess the corresponding risk for aquatic primary producers and to provide exposure information for connected studies on the responses of biological parameters in invertebrate sentinel species. The risk associated with contaminants was assessed using risk quotients based on the comparison of measured concentrations with original species sensitivity distribution-derived hazardous concentration values. For EU Water Framework Directive priority substances, results of monitoring were also compared with regulatory Environmental Quality Standards. The highest residue concentrations and risks for primary producers were recorded for diuron and Irgarol 1051 in Arzal reservoir, close to a marina. Diuron was present during almost the all survey periods, whereas Irgarol 1051 exhibited a clear seasonal pattern, with highest concentrations recorded in June and July. These results suggest that the use of antifouling biocides is responsible for a major part of the contamination of the lower part of the Vilaine River course for Irgarol 1051. For diuron, agricultural sources may also be involved. The presence of isoproturon and chloroacetanilide herbicides on some dates indicated a significant contribution of the use of plant protection products in agriculture to the contamination of Vilaine River. Concentration levels and associated risk were always lower in estuarine sites than in the reservoir, suggesting that Arzal dam reduces downstream transfer of contaminants and favors their degradation in the freshwater part of the estuary. Results of the additional monitoring of two tidal streams located downstream of Arzal dam suggested that, although some compounds may be transferred to the estuary, their impact was probably very low. Dilution by marine water associated with tidal current was also a major factor of concentration reduction. It is concluded that the highest risks associated to herbicides and booster biocides concerned the freshwater part of the estuary and that its brackish/saltwater part was exposed to a moderate risk, although some substances may sometimes exhibit high concentration but mainly at low tide and on an irregular basis.

  2. The Effect of Four Herbicides on the Survival and Growth of Nine Hardwood Species

    Treesearch

    Robert D. Williams; John E. Krajicek

    1976-01-01

    To learn more about the tolerance of hardwoods to herbicides, the survival and growth on nine hardwood species were compared in plots eitehr cultivated or treated with various herbicides applied at different rates, on prepared and unprepared ground, and before and after planting. Black walnut and white oak were very tolerant to all herbicides tested but American...

  3. Stand dynamics of an old-field longleaf pine stand following herbicide application, poor survival, and subsequent replanting

    Treesearch

    E. David Dickens; Bryan C. McElvany; David J. Moorhead; Philip R. Torrance; P. Mark Crosby

    2010-01-01

    A study area in Emanuel County, GA installed to discern the effectiveness of various herbicides over newly planted (December 1999) longleaf pine (Pinus palustris Mill.) seedlings on an old-field site. Survival and height growth data after herbicide treatment indicate that the early (April 7, 2000) Oust+Velpar L herbicide treatment gave greater...

  4. Forest worker exposure to airborne herbicide residues in smoke from prescribed fires in the Southern United States

    Treesearch

    Charles K. McMahon; Parshall B. Bush

    1992-01-01

    Occupational safety and health concerns have been raised in a number of southern states by workers conducting prescribed burns on forested lands treated with herbicides. Modeling assessments coupled with laboratory experiments have shown that the risk of airborne herbicide residues to workers is insignificant, even if the fire occurs immediately after herbicide...

  5. The role of herbicides for enhancing productivity and conserving land for biodiversity in North America

    Treesearch

    Robert G. Wagner; Michael Newton; Elizabeth C. Cole; James H. Miller; Barry D. Shiver

    2004-01-01

    Herbicide technology has evolved with forest management in North America over the past 60 years and has become an integral part of modern forestry practice. Forest managers have prescribed herbicides to increase reforestation success and long-term timber yields. Wildlife managers and others interested in conserving biodi- versity, however, have often viewed herbicide...

  6. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology

    PubMed Central

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-01-01

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress. PMID:29271905

  7. Managing the evolution of herbicide resistance.

    PubMed

    Evans, Jeffrey A; Tranel, Patrick J; Hager, Aaron G; Schutte, Brian; Wu, Chenxi; Chatham, Laura A; Davis, Adam S

    2016-01-01

    Understanding and managing the evolutionary responses of pests and pathogens to control efforts is essential to human health and survival. Herbicide-resistant (HR) weeds undermine agricultural sustainability, productivity and profitability, yet the epidemiology of resistance evolution - particularly at landscape scales - is poorly understood. We studied glyphosate resistance in a major agricultural weed, Amaranthus tuberculatus (common waterhemp), using landscape, weed and management data from 105 central Illinois grain farms, including over 500 site-years of herbicide application records. Glyphosate-resistant (GR) A. tuberculatus occurrence was greatest in fields with frequent glyphosate applications, high annual rates of herbicide mechanism of action (MOA) turnover and few MOAs field(-1) year(-1) . Combining herbicide MOAs at the time of application by herbicide mixing reduced the likelihood of GR A. tuberculatus. These findings illustrate the importance of examining large-scale evolutionary processes at relevant spatial scales. Although measures such as herbicide mixing may delay GR or other HR weed traits, they are unlikely to prevent them. Long-term weed management will require truly diversified management practices that minimize selection for herbicide resistance traits. © 2015 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  8. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology.

    PubMed

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-12-22

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.

  9. Why was resistance to shorter-acting pre-emergence herbicides slower to evolve?

    PubMed

    Somerville, Gayle J; Powles, Stephen B; Walsh, Michael J; Renton, Michael

    2017-05-01

    Across several agricultural systems the evolution of herbicide resistance has occurred more rapidly to post-emergence than pre-emergence herbicides; however, the reasons for this are not clear. We used a new simulation model to investigate whether interactions between differences in order of application and weed cohorts affected could explain this historically observed difference between the herbicide groups. A 10 year delay in resistance evolution was predicted for a shorter-acting residual pre-emergence (cf. post-emergence), when all other parameters were identical. Differences in order of application between pre- and post-emergence herbicides had minimal effect on rates of resistance evolution when similar weed cohorts were affected. This modelling suggested that the historically observed lower levels of resistance to pre-emergence herbicides are most likely to be due to the smaller number of weed cohorts affected by many pre-emergence herbicides. The lower number of weed cohorts affected by pre-emergence herbicides necessitated the use of additional, effective control measures, thereby reducing resistance evolution. This study highlights the advantages of applying multiple control measures to each weed cohort. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Herbicide cycling has diverse effects on evolution of resistance in Chlamydomonas reinhardtii

    PubMed Central

    Lagator, Mato; Vogwill, Tom; Colegrave, Nick; Neve, Paul

    2013-01-01

    Cycling pesticides has been proposed as a means of retarding the evolution of resistance, but its efficacy has rarely been empirically tested. We evolved populations of Chlamydomonas reinhardtii in the presence of three herbicides: atrazine, glyphosate and carbetamide. Populations were exposed to a weekly, biweekly and triweekly cycling between all three pairwise combinations of herbicides and continuously to each of the three herbicides. We explored the impacts of herbicide cycling on the rate of resistance evolution, the level of resistance selected, the cost of resistance and the degree of generality (cross-resistance) observed. Herbicide cycling resulted in a diversity of outcomes: preventing evolution of resistance for some combinations of herbicides, having no impacts for others and increasing rates of resistance evolution in some instances. Weekly cycling of atrazine and carbetamide resulted in selection of a generalist population. This population had a higher level of resistance, and this generalist resistance was associated with a cost. The level of resistance selected did not vary amongst other regimes. Costs of resistance were generally highest when cycling was more frequent. Our data suggest that the effects of herbicide cycling on the evolution of resistance may be more complex and less favourable than generally assumed. PMID:23467494

  11. Resistance to herbicides caused by single amino acid mutations in acetyl-CoA carboxylase in resistant populations of grassy weeds.

    PubMed

    Jang, SoRi; Marjanovic, Jasmina; Gornicki, Piotr

    2013-03-01

    Eleven spontaneous mutations of acetyl-CoA carboxylase have been identified in many herbicide-resistant populations of 42 species of grassy weeds, hampering application of aryloxyphenoxypropionate, cyclohexadione and phenylpyrazoline herbicides in agriculture. IC(50) shifts (resistance indices) caused by herbicide-resistant mutations were determined using a recombinant yeast system that allows comparison of the effects of single amino acid mutations in the same biochemical background, avoiding the complexity inherent in the in planta experiments. The effect of six mutations on the sensitivity of acetyl-CoA carboxylase to nine herbicides representing the three chemical classes was studied. A combination of partially overlapping binding sites of the three classes of herbicides and the structure of their variable parts explains cross-resistance among and between the three classes of inhibitors, as well as differences in their specificity. Some degree of resistance was detected for 51 of 54 herbicide/mutation combinations. Introduction of new herbicides targeting acetyl-CoA carboxylase will depend on their ability to overcome the high degree of cross-resistance already existing in weed populations. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. Direct construction of diverse metallophthalocyanines by manifold substrates in a deep eutectic solvent

    NASA Astrophysics Data System (ADS)

    Shaabani, Ahmad; Hooshmand, Seyyed Emad; Afshari, Ronak; Shaabani, Shabnam; Ghasemi, Vahid; Atharnezhad, Mojtaba; Akbari, Masoud

    2018-02-01

    Direct access to a wide range of metal-free phthalocyanines and metallophthalocyanines in deep eutectic solvents (DESs), is reported. Substituted and unsubstituted phthalocyanines of Mn, Fe, Co, Ni, Cu, Zn, Pd, In, and Pt with various raw materials such as phthalonitriles, phthalimides, phthalic anhydrides and phthalic acids are successfully prepared in the DES based on choline chloride and urea in a very short reaction time with appropriate yields. It has been shown that DES as a green and rapidly degraded reaction medium in the environment plays a triple role as a solvent, organocatalyst, and reactant in this process. Moreover, the DES system could be separated and reused in four consecutive reaction runs with no considerable loss in catalytic activity.

  13. New benzylureas as a novel series of potent, nonpeptidic vasopressin V2 receptor agonists.

    PubMed

    Yea, Christopher M; Allan, Christine E; Ashworth, Doreen M; Barnett, James; Baxter, Andy J; Broadbridge, Janice D; Franklin, Richard J; Hampton, Sally L; Hudson, Peter; Horton, John A; Jenkins, Paul D; Penson, Andy M; Pitt, Gary R W; Rivière, Pierre; Robson, Peter A; Rooker, David P; Semple, Graeme; Sheppard, Andy; Haigh, Robert M; Roe, Michael B

    2008-12-25

    Vasopressin (AVP) is a hormone that stimulates an increase in water permeability through activation of V2 receptors in the kidney. The analogue of AVP, desmopressin, has proven an effective drug for diseases where a reduction of urine output is desired. However, its peptidic nature limits its bioavailability. We report herein the discovery of potent, nonpeptidic, benzylurea derived agonists of the vasopressin V2 receptor. We describe substitutions on the benzyl group to give improvements in potency and subsequent modifications to the urea end group to provide improvements in solubility and increased oral efficacy in a rat model of diuresis. The lead compound 20e (VA106483) is reported for the first time and has been selected for clinical development.

  14. Effects of herbicides on Behr's metalmark butterfly, a surrogate species for the endangered butterfly, Lange's metalmark.

    PubMed

    Stark, John D; Chen, Xue Dong; Johnson, Catherine S

    2012-05-01

    Lange's metalmark butterfly, Apodemia mormo langei Comstock, is in danger of extinction due to loss of habitat caused by invasive exotic plants which are eliminating its food, naked stem buckwheat. Herbicides are being used to remove invasive weeds from the dunes; however, little is known about the potential effects of herbicides on butterflies. To address this concern we evaluated potential toxic effects of three herbicides on Behr's metalmark, a close relative of Lange's metalmark. First instars were exposed to recommended field rates of triclopyr, sethoxydim, and imazapyr. Life history parameters were recorded after exposure. These herbicides reduced the number of adults that emerged from pupation (24-36%). Each herbicide has a different mode of action. Therefore, we speculate that effects are due to inert ingredients or indirect effects on food plant quality. If these herbicides act the same in A. mormo langei, they may contribute to the decline of this species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Treatment by glyphosate-based herbicide alters life history parameters of the rose-grain aphid Metopolophium dirhodum

    NASA Astrophysics Data System (ADS)

    Saska, Pavel; Skuhrovec, Jiří; Lukáš, Jan; Chi, Hsin; Tuan, Shu-Jen; Honěk, Alois

    2016-06-01

    Glyphosate is the number one herbicide in the world. We investigated the sub-lethal effects of this herbicide on the aphid Metopolophium dirhodum (Walker), using an age-stage, two-sex life table approach. Three concentrations of the herbicide (low - 33.5, medium - 66.9 and high - 133.8 mmol dm-3 of active ingredient) and distilled water as the control were used. The LC50 of the IPA salt of glyphosate on M. dirhodum was equivalent to 174.9 mmol dm-3 of the active ingredient (CI95: 153.0, 199.0). The population parameters were significantly negatively affected by herbicide application, and this negative effect was progressive with the increasing concentration of the herbicide. A difference of two orders of magnitude existed in the predicted population development of M. dirhodum between the high concentration of the herbicide and the control. This is the first study that comprehensively documents such a negative effect on the population of an herbivorous insect.

  16. Treatment by glyphosate-based herbicide alters life history parameters of the rose-grain aphid Metopolophium dirhodum

    PubMed Central

    Saska, Pavel; Skuhrovec, Jiří; Lukáš, Jan; Chi, Hsin; Tuan, Shu-Jen; Honěk, Alois

    2016-01-01

    Glyphosate is the number one herbicide in the world. We investigated the sub-lethal effects of this herbicide on the aphid Metopolophium dirhodum (Walker), using an age-stage, two-sex life table approach. Three concentrations of the herbicide (low - 33.5, medium - 66.9 and high - 133.8 mmol dm−3 of active ingredient) and distilled water as the control were used. The LC50 of the IPA salt of glyphosate on M. dirhodum was equivalent to 174.9 mmol dm−3 of the active ingredient (CI95: 153.0, 199.0). The population parameters were significantly negatively affected by herbicide application, and this negative effect was progressive with the increasing concentration of the herbicide. A difference of two orders of magnitude existed in the predicted population development of M. dirhodum between the high concentration of the herbicide and the control. This is the first study that comprehensively documents such a negative effect on the population of an herbivorous insect. PMID:27302015

  17. Herbicide contamination and the potential impact to seagrass meadows in Hervey Bay, Queensland, Australia.

    PubMed

    McMahon, Kathryn; Bengtson Nash, Susan; Eaglesham, Geoff; Müller, Jochen F; Duke, Norman C; Winderlich, Steve

    2005-01-01

    Low concentrations of herbicides (up to 70 ng l(-1)), chiefly diuron (up to 50 ng l(-1)) were detected in surface waters associated with inter-tidal seagrass meadows of Zostera muelleri in Hervey Bay, south-east Queensland, Australia. Diuron and atrazine (up to 1.1 ng g(-1) dry weight of sediment) were detected in the sediments of these seagrass meadows. Concentration of the herbicides diuron, simazine and atrazine increased in surface waters associated with seagrass meadows during moderate river flow events indicating herbicides were washed from the catchment to the marine environment. Maximum herbicide concentration (sum of eight herbicides) in the Mary River during a moderate river flow event was 4260 ng l(-1). No photosynthetic stress was detected in seagrass in this study during low river flow. However, with moderate river flow events, nearshore seagrasses are at risk of being exposed to concentrations of herbicides that are known to inhibit photosynthesis.

  18. Stability of urea in solution and pharmaceutical preparations.

    PubMed

    Panyachariwat, Nattakan; Steckel, Hartwig

    2014-01-01

    The stability of urea in solution and pharmaceutical preparations was analyzed as a function of temperature (25°-60°C), pH (3.11-9.67), and initial urea concentration (2.5%-20%). This study was undertaken to (i) obtain more extensive, quantitative information relative to the degradation of urea in both aqueous and non-aqueous solutions and in pharmaceutical preparations, and (ii) test the effects of initial urea concentration, pH, buffer, and temperature values on urea degradation. The stability analysis shows that urea is more stable at the pH range of 4-8 and the stability of urea decreases by increase in temperature for all pH values. Within the experimental range of temperature and initial urea concentration values, the lowest urea degradation was found with lactate buffer pH 6.0. The urea decomposition rate in solution and pharmaceutical preparations shows the dependence of the initial urea concentrations. At higher initial urea concentrations, the rate of degradation is a decreasing function with time. This suggests that the reverse reaction is a factor in the degradation of concentrated urea solution. For non-aqueous solvents, isopropanol showed the best effort in retarding the decomposition of urea. Since the losses in urea is directly influenced by its stability at a given temperature and pH, the stability analysis of urea by the proposed model can be used to prevent the loss and optimize the operating condition for urea-containing pharmaceutical preparations.

  19. Adsorption of Paraquat Dichloride by Graphitic Carbon Nitride Synthesized from Melamine Scraps

    NASA Astrophysics Data System (ADS)

    Watcharenwong, A.; Kaeokan, A.; Rammaroeng, R.; Upama, P.; Kajitvichyanukul, P.

    2017-07-01

    In this research, graphitic carbon nitride (g-C3N4) was synthesized from useless melamine scraps. Mixture of melamine powder and urea was directly burned in the muffle furnace at 550 °C. Later as-synthesized g-C3N4 was modified with hydrochloric acid. The g-C3N4 powder was characterized by several techniques including X-ray diffraction, scanning electron microscope, and specific surface area analyser. Adsorption of the herbicide paraquat from an aqueous solution to suspended particles of g-C3N4 was investigated, taking into consideration several parameters such as initial concentration of paraquat, initial pH, and dosage of g-C3N4. The results showed that with the same amount of g-C3N4, the increase in the paraquat concentration caused the reduction in the removal efficiency and the higher the amount of g-C3N4, the less residual paraquat remained in the bulk solution. G-C3N4 showed better adsorption behaviour in the basic condition. Finally, Langmuir and Freundlich adsorption isotherms were also evaluated. Paraquat adsorption by g-C3N4 was in accordance with Langmuir more than Freundlich adsorption isotherm.

  20. Assessing the toxicity of herbicide isoproturon on Aporrectodea caliginosa (Oligochaeta) and its fate in soil ecosystem.

    PubMed

    Mosleh, Yahia Youssef Ismail

    2009-08-01

    This study was conducted to determine the residues of isoproturon and its metabolites, 1-(4-isopropylphenyl)-3-methylurea, 1-(4-isopropylphenyl) urea, and 4-isopropylanilin in soil and mature earthworms under laboratory conditions. Mature earthworms (Aporrectodea caliginosa) were exposed for various durations (7, 15, 30, and 60 days) to soils contaminated with isoproturon concentrations (2, 4, 6, 8, and 10 mg kg(-1) soil). The decrease in isoproturon concentration in the soil was inversely correlated to it's initial concentration. The highest concentration detected for isoproturon in earthworms was observed during the first 15 days and decreased thereafter. Acute toxicity of isoproturon was investigated; total soluble protein content and glycogen of the worms were evaluated. Levels of these parameters were related to isoproturon concentration in soil and earthworms. No lethal effect of isoproturon was observed even at the concentration of 1200 mg kg(-1) soil after 60 days of exposure. A reduction of total soluble protein was observed in all treated worms (maximum 59.54%). This study suggests the use of the total soluble protein content and glycogen of earthworms as biomarkers of exposure to isoproturon. 2008 Wiley Periodicals, Inc.

  1. Discrimination of herbicide-resistant kochia with hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Nugent, Paul W.; Shaw, Joseph A.; Jha, Prashant; Scherrer, Bryan; Donelick, Andrew; Kumar, Vipan

    2018-01-01

    A hyperspectral imager was used to differentiate herbicide-resistant versus herbicide-susceptible biotypes of the agronomic weed kochia, in different crops in the field at the Southern Agricultural Research Center in Huntley, Montana. Controlled greenhouse experiments showed that enough information was captured by the imager to classify plants as either a crop, herbicide-susceptible or herbicide-resistant kochia. The current analysis is developing an algorithm that will work in more uncontrolled outdoor situations. In overcast conditions, the algorithm correctly identified dicamba-resistant kochia, glyphosate-resistant kochia, and glyphosate- and dicamba-susceptible kochia with 67%, 76%, and 80% success rates, respectively.

  2. Weed control changes and genetically modified herbicide tolerant crops in the USA 1996–2012

    PubMed Central

    Brookes, Graham

    2014-01-01

    Crops that have been genetically modified (GM) to be tolerant to herbicides have been widely grown in the USA since 1996. The rapid and widespread adoption of this technology reflects the important economic and environmental benefits that farmers have derived from its use (equal to $21.7 billion additional farm income and a 225 million kg reduction in herbicide active ingredient use 1996–2012). During this time, weed control practices in these crops relative to the ‘conventional alternative’ have evolved to reflect experience of using the technology, the challenges that have arisen and the increasing focus in recent years on developing sustainable production systems. This paper examines the evidence on the changing nature of herbicides used with these crops and in particular how farmers addressed the challenge of weed resistance. The evidence shows that use of the technology has resulted in a net reduction in both the amount of herbicide used and the associated environmental impact, as measured by the EIQ indicator when compared to what can reasonably be expected if the area planted to GM HT crops reverted to conventional production methods. It also facilitated many farmers being able to derive the economic and environmental benefits associated with switching from a plough-based to a no tillage or conservation tillage production system. In terms of herbicide use, the technology has also contributed to a change the profile of herbicides used. A broad range of, mostly selective herbicides has been replaced by one or 2 broad-spectrum herbicides (mostly glyphosate) used in conjunction with one or 2 other (complementary) herbicides. Since the mid-2000s, the average amount of herbicide applied and the associated environmental load, as measured by the EIQ indicator, have increased on both GM HT and conventional crops. A primary reason for these changes has been increasing incidence of weed species developing populations resistant to herbicides and increased awareness of the consequences of relying on a single or very limited number of herbicides for weed control. As a result, growers of GM HT crops have become much more proactive and diversified in their weed management programs in line with weed scientist recommendations and now include other herbicides (with different and complementary modes of action) in combination with glyphosate, even where instances of weed resistance to glyphosate have not been found. The willingness to proactively diversity weed management systems in the GM HT crops is also influenced by a desire to maintain effective weed control and hence continue to enjoy the benefits of no tillage and conservation tillage. Nevertheless, despite the increase in herbicide use in recent years, the use of GM HT technology continues to deliver significant economic and environmental gains to US farmers. PMID:25523177

  3. Weed control changes and genetically modified herbicide tolerant crops in the USA 1996-2012.

    PubMed

    Brookes, Graham

    2014-01-01

    Crops that have been genetically modified (GM) to be tolerant to herbicides have been widely grown in the USA since 1996. The rapid and widespread adoption of this technology reflects the important economic and environmental benefits that farmers have derived from its use (equal to $21.7 billion additional farm income and a 225 million kg reduction in herbicide active ingredient use 1996-2012). During this time, weed control practices in these crops relative to the 'conventional alternative' have evolved to reflect experience of using the technology, the challenges that have arisen and the increasing focus in recent years on developing sustainable production systems. This paper examines the evidence on the changing nature of herbicides used with these crops and in particular how farmers addressed the challenge of weed resistance. The evidence shows that use of the technology has resulted in a net reduction in both the amount of herbicide used and the associated environmental impact, as measured by the EIQ indicator when compared to what can reasonably be expected if the area planted to GM HT crops reverted to conventional production methods. It also facilitated many farmers being able to derive the economic and environmental benefits associated with switching from a plough-based to a no tillage or conservation tillage production system. In terms of herbicide use, the technology has also contributed to a change the profile of herbicides used. A broad range of, mostly selective herbicides has been replaced by one or 2 broad-spectrum herbicides (mostly glyphosate) used in conjunction with one or 2 other (complementary) herbicides. Since the mid-2000s, the average amount of herbicide applied and the associated environmental load, as measured by the EIQ indicator, have increased on both GM HT and conventional crops. A primary reason for these changes has been increasing incidence of weed species developing populations resistant to herbicides and increased awareness of the consequences of relying on a single or very limited number of herbicides for weed control. As a result, growers of GM HT crops have become much more proactive and diversified in their weed management programs in line with weed scientist recommendations and now include other herbicides (with different and complementary modes of action) in combination with glyphosate, even where instances of weed resistance to glyphosate have not been found. The willingness to proactively diversity weed management systems in the GM HT crops is also influenced by a desire to maintain effective weed control and hence continue to enjoy the benefits of no tillage and conservation tillage. Nevertheless, despite the increase in herbicide use in recent years, the use of GM HT technology continues to deliver significant economic and environmental gains to US farmers.

  4. Non-target effects of a glyphosate-based herbicide on Common toad larvae (Bufo bufo, Amphibia) and associated algae are altered by temperature.

