Science.gov

Sample records for substorm growth phase

  1. Pseudobreakup and substorm growth phase in the ionosphere and magnetosphere

    SciTech Connect

    Koskinin, H.E.J.; Pellinen, R.J.; Pulkkinen, T.I. ); Lopez, R.E. ); Baker, D.N. ); Boesinger, T. )

    1993-04-01

    The authors present space and ground based observations made during the growth phase and the onset of a substorm on August 31, 1986. Roughly 20 minutes after the [var epsilon] parameter at the magnetopause had exceeded 10[sup 11] W, the AMPTE Charge Composition Explorer spacecraft observed an increase in energetic particle fluxes consistent with magnetic field depolarization. The craft was close to magnetic midnight at a geocentric distance of 8.7R[sub E]. The event had the initial signature of a substorm onset, but it did not lead to a full-scale substorm expansion based on several ground based observations. There were no large particle injection events at geostationary orbit. After another 20 minutes the event did enter a normal substorm expansion phase. The authors interpret the initial activation as a [open quotes]pseudobreakup[close quotes]. They correlate observations made by spacecraft in the near-Earth plasma sheet, with ground based observations of the ionospheric development from magnetometer and electric field measurements from the STARE radar. The strength and the consequences are concluded to be the main differences of pseudobreakups and ordinary breakups.

  2. Physics of Substorm Growth Phase, Onset, and Dipolarization

    SciTech Connect

    C.Z. Cheng

    2003-10-22

    A new scenario of substorm growth phase, onset, and depolarization during expansion phase and the corresponding physical processes are presented. During the growth phase, as a result of enhanced plasma convection, the plasma pressure and its gradient are continued to be enhanced over the quiet-time values in the plasma sheet. Toward the late growth phase, a strong cross-tail current sheet is formed in the near-Earth plasma sheet region, where a local magnetic well is formed, the plasma beta can reach a local maximum with value larger than 50 and the cross-tail current density can be enhanced to over 10nA/m{sup 2} as obtained from 3D quasi-static magnetospheric equilibrium solutions for the growth phase. The most unstable kinetic ballooning instabilities (KBI) are expected to be located in the tailward side of the strong cross-tail current sheet region. The field lines in the most unstable KBI region map to the transition region between the region-1 and region-2 currents in the ionosphere, which is consistent with the observed initial brightening location of the breakup arc in the intense proton precipitation region. The KBI explains the AMPTE/CCE observations that a low-frequency instability with a wave period of 50-75 seconds is excited about 2-3 minutes prior to substorm onset and grows exponentially to a large amplitude at the onset of current disruption (or current reduction). At the current disruption onset higher frequency instabilities are excited so that the plasma and electromagnetic field fluctuations form a strong turbulent state. Plasma transport takes place due to the strong turbulence to relax the ambient plasma pressure profile so that the plasma pressure and current density are reduced and the ambient magnetic field intensity increases by more than a factor of 2 in the high-beta(sub)eq region and the field line geometry recovers from tail-like to dipole-like dipolarization.

  3. On the relationship between the growth and expansion phases of substorms and magnetospheric convection.

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.

    1973-01-01

    The definition of the growth and expansion phases of substorms is considered in terms of temporal sequences of magnetospheric convection. It is suggested that the definition of these phases should rest on magnetospheric convection theories and data because of the ambiguities in the interpretation of ground magnetometer records from which these concepts arose originally. Reviewed data are shown to offer strong evidence for the validity and usefulness of the concepts of substorm growth and expansion phases.

  4. Magnetotail and Ionospheric Evolution during the Substorm Growth Phase

    NASA Astrophysics Data System (ADS)

    Hsieh, M.; Otto, A.

    2013-12-01

    The growth phase of geomagnetic substorms is characterized by the equatorward motion of the growth phase arc close to or even into the region of diffuse aurora characteristic for a dipolar magnetic field. The presented results use a model of current sheet thinning based on midnight magnetic flux depletion (MMFD) in the near-Earth tail which is caused by sunward convection to replenish magnetic flux that is eroded on the dayside by magnetic reconnection during periods of southward IMF. The results use a three-dimensional mesocale MHD simulation of the near-Earth tail. This paper examines the changes of the near-Earth magnetotail region mapped into the ionopshere. Of specific interest are the changes in magnetic flux, flux tube entropy, field-aligned currents, convection, and the size and location of the respective ionospheric footprints of the magnetotail structure and properties. The mapping method is based on the Tsyganenko [1996] magnetic field model combined with magnetic flux conservation. It is found that the mapped magnetotail properties move equatorward by about 2 to 3 degrees during the growth phase. The removal of magnetic flux in the near-Earth tail causes a contraction of the ionospheric footprints of this tail region such that all of the mapped magnetotail structures move equatorward. The thin current is mapped into the region where magnetic flux is strongly depleted, and in close proximity with strong and narrow region 1 and 2 sense field-aligned currents. Our ionospheric maps also show a sharp transition between the dipole and stretched magnetic field and an evolution of thinning and convergent motion of field-aligned currents in the late growth phase.

  5. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    PubMed Central

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-01-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase. PMID:26074645

  6. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    NASA Astrophysics Data System (ADS)

    Forsyth, C.; Watt, C. E. J.; Rae, I. J.; Fazakerley, A. N.; Kalmoni, N. M. E.; Freeman, M. P.; Boakes, P. D.; Nakamura, R.; Dandouras, I.; Kistler, L. M.; Jackman, C. M.; Coxon, J. C.; Carr, C. M.

    2014-12-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ~1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.

  7. Particle scattering and current sheet stability in the geomagnetic tail during the substorm growth phase

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Pellinen, R. J.; Buechner, J.; Koskinen, H. E. J.; Lopez, R. E.; Dyson, R. L.; Frank, L. A.

    1992-01-01

    The particle scattering and current sheet stability features in the geomagnetic tail during the phase of substorm growth were investigated using Tsyganenko's (1989) magnetic field model. In a study of four substorm events which were observed both in the high-altitude nightside tail and in the auroral ionosphere, the model magnetic field was adjusted to each case so as to represent the global field development during the growth phase of the substorms. The model results suggest that the auroral brightenings are connected with processes taking place in the near-earth region inside about 15 earth radii. The results also suggest that there is a connection between the chaotization of the electrons and the auroral brightenings at substorm onset.

  8. Particle scattering and current sheet stability in the geomagnetic tail during the substorm growth phase

    SciTech Connect

    Pulkkinen, T.I.; Pellinen, R.J.; Koskinen, H.E.J. ); Baker, D.N. ); Buechner, J. ); Lopez, R.E. ); Dyson, R.L.; Frank, L.A. )

    1992-12-01

    The degree of pitch angle scattering and chaotization of various particle populations in the geomagnetic tail during the substorm growth phase is studied by utilizing the Tsyganenko 1989 magnetic field model. A temporally evolving magnetic field model for the growth phase is constructed by enhancing the near-Earth currents and thinning the current sheet from the values given by the static Tsyganenko model. Changing the field geometry toward an increasingly taillike configuration leads to pitch angle scattering of particles whose Larmor radii become comparable to the field line radius of curvature. Several different cases representing substorms with varying levels of magnetic disturbance have been studied. In each case, the field development during the growth phase leads to considerable scattering of the thermal electrons relatively close to the Earth. The current sheet regions where the electron motion is chaotic are magnetically mapped to the ionosphere and compared with low-altitude measurements of electron precipitation. The chaotization of the thermal electron population occurs within a few minutes of the substorm onset, and the ionospheric mappings of the chaotic regions in the equatorial plane compare well with the region of brightening auroras. Even though the temporal evolution of the complex plasma system cannot be self-consistently described by the temporal evolution of the empirical field model, these models can provide the most accurate estimates of the field parameters for tail stability calculations.

  9. A Double-Disruption Substorm Model - The Growth Phase

    NASA Astrophysics Data System (ADS)

    Sofko, G. J.; McWilliams, K. A.; Hussey, G. C.

    2014-12-01

    sufficiently that the NSh reaches the outer radiation belt at about t=85 min, the ionospheric conductivity has grown sufficiently that the XTJ disrupted by the DZs changes its dawn-to-dusk closure by travelling through the ionosphere. This second stage of disruption is the Substorm Current Wedge (SCW). Onset follows at about t=88 min.

  10. Growth-phase thinning of the near-Earth current sheet during the CDAW 6 substorm

    NASA Technical Reports Server (NTRS)

    Sanny, Jeff; Mcpherron, R. L.; Russell, C. T.; Baker, D. N.; Pulkkinen, T. I.; Nishida, A.

    1994-01-01

    The thinning of the near-Earth current sheet during the growth phase of the Coordinated Data Analysis Workshop (CDAW) 6 magnetospheric substorm is studied. The expansion onset of the substorm occurred at 1054 UT, March 22, 1979. During the growth phase, two spacecraft, International Sun Earth Explorer (ISEE) 1 and ISEE 2, were within the current sheet approximately 13 R(sub E) from the Earth and obtained simultaneous high-resolution magnetic data at two points in the current sheet. Plasma data were also provided by the ISEE spacecraft and solar wind data by IMP 8. To facilitate the analysis, the GSM magnetic field data are transformed to a 'neutral sheet coordinate system' in which the new x axis is parallel to the average magnetic field above and below the neutral sheet and the new y axis lies in the GSM equatorial plane. A model based on the assumption that the current sheet is a time-invariant structure fails to predict neutral sheet crossing times. Consequently, the Harris sheet model, which allows one to remove the restriction of time invariancy, is used instead. It is found that during the growth phase, a model parameter corresponding to the thickness of the current sheet decreased exponentially from about 5 R(sub E) to 1 R(sub E) with a time constant of about 14 min. In addition, the ISEE 1 and ISEE 2 neutral sheet crossings after expansion onset indicate that the neutral sheet was moving upward at 7 km/s relative to the spacecraft. Since both crossings occurred in approximately 80 s, the current sheet thickness is estimated to be about 500 km. These results demonstrate that the near-Earth current sheet undergoes dramatic thinning during the substorm growth phase and expansion onset.

  11. Near-earth Thin Current Sheets and Birkeland Currents during Substorm Growth Phase

    SciTech Connect

    Sorin Zaharia; C.Z. Cheng

    2003-04-30

    Two important phenomena observed during the magnetospheric substorm growth phase are modeled: the formation of a near-Earth (|X| {approx} 9 R{sub E}) thin cross-tail current sheet, as well as the equatorward shift of the ionospheric Birkeland currents. Our study is performed by solving the 3-D force-balance equation with realistic boundary conditions and pressure distributions. The results show a cross-tail current sheet with large current (J{sub {phi}} {approx} 10 nA/m{sup 2}) and very high plasma {beta} ({beta} {approx} 40) between 7 and 10 R{sub E}. The obtained region-1 and region-2 Birkeland currents, formed on closed field lines due to pressure gradients, move equatorward and become more intense (J{sub {parallel}max} {approx} 3 {micro}A/m{sup 2}) compared to quiet times. Both results are in agreement with substorm growth phase observations. Our results also predict that the cross-tail current sheet maps into the ionosphere in the transition region between the region-1 and region-2 currents.

  12. Formation of a very thin current sheet in the near-earth magnetotail and the explosive growth phase of substorms

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Zhang, L.; Choe, G. S.; Cai, H. J.

    1995-01-01

    A magnetofricional method is used to construct two-dimensional MHD equilibria of the Earth's magnetosphere for a given distribution of entropy functions(S = pV(exp gamma), where p is the plasma pressure and V is the tube volume per unit magnetic flux. It is found that a very thin current sheet with B (sub zeta) is less than 0.5 nu T and thickness less than 1000 km can be formed in the near-earth magnetotail (x is approximately -8 to -20R(sub e) during the growth phase of substorm. The tail current sheets are found to become thinner as the entropy or the entropy gradient increases. It is suggested that the new entropy anti-diffusion instability associated with plasma transport across field lines leads to magnetic field dipolarization and accelerates the formation of thin current sheet, which may explain the observed explosive growth phase of substorms.

  13. Simulating the Thinning Magnetotail Current Sheet During a Substorm Growth Phase with the Rice Convection Model-Equilibrium

    NASA Astrophysics Data System (ADS)

    Lemon, C. L.; Crabtree, C. E.; Chen, M.; Guild, T. B.

    2015-12-01

    Modeling the progression of the magnetotail configuration during a substorm growth phase is challenging because the current sheet becomes very thin, and is difficult to resolve while keeping the problem computationally tractable. Magnetohydrodynamics (MHD) models have dealt with this problem in various ways, and many claim to be driven by physical rather than numerical considerations. The Rice Convection Model-Equilibrium (RCM-E) is not an MHD model, and has advantages and disadvantages compared to MHD. The notable advantages are the characterization of the full energy distribution of the plasma (including the associated gradient/curvature drift), as well as its generally more comprehensive treatment of the electrodynamics of magnetosphere-ionosphere coupling. The disadvantages include the bounce-averaging of plasma drift, which limits the domain to closed field lines, and the assumption of slow flow relative to the Alfvén speed. The RCM-E has been used in the past to model a substorm growth phase, but its assumptions do not allow it to properly treat the onset mechanism or the formation of x-lines. It can simulate the approach to onset, but is limited by its ability to resolve the thinning current sheet. In this presentation, we present advances in the technique used to calculate the self-consistent magnetic field, which allows us to resolve thinner current sheets than were previously possible. We combine this with a generalized ballooning mode analysis of specific flux tubes in order to assess the stability of the magnetotail to substorm onset.

  14. Inferring the energy density in the tail as a function of the interplanetary conditions during the growth phase of substorms

    NASA Astrophysics Data System (ADS)

    Jacquey, C.; Sauvaud, J.; Budnik, E.; Hitier, R.

    2006-12-01

    The expansion phase corresponds to the dissipative phase of substorm and typically lasts for 30~45 minutes. During the expansion phase, a large amount of energy is explosively dissipated into the inner magnetosphere and the ionosphere. This energy originally coming from the solar wind via its electromagnetic coupling with the magnetosphere is firstly stored in the tail during the growth phase lasting for 1~3 hours.In this paper, we present case studies and preliminary statistical analysis based on the simultaneous measurements obtained both in the solar wind by IMP-8 and in the tail lobes by the pair of the ISEE 1/2 probes. We show that the tail energy density temporal profiles can be reproduced with the help of a model taking into account the pressure balance at the magnetopause and the storage of input energy from the solar wind. We analyse the changes of the values of the model parameters in regards of the interplanetary conditions, the geomagnetic activity and the observation location. We also study the radial gradient of the tail energy density by comparing the results obtained by the model and by the multi-point analysis of the ISEE 1/2 measurements. The implications of these results in substorm and magnetospheric field models are discussed. We finally present the methodology envisioned for extending in a semi-automated way this study to a vast database including the data obtained in the tail by ISEE 1/2, AMPTE-IRM, GEOTAIL, INTERBALL, CLUSTER and the up-coming THEMIS mission and in the solar wind by IMP-8, WIND and ACE.

  15. MHD instability with dawn-dusk symmetry in near-Earth plasma sheet during substorm growth phase*

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Raeder, J.; Hegna, C.; Sovinec, C.

    2010-12-01

    Recent global MHD simulations of March 23, 2007 THEMIS substorm event using the OpenGGCM code have confirmed the presence of both high-ky ballooning modes and zero-ky instabilities in the near-Earth plasma sheet during the substorm growth phase [Raeder et al 2010]. These results are consistent with findings from earlier analyses [Siscoe et al 2009; Zhu et al 2009]. Here ky is the azimuthal wavenumber in the dawn-dusk direction. However, the nature and role of the ky=0 mode, as well as its interaction with the high ky ballooning modes, in the process leading to the expansion onset remain unclear. In this work, we focus on the stability properties of the ky=0 mode. A re-evaluation of the tail-tearing mode criterion by Sitnov and Schindler (2009) suggested that the dipolarization front (DF) structure identified in THEMIS observations [Runov et al 2009] could be tearing-unstable. Linear calculations using the NIMROD code have found a growing tearing mode in a generalized Harris sheet with a DF-like structure, which is also a unique feature closely correlated with the appearance of zero-ky mode in the OpenGGCM simulation. The ideal-MHD energy principle analysis is used to address the question whether the ky=0 mode is an ideal or resistive MHD instability. We further compare the linear and nonlinear tail-tearing mode in NIMROD simulations with the ky=0 mode from OpenGGCM simulations. *Supported by NSF Grants AGS-0902360 and PHY-0821899. References: Raeder, J., P. Zhu, Y.-S. Ge, and G. Siscoe (2010), Tail force imbalance and ballooning instability preceding substorm onset, submitted to J. Geophys. Res. Runov, A., et al. (2009), Geophys. Res. Lett., 36, L14106. Siscoe, G.L., M.M. Kuznetsova, and J. Raeder (2009), Ann. Geophys., 27, 3141. Sitnov, M.I. and K. Schindler (2010), Geophys. Res. Lett., 37, L08102. Zhu, P., J. Raeder, K. Germaschewski, and C.C. Hegna (2009), Ann. Geophys., 27, 1129.

  16. Substorms

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2015-01-01

    This chapter deals with the essence of the magnetospheric substorm, the return of magnetic flux into the magnetosphere after disconnection from the solar wind magnetic field. There are three fundamental transport processes involved: (1) thinning of the tail plasma sheet and accompanying recession of the outer boundary of the dipolar magnetosphere during the growth phase, (2) flux transport along the tail toward that boundary after onset of tail reconnection, and (3) penetration of plasma and magnetic flux into the dipolar magnetosphere. The chapter then looks at corresponding processes in the Jupiter and Saturn magnetospheres and tails, which are strongly dominated by the fast planetary rotations. It elucidates some key aspects of the entry problem, albeit from a personal vantage point, and addresses the still open questions. Finally, the chapter addresses the correlation between solar wind ram pressure and auroral activity and brightness on Jupiter and Saturn.

  17. On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

    SciTech Connect

    Motoba, T.; Ohtani, S.; Anderson, B. J.; Korth, H.; Mitchell, D.; Lanzerotti, L. J.; Shiokawa, K.; Connors, M.; Kletzing, C. A.; Reeves, G. D.

    2015-10-27

    In this study, magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arc location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3° equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0°; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2–5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.

  18. On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

    DOE PAGES

    Motoba, T.; Ohtani, S.; Anderson, B. J.; Korth, H.; Mitchell, D.; Lanzerotti, L. J.; Shiokawa, K.; Connors, M.; Kletzing, C. A.; Reeves, G. D.

    2015-10-27

    In this study, magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arcmore » location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3° equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0°; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2–5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.« less

  19. A new technique for determining Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE)

    NASA Astrophysics Data System (ADS)

    Forsyth, C.; Rae, I. J.; Coxon, J. C.; Freeman, M. P.; Jackman, C. M.; Gjerloev, J.; Fazakerley, A. N.

    2015-12-01

    We present a new quantitative technique that determines the times and durations of substorm expansion and recovery phases and possible growth phases based on percentiles of the rate of change of auroral electrojet indices. By being able to prescribe different percentile values, we can determine the onset and duration of substorm phases for smaller or larger variations of the auroral index or indeed any auroral zone ground-based magnetometer data. We apply this technique to the SuperMAG AL (SML) index and compare our expansion phase onset times with previous lists of substorm onsets. We find that more than 50% of events in previous lists occur within 20 min of our identified onsets. We also present a comparison of superposed epoch analyses of SML based on our onsets identified by our technique and existing onset lists and find that the general characteristics of the substorm bay are comparable. By prescribing user-defined thresholds, this automated, quantitative technique represents an improvement over any visual identification of substorm onsets or indeed any fixed threshold method.

  20. PC index and magnetic substorms

    NASA Astrophysics Data System (ADS)

    Troshichev, Oleg; Janzhura, Alexander; Sormakov, Dmitry; Podorozhkina, Nataly

    PC index is regarded as a proxy of the solar wind energy that entered into the magnetosphere as distinct from the AL and Dst indices, which are regarded as characteristics of the energy that realize in the magnetosphere in form of substorm and magnetic storms. This conclusion is based on results of analysis of relationships between the polar cap magnetic activity (PC-index) and parameters of the solar wind, on the one hand, relationships between changes of PC and development of magnetospheric substorms (AL-index) and magnetic storms (Dst-index), on the other hand. This paper describes in detail the following main results which demonstrate a strong connection between the behavior of PC and development of magnetic disturbances in the auroral zone: (1) magnetic substorms are preceded by the РС index growth (isolated and extended substorms) or long period of stationary PC (postponed substorms), (2) the substorm sudden onsets are definitely related to such PC signatures as leap and reverse, which are indicative of sharp increase of the PC growth rate, (3) substorms generally start to develop when the PC index exceeds the threshold level ~ 1.5±0.5 mV/m, irrespective of the substorm growth phase duration and type of substorm, (4) linear dependency of AL values on PC is typical of all substorm events irrespective of type and intensity of substorm.

  1. Is energy storage and release part of the substorm process?

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.

    1981-01-01

    Models for magnetospheric substorms were considered. A modified model which includes the growth phase, a time interval prior to the onset of the expansion phase, during which energy was transferred from a solar wind to the magnetosphere and stored for subsequent release, is discussed. Evidence for energy storage in the tail prior to substorm expansion for both isolated and moderate substorm activity is reviewed.

  2. Poleward leaping auroras, the substorm expansive and recovery phases and the recovery of the plasma sheet

    SciTech Connect

    Hones, E.W.

    1992-05-01

    The auroral motions and geomagnetic changes the characterize the substorm`s expansive phase, maximum epoch, and recovery phase are discussed in the context of their possible associations with the dropout and, especially, the recovery of the magnetotail plasma sheet. The evidence that there may be an inordinately sudden large poleward excursion or displacement (a poleward leap) of the electrojet and the auroras at the expansive phase-recovery phase transition is described. The close temporal association of these signatures with the recovery of the plasma sheet, observed on many occasions, suggests a causal relationship between substorm maximum epoch and recovery phase on the one hand and plasma sheet recovery on the other.

  3. Indications for ionospheric participation in the substorm process from AMPTE/CCE observations. [Charge Composition Explorer

    NASA Technical Reports Server (NTRS)

    Daglis, I. A.; Sarris, E. T.; Kremser, G.

    1990-01-01

    Observations with the AMPTE/CCE spacecraft in the near-earth nightside magnetosphere show a significant enhancement of ionospheric particle presence, mainly O(+), at the beginning of the substorm growth phase. Such an enhancement indicates not only an ionospheric participation in the substorm initiation, but also an active role in the substorm growth phase.

  4. Azimuthal structure of substorm breakup arcs prior to expansive phase onset using ISUAL/FORMOSAT-2

    NASA Astrophysics Data System (ADS)

    Chang, T.; Cheng, C.; Chiang, C.; Tam, S. W.; Chen, A. B.; Hsu, R.; Su, H.

    2008-12-01

    Substorm breakup arcs are investigated for substorm onset that occurs at the location of "Harang discontinuity" at pre-midnight. The auroral breakup arc images are obtained by the Imager of Sprites and Upper Atmospheric Lightning (ISUAL) onboard FORMOSAT-2 satellite. We identify that the auroral breakup arc brightening occurs at the same time as the associated negative H-Bay and Pi 2 pulsations. It begins with a brightening on the arc and evolves into clear bead-like structure with approximate equally spaced separation along the arc direction. The enhanced auroral arcs finally break up into several parts. The azimuthal mode number of auroral breakup arcs prior to expansive phase onset ranges from ~200 to ~300. Based on the observations, we suggest that the substorm initial breakup arcs are consistent with kinetic ballooning instability, which is localized at the center of cross tail current sheet at about -(8-10) RE for strong substorms.

  5. Substorm evolution of auroral structures

    NASA Astrophysics Data System (ADS)

    Partamies, N.; Juusola, L.; Whiter, D.; Kauristie, K.

    2015-07-01

    Auroral arcs are often associated with magnetically quiet time and substorm growth phases. We have studied the evolution of auroral structures during global and local magnetic activity to investigate the occurrence rate of auroral arcs during different levels of magnetic activity. The ground-magnetic and auroral conditions are described by the magnetometer and auroral camera data from five Magnetometers — Ionospheric radars — All-sky cameras Large Experiment stations in Finnish and Swedish Lapland. We identified substorm growth, expansion, and recovery phases from the local electrojet index (IL) in 1996-2007 and analyzed the auroral structures during the different phases. Auroral structures were also analyzed during different global magnetic activity levels, as described by the planetary Kp index. The distribution of auroral structures for all substorm phases and Kp levels is of similar shape. About one third of all detected structures are auroral arcs. This suggests that auroral arcs occur in all conditions as the main element of the aurora. The most arc-dominated substorm phases occur in the premidnight sector, while the least arc-dominated substorm phases take place in the dawn sector. Arc event lifetimes and expectation times calculated for different substorm phases show that the longest arc-dominated periods are found during growth phases, while the longest arc waiting times occur during expansion phases. Most of the arc events end when arcs evolve to more complex structures. This is true for all substorm phases. Based on the number of images of auroral arcs and the durations of substorm phases, we conclude that a randomly selected auroral arc most likely belongs to a substorm expansion phase. A small time delay, of the order of a minute, is observed between the magnetic signature of the substorm onset (i.e., the beginning of the negative bay) and the auroral breakup (i.e., the growth phase arc changing into a dynamic display). The magnetic onset was

  6. Poleward leaping auroras, the substorm expansive and recovery phases and the recovery of the plasma sheet

    SciTech Connect

    Hones, E.W.

    1992-01-01

    The auroral motions and geomagnetic changes the characterize the substorm's expansive phase, maximum epoch, and recovery phase are discussed in the context of their possible associations with the dropout and, especially, the recovery of the magnetotail plasma sheet. The evidence that there may be an inordinately sudden large poleward excursion or displacement (a poleward leap) of the electrojet and the auroras at the expansive phase-recovery phase transition is described. The close temporal association of these signatures with the recovery of the plasma sheet, observed on many occasions, suggests a causal relationship between substorm maximum epoch and recovery phase on the one hand and plasma sheet recovery on the other.

  7. Probing the first few minutes of substorm expansion phase onset using ULF wave techniques

    NASA Astrophysics Data System (ADS)

    Rae, Jonathan; Mann, Ian; Milling, David; Murphy, Kyle; Angelopoulos, V.; Frey, Harald; Russell, Christopher; Glassmeier, Karl-Heinz; Auster, Uli; Mende, Stephen

    With the successful launch of the THEMIS spacecraft, the expansion of the CARISMA magnetometer array, and the deployment of the THEMIS GBOs, there exist exceptional opportunities to study the initiation of ULF waves surrounding substorm onset during the first THEMIS tail season. In this talk, we outline a number of techniques with which to diagnose the nightside magnetosphere around expansion phase onset. We use ULF pulsations to determine magnetospheric characteristics using both Pi2 (40-150s period) and long-period Pi1 (1-40s period) waveforms and investigate their relationship to substorm expansion phase onset. We present case studies whereby a ULF wave detection algorithm based upon a discrete wavelet transform [ e.g., Nose et al., 1998] is used to determine the very first signatures of ULF wave activity observed subsequent to substorm onset. We compare these results to the optical onset location in the ionosphere and the in-situ location of ULF wave initiation using the THEMIS and GOES satellites. Finally, we compare the location of the optical and magnetic signatures in the ionsosphere with results from a simple substorm current wedge model [e.g., Cramoysan et al., 1995] that produces estimates of the locations of the upward and downward field aligned currents and the Westward electrojet during the first few minutes of expansion phase onset. We propose to use these techniques to produce a substorm onset database during the THEMIS era.

  8. Comprehensive ground-based and in situ observations of substorm expansion phase onset

    NASA Astrophysics Data System (ADS)

    Walsh, A. P.; Rae, J.; Fazakerley, A. N.; Murphy, K. R.; Mann, I. R.; Watt, C. E.; Volwerk, M.; Forsyth, C.; Singer, H. J.; Donovan, E. F.; Zhang, T.

    2010-12-01

    We present comprehensive ground-based and space-based in situ geosynchronous observations of a substorm expansion phase onset on 1 October 2005. The Double Star TC2 and GOES12 spacecraft were both located within the substorm current wedge during the substorm expansion phase onset, which occurred over the Canadian sector. We find that an onset of ULF waves in space was observed after onset on the ground by extending the AWESOME timing algorithm into space. Furthermore a population of low energy field-aligned electrons was detected by the TC2 PEACE instrument contemporaneous with the ULF waves in space. These electrons appear to be associated with an enhancement of field-aligned Poynting flux into the ionosphere which is large enough to power visible auroral displays. The observations are most consistent with a near-Earth initiation of substorm expansion phase onset, such as the Near Geosynchronous Onset (NGO) substorm scenario. A lack of data from further downtail, however, means other mechanisms cannot be ruled out.

  9. Comprehensive ground-based and in situ observations of substorm expansion phase onset

    NASA Astrophysics Data System (ADS)

    Walsh, A. P.; Rae, I. J.; Fazakerley, A. N.; Murphy, K. R.; Mann, I. R.; Watt, C. E. J.; Volwerk, M.; Forsyth, C.; Singer, H. J.; Donovan, E. F.; Zhang, T. L.

    2010-12-01

    In this paper, we present comprehensive ground-based and space-based in situ geosynchronous observations of a substorm expansion phase onset on 1 October 2005. The Double Star TC-2 and GOES-12 spacecraft were both located within the substorm current wedge during the substorm expansion phase onset, which occurred over the Canadian sector. We find that an onset of ULF waves in space was observed after onset on the ground by extending the AWESOME timing algorithm into space. Furthermore, a population of low-energy field-aligned electrons was detected by the TC-2 PEACE instrument contemporaneous with the ULF waves in space. These electrons appear to be associated with an enhancement of field-aligned Poynting flux into the ionosphere which is large enough to power visible auroral displays. The observations are most consistent with a near-Earth initiation of substorm expansion phase onset, such as the Near-Geosynchronous Onset (NGO) substorm scenario. A lack of data from further downtail, however, means other mechanisms cannot be ruled out.

  10. Nightside auroral zone and polar cap ion outflow as a function of substorm size and phase

    NASA Astrophysics Data System (ADS)

    Wilson, G. R.; Ober, D. M.; Germany, G. A.; Lund, E. J.

    2004-02-01

    Because the high latitude ionosphere is an important source of plasma for the magnetosphere under active conditions, we have undertaken a study of the way ion outflow from the nightside auroral zone and polar cap respond to substorm activity. We have combined data from the Ultraviolet Imager (UVI) on Polar with ion upflow measurements from the TEAMS instrument on the FAST spacecraft to construct a picture of ion upflow from these regions as a function of substorm size and as a function of time relative to substorm onset. We use data taken during solar minimum in the northern hemisphere between December 1996 and February 1997. We find that the total nightside auroral zone ion outflow rate (averaged over substorm phase) depends on the size of the substorm, increasing by about a factor of 10 for both O+ and H+ from the smallest to the largest substorms in our study. The combined outflow rate from both the polar cap and the nightside auroral zone goes up by a factor of 7 for both ions for the same change in conditions. Regardless of storm size, the nightside auroral zone outflow rate increases by about a factor of 2 after onset, reaching its peak level after about 20 min. These results indicate that the change in the nightside auroral zone ion outflow rate that accompanies substorm onset is not as significant as the change from low to high magnetic activity. As a consequence, the prompt increase in the near earth plasma sheet energy density of O+ and H+ ions that accompanies onset [, 1996] is likely due to local energization of ions already present rather than to the sudden arrival and energization of fresh ionospheric plasma.

  11. Modeling substorm dynamics of the magnetosphere: from self-organization and self-organized criticality to nonequilibrium phase transitions.

    PubMed

    Sitnov, M I; Sharma, A S; Papadopoulos, K; Vassiliadis, D

    2002-01-01

    Earth's magnetosphere during substorms exhibits a number of characteristic features such as the signatures of low effective dimension, hysteresis, and power-law spectra of fluctuations on different scales. The largest substorm phenomena are in reasonable agreement with low-dimensional magnetospheric models and in particular those of inverse bifurcation. However, deviations from the low-dimensional picture are also quite considerable, making the nonequilibrium phase transition more appropriate as a dynamical analog of the substorm activity. On the other hand, the multiscale magnetospheric dynamics cannot be limited to the features of self-organized criticality (SOC), which is based on a class of mathematical analogs of sandpiles. Like real sandpiles, during substorms the magnetosphere demonstrates features, that are distinct from SOC and are closer to those of conventional phase transitions. While the multiscale substorm activity resembles second-order phase transitions, the largest substorm avalanches are shown to reveal the features of first-order nonequilibrium transitions including hysteresis phenomena and a global structure of the type of a temperature-pressure-density diagram. Moreover, this diagram allows one to find a critical exponent, that reflects the multiscale aspect of the substorm activity, different from the power-law frequency and scale spectra of autonomous systems, although quite consistent with second-order phase transitions. In contrast to SOC exponents, this exponent relates input and output parameters of the magnetosphere. Using an analogy to the dynamical Ising model in the mean-field approximation, we show the connection between the data-derived exponent of nonequilibrium transitions in the magnetosphere and the standard critical exponent beta of equilibrium second-order phase transitions.