    PubMed

    Baier, Fabian; Gruber, Edith; Hein, Thomas; Bondar-Kunze, Elisabeth; Ivanković, Marina; Mentler, Axel; Brühl, Carsten A; Spangl, Bernhard; Zaller, Johann G

    2016-01-01

    Glyphosate-based herbicides are the most widely used pesticides in agriculture, horticulture, municipalities and private gardens that can potentially contaminate nearby water bodies inhabited by amphibians and algae. Moreover, the development and diversity of these aquatic organisms could also be affected by human-induced climate change that might lead to more periods with extreme temperatures. However, to what extent non-target effects of these herbicides on amphibians or algae are altered by varying temperature is not well known. We studied effects of five concentrations of the glyphosate-based herbicide formulation Roundup PowerFlex (0, 1.5, 3, 4 mg acid equivalent glyphosate L -1 as a one time addition and a pulse treatment of totally 4 mg a.e. glyphosate L -1 ) on larval development of Common toads ( Bufo bufo , L.; Amphibia: Anura) and associated algae communities under two temperature regimes (15 vs. 20 °C). Herbicide contamination reduced tail growth (-8%), induced the occurrence of tail deformations (i.e. lacerated or crooked tails) and reduced algae diversity (-6%). Higher water temperature increased tadpole growth (tail and body length (tl/bl) +66%, length-to-width ratio +4%) and decreased algae diversity (-21%). No clear relation between herbicide concentrations and tadpole growth or algae density or diversity was observed. Interactive effects of herbicides and temperature affected growth parameters, tail deformation and tadpole mortality indicating that the herbicide effects are temperature-dependent. Remarkably, herbicide-temperature interactions resulted in deformed tails in 34% of all herbicide treated tadpoles at 15 °C whereas no tail deformations were observed for the herbicide-free control at 15 °C or any tadpole at 20 °C; herbicide-induced mortality was higher at 15 °C but lower at 20 °C. These herbicide- and temperature-induced changes may have decided effects on ecological interactions in freshwater ecosystems. Although no clear dose-response effect was seen, the presence of glyphosate was decisive for an effect, suggesting that the lowest observed effect concentration (LOEC) in our study was 1.5 mg a.e. glyphosate L -1 water. Overall, our findings also question the relevance of pesticide risk assessments conducted at standard temperatures.

  5. Non-target effects of a glyphosate-based herbicide on Common toad larvae (Bufo bufo, Amphibia) and associated algae are altered by temperature

    PubMed Central

    Baier, Fabian; Gruber, Edith; Bondar-Kunze, Elisabeth; Ivanković, Marina; Mentler, Axel; Brühl, Carsten A.; Spangl, Bernhard

    2016-01-01

    Background Glyphosate-based herbicides are the most widely used pesticides in agriculture, horticulture, municipalities and private gardens that can potentially contaminate nearby water bodies inhabited by amphibians and algae. Moreover, the development and diversity of these aquatic organisms could also be affected by human-induced climate change that might lead to more periods with extreme temperatures. However, to what extent non-target effects of these herbicides on amphibians or algae are altered by varying temperature is not well known. Methods We studied effects of five concentrations of the glyphosate-based herbicide formulation Roundup PowerFlex (0, 1.5, 3, 4 mg acid equivalent glyphosate L−1 as a one time addition and a pulse treatment of totally 4 mg a.e. glyphosate L−1) on larval development of Common toads (Bufo bufo, L.; Amphibia: Anura) and associated algae communities under two temperature regimes (15 vs. 20 °C). Results Herbicide contamination reduced tail growth (−8%), induced the occurrence of tail deformations (i.e. lacerated or crooked tails) and reduced algae diversity (−6%). Higher water temperature increased tadpole growth (tail and body length (tl/bl) +66%, length-to-width ratio +4%) and decreased algae diversity (−21%). No clear relation between herbicide concentrations and tadpole growth or algae density or diversity was observed. Interactive effects of herbicides and temperature affected growth parameters, tail deformation and tadpole mortality indicating that the herbicide effects are temperature-dependent. Remarkably, herbicide-temperature interactions resulted in deformed tails in 34% of all herbicide treated tadpoles at 15 °C whereas no tail deformations were observed for the herbicide-free control at 15 °C or any tadpole at 20 °C; herbicide-induced mortality was higher at 15 °C but lower at 20 °C. Discussion These herbicide- and temperature-induced changes may have decided effects on ecological interactions in freshwater ecosystems. Although no clear dose-response effect was seen, the presence of glyphosate was decisive for an effect, suggesting that the lowest observed effect concentration (LOEC) in our study was 1.5 mg a.e. glyphosate L−1 water. Overall, our findings also question the relevance of pesticide risk assessments conducted at standard temperatures. PMID:27833808

  6. Herbicide Safeners Decrease Sensitivity to Herbicides Inhibiting Acetolactate-Synthase and Likely Activate Non-Target-Site-Based Resistance Pathways in the Major Grass Weed Lolium sp. (Rye-Grass)

    PubMed Central

    Duhoux, Arnaud; Pernin, Fanny; Desserre, Diane; Délye, Christophe

    2017-01-01

    Herbicides are currently pivotal to control weeds and sustain food security. Herbicides must efficiently kill weeds while being as harmless as possible for crops, even crops taxonomically close to weeds. To increase their selectivity toward crops, some herbicides are sprayed in association with safeners that are bioactive compounds exacerbating herbicide-degrading pathways reputedly specifically in crops. However, exacerbated herbicide metabolism is also a key mechanism underlying evolved non-target-site-based resistance to herbicides (NTSR) in weeds. This raised the issue of a possible role of safeners on NTSR evolution in weeds. We investigated a possible effect of the respective field rates of the two broadly used safeners cloquintocet-mexyl and mefenpyr-diethyl on the sensitivity of the troublesome global weed Lolium sp. (rye-grass) to the major herbicides inhibiting acetolactate-synthase (ALS) pyroxsulam and iodosulfuron + mesosulfuron, respectively. Three Lolium sp. populations were studied in three series of experiments. The first experiment series compared the frequencies of plants surviving application of each herbicide alone or in association with its safener. Safener co-application caused a net increase ranging from 5.0 to 46.5% in the frequency of plants surviving the field rate of their associated herbicide. In a second series of experiments, safener effect was assessed on individual plant sensitivity using vegetative propagation. A reduction in sensitivity to pyroxsulam and to iodosulfuron + mesosulfuron was observed for 44.4 and 11.1% of the plants in co-treatment with cloquintocet-mexyl and mefenpyr-diethyl, respectively. A third series of experiments investigated safener effect on the expression level of 19 Lolium sp. NTSR marker genes. Safeners showed an enhancing effect on the expression level of 10 genes. Overall, we demonstrated that cloquintocet-mexyl and mefenpyr-diethyl both reduced the sensitivity of Lolium sp. to their associated ALS-inhibiting herbicide and most likely exacerbated herbicide-degrading secondary metabolism pathways. This suggests that genetic variation for safener response is present in Lolium sp. Thus, a possible, uninvestigated way to NTSR evolution could be selection for increased responsiveness to safener action. Delivering safeners exclusively to the crop could mitigate the risk for NTSR evolution in weeds. PMID:28848566

  7. Herbicide Safeners Decrease Sensitivity to Herbicides Inhibiting Acetolactate-Synthase and Likely Activate Non-Target-Site-Based Resistance Pathways in the Major Grass Weed Lolium sp. (Rye-Grass).

    PubMed

    Duhoux, Arnaud; Pernin, Fanny; Desserre, Diane; Délye, Christophe

    2017-01-01

    Herbicides are currently pivotal to control weeds and sustain food security. Herbicides must efficiently kill weeds while being as harmless as possible for crops, even crops taxonomically close to weeds. To increase their selectivity toward crops, some herbicides are sprayed in association with safeners that are bioactive compounds exacerbating herbicide-degrading pathways reputedly specifically in crops. However, exacerbated herbicide metabolism is also a key mechanism underlying evolved non-target-site-based resistance to herbicides (NTSR) in weeds. This raised the issue of a possible role of safeners on NTSR evolution in weeds. We investigated a possible effect of the respective field rates of the two broadly used safeners cloquintocet-mexyl and mefenpyr-diethyl on the sensitivity of the troublesome global weed Lolium sp. (rye-grass) to the major herbicides inhibiting acetolactate-synthase (ALS) pyroxsulam and iodosulfuron + mesosulfuron, respectively. Three Lolium sp. populations were studied in three series of experiments. The first experiment series compared the frequencies of plants surviving application of each herbicide alone or in association with its safener. Safener co-application caused a net increase ranging from 5.0 to 46.5% in the frequency of plants surviving the field rate of their associated herbicide. In a second series of experiments, safener effect was assessed on individual plant sensitivity using vegetative propagation. A reduction in sensitivity to pyroxsulam and to iodosulfuron + mesosulfuron was observed for 44.4 and 11.1% of the plants in co-treatment with cloquintocet-mexyl and mefenpyr-diethyl, respectively. A third series of experiments investigated safener effect on the expression level of 19 Lolium sp. NTSR marker genes. Safeners showed an enhancing effect on the expression level of 10 genes. Overall, we demonstrated that cloquintocet-mexyl and mefenpyr-diethyl both reduced the sensitivity of Lolium sp. to their associated ALS-inhibiting herbicide and most likely exacerbated herbicide-degrading secondary metabolism pathways. This suggests that genetic variation for safener response is present in Lolium sp. Thus, a possible, uninvestigated way to NTSR evolution could be selection for increased responsiveness to safener action. Delivering safeners exclusively to the crop could mitigate the risk for NTSR evolution in weeds.

  8. Occurrence and behavior of the herbicide Prometon in the hydrologic system

    USGS Publications Warehouse

    Capel, P.D.; Spexet, A.H.; Larson, S.J.

    1999-01-01

    Prometon, a triazine herbicide, is used for total vegetation control on industrial sites, on noncrop areas on farms, in and under asphalt, and to a small extent by homeowners. Prometon has often been detected in surface water and groundwater in studies reported in the literature, but its presence is seldom discussed, partly because of its infrequent inclusion on lists of herbicides used in either agricultural or urban areas. In recent large-scale studies by the U.S. Geological Survey, prometon has been the most commonly detected herbicide in surface water and groundwater in urban areas and the third and fourth most commonly detected herbicide in groundwater and surface water, respectively, in agricultural areas. It also has been detected in rain. The frequent detection of prometon in the environment is discussed in relation to its use practices and predicted environmental behavior. Prometon is compared to atrazine, a structurally similar agricultural triazine herbicide that is one of the most studied and most commonly detected herbicides found in the hydrologic environment. The environmental data presented here demonstrate the wide-scale occurrence of prometon in all components of the hydrologic system, particularly in the surface water and groundwater of urban areas.Prometon, a triazine herbicide, is used for total vegetation control on industrial sites, on noncrop areas on farms, in and under asphalt, and to a small extent by homeowners. Prometon has often been detected in surface water and groundwater in studies reported in the literature, but its presence is seldom discussed, partly because of its infrequent inclusion on lists of herbicides used in either agricultural or urban areas. In recent large-scale studies by the U.S. Geological Survey, prometon has been the most commonly detected herbicide in surface water and groundwater in urban areas and the third and fourth most commonly detected herbicide in groundwater and surface water, respectively, in agricultural areas. It also has been detected in rain. The frequent detection of prometon in the environment is discussed in relation to its use practices and predicted environmental behavior. Prometon is compared to atrazine, a structurally similar agricultural triazine herbicide that is one of the most studied and most commonly detected herbicides found in the hydrologic environment. The environmental data presented here demonstrate the wide-scale occurrence of prometon in all components of the hydrologic system, particularly in the surface water and groundwater of urban areas.

  9. Ten-year response of a forest bird community to an operational herbicide-shelterwood treatment in Allegheny hardwoods

    Treesearch

    Scott H. Stoleson; Todd E. Ristau; David S. deCalesta; Stephen B. Horsley

    2011-01-01

    Use of herbicides in forestry to direct successional trajectories has raised concerns over possible direct or indirect effects on non-target organisms. We studied the response of forest birds to an operational application of glyphosate and sulfometuron methyl herbicides, using a randomized block design in which half of each 8 ha block received herbicide and the other...

  10. Concentration of selected sulfonylurea, sulfonamide, and imidazolinone herbicides, other pesticides, and nutrients in 71 streams, 5 reservoir outflows, and 25 wells in the Midwestern United States, 1998

    USGS Publications Warehouse

    Battaglin, William A.; Furlong, Edward T.; Burkhardt, Mark R.

    2001-01-01

    Sulfonylurea (SU), sulfonamide (SA), and imidazolinone (IMI) herbicides are recently developed herbicides that function by inhibiting the action of a key plant enzyme, stopping plant growth, and eventually killing the plant. These compounds generally have low mammalian toxicity, but crop and non-crop plants demonstrate a wide range in sensitivity to SUs, SAs, and IMIs, with over a 10,000-fold difference in observed toxicity levels for some compounds. SUs, SAs, and IMIs are applied either pre- or post-emergence to crops commonly at 1/50th or less of the rate of other herbicides. Little is known about their occurrence, fate, or transport in surface water or ground water in the United States. To obtain information on the occurrence of SU, SA, and IMI herbicides in the Midwestern United States, 214 water samples were collected from 76 surface-water and 25 ground-water sites in 1998. These samples were analyzed for 16 SU, SA, and IMI herbicides by using highperformance liquid chromatography/mass spectrometry. Samples also were analyzed for 46 pesticides and pesticide degradation products and 13 herbicides and 10 herbicide degradates. At least 1 of the 16 SUs, SAs, or IMIs was detected at or above the method reporting limit of 0.010 microgram per liter (ug/L) in 83 percent of 133 stream samples. Imazethapyr was detected most frequently (69 percent of samples), followed by flumetsulam (65 percent of samples) and nicosulfuron (53 percent of samples). At least one SU, SA, or IMI herbicide was detected at or above the method reporting limit in 6 of 8 reservoir samples and 5 of 25 ground-water samples. SU, SA, and IMI herbicides occurred less frequently and at a fraction (often 1/50th or less) of the concentrations of other herbicides such as atrazine. Acetochlor, atrazine, cyanazine, and metolachlor were all detected in 95 percent or more of 136 stream samples.

  11. [Effects of herbicide on grape leaf photosynthesis and nutrient storage].

    PubMed

    Tan, Wei; Wang, Hui; Zhai, Heng

    2011-09-01

    Selecting three adjacent vineyards as test objects, this paper studied the effects of applying herbicide in growth season on the leaf photosynthetic apparatus and branch nutrient storage of grape Kyoho (Vitis vinfrraxVitis labrusca). In the vineyards T1 and T2 where herbicide was applied in 2009, the net photosynthesis rate (Pa) of grape leaves had a significant decrease, as compared with that in vineyard CK where artificial weeding was implemented. The leaves at the fourth node in vineyard T1 and those at the sixth node in vineyard T2 had the largest decrement of Pn (40.5% and 32.1%, respectively). Herbicide had slight effects on the leaf stomatal conductance (Gs). In T1 where herbicide application was kept on with in 2010, the Pn, was still significantly lower than that in CK; while in T2 where artificial weeding was implemented in 2010, the Pn and Gs of top- and middle node leaves were slightly higher than those in T1, but the Pn was still lower than that in CK, showing the aftereffects of herbicide residual. The herbicide application in 2009 decreased the leaf maximum photochemical efficiency of PS II (Fv/Fm) and performance index (P1) while increased the relative variable fluorescence in the J step and K step, indicating the damage of electron transportation of PS II center and oxygen-evolving complex. Herbicide application decreased the pigment content of middle-node leaves in a dose-manner. Applying herbicide enhanced the leaf catalase and peroxidase activities significantly, increased the superoxide dismutase (SOD) activity of middle-node leaves, but decreased the SOD activity of top- and bottom node leaves. After treated with herbicide, the ascorbate peroxidase (APX) activity of middle- and bottom node leaves increased, but that of top-node leaves decreased. Herbicide treatment aggravated leaf lipid peroxidation, and reduced the soluble sugar, starch, free amino acids, and soluble protein storage in branches.

  12. A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis.

    PubMed

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-11-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. © 2014 American Society of Plant Biologists. All Rights Reserved.

  13. Effects of Sublethal Exposure to a Glyphosate-Based Herbicide Formulation on Metabolic Activities of Different Xenobiotic-Metabolizing Enzymes in Rats.

    PubMed

    Larsen, Karen; Najle, Roberto; Lifschitz, Adrián; Maté, María L; Lanusse, Carlos; Virkel, Guillermo L

    2014-07-01

    The activities of different xenobiotic-metabolizing enzymes in liver subcellular fractions from Wistar rats exposed to a glyphosate (GLP)-based herbicide (Roundup full II) were evaluated in this work. Exposure to the herbicide triggered protective mechanisms against oxidative stress (increased glutathione peroxidase activity and total glutathione levels). Liver microsomes from both male and female rats exposed to the herbicide had lower (45%-54%, P < 0.01) hepatic cytochrome P450 (CYP) levels compared to their respective control animals. In female rats, the hepatic 7-ethoxycoumarin O-deethylase (a general CYP-dependent enzyme activity) was 57% higher (P < 0.05) in herbicide-exposed compared to control animals. Conversely, this enzyme activity was 58% lower (P < 0.05) in male rats receiving the herbicide. Lower (P < 0.05) 7-ethoxyresorufin O-deethlyase (EROD, CYP1A1/2 dependent) and oleandomycin triacetate (TAO) N-demethylase (CYP3A dependent) enzyme activities were observed in liver microsomes from exposed male rats. Conversely, in females receiving the herbicide, EROD increased (123%-168%, P < 0.05), whereas TAO N-demethylase did not change. A higher (158%-179%, P < 0.01) benzyloxyresorufin O-debenzylase (a CYP2B-dependent enzyme activity) activity was only observed in herbicide-exposed female rats. In herbicide-exposed rats, the hepatic S-oxidation of methimazole (flavin monooxygenase dependent) was 49% to 62% lower (P < 0.001), whereas the carbonyl reduction of menadione (a cytosolic carbonyl reductase-dependent activity) was higher (P < 0.05). Exposure to the herbicide had no effects on enzymatic activities dependent on carboxylesterases, glutathione transferases, and uridinediphospho-glucuronosyltransferases. This research demonstrated certain biochemical modifications after exposure to a GLP-based herbicide. Such modifications may affect the metabolic fate of different endobiotic and xenobiotic substances. The pharmacotoxicological significance of these findings remains to be clarified. © The Author(s) 2014.

  14. Physiological and molecular ontogeny of branchial and extra-branchial urea excretion in posthatch rainbow trout (Oncorhynchus mykiss).

    PubMed

    Zimmer, Alex M; Wood, Chris M

    2016-02-01

    All teleost fish produce ammonia as a metabolic waste product. In embryos, ammonia excretion is limited by the chorion, and fish must detoxify ammonia by synthesizing urea via the ornithine urea cycle (OUC). Although urea is produced by embryos and larvae, urea excretion (J(urea)) is typically low until yolk sac absorption, increasing thereafter. The aim of this study was to determine the physiological and molecular characteristics of J(urea) by posthatch rainbow trout (Oncorhynchus mykiss). Following hatch, whole body urea concentration decreased over time, while J(urea) increased following yolk sac absorption. From 12 to 40 days posthatch (dph), extra-branchial routes of excretion accounted for the majority of J(urea), while the gills became the dominant site for J(urea) only after 55 dph. This represents the most delayed branchial ontogeny of any process studied to date. Urea transporter (UT) gene expression in the gills and skin increased over development, consistent with increases in branchial and extra-branchial J(urea). Following exposure to 25 mmol/l urea, the accumulation and subsequent elimination of exogenous urea was much greater at 55 dph than 12 dph, consistent with increased UT expression. Notably, UT gene expression in the gills of 55 dph larvae increased in response to high urea. In summary, there is a clear increase in urea transport capacity over posthatch development, despite a decrease in OUC activity. Copyright © 2016 the American Physiological Society.

  15. Urea transporter knockout mice and their renal phenotypes.

    PubMed

    Fenton, Robert A; Yang, Baoxue

    2014-01-01

    Urea transporter gene knockout mice have been created for the study of the urine-concentrating mechanism. The major findings in studies of the renal phenotype of these mice are as follows: (1) Urea accumulation in the inner medullary interstitium is dependent on intrarenal urea recycling mediated by urea transporters; (2) urea transporters are essential for preventing urea-induced osmotic diuresis and thus for water conservation; (3) NaCl concentration in the inner medullary interstitium is not significantly affected by the absence of IMCD, descending limb of Henle and descending vasa recta urea transporters. Studies in urea transporter knockout mouse models have highlighted the essential role of urea for producing maximally concentrated urine.

  16. Agricultural chemicals in near-surface aquifers in the mid-continental United States, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolpin, D.W.; Burkart, M.R.

    The occurrence and distribution of selected herbicides, atrazine metabolites, and nitrate were determined for unconsolidated and bedrock aquifers within 50 feet of land surface (near-surface) in the corn and soybean producing region of the mid-continental US. At least one herbicide or atrazine metabolite was detected (reporting limit, 0.05 micrograms per liter) in 24 percent of 579 water samples collected during the spring and summer of 1991. No herbicide exceeded maximum contaminant levels or health advisories. Most frequently detected was desethylatrazine (18.1 percent) followed by atrazine (17.4 percent), deisopropylatrazine (5.7 percent) and prometon (5.0 percent). Metolachlor, alachlor, metribuzin, simazine, and cyanazinemore » were found in fewer than 3 percent of the samples. Excess nitrate (more than 3.0 mg/L) was found in 29 percent of the samples; 6 percent exceeded 10 mg/L. Few herbicide detections or excess nitrate concentrations occurred in the eastern part of the study region even though this area had an intense use of herbicides and nitrogen-fertilizer. The source of prometon, the second most frequently detected herbicide, may be associated with nonagricultural land use such as golf courses and residential areas. Significant seasonal differences between the spring and summer sampling periods were found in herbicide detections, but not in excess nitrate. The frequency of herbicide detections and excess nitrate were greater in near-surface unconsolidated aquifers than found in near-surface bedrock aquifers. Depth to the top of the aquifer was inversely related to the frequency of both herbicide detection and excess nitrate. The proximity of sampling sites to streams affected the frequency of herbicide detection.« less

  17. Global perspective of herbicide-resistant weeds.

    PubMed

    Heap, Ian

    2014-09-01

    Two hundred and twenty weed species have evolved resistance to one or more herbicides, and there are now 404 unique cases (species × site of action) of herbicide-resistant weeds globally. ALS inhibitor-resistant weeds account for about a third of all cases (133/404) and are particularly troublesome in rice and cereals. Although 71 weed species have been identified with triazine resistance, their importance has dwindled with the shift towards Roundup Ready® crops in the USA and the reduction of triazine usage in Europe. Forty-three grasses have evolved resistance to ACCase inhibitors, with the most serious cases being Avena spp., Lolium spp., Phalaris spp., Setaria spp. and Alopecurus myosuroides, infesting more than 25 million hectares of cereal production globally. Of the 24 weed species with glyphosate resistance, 16 have been found in Roundup Ready® cropping systems. Although Conyza canadensis is the most widespread glyphosate-resistant weed, Amaranthus palmeri and Amaranthus tuberculartus are the two most economically important glyphosate-resistant weeds because of the area they infest and the fact that these species have evolved resistance to numerous other herbicide sites of action, leaving growers with few herbicidal options for their control. The agricultural chemical industry has not brought any new herbicides with novel sites of action to market in over 30 years, making growers reliant on using existing herbicides in new ways. In addition, tougher registration and environmental regulations on herbicides have resulted in a loss of some herbicides, particularly in Europe. The lack of novel herbicide chemistries being brought to market combined with the rapid increase in multiple resistance in weeds threatens crop production worldwide. © 2013 Society of Chemical Industry.

  18. Screening of photosynthetic pigments for herbicidal activity with a new computational molecular approach.

    PubMed

    Krishnaraj, R Navanietha; Chandran, Saravanan; Pal, Parimal; Berchmans, Sheela

    2013-12-01

    There is an immense interest among the researchers to identify new herbicides which are effective against the herbs without affecting the environment. In this work, photosynthetic pigments are used as the ligands to predict their herbicidal activity. The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is a good target for the herbicides. Homology modeling of the target enzyme is done using Modeler 9.11 and the model is validated. Docking studies were performed with AutoDock Vina algorithm to predict the binding of the natural pigments such as β-carotene, chlorophyll a, chlorophyll b, phycoerythrin and phycocyanin to the target. β-carotene, phycoerythrin and phycocyanin have higher binding energies indicating the herbicidal activity of the pigments. This work reports a procedure to screen herbicides with computational molecular approach. These pigments will serve as potential bioherbicides in the future.

  19. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Chemical Biology to Agrochemicals.

    PubMed

    Ndikuryayo, Ferdinand; Moosavi, Behrooz; Yang, Wen-Chao; Yang, Guang-Fu

    2017-10-04

    The development of new herbicides is receiving considerable attention to control weed biotypes resistant to current herbicides. Consequently, new enzymes are always desired as targets for herbicide discovery. 4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is an enzyme engaged in photosynthetic activity and catalyzes the transformation of 4-hydroxyphenylpyruvic acid (HPPA) into homogentisic acid (HGA). HPPD inhibitors constitute a promising area of discovery and development of innovative herbicides with some advantages, including excellent crop selectivity, low application rates, and broad-spectrum weed control. HPPD inhibitors have been investigated for agrochemical interests, and some of them have already been commercialized as herbicides. In this review, we mainly focus on the chemical biology of HPPD, discovery of new potential inhibitors, and strategies for engineering transgenic crops resistant to current HPPD-inhibiting herbicides. The conclusion raises some relevant gaps for future research directions.