  12. Lower thermospheric wind variations in auroral patches during the substorm recovery phase

    NASA Astrophysics Data System (ADS)

    Oyama, Shin-ichiro; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Watkins, Brenton J.; Kurihara, Junichi; Tsuda, Takuo T.; Fallen, Christopher T.

    2016-04-01

    Measurements of the lower thermospheric wind with a Fabry-Perot interferometer (FPI) at Tromsø, Norway, found the largest wind variations in a night during the appearance of auroral patches at the substorm recovery phase. Taking into account magnetospheric substorm evolution of plasma energy accumulation and release, the largest wind amplitude at the recovery phase is a fascinating result. The results are the first detailed investigation of the magnetosphere-ionosphere-thermosphere coupled system at the substorm recovery phase using comprehensive data sets of solar wind, geomagnetic field, auroral pattern, and FPI-derived wind. This study used three events in November 2010 and January 2012, particularly focusing on the wind signatures associated with the auroral morphology, and found three specific features: (1) wind fluctuations that were isolated at the edge and/or in the darker area of an auroral patch with the largest vertical amplitude up to about 20 m/s and with the longest oscillation period about 10 min, (2) when the convection electric field was smaller than 15 mV/m, and (3) wind fluctuations that were accompanied by pulsating aurora. This approach suggests that the energy dissipation to produce the wind fluctuations is localized in the auroral pattern. Effects of the altitudinal variation in the volume emission rate were investigated to evaluate the instrumental artifact due to vertical wind shear. The small electric field values suggest weak contributions of the Joule heating and Lorentz force processes in wind fluctuations. Other unknown mechanisms may play a principal role at the recovery phase.

  13. Tests of Substorm Models' Predictions Using ISTP Observations

    NASA Technical Reports Server (NTRS)

    Sanchez, Ennio R.

    1998-01-01

    This report provides progress to test the predictions of substorm models using ISTP observations. During the first year, two investigations were initiated in collaboration with a number of ISTP researchers. Both investigations use a combination of simultaneous measurements from high-, low-, and ground-altitude instruments to: (1) explore the role of MHD resonances in the onset and evolution of substorms, and (2) establish the timing of events in the magnetosphere and ionosphere during the substorm evolution beginning with the growth phase and ending with the recovery phase.

  14. Occurrency frequency of substorm field and plasma signatures observed near-earth by ISEE-1/2

    NASA Technical Reports Server (NTRS)

    Hsu, T. S.; McPherron, R. L.

    1996-01-01

    The onset of the majority of substorms occurs when the tail field stops growing more tail-like and begins to become more dipolar. This corresponds to the onset signatures on the ground and in geosynchronous orbit. The AE indices and the IGS Pi 2 data were used to determine the major substorm onsets of 1978 and 1979. The time delay between successive substorms, the distribution of the substorm growth phase duration and the probability of tailward flows were determined as a function of spacecraft location. About a half of the substorms exhibit a plasma signature including earthward or tailward flows or plasma sheet drop out and recovery. Earthward flows are often seen at substorm onset, and almost always during substorm recovery. Tailward flows are occasionally seen at onset as the spacecraft is close enough to the neutral sheet. The experimental results are compared to predictions based on the neutral line and current sheet disruption models.

  15. Spontaneous and trigger-associated substorms compared: Electrodynamic parameters in the polar ionosphere

    NASA Astrophysics Data System (ADS)

    Liu, Jun-Ming; Zhang, Bei-Chen; Kamide, Y.; Wu, Zhen-Sen; Hu, Ze-Jun; Yang, Hui-Gen

    2011-01-01

    An attempt is made to study the difference, if any, between the response of the polar ionosphere to spontaneous substorms and that to trigger-associated substorms in terms of electrodynamic parameters including ionospheric current vectors, the electric potential, and the current function. The results show that, in the first approximation, the ionospheric parameters for the two types of substorms are quite similar. It is therefore conceived that spontaneous substorms are not very different from trigger-associated substorms in the development of substorm processes in the magnetosphere-ionosphere system. We demonstrate, however, that spontaneous substorms seem to have a more clearly identifiable growth phase, whereas trigger-associated substorms have a more powerful unloading process. Changes in the current intensity and the electric potential drop across the polar cap in the recovery phase are also quite different from each other. Both the current intensity and the cross-polar cap potential drop show a larger decrease in the recovery phase of trigger-associated substorms, but the potential drop decreases only slightly and the currents in the late morning sector are still strong for spontaneous substorms. We interpret these findings as an indication of the relative importance of the unloading process and the directly driven process in conjunction with the north-south polarity of the interplanetary magnetic field. There still exists a strong directly driven process in the recovery phase of spontaneous substorms. For trigger-associated substorms, however, both the directly driven process and the unloading process become weak after the peak time.

  16. Generation of BBFs and DFs, Formation of Substorm Auroras and Triggers of Substorm Onset

    NASA Astrophysics Data System (ADS)

    Song, Y.; Lysak, R. L.

    2014-12-01

    Substorm onset is a dynamical response of the MI coupling system to external solar wind driving conditions and to internal dynamical processes. During the growth phase, the solar wind energy and momentum are transferred into the magnetosphere via MHD mesoscale Alfvenic interactions throughout the magnetopause current sheet. A decrease in momentum transfer from the solar wind into the magnetosphere starts a preconditioning stage, and produces a strong earthward body force acting on the whole magnetotail within a short time period. The strong earthward force will cause localized transients in the tail, such as multiple BBFs, DFs, plasma bubbles, and excited MHD waves. On auroral flux tubes, FACs carried by Alfven waves are generated by Alfvenic interactions between tail earthward flows associated with BBFs/DFs/Bubbles and the ionospheric drag. Nonlinear Alfvenic interaction between the incident and reflected Alfven wave packets in the auroral acceleration region can produce localized parallel electric fields and substorm auroral arcs. During the preconditioning stage prior to substorm onset, the generation of parallel electric fields and auroral arcs can redistribute perpendicular mechanical and magnetic stresses, "decoupling" the magnetosphere from the ionosphere drag. This will enhance the tail earthward flows and rapidly build up stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release and substorm auroral poleward expansion. We suggest that in preconditioning stage, the decrease in the solar wind momentum transfer is a necessary condition of the substorm onset. Additionally, "decoupling" the magnetosphere from ionosphere drag can trigger substorm expansion onset.

  17. Evidence of kinetic Alfvén eigenmode in the near-Earth magnetotail during substorm expansion phase

    NASA Astrophysics Data System (ADS)

    Duan, S. P.; Dai, Lei; Wang, Chi; Liang, J.; Lui, A. T. Y.; Chen, L. J.; He, Z. H.; Zhang, Y. C.; Angelopoulos, V.

    2016-05-01

    Unipolar pulses of kinetic Alfvén waves (KAW) are first observed in the near-Earth plasma sheet (NEPS) associated with dipolarizations during substorm expansion phases. Two similar events are studied with Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations during substorms on 3 February 2008 and 7 February 2008. The unipolar pulses were located at a trough-like Alfvén speed profile in the northern plasma sheet at a distance of 10-11 RE from Earth. The dominant wave components consist of a southward δEz toward the neutral plane and a +δBy toward the dusk. The |δEz|/|δBy| ratio was in the range of a few times the local Alfvén speed, a strong indication of KAW nature. The wave Poynting flux was earthward and nearly parallel to the background magnetic field. The pulse was associated with an earthward field-aligned current carried by electrons. These observational facts strongly indicate a KAW eigenmode that is confined by the plasma sheet but propagates earthward along the field line. The KAW eigenmode was accompanied by short timescale (1 min) dipolarizations likely generated by transient magnetotail reconnection. The observed polarity of the KAW field/current is consistent with that of the Hall field/current in magnetic reconnection, supporting the scenario that the Hall fields/current propagate out from reconnection site as KAW eigenmodes. Aurora images on the footprint of THEMIS spacecraft suggest that KAW eigenmode may power aurora brightening during substorm expansion phase.

  18. Ground-based and satellite observations of substorm onset features

    NASA Astrophysics Data System (ADS)

    Chang, T.; Cheng, C. Z.; Chiang, C.; Tam, S. W.; Chen, A. B.; Hsu, R.; Su, H.

    2009-12-01

    We present the ground-based and satellite observations of substorm onset events. In the observations from Ground Based Observatories (GBO) and the ISUAL/FORMOSAT-2 satellite, we find structures which consist of periodic bright spots on the auroral arc prior to the substorm expansion phase onset. The intensity of arc grows exponentially before breakup with a linear growth rate of ~O(1-3)sec-1. Under the arc, the negative H-bay associated with the substorm is evident in the ground-based magnetometer data. From ISUAL observations, the first auroral brightening is identified roughly at the beginning of the negative H-bay. The auroral arc is breaks up before dispersionless particle injections are observed at geosynchronous orbit. Based on analysis of these observations, we suggest that this event can be a support of the scenario of substorm onset which is caused by a kinetic ballooning instability which is localized at ~ -10RE.

  19. Observations in the vicinity of substorm onset: Implications for the substorm process

    SciTech Connect

    Elphinstone, R.D.; Hearn, D.J.; Cogger, L.L.

    1995-05-01

    Multi-instrument data sets from the ground and satellites at both low and high altitude have provided new results concerning substorm onset and its source region in the magnetosphere. Twenty-six out of 37 substorm onset events showed evidence of azimuthally spaced auroral forms (AAFs) prior to the explosive poleward motion associated with optical substorm onset. The azimuthal wavelengths associated with these onsets were found to range between 132 and 583 km with a mean value of 307 {plus_minus} 115 km. The occurrence rate increased with decreasing wavelength down to a cutoff wavelength near 130 km. AAFs can span 8 hours of local time prior to onset and generally propagate eastward in the morning sector. Onset itself is, however, more localized spanning only about 1 hour local time. The average location of the peak intensity for 80 onsets was 65.9 {plus_minus} 3.5 CGMlat, 22.9 {plus_minus} 1.2 Mlt. AAF onsets occur during time periods when the solar wind pressure is relatively high. These low-latitude wavelike onsets appear as precursors in the form of long-period magnetic pulsations (Pc 5 band) and frequently occur on the equatorward portion of the double oval distribution. AAFs brighten in conjunction with substorm onset leading to the conclusion that they are a growth phase activity causally related to substorm onset. Precursor activity associated with these AAFs is also seen near geosynchronous orbit altitude and examples show the relationship between the various instrumental definitions of substorm onset. The implied mode number (30 to 135) derived from this work is inconsistent with cavity mode resonances but is consistent with a modified flute/ballooning instability which requires azimuthal pressure gradients. 88 refs., 20 figs., 3 tabs.

  20. Investigation of triggering mechanism of substorm through the analysis of Geotail and Themis data

    NASA Astrophysics Data System (ADS)

    Machida, S.; Miyashita, Y.; Ieda, A.; Nose, M.; Angelopoulos, V.; McFadden, J. P.; Auster, H.

    2011-12-01

    In our previous study, we have adopted a superposed epoch analysis method to the Geotail data to understand the triggering mechanism of substorm. Further, we have proposed a new scheme of substorm called "Catapult Current Sheet Relaxation Model" to explain our results. As an extension of these works, we adopted the same method of analysis to the Themis spacecraft data, and found that there are both the same and different characteristics between the results of Themis and Geotail. It is of interest that clear differences are present even if we use the same data set of Themis but adopting different lists of auroral breakups, i.e., substorm onsets. These differences seem to be attributed to the intensity of substorm. Large substorms tend to have southward magnetic field variations related to the plasma sheet thinning which is known as a notable characteristic during a growth phase, near the Earth compared to small substorms. However, the convective earthward flows are weakened just for a few minutes prior to the onset, followed by notable enhancement of the earthward flows after the onset. On the other hand, the southward variations in the magnetic field for small substorms can be seen in the tailward side compared to large substorms. While, the northward magnetic field variations after the onset can be also seen in the tailward side. Furthermore, the earthward convective flows which are not produced by magnetic reconnection seem to develop for moderate class of substorms just prior to the onset. Those differences can be a crucial clue to solve the issue of substorm triggering.

  1. The magnetotail and substorms. [magnetic flux transport model

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Mcpherron, R. L.

    1973-01-01

    The tail plays a very active and important role in substorms. Magmetic flux eroded from the dayside magnetosphere is stored here. As more and more flux is transported to the magnetotail and stored, the boundary flares more, the field strength in the tail increases, and the currents strengthen and move closer to the earth. Further, the plasma sheet thins and the magnetic flux crossing the neutral sheet lessens. The experimental evidence for these processes is discussed and a phenomenological or qualitative model of the substorm sequence is presented. In this model, the flux transport is driven by the merging of the magnetospheric and interplanetary magnetic fields. During the growth phase of substorms the merging rate on the dayside magnetosphere exceeds the reconnection rate in the neutral sheet.

  2. PC index as a proxy of the solar wind energy that entered into the magnetosphere: Development of magnetic substorms

    NASA Astrophysics Data System (ADS)

    Troshichev, O. A.; Podorozhkina, N. A.; Sormakov, D. A.; Janzhura, A. S.

    2014-08-01

    The Polar Cap (PC) index has been approved by the International Association of Geomagnetism and Aeronomy (IAGA XXII Assembly, Merida, Mexico, 2013) as a new index of magnetic activity. The PC index can be considered to be a proxy of the solar wind energy that enters the magnetosphere. This distinguishes PC from AL and Dst indices that are more related to the dissipation of energy through auroral currents or storage of energy in the ring current during magnetic substorms or storms. The association of the PC index with the direct coupling of the solar wind energy into the magnetosphere is based upon analysis of the relationship of PC with parameters in the solar wind, on the one hand, and correlation between the time series of PC and the AL index (substorm development), on the other hand. This paper (the first of a series) provides the results of statistical investigations that demonstrate a strong correlation between the behavior of PC and the development of magnetic substorms. Substorms are classified as isolated and expanded. We found that (1) substorms are preceded by growth in the RS index, (2) sudden substorm expansion onsets are related to "leap" or "reverse" signatures in the PC index which are indicative of a sharp increase in the PC growth rate, (3) substorms start to develop when PC exceeds a threshold level 1.5 ± 0.5 mV/m irrespective of the length of the substorm growth phase, and (4) there is a linear relation between the intensity of substorms and PC for all substorm events.

  3. The response of ionospheric convection in the polar cap to substorm activity

    NASA Technical Reports Server (NTRS)

    Lester, M.; Lockwood, M.; Yeoman, T. K.; Cowley, S. W. H.; Luehr, H.; Bunting, R.; Farrugia, C. J.

    1995-01-01

    We report multi-instrument observations during an isolated substorm on 17 October 1989. The European Incoherent Scatter (EISCAT) radar operated in the SP-UK-POLI mode measuring ionospheric convection at latitudes 71 deg Lambda - 78 deg Lambda. Sub-Auroral Magnetometer Network (SAMNET) and the EISCAT Magnetometer Cross provide information on the timing of substorm expansion phase onset and subsequent intensifications, as well as the location of the field aligned and ionospheric currents associated with the substorm current wedge. Interplanetary Monitoring Platform-8 (IMP-8) magnetic field data are also included. Evidence of a substorm growth phase is provided by the equatorward motion of a flow reversal boundary across the EISCAT radar field of view at 2130 MLT, following a southward turning of the interplanetary magnetic field (IMF). We infer that the polar cap expanded as a result of the addition of open magnetic flux in the tail lobes during this interval. The flow reversal boundary, which is a lower limit to the polar cap boundary, reached an invariant latitude equatorward of 71 deg Lambda by the time of the expansion phase onset. We conclude that the substorm onset region in the ionosphere, defined by the westward electrojet, mapped to a part of the tail radially earthward of the boundary between open and closed magnetic flux, the distant neutral line. Thus the substorm was not initiated at the distant neutral line, although there is evidence that it remained active during the expansion phase.

  4. Observational evidence for a kinetic ballooning instability during substorm

    NASA Astrophysics Data System (ADS)

    Chang, T.; Cheng, C. Z.; Chiang, J. C.; Chen, A. B.

    2010-12-01

    A theory of kinetic ballooning instability has been proposed to explain the trigger of substorm expansion phase. It results from the energy release of nonuiform plasma pressure with gradient along the direction of the magnetic field curvature. Recent plasma observations also show the possible evidence for a kinetic ballooning instability. In this study, we investigate the wave activities around the onset of substorm expansion phase based on the THEMIS satellites observations and evolution of auroral activities during substorm. Pi 2 low frequency perturbation prior to current disruption can be identified in the magnetic fluctuations. When Pi 1 high frequency perturbation is also excited, it enters the turbulent state. During the late growth phase, the auroral arc is forming with an azimuthally-spaced structure with high mode number and growing with a linear growth rate. The theory of kinetic ballooning instability can explain the physical mechanism of Pi 2 instability excited prior to the current disruption, the properties of substorm onset arc, and the cause of eventual arc breakup.

  5. Plasma and magnetic field variations in the distant magnetotail associated with near-earth substorm effects

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Bame, S. J.; Mccomas, D. J.; Zwickl, R. D.; Slavin, J. A.; Smith, E. J.

    1987-01-01

    Examination of many individual event periods in the ISEE 3 deep-tail data set has suggested that magnetospheric substorms produce a characteristic pattern of effects in the distant magnetotail. During the growth, or tail-energy-storage phase of substorms, the magnetotail appears to grow diametrically in size, often by many earth radii. Subsequently, after the substorm expansive phase onset at earth, the distant tail undergoes a sequence of plasma, field, and energetic-particle variations as large-scale plasmoids move rapidly down the tail following their disconnection from the near-earth plasma sheet. ISEE 3 data are appropriate for the study of these effects since the spacecraft remained fixed within the nominal tail location for long periods. Using newly available auroral electrojet indices (AE and AL) and Geo particle data to time substorm onsets at earth, superposed epoch analyses of ISEE 3 and near-earth data prior to, and following, substorm expansive phase onsets have been performed. These analyses quantify and extend substantially the understanding of the deep-tail pattern of response to global substorm-induced dynamical effects.

  6. Ground-based and in-situ timing of substorm expansion phase onset: Locating the initiation region and determining the timescale of magnetosphere-ionosphere coupling

    NASA Astrophysics Data System (ADS)

    Rae, I. J.; Mann, I. R.; Murphy, K. R.; Milling, D. K.; Watt, C. E.; Angelopoulos, V.; Frey, H. U.; Glassmeier, K.; Auster, U.; Sibeck, D.; Singer, H.

    2009-05-01

    Despite the characterisation of the auroral substorm more than 40 years ago, controversy still surrounds the processes triggering substorm onset initiation. Using ground-based magnetometers from CARISMA and THEMIS and in-situ magnetic observations by THEMIS and GOES, we present the results obtained from an objective wavelet-based technique to determine the first onset of ULF wave activity during expansion phase onset on the ground and in space. We validate ground-based ULF timing against the large-scale IMAGE FUV and smaller-scale THEMIS ASI auroral observations. We find clear, coherent and repeatable characteristics of these ULF waves on the ground indicating a localized onset epicentre that provides a clear and strong constraint on the location in time and space of expansion phase onset. Furthermore, we show that the onset of ULF wave activity in space occurs contemporaneously with the onset of ULF wave activity on the ground, suggesting that magnetosphere-ionosphere coupling may occur remarkably fast during the onset process, perhaps by means of energetic electron precipitation that have been accelerated via shear Alfvén waves. Furthermore, we outline the characteristics of ULF pulsations in both the Pi1 and Pi2 bands in the nightside ionosphere and magnetosphere during substorms. We describe the use of these techniques in creating a substorm onset database during the THEMIS era for use by the scientific community. Finally, we detail the development of a Canadian AE calculation that will be routinely available at the Canadian Space Sciences Data Portal (www.cssdp.ca)

  7. MESSENGER observations of substorm activity in Mercury's near magnetotail

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Jie; Slavin, James; Fu, Suiyan; Raines, Jim; Zong, Qiu-Gang; Yao, Zhonghua; Pu, Zuyin; Shi, Quanqi; Poh, Gangkai; Boardsen, Scott; Imber, Suzanne; Sundberg, Torbjörn; Anderson, Brian; Korth, Haje; Baker, Daniel

    2015-04-01

    MESSENGER magnetic field and plasma measurements taken during crossings of Mercury's magnetotail from 2011 to 2014 have been examined for evidence of substorm activity. A total of 32 events were found during which an Earth-like growth phase was followed by clear near-tail expansion phase signatures. During the growth phase, the lobe of the tail loads with magnetic flux while the plasma sheet thins due to the increased lobe magnetic pressure. MESSENGER is often initially in the plasma sheet and then moves into the lobe during the growth phases. The averaged time scale of the loading is around 1 min, consistent with previous observations of Mercury's Dungey cycle. The dipolarization front that marks the initiation of the substorm expansion phase is only a few seconds in duration. The spacecraft then abruptly enters the plasma sheet due to the plasma sheet expansion as reconnection-driven flow from the near-Mercury neutral line encounters the stronger magnetic fields closer to the planet. Substorm activity in the near tail of Mercury is quantitatively very similar to the Earth despite the very compressed time scale.

  8. Substorm theories: United they stand, divided they fall

    NASA Technical Reports Server (NTRS)

    Erickson, Gary M.

    1995-01-01

    Consensus on the timing and mapping of substorm features has permitted a synthesis of substorm models. Within the synthesis model the mechanism for onset of substorm expansion is still unknown. Possible mechanisms are: growth of an ion tearing mode, current disruption by a cross-field current instability, and magnetosphere-ionosphere coupling. While the synthesis model is consistent with overall substorm morphology, including near-Earth onset, none of the onset theories, taken individually, appear to account for substorm expansion onset. A grand synthesis with unification of the underlying onset theories appears necessary.

  9. Midday auroras and magnetospheric substorms.

    NASA Technical Reports Server (NTRS)

    Akasofu, S. I.

    1972-01-01

    Auroral activity in the midday sector is examined in some detail on the basis of all-sky photographs taken from Pyramida, Spitzbergen. The equatorward motion of the midday auroras observed during substorms and the subsequent poleward shift during the recovery phase are discussed.

  10. Changes in Magnetosphere-Ionosphere Coupling and FACs Associated with Substorm Onset (Invited)

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Mann, I. R.; Rae, I. J.; Waters, C. L.; Anderson, B. J.; Korth, H.; Milling, D. K.; Singer, H. J.; Frey, H. U.

    2013-12-01

    Field aligned currents (FACs) are crucial for the communication of information between the ionosphere and magnetosphere. Utilising in-situ observations from the Iridium constellation and Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) we provide detailed observations of the FAC topology through the substorm growth and expansion phases. In particular, for an isolated substorm on 16 February 2010 we demonstrate a clear and localized reduction in the FACs at least 6 minutes prior to auroral onset. A new auroral arc forms in the region of reduced FAC on closed field lines and initially expands azimuthally in wave like fashion. This newly formed arc continues to brighten and expands poleward signifying the start of the substorm expansion phase. We argue that the change in FACs observed prior to onset is the result of a change in the magnetosphere-ionosphere (M-I) coupling in a region local to the subsequent auroral onset. Such a change implies an important role for M-I coupling in destabilising the near-Earth tail during magnetospheric substorms and perhaps more importantly in selecting the location in the ionosphere where auroral onset begins. Further, we provide, a comprehensive in-situ two-dimensional view of the FAC topology associated with the substorm current wedge and westward traveling surge during the substorm expansion phase. We demonstrate that these current structures, when integrated with latitude to produce a net FAC as a function of MLT, have the same structure as the equivalent line current system comprising the SCW. Moreover, regions of upward FAC are associated with discrete auroral forms during the substorm expansion phase.

  11. Relationship between the growth of the ring current and the interplanetary quantity. [solar wind energy-magnetospheric coupling parameter correlation with substorm AE index

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1979-01-01

    Akasofu (1979) has reported that the interplanetary parameter epsilon correlates reasonably well with the magnetospheric substorm index AE; in the first approximation, epsilon represents the solar wind coupled to the magnetosphere. The correlation between the interplanetary parameter, the auroral electrojet index and the ring current index is examined for three magnetic storms. It is shown that when the interplanetary parameter exceeds the amount that can be dissipated by the ionosphere in terms of the Joule heat production, the excess energy is absorbed by the ring current belt, producing an abnormal growth of the ring current index.

  12. Substorm onset: A switch on the sequence of transport from decreasing entropy to increasing entropy

    NASA Astrophysics Data System (ADS)

    Chen, C. X.

    2016-05-01

    In this study, we propose a scenario about the trigger for substorm onset. In a stable magnetosphere, entropy is an increasing function tailward. However, in the growth phase of a substorm, a later born bubble has lower entropy than earlier born bubbles. When a bubble arrives at its final destination in the near-Earth region, it will spread azimuthally because of its relatively uniform entropy. The magnetic flux tubes of a dying bubble, which cause the most equatorward aurora thin arc, would block the later coming bubble tailward of them, forming an unstable domain. Therefore, an interchange instability develops, which leads to the collapse of the unstable domain, followed by the collapse of the stretched plasma sheet. We regard the substorm onset as a switch on the sequence of transport, i.e., from a decreasing entropy process to an increasing entropy process. We calculated the most unstable growth rates and the wavelengths of instability, and both are in agreement with observations.

  13. Observational evidence for an inside-out substorm onset scenario

    SciTech Connect

    Henderson, Michael G

    2008-01-01

    We present observations which provide strong support for a substorm onset scenario in which a localized inner magnetospheric instability developed first and was later followed by the development of a Near Earth Neutral Line (NENL) farther down-tail. Specifically, we find that the onset began as a localized brightening of an intensified growth phase arc which developed as a periodic series of arc-aligned (i.e. azimuthally arrayed) bright spots. As the disturbance grew, it evolved into vortical structures that propagated poleward and eventually morphed into an east-west aligned arc system at the poleward edge of the auroral substorm bulge. The auroral intensification shows an exponential growth with an estimated e-folding time of around 188 seconds (linear growth rate, {gamma} of 5.33 x 10{sup -3} s{sup -1}). During the initial breakup, no obvious distortions of auroral forms to the north were observed. However, during the expansion phase, intensifications of the poleward boundary of the expanding bulge were observed together with the equatorward ejection of auroral streamers into the bulge. A strong particle injection was observed at geosynchronous orbit, but was delayed by several minutes relative to onsel. Ground magnetometer data also shows a two phase development of mid-latitude positive H-bays, with a quasi-linear increase in H between the onset and the injection. We conclude that this event provides strong evidence in favor of the so-called 'inside-out' substorm onset scenario in which the near Earth region activates first followed at a later time by the formation of a near-to-mid tail substorm X-line. The ballooning instability is discussed as a likely mechanism for the initial onset.

  14. Electron precipitation patterns and substorm morphology.

    NASA Technical Reports Server (NTRS)

    Hoffman, R. A.; Burch, J. L.

    1973-01-01

    Statistical analysis of data from the auroral particles experiment aboard OGO 4, performed in a statistical framework interpretable in terms of magnetospheric substorm morphology, both spatial and temporal. Patterns of low-energy electron precipitation observed by polar satellites are examined as functions of substorm phase. The implications of the precipitation boundaries identifiable at the low-latitude edge of polar cusp electron precipitation and at the poleward edge of precipitation in the premidnight sector are discussed.

  15. Observations in the vicinity of substorm onset: Implications for the substrom process

    NASA Technical Reports Server (NTRS)

    Elphinstone, R. D.; Hearn, D. J.; Cogger, L. L.; Murphree, J. S.; Singer, H.; Sergeev, V.; Mursula, K.; Klumpar, D. M.; Reeves, G. D.; Johnson, M.

    1995-01-01

    Multi-instrument data sets from the ground and satellites at both low and high altitude have provided new results concerning substorm onset and its source region in the magnetosphere. Twenty-six out of 37 substorm onset events showed evidence of azimuthally spaced auroral forms (AAFs) prior to the explosive poleward motion associated with optical substorm onset. AAFs can span 8 hours of local time prior to onset and generally propagate eastward in the morning sector. Onset itself is, however, more localized spanning only about 1 hour local time. AAF onset occur during time periods when the solar wind pressure is relatively high. AAFs brighten in conjunction with substorm onset leading to the conclusion that they are a growth phase activity casually related to substorm onset. Precursor activity associated with these AAFs is also seen near geosynchronous orbit altitude and examples show the relationship between the various instrumental definitions of substorm onset. The implied mode number (30 to 135) derived from this work is inconsistent with cavity mode resonances but is consistent with a modified flute/ballooning instability which requires azimuthal pressure gradients. The extended source region and the distance to the open-closed field line region constrain reconnection theory and local mechanisms for substorm onset. It is demonstrated that multiple onset substorms can exist for which localized dipolarizations and the Pi 2 occur simultaneously with tail stretching existing elsewhere. These pseudobreakups can be initiated by auroral streamers which originate at the most poleward set of arc systems and drift to the more equatorward main UV oval. Observations are presented of these AAFs in conjunction with low- and high-altitutde particle and magnetic field data. These place the activations at the interface between dipolar and taillike field lines probably near the peak in the cross-tail current. These onsets are put in the context of a new scenario for substorm

  16. From space weather toward space climate time scales: Substorm analysis from 1993 to 2008

    NASA Astrophysics Data System (ADS)

    Tanskanen, E. I.; Pulkkinen, T. I.; Viljanen, A.; Mursula, K.; Partamies, N.; Slavin, J. A.

    2011-05-01

    Magnetic activity in the Northern Hemisphere auroral region was examined during solar cycles 22 and 23 (1993-2008). Substorms were identified from ground-based magnetic field measurements by an automated search engine. On average, 550 substorms were observed per year, which gives in total about 9000 substorms. The interannual, seasonal and solar cycle-to-cycle variations of the substorm number (Rss), substorm duration (Tss), and peak amplitude (Ass) were examined. The declining phases of both solar cycles 22 and 23 were more active than the other solar cycle phases due to the enhanced solar wind speed. The spring substorms during the declining solar cycle phase (∣Ass,decl∣ = 500 nT) were 25% larger than the spring substorms during the ascending solar cycle years (∣Ass,acs∣ = 400 nT). The following seasonal variation was found: the most intense substorms occurred during spring and fall, the largest substorm frequency in the Northern Hemisphere winter, and the longest-duration substorms in summer. Furthermore, we found a winter-summer asymmetry in the substorm number and duration, which is speculated to be due to the variations in the ionospheric conductivity. The solar cycle-to-cycle variation was found in the yearly substorm number and peak amplitude. The decline from the peak substorm activity in 1994 and 2003 to the following minima took 3 years during solar cycle 22, while it took 6 years during solar cycle 23.

  17. Auroral Substorm Time Scales: Seasonal and IMF Variations

    NASA Technical Reports Server (NTRS)

    Chua, D.; Parks, G. K.; Brittnacher, M.; Germany, G. A.; Spann, J. F.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The time scales and phases of auroral substorm, activity are quantied in this study using the hemispheric power computed from Polar Ultraviolet Imager (UVI) images. We have applied this technique to several hundred substorm events and we are able to quantify how the characterist act, of substorms vary with season and IMF Bz orientation. We show that substorm time scales vary more strongly with season than with IMF Bz orientation. The recovery time for substorm. activity is well ordered by whether or not the nightside oral zone is sunlit. The recovery time scales for substorms occurring in the winter and equinox periods are similar and are both roughly a factor of two longer than in summer when the auroral oval is sunlit. Our results support the hypothesis that the ionosphere plays an active role in governing the dynamics of the aurora.

  18. ULF Waves above the Nightside Auroral Oval during Substorm Onset

    NASA Astrophysics Data System (ADS)

    Rae, I. J.; Watt, C. E. J.

    2016-02-01

    This chapter reviews historical ground-based observations of ultra-low-frequency (ULF) waves tied to substorms, and highlights new research linking these ULF waves explicitly to substorm onset itself. There are several robust methods that can be used to determine the characteristics of a nonstationary time series such as the ULF magnetic field traces observed in the auroral zone during substorms. These include the pure state filter, the Hilbert-Huang transform, and wavelet analysis. The first indication of a substorm is a sudden brightening of one of the quiet arcs lying in the midnight sector of the oval. The chapter focuses on the properties of ULF waves that are seen in two-dimensional images of auroral intensity near substorm expansion phase onset. It also discusses a wider range of magnetotail instabilities that could be responsible for the azimuthally structured auroral forms at substorm onset.