  20. Herbicide-Resistant Crops: Utilities and Limitations for Herbicide-Resistant Weed Management

    PubMed Central

    2010-01-01

    Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effectiveness of glyphosate. Unfortunately, the introduction of GR crops and the high initial efficacy of glyphosate often lead to a decline in the use of other herbicide options and less investment by industry to discover new herbicide active ingredients. With some exceptions, most growers can still manage their weed problems with currently available selective and HR crop-enabled herbicides. However, current crop management systems are in jeopardy given the pace at which weed populations are evolving glyphosate resistance. New HR crop technologies will expand the utility of currently available herbicides and enable new interim solutions for growers to manage HR weeds, but will not replace the long-term need to diversify weed management tactics and discover herbicides with new modes of action. This paper reviews the strengths and weaknesses of anticipated weed management options and the best management practices that growers need to implement in HR crops to maximize the long-term benefits of current technologies and reduce weed shifts to difficult-to-control and HR weeds. PMID:20586458

  1. Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification.

    PubMed

    Matzrafi, Maor; Seiwert, Bettina; Reemtsma, Thorsten; Rubin, Baruch; Peleg, Zvi

    2016-12-01

    Global warming will increase the incidence of metabolism-based reduced herbicide efficacy on weeds and, therefore, the risk for evolution of non-target site herbicide resistance. Climate changes affect food security both directly and indirectly. Weeds are the major biotic factor limiting crop production worldwide, and herbicides are the most cost-effective way for weed management. Processes associated with climatic changes, such as elevated temperatures, can strongly affect weed control efficiency. Responses of several grass weed populations to herbicides that inhibit acetyl-CoA carboxylase (ACCase) were examined under different temperature regimes. We characterized the mechanism of temperature-dependent sensitivity and the kinetics of pinoxaden detoxification. The products of pinoxaden detoxification were quantified. Decreased sensitivity to ACCase inhibitors was observed under elevated temperatures. Pre-treatment with the cytochrome-P450 inhibitor malathion supports a non-target site metabolism-based mechanism of herbicide resistance. The first 48 h after herbicide application were crucial for pinoxaden detoxification. The levels of the inactive glucose-conjugated pinoxaden product (M5) were found significantly higher under high- than low-temperature regime. Under high temperature, a rapid elevation in the level of the intermediate metabolite (M4) was found only in pinoxaden-resistant plants. Our results highlight the quantitative nature of non-target-site resistance. To the best of our knowledge, this is the first experimental evidence for temperature-dependent herbicide sensitivity based on metabolic detoxification. These findings suggest an increased risk for the evolution of herbicide-resistant weeds under predicted climatic conditions.

  2. Effects of the herbicides linuron and S-metolachlor on Perez's frog embryos.

    PubMed

    Quintaneiro, Carla; Soares, Amadeu M V M; Monteiro, Marta S

    2018-03-01

    Presence of pesticides in the environment and their possible effects on aquatic organisms are of great concern worldwide. The extensive use of herbicides in agricultural areas are one of the factors contributing to the known decline of amphibian populations. Thus, as non-target species, amphibians can be exposed in early life stages to herbicides in aquatic systems. In this context, this study aims to evaluate effects of increasing concentrations of two maize herbicides, linuron and S-metolachlor on embryos of the Perez' frog (Pelophylax perezi) during 192 h. Apical endpoints were determined for each herbicide: mortality, hatching rate, malformations and length. Frog embryos presented a LC 50 of 21 mg/l linuron and 37.5 mg/l S-metolachlor. Furthermore, sub-lethal concentrations of both herbicides affected normal embryonic development, delaying hatching, decreasing larvae length and causing several malformations. Length of larvae decreased with increasing concentrations of each herbicide, even at the lower concentrations tested. Malformations observed in larvae exposed to both herbicides were oedemas, spinal curvature and deformation, blistering and microphtalmia. Overall, these results highlight the need to assess adverse effects of xenobiotics to early life stages of amphibians regarding beside mortality the embryonic development, which could result in impairments at later stages. However, to unravel mechanisms involved in toxicity of these herbicides further studies regarding lower levels of biological organisation such as biochemical and genomic level should be performed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Combining glyphosate with burning or mowing improves control of Yellow Bluestem (Bothriochloa ischaemum)

    USGS Publications Warehouse

    Robertson, S.; Hickman, Karen R.; Harmoney, Keith R.; Leslie,, David M.

    2013-01-01

    The invasive yellow bluestem (Bothriochloa ischaemum [L.] Keng) threatens native biodiversity, and its control is of interest to land managers involved in restoration of invaded grasslands. We used single, double, and triple applications of glyphosate (2.125 kg ai.ha-1.application-1) over the course of one growing season in combinations at different timings (early, middle, late season) with and without a mechanical treatment of mowing or burning to determine the most effective control method. One year after treatment, burning and mowing prior to a mid-season single or double early, middle, and/or late season herbicide application resulted in a similar level of control of yellow bluestem relative to a triple herbicide application, all of which had greater control relative to herbicide treatment alone. Reproductive tiller density and visual obstruction increased 2 yr after treatment with two herbicide treatments applied either early and middle season or early and late season, but it was prevented with burning and mowing prior to herbicide application. With the exception of three herbicide applications, combining burning or mowing with herbicide applications provided more effective control of yellow bluestem than any individual herbicide applications. Burning or mowing likely improves glyphosate effectiveness by altering the invasive grass structure so that plants are clear of standing dead and have shorter, active regrowth to enhance herbicide effectiveness. During restoration projects requiring control of invasive yellow bluestem, an effective management option is a combination of mechanical and chemical control.

  4. Resistance to AHAS inhibitor herbicides: current understanding.

    PubMed

    Yu, Qin; Powles, Stephen B

    2014-09-01

    Acetohydroxyacid synthase (AHAS) inhibitor herbicides currently comprise the largest site-of-action group (with 54 active ingredients across five chemical groups) and have been widely used in world agriculture since they were first introduced in 1982. Resistance evolution in weeds to AHAS inhibitors has been rapid and identified in populations of many weed species. Often, evolved resistance is associated with point mutations in the target AHAS gene; however non-target-site enhanced herbicide metabolism occurs as well. Many AHAS gene resistance mutations can occur and be rapidly enriched owing to a high initial resistance gene frequency, simple and dominant genetic inheritance and lack of major fitness cost of the resistance alleles. Major advances in the elucidation of the crystal structure of the AHAS (Arabidopsis thaliana) catalytic subunit in complex with various AHAS inhibitor herbicides have greatly improved current understanding of the detailed molecular interactions between AHAS, cofactors and herbicides. Compared with target-site resistance, non-target-site resistance to AHAS inhibitor herbicides is less studied and hence less understood. In a few well-studied cases, non-target-site resistance is due to enhanced rates of herbicide metabolism (metabolic resistance), mimicking that occurring in tolerant crop species and often involving cytochrome P450 monooxygenases. However, the specific herbicide-metabolising, resistance-endowing genes are yet to be identified in resistant weed species. The current state of mechanistic understanding of AHAS inhibitor herbicide resistance is reviewed, and outstanding research issues are outlined. © 2013 Society of Chemical Industry.

  5. Comparative toxicity of 20 herbicides to 5 periphytic algae and the relationship with mode of action.

    PubMed

    Nagai, Takashi; Taya, Kiyoshi; Yoda, Ikuko

    2016-02-01

    The authors used 5 species of periphytic algae to conduct toxicity assays of 20 herbicides. The 5 tested species represent riverine primary producers most likely to be affected by herbicides. A fluorescence microplate toxicity assay was used as an efficient and economical high-throughput assay. Toxicity characteristics were analyzed, focusing on their relationship to herbicide mode of action. The relative differences between 50% and 10% effect concentrations depended on herbicide mode of action, rather than tested species. Moreover, a clear relationship between sensitive species and herbicide mode of action was also observed. Green alga was most sensitive to herbicides of 2 mode of action groups: inhibitors of protoporphyrinogen oxidase and very long-chain fatty acid synthesis. Diatoms were most sensitive to herbicides of 1 mode of action group: 4-hydroxyphenyl-pyruvate-dioxygenase inhibitors. Cyanobacterium was most sensitive to herbicides of 1 mode of action group: inhibitors of acetolactate synthase. The species sensitivity distribution based on obtained data was also analyzed. The slopes of the species sensitivity distribution significantly differed among modes of action, suggesting that difference in species sensitivity is specific to the mode of action. In particular, differences in species sensitivity were markedly large for inhibitors of acetolactate synthase, protoporphyrinogen oxidase, and very long-chain fatty acid synthesis. The results clearly showed that a single algal species cannot represent the sensitivity of an algal assemblage. Therefore, multispecies algal toxicity data are essential for substances with specific modes of action. © 2015 SETAC.

  6. Improving ammonium and nitrate release from urea using clinoptilolite zeolite and compost produced from agricultural wastes.

    PubMed

    Omar, Latifah; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad

    2015-01-01

    Improper use of urea may cause environmental pollution through NH3 volatilization and NO3 (-) leaching from urea. Clinoptilolite zeolite and compost could be used to control N loss from urea by controlling NH4 (+) and NO3 (-) release from urea. Soil incubation and leaching experiments were conducted to determine the effects of clinoptilolite zeolite and compost on controlling NH4 (+) and NO3 (-) losses from urea. Bekenu Series soil (Typic Paleudults) was incubated for 30, 60, and 90 days. A soil leaching experiment was conducted for 30 days. Urea amended with clinoptilolite zeolite and compost significantly reduced NH4 (+) and NO3 (-) release from urea (soil incubation study) compared with urea alone, thus reducing leaching of these ions. Ammonium and NO3 (-) leaching losses during the 30 days of the leaching experiment were highest in urea alone compared with urea with clinoptilolite zeolite and compost treatments. At 30 days of the leaching experiment, NH4 (+) retention in soil with urea amended with clinoptilolite zeolite and compost was better than that with urea alone. These observations were because of the high pH, CEC, and other chemical properties of clinoptilolite zeolite and compost. Urea can be amended with clinoptilolite zeolite and compost to improve NH4 (+) and NO3 (-) release from urea.

  7. Isotopic studies of urea metabolism in rabbits

    PubMed Central

    Regoeczi, E.; Irons, L.; Koj, A.; McFarlane, A. S.

    1965-01-01

    1. The half-life of [15N]urea was found to be significantly longer than that of [14C]urea injected at the same time, the differences being due to endogenous catabolism of urea, which is accompanied by little or no reutilization of 14C but is approx. 20% for 15N. [15N]Urea therefore appears to be valueless as an indicator of nitrogen metabolism unless the extents of endogenous catabolism of urea and of fractional reutilization of 15N can be separately estimated. 2. Though measurements of the radioactivity of expired 14CO2 confirmed the existence of considerable urea catabolism these could not be used for quantitative assessments. 3. Alternative graphical methods based on [14C]urea specific activities in plasma and urine samples were used to calculate the fraction of urea production that is excreted. Values by the two methods were in good agreement and showed that some animals excrete less than half the urea that they produce. 4. Specific activity differences between simultaneous samples of urinary and plasma urea reflect the presence of a pool of urea in the kidney that is not in equilibrium with the body urea pool. Calculations indicate the presence of urea in the kidney that in some cases may represent as much as 15% of the body pool, and in two animals in which post-mortem renal analyses were performed the masses of urea found agreed closely with the calculated values. 5. A model for urea metabolism is proposed that includes this pool in the excretory pathway. The related theory is shown to be adequate to explain the shape of the specific activity curves of urinary urea from the time of injection and the constant delay of the specific activity of urinary urea, relative to that of plasma urea, that is observed after a short preliminary equilibration period. 6. The body urea pool was calculated from the activity retained at 1·5hr. by excluding renal activity and the corrected specific activity of plasma urea at the same time. The urea pool was calculated to be distributed at the plasma concentration in a substantially smaller water volume than that found by injecting tritiated water in five animals. Reasons for this are discussed. 7. Urea synthesis rates calculated from the pool values are in close agreement with rates calculated from the mass of urea recovered in the urine and the fraction of newly synthesized urea that is excreted. PMID:14340103

  8. Eight years of seasonal burning and herbicidal brush control influence sapling longleaf pine growth, understory vegetation, and the outcome of an ensuing wildfire

    Treesearch

    James D. Haywood

    2009-01-01

    To study how fire or herbicide use influences longleaf pine (Pinus palustris Mill.) overstory and understory vegetation, five treatments were initiated in a 5–6-year-old longleaf pine stand: check, biennial arborescent plant control by directed herbicide application, and biennial burning in March, May, or July. The herbicide or prescribed fire...

  9. Initial response of loblolly pine and competition to mid rotation fertilization and herbicide application in the gulf coastal plain

    Treesearch

    Hal O. Liechty; Conner Fristoe

    2010-01-01

    Application of N and P to mid-rotation loblolly pines (Pinus taeda L.) stands is a common silvicultural practice used to increase crop tree production in the Gulf Coastal Plain. Mid-rotation applications of herbicides or combined applications of herbicide and fertilizer are a less common practice. We applied herbicide (1.17 l imazapyr and 0.23 l...

  10. Forty years of spruce–fir stand development following herbicide application and precommercial thinning in central Maine, USA

    Treesearch

    Matthew G. Olson; Robert G. Wagner; John C. Brissette

    2012-01-01

    We examined the development of a 33-year experiment in spruce–fir stands that received nine herbicide treatments (applied aerially in 1977), with and without precommercial thinning (PCT) (applied in 1986). We tested two commonly held assumptions about the long-term effects of herbicide and PCT in mixedwood stands managed for softwoods: (i) herbicide release produces...

  11. Development of a mixed shrub-tanoak-Douglas-fir community in a treated and untreated condition

    Treesearch

    Philip M. McDonald; Gary O. Fiddler

    1996-01-01

    On a medium site in northern California, a tanoak-mixed shrub community was given several treatments (manual release two and three times, a combination chainsaw and cut surface herbicide treatment, two foliar herbicides, and a tank mix of the two herbicides) to study its development in both a natural (control) and treated condition. The herbicides were 2,4-D, Garlon 3A...

  12. Cumulative effects analysis of the water quality risk of herbicides used for site preparation in the Central North Island, New Zealand

    Treesearch

    Dan Neary; Brenda R. Baillie

    2016-01-01

    Herbicide use varies both spatially and temporally within managed forests. While information exists on the effects of herbicide use on water quality at the site and small catchment scale, little is known about the cumulative effects of herbicide use at the landscape scale. A cumulative effects analysis was conducted in the upper Rangitaiki catchment (118,345...

  13. Mechanism of Sulfonylurea Herbicide Resistance in the Broadleaf Weed, Kochia scoparia

    PubMed Central

    Saari, Leonard L.; Cotterman, Josephine C.; Primiani, Michael M.

    1990-01-01

    Selection of kochia (Kochia scoparia) biotypes resistant to the sulfonylurea herbicide chlorsulfuron has occurred through the continued use of this herbicide in monoculture cereal-growing areas in the United States. The apparent sulfonylurea resistance observed in kochia was confirmed in greenhouse tests. Fresh and dry weight accumulation in the resistant kochia was 2- to >350-fold higher in the presence of four sulfonylurea herbicides as compared to the susceptible biotype. Acetolactate synthase (ALS) activity isolated from sulfonylurea-resistant kochia was less sensitive to inhibition by three classes of ALS-inhibiting herbicides, sulfonylureas, imidazolinones, and sulfonanilides. The decrease in ALS sensitivity to inhibition (as measured by the ratio of resistant I50 to susceptible I50) was 5- to 28-fold, 2- to 6-fold, and 20-fold for sulfonylurea herbicides, imidazolinone herbicides, and a sulfonanilide herbicide, respectively. No differences were observed in the ALS-specific activities or the rates of [14C]chlorsulfuron uptake, translocation, and metabolism between susceptible and resistant kochia biotypes. The Km values for pyruvate using ALS from susceptible and resistant kochia were 2.13 and 1.74 mm, respectively. Based on these results, the mechanism of sulfonylurea resistance in this kochia biotype is due solely to a less sulfonylurea-sensitive ALS enzyme. PMID:16667465

  14. Runoff of the herbicides triclopyr and glufosinate ammonium from oil palm plantation soil.

    PubMed

    Tayeb, M A; Ismail, B S; Khairiatul-Mardiana, J

    2017-10-11

    This study focused on the residue detection of the herbicides triclopyr and glufosinate ammonium in the runoff losses from the Tasik Chini oil palm plantation area and the Tasik Chini Lake under natural rainfall conditions in the Malaysian tropical environment. Triclopyr and glufosinate ammonium are post-emergence herbicides. Both herbicides were foliar-sprayed on 0.5 ha of oil palm plantation plots, which were individualized by an uneven slope of 10-15%. Samples were collected at 1, 3, 7, 15, 30, 45, 60, 90, and 120 days after treatment. The concentrations of both herbicides quickly diminished from those in the analyzed sample by the time of collection. The highest residue levels found in the field surface leachate were 0.031 (single dosage, triclopyr), 0.041 (single dosage, glufosinate ammonium), 0.017 (double dosage, triclopyr), and 0.037 μg/kg (double dosage, glufosinate ammonium). The chromatographic peaks were observed at "0" day treatment (2 h after herbicide application). From the applied active ingredients, the triclopyr and glufosinate losses were 0.025 and 0.055%, respectively. The experimental results showed that both herbicides are less potent than other herbicides in polluting water systems because of their short persistence and strong adsorption onto soil clay particles.

  15. Can we predict diatoms herbicide sensitivities with phylogeny? Influence of intraspecific and interspecific variability.

    PubMed

    Esteves, Sara M; Keck, François; Almeida, Salomé F P; Figueira, Etelvina; Bouchez, Agnès; Rimet, Frédéric

    2017-10-01

    Diatoms are used as indicators of freshwater ecosystems integrity. Developing diatom-based tools to assess impact of herbicide pollution is expected by water managers. But, defining sensitivities of all species to multiple herbicides would be unattainable. The existence of a phylogenetic signal of herbicide sensitivity was shown among diatoms and should enable prediction of new species sensitivity. However, diatoms present a cryptic diversity that may lead to variation in their sensitivity to herbicides that would need to be taken into account. Using bioassays, the sensitivity to four herbicides (Atrazine, Terbutryn, Diuron, Isoproturon) was evaluated for 11 freshwater diatom taxa and intraspecific variability was assessed for two of them (Nitzschia palea and Achnanthidium spp.). Intraspecific variability of herbicide sensitivity was always smaller than interspecific variability, but intraspecific variability was more important in N. palea than in Achnanthidium spp. Indeed, one species showed no intraspecific phylogenetic signal (N. palea) whereas the other did (Achnanthidium spp.). On one hand, species boundaries are not set properly for Achnanthidium spp. which encompass several taxa. On the other hand, there is a higher phenotypic plasticity for N. palea. Finally, a phylogenetic signal of herbicide sensitivity was measured at the interspecific level, opening up prospects for setting up reliable biomonitoring tools based on sensitivity prediction, insofar as species boundaries are correctly defined.

  16. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saari, L.L.; Cotterman, J.C.; Primiani, M.M.

    Selection of kochia (Kochia scoparia) biotypes resistant to the sulfonylurea herbicide chlorsulfuron has occurred through the continued use of this herbicide in monoculture cereal-growing areas in the United States. The apparent sulfonylurea resistance observed in kochia was confirmed in greenhouse tests. Fresh and dry weight accumulation in the resistance kochia was 2- to >350-fold higher in the presence of four sulfonylurea herbicides as compared to the susceptible biotype. Acetolactate synthase (ALS) activity isolated from sulfonylurea-resistant kochia was less sensitive to inhibition by three classes of ALS-inhibiting herbicides, sulfonylureas, imidazolinones, and sulfonanilides. The decrease in ALS sensitivity to inhibition (as measuredmore » by the ratio of resistant I{sub 50} to susceptible I{sub 50}) was 5- to 28-fold, 2- to 6-fold, and 20-fold for sulfonylurea herbicides, imidazolinone herbicides, and a sulfonanilide herbicide, respectively. No differences were observed in the ALS-specific activities or the rates of ({sup 14}C)chlorsulfuron uptake, translocation, and metabolism between susceptible and resistant kochia biotypes. The K{sub m} values for pyruvate using ALS from susceptible and resistant kochia were 2.13 and 1.74 mM, respectively. Based on these results, the mechanism of sulfonylurea resistance in this kochia biotype is due solely to a less sulfonylurea-sensitive ALS enzyme.« less

  17. Potential roles for microbial endophytes in herbicide tolerance in plants.

    PubMed

    Tétard-Jones, Catherine; Edwards, Robert

    2016-02-01

    Herbicide tolerance in crops and weeds is considered to be monotrophic, i.e. determined by the relative susceptibility of the physiological process targeted and the plant's ability to metabolise and detoxify the agrochemical. A growing body of evidence now suggests that endophytes, microbes that inhabit plant tissues and provide a range of growth, health and defence enhancements, can contribute to other types of abiotic and biotic stress tolerance. The current evidence for herbicide tolerance being bitrophic, with both free-living and plant-associated endophytes contributing to tolerance in the host plant, has been reviewed. We propose that endophytes can directly contribute to herbicide detoxification through their ability to metabolise xenobiotics. In addition, we explore the paradigm that microbes can 'prime' resistance mechanisms in plants such that they enhance herbicide tolerance by inducing the host's stress responses to withstand the downstream toxicity caused by herbicides. This latter mechanism has the potential to contribute to the growth of non-target-site-based herbicide resistance in weeds. Microbial endophytes already contribute to herbicide detoxification in planta, and there is now significant scope to extend these interactions using synthetic biology approaches to engineer new chemical tolerance traits into crops via microbial engineering. © 2015 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  18. Degradation of 2,4-DB in Argentinean agricultural soils with high humic matter content.

    PubMed

    Cuadrado, Virginia; Merini, Luciano J; Flocco, Cecilia G; Giulietti, Ana M

    2008-01-01

    The dissipation of 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB) in high-humic-matter-containing soils from agricultural fields of the Argentinean Humid Pampa region was studied, employing soil microcosms under different experimental conditions. The added herbicide was dissipated almost completely by soils with and without history of herbicide use by day 28. At 500 ppm, both soils showed the same degradation rates; but at 5-ppm concentration, the chronically exposed soil demonstrated a faster degradation of the herbicide. 2,4-DB addition produced increases in herbicide-degrading bacteria of three and 1.5 orders of magnitude in soils with and without history of herbicide use, respectively, in microcosms with 5 ppm. At 500-ppm concentration, the increase in 2,4-DB degraders was five orders of magnitude after 14 days, independent of the history of herbicide use. No differences were observed in either 2,4-DB degradation rates or in degrader bacteria numbers in the presence and absence of alfalfa plants, in spite of some differential characteristics in patterns of 2,4-DB metabolite accumulation. The main factor affecting 2,4-DB degradation rate would be the history of herbicide use, as a consequence of the adaptation of the indigenous microflora to the presence of herbicides in the field.

  19. Herbicides and degradates in shallow aquifers of Illinois: Spatial and temporal trends

    USGS Publications Warehouse

    Mills, P.C.; Kolpin, D.W.; Scribner, E.A.; Thurman, E.M.

    2005-01-01

    During the fall of 2000, the occurrence was examined of 16 herbicides and 13 herbicide degradates in samples from 55 wells in shallow aquifers underlying grain producing regions of Illinois. Herbicide compounds with concentrations above 0.05 ??g/L were detected in 56 percent of the samples. No concentrations exceeded regulatory drinking water standards. The six most frequently detected compounds were degradates. Water age was an important factor in determining vulnerability of ground water to transport of herbicide compounds. Unconsolidated aquifers, which were indicated to generally contain younger ground water than bedrock aquifers, had a higher occurrence of herbicides (73 percent of samples) than bedrock aquifers (22 percent). Temporal analysis to determine if changes in concentrations of selected herbicides and degradates could be observed over a near decadal period indicated a decrease in detection frequency (25 to 18 percent) between samplings in 1991 and 2000. Over this period, significant differences in concentrations were observed for atrazine (decrease) and total acetochlor (increase). The increase in acetochlor compound concentrations corresponds to an increase in acetochlor use during the study period, while the decrease in atrazine concentrations corresponds to relatively consistent use of atrazine. Changes in frequency of herbicide detection and concentration do not appear related to changes in land use near sampled wells.