  19. The response of the near earth magnetotail to substorm activity

    NASA Technical Reports Server (NTRS)

    Kivelson, M. G.; McPherron, R. L.; Thompson, S.; Khurana, K. K.; Weygand, J. M.; Balogh, Andrew

    2005-01-01

    The large scale structure of the current sheet in the terrestrial magnetotail is often represented as the superposition of a constant northward-oriented magnetic field component (B(sub z)) and a component along the Earth-Sun direction (B(sub x)) that varies with distance from the center of the sheet (z(sub o) in GSM) as in a Hams neutral sheet. The latter implies that B(sub x) = B(sub Lx) tanh((z - z(sub o))/h) where B(sub Lx) is the magnitude of the B(sub x) component in the northern lobe. Correspondingly, the cross-tail current should be approximated by J(sub y) = (B(sub Lx)/h) sech(sup 2)((z - z(sub o))/h). Using data from the fluxgate magnetometer (FGM) on the Cluster I1 spacecraft tetrad, we have used measured fields and currents to ask if this model represents the large-scale properties of the system. During very quiet crossings of the plasmasheet, we find that the model gives a reasonable estimate of the trend of the average current and field distributions, but during disturbed intervals, the best fit fails to represent the data. If, however, the parameters z(sub o) and h of the model are taken as variable functions of time, the fits can be reasonably good. The temporal variation of the fit parameter h that characterizes the thickness of the current sheet can be interpreted in terms of thinning during the growth phase of a substorm and thickening following the expansion phase. Ground signatures that give insight into the local time of substorm onset can be used to interpret the response of the plasmasheet to substorm related changes of the global system. During a substorm, the field magnitude in the central plasmasheet fluctuates at the period of Pi2 pulsations.

  20. Bursty reconnection modulating the substorm current wedge, a substorm case study re-analysed by ECLAT tools.

    NASA Astrophysics Data System (ADS)

    Opgenoorth, Hermann; Palin, Laurianne; Ågren, Karin; Zivkovic, Tatjana; Facsko, Gabor; Sergeev, Victor; Kubyshkina, Marina; Nikolaev, Alexander; Milan, Steve; Imber, Suzanne; Kauristie, Kirsti; Palmroth, Minna; van de Kamp, Max; Nakamura, Rumi; Boakes, Peter

    2015-04-01

    Multi-instrumental data mining and interpretation can be tedious and complicated. In this context, the ECLAT (European Cluster Assimilation Technology) project was created to « provide a novel and unique data base and tools for space scientists, by providing an upgrade of the European Space Agency's Cluster Active Archive (CAA). » How can this new tool help the space plasma physics community? Here we demonstrate the power of coordinated global and meso-scale ground-based data to put satellite data into the proper context. We re-analyse a well-isolated substorm with a strong growth phase, which starts right overhead the Scandinavian network of instruments on 8 September 2002. This event was previously studied in detail by Sergeev et al (2005), based on a THEMIS-like configuration near-midnight using a unique radial constellation of LANL (~6.6Re), Geotail and Polar (~9Re), and Cluster (~16Re). In this new study we add detailed IMAGE spacecraft and ground-based network data. Magnetospheric models are specially adapted using solar wind conditions and in-situ observations. Simulation results are compared to the in-situ observations and discussed. We show how - both before and after substorm onset - bursty reconnection in the tail modulates the localised field aligned current flow associated with the substorm current wedge.

  1. Integrated Observations of ICME - Driven Substorm - Storm Evolution on 7 August 1998: Traditional and Non-Traditional Aspects.

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Sandholt, P. E.; Torbert, R. B.

    2015-12-01

    The aim of this study is to obtain an integrated view of substorm-storm evolution in relation to well-defined interplanetary (IP) conditions, and to identify traditional and non-traditional aspects of the DP1 and DP2 current systems during substorm activity. Specifically, we report a case study of substorm/storm evolution driven by an ICME from ground observations around the oval in relation to geoeffective IP parameters (Kan-Lee electric field, E-KL, and dynamic pressure, Pdyn), geomagnetic indices (AL, SYM-H and PCN) and satellite observations (from DMSP F13 and F14, Geotail, and GOES spacecraft). A sudden enhancement of E-KL at a southward turning of the IMF led to an initial transient phase (PCN-enhancement) followed by a persistent stage of solar wind-magnetosphere-ionosphere coupling. The persistent phase terminated abruptly at a steep E-KL reduction when the ICME magnetic field turned north after a 3-hour-long interval of enhanced E-KL. The persistent phase consisted of (i) a 45-min-long substorm growth phase (DP2 current) followed by (ii) a classical substorm onset (DP1 current) in the 0100 - 0300 MLT sector, (ii) a 30-min-long expansion phase, maximizing in the same sector, and (iii) a phase lasting for 1.5 hr of 10-15 min-long DP1 events in the 2100 - 2300 and 0400 - 0600 MLT sectors. In the morning sector the expansion phase was characterized by Ps6 pulsations and omega bands. The SYM-H evolution reached the level of a major storm after a 2.5-hour-long interval of E-KL ˜5 mV/m and elevated Pdyn in the substorm expansion phase. Magetosphere - Ionosphere (M - I) coupling during a localized electrojet event at 0500 MLT in the late stage of the substorm expansion is studied by ground - satellite conjunction data (Iceland - Geotail). The DP1 and DP2 components of geomagnetic activity are discussed in relation to M - I current systems and substorm current wedge morphology.

  2. On the relationship between the energetic particle flux morphology and the change in the magnetic field magnitude during substorms

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Lui, A. T. Y.; Sibeck, D. G.; Takahashi, K.; Mcentire, R. W.

    1989-01-01

    The relationship between the morphology of energetic particle substorm injections and the change in the magnetic field magnitude over the course of the event is examined. Using the statistical relationships between the magnetic field during the growth phase and the change in the field magnitude during substorms calculated by Lopez et al. (1988), a limited number of dispersionless ion injections observed by AMPTE CCE are selected. It is argued that this limited set is representative of a large set of events and that the conclusions drawn from examining those events are valid for substorms in general in the inner magnetosphere. It is demonstrated that in an event when CCE directly observed the disruption of the current sheet, the particle and field data show that the region of particle acceleration was highly turbulent and was temporally, and perhaps spatially, limited and that the high fluxes of energetic particles are qualitatively associated with intense inductive electric fields.

  3. A proposal to the dissipated energy budget in the auroral ionosphere at the substorm recovery phase: Challenge from thermospheric wind variations in the pulsating aurora

    NASA Astrophysics Data System (ADS)

    Oyama, S. I.; Hosokawa, K.; Miyoshi, Y.; Shiokawa, K.; Kurihara, J.; Tsuda, T. T.; Watkins, B. J.

    2014-12-01

    Pulsating aurora is a typical phenomenon of the recovery phase of magnetic substorm and is frequently observed in the morning sector. The widely accepted generation mechanism of pulsations in precipitating electrons is related to wave-particle interactions around the equatorial plane in the magnetospheric tail. This mechanism is completely different from the discrete-arc case, which generates high-energy auroral electrons by the inverted-V type potential structure in the magnetospheric acceleration region. This potential structure induces the perpendicular electric field. The electric field is mapped down to the ionosphere, and enhances the Pedersen current as the ionospheric closure current. Since the perpendicular electric field directly relates to the Joule heating rate and the Lorentz force, thermal and kinetic energies in the thermosphere are locally increased in the vicinity of the arc rather than the inside, resulting in wind variations in the thermosphere. However, this scenario cannot be simply applied to the pulsating-auroral case because of the completely different mechanism of the auroral-electron generation, and we have believed that large energies are not dissipated in the pulsating aurora and there should be no obvious wind variations in the thermosphere. However, we found thermospheric-wind variations in the pulsating aurora during simultaneous observations with a Fabry-Perot Interferometer (557.7 nm), several cameras, and incoherent-scatter radars. This is a significantly important finding in evaluating our understanding of the energy budget in the substorm recovery phase. As mentioned above, the Joule heating process and the Lorentz force play important roles for thermospheric-wind variations. While the both cases need enhancements of the perpendicular electric field, we well know that a typical level of the convection electric field is too low to generate the wind variations in a same level as the observed in the pulsating aurora. Thus the

  4. Ultra-low-frequency wave power in the magnetotail lobes. I - Relation to substorm onsets and the auroral electrojet index

    NASA Technical Reports Server (NTRS)

    Smith, R. A.; Goertz, C. K.; Harrold, B. G.; Goldstein, M. L.; Lepping, R. P.; Fitch, C. A.; Sands, M. R.

    1990-01-01

    Time-series observations of the magnetotail-lobe magnetic field have been Fourier analyzed to compute the frequency-weighted energy density Pfz in the range 1-30 mHz. Pfz is generally observed in the range 0.0001-0.01 gamma-squared Hz with a mean value of 0.0012 during substorm growth phases and 0.001 in the comparison intervals. No strong correlation of Pfz is found with the auroral electrojet index in either set of intervals, but during substorm growth phases Pfz may vary by an order of magnitude over time scales of 30 min, with a tendency for higher power levels to occur later in the growth phase. Increases in Pfz precede by about 10 min localized expansive phase activity observed in individual magnetograms.

  5. Statistical visualization of the Earth's magnetotail and the implied mechanism of substorm triggering based on superposed-epoch analysis of THEMIS data

    NASA Astrophysics Data System (ADS)

    Machida, S.; Miyashita, Y.; Ieda, A.; Nosé, M.; Angelopoulos, V.; McFadden, J. P.

    2014-02-01

    To investigate the physical mechanism responsible for substorm triggering, we performed a superposed-epoch analysis using plasma and magnetic-field data from THEMIS probes. Substorm onset timing was determined based on auroral breakups detected by all-sky imagers at the THEMIS ground-based observatories. We found earthward flows associated with north-south auroral streamers during the substorm growth phase. At around X = -12 Earth radii (RE), the northward magnetic field and its elevation angle decreased markedly approximately 4 min before substorm onset. Moreover, a northward magnetic-field increase associated with pre-onset earthward flows was found at around X = -17 RE. This variation indicates that local dipolarization occurs. Interestingly, in the region earthwards of X = -18 RE, earthward flows in the central plasma sheet (CPS) reduced significantly approximately 3 min before substorm onset, which was followed by a weakening of dawn-/duskward plasma-sheet boundary-layer flows (subject to a 1 min time lag). Subsequently, approximately 1 min before substorm onset, earthward flows in the CPS were enhanced again and at the onset, tailward flows started at around X = -20 RE. Following substorm onset, an increase in the northward magnetic field caused by dipolarization was found in the near-Earth region. Synthesizing these results, we confirm our previous results based on GEOTAIL data, which implied that significant variations start earlier than both current disruption and magnetic reconnection, at approximately 4 min before substorm onset roughly halfway between the two regions of interest; i.e. in the catapult current sheet.

  6. Multiradar observations of substorm-driven ULF waves

    NASA Astrophysics Data System (ADS)

    James, M. K.; Yeoman, T. K.; Mager, P. N.; Klimushkin, D. Yu.

    2016-06-01

    A recent statistical study of ULF waves driven by substorm-injected particles observed using Super Dual Auroral Radar Network (SuperDARN) found that the phase characteristics of these waves varied depending on where the wave was observed relative to the substorm. Typically, positive azimuthal wave numbers, m, were observed in waves generated to the east of the substorms and negative m to the west. The magnitude of m typically increased with the azimuthal separation between the wave observation and the substorm location. The energies estimated for the driving particles for these 83 wave events were found to be highest when the waves were observed closer to the substorm and lowest farther away. Each of the 83 events studied by James et al. (2013) involved just a single wave observation per substorm. Here a study of three individual substorm events are presented, with associated observations of multiple ULF waves using various different SuperDARN radars. We demonstrate that a single substorm is capable of driving a number of wave events characterized by different azimuthal scale lengths and wave periods, associated with different energies, W, in the driving particle population. We find that similar trends in m and W exist for multiple wave events with a single substorm as was seen in the single wave events of James et al. (2013). The variety of wave periods present on similar L shells in this study may also be evidence for the detection of both poloidal Alfvén and drift compressional mode waves driven by substorm-injected particles.

  7. Energy storage and dissipation in the magnetotail during substorms. 1. Particle simulations

    SciTech Connect

    Winglee, R.M. ); Steinolfson, R.S. )

    1993-05-01

    The authors present a simulation study of the particle dynamics in the magnetotail during the development of substorms. They look at how energy flows into the magnetotail under external magnetospheric conditions, and study the energy storage and dissipation in the magnetic field, and the role of particle dynamics in this process. They consider two primary external influences in their model. First is the pressure exerted by the magnetospheric boundary layer, on the nightside magnetopause. This pressure is expected to grow in response to solar wind penetration into the magnetosphere when the interplanetary magnetic field becomes southward in the initial phases of substorm growth. Second is the dawn to dusk electric field. This field is expected to grow as the current sheet thins and energy stored in the magnetic field rises. The authors argue that the simultaneous increase in both the magnetic pressure and electric field can better model magnetotail response. One sees strong earthward flows in conjunction with increased energy storage in the tail, and at substorm onset one sees the ejection of plasmoids in a tailward direction with increased particle heating. The clumping of particles in the current sheet due to the opposing effects of the magnetic pressure and electric field could be responsible for substorm onset, rather than instabilities such as the tearing mode.

  8. Theory for substorms triggered by sudden reductions in convection

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1996-01-01

    Many substorm expansions are triggered by interplanetary magnetic field changes that reduce magnetospheric convection. This suggests that expansion onsets are a result of a reduction in the large-scale electric field imparted to the magnetosphere from the solar wind. Such a reduction disrupts the inward motion and energization of plasma sheet particles that occur during the growth phase. It is proposed that the resulting magnetic drift of particles and a large dawn to dusk gradient in the ion energies leads to a longitudinally localized reduction in the plasma pressure, and thus, to the current wedge formation. This theory accounts for the rapid development of the expansion phase relative to growth phase, the magnitude of the wedge currents, the speeds of tailward and westward expansion of the current reduction region in the equatorial plane, and the speeds of the poleward and westward motion of active aurora in the ionosphere.

  9. Storm-Substorm Relations Workshop

    NASA Astrophysics Data System (ADS)

    Kan, Joe

    2006-06-01

    Magnetic storms in the magnetosphere can cause damage to communication satellites and large-scale power outages. The concept that a magnetic storm is a compilation of a series of substorms was proposed by Akasofu [1968]. However, Kamide [1992] showed that substorms are not a necessary condition for the occurrence of a magnetic storm. This controversy initiated a new era of research on the storm-substorm relation, which was the subject of a recent workshop in Banff, Alberta, Canada. The main topics discussed during the meeting included a brief overview of what a substorm is, how quasiperiodic substorm events and steady magnetospheric convection (SMC) events without substorms contribute to storms, and how plasma flows enhanced by magnetic reconnection in the plasma sheet contribute to substorms and storms.

  10. Response of northern winter polar cap to auroral substorms

    NASA Astrophysics Data System (ADS)

    Liou, Kan; Sotirelis, Thomas

    2016-05-01

    The three-phase substorm sequence has been generally accepted and is often tied to the Dungey cycle. Although previous studies have mostly agreed on the increase and decrease in the polar cap area during an episode of substorm, there are disparate views on when the polar cap starts to contract relative to substorm onset. Here we address this conflict using high-resolution (~1-3 min) snapshot global auroral images from the ultraviolet imager on board the Polar spacecraft. On the basis of 28 auroral substorm events, all observed in the Northern Hemispheric winter, it is found that the polar cap inflated prior to onset in all events and it attained the largest area ~6 min prior to the substorm expansion phase onset, while the dayside polar cap area remained steady around the onset. The onset of nightside polar cap deflation is found to be attributed to intensifications of aurora on the poleward edge of the nightside oval, mostly in the midnight sector. Although this result supports the loading-unloading and reconnection substorm models, it is not clear if the initial polar cap deflation and the substorm expansion are parts of the same process.

  11. Current sheet thinning, reconnection onset, and auroral morphology during geomagnetic substorms

    NASA Astrophysics Data System (ADS)

    Otto, A.; Hsieh, M. S.

    2015-12-01

    Geomagnetic substorms represent a fundamental energy release mechanism for the terrestrial magnetosphere. Specifically, the evolution of thin currents sheets during the substorm growth phase plays a key role for substorms because such current sheets present a much lower threshold for the onset of tearing modes and magnetic reconnection than the usually thick magnetotail current sheet. Here we examine and compare two basic processes for current sheet thinning in the Earth's magnetotail: Current sheet thinning (1) through closed magnetic flux depletion (MFD) in the near Earth magnetotail caused by divergent flux transport to replace closed flux on the dayside and (2) through accumulation of open flux magnetic flux in the tail lobes also caused by dayside reconnection. Both processes are expected to operate during any period of enhanced dayside reconnection. It is demonstrated that closed magnetic flux depletion (MFD) in the near Earth magnetotail and the increase of open lobe magnetic flux can lead to the evolution of two separate thin current sheets in the near Earth and the mid tail regions of the magnetosphere. While the auroral morphology associated with MFD and near Earth current sheet formation is well consistent with typical substorm growth observation, midtail current sheet formation through lobe flux increase shows only a minor influence on the auroral ionosphere. We discuss the physics of the dual current sheet formation and local and auroral properties of magnetic reconnection in either current sheet. It is suggested that only reconnection onset in the near Earth current sheet may be consistent with substorm expansion because the flux tube entropy depletion of mid tail reconnection appears insufficient to cause geosynchronous particle injection and dipolarization. Therefore reconnection in the mid tail current sheet is more likely associated with bursty bulk flows or dipolarization fronts which stop short of geosynchronous distances.

  12. From Space Weather Toward Space Climate Time Scales: Substorm Analysis from 1993 to 2008

    NASA Technical Reports Server (NTRS)

    Tanskanen, E. I.; Pulkkinen, T. I.; Viljanen, A.; Partamies, N.; Slavin, J. A.

    2011-01-01

    Magnetic activity in the Northern Hemisphere auroral region was examined during solar cycles 22 and 23 (1993- 2008). Substorms were identified from ground-based magnetic field measurements by an automated search engine. On average, 550 substorms were observed per year, which gives in total about 9000 substorms. The interannual, seasonal and solar cycle-to-cycle variations of the substorm number (R(sub ss)), substorm duration (T(sub ss)), and peak amplitude (A(sub ss)) were examined. The declining phases of both solar cycles 22 and 23 were more active than the other solar cycle phases due to the enhanced solar wind speed. The spring substorms during the declining solar cycle phase (absolute value of A(sub ss,decl)) - 500 nT) were 25% larger than the spring substorms during the ascending solar cycle years ((absolute value of A(sub ss,asc) = 400 nT). The following seasonal variation was found: the most intense substorms occurred during spring and fall, the largest substorm frequency in the Northern Hemisphere winter, and the longest-duration substorms in summer. Furthermore, we found a winter-summer asymmetry in the substorm number and duration. which is speculated to be due to the variations in the ionospheric conductivity. The solar cycle-Io-cycle variation was found in the yearly substorm number and peak amplitude. The decline from the peak substorm activity in 1994 and 2003 to the following minima took 3 years during solar cycle 22, while it took 6 years during solar cycle 23.

  13. The Origin of the Near-Earth Plasma Population During a Substorm on November 24, 1996

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; El-Alaoui, M.; Peroomian, V.; Walker, R. J.; Raeder, J.; Frank, L. A.; Paterson, W. R.

    1999-01-01

    We investigate the origins and the transport of ions observed in the near-Earth plasma sheet during the growth and expansion phases of a magnetospheric substorm that occurred on November 24, 1996. Ions observed at Geotail were traced backward in time in time-dependent magnetic and electric fields to determine their origins and the acceleration mechanisms responsible for their energization. Results from this investigation indicate that, during the growth phase of the substorm, most of the ions reaching Geotail had origins in the low latitude boundary layer (LLBL) and had already entered the magnetosphere when the growth phase began. Late in the growth phase and in the expansion phase a higher proportion of the ions reaching Geotail had their origin in the plasma mantle. Indeed, during the expansion phase more than 90% of the ions seen by Geotail were from the mantle. The ions were accelerated enroute to the spacecraft; however, most of the ions' energy gain was achieved by non-adiabatic acceleration while crossing the equatorial current sheet just prior to their detection by Geotail. In general, the plasma mantle from both southern and northern hemispheres supplied non-adiabatic ions to Geotail, whereas the LLBL supplied mostly adiabatic ions to the distributions measured by the spacecraft. Distribution functions computed at the ion sources indicate that ionospheric ions reaching Geotail during the expansion phase were significantly heated. Plasma mantle source distributions indicated the presence of a high-latitude reconnection region that allowed ion entry into the magnetosphere when the IMF was northward. These ions reached Geotail during the expansion phase. Ions from the traditional plasma mantle had access to the spacecraft throughout the substorm.

  14. Magnetic substorms and northward IMF turning

    NASA Astrophysics Data System (ADS)

    Troshichev, Oleg; Podorozhkina, Nataly

    To determine the relation of the northward IMF turnings to substorm sudden onsets, we separated all events with sharp northward IMF turnings observed in years of solar maximum (1999-2002) and solar minimum (2007-2008). The events (N=261) have been classified in 5 groups in accordance with average magnetic activity in auroral zone (low, moderate or high levels of AL index) at unchanged or slightly changed PC index and with dynamics of PC (steady distinct growth or distinct decline) at arbitrary values of AL index. Statistical analysis of relationships between the IMF turning and changes of PC and AL indices has been fulfilled separately for each of 5 classes. Results of the analysis showed that, irrespective of geophysical conditions and solar activity epoch, the magnetic activity in the polar caps and in the auroral zone demonstrate no response to the sudden northward IMF turning, if the moment of northward turning is taken as a key date. Sharp increases of magnetic disturbance in the auroral zone are observed only under conditions of the growing PC index and statistically they are related to moment of the PC index exceeding the threshold level (~1.5 mV/m), not to northward turnings timed, as a rule, after the moment of sudden onset. Magnetic disturbances observed in these cases in the auroral zone (magnetic substorms) are guided by behavior of the PC index, like to ordinary magnetic substorms or substorms developed under conditions of the prolonged northward IMF impact on the magnetosphere. The evident inconsistency between the sharp IMF changes measured outside of the magnetosphere and behavior of the ground-based PC index, the latter determining the substorm development, provides an additional argument in favor of the PC index as a ground-based proxy of the solar wind energy that entered into magnetosphere.

  15. Substorms on Mercury?

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Ness, N. F.; Yeates, C. M.

    1974-01-01

    Qualitative similarities between some of the variations in the Mercury encounter data and variations in the corresponding regions of the earth's magnetosphere during substorms are pointed out. The Mariner 10 data on Mercury show a strong interaction between the solar wind and the plant similar to a scaled down version of that for the earth's magnetosphere. Some of the features observed in the night side Mercury magnetosphere suggest time dependent processes occurring there.

  16. Physical Mechanism of Substorm Breakup Arcs and Onset

    NASA Astrophysics Data System (ADS)

    Peng, A.; Cheng, C.; Zaharia, S.; Gorelenkov, N.; Chang, T.

    2008-12-01

    Observations show that Pi 2 waves are excited prior to the appearance of breakup auroral arcs that break up after substorm expansion onset. The Pi2 waves and the breakup arcs are modeled by the Kinetic Ballooning Instability (KBI), which is destabilized by plasma pressure gradient and magnetic field curvature in the high beta magnetic well region in the near-Earth plasma sheet. Our model is based on the theoretical analysis and numerical solutions of the gyrokinetic mode equations for late growth phase 3D magnetospheric equilibria. The results show that the KBI has a real frequency associated with the ion magnetic drift frequency, which is in the Pi2 frequency range, and the most unstable KBI has an azimuthal mode number on the order of 200- 300. The theoretical KBI features are consistent with observational features in both the aurora breakup arcs and the near-Earth plasma sheet. Comparison between our KBI model and substorm breakup arc observations by FORMOSAT-2's ISUAL and THEMIS All Sky Imagers will be presented.

  17. Tail reconnection triggering substorm onset.

    PubMed

    Angelopoulos, Vassilis; McFadden, James P; Larson, Davin; Carlson, Charles W; Mende, Stephen B; Frey, Harald; Phan, Tai; Sibeck, David G; Glassmeier, Karl-Heinz; Auster, Uli; Donovan, Eric; Mann, Ian R; Rae, I Jonathan; Russell, Christopher T; Runov, Andrei; Zhou, Xu-Zhi; Kepko, Larry

    2008-08-15

    Magnetospheric substorms explosively release solar wind energy previously stored in Earth's magnetotail, encompassing the entire magnetosphere and producing spectacular auroral displays. It has been unclear whether a substorm is triggered by a disruption of the electrical current flowing across the near-Earth magnetotail, at approximately 10 R(E) (R(E): Earth radius, or 6374 kilometers), or by the process of magnetic reconnection typically seen farther out in the magnetotail, at approximately 20 to 30 R(E). We report on simultaneous measurements in the magnetotail at multiple distances, at the time of substorm onset. Reconnection was observed at 20 R(E), at least 1.5 minutes before auroral intensification, at least 2 minutes before substorm expansion, and about 3 minutes before near-Earth current disruption. These results demonstrate that substorms are likely initiated by tail reconnection. PMID:18653845

  18. Storm/substorm signatures in the outer belt

    SciTech Connect

    Korth, A.; Friedel, R.H.W.; Mouikis, C.; Fennell, J.F.

    1998-12-01

    The response of the ring current region is compared for periods of storm and substorm activity, with an attempt to isolate the contributions of both processes. The authors investigate CRRES particle data in an overview format that allows the display of long-term variations of the outer radiation belt. They compare the evolution of the ring current population to indicators of storm (Dst) and substorm (AE) activity and examine compositional changes. Substorm activity leads to the intensification of the ring current at higher L (L {approximately} 6) and lower ring current energies compared to storms (L {approximately} 4). The O{sup +}/H{sup +} ratio during substorms remains low, near 10%, but is much enhanced during storms (can exceed 100%). They conclude that repeated substorms with an AE {approximately} 900 nT lead to a {Delta}Dst of {approximately} 30 nT, but do not contribute to Dst during storm main phase as substorm injections do not form a symmetric ring current during such disturbed times.

  19. A global magnetosphere-ionosphere coupling model of substorms

    SciTech Connect

    Kan, J.R.

    1993-10-01

    A global model of substorms is proposed on the basis of observational synthesis and theoretical modeling. Since the theoretical basis of the present model is the magnetosphere-ionosphere coupling (MIC) process, it will be called the MIC model of substorms. Substorms can occur in the MIC model without a new X line formed in the near-Earth plasma sheet, in contrast to the highly popular near-Earth neutral line (NENL) model of substorms. Following enhanced dayside reconnection, the ionosphere overloads both the solar wind on open field lines and the plasma sheet on closed field lines. The solar wind responds to the overload by providing more driven energy from the dynamo action on open field lines. The plasma sheet responds to the overload by collapsing itself, i.e., dipolarizing its field configuration to form the substorm current wedge. The explosive intensification during the expansion phase is powered by releasing the magnetic energy stored on closed field lines in the plasma sheet. The stored energy is released by the unloading instability driven by a positive feedback in the substorm current wedge. 68 refs., 6 figs., 1 tab.

  20. Onset of magnetospheric substorms.

    NASA Technical Reports Server (NTRS)

    Tsurutani, B.; Bogott, F.

    1972-01-01

    An examination of the onset of magnetospheric substorms is made by using ATS 5 energetic particles, conjugate balloon X rays and electric fields, all-sky camera photographs, and auroral-zone magnetograms. It is shown that plasma injection to ATS distances, conjugate 1- to 10-keV auroral particle precipitation, energetic electron precipitation, and enhancements of westward magnetospheric electric-field component all occur with the star of slowly developing negative magnetic bays. No trapped or precipitating energetic-particle features are seen at ATS 5 when later sharp negative magnetic-bay onsets occur at Churchill or Great Whale River.

  1. Magnetic field fluctuations of THEMIS substorm events

    NASA Astrophysics Data System (ADS)

    Cheng, C. Z.; Chang, T.

    2009-12-01

    We investigate the origin of waves leading to current disruption and dipolarization observed by THEMIS satellites in the near-Earth plasma sheet near substorm expansion onset events on 29 January 2008. Based on the Hilbert-Huang Transform (HHT) technique we analyze the magnetic activity associated with current disruption which shows clearly low frequency fluctuations in the Pi 2 range growing exponentially before the time of magnetic field depolarization and continuing well into the expansion phase. Higher frequency waves are excited at or after the depolarization process starts. These features of magnetic activities are present in almost all three substorm events on January 29, 2008. We identify the low frequency instability as the kinetic ballooning modes destabilized by the free energy associated with the plasma pressure gradient in the bad magnetic field curvature via the wave-particle magnetic drift resonance effect.

  2. Geomagnetic substorm association of plasmoids

    SciTech Connect

    Moldwin, M.B.; Hughes, W.J. )

    1993-01-01

    The relationship of geomagnetic substorms and plasmoids is examined by determining the correlation of the 366 plasmoids identified by Moldwin and Hughes (1992) with ground auroral zone magnetograms and geosynchronous particle data signatures of substorm onsets. Over 84% of the plasmoid events occurred between 5 and 60 min after a substorm onset. We also find near one-to-one correlation between large isolated substorm signatures in the near-Earth region and signatures consistent with a passing plasmoid in the distant tail (i.e., a traveling compression region, or an actual plasmoid observation). However, there does not appear to be an absolute correspondence of every substorm onset to a plasmoid signature in the deep tail especially, for periods of prolonged disturbance that have multiple substorm insets. A correlation of inter-planetary magnetic field B. south with plasmoid observations was also found. The locations of the near- and far-Earth reconnection sites are estimated using the time of flight of the plasmoids from substorm onset to their observation at ISEE 3. The estimates of the near- and far-Earth reconnection sites are highly variable and range from 10 to 140 RE, 32 refs., 4 figs. 2 tabs.

  3. Cross-field Current Instability for Substorm Expansions

    NASA Technical Reports Server (NTRS)

    Lui, Anthony

    1997-01-01

    The funding provided by the above-referenced NASA grant has enabled us: (1) to investigate the quasi-linear evolution of the IWI [Lui et al., 1993] and that of the generalized MTSI/IWI [Yoon and Lui, 1993], (2) to carry out the linear analysis of the LHDI to elucidate the difference between it and the MTSI/PM instability [Yoon et al., 1994], (3) to conduct some preliminary nonlocal analyses of the MTSI [Lui et al., 1995] and the IWI [Yoon and Lui, 1996] modes, (4) to study low-frequency shear-driven instability and its nonlinear evolution, which might compete with the CCI [Yoon et al., 1996], and (5) to study the evolution of current sheet during late substorm growth phase by means of 2-D Hall-MHD simulation in order to obtain a better understanding of the current sheet equilibrium crucial for CCI theory [Yoon and Lui, 1997].

  4. Global Simulation of Proton Precipitation Due to Field Line Curvature During Substorms

    NASA Technical Reports Server (NTRS)

    Gilson, M. L.; Raeder, J.; Donovan, E.; Ge, Y. S.; Kepko, L.

    2012-01-01

    The low latitude boundary of the proton aurora (known as the Isotropy Boundary or IB) marks an important boundary between empty and full downgoing loss cones. There is significant evidence that the IB maps to a region in the magnetosphere where the ion gyroradius becomes comparable to the local field line curvature. However, the location of the IB in the magnetosphere remains in question. In this paper, we show simulated proton precipitation derived from the Field Line Curvature (FLC) model of proton scattering and a global magnetohydrodynamic simulation during two substorms. The simulated proton precipitation drifts equatorward during the growth phase, intensifies at onset and reproduces the azimuthal splitting published in previous studies. In the simulation, the pre-onset IB maps to 7-8 RE for the substorms presented and the azimuthal splitting is caused by the development of the substorm current wedge. The simulation also demonstrates that the central plasma sheet temperature can significantly influence when and where the azimuthal splitting takes place.

  5. Propagating substorm injection fronts

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Arnoldy, R. L.; Feynman, J.; Hardy, D. A.

    1981-01-01

    It is argued that a series of two-satellite observations leads to a clarification of substorm plasma injection, in which boundary motion plays a major role. Emphasis is put on a type of event characterized by abrupt, dispersionless changes in electron intensity and a coincident perturbation that consists of both a field magnitude increase and a small rotation toward more dipolar orientation. Comparing plasma observations at two points, it is found that in active, preinjection conditions the two most important features of the plasma sheet are: (1) the low-energy convection boundary for near-zero energy particles, determined by the magnitude of the large-scale convection electric field; and (2) the precipitation-flow boundary layer between the hot plasma sheet and the atmospherically contaminated inner plasma sheet.

  6. Is the Current Disruption Region the Genesis Region for the Substorm X-Line?

    NASA Astrophysics Data System (ADS)

    Erickson, G. M.; Maynard, N. C.; Wilson, G. R.