  20. Chloroacetanilide herbicide metabolites in Wisconsin groundwater: 2001 survey results.

    PubMed

    Postle, Jeffrey K; Rheineck, Bruce D; Allen, Paula E; Baldock, Jon O; Cook, Cody J; Zogbaum, Randy; Vandenbrook, James P

    2004-10-15

    A survey of agricultural chemicals in Wisconsin groundwater was conducted between October 2000 and April 2001 to obtain a current picture of agricultural chemicals in groundwater used for private drinking water. A stratified, random sampling procedure was used to select 336 sampling locations. Water from private drinking water wells randomly selected from within the 336 sampling locations was analyzed for 18 compounds including herbicides, herbicide metabolites, and nitrate. This report focuses on the frequency and concentration of chloroacetanilide herbicides and their metabolites. Analysis of data resulted in an estimated proportion of 38+/-5.0% of wells that contained detectable levels of a herbicide or herbicide metabolite. The most commonly detected compound was alachlor ESA with a proportion estimate of 28+/-4.6%. Other detected compounds in order of prevalence were metolachlor ESA, metolachlor OA, alachlor OA, acetochlor ESA, and parent alachlor. Estimates of the mean concentration for the detects ranged from 0.15+/-0.082 microg/L for acetochlor ESA to 1.8+/-0.60 microg/L for alachlor OA. Water quality standards have not been developed for these chloroacetanilide herbicide metabolites. The results of this survey emphasize the need for toxicological assessments of herbicide metabolite compounds and establishment of water quality standards at the state and federal levels.

  1. Deposits from Creams Containing 20% (w/w) Urea and Suppression of Crystallization (Part 2): Novel Analytical Methods of Urea Accumulated in the Stratum Corneum by Tape stripping and Colorimetry.

    PubMed

    Goto, Norio; Morita, Yutaka; Terada, Katsuhide

    2016-01-01

    The transfer of urea from a urea formulation to the stratum corneum varies with the formulation base and form, and impacts the formulation's therapeutic effect. Consequently, determining the amount of urea transferred is essential for developing efficient formulations. This study assessed a simple method for measuring the amount of urea accumulated in the stratum corneum. Conventional methods rely on labeling urea used in the formulation with radiocarbon ((14)C) or other radioactive isotopes (RIs), retrieving the transferred urea from the stratum corneum by tape stripping, then quantitating the urea. The handling and use of RIs, however, is subject to legal regulation and can only be performed in sanctioned facilities, so methods employing RIs are neither simple nor convenient. We therefore developed a non-radiolabel method "tape stripping-colorimetry (T-C)" that combines tape stripping with colorimetry (urease-glutamate dehydrogenase (GLDH)) for the quantitative measurement of urea. Urea in the stratum corneum is collected by tape stripping and measured using urease-GLDH, which is commonly used to measure urea nitrogen in blood tests. The results indicate that accurate urea measurement by the T-C method requires the application of 1400 mg (on hairless rats) of a 20% urea solution on a 50 cm(2) (5×10 cm) area. Further, we determined the amount of urea accumulated in the stratum corneum using formulations with different urea concentrations, and the time course of urea accumulation from formulations differing in the rate of urea crystallization. We demonstrate that the T-C method is simple and convenient, with no need for (14)C or other RIs.

  2. Short communication: Urea hydrolysis in dairy cattle manure under different temperature, urea, and pH conditions.

    PubMed

    Moraes, L E; Burgos, S A; DePeters, E J; Zhang, R; Fadel, J G

    2017-03-01

    The objective of the study was to quantify the rate of urea hydrolysis in dairy cattle manure under different initial urea concentration, temperature, and pH conditions. In particular, by varying all 3 factors simultaneously, the interactions between them could also be determined. Fresh feces and artificial urine solutions were combined into a slurry to characterize the rate of urea hydrolysis under 2 temperatures (15°C and 35°C), 3 urea concentrations in urine solutions (500, 1,000, and 1,500 mg of urea-N/dL), and 3 pH levels (6, 7, and 8). Urea N concentration in slurry was analyzed at 0.0167, 1, 2, 4, 6, 8, 12, 16, 20, and 24 h after initial mixing. A nonlinear mixed effects model was used to determine the effects of urea concentration, pH, and temperature treatments on the exponential rate of urea hydrolysis and to predict the hydrolysis rate for each treatment combination. We detected a significant interaction between pH and initial urea level. Increasing urea concentration from 1,000 to 1,500 mg of urea-N/dL decreased the rate of urea hydrolysis across all pH levels. Across all pH and initial urea levels, the rate of urea hydrolysis increased with temperature, but the effect of pH was only observed for pH 6 versus pH 8 at the intermediate initial urea concentration. The fast rates of urea hydrolysis indicate that urea was almost completely hydrolyzed within a few hours of urine mixing with feces. The estimated urea hydrolysis rates from this study are likely maximum rates because of the thorough mixing before each sampling. Although considerable mixing of feces and urine occurs on the barn floor of commercial dairy operations from cattle walking through the manure, such mixing may be not as quick and thorough as in this study. Consequently, the urea hydrolysis rates from this study indicate the maximum loss of urea and should be accounted for in management aimed at mitigating ammonia emissions from dairy cattle manure under similar urea concentration, pH, and temperature conditions reported in this experiment. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Uses of thaxtomin and thaxtomin compositions as herbicides

    DOEpatents

    Koivunen, Marja; Marrone, Pamela

    2016-12-27

    There is a need for a selective, low-risk herbicide that can be used to control weeds in cereal cultures and turf. The present invention discloses that a bacterial secondary metabolite, thaxtomin and optionally another herbicide is an effective herbicide on broadleaved, sedge and grass weeds. Thaxtomin A and structurally similar compounds can be used as natural herbicides to control the germination and growth of weeds in cereal, turf grass, Timothy grass and pasture grass cultures with no phytotoxicity to these crops. As a natural, non-toxic compound, thaxtomin can be used as a safe alternative for weed control in both conventional and organic farming and gardening systems.

  4. 76 FR 80872 - Dow AgroScience LLC; Availability of Petition, Plant Pest Risk Assessment, and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... the herbicide 2,4-D) and resistance to grass herbicides in the aryloxyphenoxypropionate acetyl...-D) and resistance to grass herbicides in the aryloxyphenoxypropionate acetyl coenzyme A carboxylase...

  5. Urea metabolism in plants.

    PubMed

    Witte, Claus-Peter

    2011-03-01

    Urea is a plant metabolite derived either from root uptake or from catabolism of arginine by arginase. In agriculture, urea is intensively used as a nitrogen fertilizer. Urea nitrogen enters the plant either directly, or in the form of ammonium or nitrate after urea degradation by soil microbes. In recent years various molecular players of plant urea metabolism have been investigated: active and passive urea transporters, the nickel metalloenzyme urease catalyzing the hydrolysis of urea, and three urease accessory proteins involved in the complex activation of urease. The degradation of ureides derived from purine breakdown has long been discussed as a possible additional metabolic source for urea, but an enzymatic route for the complete hydrolysis of ureides without a urea intermediate has recently been described for Arabidopsis thaliana. This review focuses on the proteins involved in plant urea metabolism and the metabolic sources of urea but also addresses open questions regarding plant urea metabolism in a physiological and agricultural context. The contribution of plant urea uptake and metabolism to fertilizer urea usage in crop production is still not investigated although globally more than half of all nitrogen fertilizer is applied to crops in the form of urea. Nitrogen use efficiency in crop production is generally well below 50% resulting in economical losses and creating ecological problems like groundwater pollution and emission of nitric oxides that can damage the ozone layer and function as greenhouse gasses. Biotechnological approaches to improve fertilizer urea usage bear the potential to increase crop nitrogen use efficiency. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Urea-Aromatic Stacking and Concerted Urea Transport: Conserved Mechanisms in Urea Transporters Revealed by Molecular Dynamics.

    PubMed

    Padhi, Siladitya; Priyakumar, U Deva

    2016-10-11

    Urea transporters are membrane proteins that selectively allow urea molecules to pass through. It is not clear how these transporters allow rapid conduction of urea, a polar molecule, in spite of the presence of a hydrophobic constriction lined by aromatic rings. The current study elucidates the mechanism that is responsible for this rapid conduction by performing free energy calculations on the transporter dvUT with a cumulative sampling time of about 1.3 μs. A parallel arrangement of aromatic rings in the pore enables stacking of urea with these rings, which, in turn, lowers the energy barrier for urea transport. Such interaction of the rings with urea is proposed to be a conserved mechanism across all urea-conducting proteins. The free energy landscape for the permeation of multiple urea molecules reveals an interplay between interurea interaction and the solvation state of the urea molecules. This is for the first time that multiple molecule permeation through any small molecule transporter has been modeled.

  7. Effect of herbicide concentration and organic and inorganic nutrient amendment on the mineralization of mecoprop, 2,4-D and 2,4,5-T in soil and aquifer samples.

    PubMed

    de Lipthay, Julia R; Sørensen, Sebastian R; Aamand, Jens

    2007-07-01

    The impact of the herbicide concentration (0.10-10,000 microg kg(-1)) and addition of organic and inorganic nutrients on mecoprop, 2,4-D and 2,4,5-T mineralization in aquifer and soil samples was studied in laboratory experiments. Generally, 2,4-D was most rapidly mineralized followed by mecoprop and 2,4,5-T. A shift from non-growth to growth-linked mineralization kinetics was observed in aquifer sediment with 2,4-D concentrations >0.10 microg kg(-1) and mecoprop concentrations >10.0 microg kg(-1). The shift was apparent at higher herbicide concentrations in soil coinciding with a lower bioavailable fraction and a higher herbicide sorption to soil. Herbicide addition did not affect the bacterial density, although 2,4-D and mecoprop applied at 10,000 microg kg(-1) stimulated growth of specific degraders. Generally, nutrient amendments did not stimulate mineralization at the lowest herbicide concentrations. In contrast, the mineralization rate of higher herbicide concentrations was significantly stimulated by the amendment of inorganic nutrients.

  8. Uptake and Accumulation of the Herbicides Chlorsulfuron and Clopyralid in Excised Pea Root Tissue 1

    PubMed Central

    Devine, Malcolm D.; Bestman, Hank D.; Vanden Born, William H.

    1987-01-01

    The herbicides chlorsulfuron and clopyralid were taken up rapidly by excised pea root tissue and accumulated in the tissue to concentrations ten and four times those in the external medium, respectively. Uptake was related linearly to external herbicide concentration over a wide concentration range, implying that transport across the membrane is by nonfacilitated diffusion. Uptake of both compounds was influenced by pH, with greatest uptake at low pH. The pH dependence of uptake suggests that the herbicides (both of which are weak acids) are transported across the plasma membrane in the undissociated form, and accumulate in the cytoplasm by an ion trap mechanism. Most of the absorbed herbicide effluxed from the tissue when it was transferred to herbicide-free buffer, indicating that the accumulation was not due to irreversible binding. Consequently, both herbicides remain available for transfer to the phloem. These results can explain the high reported phloem mobility of clopyralid in intact plants. The low phloem mobility of chlorsulfuron must be accounted for by factors that override its ability to accumulate in the symplast. PMID:16665689

  9. Identification and characterization of a novel carboxylesterase (FpbH) that hydrolyzes aryloxyphenoxypropionate herbicides.

    PubMed

    Wang, Chenghong; Qiu, Jiguo; Yang, Youjian; Zheng, Jinwei; He, Jian; Li, Shunpeng

    2017-04-01

    To identify and characterize a novel aryloxyphenoxypropionate (AOPP) herbicide-hydrolyzing carboxylesterase from Aquamicrobium sp. FPB-1. A carboxylesterase gene, fpbH, was cloned from Aquamicrobium sp. FPB-1. The gene is 798 bp long and encodes a protein of 265 amino acids. FpbH is smaller than previously reported AOPP herbicide-hydrolyzing carboxylesterases and shares only 21-35% sequence identity with them. FpbH was expressed in Escherichia coli BL21(DE3) and the product was purified by Ni-NTA affinity chromatography. The purified FpbH hydrolyzed a wide range of AOPP herbicides with catalytic efficiency in the order: haloxyfop-P-methyl > diclofop-methyl > fenoxaprop-P-ethyl > quizalofop-P-ethyl > fluazifop-P-butyl > cyhalofop-butyl. The optimal temperature and pH for FpbH activity were 37 °C and 7, respectively. FpbH is a novel AOPP herbicide-hydrolyzing carboxylesterase; it is a good candidate for mechanistic study of AOPP herbicide-hydrolyzing carboxylesterases and for bioremediation of AOPP herbicide-contaminated environments.

  10. Bee genera, diversity and abundance in genetically modified canola fields.

    PubMed

    O'Brien, Colton; Arathi, H S

    2018-01-02

    Intensive agricultural practices resulting in large scale habitat loss ranks as the top contributing factors in the global bee decline. Growing Genetically Modified Herbicide Tolerant (GMHT) crops as large monocultures has resulted extensive applications of herbicides leading to the degradation of natural habitats surrounding farmlands. Herbicide tolerance trait is beneficial for crops such as Canola (Brassica napus) that are extremely vulnerable to weed competition. While the trait in itself does not harm pollinators, growing genetically modified herbicide tolerant cultivars indirectly contributes towards pollinator declines through habitat loss. Canola, a mass-flowering crop is highly attractive to bee pollinators and the extensive adoption of the herbicide tolerant trait has led to depletion of non-crop floral resources. Extensive use of herbicide in and near fields with herbicide tolerant cultivars systematically eliminates semi-natural habitats around agricultural fields which consist of non-crop flowering plants. Planting pollinator strips provides floral resources for bees after crop flowering. We document the bee genera in canola and the adjoining pollinator strip. The overlap in bee genera reinforces the importance of pollinator habitats in agricultural landscape.

  11. Application of bioassay technique to determine onduty herbicide resistance in soil

    NASA Astrophysics Data System (ADS)

    Bakar, F. A. A.; Ismail, B. S.; Bajrai, F. S. M.

    2016-11-01

    A study was conducted to determine the resistance of OnDuty herbicide in paddy soil with different concentrations by using a broadleaf plant, Brassica juncea. The herbicide was used in the Clearfield® Production System that was adopted in Malaysia to overcome problems mainly caused by weedy rice. Evaluation of herbicide half-life was based on bioassay technique with different concentrations, i.e 0% (control), 50% (half dose), 100% (recommended dose) and 200% (double dose). The study was done in three replicates and followed the Complete Randomized Block Design (CRBD). Results showed that there was a correlation between the amount of herbicide doses and degradation period. The highest half-life value was shown by root inhibition in the double dose concentration of 33 days half-life, followed by the recommended dose with 23 days half-life. Meanwhile, the half dose treatment indicated a half-life value of 17 days for root and 11 days for shoot. Therefore, application of herbicides should follow the recommended dose as the degradation period will not be too long, hence providing maximum effectiveness of the herbicide to overcome weed infestation problems.

  12. Determination of urea kinetics by isotope dilution with [13C]urea and gas chromatography-isotope ratio mass spectrometry (GC-IRMS) analysis.

    PubMed

    Kloppenburg, W D; Wolthers, B G; Stellaard, F; Elzinga, H; Tepper, T; de Jong, P E; Huisman, R M

    1997-07-01

    1. Stable urea isotopes can be used to study urea kinetics in humans. The use of stable urea isotopes for studying urea kinetic parameters in humans on a large scale is hampered by the high costs of the labelled material. We devised a urea dilution for measurement of the distribution volume, production rate and clearance of urea in healthy subjects and renal failure patients using the inexpensive single labelled [13C]urea isotope with subsequent analysis by headspace chromatography-isotope ratio MS (GC-IRMS) of the [13C]urea enrichment. 2. The method involves measurement of the molar percentage excess of [13C]urea in plasma samples taken over a 4 h period after an intravenous bolus injection of [13C]urea. During the sample processing procedure, the plasma samples together with calibration samples containing a known molar percentage excess of [13C]urea are acidified with phosphoric acid to remove endogenous CO2, and are subsequently incubated with urease to convert the urea present in the plasma samples into CO2. The 13C enrichment of the generated CO2 is analysed by means of GC-IRMS. This method allows measurement of the molar percentage excess of [13C]urea to an accuracy of 0.02%. 3. Reproducibility studies showed that the sample processing procedure [within-run coefficient of variation (CV) < 2.8% and between-run CV < 8.8%] and the GC-IRMS analysis (within-day CV < 1.3% and between-day CV < 1.3%) could be repeated with good reproducibility. 4. In clinical urea kinetic studies in a healthy subject and in a renal failure patient without residual renal function, reproducible values of the distribution volume, production rate and clearance of urea were determined using minimal amounts of [13C]urea (25-50 mg). 5. Because only low [13C]urea enrichments are needed in this urea dilution method using GC-IRMS analysis, the costs of urea kinetic studies are reduced considerably, especially in patients with renal failure.

  13. A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias).

    PubMed

    Wood, Chris M; Liew, Hon Jung; De Boeck, Gudrun; Walsh, Patrick J

    2013-01-01

    The branchial mechanism of urea retention in elasmobranchs was investigated using an in vitro isolated-perfused head preparation, as well as in vivo samples, in the spiny dogfish shark. Both in vivo and in control saline perfusions containing 350 mmol L(-1) urea, calculated intracellular urea concentrations in gill epithelial cells were close to extracellular concentrations. Urea efflux to the external water fell only non-significantly, and calculated gill intracellular urea concentration did not change when perfusate urea concentration was reduced from 350 to 175 mmol L(-1) with osmotic compensation by 175 mmol L(-1) mannitol. However, when the urea analogues thiourea or acetamide were present in the perfusate at concentrations equimolar (175 mmol L(-1)) to those of urea (175 mmol L(-1)), urea efflux rates were increased 4-fold and 6.5-fold respectively, and calculated gill intracellular urea concentrations were depressed by about 55%. Analogue efflux rates were similar to urea efflux rates. Previous studies have argued that either the basolateral or apical membranes provided the limiting permeability barrier, and/or that a back-transporter on the basolateral membranes of gill cells is responsible for urea retention. The present results provide new evidence that the apical membrane is the limiting factor in maintaining gill urea impermeability, and raise the prospect that a urea back-transporter, which can be competitively inhibited by thiourea and acetamide, operates at the apical membrane.

  14. Vibrational spectroscopic analysis, molecular dynamics simulations and molecular docking study of 5-nitro-2-phenoxymethyl benzimidazole

    NASA Astrophysics Data System (ADS)

    Menon, Vidya V.; Foto, Egemen; Mary, Y. Sheena; Karatas, Esin; Panicker, C. Yohannan; Yalcin, Gözde; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Yildiz, Ilkay

    2017-02-01

    FT-IR and FT-Raman spectra of 5-nitro-2-phenoxymethylbenzimidazole were recorded and analyzed theoretically and experimentally. The splitting of Nsbnd H stretching mode in the IR spectrum with a red shift from the calculated value indicates the weakening of the NH bond. The theoretical calculations give the phenyl ring breathing modes at 999 cm-1 for mono substituted benzene ring and at 1040 cm-1 for tri-substituted benzene ring. The theoretical NMR chemical shifts are in agreement with the experimental chemical shifts. The most reactive sites for electrophilic and nucleophilic attack are predicted from the MEP analysis. HOMO of π nature is delocalized over the entire molecule whereas the LUMO is located over the complete molecule except mono-substituted phenyl ring and oxygen atom. Reactive sites of the title molecule have been located with the help of ALIE surfaces and Fukui functions. In order to determine locations prone to autoxidation and locations interesting for starting of degradation, bond dissociation energies have been calculated for all single acyclic bonds. For the determination of atoms with pronounced interactions with water we have calculated radial distribution functions obtained after molecular dynamics simulations. The calculated first hyperpolarizability of the title compound is 58.03 times that of standard nonlinear optical material urea. The substrate binding site interactions of the title compound with Topo II enzyme is reported by using molecular docking study. Biological activity studies show that the title compound can be leaded for developing new anticancer agents.

  15. Influence of milk urea concentration on fractional urea disappearance rate from milk to blood plasma in dairy cows.

    PubMed

    Spek, J W; Dijkstra, J; Bannink, A

    2016-05-01

    The relationship between milk urea nitrogen (MUN; mg of N/dL) and urinary N excretion is affected, among others, by diurnal dynamics in MUN, which in turn is largely influenced by feed intake pattern and characteristics of urea transfer from blood plasma to milk and vice versa. This study aimed to obtain insight in urea transfer characteristics within the mammary gland and from the mammary gland to blood plasma in dairy cows at various concentrations of plasma urea nitrogen (PUN; mg of N/dL) and MUN. Urea transfer from milk to blood plasma and urea transfer within the mammary gland itself was evaluated in a 4×4 Latin square design using 4 lactating multiparous Holstein-Friesian cows (milk production of 39.8±4.70kg/d and 90±3.9 d in milk). Treatments consisted of 4 primed continuous intravenous urea infusions of 0, 5, 10, and 15g of urea/h. Boluses of [(15)N(15)N]urea were injected in cistern milk at 20, 60, and 100 min before the 1700h milking. Milk was collected in portions of approximately 2 L at the 1700h milking. Milk samples were analyzed for urea and enrichment of (15)N-urea. Results from one cow were discarded because of leakage of milk from the teats after injection of boluses of [(15)N(15)N]urea. Increasing urea infusion rate linearly increased PUN from 11.4 (0g of urea/h) to 25.9mg/dL (15g of urea/h) and MUN from 10.3 (0g of urea/h) to 23.5 (15g of urea/h) mg of N/dL. The percentage of injected [(15)N(15)N]urea recovered from milk at the time of injection was not affected by urea infusion rate and varied between 65.1 and 73.0%, indicating that a substantial portion of injected [(15)N(15)N]urea was not accounted for by collected milk. The estimated fractional disappearance rate of (15)N-urea from milk to blood (Kurea; per hour) linearly increased from 0.429 (0g of urea/h) to 0.641 per hour (15g of urea/h). Cistern injected [(15)N(15)N]urea diffused within 20 min after injection toward alveoli milk. Calculations with the average Kurea estimated in this study show that 89% of an initial difference between PUN and MUN will have disappeared after 4 h. In conclusion, urea disappearance from milk in the mammary gland is substantial, as well as the intramammary urea exchange between cistern, duct, and alveoli milk. However, results have to be interpreted with caution given the lack of full recovery of dosed (15)N urea at time of injection. Information on Kurea is useful to quantify the effects of diurnal variation in PUN on MUN, which enhances the utility of MUN as an indicator for N excretion in urine. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor (nAChR) ligands. Part 1: the influence of different hydrogen bond acceptor systems on alkyl and (hetero)aryl substituents.

    PubMed

    Eibl, Christoph; Tomassoli, Isabelle; Munoz, Lenka; Stokes, Clare; Papke, Roger L; Gündisch, Daniela

    2013-12-01

    3,7-Diazabicyclo[3.3.1]nonane is a naturally occurring scaffold interacting with nicotinic acetylcholine receptors (nAChRs). When one nitrogen of the 3,7-diazabicyclo[3.3.1]nonane scaffold was implemented in a carboxamide motif displaying a hydrogen bond acceptor (HBA) functionality, compounds with higher affinities and subtype selectivity for α4β2(∗) were obtained. The nature of the HBA system (carboxamide, sulfonamide, urea) had a strong impact on nAChR interaction. High affinity ligands for α4β2(∗) possessed small alkyl chains, small un-substituted hetero-aryl groups or para-substituted phenyl ring systems along with a carboxamide group. Electrophysiological responses of selected 3,7-diazabicyclo[3.3.1]nonane derivatives to Xenopus oocytes expressing various nAChR subtypes showed diverse activation profiles. Compounds with strongest agonistic profiles were obtained with small alkyl groups whereas a shift to partial agonism/antagonism was observed for aryl substituents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR3-mediated urea retrieval from leaf apoplast

    PubMed Central

    Bohner, Anne; Kojima, Soichi; Hajirezaei, Mohammad; Melzer, Michael; von Wirén, Nicolaus

    2015-01-01

    In plants, urea derives either from root uptake or protein degradation. Although large quantities of urea are released during senescence, urea is mainly seen as a short-lived nitrogen (N) catabolite serving urease-mediated hydrolysis to ammonium. Here, we investigated the roles of DUR3 and of urea in N remobilization. During natural leaf senescence urea concentrations and DUR3 transcript levels showed a parallel increase with senescence markers like ORE1 in a plant age- and leaf age-dependent manner. Deletion of DUR3 decreased urea accumulation in leaves, whereas the fraction of urea lost to the leaf apoplast was enhanced. Under natural and N deficiency-induced senescence DUR3 promoter activity was highest in the vasculature, but was also found in surrounding bundle sheath and mesophyll cells. An analysis of petiole exudates from wild-type leaves revealed that N from urea accounted for >13% of amino acid N. Urea export from senescent leaves further increased in ureG-2 deletion mutants lacking urease activity. In the dur3 ureG double insertion line the absence of DUR3 reduced urea export from leaf petioles. These results indicate that urea can serve as an early metabolic marker for leaf senescence, and that DUR3-mediated urea retrieval contributes to the retranslocation of N from urea during leaf senescence. PMID:25440717

  18. Improving Ammonium and Nitrate Release from Urea Using Clinoptilolite Zeolite and Compost Produced from Agricultural Wastes

    PubMed Central

    Omar, Latifah; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2015-01-01

    Improper use of urea may cause environmental pollution through NH3 volatilization and NO3 − leaching from urea. Clinoptilolite zeolite and compost could be used to control N loss from urea by controlling NH4 + and NO3 − release from urea. Soil incubation and leaching experiments were conducted to determine the effects of clinoptilolite zeolite and compost on controlling NH4 + and NO3 − losses from urea. Bekenu Series soil (Typic Paleudults) was incubated for 30, 60, and 90 days. A soil leaching experiment was conducted for 30 days. Urea amended with clinoptilolite zeolite and compost significantly reduced NH4 + and NO3 − release from urea (soil incubation study) compared with urea alone, thus reducing leaching of these ions. Ammonium and NO3 − leaching losses during the 30 days of the leaching experiment were highest in urea alone compared with urea with clinoptilolite zeolite and compost treatments. At 30 days of the leaching experiment, NH4 + retention in soil with urea amended with clinoptilolite zeolite and compost was better than that with urea alone. These observations were because of the high pH, CEC, and other chemical properties of clinoptilolite zeolite and compost. Urea can be amended with clinoptilolite zeolite and compost to improve NH4 + and NO3 − release from urea. PMID:25793220

  19. Changes in milk urea around insemination are negatively associated with conception success in dairy cows.

    PubMed

    Albaaj, A; Foucras, G; Raboisson, D

    2017-04-01

    Dietary protein levels are a risk factor for poor reproductive performance. Conception is particularly impaired in cases of high blood or milk urea. The objective of this study was to investigate the association between conception and low milk urea or changes in milk urea around artificial insemination (AI). Data were obtained from the French Milk Control Program for a 4-yr period (2009-2012). Milk urea values between 250 and 450 mg/kg (4.3 and 7.7 mM) were considered intermediate (I), and values ≤150 mg/kg (2.6 mM) were considered low (L). Milk urea values before and after each AI were allocated into 4 classes representing the dynamics of milk urea (before-after; I-I, I-L, L-I, and L-L). Subclinical ketosis was defined using milk fat and protein contents before AI as proxies. A logistic regression with a Poisson correction and herd as a random variable was then performed on data from Holstein or all breeds of cows. The success of conception was decreased [relative risk (95% confidence interval) = 0.96 (0.94-0.99)] in low-urea cows compared with intermediate-urea cows after AI; no significant association was found for urea levels before AI. When combining data on urea before and after AI, I-L urea cows exhibited a 5 to 9% decrease in conception compared with I-I urea cows, and L-I urea cows showed no difference in conception success compared with I-I urea cows. A decreased conception success for L-L urea cows compared with I-I urea cows was observed for the analysis with cows of all breeds. This work revealed that a decrease in urea from intermediate (before AI) to low (after AI) is a risk factor for conception failure. Surveys of variation in milk urea in dairy cows close to breeding are highly recommended. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. 77 FR 64988 - Pesticide Experimental Use Permit; Receipt of Application; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ... requesting an experimental use permit (EUP) for the herbicides glyphosate and dicamba (M1751 Herbicide). The.../Product: Glyphosate and Dicamba/M1751 Herbicide. Summary of Request: Application for an EUP to conduct...

  1. 0-6733 : evaluation of generic and branded herbicides.

    DOT National Transportation Integrated Search

    2012-08-01

    As with other products in the marketplace, : generic herbicides often have a lower initial : product cost than their brand-name : counterparts.Herbicide formulations are : patented for 17 years with proprietary rights for : name, formula, and product...

  2. ANALYTICAL MASS SPECTROMETRY OF HERBICIDES

    EPA Science Inventory

    Herbicides are chemical substances that are applied to agricultural soils, gardens, lawns, or plants to destroy or to prevent the growth of undesirable vegetation. The herbicides included in this review are generally syntehtic organic compuonds that are ingredients in commercial...

  3. Adsorption and leaching behaviour of bispyribac-sodium in soils.

    PubMed

    Singh, Neera; Singh, S B

    2015-01-01

    Adsorption-desorption of the herbicide bispyribac-sodium was studied in four Indian soil types. Bispyribac-sodium was poorly adsorbed in the four soils and adsorption decreased with an increase in the herbicide concentration in solution. Freundlich adsorption coefficient (Kf) values for bispyribac-sodium ranged between 0.37 and 0.87. Slope (1/n) values varied from 0.2 to 0.31 suggesting that bispyribac-sodium adsorption was highly dependent on its initial concentration in solution. Bispyribac-sodium adsorption showed a positive correlation with soil pH (r = 0.809) and clay content (r = 0.699) while no correlation was observed with the organic carbon (r = 0.063) content. Sorbed herbicide was completely desorbed during a single desorption step suggesting that the herbicide was bound by weak adsorptive forces. Leaching studies of herbicide in soil 1 packed column indicated complete loss of soil applied herbicide under a simulated rainfall equivalent to 162 mm.

  4. Influence of long-term used herbicides on resistance development in Apera spica-venti L. to sulfonylureas.

    PubMed

    Adamczewski, K; Kierzek, R; Matysiak, K

    2009-01-01

    Sulfonylurea herbicides are widely used for grass and broadleaf weed control in winter cereals in Poland developed resistance, especially in Silky bent grass (Apera spica-venti). The aim of the study was to evaluate the possibility of resistance increase after six years used of some herbicide for control of A. spica-venti in winter cereals monoculture. The field experiments were conducted in Agricultural Experimental Station at Winna Gora. During six years the herbicides: chlorsulfuron, sulfosulfuron, iodosulfuron and isoproturon were applied. In fourth, fifth and sixth years A. spica-venti seed from the experiment was collected and used in greenhouse experiment. The obtained results indicated that after six years usage of the herbicides resistance of A. spica-venti to sulfonylurea herbicides were found. Results obtained in field condition were confirmed in greenhouse experiment. Resistance process was found also on untreated plots. It was indicated that resistance is transferred also by pollen.

  5. Synergistic effects of a combined exposure to herbicides and an insecticide in Hyla versicolor

    USGS Publications Warehouse

    Mazanti, L.; Sparling, D.W.; Rice, C.; Bialek, K.; Stevenson, C.; Teels, B.; ,

    2003-01-01

    Combinations of the herbicides atrazine and metolachlor and the insecticide chlorpyrifos were tested under both laboratory and field conditions to determine their individual and combined effects on amphibian populations. In the lab Hyla versicolor tadpoles experienced 100% mortality when exposed to a high combination of the pesticides (2.0 mg/L atrazine, 2.54 mg/L metolachlor, 1.0 mg/L chlorpyrifos) whereas low concentrations of the pesticides (0.2 mg/L atrazine, 0.25 mg/L metolachlor, 0.1 mg/L chlorpyrifos) or high concentrations of either herbicides or insecticide alone caused lethargy, reduced growth and delayed metamorphosis but no significant mortality. In the field high herbicide, low insecticide and low herbicide, low insecticide mixtures significantly reduced amphibian populations compared to controls but in the low herbicide, low insecticide wetlands amphibian populations were able to recover through recruitment by the end of the season.

  6. Deciphering the evolution of herbicide resistance in weeds.

    PubMed

    Délye, Christophe; Jasieniuk, Marie; Le Corre, Valérie

    2013-11-01

    Resistance to herbicides in arable weeds is increasing rapidly worldwide and threatening global food security. Resistance has now been reported to all major herbicide modes of action despite the development of resistance management strategies in the 1990s. We review here recent advances in understanding the genetic bases and evolutionary drivers of herbicide resistance that highlight the complex nature of selection for this adaptive trait. Whereas early studied cases of resistance were highly herbicide-specific and largely under monogenic control, cases of greatest concern today generally involve resistance to multiple modes of action, are under polygenic control, and are derived from pre-existing stress response pathways. Although 'omics' approaches should enable unraveling the genetic bases of complex resistances, the appearance, selection, and spread of herbicide resistance in weed populations can only be fully elucidated by focusing on evolutionary dynamics and implementing integrative modeling efforts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Utilization of dietary urea in rainbow trout.

    PubMed

    Kaushik, S J; Dabrowski, K R; Dabrowska, H; Olah, E; Luquet, P

    1983-01-01

    Experiments were conducted to examine the potential utilization of dietary urea by rainbow trout. A control diet and two diets supplemented with 1 and 3% of urea were fed to fish. Postprandial levels of urea and ammonia in blood plasma, and postprandial excretion of these metabolites were followed during 24 h. Apparent digestibility of urea in rainbow trout was very high (greater than 98%). Maximum values of urea levels in plasma were reached 6 h (32.3 +/- 10.2 micrograms/ml) after a meal in the control fish and respectively 6 h (83.4 +/- 18.4 micrograms/ml) and 8 h (250.3 +/- 96.1 micrograms/ml) after a meal in trout fed 1 and 3% urea diets. Peaks of urea excretion rates appeared 7-9 h after meal, coinciding with the highest circulating urea concentration. Total daily urea excretion amounted to 5.53, 10.43 and 33.80 mg urea N/100 mg N intake in trout fed the control, 1 and 3% urea diets, respectively. It is concluded that the dietary urea is readily absorbed in the digestive tract of trout but is totally excreted thus leading to no beneficial effect on nitrogen balance. This excretion of urea also takes place passively without any increase in energy demands.

  8. Combining experimentalist knowledge with modelling approaches to evaluate a controlled herbicide application experiment in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Ammann, Lorenz; Fenicia, Fabrizio; Doppler, Tobias; Reichert, Peter; Stamm, Christian

    2017-04-01

    Although only a small fraction of the herbicide mass sprayed on agricultural fields reaches the stream in usual conditions, concentrations in streams may reach levels proven to affect organisms. Therefore, diffuse pollution of water bodies by herbicides in catchments dominated by agricultural land-use is a major concern. The process of herbicide wash off has been studied through experiments at lab and field scales. Fewer studies are available at the scales of small catchments and larger watersheds, as the lack of spatial measurements at these scales hinders model parameterization and evaluation. Even fewer studies make explicit use of the combined knowledge of experimentalists and modellers. As a result, the dynamics and interactions of processes responsible for herbicide mobilization and transport at the catchment scale are insufficiently understood. In this work, we integrate preexisting experimentalist knowledge aquired in a large controlled herbicide application experiment into the model development process. The experimental site was a small (1.2 km2) agricultural catchment with subdued topography (423 to 473 m a.s.l.), typical for the Swiss Plateau. The experiment consisted of an application of multiple herbicides, distributed in-stream concentration measurements at high temporal resolution as well as soil and ponding water samples. The measurements revealed considerable spatio-temporal variation in herbicide loss rates. The objective of our study is to better understand the processes that caused this variation. In an iterative dialogue between modellers and experimentalists, we constructed a simple hydrological model structure with multiple reservoirs, considering degradation and sorption of herbicides. Spatial heterogeneity was accounted for through Hydrological Response Units (HRUs). Different model structures were used for dinstinct HRUs to account for spatial variability in the perceived dominant processes. Some parameters were linked between HRUs to constrain the parameter space and facilitate inference. The Superflex hydrological modelling framework provided the flexibility needed for the distributed iterative approach. The model was jointly calibrated to streamflow data and time series of herbicide concentrations. Our preliminary results indicate that herbicide loss rates are generally higher for soils which are prone to saturation or when maximum rainfall intensity is high. While a very simple model is sufficient to characterize the hydrological response of the catchment, considerable extensions are needed to include the major conceptual herbicide transport paths in a physically reasonable way. With the current model we are able to reproduce streamflow dynamics, whereas identifying generalizable mechanisms that drive the wash off dynamics of different herbicides from different fields is challenging.

  9. Erythrocyte permeability to urea and water: comparative study in rodents, ruminants, carnivores, humans, and birds.

    PubMed

    Liu, Lifeng; Lei, Tianluo; Bankir, Lise; Zhao, Dan; Gai, Xiaodong; Zhao, Xuejian; Yang, Baoxue

    2011-01-01

    Mammalian erythrocytes exhibit high urea permeability (P (urea)) due to UT-B expression in their cytoplasmic membrane. This high P (urea) allows fast equilibration of urea in erythrocytes during their transit in the hyperosmotic renal medulla. It also allows more urea (in addition to that in plasma) to participate in counter-current exchange between ascending and descending vasa recta, thus improving the trapping of urea in the medulla and improving urine concentrating ability. To determine if P (urea) in erythrocytes is related to diet and urine concentrating ability, we measured P (urea) in erythrocytes from 11 different mammals and 5 birds using stopped-flow light scattering. Carnivores (dog, fox, cat) exhibited high P (urea) (in x10(-5) cm/s, 5.3 ± 0.6, 3.8 ± 0.5 and 2.8 ± 0.7, respectively). In contrast, herbivores (cow, donkey, sheep) showed much lower P (urea) (0.8 ± 0.2, 0.7 ± 0.2, 1.0 ± 0.1, respectively). Erythrocyte P (urea) in human (1.1 ± 0.2), and pig (1.5 ± 0.1), the two omnivores, was intermediate. Rodents and lagomorphs (mouse, rat, rabbit) had P (urea) intermediate between carnivores and omnivores (3.3 ± 0.4, 2.5 ± 0.3 and 2.4 ± 0.3, respectively). Birds that do not excrete urea and do not express UT-B in their erythrocytes had very low values (<0.1 × 10(-5) cm/s). In contrast to P (urea), water permeability, measured simultaneously, was relatively similar in all mammals. The species differences in erythrocytes P (urea) most probably reflect adaptation to the different types of diet and resulting different needs for concentrating urea in the urine.

  10. Ammonia and greenhouse gas emissions from a subtropical wheat field under different nitrogen fertilization strategies.

    PubMed

    Liu, Shuai; Wang, Jim J; Tian, Zhou; Wang, Xudong; Harrison, Stephen

    2017-07-01

    Minimizing soil ammonia (NH 3 ) and nitrous oxide (N 2 O) emission factors (EFs) has significant implications in regional air quality and greenhouse gas (GHG) emissions besides nitrogen (N) nutrient loss. The aim of this study was to investigate the impacts of different N fertilizer treatments of conventional urea, polymer-coated urea, ammonia sulfate, urease inhibitor (NBPT, N-(n-butyl) thiophosphoric triamide)-treated urea, and nitrification inhibitor (DCD, dicyandiamide)-treated urea on emissions of NH 3 and GHGs from subtropical wheat cultivation. A field study was established in a Cancienne silt loam soil. During growth season, NH 3 emission following N fertilization was characterized using active chamber method whereas GHG emissions of N 2 O, carbon dioxide (CO 2 ), and methane (CH 4 ) were by passive chamber method. The results showed that coated urea exhibited the largest reduction (49%) in the EF of NH 3 -N followed by NBPT-treated urea (39%) and DCD-treated urea (24%) over conventional urea, whereas DCD-treated urea had the greatest suppression on N 2 O-N (87%) followed by coated urea (76%) and NBPT-treated urea (69%). Split fertilization of ammonium sulfate-urea significantly lowered both NH 3 -N and N 2 O-N EF values but split urea treatment had no impact over one-time application of urea. Both NBPT and DCD-treated urea treatments lowered CO 2 -C flux but had no effect on CH 4 -C flux. Overall, application of coated urea or urea with NPBT or DCD could be used as a mitigation strategy for reducing NH 3 and N 2 O emissions in subtropical wheat production in Southern USA. Copyright © 2017. Published by Elsevier B.V.

  11. Protoporphyrin IX Content Correlates with Activity of Photobleaching Herbicides

    PubMed Central

    Becerril, Jose M.; Duke, Stephen O.

    1989-01-01

    Several laboratories have demonstrated recently that photobleaching herbicides such as acifluorfen and oxadiazon cause accumulation of protoporphyrin IX (PPIX), a photodynamic pigment capable of herbicidal activity. We investigated, in acifluorfen-treated tissues, the in vivo stability of PPIX, the kinetics of accumulation, and the correlation between concentration of PPIX and herbicidal damage. During a 20 hour dark period, PPIX levels rose from barely detectable concentrations to 1 to 2 nanomoles per 50 cucumber (Cucumis sativus L.) cotyledon discs treated with 10 micromolar acifluorfen. When placed in 500 micromoles per square meter per second PAR, PPIX levels decayed logarithmically, with an initial half-life of about 2.5 hours. PPIX levels at each time after exposure to light correlated positively with the cellular damage that occurred during the following 1 hour in both green and yellow (tentoxin-treated) cucumber cotyledon tissues. PPIX levels in discs incubated for 20 hours in darkness correlated positively with the acifluorfen concentration in which they were incubated. In cucumber, the level of herbicidal damage caused by several p-nitrodiphenyl other herbicides, a p-chlorodiphenylether herbicide, and oxadiazon correlated positively with the amount of PPIX induced to accumulate by each of the herbicide treatments. Similar results were obtained with acifluorfen-treated pigweed and velvetleaf primary leaf tissues. In cucumber, PPIX levels increased within 15 and 30 minutes after exposure of discs to 10 micromolar acifluorfen in the dark and light, respectively. These data strengthen the view that PPIX is responsible for all or a major part of the photobleaching activity of acifluorfen and related herbicides. PMID:16666869

  12. Syntheses and herbicidal activity of new triazolopyrimidine-2-sulfonamides as acetohydroxyacid synthase inhibitor.

    PubMed

    Chen, Chao-Nan; Chen, Qiong; Liu, Yu-Chao; Zhu, Xiao-Lei; Niu, Cong-Wei; Xi, Zhen; Yang, Guang-Fu

    2010-07-15

    The triazolopyrimidine-2-sulfonanilide, discovered from preparing bioisosteres of the sulfonylurea herbicides, is an important class of acetohydroxyacid synthase (AHAS, EC 4.1.3.18) inhibitors. At least over ten triazolopyrimidine sulfonanilides have been commercialized as herbicides for the control of broadleaf weeds and grass with cereal crop selectivity. Herein, a series of triazolopyrimidine-2-sulfonanilides were designed and synthesized with the aim of discovery of new herbicides with higher activity. The assay results of the inhibition activity of the synthesized compounds against Arabidopsis thatiana AHAS indicated that some compounds showed a little higher activity against flumetsulam (FS), the first commercial triazolopyrimidine-2-sulfonanilide-type herbicide. The ki values of two promising compounds 3d and 8h are respectively, 1.61 and 1.29 microM, while that of FS is 1.85 microM. Computational simulation results indicated the ester group of compound 3d formed hydrogen bonds with the surrounding residues Arg'198 and Ser653, which accounts for its 11.5-folds higher AHAS inhibition activity than Y6610. Further green house assay showed that compound 3d has comparable herbicidal activity as FS. Even at the concentration of 37.5g.ai/ha, 3d showed excellent herbicidal activity against Galium aparine, Cerastium arvense, Chenopodium album, Amaranthus retroflexus, and Rmumex acetasa, moderate herbicidal activity against Polygonum humifusum, Cyperus iria, and Eclipta prostrate. The combination of in vitro and in vivo assay indicated that 3d could be regarded as a new potential acetohydroxyacid synthase-inhibiting herbicide candidate for further study. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment.

    PubMed

    Annett, Robert; Habibi, Hamid R; Hontela, Alice

    2014-05-01

    Glyphosate [N-(phosphonomethyl) glycine] is a broad spectrum, post emergent herbicide and is among the most widely used agricultural chemicals globally. Initially developed to control the growth of weed species in agriculture, this herbicide also plays an important role in both modern silviculture and domestic weed control. The creation of glyphosate tolerant crop species has significantly increased the demand and use of this herbicide and has also increased the risk of exposure to non-target species. Commercially available glyphosate-based herbicides are comprised of multiple, often proprietary, constituents, each with a unique level of toxicity. Surfactants used to increase herbicide efficacy have been identified in some studies as the chemicals responsible for toxicity of glyphosate-based herbicides to non-target species, yet they are often difficult to chemically identify. Most glyphosate-based herbicides are not approved for use in the aquatic environment; however, measurable quantities of the active ingredient and surfactants are detected in surface waters, giving them the potential to alter the physiology of aquatic organisms. Acute toxicity is highly species dependant across all taxa, with toxicity depending on the timing, magnitude, and route of exposure. The toxicity of glyphosate to amphibians has been a major focus of recent research, which has suggested increased sensitivity compared with other vertebrates due to their life history traits and reliance on both the aquatic and terrestrial environments. This review is designed to update previous reviews of glyphosate-based herbicide toxicity, with a focus on recent studies of the aquatic toxicity of this class of chemicals. Copyright © 2014 John Wiley & Sons, Ltd.

  14. 78 FR 44924 - Monsanto Co.; Availability of Plant Pest Risk Assessment, Environmental Assessment, Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... Engineered for Herbicide Resistance AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice... the herbicide glyphosate with more flexibility in the timing of herbicide application. We are also... MON 88302, [[Page 44925

  15. ACETANILIDE HERBICIDE DEGRADATION PRODUCTS BY LC/MS

    EPA Science Inventory

    Acetanilide herbicides are frequently applied in the U.S. on crops (corn, soybeans, popcorn, etc.) to control broadleaf and annual weeds. The acetanilide and acetamide herbicides currently registered for use in the U.S. are alachlor, acetochlor, metolachlor, propachlor, flufen...

  16. A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias)

    PubMed Central

    Liew, Hon Jung; De Boeck, Gudrun; Walsh, Patrick J.

    2013-01-01

    The branchial mechanism of urea retention in elasmobranchs was investigated using an in vitro isolated-perfused head preparation, as well as in vivo samples, in the spiny dogfish shark. Both in vivo and in control saline perfusions containing 350 mmol L−1 urea, calculated intracellular urea concentrations in gill epithelial cells were close to extracellular concentrations. Urea efflux to the external water fell only non-significantly, and calculated gill intracellular urea concentration did not change when perfusate urea concentration was reduced from 350 to 175 mmol L−1 with osmotic compensation by 175 mmol L−1 mannitol. However, when the urea analogues thiourea or acetamide were present in the perfusate at concentrations equimolar (175 mmol L−1) to those of urea (175 mmol L−1), urea efflux rates were increased 4-fold and 6.5-fold respectively, and calculated gill intracellular urea concentrations were depressed by about 55%. Analogue efflux rates were similar to urea efflux rates. Previous studies have argued that either the basolateral or apical membranes provided the limiting permeability barrier, and/or that a back-transporter on the basolateral membranes of gill cells is responsible for urea retention. The present results provide new evidence that the apical membrane is the limiting factor in maintaining gill urea impermeability, and raise the prospect that a urea back-transporter, which can be competitively inhibited by thiourea and acetamide, operates at the apical membrane. PMID:23638369

  17. Routine determination of sulfonylurea, imidazolinone, and sulfonamide herbicides at nanogram-per-liter concentrations by solid-phase extraction and liquid chromatography/mass spectrometry

    USGS Publications Warehouse

    Furlong, E.T.; Burkhardt, M.R.; Gates, Paul M.; Werner, S.L.; Battaglin, W.A.

    2000-01-01

    Sulfonylurea (SU), imidazolinone (IMI), and sulfonamide (SA) herbicides are new classes of low-application-rate herbicides increasingly used by farmers. Some of these herbicides affect both weed and crop species at low dosages and must be carefully used. Less is known about the effect of these compounds on non-crop plant species, but a concentration of 100 ng/l in water has been proposed as the threshold for possible plant toxicity for most of these herbicides. Hence, analytical methods must be capable of detecting SUs, IMIs, and SAs at concentrations less than 100 ng/l in ambient water samples. The authors developed a two-cartridge, solid-phase extraction method for isolating 12 SU, 3 IMI, and 1 SA herbicides by using high-performance liquid chromatography/electrospray ionization-mass spectrometry (HPLC/ESI-MS) to identify and quantify these herbicides to 10 ng/l. This method was used to analyze 196 surface- and ground-water samples collected from May to August 1998 throughout the Midwestern United States, and more than 100 quality-assurance and quality-control samples. During the 16 weeks of the study, the HPLC/ESI-MS maintained excellent calibration linearity across the calibration range from 5 to 500 ng/l, with correlation coefficients of 0.9975 or greater. Continuing calibration verification standards at 100-ng/l concentration were analyzed throughout the study, and the average measured concentrations for individual herbicides ranged from 93 to 100 ng/l. Recovery of herbicides from 27 reagent-water samples spiked at 50 and 100 ng/l ranged from 39 to 92%, and averaged 73%. The standard deviation of recoveries ranged from 14 to 26%, and averaged 20%. This variability reflects multiple instruments, operators, and the use of automated and manual sample preparation. Spiked environmental water samples had similar recoveries, although for some herbicides, the sample matrix enhanced recoveries by as much as 200% greater than the spiked concentration. This matrix enhancement was sample- and compound-dependent. Concentrations of herbicides in unspiked duplicate environmental samples were typically within 25% of each other. The results demonstrate the usefulness of HPLC/ESI-MS for determining low-application-rate herbicides at ambient concentrations. Copyright (C) 2000 Elsevier Science B.V.

  18. Impacts of forest herbicides on wildlife: Toxicity and habitat alteration

    USGS Publications Warehouse

    Morrison, M.L.; Meslow, E.C.

    1983-01-01

    This paper begins with a review of both laboratory and field studies on tbe possible direct toxic effects of herbicides on terrestrial vertebrates, primarily birds and mammals. Alteration of the palatability of forage and changes in reproductive success are also discussed. Emphasis is placed on the use of herbicides in forestry; studies dealing with agricultural systems are referenced where appropriate. The indirect effects of herbicides on wildlife-habitat are then conceptualized and quantified using data from a 3-year study on effects of phenoxy and glyphosate herbicides on bird and small mammal communities in western Oregon. Data on density and habitat use are presented and compared with data available from other geographic regions.