    2002-12-01

    The nominal location for the substorm near-Earth X-line (NEXL) has been found to be outside but near 20RE in the tail. The modified Near-Earth Neutral Line (NENL) model postulates that braking of fast, earthward flows and pile up of magnetic flux accounts for the initiation of the substorm current wedge and dipolarization within 10RE, and its tailward expansion. Current disruption (CD) and CD-like magnetic activity accompanies dipolarization in the 8--12RE range and commences in close temporal proximity to auroral onset. We report here, based on Geotail observations, that 70% of CD-like activity in the 9 (perigee) to 12 RE range of the pre-midnight and midnight plasma sheet begins in the absence of earthward flow. In only 20% of the cases does CD-like activity start coincident with arrival of earthward flow. Indeed, in a like number of cases, CD-like activity starts coincident with a clear signal (tailward Poynting flux) arriving from nearer Earth. When auroral coverage is adequate, we have shown that these substorms proceed in two stages, with reconnection occurring during the second stage. But this is not the entire story. We note three pieces of evidence that lead us to suggest that the CD region is the genesis region for the NEXL. (1) In 10% of CD-like events, magnetic fluctuations commence like typical CD events, but rather than dipolarizing, the magnetic field diminishes. Whereas the distribution for the typical CD signature shows a strong peak near 10RE, these hybrid events are more uniformly distributed between 9 and 19 RE, and from 13--19RE represent 30% of all CD-like activity. (2) Signatures of a substorm NEXL earthward of Geotail can be found as near Earth as 13RE on occasion. (3) A minimum in equatorial magnetic field strength is believed to evolve during the substorm growth phase near 10RE. Hau and Wolf [JGR, 92, 4745, 1987] discuss how, in the presence of resistivity, the B-minimum structure diffuses tailward, and the minimum deepens, until a NEXL

  7. The effect of magnetic substorms on near-ground atmospheric current

    NASA Astrophysics Data System (ADS)

    Belova, E.; Kirkwood, S.; Tammet, H.

    2000-12-01

    Ionosphere-magnetosphere disturbances at high latitudes, e.g. magnetic substorms, are accompanied by energetic particle precipitation and strong variations of the ionospheric electric fields and currents. These might reasonably be expected to modify the local atmospheric electric circuit. We have analysed air-earth vertical currents (AECs) measured by a long wire antenna at Esrange, northern Sweden during 35 geomagnetic substorms. Using superposed epoch analysis we compare the air-earth current variations during the 3 h before and after the time of the magnetic X-component minimum with those for corresponding local times on 35 days without substorms. After elimination of the average daily variation we can conclude that the effect of substorms on AEC is small but distinguishable. It is speculated that the AEC increases observed during about 2 h prior to the geomagnetic X-component minimum, are due to enhancement of the ionospheric electric field. During the subsequent 2 h of the substorm recovery phase, the difference between substorm and quiet atmospheric currents decreases. The amplitude of this substorm variation of AEC is estimated to be less than 50% of the amplitude of the diurnal variation in AEC during the same time interval. The statistical significance of this result was confirmed using the Van der Waerden X-test. This method was further used to show that the average air-earth current and its fluctuations increase during late expansion and early recovery phases of substorms.

  8. Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms

    NASA Technical Reports Server (NTRS)

    Daglis, Loannis A.; Livi, Stefano; Sarris, Emmanuel T.; Wilken, Berend

    1994-01-01

    Comprehensive energy density studies provide an important measure of the participation of various sources in energization processes and have been relatively rare in the literature. We present a statistical study of the energy density of the near-Earth magnetotail major ions (H(+), O(+), He(++), He(+)) during substorm expansion phase and discuss its implications for the solar wind/magnetosphere/ionosphere coupling. Our aim is to examine the relation between auroral activity and the particle energization during substorms through the correlation between the AE indices and the energy density of the major magnetospheric ions. The data we used here were collected by the charge-energy-mass (CHEM) spectrometer on board the Active Magnetospheric Particle Trace Explorer (AMPTE)/Charge Composition Explorer (CCE) satellite in the near-equatorial nightside magnetosphere, at geocentric distances approximately 7 to 9 R(sub E). CHEM provided the opportunity to conduct the first statistical study of energy density in the near-Earth magnetotail with multispecies particle data extending into the higher energy range (greater than or equal to 20 keV/E). the use of 1-min AE indices in this study should be emphasized, as the use (in previous statistical studies) of the (3-hour) Kp index or of long-time averages of AE indices essentially smoothed out all the information on substorms. Most distinct feature of our study is the excellent correlation of O(+) energy density with the AE index, in contrast with the remarkably poor He(++) energy density - AE index correlation. Furthermore, we examined the relation of the ion energy density to the electrojet activity during substorm growth phase. The O(+) energy density is strongly correlated with the pre-onset AU index, that is the eastward electrojet intensity, which represents the growth phase current system. Our investigation shows that the near-Earth magnetotail is increasingly fed with energetic ionospheric ions during periods of enhanced

  9. Ionospheric influence on the global characteristics of electron precipitation during auroral substorms

    NASA Astrophysics Data System (ADS)

    Chua, Damien Han

    Global auroral images from the Polar Ultraviolet Imager (UVI) and in situ, low altitude particle measurements from the Fast Auroral Snapshot Explorer (FAST) spacecraft are used to investigate the effects of solar wind variations and seasonal variability in the ionosphere on electron precipitation during auroral substorms. Isolated substorms and storm-time, pressure pulse-driven intensifications are compared and we show that the global patterns of precipitating electron energy flux and average energy are markedly different for each class of auroral phenomena. Field-aligned acceleration of auroral electrons in the upward current regions is found to be an essential aspect of the global aurora during isolated substorms. In contrast, the electron precipitation during pressure pulse-driven intensifications is less structured with no indication of field-aligned acceleration. A new method of quantifying the time scales and phases of magnetospheric substorms using the hemispheric power derived from the UVI images is described. We show that substorm time scales vary most strongly with season while IMF orientation plays a secondary role. The recovery time for substorm activity is roughly a factor of two longer when the nightside auroral zone is in darkness (winter and equinox) than when it is sunlit. We find that the longer time scale of substorms occurring in darkness is sustained by discrete auroral features associated with field-aligned potential drops and inertial Alfven waves. These discrete structures exist for shorter time scales, if they are observed at all, during substorms that occur under sunlit conditions. The observed seasonal variations in global auroral structure during substorms are most consistent with the hypothesis that ionospheric boundary conditions strongly influence the effectiveness of auroral acceleration mechanisms that include parallel potentials and Alfven waves. The results presented in this thesis will enhance our understanding of substorm

  10. Kinetic Ballooning Instability as a Substorm Onset Mechanism

    SciTech Connect

    C.Z.Cheng

    1999-10-01

    A new scenario of substorm onset and current disruption and the corresponding physical processes are presented based on the AMPTE/CCE spacecraft observation and a kinetic ballooning instability theory. During the growth phase of substorms the plasma beta is larger than unity (20 greater than or equal to beta greater than or equal to 1). Toward the end of the late growth phase the plasma beta increases from 20 to greater than or equal to 50 in approximately 3 minutes and a low-frequency instability with a wave period of 50 - 75 sec is excited and grows exponentially to a large amplitude at the current disruption onset. At the onset, higher-frequency instabilities are excited so that the plasma and electromagnetic field form a turbulent state. Plasma transport takes place to modify the ambient pressure profile so that the ambient magnetic field recovers from a tail-like geometry to a dipole-like geometry. A kinetic ballooning instability (KBI) theory is proposed to explain the low-frequency instability (frequency and growth rate) and its observed high beta threshold (beta subscript c is greater than or equal to 50). Based on the ideal-MHD theory beta subscript c, superscript MHD approximately equals 1 and the ballooning modes are predicted to be unstable during the growth phase, which is inconsistent with observation that no appreciable magnetic field fluctuation is observed. The enhancement beta subscript c over beta subscript c, superscript MHD is due to the kinetic effects of trapped electrons and finite ion-Larmor radii which provide a large stabilizing effect by producing a large parallel electric field and hence a parallel current that greatly enhances the stabilizing effect of field line tension. As a result, beta subscript c is greatly increased over beta subscript c, superscript MHD by a factor proportional to the ratio of the total electron density to the untrapped electron density (n subscript e divided by n subscript eu) which is greater than or equal to

  11. Modeling of intermediate phase growth

    SciTech Connect

    Umantsev, A.

    2007-01-15

    We introduced a continuum method for modeling of intermediate phase growth and numerically simulated three common experimental situations relevant to the physical metallurgy of soldering: growth of intermetallic compound layer from an unlimited amount of liquid and solid solders and growth of the compound from limited amounts of liquid solder. We found qualitative agreements with the experimental regimes of growth in all cases. For instance, the layer expands in both directions with respect to the base line when it grows from solid solder, and grows into the copper phase when the solder is molten. The quantitative agreement with the sharp-interface approximation was also achieved in these cases. In the cases of limited amounts of liquid solder we found the point of turnaround when the compound/solder boundary changed the direction of its motion. Although such behavior had been previously observed experimentally, the simulations revealed important information: the turnaround occurs approximately at the time of complete saturation of solder with copper. This result allows us to conclude that coarsening of the intermetallic compound structure starts only after the solder is practically saturated with copper.

  12. Thin current sheets in the magnetotail during substorms: CDAW 6 revisited

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Mitchell, D. G.; Mcpherron, R. L.; Huang, C. Y.; Frank, L. A.

    1994-01-01

    The global magnetic field configuration during the growth phase of the Coordinated Data Analysis Workshop (CDAW) 6 substorm (March 22, 1979, 1054 UT) is modeled using data from two suitably located spacecraft and temporally evolving variations of the Tsyganenko magnetic field model. These results are compared with a local calculation of the current sheet location and thickness carried out by McPherron et al. (1987) and Sanny et al. (this issue). Both models suggest that during the growth phase the current sheet rotated away from its nominal location, and simultaneously thinned strongly. The locations and thickness obtained from the two models are in good agreement. The global model suggests that the peak current density is approximately 120 nA/sq m and that the cross-tail current almost doubled its intensity during this very strong growth phase. The global model predicts a field configuration that is sufficiently stretched to scatter thermal electrons, which may be conducive to the onset of ion tearing in the tail. The electron plasma data further support this scenario, as the anisotropy present in the low-energy electrons disappears close to the substorm onset. The electron contribution to the intensifying current in this case is of the order of 10% before the isotropization of the distribution.

  13. Substorm Evolution in the Near-Earth Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Erickson, Gary M.

    2004-01-01

    This grant represented one-year, phase-out funding for the project of the same name (NAG5-9110 to Boston University) to determine precursors and signatures of local substorm onset and how they evolve in the plasma sheet using the Geotail near-Earth database. We report here on two accomplishments: (1) Completion of an examination of plasma velocity signature at times of local onsets in the current disruption (CD) region. (2) Initial investigation into quantification of near-Earth flux-tube contents of injected plasma at times of substorm injections.

  14. Substorm onset: Current sheet avalanche and stop layer

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2015-03-01

    A new scenario is presented for the onset of a substorm and the nature of the breakup arc. There are two main components, current sheet avalanche and stop layer. The first refers to an earthward flow of plasma and magnetic flux from the central current sheet of the tail, triggered spontaneously or by some unknown interaction with an auroral streamer or a suddenly appearing eastward flow at the end of the growth phase. The second offers a mechanism to stop the flow abruptly at the interface between magnetosphere and tail and extract momentum and energy to be partially processed locally and partially transmitted as Poynting flux toward the ionosphere. The stop layer has a width of the order of the ion inertial length. The different dynamics of the ions entering freely and the magnetized electrons create an electric polarization field which stops the ion flow and drives a Hall current by which flow momentum is transferred to the magnetic field. A simple formalism is used to describe the operation of the process and to enable quantitative conclusions. An important conclusion is that by necessity the stop layer is also highly structured in longitude. This offers a natural explanation for the coarse ray structure of the breakup arc as manifestation of elementary paths of energy and momentum transport. The currents aligned with the rays are balanced between upward and downward directions. While the avalanche is invoked for explaining the spontaneous substorm onset at the inner edge of the tail, the expansion of the breakup arc for many minutes is taken as evidence for a continued formation of new stop layers by arrival of flow bursts from the near-Earth neutral line. This is in line with earlier conclusions about the nature of the breakup arc. Small-scale structure, propagation speed, and energy flux are quantitatively consistent with observations. However, the balanced small-scale currents cannot constitute the substorm current wedge. The source of the latter must be

  15. The Substorm Cycle at Mercury

    NASA Astrophysics Data System (ADS)

    Imber, S. M.; Slavin, J. A.

    2015-12-01

    The large-scale dynamic behavior of Mercury's highly compressed magnetosphere is primarily powered by magnetic reconnection between the solar wind and the planetary magnetic field. Reconnection transfers energy and momentum from the solar wind to the magnetosphere and drives the large-scale circulation of magnetic flux through the system, predominantly via the substorm cycle. We will present a statistical analysis of the average substorm amplitude, duration and frequency using magnetic field data acquired in orbit about Mercury by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. We will also present an example of steady magnetospheric convection in Mercury's magnetosphere, during which reconnection is ongoing both at the dayside magnetopause and in the magnetotail, but large-scale magnetic energy storage and release is not observed. We aim to ascertain the combination of internal magnetospheric and external solar wind parameters that lead to a substorm, or a period of steady magnetospheric convection in Mercury's magnetosphere.

  16. Proton aurora and substorm intensifications

    NASA Technical Reports Server (NTRS)

    Samson, J. C.; Xu, B.; Lyons, L. R.; Newell, P. T.; Creutzberg, F.

    1993-01-01

    Ground based measurements from the CANOPUS array of meridian scanning photometers and precipitating ion and electron data from the DMSP F9 satellite show that the electron arc which brightens to initiate substorm intensifications is formed within a region of intense proton precipitation that is well equatorward (approximately four to six degrees) of the nightside open-closed field line boundary. The precipitating protons are from a population that is energized via earthward convection from the magnetotail into the dipolar region of the magnetosphere and may play an important role in the formation of the electron arcs leading to substorm intensifications on dipole-like field lines.

  17. DP 1 and DP 2 current systems for the March 22, 1979 substorms

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Kamide, Y.

    1985-02-01

    The March 22, 1979 substorm interval selected for analysis by the CDAW 6 has been investigared using a ground magnetic data inversion scheme which computes equivalent current patterns as well as real ionospheric and field aligned current distributions. These have been computed at 5-minute increments during the two substorm intervals on this day. The computed results have been analyzed using a differential technique which permits us to isolate the current development which occurs during selected time intervals. We find that both DP1 and DP 2 currents develop during the course of the substorm activity. The first substorm is characterized by the gradual enhancement of a DP 2 equivalent current system following the southward turning of the interplanetary magnetic field. The major magnetic disturbance associated with the expansion phase of the substorm is dominated by the development of a Dp 1 current system. During the second interval which consists of several hours of magnetic disturbance, the DP 2 system grows to be much stronger and is the dominant contribution to much of the auroral magnetic activity. The peak of the activity during the second substorm interval appears to be composed of both strong DP 2 and DP 1 currents coexisting. Following the decay of the DP 1 system a strong DP 2 system continues to exist during the enhanced convection phase of the substorm.

  18. In-situ measurement of the substorm onset instability

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Rae, J.; Watt, C.; Forsyth, C.; Mann, I. R.; Yao, Z.; Kalmoni, N.

    2015-12-01

    The substorm is arguably the major mode of variability in near-Earth Space which unpredictably dissipates a considerable and variable amount of energy into the near-Earth magnetosphere and ionosphere. What process or processes determine when this energy is released is uncertain, although it is evident that both near-Earth plasma instability and magnetotail reconnection play a role in this energy release. Much emphasis has recently been placed on the role of magnetic reconnection in substorms, we focus here on observations of the unmistakeable signs of a plasma instability acting at substorm onset. Using data from the THEMIS spacecraft, we show that electromagnetic waves grow in the magnetotail at the expense of the local electron and ion thermal energy. The wave growth in space is the direct counterpart to the wave growth seen at the substorm onset location at the ionosphere, as measured by the CARISMA and THEMIS magnetometers and THEMIS all-sky-imagers. We present evidence that the free energy source for the instability is associated with the electron and ion thermal energy, and not the local electron or ion flow energy.

  19. Plasma sheet behavior during substorms

    SciTech Connect

    Hones, E.W. Jr.

    1983-01-01

    Auroral or magnetic substorms are periods of enhanced auroral and geomagnetic activity lasting one to a few hours that signify increased dissipation of energy from the magnetosphere to the earth. Data acquired during the past decade from satellites in the near-earth sector of the magnetotail have suggested that during a substorm part of the plasma sheet is severed from earth by magnetic reconnection, forming a plasmoid, i.e., a body of plasma and closed magnetic loops, that flows out of the tail into the solar wind, thus returning plasma and energy that have earlier been accumulated from the solar wind. Very recently this picture has been dramatically confirmed by observations, with the ISEE 3 spacecraft in the magnetotail 220 R/sub E/ from earth, of plasmoids passing that location in clear delayed response to substorms. It now appears that plasmoid release is a fundamental process whereby the magnetosphere gives up excess stored energy and plasma, much like comets are seen to do, and that the phenomena of the substorm seen at earth are a by-product of that fundamental process.

  20. A Study of Single and Multiple Onset Substorms

    NASA Astrophysics Data System (ADS)

    Larson, R. B.; Stoner, J. M.; Erickson, K. N.; Engebretson, M. J.; Scudder, J. D.; Frey, H. U.; Russell, C. T.

    2007-12-01

    A good indicator of substorm expansion phase onset is a well-defined increase and/or energization of the HYDRA electron flux measured onboard POLAR when the satellite is on the night side in the central region of the near earth plasmasheet. This signature is usually, but not always, accompanied by a dipolarization of the magnetic field. Another clear indicator of expansion phase onset is a well-defined increase in the z-component of the magnetic field which is indicative of dipolarization on the night side at geostationary orbit. Substorm events for this study were selected using these two indicators. 34 expansion phase onsets were found using the HYDRA instrument and 119 onsets were found using GOES 10 satellite data. For event selection the GSM coordinates of POLAR were constrained as follows: -9 < x < -7, -2 < y < 2, -1 < z < 1 in units of earth radii. The GOES 10 location was subject to the requirement that the satellite was located within 3 hours either side of local midnight. As expected these onset times were found to be closely correlated with the onset of ground-based auroral zone enhanced Pi2 activity and magnetic bays. Multiple onset substorms were distinguished from single onset events by observing the occurrence of one or more additional subsequent Pi2 intensifications and negative bays corresponding to enhancements of the westward electrojet. For several events, when data was available, auroral brightenings at the equatorward edge of discrete arcs as observed by the FUV experiment onboard the IMAGE spacecraft were also found to be closely correlated with not only the initial Pi2 intensification but also with subsequent Pi2 intensifications. The ratio of multiple onset to single onset substorms was found to be 2.3:1. Using Pi2 and IMAGE FUV data it was found that the initial onset of a multiple onset substorm usually corresponds to Pi2 intensifications and auroral brightening signatures at a lower auroral zone latitude than for a single onset event. In

  1. Role of cross-field current instability in substorm onsets and intensifications

    NASA Technical Reports Server (NTRS)

    Lui, Anthony T. Y.

    1992-01-01

    A cross field current instability is investigated as a potential mechanism for current reduction/disruption during substorm onsets and intensifications. Linear stability analysis shows that, for sufficiently strong current density, the instability can occur in the plasma sheet with a growth time comparable to the substorm onset time and excite waves with a significant electromagnetic component. Nonlinear analysis shows that the wave growth reaches the nonlinear stage in less than one ion gyroperiod and can reduce the cross tail current by approximately 15 to 28 of its initial value at saturation. The resulting anomalous resistivity is 11 to 12 orders of magnitude above the classical value. For a typical current reduction, the plasma in the disruption region is subjected to an earthward force. The substorm development scenario constructed based on this instability can readily account for a large number of substorm features.

  2. Substorm Timing and Location Using The Combined CARISMA and THEMIS GMAG Magnetometers

    NASA Astrophysics Data System (ADS)

    Rae, I. J.; Milling, D. K.; Mann, I. R.; Murphy, K. R.; Glassmeier, K.; Auster, U.; Angelopoulos, V.; Russell, C. T.

    2007-12-01

    With the successful launch of the THEMIS spacecraft, the expansion of the CARISMA magnetometer array, and the deployment of the THEMIS GBOs, there now exists an exceptional opportunity to study fundamental ULF wave science in the nightside magnetosphere around substorm onset. Traditionally, substorm onset is usually determined by location and timing of ULF waves in the Pi2 (40-200 second period) range. With the current configuration of ground magnetometers, it is now possible to resolve frequencies in the Pi1 (1-40 second period) band using novel techniques such as Wavelet Analysis. With this technique, the entire spectrum of ULF waves associated with substorm onset can be accurately timed to approximately half of the wave period. We use a substorm location modeling algorithm [Cramoysan et al., 1995] to produce initial estimates of the locations of the upward and downward field aligned currents and the westward electrojet. We present results from several isolated substorms and find that the onset location of the Pi1 waves starts at or close to the location of the downward field-aligned current region and propagate isotropically away from this location. We discuss the implications of this result in terms of potential generation mechanisms for Pi1 waves at substorm onset, and for the physical processes operating at the onset of the substorm expansion phase.

  3. Rapid control of phase growth by nanoparticles

    PubMed Central

    Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Konishi, Hiromi; Jin, Song; Li, Xiao-Chun

    2014-01-01

    Effective control of phase growth under harsh conditions (such as high temperature, highly conductive liquids or high growth rate), where surfactants are unstable or ineffective, is still a long-standing challenge. Here we show a general approach for rapid control of diffusional growth through nanoparticle self-assembly on the fast-growing phase during cooling. After phase nucleation, the nanoparticles spontaneously assemble, within a few milliseconds, as a thin coating on the growing phase to block/limit diffusion, resulting in a uniformly dispersed phase orders of magnitude smaller than samples without nanoparticles. The effectiveness of this approach is demonstrated in both inorganic (immiscible alloy and eutectic alloy) and organic materials. Our approach overcomes the microstructure refinement limit set by the fast phase growth during cooling and breaks the inherent limitations of surfactants for growth control. Considering the growing availability of numerous types and sizes of nanoparticles, the nanoparticle-enabled growth control will find broad applications. PMID:24809454

  4. Computer simulation of a geomagnetic substorm

    NASA Technical Reports Server (NTRS)

    Lyon, J. G.; Brecht, S. H.; Huba, J. D.; Fedder, J. A.; Palmadesso, P. J.

    1981-01-01

    A global two-dimensional simulation of a substormlike process occurring in earth's magnetosphere is presented. The results are consistent with an empirical substorm model - the neutral-line model. Specifically, the introduction of a southward interplanetary magnetic field forms an open magnetosphere. Subsequently, a substorm neutral line forms at about 15 earth radii or closer in the magnetotail, and plasma sheet thinning and plasma acceleration occur. Eventually the substorm neutral line moves tailward toward its presubstorm position.

  5. Current understanding of magnetic storms: Storm-substorm relationships

    SciTech Connect

    Kamide, Y.; Gonzalez, W.D.; Baumjohann, W.; Daglis, I.A.; Grande, M.; Joselyn, J.A.; Singer, H.J.; McPherron, R.L.; Phillips, J.L.; Reeves, E.G.; Rostoker, G.; Sharma, A.S.; Tsurutani, B.T.

    1998-08-01

    This paper attempts to summarize the current understanding of the storm/substorm relationship by clearing up a considerable amount of controversy and by addressing the question of how solar wind energy is deposited into and is dissipated in the constituent elements that are critical to magnetospheric and ionospheric processes during magnetic storms. (1) Four mechanisms are identified and discussed as the primary causes of enhanced electric fields in the interplanetary medium responsible for geomagnetic storms. It is pointed out that in reality, these four mechanisms, which are not mutually exclusive, but interdependent, interact differently from event to event. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are found to be the primary phenomena responsible for the main phase of geomagnetic storms. The other two mechanisms, i.e., HILDCAA (high-intensity, long-duration, continuous auroral electrojet activity) and the so-called Russell-McPherron effect, work to make the ICME and CIR phenomena more geoeffective. The solar cycle dependence of the various sources in creating magnetic storms has yet to be quantitatively understood. (2) A serious controversy exists as to whether the successive occurrence of intense substorms plays a direct role in the energization of ring current particles or whether the enhanced electric field associated with southward IMF enhances the effect of substorm expansions. While most of the {ital Dst} variance during magnetic storms can be solely reproduced by changes in the large-scale electric field in the solar wind and the residuals are uncorrelated with substorms, recent satellite observations of the ring current constituents during the main phase of magnetic storms show the importance of ionospheric ions. This implies that ionospheric ions, which are associated with the frequent occurrence of intense substorms, are accelerated upward along magnetic field lines, contributing to the energy density of

  6. Theoretical magnetograms based on quantitative simulation of a magnetospheric substorm

    SciTech Connect

    Chen, C.; Wolf, R.A.; Harel, M.; Karty, J.L.

    1982-08-01

    Using substorm currents derived from the Rice computer simulation of the substorm event of September 19, 1976, we have computed theoretical magnetograms as a function of universal time for various stations. A theoretical Dst has also been computed. Our computed magnetograms were obtained by integrating the Biot-Savart law over a maze of approximately 2700 wires and bands that carry the ring currents, the Birkeland currents, and the horizontal ionospheric currents. Ground currents and dynamo currents were neglected. Computed contributions to the magnetic field perturbation from eleven different kinds of currents are displayed (e.g., ring currents, northern hemisphere Birkeland currents). First, overall agreement of theory and data is generally satisfactory, especially for stations at high and mid-magnetic latitudes. Second, model results suggest that the ground magnetic field perturbations arise from very complicated combinations of different kinds of currents and that the magnetic field disturbances due to different but related currents often cancel each other, despite the fact that complicated inhomogeneous conductivities in our model prevent rigorous application of Fukushima's theorem. Third, both the theoretical and observed Dst decrease during the expansion phase of the substorm, but data indicate that Dst relaxes back toward its initial value within about an hour after the peak of the substorm. Fourth, the dawn-dusk asymmetry in the horizontal component of magnetic field disturbance at low latitudes in a substorm is essentially due to a net downward Birkeland current at noon, net upward current at midnight, and generally antisunward flowing electrojets; it is not due to a physical partial ring current injected into the duskside of the inner magnetosphere.

  7. Dynamics of the 1054 UT March 22, 1979, substorm event - CDAW 6. [Coordinated Data Analysis Workshop

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.; Manka, R. H.

    1985-01-01

    The Coordinated Data Analysis Workshop (CDAW 6) has the primary objective to trace the flow of energy from the solar wind through the magnetosphere to its ultimate dissipation in the ionosphere. An essential role in this energy transfer is played by magnetospheric substorms, however, details are not yet completely understood. The International Magnetospheric Study (IMS) has provided an ideal data base for the study conducted by CDAW 6. The present investigation is concerned with the 1054 UT March 22, 1979, substorm event, which had been selected for detailed examination in connection with the studies performed by the CDAW 6. The observations of this substorm are discussed, taking into account solar wind conditions, ground magnetic activity on March 22, 1979, observations at synchronous orbit, observations in the near geomagnetic tail, and the onset of the 1054 UT expansion phase. Substorm development and magnetospheric dynamics are discussed on the basis of a synthesis of the observations.

  8. Substorms observations over Apatity during geomagnetic storms in the period 2012 - 2016

    NASA Astrophysics Data System (ADS)

    Guineva, Veneta; Werner, Rolf; Despirak, Irina; Kozelov, Boris

    2016-07-01

    In this work we studied substorms, generated during enhanced geomagnetic activity in the period 2012 - 2016. Observations of the Multiscale Aurora Imaging Network (MAIN) in Apatity have been used. Solar wind and interplanetary magnetic field parameters were judged by the 1-min sampled OMNI data base. Substorm onset and further development were verified by the 10-s sampled data of IMAGE magnetometers and by data of the all-sky camera at Apatity. Subject of the study were substorms occurred during geomagnetic storms. The so-called "St. Patrick's day 2015 event" (17-21 March 2015), the events on 17-18 March 2013 and 7-17 March 2012 (a chain of events generated four consecutive storms) which were among the events of strongest geomagnetic activity during the current solar cycle 24, were part of the storms under consideration. The behavior of the substorms developed during different phases of the geomagnetic storms was discussed.

  9. Time development of high-altitude auroral acceleration region plasma, potentials, and field-aligned current systems observed by Cluster during a substorm

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Mozer, F.; Frey, H. U.

    2013-12-01

    The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. These auroral acceleration processes in turn accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. The complex interplay between field-aligned current system formation, the development of parallel electric fields, and resultant changes in the plasma constituents that occur during substorms within or just above the auroral acceleration zone remain unclear. We present Cluster multi-point observations within the high-altitude acceleration region (> 3 Re altitude) at key instances during the development of a substorm. Of particular emphasis is on the time-development of the plasma, potentials and currents that occur therein with the aim of ascertaining high-altitude drivers of substorm active auroral acceleration processes and auroral emission consequences. Preliminary results show that the initial onset is dominated by Alfvenic activity as evidenced by the sudden occurrence of relatively intense, short-spatial scale Alfvenic currents and attendant energy dispersed, counterstreaming electrons poleward of the growth-phase arc. The Alfvenic currents are locally planar structures with characteristic thicknesses on the order of a few tens of kilometers. In subsequent passages by the other spacecraft, the plasma sheet region became hotter and thicker via the injection of new hot, dense plasma of magnetospheric origins poleward of the pre-existing growth phase arc. In association with the heating and/or thickening of the plasma sheet, the currents appeared to broaden to larger scales as Alfven dominated activity gave way to either inverted-V dominated or mixed inverted-V and Alfvenic behavior depending on location. The transition from Alfven dominated to inverted-V dominated

  10. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Mursula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993-2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future. Copyright ?? 2011 by the American Geophysical Union.

  11. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Marsula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993–2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future.

  12. Features and Mechanisms of Substorm Onset and Expansion

    NASA Astrophysics Data System (ADS)

    Cheng, C. Z.; Chang, T.

    2010-12-01

    We present key features of substorm observations by THEMIS satellites and high cadence optical observations by THEMIS All Sky Imagers and the Imager of Sprites and Upper Atmospheric Lightnings (ISUAL) aboard the FORMOSAT-2 satellite. In particular, we emphasize the fine structure in the onset arc and the associated magnetic fluctuations in Pi1 and Pi2 frequency ranges and their exponential growing behaviors before the onset of expansion phase. We will discuss the possible physical mechanism of substorm onset and the formation of onset arc. We will also present the nonlinear evolution of the onset arc breakup and magnetic fluctuations into turbulent states, the current disruption and magnetic field dipolarization processes and the dispersionless particle injection during the expansion phase.

  13. Association of plasma sheet variations with auroral changes during substorms

    SciTech Connect

    Hones, E.W. Jr.; Craven, J.D.; Frank, L.A.; Parks, G.K.

    1988-01-01

    Images of the southern auroral oval taken by the University of Iowa auroral imaging instrumentation on the Dynamics Explorer 1 satellite during an isolated substorm are correlated with plasma measurements made concurrently by the ISEE 1 satellite in the magnetotail. Qualitative magnetic field configuration changes necessary to relate the plasma sheet boundary location to the latitude of the auroras are discussed. Evidence is presented that the longitudinal advances of the auroras after expansive phase onset are mappings of a neutral line lengthening across the near-tail. We observe a rapid poleward auroral surge, occurring about 1 hour after expansive phase onset, to coincide with the peak of the AL index and argue that the total set of observations at that time is consistent with the picture of a /open quotes/poleward leap/close quotes/ of the electrojet marking the beginning of the substorm's recovery. 9 refs. 3 figs.

  14. A Small Postmidnight Substorm During IMF Bz+ and By+ Conditions -- Joint Optical, Radar, Magnetic and Satellite Observations

    NASA Astrophysics Data System (ADS)

    Liang, J.; Sofko, G.; Donovan, E.; Greenwald, R.

    2002-12-01

    Multi-instrument observations of a small postmidnight substorm event during a period of IMF dominated by Bz+ and By+ conditions on October 9, 2000, showed the substorm structure with high time resolution. Three optical intensifications and Pi2 bursts occurred. The last and strongest Pi2 burst was associated with an expansive phase (EP) onset, characterized by a 100 nT magnetic bay at Fort Churchill and an auroral breakup in which the 630 nm emissions moved poleward about 2.5 degrees. About 11 minutes after the first EP onset, a second stage of auroral brightening occurred. For each of the three initial optical intensifications, there was an eastward-moving discrete azimuthal structure. SuperDARN HF radar line-of-sight velocity measurements revealed eastward electric fields within each Pi2 wave train. The observations are interpreted as resulting from the drift-Alfven-ballooning (DAB) mode instability at near-geosynchronous orbit (NGO) locations. Within the NGO drift waves, regions of charge separation led to electric fields and field-aligned currents (FACs) of alternating direction. The ionospheric reflection of Alfven wave energy likely generated the Pi2 pulsations observed on the ground. The multi-instrument ground observations agree quite well with the substorm onset scenario based upon CRRES satellite observations by Erickson et al. [2000]. There was a single, relatively confined (~4 hour in MLT) counterclockwise convection cell during the growth phase and EP onset. A clearly defined vortex at its center defined the center of the downward FAC. This vortex, initially northward of the optical aurora, moved eastward and then suddenly southward just prior to the EP onset. At that time, the FAC structure was typical of the substorm current wedge (SCW). Reasons for the convection cell motion and SCW development are discussed. Erickson, G. M., N. C. Maynard, W. J. Burke, G. R. Wilson, and M. A. Heinemann, Electromagnetics of substorm onsets in the near

  15. Study of a substorm on May 4, 1986

    NASA Astrophysics Data System (ADS)

    Hones, E. W.; Craven, J. D.; Frank, L. A.; Galvin, A. B.; Murphree, J. S.; Elphinstone, R. D.; Elphic, R. C.