  19. Rationale for a natural products approach to herbicide discovery.

    PubMed

    Dayan, Franck E; Owens, Daniel K; Duke, Stephen O

    2012-04-01

    Weeds continue to evolve resistance to all the known modes of herbicidal action, but no herbicide with a new target site has been commercialized in nearly 20 years. The so-called 'new chemistries' are simply molecules belonging to new chemical classes that have the same mechanisms of action as older herbicides (e.g. the protoporphyrinogen-oxidase-inhibiting pyrimidinedione saflufenacil or the very-long-chain fatty acid elongase targeting sulfonylisoxazoline herbicide pyroxasulfone). Therefore, the number of tools to manage weeds, and in particular those that can control herbicide-resistant weeds, is diminishing rapidly. There is an imminent need for truly innovative classes of herbicides that explore chemical spaces and interact with target sites not previously exploited by older active ingredients. This review proposes a rationale for a natural-products-centered approach to herbicide discovery that capitalizes on the structural diversity and ingenuity afforded by these biologically active compounds. The natural process of extended-throughput screening (high number of compounds tested on many potential target sites over long periods of times) that has shaped the evolution of natural products tends to generate molecules tailored to interact with specific target sites. As this review shows, there is generally little overlap between the mode of action of natural and synthetic phytotoxins, and more emphasis should be placed on applying methods that have proved beneficial to the pharmaceutical industry to solve problems in the agrochemical industry. Published 2012 by John Wiley & Sons, Ltd.

  20. Protocols for Robust Herbicide Resistance Testing in Different Weed Species.

    PubMed

    Panozzo, Silvia; Scarabel, Laura; Collavo, Alberto; Sattin, Maurizio

    2015-07-02

    Robust protocols to test putative herbicide resistant weed populations at whole plant level are essential to confirm the resistance status. The presented protocols, based on whole-plant bioassays performed in a greenhouse, can be readily adapted to a wide range of weed species and herbicides through appropriate variants. Seed samples from plants that survived a field herbicide treatment are collected and stored dry at low temperature until used. Germination methods differ according to weed species and seed dormancy type. Seedlings at similar growth stage are transplanted and maintained in the greenhouse under appropriate conditions until plants have reached the right growth stage for herbicide treatment. Accuracy is required to prepare the herbicide solution to avoid unverifiable mistakes. Other critical steps such as the application volume and spray speed are also evaluated. The advantages of this protocol, compared to others based on whole plant bioassays using one herbicide dose, are related to the higher reliability and the possibility of inferring the resistance level. Quicker and less expensive in vivo or in vitro diagnostic screening tests have been proposed (Petri dish bioassays, spectrophotometric tests), but they provide only qualitative information and their widespread use is hindered by the laborious set-up that some species may require. For routine resistance testing, the proposed whole plant bioassay can be applied at only one herbicide dose, so reducing the costs.

  1. Cross-resistance to prosulfocarb + S-metolachlor and pyroxasulfone selected by either herbicide in Lolium rigidum.

    PubMed

    Busi, Roberto; Powles, Stephen B

    2016-09-01

    Weeds can be a greater constraint to crop production than animal pests and pathogens. Pre-emergence herbicides are crucial in many cropping systems to control weeds that have evolved resistance to selective post-emergence herbicides. In this study we assessed the potential to evolve resistance to the pre-emergence herbicides prosulfocarb + S-metolachlor or pyroxasulfone in 50 individual field Lolium rigidum populations collected in a random survey in Western Australia prior to commercialisation of these pre-emergence herbicides. This study shows for the first time that in randomly collected L. rigidum field populations the selection with either prosulfocarb + S-metolachlor or pyroxasulfone can result in concomitant evolution of resistance to both prosulfocarb + S-metolachlor and pyroxasulfone after three generations. In the major weed L. rigidum, traits conferring resistance to new herbicides can be present before herbicide commercialisation. Proactive and multidisciplinary research (evolutionary ecology, modelling and molecular biology) is required to detect and analyse resistant populations before they can appear in the field. Several studies show that evolved cross-resistance in weeds is complex and often unpredictable. Thus, long-term management of cross-resistant weeds must be achieved through heterogeneity of selection by effective chemical, cultural and physical weed control strategies that can delay herbicide resistance evolution. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Broad Resistance to ACCase Inhibiting Herbicides in a Ryegrass Population Is Due Only to a Cysteine to Arginine Mutation in the Target Enzyme

    PubMed Central

    Kaundun, Shiv Shankhar; Hutchings, Sarah-Jane; Dale, Richard Paul; McIndoe, Eddie

    2012-01-01

    Background The design of sustainable weed management strategies requires a good understanding of the mechanisms by which weeds evolve resistance to herbicides. Here we have conducted a study on the mechanism of resistance to ACCase inhibiting herbicides in a Lolium multiflorum population (RG3) from the UK. Methodology/Principal Findings Analysis of plant phenotypes and genotypes showed that all the RG3 plants (72%) that contained the cysteine to arginine mutation at ACCase codon position 2088 were resistant to ACCase inhibiting herbicides. Whole plant dose response tests on predetermined wild and mutant 2088 genotypes from RG3 and a standard sensitive population indicated that the C2088R mutation is the only factor conferring resistance to all ten ACCase herbicides tested. The associated resistance indices ranged from 13 for clethodim to over 358 for diclofop-methyl. Clethodim, the most potent herbicide was significantly affected even when applied on small mutant plants at the peri-emergence and one leaf stages. Conclusion/Significance This study establishes the clear and unambiguous importance of the C2088R target site mutation in conferring broad resistance to ten commonly used ACCase inhibiting herbicides. It also demonstrates that low levels “creeping”, multigenic, non target site resistance, is not always selected before single gene target site resistance appears in grass weed populations subjected to herbicide selection pressure. PMID:22768118

  3. Herbicide mixtures at high doses slow the evolution of resistance in experimentally evolving populations of Chlamydomonas reinhardtii.

    PubMed

    Lagator, Mato; Vogwill, Tom; Mead, Andrew; Colegrave, Nick; Neve, Paul

    2013-05-01

    The widespread evolution of resistance to herbicides is a pressing issue in global agriculture. Evolutionary principles and practices are key to the management of this threat to global food security. The application of mixtures of herbicides has been advocated as an anti-resistance strategy, without substantial empirical support for its validation. We evolved experimentally populations of the unicellular green chlorophyte, Chlamydomonas reinhardtii, to minimum inhibitory concentrations (MICs) of single-herbicide modes of action and to pair-wise and three-way mixtures between different herbicides at various total combined doses. Herbicide mixtures were most effective when each component was applied at or close to its MIC. When doses were high, increasing the number of mixture components was also effective in reducing the evolution of resistance. Employing mixtures at low combined doses did not retard resistance evolution, even accelerating the evolution of resistance to some components. At low doses, increasing the number of herbicides in the mixture tended to select for more generalist resistance (cross-resistance). Our results reinforce findings from the antibiotic resistance literature and confirm that herbicide mixtures can be very effective for resistance management, but that mixtures should only be employed where the economic and environmental context permits the applications of high combined doses. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Evaluation of carbon dioxide emission factor from urea during rice cropping season: A case study in Korean paddy soil

    NASA Astrophysics Data System (ADS)

    Kim, Gil Won; Jeong, Seung Tak; Kim, Gun Yeob; Kim, Pil Joo; Kim, Sang Yoon

    2016-08-01

    Fertilization with urea can lead to a loss of carbon dioxide (CO2) that was fixed during the industrial production process. The extent of atmospheric CO2 removal from urea manufacturing was estimated by the Industrial Processes and Product Use sector (IPPU sector). On its basis, the Intergovernmental Panel on Climate Change (IPCC) has proposed a value of 0.2 Mg C per Mg urea (available in 2006 revised IPCC guidelines for greenhouse gas inventories), which is the mass fractions of C in urea, as the CO2 emission coefficient from urea for the agricultural sector. Notably, due to the possibility of bicarbonate leaching to waters, all C in urea might not get released as CO2 to the atmosphere. Hence, in order to provide an accurate value of the CO2 emission coefficient from applied urea in the rice ecosystem, the CO2 emission factors were characterized under different levels of 13C-urea applied paddy field in the current study. The total CO2 fluxes and rice grain yields increased significantly with increasing urea application (110-130 kg N ha-1) and thereafter, decreased. However, with increasing 13C-urea application, a significant and proportional increase of the 13CO2sbnd C emissions from 13C-urea was also observed. From the relationships between urea application levels and 13CO2sbnd C fluxes from 13C-urea, the CO2sbnd C emission factor from urea was estimated to range between 0.0143 and 0.0156 Mg C per Mg urea. Thus, the CO2sbnd C emission factor of this study is less than that of the value proposed by IPCC. Therefore, for the first time, we propose to revise the current IPCC guideline value of CO2sbnd C emission factor from urea as 0.0143-0.0156 Mg C per Mg urea for Korean paddy soils.

  5. Development of sampling and analytical methods for concerted determination of commonly used chloroacetanilide, chlorotriazine, and 2,4-D herbicides in hand-wash, dermal-patch, and air samples.

    PubMed

    Tucker, S P; Reynolds, J M; Wickman, D C; Hines, C J; Perkins, J B

    2001-06-01

    Sampling and analytical methods were developed for commonly used chloroacetanilide, chlorotriazine, and 2,4-D herbicides in hand washes, on dermal patches, and in air. Eight herbicides selected for study were alachlor, atrazine, cyanazine, 2,4-dichlorophenoxyacetic acid (2,4-D), metolachlor, simazine, and two esters of 2,4-D, the 2-butoxyethyl ester (2,4-D, BE) and the 2-ethylhexyl ester (2,4-D, EH). The hand-wash method consisted of shaking the worker's hand in 150 mL of isopropanol in a polyethylene bag for 30 seconds. The dermal-patch method entailed attaching a 10-cm x 10-cm x 0.6-cm polyurethane foam (PUF) patch to the worker for exposure; recovery of the herbicides was achieved by extraction with 40 mL of isopropanol. The air method involved sampling with an OVS-2 tube (which contained an 11-mm quartz fiber filter and two beds of XAD-2 resin) and recovery with 2 mL of 10:90 methanol:methyl t-butyl ether. Analysis of each of the three sample types was performed by gas chromatography with an electron-capture detector. Diazomethane in solution was employed to convert 2,4-D as the free acid to the methyl ester in each of the three methods for ease of gas chromatography. Silicic acid was added to sample solutions to quench excess diazomethane. Limits of detection for all eight herbicides were matrix-dependent and, generally, less than 1 microgram per sample for each matrix. Sampling and analytical methods met NIOSH evaluation criteria for all herbicides in hand-wash samples, for seven herbicides in air samples (all herbicides except cyanazine), and for six herbicides in dermal-patch samples (all herbicides except cyanazine and 2,4-D). Speciation of 2,4-D esters and simultaneous determination of 2,4-D acid were possible without losses of the esters or of other herbicides (acetanilides and triazines) being determined.

  6. Assessment of Envi-Carb™ as a passive sampler binding phase for acid herbicides without pH adjustment.

    PubMed

    Seen, Andrew; Bizeau, Oceane; Sadler, Lachlan; Jordan, Timothy; Nichols, David

    2014-05-01

    The graphitised carbon solid phase extraction (SPE) sorbent Envi-Carb has been used to fabricate glass fibre filter- Envi-Carb "sandwich" disks for use as a passive sampler for acid herbicides. Passive sampler uptake of a suite of herbicides, including the phenoxyacetic acid herbicides 4-chloro-o-tolyloxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (Dicamba), was achieved without pH adjustment, demonstrating for the first time a suitable binding phase for passive sampling of acid herbicides at neutral pH. Passive sampling experiments with Duck River (Tasmania, Australia) water spiked at 0.5 μg L(-1) herbicide concentration over a 7 d deployment period showed that sampling rates in Duck River water decreased for seven out of eight herbicides, and in the cases of 3,6-dichloro-2-pyridinecarboxylic acid (Clopyralid) and Dicamba no accumulation of the herbicides occurred in the Envi-Carb over the deployment period. Sampling rates for 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (Picloram), 2,4-D and MCPA decreased to approximately 30% of the sampling rates in ultrapure water, whilst sampling rates for 2-(4,6-dimethylpyrimidin-2-ylcarbamoylsulfamoyl) benzoic acid, methyl ester (Sulfometuron-methyl) and 3,5,6-Trichloro-2-pyridinyloxyacetic acid (Triclopyr) were approximately 60% of the ultrapure water sampling rate. For methyl N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D-alaninate (Metalaxyl-M) there was little variation in sampling rate between passive sampling experiments in ultrapure water and Duck River water. SPE experiments undertaken with Envi-Carb disks using ultrapure water and filtered and unfiltered Duck River water showed that not only is adsorption onto particulate matter in Duck River water responsible for a reduction in herbicide sampling rate, but interactions of herbicides with dissolved or colloidal matter (matter able to pass through a 0.2 μm membrane filter) also reduces the herbicide sampling rate. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Effect of nitrogen supplementation on urea kinetics and microbial use of recycled urea in steers consuming corn-based diets.

    PubMed

    Brake, D W; Titgemeyer, E C; Jones, M L; Anderson, D E

    2010-08-01

    We studied the effects of supplementing N as distillers dried grains with solubles (DDGS) or urea to steers consuming corn-based diets. Six ruminally and duodenally cannulated steers (244 kg) were used in 2 concurrent 3 x 3 Latin squares and fed 1 of 3 corn-based diets: control (10.2% CP), urea (13.3% CP), or DDGS (14.9% CP). Periods were 14 d, with 9 d for adaptation and 5 d for collection of urine and feces. Urinary (15)N(15)N-urea enrichments, resulting from venous infusions of (15)N(15)N-urea, were used to measure urea kinetics. Dry matter intake (6.0 kg/d) was not affected by treatment, but N intake differed (99, 151, and 123 g/d for the control, DDGS, and urea treatments, respectively). Urea-N synthesis tended to be greater (P = 0.09) for DDGS (118 g/d) than for the control treatment (52 g/d), with the urea treatment (86 g/d) being intermediate. Urea-N excreted in the urine was greater (P < 0.03) for the DDGS (35 g/d) and urea treatments (29 g/d) than for the control treatment (13 g/d). Gastrointestinal entry of urea-N was not statistically different among treatments (P = 0.25), but was numerically greatest for DDGS (83 g/d), intermediate for urea (57 g/d), and least for the control (39 g/d). The amount of urea-N returned to the ornithine cycle tended to be greater (P = 0.09) for the DDGS treatment (47 g/d) than for the urea (27 g/d) or control treatment (16 g/d). The fraction of recycled urea-N that was apparently used for anabolism tended (P = 0.14) to be greater for the control treatment (0.56) than for the DDGS treatment (0.31), with the urea treatment (0.45) being intermediate, but no differences were observed among treatments in the amount of urea-N used for anabolism (P = 0.66). Urea kinetics in cattle fed grain-based diets were largely related to the amount of N consumed. The percentage of urea production that was captured by ruminal bacteria was greater (P < 0.03) for the control treatment (42%) than for the DDGS (25%) or urea treatment (22%), but the percentage of duodenal microbial N flow that was derived from recycled urea-N tended (P = 0.10) to be greater for the DDGS treatment (35%) than for the urea (22%) or control treatment (17%). Thus, ruminal microbes were more dependent on N recycling when the protein supplement was largely resistant to ruminal degradation.

  8. Plant reproduction is altered by simulated herbicide drift to constructed plant communities

    EPA Science Inventory

    Herbicide drift may have unintended impacts on native vegetation, adversely affecting structure and function of plant communities. However, these potential effects have been rarely studied or quantified. To determine potential ecological effects of herbicide drift, we construct...

  9. Impact of irrigation rate on pre-emergence herbicide activity

    USDA-ARS?s Scientific Manuscript database

    The importance of preemergence herbicide applications in cotton has increased since the development of glyphosate-resistant Palmer amaranth (Amaranthus palmeri). Cotton producers are relying on residual herbicides for control of Palmer amaranth, as postemergence options are limited or ineffective. S...

  10. Agronomic Weeds.

    ERIC Educational Resources Information Center

    Hartwig, Nathan L.

    This agriculture extension service publication from Pennsylvania State University examines agronomic weed problems and control. Contents include a listing of the characteristics of weeds, a section on herbicides, and a section on the important weeds of agronomic crops in Pennsylvania. The herbicide section discusses systemic herbicides, contact…

  11. Evaluation of generic and branded herbicides : technical report.

    DOT National Transportation Integrated Search

    2015-03-01

    As with other generic brand products in the marketplace, generic herbicides often have a lower initial product cost than : their brand-name counterparts. While the purchase price of herbicides is important to TxDOT, it is essential to look at : more ...

  12. Control of Butterfly Bush with Postemergence Herbicides

    USDA-ARS?s Scientific Manuscript database

    Butterfly bush (Buddleja davidii) is classified as invasive in several parts of the United States. Two experiments were conducted to evaluate the effectiveness of four herbicides and two application methods on postemergence butterfly bush control. The four herbicides included: Roundup (glyphosate)...

  13. Managing the evolution of herbicide resistance

    USDA-ARS?s Scientific Manuscript database

    Herbicide-resistant (HR) weeds are widespread threats to the sustainability, productivity, and profitability of many cropping systems. Efforts to combat their spread through herbicide rotation schedules have been marginally effective at best. Despite the scope of the problem, we lack sound empirical...

  14. FLAMMABILITY OF HERBICIDE-TREATED GUAVA FOLIAGE

    DTIC Science & Technology

    Guava leaves treated with herbicide were found to be less flammable than untreated green leaves or dead leaves . Differences in flammability were...determined by small-scale laboratory fires, differential thermal analysis, and thermogravimetric analysis. The herbicide-treated leaves had a higher ash

  15. ASSESSING THE RISKS OF NON-TARGET TERRESTRIAL PLANTS FROM HERBICIDES

    EPA Science Inventory

    Use of chemical herbicides to reduce weed competition is a major contributing factor to the high productivity of conventional intensive agricultural cropping systems. However, because of their inherent phytotoxicity, movement of herbicides from target crops and soils can adverse...

  16. Herbicide-resistant crop biotechnology: potential and pitfalls

    USDA-ARS?s Scientific Manuscript database

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  17. Effects of high ambient temperature on urea-nitrogen recycling in lactating dairy cows.

    PubMed

    Obitsu, Taketo; Kamiya, Mitsuru; Kamiya, Yuko; Tanaka, Masahito; Sugino, Toshihisa; Taniguchi, Kohzo

    2011-08-01

    Effects of exposure to hot environment on urea metabolism were studied in lactating Holstein cows. Four cows were fed ad libitum a total mixed ration and housed in a temperature-controlled chamber at constant moderate (18°C) or high (28°C) ambient temperatures in a cross-over design. Urea nitrogen (N) kinetics was measured by determining urea isotopomer in urine after single injection of [(15) N(2) ]urea into the jugular vein. Both dry matter intake and milk yield were decreased under high ambient temperature. Intakes of total N and digestible N were decreased under high ambient temperature but urinary urea-N excretion was increased. The ratio of urea-N production to digestible N was increased, whereas the proportion of gut urea-N entry to urea-N production tended to be decreased under high ambient temperature. Neither return to the ornithine cycle, anabolic use nor fecal excretion of urea-N recycled to the gut was affected by ambient temperature. Under high ambient temperature, renal clearance of plasma urea was not affected but the gut clearance was decreased. Increase of urea-N production and reduction of gut urea-N entry, in relative terms, were associated with increased urinary urea-N excretion of lactating dairy cows in higher thermal environments. 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  18. Quantitative proteomics reveals ecological fitness cost of multi-herbicide resistant barnyardgrass (Echinochloa crus-galli L.).

    PubMed

    Yang, Xia; Zhang, Zichang; Gu, Tao; Dong, Mingchao; Peng, Qiong; Bai, Lianyang; Li, Yongfeng

    2017-01-06

    Barnyardgrass (Echinochloa crus-galli) is one of the top 15 herbicide-resistant weeds around the world that interferes with rice growth, resulting in major losses of rice yield. Thus, multi-herbicide resistance in barnyardgrass presents a major threat, with the underlying mechanisms that contribute to resistance requiring elucidation. In an attempt to characterize this multi-herbicide resistance at the proteomic level, comparative analysis of resistant and susceptible barnyardgrasses was performed using iTRAQ, both with and without quinclorac, bispyribac-sodium and penoxsulam herbicidal treatment. A total of 1342 protein species were identified from 2248 unique peptides by searching the UniProt database and conducting data analysis. Approximately 904 protein species with 4774 Gene Ontology (GO) terms were grouped into the categories of biological process, cellular component and molecular function. Among these, 688 protein species were annotated into 1583 KEGG pathways, with 980 protein species relating to metabolism and 93 relating to environmental information processing. A total of 292 protein species showed more than a 1.2-fold change in abundance in the resistant biotype relative to the susceptible biotype. Furthermore, herbicide treatment resulted in 157 protein species that showed more than a 1.2-fold change in the resistant biotype. Moreover, physiological analyses demonstrated an ecological fitness cost in the resistant biotype. While some studies have shown a fitness cost to be associated with an altered ecological interaction, our understanding of the fitness costs associated with herbicide resistance are limited. Herein, physiological and proteomic analysis demonstrates herbicide resistance associated ecological fitness cost and potential mechanisms of herbicide-resistance in resistant biotypes of E. crus-galli. The results presented herein have revealed differences in ecological adaptation between resistant and susceptible biotypes in E. crus-galli and provide a fundamental basis enabling the development of new strategies for weed control. Lastly, this is the first large-scale proteomics study to examine herbicide stress responses in different barnyardgrass biotypes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. VARIABLE RATE APPLICATION OF SOIL HERBICIDES IN ARABLE CROPS: FROM THEORY TO PRACTICE.

    PubMed

    Heijting, S; Kempenaar, C

    2014-01-01

    Soil herbicides are applied around crop emergence and kill germinating weeds in the surface layer of the soil. These herbicides play an important role in the chemical management of weeds in major arable crops. From an environmental point of view there is a clear need for smarter application of these chemicals. This paper presents research done in The Netherlands on Variable Rate Application (VRA) of soil herbicides by taking into account spatial variation of the soil. Herbicides adsorbed to soil parameters such as clay or organic matter are not available for herbicidal activity. Decision Support Rules (DSR) describe the relation between the soil parameter and herbicide dosage needed for effectively controlling weeds. Research methods such as greenhouse trials, models and on farm research to develop DSR are discussed and results are presented. Another important ingredient for VRA of soil herbicides is an accurate soil map of the field. Sampling and subsequent interpolation is costly. Soil scans measuring a proxy that is subsequently translated into soil properties such as clay fraction and soil organic matter content offer a quicker way to achieve such maps but validation is needed. DSR is applied to the soil map to get the variable dosage map. The farmer combines this map with the routing, spray volume and spray boom width in the Farm Management Information System (FMIS), resulting in a task file. This task file can subsequently be read by the board computer resulting in a VRA spray map. Reduction in soil herbicide depends on the DSR, the spatial variation and pattern of the soil, the spatial configuration of the routing and the technical advances of the spray equipment. Recently, within the framework the Programma Precisie Landbouw, first steps were made to test and implement this in practice. Currently, theory and practice of VRA of soil herbicides is developed within the research program IJKakker in close cooperation with pioneering farmers in The Netherlands.

  20. Potential microbial toxicity and non-target impact of different concentrations of glyphosate-containing herbicide (GCH) in a model Pervious Paving System.

    PubMed

    Mbanaso, F U; Coupe, S J; Charlesworth, S M; Nnadi, E O; Ifelebuegu, A O

    2014-04-01

    Pervious Pavement Systems are Sustainable Drainage devices that meet the three-fold SUDS functions of stormwater quantity reduction, quality improvement and amenity benefits. This paper reports on a study to determine the impact of different concentrations of glyphosate-containing herbicides on non-target microorganisms and on the pollutant retention performance of PPS. The experiment was conducted using 0.0484 m(2) test rigs based on a four-layered design. Previous studies have shown that PPS can trap up to 98.7% of applied hydrocarbons, but results of this study show that application of glyphosate-containing herbicides affected this capability as 15%, 9% and 5% of added hydrocarbons were released by high (7200 mg L(-1)), medium (720 mg L(-1)) and low (72 mg L(-1)) glyphosate-containing herbicides concentrations respectively. The concentrations of nutrients released also indicate a potential for eutrophication if these effluents were to infiltrate into aquifers or be released into surface waters. The effect of glyphosate-containing herbicides application on the bacterial and fungal communities was slightly different; fungi exhibited a "top-down" trend as doses of 7200 mg L(-1) glyphosate-containing herbicides yielded the highest fungal growth whilst those with a concentration of 720 mg L(-1) glyphosate-containing herbicides applied yielded the highest bacterial growth. In the case of protists, doses of glyphosate-containing herbicides above 72 mg L(-1) were fatal, but they survived at the lower concentration, especially the ciliates Colpoda cucullus and Colpoda steinii thus indicating potential for their use as biomarkers of herbicide-polluted environments. Data also showed that at the lowest concentration of glyphosate-containing herbicides (72 mg L(-1)), biodegradation processes may not be affected as all trophic levels required for optimum biodegradation of contaminants were present. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Pesticides in Surface Drinking-Water Supplies of the Northern Great Plains

    PubMed Central

    Donald, David B.; Cessna, Allan J.; Sverko, Ed; Glozier, Nancy E.