    A substorm on May 4, 1986, midway through the PROMIS campaign of coordinated data acquisition, was uniquely well documented. Both in its aspects at earth and in its magnetotail aspects. The expansive phase onset was imaged by the Viking satellite at 20-second time resolution. Most of the expansive phase was also imaged by DE 1 at 6-minute time resolution. ISEE 1 and 2 were near the tail's axis 18.5 R sub e from earth operating at high data rate and data were recorded by several geosynchronous satellites. This multi-satellite study provides evidence that the active substorm aurora occurs at the feet of field lines that map to a magnetic X-line in the near tail. The longitudinal extension of the aurora during a substorm is associated with cross-rail lengthening of the near-earth neutral line. The concept of the poleward leap of the auroral electrojet (and the auroras) as the culminating feature of the expansive phase finds further support in these data.

  16. Extremely Intense Magnetospheric Substorms : External Triggering? Preconditioning?

    NASA Astrophysics Data System (ADS)

    Tsurutani, Bruce; Echer, Ezequiel; Hajra, Rajkumar

    2016-07-01

    We study particularly intense substorms using a variety of near-Earth spacecraft data and ground observations. We will relate the solar cycle dependences of events, determine whether the supersubstorms are externally or internally triggered, and their relationship to other factors such as magnetospheric preconditioning. If time permits, we will explore the details of the events and whether they are similar to regular (Akasofu, 1964) substorms or not. These intense substorms are an important feature of space weather since they may be responsible for power outages.

  17. Vapor phase diamond growth technology

    NASA Technical Reports Server (NTRS)

    Angus, J. C.

    1981-01-01

    Ion beam deposition chambers used for carbon film generation were designed and constructed. Features of the developed equipment include: (1) carbon ion energies down to approx. 50 eV; (2) in suit surface monitoring with HEED; (3) provision for flooding the surface with ultraviolet radiation; (4) infrared laser heating of substrate; (5) residual gas monitoring; (6) provision for several source gases, including diborane for doping studies; and (7) growth from either hydrocarbon source gases or from carbon/argon arc sources. Various analytical techniques for characterization of from carbon/argon arc sources. Various analytical techniques for characterization of the ion deposited carbon films used to establish the nature of the chemical bonding and crystallographic structure of the films are discussed. These include: H2204/HN03 etch; resistance measurements; hardness tests; Fourier transform infrared spectroscopy; scanning auger microscopy; electron spectroscopy for chemical analysis; electron diffraction and energy dispersive X-ray analysis; electron energy loss spectroscopy; density measurements; secondary ion mass spectroscopy; high energy electron diffraction; and electron spin resonance. Results of the tests are summarized.

  18. Magnetic islands in the near geomagnetic tail and its implications for the mechanism of 1054 UT CDAW 6 substorm

    NASA Technical Reports Server (NTRS)

    Lin, N.; Walker, R. J.; Mcpherron, R. L.; Kivelson, M. G.

    1990-01-01

    During the 1054 UT CDAW 6 substorm event, two ISEE spacecraft observed dynamic changes in the magnetic field and in the flux of energetic particles in the near-earth plasma sheet. In the substorm growth phase, the magnetic field at both ISEE spacecraft became tail-like. Following expansion phase onset, two small scale magnetic islands were observed moving tailward at a velocity of about 580 km/s. The passage of these two magnetic islands was coincident with bursts of tailward streaming energetic particles. The length of the magnetic loops was estimated to have been about 2 to 3 earth radii while the height of the loops was less than 0.5 earth radii. The magnetic islands were produced by multipoint reconnection processes in the near tail plasma sheet which may have been associated with the formation of the near-earth neutral line and the subsequent formation of a large scale plasmoid. The near-earth neutral line retreated tailward later in the expansion phase, as suggested by the reversal of the streaming of energetic particles.

  19. Numerical experiments on possible impact of substorms on energetic electrons in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Ebihara, Y.; Fok, M. C. H.; Tanaka, T.

    2014-12-01

    The abrupt reconstruction of the outer radiation belt is often observed after substorms, and is believed to result from internal acceleration or external transport. The internal acceleration is thought to take place outside the plasmapause through Doppler shifted cyclotron resonance, or relativistic turning acceleration with whistler mode chorus waves. Electrons are thought to be accelerated by the waves when characteristic pitch angle distribution, hard energy spectrum and earthward gradient of phase space density are identified, but it seems that direct observational evidence for the energy transfer from waves to electrons has not been explicitly provided. The external transport is thought to take place when electrons are accelerated by strong electric fields. We have solved bounce-averaged drift transport equations under the electric and magnetic fields given by the recently developed global MHD simulation. We reproduced the sequence of a substorm, and determined onset as a sudden decrease in the AL index and a sudden increase in the ionospheric conductivity (a proxy of aurora). Near the onset, a strong electric field is formed in the inner magnetosphere in a longitudinally narrow region with a thickness of the order of earth radius (Re), which rapidly transported relativistic electrons inward. Simultaneously, keV electrons were also injected inward, which may become a seed of relativistic electrons. Temperature anisotropy becomes large near the leading edge of the injected hot electrons. As the plasmapause shrinks, the ratio of the plasma frequency to the cyclotron frequency becomes small outside the plasmapause, which may favor the growth of chorus waves. We estimated the evolution of the phase space density of electrons due to the interaction with chorus waves under the assumption that the wave amplitude is small. We will demonstrate the results of numerical experiments on the energy spectrum, pitch angle distribution and radial gradient of the phase space

  20. Stepwise tailward retreat of magnetic reconnection: THEMIS observations of an auroral substorm

    NASA Astrophysics Data System (ADS)

    Ieda, A.; Nishimura, Y.; Miyashita, Y.; Angelopoulos, V.; Runov, A.; Nagai, T.; Frey, H. U.; Fairfield, D. H.; Slavin, J. A.; Vanhamäki, H.; Uchino, H.; Fujii, R.; Miyoshi, Y.; Machida, S.

    2016-05-01

    Auroral stepwise poleward expansions were clarified by investigating a multiple-onset substorm that occurred on 27 February 2009. Five successive auroral brightenings were identified in all-sky images, occurring at approximately 10 min intervals. The first brightening was a faint precursor. The second brightening had a wide longitude; thus, it represented the Akasofu substorm onset. Other brightenings expanded poleward; thus, they were interpreted to be auroral breakups. These breakups occurred stepwise; that is, later breakups were initiated at higher latitudes. Corresponding reconnection signatures were studied using Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite observations between 8 and 24 RE down the magnetotail. The Akasofu substorm onset was not accompanied by a clear reconnection signature in the tail. In contrast, the three subsequent auroral breakups occurred simultaneously (within a few minutes) with three successive fast flows at 24 RE; thus, these were interpreted to be associated with impulsive reconnection episodes. These three fast flows consisted of a tailward flow and two subsequent earthward flows. The flow reversal at the second breakup indicated that a tailward retreat of the near-Earth reconnection site occurred during the substorm expansion phase. In addition, the earthward flow at the third breakup was consistent with the classic tailward retreat near the end of the expansion phase; therefore, the tailward retreat is likely to have occurred in a stepwise manner. We interpreted the stepwise characteristics of the tailward retreat and poleward expansion to be potentially associated by a stepwise magnetic flux pileup.

  1. Hemispheric Asymmetries in Substorm Recovery Time Scales

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Chua, D H.; Germany, G. A.; Spann, James F.

    2009-01-01

    Previous statistical observations have shown that the recovery time scales of substorms occurring in the winter and near equinox (when the nighttime auroral zone was in darkness) are roughly twice as long as the recovery time scales for substorms occurring in the summer (when the nighttime auroral region was sunlit). This suggests that auroral substorms in the northern and southern hemispheres develop asymmetrically during solstice conditions with substorms lasting longer in the winter (dark) hemisphere than in the summer (sunlit) hemisphere. Additionally, this implies that more energy is deposited by electron precipitation in the winter hemisphere than in the summer one during substorms. This result, coupled with previous observations that have shown that auroral activity is more common when the ionosphere is in darkness and is suppressed when the ionosphere is in daylight, strongly suggests that the ionospheric conductivity plays an important role governing how magnetospheric energy is transferred to the ionosphere during substorms. Therefore, the ionosphere itself may dictate how much energy it will accept from the magnetosphere during substorms rather than this being an externally imposed quantity. Here, we extend our earlier work by statistically analyzing the recovery time scales for a large number of substorms observed in the conjugate hemispheres simultaneously by two orbiting global auroral imagers: Polar UVI and IMAGE FUV. Our current results are consistent with previous observations. The recovery time scales are observed to be longer in the winter (dark) hemisphere while the auroral activity has a shorter duration in the summer (sunlit) hemisphere. This leads to an asymmetric energy input from the magnetosphere to the ionosphere with more energy being deposited in the winter hemisphere than in the summer hemisphere.

  2. Magnetospheric substorms - A newly emerging model

    NASA Astrophysics Data System (ADS)

    Akasofu, S.-I.

    1981-10-01

    A surge of progress in magnetospheric substorm studies is expected by the following three recent developments: (1) the finding of the solar wind-magnetosphere energy coupling function epsilon, (2) the determination of the Pedersen current distribution over the entire polar region, and (3) a new understanding of the auroral potential structure. In this paper, the significance of the three developments and the newly emerging model of magnetospheric substorms is described.

  3. Satellite studies of magnetospheric substorms on August 15, 1968. IX - Phenomenological model for substorms.

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.; Russell, C. T.; Aubry, M. P.

    1973-01-01

    Observations made during three substorms on August 15, 1968, are shown to be consistent with current theoretical ideas about the cause of substorms. The phenomenological model described in several preceding papers is further expanded. This model follows closely the theoretical ideas presented more quantitatively in recent papers by Coronti and Kennel (1972 and 1973).

  4. Jumps of the solar wind direction and the substorm probability

    NASA Astrophysics Data System (ADS)

    Kubyshkina, Daria; Kubyshkina, Marina; Semenov, Vladimir

    2015-04-01

    Magnetospheric substorm commonly supposed to consist of two stages, loading and unloading. During the first stage the magnetic energy is stored in the magnetotail, which leads to increasing of the magnetic field intensity in the lobes and electric currents in the plasma sheet. The next uloading stage usually related to the reconnection process, which releases accumulated magnetic energy and produces the bursty bulk flows (BBFs) in the magnetotail. Such a scheme has been confirmed from both experimental and theoretical points of view. The weakest point of this scheme is the physical conditions which are necessary for the onset of the reconnection, but although the huge number of investigations was made to this end. Among them substorm triggers such as pressure pulses, turning of the interplanetary magnetic field (IMF) to the north direction and so on. We would like to emphasize the role of the bent current sheets first proposed by Kivelson and Hughes in 1990. The idea is that in the asymmetric configurations gradients and current density growth, so these conditions are supposed to be favorable for the reconnection. Then the minimal stress of the system can lead to the substorm onset. In the presented study we have analyzed the possibility of the current sheet asymmetry to be the trigger in theory and in observations (by statistical analysis of substorm occurrences). The bent of the current sheet can be produced by different sources. The most evident of them are the dipole tilt angle variations and the changes of the solar wind direction. The first source, tilt variations, are slow, so in the current study we at first analyzed the fast changes of the solar wind. The experimental analysis includes the investigation of the number of the events against dipole tilt angle and the solar wind direction, which both produce the distortion and inclination of the dipole current sheet. Theoretical investigation of this issue is based on the analysis of the quasi

  5. Statistical study of interplanetary condition influence on the geomagnetic substorm onset location inferred from SuperMAG auroral electrojet indices

    NASA Astrophysics Data System (ADS)

    Huang, Sheng; Du, Aimin; Cao, Xin

    2015-04-01

    It is well known that the magnetospheric substorm occurs every few hours, in response with the interplanetary condition variation and the increase of energy transfer from the solar wind to the magnetosphere. Since the substorm activity correlated well with the geomagnetic index, Newell and Gjerloev [2011] identified the substorm onset and its contributing station, using the SuperMag auroral electrojet indices. In this study, we investigate the distribution of these substorm onset locations and its response to the varied interplanetary condition. It is surprise that the substorm onset locations show double-peak structure with one peak around pre-midnight sector and the other at the dawn side. The substorm onset tends to occur in pre-midnight sector during non-storm time while it often takes place in late morning sector (~4 MLT) during storm time. Furthermore, substorms, appearing in magnetic storm main phase predominate in late morning. As the geomagnetic index Dst decreases, the substorm onset occurs in late morning more frequently. The substorm onset locations were also classified based on the solar wind parameters. It is shown that the peak number ratio of the substorm onset location in late morning over pre-midnight increases as IMF Bz decreases from positive to negative and the solar wind velocity Vsw enhances. The more intense interplanetary electric field E promotes the substorm onset occurring in late morning. It is widely accepted that both the directly driven (DD) and loading/unloading (LL/UL) processes play an essential role in the energy dispensation from the solar wind into the magnetosphere-ionosphere system. In general, the former one corresponds to the DP2 current system, which consists of the eastward electrojet centered near the dusk and the westward electrojet centered in the dawn, while the latter one corresponds to the DP1 current system, which is dominated by the westward electrojet in the midnight sector. Our statistical results of substorm

  6. Modeling of substorm development with a kinematic effect by the global MHD simulations

    NASA Astrophysics Data System (ADS)

    den, Mitsue; Fujita, Shigeru; Tanaka, Takashi; Horiuchi, Ritoku

    Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. Recently, Tanaka and Fujita reproduced substorm evoution process by numerical simulation with the global MHD code. In the MHD framework, the dissipation model is used for modeling of the kinetic effects. They found that the normalized reconnection viscosity, one of the dessipation model employed there, gave a large effect for the substorm development though that viscosity was assumed to be a constant parameter. It is well known that magnetric reconnection is controlled by microscopic kinetic mechanism. Horiuchi et al. investigated the roles of microscopic plasma instabilities on the violation of the frozen-in condition by examining the force balance equation based on explicit electromagnetic particle simulation for an ion-scale current sheet, and concluded that the growth of drift kink instability can create anomalous resistivity leading to the excitation of collisionless reconnection. They estimated the effective resistivity based on the particle simulation data. In this paper, we perform substorm simulation by using the global MHD code with this anomalous resistivity obtained in their microscopic approach istead of the emprical resistivity model, and investigate the relationship between the substorm development and the anomalous resistivity model.

  7. Response of plasmaspheric configuration to substorms revealed by Chang’e 3

    PubMed Central

    He, Han; Shen, Chao; Wang, Huaning; Zhang, Xiaoxin; Chen, Bo; Yan, Jun; Zou, Yongliao; Jorgensen, Anders M.; He, Fei; Yan, Yan; Zhu, Xiaoshuai; Huang, Ya; Xu, Ronglan

    2016-01-01

    The Moon-based Extreme Ultraviolet Camera (EUVC) of the Chang’e 3 mission provides a global and instantaneous meridian view (side view) of the Earth’s plasmasphere. The plasmasphere is one inner component of the whole magnetosphere, and the configuration of the plasmasphere is sensitive to magnetospheric activity (storms and substorms). However, the response of the plasmaspheric configuration to substorms is only partially understood, and the EUVC observations provide a good opportunity to investigate this issue. By reconstructing the global plasmaspheric configuration based on the EUVC images observed during 20–22 April 2014, we show that in the observing period, the plasmasphere had three bulges which were located at different geomagnetic longitudes. The inferred midnight transit times of the three bulges, using the rotation rate of the Earth, coincide with the expansion phase of three substorms, which implies a causal relationship between the substorms and the formation of the three bulges on the plasmasphere. Instead of leading to plasmaspheric erosion as geomagnetic storms do, substorms initiated on the nightside of the Earth cause local inflation of the plasmasphere in the midnight region. PMID:27576944

  8. Response of plasmaspheric configuration to substorms revealed by Chang'e 3.

    PubMed

    He, Han; Shen, Chao; Wang, Huaning; Zhang, Xiaoxin; Chen, Bo; Yan, Jun; Zou, Yongliao; Jorgensen, Anders M; He, Fei; Yan, Yan; Zhu, Xiaoshuai; Huang, Ya; Xu, Ronglan

    2016-01-01

    The Moon-based Extreme Ultraviolet Camera (EUVC) of the Chang'e 3 mission provides a global and instantaneous meridian view (side view) of the Earth's plasmasphere. The plasmasphere is one inner component of the whole magnetosphere, and the configuration of the plasmasphere is sensitive to magnetospheric activity (storms and substorms). However, the response of the plasmaspheric configuration to substorms is only partially understood, and the EUVC observations provide a good opportunity to investigate this issue. By reconstructing the global plasmaspheric configuration based on the EUVC images observed during 20-22 April 2014, we show that in the observing period, the plasmasphere had three bulges which were located at different geomagnetic longitudes. The inferred midnight transit times of the three bulges, using the rotation rate of the Earth, coincide with the expansion phase of three substorms, which implies a causal relationship between the substorms and the formation of the three bulges on the plasmasphere. Instead of leading to plasmaspheric erosion as geomagnetic storms do, substorms initiated on the nightside of the Earth cause local inflation of the plasmasphere in the midnight region. PMID:27576944

  9. Response of plasmaspheric configuration to substorms revealed by Chang’e 3

    NASA Astrophysics Data System (ADS)

    He, Han; Shen, Chao; Wang, Huaning; Zhang, Xiaoxin; Chen, Bo; Yan, Jun; Zou, Yongliao; Jorgensen, Anders M.; He, Fei; Yan, Yan; Zhu, Xiaoshuai; Huang, Ya; Xu, Ronglan

    2016-08-01

    The Moon-based Extreme Ultraviolet Camera (EUVC) of the Chang’e 3 mission provides a global and instantaneous meridian view (side view) of the Earth’s plasmasphere. The plasmasphere is one inner component of the whole magnetosphere, and the configuration of the plasmasphere is sensitive to magnetospheric activity (storms and substorms). However, the response of the plasmaspheric configuration to substorms is only partially understood, and the EUVC observations provide a good opportunity to investigate this issue. By reconstructing the global plasmaspheric configuration based on the EUVC images observed during 20–22 April 2014, we show that in the observing period, the plasmasphere had three bulges which were located at different geomagnetic longitudes. The inferred midnight transit times of the three bulges, using the rotation rate of the Earth, coincide with the expansion phase of three substorms, which implies a causal relationship between the substorms and the formation of the three bulges on the plasmasphere. Instead of leading to plasmaspheric erosion as geomagnetic storms do, substorms initiated on the nightside of the Earth cause local inflation of the plasmasphere in the midnight region.

  10. The "Alfvénic surge" at substorm onset/expansion and the formation of "Inverted Vs": Cluster and IMAGE observations

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Chaston, C. C.; Frey, H. U.; Fillingim, M. O.; Goldstein, M. L.; Bonnell, J. W.; Mozer, F. S.

    2016-05-01

    From multipoint, in situ observations and imaging, we reveal the injection-powered, Alfvénic nature of auroral acceleration during onset and expansion of a substorm. It is shown how Alfvénic variations over time dissipate to form large-scale, inverted-V structures characteristic of quasistatic aurora. This characterization is made possible through the fortuitous occurrence of a substorm onset and expansion phase on field lines traversed by Cluster in the high-altitude acceleration region. Substorm onset was preceded by the occurrence of multiple poleward boundary intensifications (PBIs) and subsequent development/progression of a streamer toward the growth phase arc indicating that this is of the PBI-/streamer-triggered class of substorms. Onset on Cluster is marked by the injection of hot, dense magnetospheric plasma in a region tied to one of the preexisting PBI current systems. This was accompanied by a surge of Alfvénic activity and enhanced inverted-V acceleration, as the PBI current system intensified and striated to dispersive scale Alfvén waves. The growth of Alfvén wave activity was significant (up to a factor of 300 increase in magnetic field power spectral density at frequencies 20 mHz ≲f≲ few hertz) and coincided with moderate growth (factor 3-5) in the background PBI current. This sequence is indicative of a cascade process whereby small-scale/dispersive Alfvén waves are generated from large-scale Alfvén waves or current destabilization. It also demonstrates that the initial PBIs and their subsequent evolution are an intrinsic part of the global auroral substorm response to injection and accompanying wave energy input from the magnetotail. Alfvénic activity persisted poleward of the PBI currents composing a broad Alfvén wave-dominated region extending to the polar cap edge. These waves have transverse scales ranging from a few tens of kilometers to below the ion gyroradius and are associated with large electric fields (up to 200 mV/m) and

  11. Auroral Substorms during Prolonged Northward IMF

    NASA Astrophysics Data System (ADS)

    Du, Aimin

    Multiple observations by satellites and ground-based magnetometers identify the occurrence of substorm events during prolonged northward interplanetary magnetic field (IMF). The func-tion, as an expression of the solar wind energy flow, and the energy dissipation in the ionosphere (UI) are calculated during substorm periods. The delay time of the UI to the function and UI for seven substorm events with AL values of -231 -1500 nT under northward IMF condition are 45 95 min with a mean value of 70.86 min. For comparison, 23 substorm events with the AL index of -316 -1685 nT under southward IMF condition are detected to have the delay time of 21 66 min with a mean value of 42.04 min. The longer delay time for substorms during northward IMF can be presumably attributed to the contribution of IMF By component to merging between IMF and the Earth's magnetic field. A tendency of the decrease of the delay time with increasing absolute values of IMF By is noted. Acknowledgement: This work is supported by NSFC(40774086).

  12. A theory of substorms: Onset and subsidence

    SciTech Connect

    Kan, J.R.; Zhu, L.; Akasofu, S.I. )

    1988-06-01

    It is shown by a computer simulation study of the magnetosphere-ionosphere (M-I) coupling that an enhanced magnetospheric convection can lead to auroral substorm onset in about 40 min after a southward turning of IMF. The simulation results show that the enhanced M-I coupling can produce intense upward field-aligned currents in the midnight sector near the poleward boundary of a high-conductance belt associated with the diffuse auroral precipitation. Two necessary conditions for substorm onset are that (1) the polar cap potential must exceed a certain value and (2) the convection reversal region must overlap with the poleward gradient of the diffuse auroral conductance in the ionosphere in the midnight sector. The matching ensures that the divergence of the Pedersen current colocates with the divergence of the Hall current to maximize the upward field-aligned current near the poleward boundary of the diffuse aurora in the midnight sector for substorm onset. Without the matching, the auroral brightening would not occur, even if the electrojets are appreciable. Substorm subsides when one of the two necessary conditions is no longer satisfied. This can occur owing either to a northward turning of the IMF or weakening of Alfven shielding due to substorm enhancement of the ionospheric conductance during a prolonged southward IMF.

  13. Postmidnight chorus - A substorm phenomenon. [outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Smith, E. J.

    1974-01-01

    The ELF emissions were detected in the midnight sector of the magnetosphere in conjunction with magnetospheric substorms. The emissions were observed at local midnight and early morning hours and are accordingly called 'post-midnight chorus.' The characteristics of these emissions such as their frequency time structure, emission frequency with respect to the local equatorial electron gyrofrequency, intensity-time variation, and the average intensity were investigated. The occurrence of the chorus in the nightside magnetosphere was investigated as a function of local time, L shell, magnetic latitude, and substorm activity, and the results of this analysis are presented. Specific features of postmidnight chorus are discussed in the context of possible wave-particle interactions occurring during magnetospheric substorms.

  14. Substorm effects in auroral spectra. [electron spectrum hardening

    NASA Technical Reports Server (NTRS)

    Eather, R. H.; Mende, S. B.

    1973-01-01

    A substorm time parameter is defined and used to order a large body of photometric data obtained on aircraft expeditions at high latitudes. The statistical analysis demonstrates hardening of the electron spectrum at the time of substorm, and it is consistent with the accepted picture of poleward expansion of aurora at the time of substorm and curvature drift of substorm-injected electrons. These features are not evident from a similar analysis in terms of magnetic time. We conclude that the substorm time concept is a useful ordering parameter for auroral data.

  15. Substorm-induced energetic electron precipitation: Impact on atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Clilverd, M. A.; Beharrell, M. J.; Rodger, C. J.; Verronen, P. T.; Andersson, M. E.; Newnham, D. A.

    2015-10-01

    Magnetospheric substorms drive energetic electron precipitation into the Earth's atmosphere. We use the output from a substorm model to describe electron precipitation forcing of the atmosphere during an active substorm period in April-May 2007. We provide the first estimate of substorm impact on the neutral composition of the polar middle atmosphere. Model simulations show that the enhanced ionization from a series of substorms leads to an estimated ozone loss of 5-50% in the mesospheric column depending on season. This is similar in scale to small to medium solar proton events (SPEs). This effect on polar ozone balance is potentially more important on long time scales (months to years) than the impulsive but sporadic (few SPE/year versus three to four substorms/day) effect of SPEs. Our results suggest that substorms should be considered an important source of energetic particle precipitation into the atmosphere and included in high-top chemistry-climate models.

  16. Ionospheric irregularities during a substorm event: Observations of ULF pulsations and GPS scintillations

    NASA Astrophysics Data System (ADS)

    Kim, H.; Clauer, C. R.; Deshpande, K.; Lessard, M. R.; Weatherwax, A. T.; Bust, G. S.; Crowley, G.; Humphreys, T. E.

    2014-07-01

    Plasma instability in the ionosphere is often observed as disturbances and distortions of the amplitude and phase of the radio signals, which are known as ionospheric scintillations. High-latitude ionospheric plasma, closely connected to the solar wind and magnetospheric dynamics, produces very dynamic and short-lived Global Positioning System (GPS) scintillations, making it challenging to characterize them. It is observed that scintillations in the high-latitude ionosphere occur frequently during geomagnetic storms and substorms. In addition, it is well known that Ultra Low Frequency (ULF) pulsations (Pi2 and Pi1B) are closely associated with substorm activity. This study reports simultaneous observations of Pi2 and Pi1B pulsations and GPS phase scintillations during a substorm using a newly designed Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) installed at the South Pole. The magnetic field and GPS data from the instruments appear to be associated in terms of their temporal and spectral features. Moreover, the scintillation events were observed near the auroral latitudes where Pi1B pulsations are commonly detected. The temporal, spectral and spatial association between the scintillation and geomagnetic pulsation events suggests that the magnetic field perturbations and enhanced electric fields caused by substorm currents could contribute to the creation of plasma instability in the high-latitude ionosphere, leading to GPS scintillations.

  17. Simultaneous observations of earthward flow bursts and plasmoid ejection during magnetospheric substorms

    NASA Astrophysics Data System (ADS)

    Slavin, J. A.; Fairfield, D. H.; Lepping, R. P.; Hesse, M.; Ieda, A.; Tanskanen, E.; Østgaard, N.; Mukai, T.; Nagai, T.; Singer, H. J.; Sutcliffe, P. R.

    2002-07-01

    Examination of observations taken by radially aligned International Solar Terrestrial Physics spacecraft in the nightside magnetosphere on 9 July 1997 has revealed close temporal correlations between earthward flow bursts in the plasma sheet and the ejection of plasmoids. A one-dimensional model of plasma sheet flow is applied to these observations to determine the time and location for the initiation of lobe flux tube reconnection. For the single clear flow burst-plasmoid pair observed during the first substorm and the three pairs produced by the second substorm, lobe flux reconnection was inferred to have started at X ~ -15 to -18 RE, respectively, about 2-5 min prior to the observations of substorm expansion phase onset. These time delays and propagation speeds are shown to be consistent with the measured plasma sheet bulk flow speeds. Substorm expansion phase onset was essentially coincident with the arrival of the flow bursts at Geotail, which was located near the inner edge of the plasma sheet at X ~ -9 RE. The dipolarization of the magnetic field at geosynchronous orbit, auroral kilometric radiation (AKR) emissions, Pi2 pulsations, high-latitude negative magnetic bays, and auroral breakup marking substorm expansion onset are all coincident within the +/-1 min resolution of the measurements. Accordingly, it appears that earthward of the inner edge of the plasma sheet, where Geotail was located, substorm effects propagated at speeds comparable to the Alfven speed characteristic of the high-latitude inner magnetosphere, ~103 km s-1. In summary, the results of our investigation strongly support the modern near-Earth neutral line (NENL) model of substorms in which the onset of lobe flux tube reconnection in the near tail is followed ~2-5 min later by the braking of earthward flow bursts as they encounter the inner magnetosphere and within ~1 min, by Pi2s generations, current wedge development, and AKR and auroral expansion, and finally, ~10-20 min later, by the

  18. Observations of plasma distributions during the CDAW substorms of 31 March - 1 April 1979

    NASA Astrophysics Data System (ADS)

    Huang, C. Y.; Frank, L. A.; Eastman, T. E.

    1986-02-01

    On 31 March and 1 April 1979 a sequence of substorms was recorded on the ground. During the entire active period the ISEE-1 and -2 satellites were located in the magnetotail, between 22 and 12 Earth radii from the Earth. Observations of plasma distributions made at varying levels of activity during these substorms provide good examples of typical magnetotail responses. These measurements were obtained with the Lepedea on board the ISEE-1 spacecraft. The observations show that the main response of the magnetotail during active periods is primarily spatial. The central plasma sheet contracts at substorm onset and expands during the recovery phase. This motion causes the ISEE-1 and -2 spacecraft to move from one plasma regime to another, e.g., from the central plasma sheet to the plasma sheet boundary layer. Further these regions can be characterized by their plasma distributions which retain their essential signatures even under substorm conditions. At times when accelerated plasma is observed the source of the energetic particles appears to be located tailward of the satellite. This is generally true of the plasma sheet boundary layer in which net earthward streaming is detected on most crossings in this region.

  19. Towards a synthesis of substorm electrodynamics: HF radar and auroral observations

    NASA Astrophysics Data System (ADS)

    Grocott, A.; Lester, M.; Parkinson, M. L.; Yeoman, T. K.; Dyson, P. L.; Devlin, J. C.; Frey, H. U.

    2006-12-01

    At 08:35 UT on 21 November 2004, the onset of an interval of substorm activity was captured in the southern hemisphere by the Far UltraViolet (FUV) instrument on board the IMAGE spacecraft. This was accompanied by the onset of Pi2 activity and subsequent magnetic bays, evident in ground magnetic data from both hemispheres. Further intensifications were then observed in both the auroral and ground magnetic data over the following ~3 h. During this interval the fields-of-view of the two southern hemisphere Tasman International Geospace Enviroment Radars (TIGER) moved through the evening sector towards midnight. Whilst initially low, the amount of backscatter from TIGER increased considerably during the early stages of the expansion phase such that by ~09:20 UT an enhanced dusk flow cell was clearly evident. During the expansion phase the equatorward portion of this flow cell developed into a narrow high-speed flow channel, indicative of the auroral and sub-auroral flows identified in previous studies (e.g. Freeman et al., 1992; Parkinson et al., 2003). At the same time, higher latitude transient flow features were observed and as the interval progressed the flow reversal region and Harang discontinuity became very well defined. Overall, this study has enabled the spatial and temporal development of many different elements of the substorm process to be resolved and placed within a simple conceptual framework of magnetospheric convection. Specifically, the detailed observations of ionospheric flows have illustrated the complex interplay between substorm electric fields and associated auroral dynamics. They have helped define the distinct nature of different substorm current systems such as the traditional substorm current wedge and the more equatorward currents associated with polarisation electric fields. Additionally, they have revealed a radar signature of nightside reconnection which provides the promise of quantifying nightside reconnection in a way which has

  20. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1995-09-01

    Ambient aerosols frequently contain large portions of hygroscopic inorganic salts such as chlorides, nitrates, and sulfates in either pure or mixed forms. Such inorganic salt aerosols exhibit the properties of deliquescence and efflorescence in air. The phase transformation from a solid particle to a saline droplet usually occurs spontaneously when the relative humidity of the atmosphere reaches a level specific to the chemical composition of the aerosol particle. Conversely, when the relative humidity decreases and becomes low enough, the saline droplet will evaporate and suddenly crystallize, expelling all its water content. The phase transformation and growth of aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climate changes. In this chapter, an exposition of the underlying thermodynamic principles is given, and recent advances in experimental methods utilizing single-particle levitation are discussed. In addition, pertinent and available thermodynamic data, which are needed for predicting the deliquescence properties of single and multi-component aerosols, are compiled. This chapter is useful to research scientists who are either interested in pursuing further studies of aerosol thermodynamics, or required to model the dynamic behavior of hygroscopic aerosols in a humid environment.

  1. Constraining the substorm problem using ULF wave techniques

    NASA Astrophysics Data System (ADS)

    Rae, I. J.; Mann, I. R.; Murphy, K. R.; Milling, D. K.; Team, T.

    2008-12-01

    Using ground-based magnetometers from CARISMA and THEMIS and in-situ magnetic observations by THEMIS and GOES, we present the results obtained from an objective wavelet-based technique to determine the first onset of ULF wave activity during expansion phase onset on the ground and in space. We validate ground-based ULF timing against the large-scale IMAGE FUV and smaller-scale THEMIS ASI auroral observations. We find clear, coherent and repeatable characteristics of these ULF waves on the ground indicating a localized onset epicentre that provides a clear and strong constraint on the location in time and space of expansion phase onset. Specifically, we show that the onset of long-period Pi1/short-period Pi2 ULF waves commence at an epicentre in the ionosphere which is co-located in time and space with the development of spatially-localised, latitudinally narrow small-scale undulations on a faint isolated arc several degrees equatorward of the pre- existing discrete auroral arcs. These optical undulations have a periodicity in the same Pi1 frequency band as the magnetic perturbations. During this activity, the pre-onset poleward discrete arc system remains spatially and temporally distinct from, and quasi-stable and unaffected by, the rapid dynamics of the new more equatorward auroral activity during the first the 2-3 minutes following onset. These optical and magnetic manifestations of expansion phase onset initiation may represent a characteristic ionospheric signature of a near-Earth plasmasheet instability. An alternate scenario is that reconnection in a severely stretched geometry produces these signatures, but in that case the stability and magnetospheric location of the more poleward arc system mapping to the plasmasheet must be explained. Regardless, the combination of high cadence and spatial resolution magnetic and optical measurements such as those outlined here provide a remarkably tight constraint on the mechanisms responsible for the initiation of

  2. Suprathermal O(+) and H(+) ion behavior during the March 22, 1979 (CDAW 6), substorms

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Scholer, M.; Hovestadt, D.; Klecker, B.

    1985-01-01

    The present investigation has the objective to report on the behavior of energetic (approximately 130 keV) O(+) ions in the earth's plasma sheet, taking into account observations by the ISEE 1 spacecraft during a magnetically active time interval encompassing two major substorms on March 22, 1979. Attention is also given to suprathermal H(+) and He(++) ions. ISEE 1 plasma sheet observations of the proton and alpha particle phase space densities as a function of energy per charge during the time interval 0933-1000 UT on March 22, 1979 are considered along with the proton phase space density versus energy in the energy interval approximately 10 to 70 keV for the selected time periods 0933-1000 UT (presubstorm) and 1230-1243 UT (recovery phase) during the 1055 substorm on March 22, 1979. A table listing the proton energy density for presubstorm and recovery periods is also provided.

  3. Configuration and Generation of Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Chu, Xiangning

    The substorm current wedge (SCW), a core element of substorm dynamics coupling the magnetotail to the ionosphere, is crucial in understanding substorms. It has been suggested that the field-aligned currents (FACs) in the SCW are caused by either pressure gradients or flow vortices, or both. Our understanding of FAC generations is based predominately on numerical simulations, because it has not been possible to organize spacecraft observations in a coordinate system determined by the SCW. This dissertation develops an empirical inversion model of the current wedge and inverts midlatitude magnetometer data to obtain the parameters of the current wedge for three solar cycles. This database enables statistical data analysis of spacecraft plasma and magnetic field observations relative to the SCW coordinate. In chapter 2, a new midlatitude positive bay (MPB) index is developed and calculated for three solar cycles of data. The MPB index is processed to determine the substorm onset time, which is shown to correspond to the auroral breakup onset with at most 1-2 minutes difference. Substorm occurrence rate is found to depend on solar wind speed while substorm duration is rather constant, suggesting that substorm process has an intrinsic pattern independent of external driving. In chapter 3, an SCW inversion technique is developed to determine the strength and locations of the FACs in an SCW. The inversion parameters for FAC strength and location, and ring current strength are validated by comparison with other measurements. In chapter 4, the connection between earthward flows and auroral poleward expansion is examined using improved mapping, obtained from a newly-developed dynamic magnetospheric model by superimposing a standard magnetospheric field model with substorm current wedge obtained from the inversion technique. It is shown that the ionospheric projection of flows observed at a fixed point in the equatorial plane map to the bright aurora as it expands poleward

  4. Energy storage and dissipation in the magnetotail during substorms. 2. MHD simulations

    SciTech Connect

    Steinolfson, R.S. ); Winglee, R.M. )

    1993-05-01

    The authors present a global MHD simulation of the magnetotail in an effort to study magnetic storm development. They address the question of energy storage in the current sheet in the early phases of storm growth, which previous simulations have not shown. They address this problem by dealing with the variation of the resistivity throughout the magnetosphere. They argue that MHD theory should provide a suitable representation to this problem on a global scale, even if it does not handle all details adequately. For their simulation they use three different forms for the resistivity. First is a uniform and constant resistivity. Second is a resistivity proportional to the current density, which is related to argument that resistivity is driven by wave-particle interactions which should be strongest in regions where the current is the greatest. Thirdly is a model where the resistivity varies with the magnetic field strength, which was suggested by previous results from particle simulations of the same problem. The simulation then gives approximately the same response of the magnetosphere for all three of the models. Each results in the formation and ejection of plasmoids, but the energy stored in the magnetotail, the timing of substorm onset in relation to the appearance of a southward interplanetary magnetic field, and the speed of ejection of the plasmoids formed differ with the resistivity models.

  5. Quantifying the spatio-temporal correlation during a substorm using dynamical networks formed from the SuperMAG database of ground based magnetometer stations.

    NASA Astrophysics Data System (ADS)

    Dods, J.; Chapman, S. C.; Gjerloev, J. W.; Barnes, R. J.

    2014-12-01

    The overall morphology and dynamics of magnetospheric substorms is well established in terms of observed qualitative auroral features and signatures seen in ground based magnetometers. The detailed evolution of a given substorm is captured by typically ~100 ground based magnetometer observations and this work seeks to synthesise all these observations in a quantitative manner. We present the first analysis of the full available set of ground based magnetometer observations of substorms using dynamical networks. SuperMAG offers a database containing ground station magnetometer data at a cadence of 1min from 100s stations situated across the globe. We use this data to form dynamic networks which capture spatial dynamics on timescales from the fast reconfiguration seen in the aurora, to that of the substorm cycle. Windowed linear cross-correlation between pairs of magnetometer time series along with a threshold is used to determine which stations are correlated and hence connected in the network. Variations in ground conductivity and differences in the response functions of magnetometers at individual stations are overcome by normalizing to long term averages of the cross-correlation. These results are tested against surrogate data in which phases have been randomised. The network is then a collection of connected points (ground stations); the structure of the network and its variation as a function of time quantify the detailed dynamical processes of the substorm. The network properties can be captured quantitatively in time dependent dimensionless network parameters and we will discuss their behaviour for examples of 'typical' substorms and storms. The network parameters provide a detailed benchmark to compare data with models of substorm dynamics, and can provide new insights on the similarities and differences between substorms and how they correlate with external driving and the internal state of the magnetosphere.

  6. Substorm probabilities are best predicted from solar wind speed

    NASA Astrophysics Data System (ADS)

    Newell, P. T.; Liou, K.; Gjerloev, J. W.; Sotirelis, T.; Wing, S.; Mitchell, E. J.

    2016-08-01

    Most measures of magnetospheric activity - including auroral power (AP), magnetotail stretching, and ring current intensity - are best predicted by solar wind-magnetosphere coupling functions which approximate the frontside magnetopause merging rate. However radiation belt fluxes are best predicted by a simpler function, namely the solar wind speed, v. Since most theories of how these high energy electrons arise are associated with repeated rapid dipolarizations such as associated with substorms, this apparent discrepancy could be reconciled under the hypothesis that the frequency of substorms tracks v rather than the merging rate - despite the necessity of magnetotail flux loading prior to substorms. Here we investigate this conjecture about v and substorm probability. Specifically, a continuous list of substorm onsets compiled from SuperMAG covering January 1, 1997 through December 31, 2007 are studied. The continuity of SuperMAG data and near continuity of solar wind measurements minimize selection bias. In fact v is a much better predictor of onset probability than is the overall merging rate, with substorm odds rising sharply with v. Some loading by merging is necessary, and frontside merging does increase substorm probability, but nearly as strongly as does v taken alone. Likewise, the effects of dynamic pressure, p, are smaller than simply v taken by itself. Changes in the solar wind matter, albeit modestly. For a given level of v (or Bz), a change in v (or Bz) will increase the odds of a substorm for at least 2 h following the change. A decrease in driving elevates substorm probabilities to a greater extent than does an increase, partially supporting external triggering. Yet current v is the best single predictor of subsequently observing a substorm. These results explain why geomagnetically quiet years and active years are better characterized by low or high v (respectively) than by the distribution of merging estimators. It appears that the flow of energy

  7. Magnetotail Current Sheet Thinning and Magnetic Reconnection Dynamics in Global Modeling of Substorms

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Rastaetter, L.; Toth, G.; DeZeeuw, D. L.; Gombosi, T. I.

    2008-01-01

    Magnetotail current sheet thinning and magnetic reconnection are key elements of magnetospheric substorms. We utilized the global MHD model BATS-R-US with Adaptive Mesh Refinement developed at the University of Michigan to investigate the formation and dynamic evolution of the magnetotail thin current sheet. The BATSRUS adaptive grid structure allows resolving magnetotail regions with increased current density up to ion kinetic scales. We investigated dynamics of magnetotail current sheet thinning in response to southwards IMF turning. Gradual slow current sheet thinning during the early growth phase become exponentially fast during the last few minutes prior to nightside reconnection onset. The later stage of current sheet thinning is accompanied by earthward flows and rapid suppression of normal magnetic field component $B-z$. Current sheet thinning set the stage for near-earth magnetic reconnection. In collisionless magnetospheric plasma, the primary mechanism controlling the dissipation in the vicinity of the reconnection site is non-gyrotropic effects with spatial scales comparable with the particle Larmor radius. One of the major challenges in global MHD modeling of the magnetotail magnetic reconnection is to reproduce fast reconnection rates typically observed in smallscale kinetic simulations. Bursts of fast reconnection cause fast magnetic field reconfiguration typical for magnetospheric substorms. To incorporate nongyritropic effects in diffusion regions we developed an algorithm to search for magnetotail reconnection sites, specifically where the magnetic field components perpendicular to the local current direction approaches zero and form an X-type configuration. Spatial scales of the diffusion region and magnitude of the reconnection electric field are calculated self-consistently using MHD plasma and field parameters in the vicinity of the reconnection site. The location of the reconnection sites and spatial scales of the diffusion region are updated

  8. Nitrogen controlled iron catalyst phase during carbon nanotube growth

    SciTech Connect

    Bayer, Bernhard C.; Baehtz, Carsten; Kidambi, Piran R.; Weatherup, Robert S.; Caneva, Sabina; Cabrero-Vilatela, Andrea; Hofmann, Stephan; Mangler, Clemens; Kotakoski, Jani; Meyer, Jannik C.; Goddard, Caroline J. L.

    2014-10-06

    Close control over the active catalyst phase and hence carbon nanotube structure remains challenging in catalytic chemical vapor deposition since multiple competing active catalyst phases typically co-exist under realistic synthesis conditions. Here, using in-situ X-ray diffractometry, we show that the phase of supported iron catalyst particles can be reliably controlled via the addition of NH{sub 3} during nanotube synthesis. Unlike polydisperse catalyst phase mixtures during H{sub 2} diluted nanotube growth, nitrogen addition controllably leads to phase-pure γ-Fe during pre-treatment and to phase-pure Fe{sub 3}C during growth. We rationalize these findings in the context of ternary Fe-C-N phase diagram calculations and, thus, highlight the use of pre-treatment- and add-gases as a key parameter towards controlled carbon nanotube growth.

  9. Energetic Electron Populations in the Magnetosphere During Geomagnetic Storms and Substorms

    NASA Technical Reports Server (NTRS)

    McKenzie, David L.; Anderson, Phillip C.

    2002-01-01

    This report summarizes the scientific work performed by the Aerospace Corporation under NASA Grant NAG5-10278, 'Energetic Electron Populations in the Magnetosphere during Geomagnetic Storms and Subsisting.' The period of performance for the Grant was March 1, 2001 to February 28, 2002. The following is a summary of the Statement of Work for this Grant. Use data from the PIXIE instrument on the Polar spacecraft from September 1998 onward to derive the statistical relationship between particle precipitation patterns and various geomagnetic activity indices. We are particularly interested in the occurrence of substorms during storm main phase and the efficacy of storms and substorms in injecting ring-current particles. We will compare stormtime simulations of the diffuse aurora using the models of Chen and Schulz with stormtime PIXIE measurements.

  10. A current disruption mechanism in the neutral sheet for triggering substorm expansions

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.

    1989-01-01

    Two main areas were addressed in support of an effort to understand mechanism responsible for the broadband electrostatic noise (BEN) observed in the magnetotail. The first area concerns the generation of BEN in the boundary layer region of the magnetotail whereas the second area concerns the occassional presence of BEN in the neutral sheet region. For the generation of BEN in the boundary layer region, a hybrid simulation code was developed to perform reliable longtime, quiet, highly resolved simulations of field aligned electron and ion beam flow. The result of the simulation shows that broadband emissions cannot be generated by beam-plasma instability if realistic values of the ion beam parameters are used. The waves generated from beam-plasma instability are highly discrete and are of high frequencies. For the plasma sheet boundary layer condition, the wave frequencies are in the kHz range, which is incompatible with the observation that the peak power in BEN occur in the 10's of Hz range. It was found that the BEN characteristics are more consistent with lower hybrid drift instability. For the occasional presence of BEN in the neutral sheet region, a linear analysis of the kinetic cross-field streaming instability appropriate to the neutral sheet condition just prior to onset of substorm expansion was performed. By solving numerically the dispersion relation, it was found that the instability has a growth time comparable to the onset time scale of substorm onset. The excited waves have a mixed polarization in the lower hybrid frequency range. The imposed drift driving the instability corresponds to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is in the 10 mV/m range which is well within the observed electric field values detected in the neutral sheet during substorms. This finding can potentially account for the disruption of cross-tail current and its diversion to

  11. Injection of relativistic electrons into the internal magnetosphere during magnetic storms: Connection with substorms

    NASA Astrophysics Data System (ADS)

    Lazutin, L. L.

    2013-11-01

    The connection between rapid increases in the intensity of electrons with energies >0.3 MeV and magnetospheric substorms was studied for the first time by measurements of energetic electrons on the low-orbit SERVIS-1 satellite. In addition to the well-known process of radial diffusion detected at the recovery phase, the increases during a period of time no longer than 1.5 h at the main phase of six magnetic storms in a channel of 0.3-1.7 MeV (in three of them, in a channel of 1.7-3.4 MeV) were measured. An analysis of auroral zone magnetograms demonstrated that the increases occurred at the instant of magnetospheric substorm activation. A conclusion is made that the increases are caused by the radial injection of electrons by a pulse electric field induced during substorm activations. Pulse injections are shown to be one of the main mechanisms of electron radiation belt completion in the inner magnetosphere and, in combination with moderate radial diffusion, to be responsible for the appearance of large fluxes of energetic electrons ("killers") in the magnetosphere after magnetic storms.

  12. Complexity and Turbulence at the Substorm Onset

    NASA Astrophysics Data System (ADS)

    Consolini, G.; De Marco, R.; Acquaviva, E.

    2014-12-01

    Geomagnetic substorms are one of the principal manifestations of the Earth's magnetospheric complex dynamics in response to solar wind changes. In the last two decades, in-situ susbtorm related studies showed that the onset of this phenomenon is accompanied by fluctuations covering a wide range of scales from the MHD domain to the small non-MHD one. Furthermore, these fluctuations have a turbulent, sporadic and intermittent character. This is particularly true for the well-known current disruption (CD) process, occurring at the substorm onset. Here, the features of the turbulence observed during a CD phenomenon are investigated, with a particular attention to the genereation of a 1/f spectrum in the MHD domain and its connection with a competing direct and inverse cascading process. A comparison with Hall-MHD shell-model simulations will be presented and discussed. This research has received funding from the European Community's Seventh Framework Programme ([FP7/2007-2013]) under Grant agreement no. 313038/STORM.

  13. Dynamics of the AMPERE Region 1 Birkeland current oval during storms, substorms and steady magnetospheric convection

    NASA Astrophysics Data System (ADS)

    Baker, J. B.; Clausen, L.; Ruohoniemi, J. M.; Milan, S. E.; Kissinger, J.; Anderson, B. J.; Wing, S.

    2012-12-01

    Using radial current densities provided by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) we employ a fitting scheme to identify the location of the maximum Region 1 field-aligned (Birkeland) current at all magnetic local times. We call this parameter the "R1 oval" and we investigate its behavior during various modes of magnetospheric activity such as storms, substorms and steady magnetospheric convection (SMCs). Results show the following: (1) during substorms the radius of the R1 oval undergoes a cyclic inflation and contraction which matches the standard paradigm for substorm growth (loading) and expansion (unloading); (2) during SMCs the R1 oval is relatively steady consistent with balanced dayside and nightside reconnection during these events; and (3) during magnetic storms the size of the R1 oval is strongly correlated with the strength of the ring current specified by the Sym-H index. We also examine the behavior of the R1 oval in the northern and southern hemispheres simultaneously as a function of season in an effort to understand the role that internal magnetosphere-ionosphere coupling influences may play in modulating the response of the magnetosphere during these various types of events.

  14. A comparison of the probability distribution of observed substorm magnitude with that predicted by a minimal substorm model

    NASA Astrophysics Data System (ADS)

    Morley, S. K.; Freeman, M. P.; Tanskanen, E. I.

    2007-11-01

    We compare the probability distributions of substorm magnetic bay magnitudes from observations and a minimal substorm model. The observed distribution was derived previously and independently using the IL index from the IMAGE magnetometer network. The model distribution is derived from a synthetic AL index time series created using real solar wind data and a minimal substorm model, which was previously shown to reproduce observed substorm waiting times. There are two free parameters in the model which scale the contributions to AL from the directly-driven DP2 electrojet and loading-unloading DP1 electrojet, respectively. In a limited region of the 2-D parameter space of the model, the probability distribution of modelled substorm bay magnitudes is not significantly different to the observed distribution. The ranges of the two parameters giving acceptable (95% confidence level) agreement are consistent with expectations using results from other studies. The approximately linear relationship between the two free parameters over these ranges implies that the substorm magnitude simply scales linearly with the solar wind power input at the time of substorm onset.

  15. Magnetotail flux accumulation leading to auroral expansion and a substorm current wedge: case study

    NASA Astrophysics Data System (ADS)

    Chu, X.; McPherron, R. L.; Hsu, T. S.; Angelopoulos, V.; Weygand, J. M.; Strangeway, R. J.; Liu, J.

    2015-12-01

    Magnetotail burst busty flows, magnetic field dipolarization, and auroral poleward expansion are linked to the development of substorm current wedges (SCW). Although auroral brightening is often attributed to field-aligned currents (FACs) in the SCW produced by flow vorticity and pressure redistribution, in-situ observations addressing the mechanism that generates these currents have been scarce. Conjugate observations and modelling results utilizing magnetotail satellites, inversion technique for SCW, and auroral imagers were used to study the release, transport, and accumulation of magnetic flux by flows; dipolarization associated with substorm current wedge formation; and auroral poleward expansion during an isolated substorm on 13 February 2008. During early expansion phase, magnetic flux released by magnetic reconnection was transported by earthward flows. Some magnetic flux was accumulated in the near-Earth region, and the remainder was transported azimuthally by flow diversion. The accumulated flux created a high pressure region with vertically dipolarized and azimuthally bent magnetic field lines. The rotation of the magnetic field lines was consistent with the polarity of the SCW. In the near-Earth region, good agreement was found among the magnetic flux transported by the flows, the accumulated flux causing dipolarization inside the SCW, and the flux enclosed within the poleward-expanded auroral oval. This agreement demonstrates that magnetic flux from the flows accumulated and generated the SCW, the magnetic dipolarization, and the auroral poleward expansion. The quantity of accumulated flux appears to determine the amplitudes of these phenomena.

  16. Aspects of magnetosphere-ionosphere coupling in sawtooth substorms: a case study

    NASA Astrophysics Data System (ADS)

    Sandholt, P. E.; Farrugia, C. J.

    2014-10-01

    In a case study we report on repetitive substorm activity during storm time which was excited during Earth passage of an interplanetary coronal mass ejection (ICME) on 18 August 2003. Applying a combination of magnetosphere and ground observations during a favourable multi-spacecraft configuration in the plasma sheet (GOES-10 at geostationary altitude) and in the tail lobes (Geotail and Cluster-1), we monitor the temporal-spatial evolution of basic elements of the substorm current system. Emphasis is placed on activations of the large-scale substorm current wedge (SCW), spanning the 21:00-03:00 MLT sector of the near-Earth plasma sheet (GOES-10 data during the interval 06:00-12:00 UT), and magnetic perturbations in the tail lobes in relation to ground observations of auroral electrojets and convection in the polar cap ionosphere. The joint ground-satellite observations are interpreted in terms of sequential intensifications and expansions of the outer and inner current loops of the SCW and their respective associations with the westward electrojet centred near midnight (24:00 MLT) and the eastward electrojet observed at 14:00-15:00 MLT. Combined magnetic field observations across the tail lobe from Cluster and Geotail allow us to make estimates of enhancements of the cross-polar-cap potential (CPCP) amounting to ≈ 30-60 kV (lower limits), corresponding to monotonic increases of the PCN index by 1.5 to 3 mV m-1 from inductive electric field coupling in the magnetosphere-ionosphere (M-I) system during the initial transient phase of the substorm expansion.

  17. High temperature growth of Ag phases on Ge(111)

    SciTech Connect

    Mullet, Cory H.; Chiang, Shirley

    2013-03-15

    The growth of the (3 Multiplication-Sign 1) and ({radical}3 Multiplication-Sign {radical}3)R30 Degree-Sign phases of Ag on Ge(111) on substrates at temperatures from 540 to 660 Degree-Sign C is characterized with low energy electron microscopy (LEEM) and low energy electron diffraction (LEED). From 540 Degree-Sign C to the Ag desorption temperature of 575 Degree-Sign C, LEEM images show that growth of the (3 Multiplication-Sign 1) phase begins at step edges. Upon completion of the (3 Multiplication-Sign 1) phase, the ({radical}3 Multiplication-Sign {radical}3)R30 Degree-Sign phase is observed with a dendritic growth morphology that is not much affected by steps. For sufficiently high deposition rates, Ag accumulates on the sample above the desorption temperature. From 575 to 640 Degree-Sign C, the growth proceeded in a manner similar to that at lower temperatures, with growth of the (3 Multiplication-Sign 1) phase to completion, followed by growth of the ({radical}3 Multiplication-Sign {radical}3)R30 Degree-Sign phase. Increasing the substrate temperature to 660 Degree-Sign C resulted in only (3 Multiplication-Sign 1) growth. In addition, for samples with Ag coverage less than 0.375ML, LEEM and LEED images were used to follow a reversible phase transformation near 575 Degree-Sign C, between a mixed high coverage phase of [(4 Multiplication-Sign 4) + (3 Multiplication-Sign 1)] and the high temperature, lower coverage (3 Multiplication-Sign 1) phase.

  18. In situ monitoring of liquid phase electroepitaxial growth

    NASA Technical Reports Server (NTRS)

    Okamoto, A.; Isozumi, S.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    In situ monitoring of the layer thickness during liquid phase electroepitaxy (LPEE) was achieved with a submicron resolution through precise resistance measurements. The new approach to the study and control of LPEE was applied to growth of undoped and Ge-doped GaAs layers. The in situ determined growth kinetics was found to be in excellent agreement with theory.

  19. Comparison of substorms near two solar cycle maxima: (1999-2000 and 2012-2013)

    NASA Astrophysics Data System (ADS)

    Despirak, I.; Lubchich, A.; Kleimenova, N.

    2016-05-01

    We present the comparative analysis of the substorm behavior during two solar cycle maxima. The substorms, observed during the large solar cycle maximum (1999- 2000, with Wp> 100) and during the last maximum (2012-2013 with Wp~60), were studied. The considered substorms were divided into 3 types according to auroral oval dynamic. First type - substorms which are observed only at auroral latitudes ("usual" substorms); second type - substorms which propagate from auroral latitudes (<70?) to polar geomagnetic latitudes (>70°) ("expanded" substorms, according to expanded oval); third type - substorms which are observed only at latitudes above ~70° in the absence of simultaneous geomagnetic disturbances below 70° ("polar" substorms, according to contracted oval). Over 1700 substorm events have been analyzed. The following substorm characteristics have been studied: (i) the seasonal variations, (ii) the latitudinal range of the occurrence, (iii) solar wind and IMF parameters before substorm onset, (iiii) PC-index before substorm onset. Thus, the difference between two solar activity maxima could be seen in the difference of substorm behavior in these periods as well.

  20. SAPS onset timing during substorms and the westward traveling surge

    NASA Astrophysics Data System (ADS)

    Mishin, Evgeny, V.

    2016-07-01

    We present multispacecraft observations in the magnetosphere and conjugate ionosphere of the onset time of subauroral polarization streams (SAPS) and tens of keV ring current injections on the duskside in three individual substorms. This is probably the first unequivocal determination of the substorm SAPS onset timing. The time lag between the SAPS and substorm onsets is much shorter than the gradient-curvature drift time of ˜10 keV ions in the plasmasphere. It seemingly depends on the propagation time of substorm-injected plasma from the dipolarization onset region to the plasmasphere, as well as on the SAPS position. These observations suggest that fast onset SAPS and ring current injections are causally related to the two-loop system of the westward traveling surge.

  1. A Phase-Field Model for Grain Growth

    SciTech Connect

    Chen, L.Q.; Fan, D.N.; Tikare, V.

    1998-12-23

    A phase-field model for grain growth is briefly described. In this model, a poly-crystalline microstructure is represented by multiple structural order parameter fields whose temporal and spatial evolutions follow the time-dependent Ginzburg-Landau (TDGL) equations. Results from phase-field simulations of two-dimensional (2D) grain growth will be summarized and preliminary results on three-dimensional (3D) grain growth will be presented. The physical interpretation of the structural order parameter fields and the efficient and accurate semi-implicit Fourier spectral method for solving the TDGL equations will be briefly discussed.

  2. Nuclear magnetohydrodynamic EMP, solar storms, and substorms

    SciTech Connect

    Rabinowitz, M. ); Meliopoulous, A.P.S.; Glytsis, E.N. . School of Electrical Engineering); Cokkinides, G.J. )

    1992-10-20

    In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear burst produces a relatively slow magnetohydrodynamic EMP (MHD EMP), whose effects are like those from solar storm geomagnetically induced currents (SS-GIC). The MHD EMP electric field E [approx lt] 10[sup [minus] 1] V/m and lasts [approx lt] 10[sup 2] sec, whereas for solar storms E [approx gt] 10[sup [minus] 2] V/m and lasts [approx gt] 10[sup 3] sec. Although the solar storm electric field is lower than MHD EMP, the solar storm effects are generally greater due to their much longer duration. Substorms produce much smaller effects than SS-GIC, but occur much more frequently. This paper describes the physics of such geomagnetic disturbances and analyzes their effects.

  3. A Study of Multiple and Single Onset Substorms Selected Using GOES 10 Magnetic Field Data

    NASA Astrophysics Data System (ADS)

    Stoner, J. M.; Larson, R. B.; Erickson, K. N.; Engebretson, M. J.; Singer, H. J.

    2008-05-01

    A return to a more dipolar configuration of the magnetic field on the night side, near synchronous orbit, is one good indicator of a substorm expansion phase onset. Substorm expansion phase onsets for this study were selected by requiring a well-defined increase in the z-component of the magnetic field measured by the GOES 10 satellite. Event selection was subject to 2 restrictions: an increase in the z-component of the magnetic field greater than 10 nT in GSM coordinates and GOES 10 was located on the night side within 3 hours either side of local midnight during the months of August through November of the years 2000 through 2004. These time restrictions allowed for events selected using GOES 10 to be compared with events selected using the HYDRA electron flux instrument on the Polar satellite, as presented by Larson et al. [Fall 2007 AGU Meeting]. Of the 119 events selected using GOES 10, 9 events overlapped with this previous study. As expected, the 119 events closely correlated with ground-based auroral zone Pi2 data. Substorms were classified as either single or multiple onset, the latter being differentiated from the former by observing one or more subsequent Pi2 intensifications. The ratio of multiple onset to single onset substorms was found to be 2:1. Using ground-based Pi2 data it was found that in general the magnetic latitude of the initial onset of the multiple onset events was lower than the magnetic latitude of single onset events. Multiple onset events were found between 62 and 67 degrees and single onset events between 65 and 73 degrees, with single onset events being an average of one degree higher in latitude. Additionally, the time interval between Pi2 intensifications for multiple onset events was found to have a range of 9 to 30 minutes with an average of 19 minutes. The local time distribution of events used in this study corresponded to 63 percent of events occurring before local midnight. An analysis of the value of the z-component of the

  4. Two substorm intensifications compared: Onset, expansion, and global consequences

    SciTech Connect

    Pulkkinen, T.I.; Baker, D.N.; Opgenoorth, H.J.; Sigwarth, J.B. Opgenoorth, H.J. Greenwald, R. Friis-Christensen, E. Mukai, T. Nakamura, R. Singer, H. Reeves, G.D. Lester, M.

    1998-01-01

    We present observations of two sequential substorm onsets on May 15, 1996. The first event occurred during persistently negative IMF B{sub Z}, whereas the second expansion followed a northward turning of the interplanetary magnetic field (IMF). While the first onset remained localized, the second event led to a major reconfiguration of the magnetotail. The two very different events are contrasted, and it is suggested that the IMF direction controls the evolution of the expansion phase after the initial onset. Magnetic field modeling and field-aligned mappings are used to find the high-altitude source region of the auroral features and currents giving rise to ground magnetic disturbances: It is shown that the auroral brightening is related to processes near the inner edge of the plasma sheet but that the initial field-aligned currents couple to the midtail region. Ground magnetograms show an abrupt, large-scale weakening of the electrojet during the recovery phase. This event is followed by eastward drifting omega bands in a double-oval configuration. During that period, the Geotail plasma data show oscillations at {lt}100km/s amplitude. We argue that both these features are connected with the global tail evolution as the neutral line ceases to be active and reforms in the distant tail. {copyright} 1998 American Geophysical Union

  5. Multipoint Observations of Magnetospheric Processes Relevant to the Substorm Events

    NASA Astrophysics Data System (ADS)

    Sibeck, D. G.; Gutynska, O.; Fok, M. C. H.

    2015-12-01

    We present several case studies of simultaneous multipoint observations of hot ion (~30-2200 keV) injections that occur during substorms in the day- and night-side of magnetosphere from THEMIS, RBSP and MMS probes. We complement them with observations of magnetic field signatures to estimate time delays of earthward plasma flows at multiple probes. We discuss the mechanisms that trigger substorm onset comparing the observations with inner plasma sheet simulations.

  6. Dynamic Particle Growth Testing - Phase I Studies

    SciTech Connect

    Hu, M.Z-C.

    2001-05-17

    There is clearly a great need to understand the processes of crystallization and solid scale formation that led to the shutdown of 2H evaporator operation at the Savannah River Site (SRS) and could possibly cause similar problems in the future in other evaporators. Waste streams from SRS operations that enter the evaporators generally contain alkaline, sodium nitrate/nitrite-based solutions with various changing concentrations of silicates and aluminates. It has been determined. that the silicates and aluminates served as precursor reactants for forming unwanted minerals during solution evaporation, upon transport, or upon storage. Mineral forms of the Zeolite Linde A group--sodalites and cancrinite--along with gibbsite, have often been identified as contributing to deposit (scale) formation on surfaces of the 2H evaporator as well as to the formation of solid plugs in the gravity drain line and lift line. Meanwhile, solids (amorphous or crystalline minerals) are believed, without direct evidence, to form in the bulk solutions in the evaporator. In addition, the position of deposits in the 2H evaporator suggests that scale formation depends on the interplay of heat and mass transfer, hydrodynamics, and reaction mechanisms and kinetics. The origin of solid scale formation on walls could be due to heterogeneous nucleation and/or to homogeneous nucleation followed by cluster/particle deposition. Preliminary laboratory tests at the Savannah River Technology Center (SRTC) with standing metal coupons seem to support the latter mechanism for initial deposition; that is, the solid particles form in the bulk solution first and then deposit on the metal surfaces. Further buildup of deposits may involve both mechanisms: deposition and crystal growth. Therefore, there may be a direct linkage between the solid particle growth in bulk solution and the scale buildup on the wall surfaces. On the other hand, even if scale formation is due solely to a heterogeneous mechanism

  7. Substorm development and ballooning mode signatures at GEOS--2/SCATHA

    NASA Astrophysics Data System (ADS)

    Holter, O.; Galopeau, P.; Roux, A.; Perraut, S.; Pedersen, A.; Korth, A.