    2007-01-01

    Background Human health anomalies have been associated with pesticide exposure for people living in rural landscapes in the northern Great Plains of North America. Objective The objective of this study was to investigate the occurrence of 45 pesticides in drinking water from reservoirs in this area that received water primarily from snowmelt and rainfall runoff from agricultural crop lands. Methods Water from 15 reservoirs was sampled frequently during the spring pesticide application period (early May to mid-August) and less frequently for the remainder of the year. Drinking water was sampled in early July. Sample extracts were analyzed for pesticide content using mass spectrometric detection. Results We detected two insecticides and 27 herbicides in reservoir water. Consistent detection of a subset of 7 herbicides suggested that atmospheric deposition, either directly or in rain, was the principal pathway from fields to the reservoirs. However, the highest concentrations and number of herbicides in drinking water were associated with runoff from a localized 133-mm rainfall over 15 days toward the end of spring herbicide application. Water treatment removed from 14 to 86% of individual herbicides. Drinking water contained 3–15 herbicides (average, 6.4). Conclusions We estimated the mean annual calculated concentration of herbicides in drinking water to be 75 ng/L (2,4-dichlorophenoxy)acetic acid, 31 ng/L (2-chloro-4-methylphenoxy)acetic acid, 24 ng/L clopyralid, 11 ng/L dichlorprop, 4 ng/L dicamba, 3 ng/L mecoprop, and 1 ng/L bro-moxynil. The maximum total concentration of herbicides in drinking water was 2,423 ng/L. For the seven herbicides with established drinking water guidelines, all concentrations of the individual chemicals were well below their respective guideline. However, guidelines have not been established for the majority of the herbicides found in drinking water or for mixtures of pesticides. PMID:17687445

  2. Assessment of agro-industrial and composted organic wastes for reducing the potential leaching of triazine herbicide residues through the soil.

    PubMed

    Fenoll, José; Vela, Nuria; Navarro, Ginés; Pérez-Lucas, Gabriel; Navarro, Simón

    2014-09-15

    In this study, we examined the effect of four different organic wastes--composted sheep manure (CSM), spent coffee grounds (SCG), composted pine bark (CPB) and coir (CR)--on the sorption, persistence and mobility of eight symmetrical and two asymmetrical-triazine herbicides: atrazine, propazine, simazine, terbuthylazine (chlorotriazines), prometon (methoxytriazine), prometryn, simetryn, terbutryn (methylthiotriazines), metamitron and metribuzin (triazinones). The downward movement of herbicides was monitored using disturbed soil columns packed with a clay loam soil (Hipercalcic calcisol) under laboratory conditions. For unamended and amended soils, the groundwater ubiquity score (GUS) was calculated for each herbicide on the basis of its persistence (as t½) and mobility (as KOC). All herbicides showed medium/high leachability through the unamended soils. The addition of agro-industrial and composted organic wastes at a rate of 10% (w:w) strongly decreased the mobility of herbicides. Sorption coefficients normalized to the total soil organic carbon (KOC) increased in the amended soils. These results suggest that used organic wastes could be used to enhance the retention and reduce the mobility of the studied herbicides in soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Enzyme activity and microorganisms diversity in soil contaminated with the Boreal 58 WG herbicide.

    PubMed

    Kucharski, Jan; Tomkiel, Monika; Baćmaga, Małgorzata; Borowik, Agata; Wyszkowska, Jadwiga

    2016-07-02

    Next-generation herbicides are relatively safe when used properly, but the recommended rates are relatively low, which can lead to overdosing. This study evaluated the responses of soil-dwelling microorganisms and soil enzymes to contamination with the Boreal 58 WG herbicide. The analyzed product contains active ingredients flufenacet and isoxaflutole. All tests were performed under laboratory conditions. The analyzed material was sandy clay. Boreal 58 WG was introduced to soil in four doses. Soil without the addition of the herbicide served as the control. The soil was mixed with the tested herbicide, and its moisture content was maintained at 50% of capillary water capacity. Biochemical and microbiological analyses were performed on experimental days 0, 20, 40, 80 and 160. Accidental contamination of soil with the Boreal 58 WG herbicide led to a relatively minor imbalance in the soil microbiological and biochemical profile. The herbicide dose influenced dehydrogenase activity in only 0.84%, urease activity in 2.04%, β-glucosidase activity in 8.26%, catalase activity in 12.40%, arylsulfatase activity in 12.54%, acid phosphatase activity in 42.11%, numbers of organotrophic bacteria in 18.29%, actinomyces counts in 1.31% and fungi counts in 6.86%.

  4. Maize, switchgrass, and ponderosa pine biochar added to soil increased herbicide sorption and decreased herbicide efficacy.

    PubMed

    Clay, Sharon A; Krack, Kaitlynn K; Bruggeman, Stephanie A; Papiernik, Sharon; Schumacher, Thomas E

    2016-08-02

    Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of (14)C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices.

  5. Pollution-induced community tolerance (PICT) as a tool for monitoring Lake Geneva long-term in situ ecotoxic restoration from herbicide contamination.

    PubMed

    Larras, Floriane; Rimet, Frédéric; Gregorio, Vincent; Bérard, Annette; Leboulanger, Christophe; Montuelle, Bernard; Bouchez, Agnès

    2016-03-01

    Chemical monitoring revealed a regular decrease in herbicide concentration in Lake Geneva since last decades that may be linked to an ecotoxic restoration of nontarget phytoplanktonic communities. The Pollution-induced community tolerance (PICT) approach was tested as a tool to monitor the ecotoxic restoration of Lake Geneva for herbicides from 1999 to 2011. We conducted monthly assessments in 1999 and in 2011 for the tolerance of the phytoplankton communities to two herbicides (atrazine and copper), using PICT bioassays. The taxonomical composition of the communities was determined on the same collecting dates. The herbicide concentration decrease during the 12 years significantly influenced the composition of communities. The PICT monitoring indicated that a significant tolerance decrease in the community to both herbicides accompanied the herbicide concentration decrease. PICT measurements for atrazine and copper also changed at the intra-annual level. These variations were mainly due to community composition shifts linked to seasonal phosphorus and temperature changes. PICT monitoring on a seasonal basis is required to monitor the mean tolerance of communities. PICT appeared to be a powerful tool that reflected the toxic effects on environmental communities and to monitor ecotoxic ecosystem restoration.

  6. Crystal structure of plant acetohydroxyacid synthase, the target for several commercial herbicides.

    PubMed

    Garcia, Mario Daniel; Wang, Jian-Guo; Lonhienne, Thierry; Guddat, Luke William

    2017-07-01

    Acetohydroxyacid synthase (AHAS, EC 2.2.1.6) is the first enzyme in the branched-chain amino acid biosynthesis pathway. Five of the most widely used commercial herbicides (i.e. sulfonylureas, imidazolinones, triazolopyrimidines, pyrimidinyl-benzoates and sulfonylamino-cabonyl-triazolinones) target this enzyme. Here we have determined the first crystal structure of a plant AHAS in the absence of any inhibitor (2.9 Å resolution) and it shows that the herbicide-binding site adopts a folded state even in the absence of an inhibitor. This is unexpected because the equivalent regions for herbicide binding in uninhibited Saccharomyces cerevisiae AHAS crystal structures are either disordered, or adopt a different fold when the herbicide is not present. In addition, the structure provides an explanation as to why some herbicides are more potent inhibitors of Arabidopsis thaliana AHAS compared to AHASs from other species (e.g. S. cerevisiae). The elucidation of the native structure of plant AHAS provides a new platform for future rational structure-based herbicide design efforts. The coordinates and structure factors for uninhibited AtAHAS have been deposited in the Protein Data Bank (www.pdb.org) with the PDB ID code 5K6Q. © 2017 Federation of European Biochemical Societies.

  7. Changes in bacterial community after application of three different herbicides.

    PubMed

    Moretto, Jéssica Aparecida Silva; Altarugio, Lucas Miguel; Andrade, Pedro Avelino; Fachin, Ana Lúcia; Andreote, Fernando Dini; Stehling, Eliana Guedes

    2017-07-06

    The native soil microbiota is very important to maintain the quality of that environment, but with the intensive use of agrochemicals, changes in microbial biomass and formation of large quantities of toxic waste were observed in soil, groundwater and surface water. Thereby, the goal of this study was to evaluate if the selective pressure exerted by the presence of the herbicides atrazine, diuron and 2,4-D changes the bacterial community structure of an agricultural soil, using denaturing gradient gel electrophoresis technique. According to PERMANOVA analysis, a greater effect of the herbicide persistence time in the soil, the effect of the herbicide class and the effect of interaction between these two factors (persistence time and herbicide class) were observed. In conclusion, the results showed that the selective pressure exerted by the presence of these herbicides altered the composition of the local microbiota, being atrazine and diuron that most significantly affected the bacterial community in soil, and the herbicide 2,4-D was the one that less altered the microbial community and that bacterial community was reestablished first. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor

    USGS Publications Warehouse

    Fairchild, James F.; Ruessler, Shane; Carlson, A. Ron

    1998-01-01

    This study determined the relative sensitivity of five species of aquatic macrophytes and six species of algae to four commonly used herbicides (atrazine, metribuzin, alachlor, and metolachlor). Toxicity tests consisted of 96-h (duckweed and algae) or 14-d (submerged macrophytes) static exposures. The triazine herbicides (atrazine and metribuzin) were significantly more toxic to aquatic plants than were the acetanilide herbicides (alachlor and metolachlor). Toxicity studies ranked metribuzin > atrazine > alachlor > metolachlor in decreasing order of overall toxicity to aquatic plants. Relative sensitivities of macrophytes to these herbicides decreased in the order of Ceratophyllum > Najas > Elodea > Lemna > Myriophyllum. Relative sensitivities of algae to herbicides decreased in the order of Selenastrum > Chlorella > Chlamydomonas > Microcystis > Scenedesmus > Anabaena. Algae and macrophytes were of similar overall sensitivities to herbicides. Data indicated that Selenastrum, a commonly tested green alga, was generally more sensitive compared to other plant species. Lemna minor, a commonly tested floating vascular plant, was of intermediate sensitivity, and was fivefold less sensitive than Ceratophyllum, which was the most sensitive species tested. The results indicated that no species was consistently most sensitive, and that a suite of aquatic plant test species may be needed to perform accurate risk assessments of herbicides.

  9. Strategies to evaluate biodegradability: application to chlorinated herbicides.

    PubMed

    Sanchis, S; Polo, A M; Tobajas, M; Rodriguez, J J; Mohedano, A F

    2014-01-01

    The biodegradability of nitrochlorinated (diuron and atrazine) and chlorophenoxy herbicides (2,4-D and MCPA) has been studied through several bioassays using different testing times and biomass/substrate ratios. A fast biodegradability test using unacclimated activated sludge yielded no biodegradation of the herbicides in 24 h. The inherent biodegradability test gave degradation percentages of around 20-30% for the nitrochlorinated herbicides and almost complete removal of the chlorophenoxy compounds. Long-term biodegradability assays were performed using sequencing batch reactor (SBR) and sequencing batch membrane bioreactor (SB-MBR). Fixed concentrations of each herbicide below the corresponding EC50 value for activated sludge were used (30 mg L(-1) for diuron and atrazine and 50 mg L(-1) for 2,4-D and MCPA). No signs of herbicide degradation appeared before 35 days in the case of diuron and atrazine and 21 days for 2,4-D, whereas MCPA was partially degraded since the early stages. Around 25-36% degradation of the nitrochlorinated herbicides and 53-77% of the chlorophenoxy ones was achieved after 180 and 135 days, respectively, in SBR, whereas complete disappearance of 2,4-D was reached after 80 days in SB-MBR.

  10. Analysis of chlorophenoxy acid herbicides in water by large-volume on-line derivatization and gas chromatography-mass spectrometry.

    PubMed

    Ding, W H; Liu, C H; Yeh, S P

    2000-10-27

    This work presents a modified method to analyze chlorophenoxy acid herbicides in water samples. The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid). Silvex (2,4,5-trichlorophenoxypropionic acid) and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used to evaluate the method. The method involves extraction of samples by a graphitized carbon black cartridge, and on-line derivatization in the GC injection port using a large-volume (10-20 microl) direct sample introduction (DSI) device with tetraalkylammonium salts. The analytes were then identified and quantitated by ion-trap gas chromatography-mass spectrometry. The large-volume DSI injection-port derivatization technique provides sensitivity, fast and reproducible results for chlorophenoxy acid herbicides residues, to quantitation at 0.1 to 0.2 microg/l in 500-ml water samples. An enhanced characteristic mass chromatogram of molecular ions of butylated chlorophenoxy acid herbicides with a significant chlorine isotope pattern by electron impact ionization MS allows us to determine herbicides residues at trace levels in aqueous samples. Recovery of the herbicide residues in spiked various water samples ranged from 70 to 99% while RSDs ranged from 1 to 13%.

  11. Characterization of urea transport in Bufo arenarum oocytes.

    PubMed

    Silberstein, Claudia; Zotta, Elsa; Ripoche, Pierre; Ibarra, Cristina

    2003-07-01

    Xenopus laevis oocytes have been extensively used for expression cloning, structure/function relationships, and regulation analysis of transporter proteins. Urea transporters have been expressed in Xenopus oocytes and their properties have been described. In order to establish an alternative system in which urea transporters could be efficiently expressed and studied, we determined the urea transport properties of ovarian oocytes from Bufo arenarum, a toad species common in Argentina. Bufo oocytes presented a high urea permeability of 22.3 x 10(-6) cm/s, which was significantly inhibited by the incubation with phloretin. The urea uptake in these oocytes was also inhibited by mercurial reagents, and high-affinity urea analogues. The urea uptake was not sodium dependent. The activation energy was 3.2 Kcal/mol, suggesting that urea movement across membrane oocytes may be through a facilitated urea transporter. In contrast, Bufo oocytes showed a low permeability for mannitol and glycerol. From these results, we propose that one or several specific urea transporters are present in ovarian oocytes from Bufo arenarum. Therefore, these oocytes cannot be used in expression studies of foreign urea transporters. The importance of Bufo urea transporter is not known but could be implicated in osmotic regulation during the laying of eggs in water. Copyright 2003 Wiley-Liss, Inc.

  12. Exploring the Counteracting Mechanism of Trehalose on Urea Conferred Protein Denaturation: A Molecular Dynamics Simulation Study.

    PubMed

    Paul, Subrata; Paul, Sandip

    2015-07-30

    To provide the underlying mechanism of the inhibiting effect of trehalose on the urea denatured protein, we perform classical molecular dynamics simulations of N-methylacetamide (NMA) in aqueous urea and/or trehalose solution. The site-site radial distribution functions and hydrogen bond properties indicate in binary urea solution the replacement of NMA-water hydrogen bonds by NMA-urea hydrogen bonds. On the other hand, in ternary urea and trehalose solution, trehalose does not replace the NMA-urea hydrogen bonds significantly; rather, it forms hydrogen bonds with the NMA molecule. The calculation of a preferential interaction parameter shows that, at the NMA surface, trehalose molecules are preferred and the preference for urea decreases slightly in ternary solution with respect to the binary solution. The exclusion of urea molecules in the ternary urea-NMA-trehalose system causes alleviation in van der Waals interaction energy between urea and NMA molecules. Our findings also reveal the following: (a) trehalose and urea induced second shell collapse of water structure, (b) a reduction in the mean trehalose cluster size in ternary solution, and (c) slowing down of translational motion of solution species in the presence of osmolytes. Implications of these results for the molecular explanations of the counteracting mechanism of trehalose on urea induced protein denaturation are discussed.

  13. Role of urea in the postprandial urine concentration cycle of the insectivorous bat Antrozous pallidus.

    PubMed

    Bassett, John E

    2004-02-01

    Insectivorous bats, which feed once daily, produce maximally concentrated urine only after feeding. The role of urea as an osmolyte in this process was investigated in pallid bats (Antrozous pallidus) in the laboratory. Following a 24-h fast, plasma and urine were sampled before and 2 h after feeding in postprandial (PP) animals and before and 2 h after similar treatment without feeding in nonfed (NF) animals. Food consumption by PP animals and handling of NF animals had no effect on blood water content as measured by hematocrit and plasma oncotic pressure. Food consumption increased both plasma osmolality (P(osm)) and plasma urea (P(urea)) by as much as 15%. Food consumption also increased urine osmolality (U(osm)) and urine urea (U(urea)) by 50-100%. Feeding increased U(osm) regardless of changes in P(osm), and elevation of U(osm) resulted primarily from increased U(urea). In NF bats, P(osm) and P(urea) were unchanged, while U(osm) and U(urea) increased by as much as 25%. Again, increased U(osm) resulted primarily from increased U(urea). The PP urine concentration cycle of pallid bats resulted from increased urea excretion in response to apparent rapid urea synthesis. Bats rapidly metabolized protein and excreted urea following feeding when body water was most plentiful.

  14. Structure and effect of sarcosine on water and urea by using molecular dynamics simulations: Implications in protein stabilization.

    PubMed

    Kumar, Narendra; Kishore, Nand

    2013-01-01

    Sarcosine is one of the most important protecting osmolytes which is also known to counteract the denaturing effect of urea. We used molecular dynamics simulation methods to investigate the mechanism of protein stabilization and counteraction of urea by sarcosine. We found that sarcosine enhanced the tetrahedral structure of water and strengthened its hydrogen bonding network. We also found that sarcosine did not form clusters unlike glycine. Our results show strong interaction between sarcosine and urea molecules. Addition of sarcosine enhanced the urea-water structure and urea-water lifetime indicated an increase in the solvation of urea. These findings suggest that sarcosine indirectly stabilizes protein by enhancing water-water structure thus decreasing the hydrophobic effect and counteracts the effect of urea by increasing the solvation of urea and directly interacting with it leaving urea less available to interact with protein. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.

    PubMed

    Hjörleifsson, Jens Guðmundur; Ásgeirsson, Bjarni

    2016-07-01

    Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn(2+) and Mg(2+) are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg(2)(+) in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp→Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO(2) nanoparticles prepared by thermal decomposition.

    PubMed

    Dong, Fan; Zhao, Weirong; Wu, Zhongbiao; Guo, Sen

    2009-03-15

    Multi-type nitrogen doped TiO(2) nanoparticles were prepared by thermal decomposition of the mixture of titanium hydroxide and urea at 400 degrees C for 2h. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL). The results showed that the as-prepared samples exhibited strong visible light absorption due to multi-type nitrogen doped in the form of substitutional (N-Ti-O and Ti-O-N) and interstitial (pi* character NO) states, which were 0.14 and 0.73 eV above the top of the valence band, respectively. A physical model of band structure was established to clarify the visible light photocatalytic process over the as-prepared samples. The photocatalytic activity was evaluated for the photodegradation of gaseous toluene under visible light irradiation. The activity of the sample prepared from wet titanium hydroxide and urea (TiO(2)-Nw, apparent reaction rate constant k = 0.045 min(-1)) was much higher than other samples including P25 (k = 0.0013 min(-1)). The high activity can be attributed to the results of the synergetic effects of strong visible light absorption, good crystallization, large surface hydroxyl groups, and enhanced separation of photoinduced carriers.

  17. Recurrent somnolence in a 17-month-old infant: late-onset ornithine transcarbamylase (OTC) deficiency due to the novel hemizygous mutation c.535C > T (p.Leu179Phe).

    PubMed

    Fantur, Michaela; Karall, Daniela; Scholl-Buergi, Sabine; Häberle, Johannes; Rauchenzauner, Markus; Fruehwirth, Martin

    2013-01-01

    Herein, we describe a case of a now 28-month-old boy who presented at the age of 17 months with four episodes of recurrent vomiting and somnolence during a period of four months with increasing severity. A comprehensive clinical and metabolic evaluation revealed normal blood pH and blood glucose, normal cerebral computed tomography and electroencephalogram but an elevated plasma ammonia concentration, which raised the suspicion of a urea cycle disorder. The combination of elevated urinary orotic acid and plasma glutamine with normal citrulline suggested the diagnosis of ornithine transcarbamylase (OTC) deficiency, which was confirmed by molecular genetic testing revealing the novel hemizygous mutation c.535C > T (p.Leu179Phe) of the OTC gene. After restitution of anabolism by administration of parenteral glucose, substitution of citrulline and detoxification of ammonia with sodium benzoate, the patient recovered rapidly and is in a stable metabolic and neurological state since then. This case underlines that the diagnosis of a urea cycle defect should be considered in the differential diagnosis of recurrent idiopathic vomiting in combination with unexplained neurological symptoms also beyond the neonatal period due to the possibility of mild or atypical late-onset presentation (e.g. OTC deficiency in hemizygous males). Copyright © 2012 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  18. Solvent-free iodination of organic molecules using the I(2)/urea-H(2)O(2) reagent system.

    PubMed

    Pavlinac, Jasminka; Zupan, Marko; Stavber, Stojan

    2007-02-21

    Introduction of iodine under solvent-free conditions into several aromatic compounds activated toward electrophilic functionalization was found to proceed efficiently using elemental iodine in the presence of a solid oxidizer, the urea-H(2)O(2) (UHP) adduct. Two types of iodo-functionalization through an electrophilic process were observed: iodination of an aromatic ring, and side-chain iodo-functionalization in the case of arylalkyl ketones. Two reaction routes were established based on the required substrate : iodine : oxidizer ratio for the most efficient iodo-transformation, and the role of UHP was elucidated in each route. The first, requiring a 1 : 0.5 : 0.6 stoichiometric ratio of substrate to iodine to UHP, followed the atom economy concept in regard to iodine and was valid in the case of aniline, 4-t-Bu-phenol, 1,2-dimethoxy benzene, 1,3-dimethoxy benzene, 1,2,3-trimethoxy benzene, 1,2,4-trimethoxy benzene, 1,3,5-trimethoxy benzene, 1-indanone and 1-tetralone. The second reaction route, where a 1 : 1 : 1 stoichiometric ratio of substrate : I(2) : UHP was needed for efficient iodination, was suitable for side-chain iodo-functionalization of acetophenone and methoxy-substituted acetophenones. Moreover, addition of iodine to 1-octene and some phenylacetylenic derivatives was found to proceed efficiently without the presence of any oxidizer and solvent at room temperature.

  19. Leaching of pesticides through normal-tillage and low-tillage soil--a lysimeter study. I. Isoproturon.

    PubMed

    Fomsgaard, Inge S; Spliid, Niels Henrik; Felding, Gitte

    2003-01-01

    Isoproturon is a herbicide, which was used in Denmark against grass weeds and broad-leaved weeds until 1998. Isoproturon has frequently been detected in ground water monitoring studies. Leaching of isoproturon (N,N-dimethyl-N'-(4-(1-methylethyl)-phenyl)urea) and its metabolites, N'-(4-isopropylphenyl)-N-methylurea and N'-(4-isopropylphenyl)urea was studied in four lysimetres, two of them being replicates from a low-tillage field (lysimeter 3 and 4), the other two being replicates from a normal tillage field (lysimeter 5 and 6). In both cases the soil was a sandy loam soil with 13-14% clay. The lysimetres had a surface area of 0.5 m2 and a depth of 110 cm. Lysimeter 3 and 4 were sprayed with unlabelled isoproturon while lysimeter 5 and 6 was sprayed with a mixture of 14C-labelled and unlabelled isoproturon. The total amount of isoproturon sprayed onto each lysimeter was 63 mg, corresponding to 1.25 kg active ingredient per ha. The lysimeters were sprayed with isoproturon on October 26, 1997. The lysimetres were installed in an outdoor system in Research Centre Flakkebjerg and were thus exposed to normal climatic conditions of the area. A mean of 360 l drainage water were collected from lysimeter 3 and 4 and a mean of 375 litres from lysimeter 5 and 6. Only negligible amounts of isoproturon and its primary metabolites were found in the drainage water samples, and thus no significant difference between the two lysimeter sets was shown. In a total of 82 drainage water samples, evenly distributed between the four lysimetres isoproturon was found in detectable amounts in two samples and N'-(4-isopropylphenyl)urea was found in detectable amounts in two other samples. The detection limit for all the compounds was 0.02 microg/l. 48% and 54% of the added radioactivity were recovered from the upper 10 cm soil layer in lysimeter 5 and 6, respectively, and 17 and 14% from 10-20 cm's depth. By extraction first with an aquatic CaCl2 solution 0.49% of the added radioactivity was extracted from the upper 10 cm layer in lysimeter 5. In the subsequent extraction with acetonitril, 1.19% of the added radioactivity was extracted. In lysimeter 6, upper 10 cm, 0.2% were extracted with water and 0.56% were extracted with acetonitril. Below 10 cm's depth no measurable amounts could be extracted.