    2003-04-01

    The substorm event considered here was recorded on May 22, 1979 at GEOS--2 and SCATHA when the two s/c were separated by less than 30 minutes in local time. The dipolarization onset associated with the substorm occurred within a time interval of less than one minute at the two s/c when they were located around 2100 LT. GEOS--2 was situated close to the magnetic equatorial surface, while SCATHA was presumably close to the current sheet boundary. The observed delay of the magnetic field dipolarization onset and the injection of electrons and ions for the two s/c indicated a westward expansion of the substorm with an angular velocity ˜ 7.7^o/s. At substorm onset, a strong azimuthal magnetic field component(˜ 50 nT) of finite duration (2--3 min) was recorded on SCATHA, indicating strong field aligned Birkeland currents below the magnetic equator. We have related the observed magnetic field component variations during the substorm to the field aligned current as indicated by the azimuthal magnetic field component. The first sign of an approaching substorm was an initial two minute tailward stretching of the magnetic field. Concurrent with the initial stretching was a reduction of the electron flux intensity. The electron injection started simultaneous with the dipolarization process. The measured field and particle fluxes are related to signatures suggested by a simple Rayleigh--Taylor drift ballooning instability model.

  8. The quiescent phase of galactic disc growth

    NASA Astrophysics Data System (ADS)

    Aumer, Michael; Binney, James; Schönrich, Ralph

    2016-07-01

    We perform a series of controlled N-body simulations of growing disc galaxies within non-growing, live dark matter haloes of varying mass and concentration. Our initial conditions include either a low-mass disc or a compact bulge. New stellar particles are continuously added on near-circular orbits to the existing disc, so spiral structure is continuously excited. To study the effect of combined spiral and giant molecular cloud (GMC) heating on the discs, we introduce massive, short-lived particles that sample a GMC mass function. An isothermal gas component is introduced for a subset of the models. We perform a resolution study and vary parameters governing the GMC population, the histories of star formation and radial scale growth. Models with GMCs and standard values for the disc mass and halo density provide the right level of self-gravity to explain the age-velocity dispersion relation of the solar neighbourhood (Snhd). GMC heating generates remarkably exponential vertical profiles with scaleheights that are radially constant and agree with observations of galactic thin discs. GMCs are also capable of significantly delaying bar formation. The amount of spiral-induced radial migration agrees with what is required for the metallicity distribution of the Snhd. However, in our standard models, the outward-migrating populations are not hot enough vertically to create thick discs. Thick discs can form in models with high baryon fractions, but the corresponding bars are too long, the young stellar populations too hot and the discs flare considerably.

  9. Elements of M-I Coupling in Repetitive Substorm Activity Driven by Interplanetary CMEs

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Sandholt, P. E.

    2014-12-01

    By means of case studies we explore key elements of the magnetosphere-ionosphere current system associated with repetitive substorm activity during persistent strong forcing by ICMEs. Our approach consists of a combination of the magnetospheric and ionospheric perspectives on the substorm activity. The first aspect is the near-Earth plasma sheet with its repetitive excitations of the substorm current wedge, as monitored by spacecraft GOES-10 when it traversed the 2100-0300 MLT sector, and its coupling to the westward auroral electrojet (WEJ) centered near midnight during the stable interplanetary (IP) conditions. The second aspect is the excitation of Bostrom type II currents maximizing at dusk and dawn and their associated ionospheric Pedersen current closure giving rise to EEJ (WEJ) events at dusk (dawn). As documented in our study, this aspect is related to the braking phase of Earthward-moving dipolarization fronts-bursty bulk flows. We follow the magnetospheric flow/field events from spacecraft Geotail in the midtail (X = - 11 Re) lobe to geostationary altitude at pre-dawn MLTs (GOES 10). The associated M-I coupling is obtained from ground-satellite conjunctions across the double auroral oval configuration along the meridian at dusk. By this technique we distinguish between ionospheric manifestations in three latitude regimes: (i) auroral oval south, (ii) auroral oval north, and (iii) polar cap. Regime (iii) is characterized by events of enhanced antisunward convection near the polar cap boundary (flow channel events) and in the central polar cap (PCN-index events). The repetitive substorm activity is discussed in the context of the level of IP driving as given by the geoeffective IP electric field (E_KL), magnetotail reconnection (inferred from the PCN-index and spacecraft Wind at X = - 77 Re) and the storm SYM-H index. We distinguish between different variants of the repetitive substorm activity, giving rise to electrojet (AL)-plasma convection (PCN) events

  10. A two-phase model for smoothly joining disparate growth phases in the macropodid Thylogale billardierii.

    PubMed

    McMahon, Clive R; Buscot, Marie-Jeanne; Wiggins, Natasha L; Collier, Neil; Maindonald, John H; McCallum, Hamish I; Bowman, David M J S

    2011-01-01

    Generally, sigmoid curves are used to describe the growth of animals over their lifetime. However, because growth rates often differ over an animal's lifetime a single curve may not accurately capture the growth. Broken-stick models constrained to pass through a common point have been proposed to describe the different growth phases, but these are often unsatisfactory because essentially there are still two functions that describe the lifetime growth. To provide a single, converged model to age animals with disparate growth phases we developed a smoothly joining two-phase nonlinear function (SJ2P), tailored to provide a more accurate description of lifetime growth of the macropod, the Tasmanian pademelon Thylogale billardierii. The model consists of the Verhulst logistic function, which describes pouch-phase growth--joining smoothly to the Brody function, which describes post-pouch growth. Results from the model demonstrate that male pademelons grew faster and bigger than females. Our approach provides a practical means of ageing wild pademelons for life history studies but given the high variability of the data used to parametrise the second growth phase of the model, the accuracy of ageing of post-weaned animals is low: accuracy might be improved with collection of longitudinal growth data. This study provides a unique, first robust method that can be used to characterise growth over the lifespan of pademelons. The development of this method is relevant to collecting age-specific vital rates from commonly used wildlife management practices to provide crucial insights into the demographic behaviour of animal populations.

  11. Connections between large-scale transport to the inner magnetosphere from the distant plasma sheet, region 2 coupling to the ionosphere, and substorm and storm dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Lyons, L. R.; Wang, C.; Zou, S.; Gkioulidou, M.; Nishimura, Y.; Shi, Y.; Kim, H.; Xing, X.; Nicolls, M. J.; Heinselman, C. J.

    2009-12-01

    Studies using a variety of ground-based and spacecraft observations, as well as the Rice Convection Model, have taught us much about the connection between plasma sheet transport and particle distributions within the inner plasma sheet. These studies have shown that plasma moves earthward (equatorward in the ionosphere) after enhancements in convection to reach the near-Earth plasma sheet, leading to the enhancements in plasma sheet pressure that are responsible for the growth phase of substorms and the partial ring current. The highest inner plasma sheet pressures likely occur in the subauroral polarization streams (SAPS) region of the evening-side convection cell, lying equatorward of the Harang reversal. Both the Harang reversal and SAPS are manifestations of the region 2 (R2) electrodynamical coupling, so that transport to the near-Earth plasma sheet is strongly influenced by the R2 magnetosphere-ionosphere coupling. Modeling results show that this transport, together with the concurrent R2 coupling, is also strongly dependent on the plasma distributions that enter the plasma sheet. However, the entering plasma distribution is expected to have substantial spatial and temporal structure, which should impart substantial spatial structure and time dependencies to the inner plasma sheet particle distributions. In addition, very recent analyses indicate that the temporal variations of the particle distribution entering the plasma sheet, and the ensuing transport of new particle distributions within the plasma sheet, is fundamental to understanding the substorm expansion phase. Taken together, the above results indicate that an important understanding of inner magnetosphere particle distributions and their dynamics, as well as of major geomagnetic disturbances, is likely to come from integrated studies of plasma sheet particle entry, particle transport, and electrodynamical coupling to the ionosphere.

  12. Satellite measurements through the center of a substorm surge

    SciTech Connect

    Weimer, D.R.; Craven, J.D.; Frank, L.A.; Hanson, W.B.; Maynard, N.C.; Hoffman, R.A.; Slavin, J.A.

    1994-12-01

    Measurements have been made of electric and magnetic fields, plasma drifts, and electron precipitation within a surge at the westward, leading edge of the auroral {open_quotes}bulge{close_quotes} at the peak of the substorm expansion phase. The trajectory of the DE 2 satellite over the auroral emissions is determined from nearly simultaneous observations with the imager on the DE 1 satellite at a higher altitude. The electric field and plasma drift measurements have enabled the authors to deduce the basic configuration of the ionospheric electric potential, or plasma convection, around the surge. The electric potential shows that the bulge is associated with a protrusion of the dawn convection cell into the dusk cell, poleward of the {open_quotes}Harang discontinuity.{close_quotes} This protrusion contains a westward electric field that strongly enhances the westward electrojet current by the creation of a {open_quotes}Cowling channel.{close_quotes} This westward electric field, and the associated Cowling current, appear to terminate within the surge, which contains an intense, upward field-aligned current. The magnetic field measurements show that the region containing this field-aligned current is shaped more like a cylinder rather than a long sheet. The total current is found to exceed one-half million amperes. 34 refs., 11 figs.

  13. Phase transitions in tumor growth: II prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; Nieto-Villar, J. M.

    2015-05-01

    We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3 based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a "second order" phase transition. Finally, it was found that the cellular line PC3 exhibits a higher value of entropy production rate compared to LNCaP, which is indicative of the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic potential tumors.

  14. Phase transition in tumor growth: I avascular development

    NASA Astrophysics Data System (ADS)

    Izquierdo-Kulich, E.; Rebelo, I.; Tejera, E.; Nieto-Villar, J. M.

    2013-12-01

    We propose a mechanism for avascular tumor growth based on a simple chemical network. This model presents a logistic behavior and shows a “second order” phase transition. We prove the fractal origin of the empirical logistics and Gompertz constant and its relation to mitosis and apoptosis rate. Finally, the thermodynamics framework developed demonstrates the entropy production rate as a Lyapunov function during avascular tumor growth.

  15. ULF Waves and Magnetic Substorms: Their Onset and Excitation Mechanism

    NASA Astrophysics Data System (ADS)

    Murphy, Kyle; Milling, David; Rae, Jonathan; Mann, Ian; Russell, Christopher; Angelopoulos, V.; Glassmeier, K.-H.; Auster, Uli; McFadden, James; Larson, Davin

    Impulsive Ultra-Low Frequency (ULF) waves known as Pi1s (1-40s period) and Pi2s (40-150s period) are predominantly observed during substorm onset. Primarily due a lack of high-fidelity and conjugate in-situ and ground-based observations, determining the excitation mechanism for these ULF waves and their role in magnetic substorms has proved to be challenging. However, with new multi-point magnetotail observations provided by the 5 THEMIS probes and expanded ground-based coverage, the potential now exists to unambiguously characterise the ULF phenomena observed at substorm onset. Utilising favourable conjunctions of the tailaligned THEMIS probes, and the THEMIS and CARISMA ground-based magnetometers, we determine a probable ionospheric location of substorm onset, and characterise the associated ULF wave phenomena. Utilising wavelets, we determine the onset and time of arrival of the ionospheric Pi1s and Pi2s, and compare these observations to the in-situ signatures at the THEMIS probes, developing a causal timeline of substorm expansion. The onset of the ULF pulsations on the ground can then be compared to a MHD time-of-flight simulation to constrain the onset region in space. Recent work has suggested that impulsive Pi2 waveforms are directly-driven by plasma flows emanating from the substorm onset location in the magnetotail. Other studies suggest these waves are a natural oscillatory mode of the magnetosphere, resulting in a field line resonance or inner magnetospheric cavity mode. In several case studies we consider each possibility and examine the most likely excitation mechanism for impulsive Pi1 and Pi2 ULF waves observed during magnetic substorm onset on the ground and in space.

  16. Correlative comparison of geomagnetic storms and auroral substorms using geomagnetic indeces. Master's thesis

    SciTech Connect

    Cade, W.B.

    1993-06-01

    Partial contents include the following: (1) Geomagnetic storm and substorm processes; (2) Magnetospheric structure; (3) Substorm processes; (4) Data description; (5) Geomagnetic indices; and (6) Data period and data sets.

  17. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation.

    PubMed

    Rolfe, Matthew D; Rice, Christopher J; Lucchini, Sacha; Pin, Carmen; Thompson, Arthur; Cameron, Andrew D S; Alston, Mark; Stringer, Michael F; Betts, Roy P; Baranyi, József; Peck, Michael W; Hinton, Jay C D

    2012-02-01

    Lag phase represents the earliest and most poorly understood stage of the bacterial growth cycle. We developed a reproducible experimental system and conducted functional genomic and physiological analyses of a 2-h lag phase in Salmonella enterica serovar Typhimurium. Adaptation began within 4 min of inoculation into fresh LB medium with the transient expression of genes involved in phosphate uptake. The main lag-phase transcriptional program initiated at 20 min with the upregulation of 945 genes encoding processes such as transcription, translation, iron-sulfur protein assembly, nucleotide metabolism, LPS biosynthesis, and aerobic respiration. ChIP-chip revealed that RNA polymerase was not "poised" upstream of the bacterial genes that are rapidly induced at the beginning of lag phase, suggesting a mechanism that involves de novo partitioning of RNA polymerase to transcribe 522 bacterial genes within 4 min of leaving stationary phase. We used inductively coupled plasma mass spectrometry (ICP-MS) to discover that iron, calcium, and manganese are accumulated by S. Typhimurium during lag phase, while levels of cobalt, nickel, and sodium showed distinct growth-phase-specific patterns. The high concentration of iron during lag phase was associated with transient sensitivity to oxidative stress. The study of lag phase promises to identify the physiological and regulatory processes responsible for adaptation to new environments.

  18. Lag Phase Is a Distinct Growth Phase That Prepares Bacteria for Exponential Growth and Involves Transient Metal Accumulation

    PubMed Central

    Rolfe, Matthew D.; Rice, Christopher J.; Lucchini, Sacha; Pin, Carmen; Thompson, Arthur; Cameron, Andrew D. S.; Alston, Mark; Stringer, Michael F.; Betts, Roy P.; Baranyi, József; Peck, Michael W.

    2012-01-01

    Lag phase represents the earliest and most poorly understood stage of the bacterial growth cycle. We developed a reproducible experimental system and conducted functional genomic and physiological analyses of a 2-h lag phase in Salmonella enterica serovar Typhimurium. Adaptation began within 4 min of inoculation into fresh LB medium with the transient expression of genes involved in phosphate uptake. The main lag-phase transcriptional program initiated at 20 min with the upregulation of 945 genes encoding processes such as transcription, translation, iron-sulfur protein assembly, nucleotide metabolism, LPS biosynthesis, and aerobic respiration. ChIP-chip revealed that RNA polymerase was not “poised” upstream of the bacterial genes that are rapidly induced at the beginning of lag phase, suggesting a mechanism that involves de novo partitioning of RNA polymerase to transcribe 522 bacterial genes within 4 min of leaving stationary phase. We used inductively coupled plasma mass spectrometry (ICP-MS) to discover that iron, calcium, and manganese are accumulated by S. Typhimurium during lag phase, while levels of cobalt, nickel, and sodium showed distinct growth-phase-specific patterns. The high concentration of iron during lag phase was associated with transient sensitivity to oxidative stress. The study of lag phase promises to identify the physiological and regulatory processes responsible for adaptation to new environments. PMID:22139505

  19. The roles of direct input of energy from the solar wind and unloading of stored magnetotail energy in driving magnetospheric substorms

    NASA Technical Reports Server (NTRS)

    Rostoker, G.; Akasofu, S. I.; Baumjohann, W.; Kamide, Y.; Mcpherron, R. L.

    1987-01-01

    The contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in an unpredictable manner are considered. Two physical processes for the dispensation of the energy input from the solar wind are identified: (1) a driven process in which energy supplied from the solar wind is directly dissipated in the ionosphere; and (2) a loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere. The pattern of substorm development in response to changes in the interplanetary medium has been elucidated for a canonical isolated substorm.

  20. Phase transitions in tumor growth: III vascular and metastasis behavior

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, J. A.; Cocho, G.; Mansilla, R.; Nieto-Villar, José Manuel

    2016-11-01

    We propose a mechanism for avascular, vascular and metastasis tumor growth based on a chemical network model. Vascular growth and metastasis, appear as a hard phase transition type, as "first order", through a supercritical Andronov-Hopf bifurcation, emergence of limit cycle and then through a cascade of bifurcations type saddle-foci Shilnikov's bifurcation. Finally, the thermodynamics framework developed shows that the entropy production rate, as a Lyapunov function, indicates the directional character and stability of the dynamical behavior of tumor growth according to this model.

  1. Field-aligned fluxes of energetic electrons related to the onset of magnetospheric substorms

    NASA Astrophysics Data System (ADS)

    Kremser, G.; Korth, A.; Ullaland, S. L.; Roux, A.; Perraut, S.; Pedersen, A.; Schmidt, R.; Tanskanen, P.

    1987-08-01

    Observations of bidirectional field-aligned fluxes of energetic electrons (16 to 80 keV) at magnetic substorm onset are discussed. The electron fluxes appear 4 min after the onset of the expansion phase, last 1.5 min, and are associated with strong spatial gradients of the ion intensity. The observations are interpreted in terms of a model in which a surface wave develops at the transition from dipolelike to taillike geomagnetic fieldlines. The surface wave couples into kinetic Alfven waves that propagate along the fieldlines, are reflected at the ionosphere, and interact with mirrored electrons on their way back towards the equatorial plane.

  2. Empirical evidence for two nightside current wedges during substorms

    NASA Astrophysics Data System (ADS)

    Hoffman, R. A.; Gjerloev, J. W.

    2013-12-01

    We present results from a comprehensive statistical study of the ionospheric current system and its coupling to the magnetosphere during classical bulge type substorms. We identified 116 substorms and determined the global ionospheric current system before and during the substorm using the SuperMAG initiative and global auroral images obtained by the Polar VIS Earth camera. The westward electrojet (WEJ) display a distinct latitudinal shift between the pre- and post-midnight region and we find evidence that the two WEJ regions are disconnected. This, and other observational facts, led us to propose a new 3D current system configuration that consists of 2 wedge type systems: a current wedge in the pre-midnight region (substorm current wedge), and another current wedge system in the post-midnight region (oval current wedge). There is some local time overlap between the two systems. The former maps to the region inside the near Earth neutral line and is associated with structured BPS type electron precipitation. The latter maps to the inner magnetosphere and is associated with diffuse electron precipitation. We present results of the statistical study, show typical events, results from Biot-Savart simulations, and discuss the implications for our understanding of the 3D current system associated with substorms.

  3. Association of Energetic Neutral Atom Bursts and Magnetospheric Substorms

    NASA Technical Reports Server (NTRS)

    Jorgensen, A. M.; Kepko, L.; Henderson, M. G.; Spence, H. E.; Reeves, G. D.; Sigwarth, J. B.; Frank, L. A.

    2000-01-01

    In this paper we present evidence that short-lived bursts of energetic neutral atoms (ENAs) observed with the Comprehensive Energetic Particle and Pitch Angle Distribution/Imaging Proton Spectrometer (CEPPAD/IPS) instrument on the Polar spacecraft are signatures of substorms. The IPS was designed primarily to measure ions in situ, with energies between 17.5 and 1500 keV. However, it has also proven to be a very capable ENA imager in the range 17.5 keV to a couple hundred keV. It was expected that some ENA signatures of the storm time ring current would be observed. Interestingly, IPS also routinely measures weaker, shorter-lived, and more spatially confined bursts of ENAs with duration from a few tens of minutes to a few hours and appearing once or twice a day. One of these bursts was quickly associated with magnetospheric and auroral substorm activity and has been reported in the literature [Henderson et al., 19971. In this paper we characterize ENA bursts observed from Polar and establish statistically their association with classic substorm signatures (global auroral onsets, electron and ion injections, AL drops, and Pi2 onsets). We conclude that -90% of the observed ENA bursts are associated with classic substorms and thus represent a new type of substorm signature.

  4. Periodic substorm activity in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Eastman, T. E.; Frank, L. A.; Williams, D. J.

    1983-01-01

    On 19 May 1978 an anusual series of events is observed with the Quadrispherical LEPEDEA on board the ISEE-1 satellite in the Earth's geomagnetic tail. For 13 hours periodic bursts of both ions and electrons are seen in all the particle detectors on the spacecraft. On this day periodic activity is also seen on the ground, where multiple intensifications of the electrojets are observed. At the same time the latitudinal component of the interplanetary magnetic field shows a number of strong southward deflections. It is concluded that an extended period of substorm activity is occurring, which causes repeated thinnings and recoveries of the plasma sheet. These are detected by ISEE, which is situated in the plasma sheet boundary layer, as periodic dropouts and reappearances of the plasma. Comparisons of the observations at ISEE with those at IMP-8, which for a time is engulfed by the plasma sheet, indicate that the activity is relatively localized in spatial extent. For this series of events it is clear that a global approach to magnetospheric dynamics, e.g., reconnection, is inappropriate.

  5. Growth Phase dependent gene regulation in Bordetella bronchiseptica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bordetellae are Gram negative bacterial respiratory pathogens. Bordetella pertussis, the causative agent of whooping cough, is a human-restricted variant of Bordetella bronchiseptica, which infects a broad range of mammals causing chronic and often asymptomatic infections. Growth phase dependent gen...

  6. Crystal growth in a three-phase system: diffusion and liquid-liquid phase separation in lysozyme crystal growth.

    PubMed

    Heijna, M C R; van Enckevort, W J P; Vlieg, E

    2007-07-01

    In the phase diagram of the protein hen egg-white lysozyme, a region is present in which the lysozyme solution demixes and forms two liquid phases. In situ observations by optical microscopy show that the dense liquid droplets dissolve when crystals grow in this system. During this process the demixed liquid region retracts from the crystal surface. The spatial distribution of the dense phase droplets present special boundary conditions for Fick's second law for diffusion. In combination with the cylindrical symmetry provided by the kinetically roughened crystals, this system allows for a full numerical analysis. Using experimental data for setting the boundary conditions, a quasi-steady-state solution for the time-dependent concentration profile was shown to be valid. Comparison of kinetically rough growth in a phase separated system and in a nonseparated system shows that the growth kinetics for a three-phase system differs from a two-phase system, in that crystals grow more slowly but the duration of growth is prolonged.

  7. Growth phase dependency of chromatin cleavage and degradation by bleomycin.

    PubMed Central

    Moore, C W; Jones, C S; Wall, L A

    1989-01-01

    Preferential cleavage of Saccharomyces cerevisiae chromosomes in internucleosomal (linker) regions and nonspecific degradation of chromatin by an anticancer antibiotic which degrades DNA were investigated and found to increase in consecutive stages of growth. Cleavage of DNA in internucleosomal regions and intensities and multiplicities of nucleosomal bands were dependent on drug concentration, growth phase of the cells, and length of incubation. Cellular DNA was least degraded during logarithmic phase. After cells progressed only one generation in logarithmic phase, low concentrations (6.7 x 10(-7) to 3.4 x 10(-6) M) of bleomycin produced approximately three to seven times more DNA breaks. Internucleosomal cleavage was highest, and the most extended oligonucleosomal series and extensive chromatin degradation were observed during stationary phase. It is concluded that the growth phase of cells is critical in determining amounts of the highly preferential cleavage in internucleosomal regions and overall breakage and degradation of DNA. Mononucleosomal bands were most intense, indicating the greatest accumulation of DNA of this size. Mean mononucleosomal lengths were 165.9 +/- 3.9 base pairs, in agreement with yeast mononucleosomal lengths. As high-molecular-weight chromatin was digested by bleomycin, oligonucleosomes and, eventually, mononucleosomes became digested. Therefore, it is also concluded that bleomycin degradation of oligonucleosomes and trimming of DNA linker regions proceed to degradation of the monosomes (core plus linker DNA). Images PMID:2479336

  8. A binary phase field crystal study for liquid phase heteroepitaxial growth

    NASA Astrophysics Data System (ADS)

    Lu, Yanli; Peng, Yingying; Chen, Zheng

    2016-09-01

    The liquid phase heteroepitaxial growth on predefined crystalline substrate is studied with binary phase field crystal (PFC) model. The purpose of this paper focuses on changes of the morphology of epitaxial films, influences of substrate vicinal angles on epitaxial growth, characteristics of islands growth on both sides of the substrate as well. It is found that the morphology of epitaxial films undergoes the following transitions: layer-by-layer growth, islands formation, mismatch dislocations nucleation and climb towards the film-substrate interface. Meanwhile, the density of steps and islands has obviously direct ratio relations with the vicinal angles. Also, preferential regions are found when islands grow on both sides of the substrate. For thinner substrate, the arrangement of islands is more orderly and the appearance of preferential growth is more obvious than that of thicker substrate. Also, the existing of preferential regions is much more valid for small substrate vicinal angles in contrast for big substrate vicinal angles.

  9. Intensity variation of ELF hiss and chorus during isolated substorms

    NASA Technical Reports Server (NTRS)

    Thorne, R. M.; Fiske, K. F.; Church, S. R.; Smith, E. J.

    1974-01-01

    Electromagnetic ELF emissions (100-1000 Hz) observed on the polar-orbiting OGO-6 satellite within three hours of the dawn-dusk meridian consistently exhibit a predictable response to isolated substorm activity. Near dawn, the emissions intensify during the substorm and then subside following the magnetic activity; the waves are most intense at L greater than 4, exhibit considerable structure and have been primarily identified as chorus. At dusk the response is entirely different; the wave intensity falls to background levels during substorm activity but subsequently intensifies, usually reaching levels well in excess of that before the disturbance. The emissions near dusk extend to low L, are relatively featureless, and have been identified as plasmaspheric hiss. These features are interpreted in terms of changes in the drift orbits of outer-zone electrons which cyclotron resonate with ELF waves.

  10. BARREL observations of a electron precipitation during a substorm

    NASA Astrophysics Data System (ADS)

    Halford, Alexa

    2016-07-01

    During the first Balloon Array for Relativistic Radiation belt Electron Loss (BARREL) campaign in January - February of 2013, many of the precipitation events observed were found to occur during geomagnetic substorms. Here we will look at one substorm in particular which occurred on 2 February 2013. During this event, there was an array of four payloads afloat above 27 km. Two of the payloads in particular mapped to the same L-shell and where bounded on either side by the two Van Allen Probes, LANL, and GOES satellites. The entire array also mapped to the CARISMA array and other ground based instruments in northern Canada. This set of unique observations allowed us to observe the substorm injection and the resultant region of electron precipitation.

  11. Recurrent embedded substorms during the 19 October 1998 GEM storm

    NASA Astrophysics Data System (ADS)

    Henderson, M. G.

    2016-08-01

    The 18-19 October 1998 GEM (Geospace Environment Modeling) storm was associated with a long interval of remarkably steady southward interplanetary magnetic field. In this study we demonstrate that classical substorms occurred throughout the interval and that the storm appears to be composed of the typical two-mode response consisting of a recurrent loading/unloading cycle on a timescale of approximately 2-4 h together with an episodic/bursty continuously driven component operating on a timescale of 5-15 min. The loading/unloading activity is manifested as typical poleward expanding "embedded" substorms (embedded into the auroral oval) emerging from the equatorward regions of the auroral distribution, while the continuously driven component is manifested by the episodic ejection of streamers equatorward from poleward boundary activations. The streamers subsequently produce torches and eastward drifting omega bands which likely moderate the need for substorms to occur more frequently than observed.

  12. Molecular Beam Epitaxial Growth of Cuprate Superconductors and Related Phases

    NASA Astrophysics Data System (ADS)

    Schlom, Darrell Galen

    The discovery of a class of new layered crystalline materials which exhibit superconductivity at unprecedented temperatures has opened new possibilities for the future of electronic devices and for molecular beam epitaxy (MBE) as a potential method to grow device structures containing these materials. The low growth temperature and atomic layering capability that MBE has demonstrated for the growth of semiconductors suggests that the MBE growth of non-equilibrium layered structures and metastable phases within oxide systems encompassing the high transition temperature (T _{rm c}) superconductors might be possible. If available, such a growth technique would be useful not only for device fabrication, but would offer an unparalleled technique to fabricate metastable superlattice mixtures to test high T_{ rm c} theories, which might then allow the growth of even higher temperature superconducting compounds. In contrast to the simplicity of the materials systems to which MBE has been successfully applied, the growth of fully oxidized, multi-element compounds by MBE involves significant challenges. This thesis describes research to develop in situ growth techniques allowing the growth of layered superconducting cuprates and related phases by MBE, and characterization of grown films. The conditions necessary to achieve this in situ ability, including the use of highly oxidizing species in order to maintain a long mean free path necessary for MBE, appropriate substrate temperature, precise composition control, and suitable substrates are discussed. The MBE apparatus used and design improvements made during the course of this research are described. The experimental results of films grown in the Dy-Ba-Cu-O and Bi-Sr-Ca-Cu-O systems demonstrate the ability of this shuttered, layer-by-layer MBE technique to grow smooth, layered, metastable compounds, including ordered superlattices, in situ using ozone. Both cross -sectional TEM images and a comparison of the observed x -ray

  13. The Lewis Research Center geomagnetic substorm simulation facility

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Stevens, N. J.; Sturman, J. C.

    1977-01-01

    A simulation facility was established to determine the response of typical spacecraft materials to the geomagnetic substorm environment and to evaluate instrumentation that will be used to monitor spacecraft system response to this environment. Space environment conditions simulated include the thermal-vacuum conditions of space, solar simulation, geomagnetic substorm electron fluxes and energies, and the low energy plasma environment. Measurements for spacecraft material tests include sample currents, sample surface potentials, and the cumulative number of discharges. Discharge transients are measured by means of current probes and oscilloscopes and are verified by a photomultiplier. Details of this facility and typical operating procedures are presented.

  14. Differentiating the growth phases of single bacteria using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Strola, S. A.; Marcoux, P. R.; Schultz, E.; Perenon, R.; Simon, A.-C.; Espagnon, I.; Allier, C. P.; Dinten, J.-M.

    2014-03-01

    In this paper we present a longitudinal study of bacteria metabolism performed with a novel Raman spectrometer system. Longitudinal study is possible with our Raman setup since the overall procedure to localize a single bacterium and collect a Raman spectrum lasts only 1 minute. Localization and detection of single bacteria are performed by means of lensfree imaging, whereas Raman signal (from 600 to 3200 cm-1) is collected into a prototype spectrometer that allows high light throughput (HTVS technology, Tornado Spectral System). Accomplishing time-lapse Raman spectrometry during growth of bacteria, we observed variation in the net intensities for some band groups, e.g. amides and proteins. The obtained results on two different bacteria species, i.e. Escherichia coli and Bacillus subtilis clearly indicate that growth affects the Raman chemical signature. We performed a first analysis to check spectral differences and similarities. It allows distinguishing between lag, exponential and stationary growth phases. And the assignment of interest bands to vibration modes of covalent bonds enables the monitoring of metabolic changes in bacteria caused by growth and aging. Following the spectra analysis, a SVM (support vector machine) classification of the different growth phases is presented. In sum this longitudinal study by means of a compact and low-cost Raman setup is a proof of principle for routine analysis of bacteria, in a real-time and non-destructive way. Real-time Raman studies on metabolism and viability of bacteria pave the way for future antibiotic susceptibility testing.

  15. Generation mechanism of L-value dependence of oxygen flux enhancements during substorms

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Ebihara, Y.; Tanaka, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.; Kistler, L. M.; Kletzing, C.

    2015-12-01

    The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures charged particles with an energy range from ~eV to ~ tens of keV. The observation shows that the energy flux of the particles increases inside the geosynchronous orbit during substorms. For some night-side events around the apogee, the energy flux of O+ ion enhances below ~10 keV at lower L shell, whereas the flux below ~8 keV sharply decreases at higher L shells. This structure of L-energy spectrogram of flux is observed only for the O+ ions. The purpose of this study is to investigate the generation mechanism of the structure by using numerical simulations. We utilized the global MHD simulation developed by Tanaka et al (2010, JGR) to simulate the electric and magnetic fields during substorms. We performed test particle simulation under the electric and magnetic fields by applying the same model introduced by Nakayama et al. (2015, JGR). In the test particle simulation each test particle carries the real number of particles in accordance with the Liouville theorem. Using the real number of particles, we reconstructed 6-dimensional phase space density and differential flux of O+ ions in the inner magnetosphere. We obtained the following results. (1) Just after the substorm onset, the dawn-to-dusk electric field is enhanced to ~ 20 mV/m in the night side tail region at L > 7. (2) The O+ ions are accelerated and transported to the inner region (L > ~5.5) by the large-amplitude electric field. (3) The reconstructed L-energy spectrogram shows a similar structure to the Van Allen Probes observation. (4) The difference in the flux enhancement between at lower L shell and higher L shells is due to two distinct acceleration processes: adiabatic and non-adiabatic. We will discuss the relationship between the particle acceleration and the structure of L-energy spectrogram of flux enhancement in detail.

  16. Saw-tooth substorms: Inconsistency of repetitive bay-like magnetic disturbances with behavior of aurora

    NASA Astrophysics Data System (ADS)

    Troshichev, O.; Stauning, P.; Liou, K.; Reeves, G.