  20. Urea.

    PubMed

    Wang, Hongkai; Ran, Jianhua; Jiang, Tao

    2014-01-01

    Urea is generated by the urea cycle enzymes, which are mainly in the liver but are also ubiquitously expressed at low levels in other tissues. The metabolic process is altered in several conditions such as by diets, hormones, and diseases. Urea is then eliminated through fluids, especially urine. Blood urea nitrogen (BUN) has been utilized to evaluate renal function for decades. New roles for urea in the urinary system, circulation system, respiratory system, digestive system, nervous system, etc., were reported lately, which suggests clinical significance of urea.

  1. 4-N-Hydroxy-4-[1-(sulfonyl)piperidin-4-yl]-butyramides as HDAC inhibitors.

    PubMed

    Rossi, Cristina; Fincham, Christopher I; D'Andrea, Piero; Porcelloni, Marina; Ettorre, Alessandro; Mauro, Sandro; Bigioni, Mario; Binaschi, Monica; Maggi, Carlo A; Nardelli, Federica; Parlani, Massimo; Fattori, Daniela

    2011-11-15

    A series of N-substituted 4-alkylpiperidine hydroxamic acids, corresponding to the basic structure of histone deacetylase (HDAC) inhibitors (zinc binding moiety-linker-capping group) has been previously reported by our group. Linker length and aromatic capping group connection were systematically varied to find the optimal geometric parameters. A new series of submicromolar inhibitors was thus identified, which showed antiproliferative activity on HCT-116 colon carcinoma cells. We report here the second part of the strategy used in our research group to find a new class of HDAC inhibitors, namely the SAR study for the compounds bearing a sulfonyl group on the piperidine nitrogen. In the present work, we have considered both sulfonamides and sulfonyl ureas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Quantitative structure-activity relationships studies of CCR5 inhibitors and toxicity of aromatic compounds using gene expression programming.

    PubMed

    Shi, Weimin; Zhang, Xiaoya; Shen, Qi

    2010-01-01

    Quantitative structure-activity relationship (QSAR) study of chemokine receptor 5 (CCR5) binding affinity of substituted 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas and toxicity of aromatic compounds have been performed. The gene expression programming (GEP) was used to select variables and produce nonlinear QSAR models simultaneously using the selected variables. In our GEP implementation, a simple and convenient method was proposed to infer the K-expression from the number of arguments of the function in a gene, without building the expression tree. The results were compared to those obtained by artificial neural network (ANN) and support vector machine (SVM). It has been demonstrated that the GEP is a useful tool for QSAR modeling. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meadows, J.; Smith, R.C.

    Uric acid has been proposed to be an important antioxidant and free radical scavenger in humans. Of the purine and pyrimidine compounds examined in this study, uric acid showed the greatest susceptibility to ozone-induced degradation. The parent compounds, purine and pyrimidine, were more resistant to ozonation than were the nucleobases. When the degradation of OH-substituted purines was examined, it was found that the more OH groups on the purine ring, the more readily the purine was degraded. Urea and allantoin were identified as degradation products of uric acid. The relative rates of nucleobase degradation in the presence and absence ofmore » uric acid were compared. Uric acid protected thymine, guanine, and uracil from degradation by ozone. In this system uric acid was found to protect the nucleobases as effectively as reduced glutathione.« less

  4. Herbicide volatilization trumps runoff losses, a multi-year investigation

    USDA-ARS?s Scientific Manuscript database

    Surface runoff and volatilization are two processes critical to herbicide off-site transport. To determine the relevance of these off-site transport mechanisms, runoff and turbulent vapor fluxes were simultaneously monitored on the same site for eight years. Site location, herbicide formulations, ...

  5. Contaminant Transport to Shallow Drainage Water in Pothole Topography

    USDA-ARS?s Scientific Manuscript database

    Nutrient and herbicide losses from row crop agriculture represent potential environmental and human health hazards. In order to determine where nutrient and herbicide mitigation strategies can be targeted for optimum performance, levels of nutrients and herbicides were measured in an agricultural dr...

  6. METHOD DEVELOPMENT FOR ALACHLOR ESA AND OTHER ACENTANILIDE HERBICIDE DEGRADATION PRODUCTS

    EPA Science Inventory

    Introduction: Acetanilide herbicides are frequently applied in the U.S. on crops (corn, soybeans, popcorn, etc.) to control broadleaf and annual weeds. The acetanilide and acetamide herbicides currently registered for use in the U.S. are alachlor, acetochlor, metolachlor, propa...

  7. Utilization of urea and expression profiles of related genes in the dinoflagellate Prorocentrum donghaiense

    PubMed Central

    Jing, Xiaoli; Lin, Senjie; Zhang, Huan; Koerting, Claudia; Yu, Zhigang

    2017-01-01

    Urea has been shown to contribute more than half of total nitrogen (N) required by phytoplankton in some estuaries and coastal waters and to provide a substantial portion of the N demand for many harmful algal blooms (HABs) of dinoflagellates. In this study, we investigated the physiological and transcriptional responses in Prorocentrum donghaiense to changes in nitrate and urea availability. We found that this species could efficiently utilize urea as sole N source and achieve comparable growth rate and photosynthesis capability as it did under nitrate. These physiological parameters were markedly lower in cultures grown under nitrate- or urea-limited conditions. P. donghaiense N content was similarly low under nitrate- or urea-limited culture condition, but was markedly higher under urea-replete condition than under nitrate-replete condition. Carbon (C) content was consistently elevated under N-limited condition. Consequently, the C:N ratio was as high as 21:1 under nitrate- or urea-limitation, but 7:1 under urea-replete condition and 9:1 to 10:1 under nitrate-replete condition. Using quantitative reverse transcription PCR, we investigated the expression pattern for four genes involved in N transport and assimilation. The results indicated that genes encoding nitrate transport, urea hydrolysis, and nickel transporter gene were sensitive to changes in general N nutrient availability whereas the urea transporter gene responded much more strongly to changes in urea concentration. Taken together, our study shows the high bioavailability of urea, its impact on C:N stoichiometry, and the sensitivity of urea transporter gene expression to urea availability. PMID:29117255

  8. Role of Urea-Aromatic Stacking Interactions in Stabilizing the Aromatic Residues of the Protein in Urea-Induced Denatured State.

    PubMed

    Goyal, Siddharth; Chattopadhyay, Aditya; Kasavajhala, Koushik; Priyakumar, U Deva

    2017-10-25

    A delicate balance of different types of intramolecular interactions makes the folded states of proteins marginally more stable than the unfolded states. Experiments use thermal, chemical, or mechanical stress to perturb the folding equilibrium for examining protein stability and the protein folding process. Elucidation of the mechanism by which chemical denaturants unfold proteins is crucial; this study explores the nature of urea-aromatic interactions relevant in urea-assisted protein denaturation. Free energy profiles corresponding to the unfolding of Trp-cage miniprotein in the presence and absence of urea at three different temperatures demonstrate the distortion of the hydrophobic core to be a crucial step. Exposure of the Trp6 residue to the solvent is found to be favored in the presence of urea. Previous experiments showed that urea has a high affinity for aromatic groups of proteins. We show here that this is due to the remarkable ability of urea to form stacking and NH-π interactions with aromatic groups of proteins. Urea-nucleobase stacking interactions have been shown to be crucial in urea-assisted RNA unfolding. Examination of these interactions using microsecond-long unrestrained simulations shows that urea-aromatic stacking interactions are stabilizing and long lasting. Further MD simulations, thermodynamic integration, and quantum mechanical calculations on aromatic model systems reveal that such interactions are possible for all the aromatic amino acid side-chains. Finally, we validate the ubiquitous nature of urea-aromatic stacking interactions by analyzing experimental structures of urea transporters and proteins crystallized in the presence of urea or urea derivatives.

  9. Utilization of urea and expression profiles of related genes in the dinoflagellate Prorocentrum donghaiense.

    PubMed

    Jing, Xiaoli; Lin, Senjie; Zhang, Huan; Koerting, Claudia; Yu, Zhigang

    2017-01-01

    Urea has been shown to contribute more than half of total nitrogen (N) required by phytoplankton in some estuaries and coastal waters and to provide a substantial portion of the N demand for many harmful algal blooms (HABs) of dinoflagellates. In this study, we investigated the physiological and transcriptional responses in Prorocentrum donghaiense to changes in nitrate and urea availability. We found that this species could efficiently utilize urea as sole N source and achieve comparable growth rate and photosynthesis capability as it did under nitrate. These physiological parameters were markedly lower in cultures grown under nitrate- or urea-limited conditions. P. donghaiense N content was similarly low under nitrate- or urea-limited culture condition, but was markedly higher under urea-replete condition than under nitrate-replete condition. Carbon (C) content was consistently elevated under N-limited condition. Consequently, the C:N ratio was as high as 21:1 under nitrate- or urea-limitation, but 7:1 under urea-replete condition and 9:1 to 10:1 under nitrate-replete condition. Using quantitative reverse transcription PCR, we investigated the expression pattern for four genes involved in N transport and assimilation. The results indicated that genes encoding nitrate transport, urea hydrolysis, and nickel transporter gene were sensitive to changes in general N nutrient availability whereas the urea transporter gene responded much more strongly to changes in urea concentration. Taken together, our study shows the high bioavailability of urea, its impact on C:N stoichiometry, and the sensitivity of urea transporter gene expression to urea availability.

  10. Risk and Prognostic Factors of Inpatient Mortality Associated with Unintentional Insecticide and Herbicide Poisonings: A Retrospective Cohort Study

    PubMed Central

    Chien, Wu-Chien; Chung, Chi-Hsiang; Jaakkola, Jouni J. K.; Chu, Chi-Ming; Kao, Senyeong; Su, Sui-Lung; Lai, Ching-Huang

    2012-01-01

    Introduction Pesticide poisoning is an important public health problem worldwide. The study aimed to determine the risk of all-cause and cause-specific inpatient mortality and to identify prognostic factors for inpatient mortality associated with unintentional insecticide and herbicide pesticide poisonings. Methods We performed a retrospective cohort study of 3,986 inpatients recruited at hospitalization between 1999 and 2008 in Taiwan. We used the International Classification of Disease, 9th ed., Clinical Modification external causes of injury codes to classify poisoning agents into accidental poisoning by insecticides and herbicides. Comparisons in mortality rates were made between insecticide poisoning patients and herbicide poisoning patients by using the Cox proportional hazards models to estimate multivariable-adjusted hazard ratios (HRs) and their 95% confidence intervals (CIs). Results There were 168 deaths during 21,583 person-days of follow-up evaluation (7.8 per 1,000 person-days). The major causes of mortality for insecticide poisonings were the toxic effect of organophosphate and coma, and the major causes of mortality for herbicide poisonings were the toxic effect of other pesticides and the toxic effect of organophosphate. The mortality for herbicide exposure was fourfold higher than that for insecticide exposure. The factors associated with inpatient mortality were herbicide poisonings (HR = 4.58, 95% CI 3.29 to 6.37) and receiving mechanical ventilation treatment (HR = 3.85, 95% CI 2.73 to 5.42). Conclusions We demonstrated that herbicides stand out as the dominant agent for poisoning-related fatalities. The control of and limiting access to herbicide agents and developing appropriate therapeutic regimens, including emergency care, should be priorities. PMID:23029146

  11. Effects of a glyphosate-based herbicide and predation threat on the behaviour of agile frog tadpoles.

    PubMed

    Mikó, Zsanett; Ujszegi, János; Gál, Zoltán; Hettyey, Attila

    2017-06-01

    The widespread application of pesticides emphasises the importance of understanding the impacts of these chemicals on natural communities. The most commonly applied broad-spectrum herbicides in the world are glyphosate-based herbicides, which have been suggested to induce significant behavioural changes in non-target organisms even at low environmental concentrations. To scrutinize the behavioural effects of herbicide-exposure we exposed agile frog (Rana dalmatina) tadpoles in an outdoor mesocosm experiment to three concentrations of a glyphosate-based herbicide (0, 2 and 6.5mg acid equivalent (a.e.) / L). To assess whether anti-predator behaviour is affected by the pesticide, we combined all levels of herbicide-exposure with three predator treatments (no predator, caged Aeshna cyanea dragonfly larvae or Lissotriton vulgaris newt adults) in a full factorial design. We observed hiding, activity, proximity to the predator cage and vertical position of tadpoles. We found that at the higher herbicide concentration tadpoles decreased their activity and more tadpoles were hiding, and at least at the lower concentration their vertical position was closer to the water surface than in tadpoles of the control treatment. Tadpoles also decreased their activity in the presence of dragonfly larvae, but did not hide more in response to either predator, nor did tadpoles avoid predators spatially. Further, exposure to the herbicide did not significantly influence behavioural responses to predation threat. Our study documents a definite influence of glyphosate-based herbicides on the behaviour of agile frog tadpoles and indicates that some of these changes are similar to those induced by dangerous predators. This may suggest that the underlying physiological mechanisms or the adaptive value of behavioural changes may similar. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effect of two commercial herbicides on life history traits of a human disease vector, Aedes aegypti, in the laboratory setting.

    PubMed

    Morris, Alexandra; Murrell, Ebony G; Klein, Talan; Noden, Bruce H

    2016-07-01

    Some mosquito species utilize the small niches of water that are abundant in farmland habitats. These niches are susceptible to effects from agricultural pesticides, many of which are applied aerially over large tracts of land. One principal form of weed control in agricultural systems involves the development of herbicide-tolerant crops. The impact of sub-agricultural levels of these herbicides on mosquito survival and life-history traits of resulting adults have not been determined. The aim of this study was to test the effect of two commercial herbicides (Beyond and Roundup) on the survivorship, eclosion time, and body mass of Aedes aegypti. First instar A. aegypti larvae were exposed to varying concentrations (270, 550 and 820 μg/m(2) of glyphosate and 0.74, 1.49, 2.24 μL imazamox/m(2)), all treatments being below recommended application rates, of commercial herbicides in a controlled environment and resulting adult mosquitoes were collected and weighed. Exposure to Roundup had a significant negative effect on A. aegypti survivorship at medium and high sub-agricultural application concentrations, and negatively affected adult eclosion time at the highest concentration. However, exposure to low concentrations of Beyond significantly increased A. aegypti survivorship, although adult female mass was decreased at medium sub-agricultural concentrations. These results demonstrate that low concentrations of two different herbicides, which can occur in rural larval habitats as a result of spray drift, can affect the same species of mosquito in both positive and negative ways depending on the herbicide applied. The effects of commercial herbicides on mosquito populations could have an important effect on disease transmission within agricultural settings, where these and other herbicides are extensively applied to reduce weed growth.

  13. Toxicity of Neurons Treated with Herbicides and Neuroprotection by Mitochondria-Targeted Antioxidant SS31

    PubMed Central

    Reddy, Tejaswini P.; Manczak, Maria; Calkins, Marcus J.; Mao, Peizhong; Reddy, Arubala P.; Shirendeb, Ulziibat; Park, Byung; Reddy, P. Hemachandra

    2011-01-01

    The purpose of this study was to determine the neurotoxicity of two commonly used herbicides: picloram and triclopyr and the neuroprotective effects of the mitochondria-targeted antioxidant, SS31. Using mouse neuroblastoma (N2a) cells and primary neurons from C57BL/6 mice, we investigated the toxicity of these herbicides, and protective effects of SS1 peptide against picloram and triclopyr toxicity. We measured total RNA content, cell viability and mRNA expression of peroxiredoxins, neuroprotective genes, mitochondrial-encoded electron transport chain (ETC) genes in N2a cells treated with herbicides and SS31. Using primary neurons from C57BL/6 mice, neuronal survival was studied in neurons treated with herbicides, in neurons pretreated with SS31 plus treated with herbicides, neurons treated with SS31 alone, and untreated neurons. Significantly decreased total RNA content, and cell viability in N2a cells treated with picloram and triclopyr were found compared to untreated N2a cells. Decreased mRNA expression of neuroprotective genes, and ETC genes in cells treated with herbicides was found compared to untreated cells. Decreased mRNA expression of peroxiredoxins 1–6 in N2a cells treated with picloram was found, suggesting that picloram affects the antioxidant enzymes in N2a cells. Immunofluorescence analysis of primary neurons revealed that decreased neuronal branching and degenerating neurons in neurons treated with picloram and triclopyr. However, neurons pretreated with SS31 prevented degenerative process caused by herbicides. Based on these results, we propose that herbicides—picloram and triclopyr appear to damage neurons, and the SS31 peptide appears to protect neurons from herbicide toxicity. PMID:21318024

  14. Bonneville Power Administration Transmission System Vegetation Management Program Draft Environmental Impact Statement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    Bonneville is responsible for maintaining a network of 24,000 kilometers (km) or 15,000 miles (mi.) of electric transmission lines and 350 substations in a region of diverse vegetation. This vegetation can interfere with electric power flow, pose safety problems for us and the public, and interfere with our ability to maintain these facilities. We need to (1) keep vegetation away from the electric facilities; (2) increase the program efficiency and consistency; (3) review herbicide use (under increased public scrutiny); and (4) maximize the range of tools we can use while minimizing environmental impact (Integrated Vegetation Management). This DEIS establishes Planningmore » Steps for managing vegetation for specific projects (to be tiered to this EIS). In addition to No Action (current practice), alternatives are presented for Rights-of-way, Electric Yards, and Non-electric Facilities (landscaping, work yards). Four vegetation control methods are analyzed: manual, mechanical, herbicide, and biological. Also evaluated are 24 herbicide active ingredients and 4 herbicide application techniques (spot, localized, broadcast, and aerial). For rights-of-way, they consider three sets of alternatives: alternative management approaches (time-driven or establishing low-growing plant communities); alternative method packages; and, if herbicides are in a methods package, alternative vegetation selections (noxious weeds, deciduous, or any vegetation). For electric yards, one herbicide-use alternative is considered. For non-electric facilities, two method package alternatives are considered. For rights-of-way, the environmentally preferred alternative(s) would use manual, mechanical, and biological control methods, as well as spot and localized herbicide applications for noxious and deciduous plant species; the BPA-preferred alternative(s) would add broadcast and aerial herbicide applications, and would use herbicides on any vegetation. Both would factor a management approach that fosters low-growing plant communities.« less

  15. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction.

    PubMed

    Duke, Stephen O

    2015-05-01

    Herbicide-resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate-resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate-resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate-resistant crops over broad areas facilitated the evolution of glyphosate-resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate-resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl-CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate-resistant crops had initially. In the more distant future, other herbicide-resistant crops (including non-transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide-resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  16. Effects of a glyphosate-based herbicide on the development of Common toads (Bufo bufo L.; Amphibia) at different temperatures

    NASA Astrophysics Data System (ADS)

    Baier, Fabian; Gruber, Edith; Spangl, Bernhard; Zaller, Johann G.

    2016-04-01

    Herbicides based on the active ingredient glyphosate are frequently applied in agriculture, horticulture and private gardens all over the world. Recently, leaching of glyphosate or its metabolite (AMPA) into water bodies inhabited by amphibians has been reported. However, very little is known about non-target effects of these herbicides on amphibians and even less is known to what extent different temperatures might alter these effects. Using climate chambers, we investigated the effects of the glyphosate-based herbicide Roundup PowerFlex® (480 g L-1 glyphosate, formulated as 588 g L-1 potassium salt) on the larval development of Common toads (Bufo bufo L.; Amphibia: Anura) under different temperature regimes (15°C vs. 20°C). We established five herbicide concentrations: 0, 1.5, 3, 4 mg acid equivalent L-1 and a 4 mg a.e. L-1 pulse treatment (totally three applications of 1.5, 1.5 and another 1 mg a.e. L-1) at each temperature in a full-factorial design. Each treatment combination was replicated five times, the experiment ran for 24 days. Results showed a highly significant effect of temperature on body length and body width but no effect of herbicide concentration on these growth parameters. Moreover, highly significant interactions between herbicide and temperature on body length and body width were observed suggesting that herbicides had different effects on different temperatures. In conclusion, although Roundup PowerFlex® at the tested concentrations appeared to have no acute toxicity to larvae of Common toads, the observed effects on tadpole morphology will potentially affect competitive interactions in spawning ponds of amphibia. Our findings of herbicide x temperature interactions might become more prevalent when human-induced climate change will lead to more extreme temperatures.

  17. Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco.

    PubMed

    Shimizu, Masanori; Goto, Maki; Hanai, Moeko; Shimizu, Tsutomu; Izawa, Norihiko; Kanamoto, Hirosuke; Tomizawa, Ken-Ichi; Yokota, Akiho; Kobayashi, Hirokazu

    2008-08-01

    Strategies employed for the production of genetically modified (GM) crops are premised on (1) the avoidance of gene transfer in the field; (2) the use of genes derived from edible organisms such as plants; (3) preventing the appearance of herbicide-resistant weeds; and (4) maintaining transgenes without obstructing plant cell propagation. To this end, we developed a novel vector system for chloroplast transformation with acetolactate synthase (ALS). ALS catalyzes the first step in the biosynthesis of the branched amino acids, and its enzymatic activity is inhibited by certain classes of herbicides. We generated a series of Arabidopsis (Arabidopsis thaliana) mutated ALS (mALS) genes and introduced constructs with mALS and the aminoglycoside 3'-adenyltransferase gene (aadA) into the tobacco (Nicotiana tabacum) chloroplast genome by particle bombardment. Transplastomic plants were selected using their resistance to spectinomycin. The effects of herbicides on transplastomic mALS activity were examined by a colorimetric assay using the leaves of transplastomic plants. We found that transplastomic G121A, A122V, and P197S plants were specifically tolerant to pyrimidinylcarboxylate, imidazolinon, and sulfonylurea/pyrimidinylcarboxylate herbicides, respectively. Transplastomic plants possessing mALSs were able to grow in the presence of various herbicides, thus affirming the relationship between mALSs and the associated resistance to herbicides. Our results show that mALS genes integrated into the chloroplast genome are useful sustainable markers that function to exclude plants other than those that are GM while maintaining transplastomic crops. This investigation suggests that the resistance management of weeds in the field amid growing GM crops is possible using (1) a series of mALSs that confer specific resistance to herbicides and (2) a strategy that employs herbicide rotation.

  18. Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides

    USGS Publications Warehouse

    Fairchild, J.F.; Ruessler, D.S.; Haverland, P.S.; Carlson, A.R.

    1997-01-01

    Aquatic plant toxicity tests are frequently conducted in environmental risk assessments to determine the potential impacts of contaminants on primary producers. An examination of published plant toxicity data demonstrates that wide differences in sensitivity can occur across phylogenetic groups of plants. Yet relatively few studies have been conducted with the specific intent to compare the relative sensitivity of various aquatic plant species to contaminants. We compared the relative sensitivity of the algae Selenestrum capricornutum and the floating vascular plant Lemna minor to 16 herbicides (atrazine, metribuzin, simazine, cyanazine, alachlor, metolachlor, chlorsulfuron, metsulfuron, triallate, EPTC, trifluralin, diquat, paraquat, dicamba, bromoxynil, and 2,4-D). The herbicides studied represented nine chemical classes and several modes of action and were chosen to represent major current uses in the United States. Both plant species were generally sensitive to the triazines (atrazine, metribuzin, simazine, and cyanazine), sulfonureas (metsulfuron and chlorsulfuron), pyridines (diquat and paraquat), dinitroaniline (trifluralin), and acetanilide (alachlor and metolachlor) herbicides. Neither plant species was uniformly more sensitive than the other across the broad range of herbicides tested. Lemna was more sensitive to the sulfonureas (metsulfuron and chlorsulfuron) and the pyridines (diquat and parequat) than Selenastrum. However Selenastrum was more sensitive than Lemna to one of two thiocarbamates (triallate) and one of the triazines (cyanazine). Neither species was sensitive to selective broadleaf herbicides including bromoxynil, EPTC, dicamba, or 2,4-D. Results were not always predictable in spite of obvious differences in herbicide modes of action and plant phylogeny. Major departures in sensitivity of Selenastrum occurred between chemicals within individual classes of the triazine, acetanilide, and thiocarbamate herbicides. Results indicate that neither species is predictively most sensitive, and that a number of species including a dicot speciessuch as Myriophyllum are needed to perform accurate risk assessments of herbicides.

  19. Accelerated biodegradation of a herbicide applied to the roadside environment using adapted soil microorganisms : final report.

    DOT National Transportation Integrated Search

    1994-06-01

    The extent and duration of pollution from herbicide spills and deliberate applications is related to properties of the herbicide and soil. Objectives of this study included the development of experimental procedures and mathematical models to determi...

  20. Controlling herbicide-susceptible, -tolerant and -resistant weeds with microbial bioherbicides

    USDA-ARS?s Scientific Manuscript database

    The management of weeds is a necessary but expensive challenge. Public concerns of health, safety, and sustainability have increased interest in reducing the use of synthetic chemicals for weed control. Alternatives to chemical herbicides, such as bioherbicides, may offer an alternative to herbicide...

Top