    2011-02-01

    The relationships between the magnetic disturbance onsets, aurora dynamics and particles injections at the geostationary orbit have been analyzed in detail for 25 sawtooth substorms. It is shown that inconsistency between the above signatures of the substorms onset is typical of the powerful sawtooth substorms, unlike the isolated (“classical”) magnetospheric substorms. The distinguishing feature of the aurora in case of saw-tooth substorms is permanently high level of auroral activity irrespective of the magnetic disturbance onsets and the double oval structure of the aurora display. The close relationship between the aurora behavior and the particle injections at geostationary orbit is also broken. The conclusion is made, that the classical concept of the substorm development, put forward by Akasofu (1964) for isolated substorms, is not workable in cases of the sawtooth disturbances, when the powerful solar wind energy pumping into the magnetosphere provides a permanent powerful aurora particle precipitation into the auroral zone.

  17. A statistical relationship between the geosynchronous magnetic field and substorm electrojet magnitude

    NASA Technical Reports Server (NTRS)

    Lopez, Ramon E.; Von Rosenvinge, Tycho

    1993-01-01

    The relationship between the geosynchronous magnetic field variations during substorms measured by GOES 5 and the auroral electroject as measured by AE and Poste de la Baleine is examined. It is found that the more taillike the field prior to the local onset, the greater the dipolarization of the field during the substorm. The greater the deviation of the field from a dipolar configuration, the larger the change in AE during the event. It is inferred that stronger cross-tail currents prior to the substorm are associated with larger substorm-associated westward electrojets and thus more intense substorms. Since the westward electroject is the ionospheric leg of the substorm current wedge, it is inferred that the substorm-associated westward electrojet is drawn from the near-earth region. Most of the current diversion is found to occur in the near-earth magnetotail.

  18. Floating zone crystal growth and phase equilibria - A review

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeyuki; Kitamura, Kenji

    1992-06-01

    The thermal-imaging floating zone technique can be used to grow crystals of yttrium iron garnet aluminum-doped yttrium orthoferrite and magnetite, which represent peritectic compounds, solid-solution crytals, and atmosphere-sensitive materials, respectively. The reactions involved in floating zone crystal growth are explained on the basis of phase diagrams. A review of crystal growth reports, including unpublished findings by the present authors, demonstrates how the crystallization processes, the reaction with the ambient atmosphere, and the composition variation in the obtained crystals can be explained or controlled on the basis of phase equilibrium. The floating zone technique is applicable to a variety of materials and remains a handy tool for materials research; however, its industrial application may be limited.

  19. 3D kinetic picture of magnetotail explosions and characteristic auroral features prior to and after substorm onset

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Merkin, V. G.; Motoba, T.

    2015-12-01

    Recent findings in theory, observations and 3D particle-in-cell simulations of magnetotail explosions reveal a complex picture of reconnection, buoyancy and flapping motions, which have interesting correlations with the auroral morphology. First, the formation of the tailward Bz gradient as a theoretical prerequisite for tearing, ballooning/interchange and flapping instabilities is consistent with the structure of the pre-onset quiet arc and the associated deep minimum of Bz. Another distinctive pre-onset feature, equatorward extension of the auroral oval in the late growth phase, is conventionally associated with earthward motion of the inner edge of the plasma sheet. However, if open magnetic flux saturates in the late growth phase, it may also be treated as a signature of magnetic flux accumulation tailward of the Bz minimum, which is also favorable for the tail plasma sheet instabilities. 3D PIC simulations of similar magnetotail equilibria with a tailward Bz gradient show spontaneous formation of earthward flows led by dipolarization fronts. They are structured in the dawn-dusk direction on the ion inertial scale, consistent with the minimum scales of the observed auroral beads. At the same time, simulations show the formation of a new X-line in the wake of the dipolarization front with no significant spatial modulation in the dawn-dusk direction suggesting smooth profiles of the substorm current wedge as well as poleward parts of auroral streamers. Flapping motions, which also grow at the dipolarization front, extend beyond it, up to the new X-line region. To understand auroral manifestations of tail structures in our simulations we investigate the plasma moments at the plasma sheet boundary.

  20. M-I coupling across the auroral oval at dusk and midnight: repetitive substorm activity driven by interplanetary coronal mass ejections (CMEs)

    NASA Astrophysics Data System (ADS)

    Sandholt, P. E.; Farrugia, C. J.; Denig, W. F.

    2014-04-01

    We study substorms from two perspectives, i.e., magnetosphere-ionosphere coupling across the auroral oval at dusk and at midnight magnetic local times. By this approach we monitor the activations/expansions of basic elements of the substorm current system (Bostrøm type I centered at midnight and Bostrøm type II maximizing at dawn and dusk) during the evolution of the substorm activity. Emphasis is placed on the R1 and R2 types of field-aligned current (FAC) coupling across the Harang reversal at dusk. We distinguish between two distinct activity levels in the substorm expansion phase, i.e., an initial transient phase and a persistent phase. These activities/phases are discussed in relation to polar cap convection which is continuously monitored by the polar cap north (PCN) index. The substorm activity we selected occurred during a long interval of continuously strong solar wind forcing at the interplanetary coronal mass ejection passage on 18 August 2003. The advantage of our scientific approach lies in the combination of (i) continuous ground observations of the ionospheric signatures within wide latitude ranges across the auroral oval at dusk and midnight by meridian chain magnetometer data, (ii) "snapshot" satellite (DMSP F13) observations of FAC/precipitation/ion drift profiles, and (iii) observations of current disruption/near-Earth magnetic field dipolarizations at geostationary altitude. Under the prevailing fortunate circumstances we are able to discriminate between the roles of the dayside and nightside sources of polar cap convection. For the nightside source we distinguish between the roles of inductive and potential electric fields in the two substages of the substorm expansion phase. According to our estimates the observed dipolarization rate (δ Bz/δt) and the inferred large spatial scales (in radial and azimuthal dimensions) of the dipolarization process in these strong substorm expansions may lead to 50-100 kV enhancements of the cross

  1. Mechanism of K-phase growth under magnesium combustion

    SciTech Connect

    Florko, A.V.; Golovko, V.V.; Kondrat`ev, E.N.

    1995-09-01

    A model is proposed for magnesia crystal growth during the combustion of single magnesium particles and in the front of laminar diffusion two-phase flame. It is shown that the basic mechanism limiting the condensation rate is the formation of Schottky defects. The energy of their formation has been determined. The results of dispersion analysis of combustion products at air pressures of (0.1-1) {sm_bullet} 10{sup 5} Pa are in good agreement with the calculation data.

  2. Large-scale current systems and ground magnetic disturbance during deep substorm injections

    NASA Astrophysics Data System (ADS)

    Yang, J.; Toffoletto, F. R.; Wolf, R. A.; Sazykin, S.; Ontiveros, P. A.; Weygand, J. M.

    2012-04-01

    We present a detailed analysis of the large-scale current systems and their effects on the ground magnetic field disturbance for an idealized substorm event simulated with the equilibrium version of the Rice Convection Model. The objective of this study is to evaluate how well the bubble-injection picture can account for some classic features of the substorm expansion phase. The entropy depletion inside the bubble is intentionally designed to be so severe that it can penetrate deep into geosynchronous orbit. The results are summarized as follows: (1) Both the region-1-sense and region-2-sense field-aligned currents (FACs) intensify substantially. The former resembles the substorm current wedge and flows along the eastern and western edges of the bubble. The latter is connected to the enhanced partial ring current in the magnetosphere associated with a dipolarization front earthward of the bubble. In the ionosphere, these two pairs of FACs are mostly interconnected via Pedersen currents. (2) The horizontal ionospheric currents show a significant westward electrojet peaked at the equatorward edge of the footprint of the bubble. The estimated ground magnetic disturbance is consistent with the typical features at various locations relative to the center of the westward electrojet. (3) A prominent Harang-reversal-like boundary is seen in both ground ΔH disturbance and plasma flow pattern, appearing in the westward portion of the equatorward edge of the bubble footprint, with a latitudinal extent of ˜5° and a longitudinal extent of the half width of the bubble. (4) The dramatic dipolarization inside the bubble causes the ionospheric map of the inner plasma sheet to exhibit a bulge-like structure, which may be related to auroral poleward expansion. (5) The remarkable appearance of the westward electrojet, Harang-reversal-like boundary and poleward expansion starts when the bubble reaches the magnetic transition region from tail-like to dipole-like configuration. We

  3. Nanowire growth by an electron beam induced massive phase transformation

    DOE PAGES

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore » growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less

  4. Nanowire growth by an electron beam induced massive phase transformation

    SciTech Connect

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stable growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.

  5. Phase field modeling of grain growth in porous polycrystalline solids

    NASA Astrophysics Data System (ADS)

    Ahmed, Karim E.

    The concurrent evolution of grain size and porosity in porous polycrystalline solids is a technically important problem. All the physical properties of such materials depend strongly on pore fraction and pore and grain sizes and distributions. Theoretical models for the pore-grain boundary interactions during grain growth usually employ restrictive, unrealistic assumptions on the pore and grain shapes and motions to render the problem tractable. However, these assumptions limit the models to be only of qualitative nature and hence cannot be used for predictions. This has motivated us to develop a novel phase field model to investigate the process of grain growth in porous polycrystalline solids. Based on a dynamical system of coupled Cahn-Hilliard and All en-Cahn equations, the model couples the curvature-driven grain boundary motion and the migration of pores via surface diffusion. As such, the model accounts for all possible interactions between the pore and grain boundary, which highly influence the grain growth kinetics. Through a formal asymptotic analysis, the current work demonstrates that the phase field model recovers the corresponding sharp-interface dynamics of the co-evolution of grain boundaries and pores; this analysis also fixes the model kinetic parameters in terms of real materials properties. The model was used to investigate the effect of porosity on the kinetics of grain growth in UO2 and CeO2 in 2D and 3D. It is shown that the model captures the phenomenon of pore breakaway often observed in experiments. Pores on three- and four- grain junctions were found to transform to edge pores (pores on two-grain junction) before complete separation. The simulations demonstrated that inhomogeneous distribution of pores and pore breakaway lead to abnormal grain growth. The simulations also showed that grain growth kinetics in these materials changes from boundary-controlled to pore-controlled as the amount of porosity increases. The kinetic growth

  6. Identification of substorm precursor and expansion onsets by applying Singular Spectrum Transformation to ground-magnetometer data

    NASA Astrophysics Data System (ADS)

    Tokunaga, T.; Nakamura, K.; Higuchi, T.; Yoshikawa, A.; Uozumi, T.; Morioka, A.; Yumoto, K.

    2009-12-01

    Until now, several substorm studies have discussed that about substorm precursors, which are observed in the auroral region and preceded to onset of substorm expansion phase by 1-3 minutes. Kepko et al., [2004] indicated that high-latitude magnetogram shows a very small negative deflection in the H-component before auroral arc brightening. Morioka et al. [2008] reported the dH/dt component from a search-coil magnetometer at ground shows that a few minutes prior to high-altitude AKR breakup, the quasi-DC component begins a negative exclusion that is nearly synchronized with the start of the gradual enhancement of the low-altitude AKR. These observations suggest that the precursor signature on the H-comp. of geomagnetic filed observed in the auroral region reflects the gradual enhancement of parallel electric filed before expansion onset and it plays an essential role to drive a subsequent enhancement of the upward FAC. Therefore, it is important to elucidate spatio-temporal evolutions of the substorm precursors to understand the onset mechanism associated with the rapid development of the M-I coupling via FAC. In most cases, it is difficult to determine the accurate timing because substorm precursor has a gradual onset. In this paper, we will present a new algorithm based on Singular Spectrum Analysis (SSA), described in the next paragraph, for determining the onset times of substorm precursors and expansion phase. SSA has been developed and applied in the field of geophysics. Ide and Inoue [2005] demonstrated the effectiveness of a SSA based change-point detection method, which is called Singular Spectrum Transformation (SST), to detect a structure change of various types of time series. Since this approach is completely data adaptive, it is probably a powerful method for our aim: to detect a small and irregular perturbation such as substorm precursors on the geomagnetic data observed in the auroral region. We have applied SST for a substorm event occurred on

  7. Force Balance and Substorm Effects in the Magnetotail

    NASA Technical Reports Server (NTRS)

    Kaufmann, Richard L.; Larson, Douglas J.; Kontodinas, Ioannis D.; Ball, Bryan M.

    1997-01-01

    A model of the quiet time middle magnetotail is developed using a consistent orbit tracing technique. The momentum equation is used to calculate geocentric solar magnetospheric components of the particle and electromagnetic forces throughout the current sheet. Ions generate the dominant x and z force components. Electron and ion forces almost cancel in the y direction because the two species drift earthward at comparable speeds. The force viewpoint is applied to a study of some substorm processes. Generation of the rapid flows seen during substorm injection and bursty bulk flow events implies substantial force imbalances. The formation of a substorm diversion loop is one cause of changes in the magnetic field and therefore in the electromagnetic force. It is found that larger forces are produced when the cross-tail current is diverted to the ionosphere than would be produced if the entire tail current system simply decreased. Plasma is accelerated while the forces are unbalanced resulting in field lines within a diversion loop becoming more dipolar. Field lines become more stretched and the plasma sheet becomes thinner outside a diversion loop. Mechanisms that require thin current sheets to produce current disruption then can create additional diversion loops in the newly thinned regions. This process may be important during multiple expansion substorms and in differentiating pseudoexpansions from full substorms. It is found that the tail field model used here can be generated by a variety of particle distribution functions. However, for a given energy distribution the mixture of particle mirror or reflection points is constrained by the consistency requirement. The study of uniqueness also leads to the development of a technique to select guiding center electrons that will produce charge neutrality all along a flux tube containing nonguiding center ions without the imposition of a parallel electric field.

  8. The Role of Substorms in Radiation Belt Particle Enhancements

    NASA Astrophysics Data System (ADS)

    Baker, D. N.

    2014-12-01

    Observational and numerical modeling evidence demonstrates that magnetospheric substorms are a coherent set of processes within the coupled near-Earth system. This supports the view that substorms are a global configurational instability. The magnetosphere progresses through a specific sequence of energy-loading and stress-developing states until the entire system suddenly reconfigures. Related long-term studies of relativistic electron fluxes in the Earth's magnetosphere have revealed many of their temporal occurrence characteristics and their relationships to solar wind drivers. Early work showed the obvious and powerful role played by solar wind speed in producing subsequent high-energy electron enhancements. More recent work has also pointed out the key role that the north-south component of the IMF plays: In order to observe major relativistic electron enhancements, there must typically be a significant interval of southward IMF along with a period of high (VSW≥500 km/s) solar wind speed. This has led to the view that enhancements in geomagnetic activity (i.e., magnetospheric substorms) are normally a key first step in the acceleration of radiation belt electrons to high energies. A second step is suggested to be a period of powerful low-frequency waves that is closely related to high values of VSW or higher frequency ("chorus") waves that rapidly heat and accelerate electrons. Hence, substorms provide a "seed" population, while high-speed solar wind drives the acceleration to relativistic energies in this two-step geomagnetic activity scenario. This picture seems to apply to most storms examined whether associated with high-speed streams or with CME-related events. In this talk, we address the substorm relationships as they pertain to high-energy electron acceleration and transport. We also discuss various models of electron energization that have recently been advanced. We present remarkable new results from the Van Allen Probes (Radiation Belt Storm

  9. AKR breakup and auroral particle acceleration at substorm onset

    NASA Astrophysics Data System (ADS)

    Morioka, A.; Miyoshi, Y.; Tsuchiya, F.; Misawa, H.; Yumoto, K.; Parks, G. K.; Anderson, R. R.; Menietti, J. D.; Donovan, E. F.; Honary, F.; Spanswick, E.

    2008-09-01

    The dynamical behavior of auroral kilometric radiation (AKR) is investigated in connection with auroral particle acceleration at substorm onsets using high-time-resolution wave spectrograms provided by Polar/PWI electric field observations. AKR develops explosively at altitudes above a preexisting low-altitude AKR source at substorm onsets. This "AKR breakup" suggests an abrupt formation of a new field-aligned acceleration region above the preexisting acceleration region. The formation of the new acceleration region is completed in a very short time (amplitude increases 10,000 times in 30 seconds), suggesting that the explosive development is confined to a localized region. AKR breakups are usually preceded (1-3 minutes) by the appearance and/or gradual enhancement of the low-altitude AKR. This means that the explosive formation of the high-altitude electric field takes place in the course of the growing low-altitude acceleration. The development of the low-altitude acceleration region is thus a necessary condition for the ignition of the high-altitude bursty acceleration. The dH/dt component from a search-coil magnetometer at ground shows that a few minutes prior to substorm onsets, the quasi-DC component begins a negative excursion that is nearly synchronized with the start of the gradual enhancement of the low-altitude AKR, indicating a precursor-like behavior for the substorm. This negative variation of dH/dt suggests an exponentially increasing ionospheric current induced by the upward field-aligned current. At substorm onsets, the decrease in the quasi-DC variation of dH/dt further accelerates, indicating a sudden reinforcement of the field-aligned current.

  10. Substorm features in MHD (magnetohydrodynamics) simulations of magnetotail dynamics

    SciTech Connect

    Birn, J.; Hesse, M.

    1990-01-01

    We present a review and extended analysis of characteristic results from our nonideal three-dimensional MHD simulations of unstable magnetotail evolution, which develops without the necessity of external driving or prescribed localization on nonideal effects. These modes involve magnetic reconnection at a near-Earth site in the tail, consistent with the near-Earth neutral line model of substorms. The evolution tailward of the reconnection site is characterized by plasmoid formation and ejection into the far tail, plasma sheet thinning between the near-Earth neutral line (X line) and the departing plasmoid, and fast tailward flow, which occupies large sections of the plasma sheet at larger distance from the X line, while it occurs only in very limited space and time sections close to the X line. The region earthward of the X line is characterized by dipolarization, propagating from midnight toward the flank regions and, perhaps, tailward. It is associated with the signatures of the substorm current wedge: reduction and diversion of cross-tail current from a region surrounding the reconnection site and increase of Region 1 type field-aligned currents. A mapping of these currents to the Earth on the basis of an empirical magnetic field model shows good agreement of the mapped current system with the observed Region 1 field-aligned current system and its substorm associated changes, including also a nightward and equatorward shift of the peaks of the field-aligned current density. The evolution of the mappings of the boundaries of the closed field line region bears strong resemblance to the formation and expansion of he auroral bulge. The consistency of all of these details with observed substorm features strongly supports the idea that substorm evolution in the tail is that of a large scale nonideal instability.

  11. Electromagnetic and electrostatic emissions at the cusp-magnetosphere interface during substorms

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Fairfield, D. H.; Wu, C. S.

    1979-01-01

    Strongly peaked electrostatic emissions near 10.0 kHz and electromagnetic emissions near 0.56 kHz have been observed by the VLF wave detector on board Imp 6 on crossings from the earth's magnetosphere into the polar cusp during the occurrence of large magnetospheric substorms. The electrostatic emissions were observed to be closely confined to the cusp-magnetosphere interface. The electromagnetic emissions were of somewhat broader spatial extent and were seen on higher-latitude field lines within the cusp. Using these plasma wave observations and additional information provided by plasma, magnetometer and particle measurements made simultaneously on Imp 6, theories are constructed to explain each of the two classes of emission. The electromagnetic waves are modeled as whistlers, and the electrostatic waves as electron-cyclotron harmonics. The resulting growth rates predict power spectra similar to those observed for both emission classes. The electrostatic waves may play a significant role via enhanced diffusion in the relaxation of the sharp substorm time cusp-magnetosphere boundary to a more diffuse quiet time boundary.

  12. Severe and localized GNSS scintillation at the poleward edge of the nightside auroral oval during intense substorm aurora

    NASA Astrophysics Data System (ADS)

    Meeren, Christer; Oksavik, Kjellmar; Lorentzen, Dag A.; Rietveld, Michael T.; Clausen, Lasse B. N.

    2015-12-01

    In this paper we study how GPS, GLONASS, and Galileo navigation signals are compromised by strong irregularities causing severe phase scintillation (σϕ>1) in the nightside high-latitude ionosphere during a substorm on 3 November 2013. Substorm onset and a later intensification coincided with polar cap patches entering the auroral oval to become auroral blobs. Using Global Navigation Satellite Systems (GNSS) receivers and optical data, we show severe scintillation driven by intense auroral emissions in the line of sight between the receiver and the satellites. During substorm expansion, the area of scintillation followed the intense poleward edge of the auroral oval. The intense auroral emissions were colocated with polar cap patches (blobs). The patches did not contain strong irregularities, neither before entering the auroral oval nor after the aurora had faded. Signals from all three GNSS constellations were similarly affected by the irregularities. Furthermore, two receivers spaced around 120km apart reported highly different scintillation impacts, with strong scintillation on half of the satellites in one receiver and no scintillation in the other. This shows that areas of severe irregularities in the nightside ionosphere can be highly localized. Amplitude scintillations were low throughout the entire interval.

  13. Association of an auroral surge with plasma sheet recovery and the retreat of the substorm neutral line

    SciTech Connect

    Hones, E.W. ); Elphinstone, R.; Murphree, J.S. . Dept. of Physics); Galvin, A.B. . Dept. of Space Physics); Heinemann, N.C. . Dept. of Physics); Parks, G.K. ); Rich, F.J. (Air Force Geophysics Lab., Hanscom AFB, MA

    1990-01-01

    One of the periods being studied in the PROMIS CDAW (CDAW-9) workshops is the interval 0000-1200 UT on May 3, 1986, designated Event 9C.'' A well-defined substorm, starting at 0919 UT, was imaged by both DE 1 over the southern hemisphere and Viking over the northern hemisphere. The images from Viking, at 80-second time resolution, showed a surge-like feature forming at about 0952 UT at the poleward edge of the late evening sector of the oval. The feature remained relatively stationary until about 1000 UT when it seemed to start advancing westward. ISEE 1 and 2 were closely conjugate to the surge as mapped from both the DMSP and Viking images. We conclude that the plasma sheet recovery was occasioned by the arrival at ISEE 1,2 of a westward traveling wave of plasma sheet thickening, the wave itself being formed by westward progression of the substorm neutral line's tailward retreat. The westward traveling surge was the auroral manifestation of this nonuniform retreat of the neutral line. We suggest that the upward field aligned current measured by DMSP F7 above the surge head was driven by plasma velocity shear in the plasma sheet at the duskward kink'' in the retreating neutral line. By analogy with this observation we propose that the westward traveling surges and the current wedge field aligned currents that characterize the expanding auroral bulge during substorm expansive phase are manifestations of (and are driven by) velocity shear in the plasma sheet near the ends of the extending substorm neutral line.

  14. Extraordinary growth phases of nanobacteria isolated from mammalian blood

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Pelttari, Alpo; Kajander, E. Olavi

    1997-07-01

    Nanobacteria, novel sterile-filterable coccoid bacteria inhabiting mammalian blood and blood products, have different growth phases depending on the culture conditions. These minute organisms produce biogenic apatite as a part of their envelope. This becomes thicker as the cultures age, rendering them visible in microscopy and resistant to harsh conditions. Mineral deposits were not formed without live nanobacteria. Apatite formation was faster and more voluminous in serum-free (SF) medium, and within a week, several micrometer thick `castles' formed around each nanobacteria. These formations were firmly attached to the culture plates. Nanobacteria multiplied inside these thick layers by turning into D-shaped forms 2 - 3 micrometers in size. After a longer culture period, tens of them could be observed inside a common stony shelter. The apatite shelters had a hollow interior compartment occupied by the organisms as evidenced by SEM and TEM. Supplementing the culture medium with a milk growth-factor product, caused the castles to grow bigger by budding. These formations finally lost their mineral layer, and released typical small coccoid nanobacteria. When SF cultures were supplemented with sterile serum, mobile D-shaped nanobacteria together with small `elementary particles' 50 - 100 nm in size were found. Negative results in standard sterility testing, positivity in immunofluorescence staining and ELISA tests with nanobacteria-specific monoclonal antibodies, and 98% identity of 16S rRNA gene sequences proved that all of these unique creates are nanobacterial growth phases.

  15. Geotail Measurements Compared with the Motions of High-Latitude Auroral Boundaries during Two Substorms

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.; Burke, W. J.; Erickson, G. M.; Nakamura, M.; Mukai, T.; Kokubun, S.; Yamamoto, T.; Jacobsen, B.; Egeland, A.; Samson, J. C.; Weimer, D. R.; Reeves, G. D.; Luhr, H.

    1997-01-01

    Geotail plasma and field measurements at -95 R(sub E) are compared with extensive ground-based, near-Earth, and geosynchronous measurements to study relationships between auroral activity and magnetotail dynamics during the expansion phases of two substorms. The studied intervals are representative of intermittent, moderate activity. The behavior of the aurora and the observed effects at Geotail for both events are harmonized by the concept of the activation of near-Earth X lines (NEXL) after substorm onsets, with subsequent discharges of one or more plasmoids down the magnetotail. The plasmoids must be viewed as three-dimensional structures which are spatially limited in the dawn-dusk direction. Also, reconnection at the NEXL must proceed at variable rates on closed magnetic field lines for significant times before beginning to reconnect lobe flux. This implies that the plasma sheet in the near-Earth magnetotail is relatively thick in comparison with an embedded current sheet and that both the NEXL and distant X line can be active simultaneously. Until reconnection at the NEXL engages lobe flux, the distant X line maintains control of the poleward auroral boundary. If the NEXL remains active after reaching the lobe, the auroral boundary can move poleward explosively. The dynamics of high-latitude aurora in the midnight region thus provides a means for monitoring these processes and indicating when significant lobe flux reconnects at the NEXL.

  16. External versus internal triggering of substorms: An information-theoretical approach

    NASA Astrophysics Data System (ADS)

    Johnson, Jay R.; Wing, Simon

    2014-08-01

    The role of external triggering of substorms through northward turning of the interplanetary magnetic field has been examined in a number of recent studies. While Hsu and McPherron (2002, 2004) argue that the strong association between external triggers defined by Lyons et al. (1997) and substorm onsets could be responsible for most substorms, Morley and Freeman (2007) argue that the association between northward interplanetary magnetic field (IMF) turnings and substorm onsets are coincidental rather than causal, because the same external triggers are also closely associated with an artificial list of substorm onsets generated with the Minimal Substorm Model, which has no requirement of northward IMF turning. We examine an expanded list of substorms using conditional redundancy, an entropy-based measure of conditional dependency, to examine whether northward IMF turning as an external trigger provides any additional information about substorm onset beyond knowing that there has been a period of sustained loading of energy flux (southward IMF). Our analysis reveals that only a few percent additional information is provided by the northward turning criterion, which is consistent with the statistics of surrogate data sets of external triggers constructed to coincide with 2% of substorms. We therefore conclude that northward turning of the IMF is, in general, coincidentally, rather than causally, associated with substorm onsets.

  17. Crystal growth of cadmium oxide from the vapor phase

    SciTech Connect

    Shimada, S.; Nomura, S.; Kodaira, K.; Matsushita, T.

    1987-10-01

    Single crystals of CdO were grown at temperatures of 930/sup 0/ to 1080/sup 0/C from the vapor phase by air oxidation of Cd vapors which were generated at a constant rate by reaction of CdO with graphite. A prolonged growth up to 70 h at 1030/sup 0/C produced a crystal conglomerate with a maximum size of 13.5 mm. The electrical resistivity and electron density of the crystal in the direction of <100> were 5x10/sup -4/ ..cap omega...cm and 1.3x10/sup 20/cm/sup 3/, respectively, at 20/sup 0/C.oefficients

  18. Phase-Field Modeling of Elasticity, Plasticity, and Phase Segregation in Binary Heteroepitaxial Film Growth

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Elder, Ken; Provatas, Nikolas

    2004-03-01

    A continuum phase field model, adapted from the Phase Field Crystals (PFC) model [1], is applied to the study of strained binary heteroepitaxial systems, with emphasis given to the investigation of 2-D species segregation during liquid phase film growth. In addition to (1) phase segregation, it is shown that this model is capable of incorporating (2) surface morphological evolution and (3) defect nucleation and propagation, as well as the interactions of these three phenomena, over all primary epitaxial growth regimes. Additional highlights of the model include consideration of composition-dependent elastic moduli, differing species mobilities, and mass transport within the bulk film. The spatial nature of the phase segregation and its interaction with film surface morphology and defect nucleation are investigated as functions of various material and process parameters. In particular, the interaction between film surface morphology and compositional segregation is investigated, with attention given to its influence on the asymmetry observed in critical thickness between compressive and tensile strains. [1] K.R. Elder, M. Katakowski, M. Haataja, and M. Grant, Physical Review Letters 88, 245701 (2002).

  19. Spatial-temporal dynamics of auroras during the magnetic storm main phase

    NASA Astrophysics Data System (ADS)

    Kornilova, T. A.; Kornilov, I. A.

    2009-12-01

    The structure and dynamics of auroras in the midnight sector during substorms, which develop during the magnetic storm main phase as compared to the characteristics of a typical auroral substorm, have been studied using the ground-based and satellite observations. It has been found out that a difference from the classical substorm is observed in auroras during the magnetic storm main phase. At the beginning of the storm main phase, the series of pseudobreakups with the most pronounced jump-like motion toward the equator shifts to lower latitudes. The substorm expansion phase can be observed not only as arc jumps to higher latitudes but also as an explosive expansion of a bright diffuse luminosity in all directions. During the magnetic storm main phase, auroras are mainly characterized by the presence of stable extensive rayed structures and by the simultaneous existence of different auroral forms, typical of different substorm phases, in the TV camera field of view.

  20. Statistical comparison of inter-substorm timings in global magnetohydrodynamics (MHD) and observations

    NASA Astrophysics Data System (ADS)

    Haiducek, J. D.; Welling, D. T.; Morley, S.; Ozturk, D. S.

    2015-12-01

    Magnetospheric substorms are events in which energy stored in the magnetotail is released into the auroral zone and into the downstream solar wind. Because of the complex, nonlinear, and possibly chaotic nature of the substorm energy release mechanism, it may be extremely difficult to forecast individual substorms in the near term. However, the inter-substorm timing (the amount of time elapsed between substorms) can be reproduced in a statistical sense, as was demonstrated by Freeman and Morley (2004) using their Minimal Substorm Model (MSM), a simple solar-wind driven model with the only free parameter being a recurrence time. The goal of the present work is to reproduce the observed distribution of inter-substorm timings with a global MHD model. The period of 1-31 January 2005 was simulated using the Space Weather Modeling Framework (SWMF), driven by solar wind observations. Substorms were identified in the model output by synthesizing surface magnetometer data and by looking for tailward-moving plasmoids. Substorms identified in the MHD model are then compared with observational data from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft, Los Alamos National Laboratory (LANL) geostationary satellite energetic particle data, and surface magnetometer data. For each dataset (MHD model and observations), we calculate the substorm occurrence rate, and for the MHD model we additionally calculate the timing error of the substorm onsets relative to the observed substorms. Finally, we calculate distribution functions for the inter-substorm timings in both the observations and the model. The results of this analysis will guide improvements to the MHD-based substorm model, including the use of Hall MHD and embedded particle in cell (EPIC), leading to a better reproduction of the observed inter-substorm timings and an improved understanding of the underlying physical processes. ReferencesM. P. Freeman and S. K. Morley. A minimal substorm model that

  1. The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate

    NASA Astrophysics Data System (ADS)

    Chu, Dominique; Barnes, David J.

    2016-04-01

    Bi-phasic or diauxic growth is often observed when microbes are grown in a chemically defined medium containing two sugars (for example glucose and lactose). Typically, the two growth stages are separated by an often lengthy phase of arrested growth, the so-called lag-phase. Diauxic growth is usually interpreted as an adaptation to maximise population growth in multi-nutrient environments. However, the lag-phase implies a substantial loss of growth during the switch-over. It therefore remains unexplained why the lag-phase is adaptive. Here we show by means of a stochastic simulation model based on the bacterial PTS system that it is not possible to shorten the lag-phase without incurring a permanent growth-penalty. Mechanistically, this is due to the inherent and well established limitations of biological sensors to operate efficiently at a given resource cost. Hence, there is a trade-off between lost growth during the diauxic switch and the long-term growth potential of the cell. Using simulated evolution we predict that the lag-phase will evolve depending on the distribution of conditions experienced during adaptation. In environments where switching is less frequently required, the lag-phase will evolve to be longer whereas, in frequently changing environments, the lag-phase will evolve to be shorter.

  2. The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate

    PubMed Central

    Chu, Dominique; Barnes, David J.

    2016-01-01

    Bi-phasic or diauxic growth is often observed when microbes are grown in a chemically defined medium containing two sugars (for example glucose and lactose). Typically, the two growth stages are separated by an often lengthy phase of arrested growth, the so-called lag-phase. Diauxic growth is usually interpreted as an adaptation to maximise population growth in multi-nutrient environments. However, the lag-phase implies a substantial loss of growth during the switch-over. It therefore remains unexplained why the lag-phase is adaptive. Here we show by means of a stochastic simulation model based on the bacterial PTS system that it is not possible to shorten the lag-phase without incurring a permanent growth-penalty. Mechanistically, this is due to the inherent and well established limitations of biological sensors to operate efficiently at a given resource cost. Hence, there is a trade-off between lost growth during the diauxic switch and the long-term growth potential of the cell. Using simulated evolution we predict that the lag-phase will evolve depending on the distribution of conditions experienced during adaptation. In environments where switching is less frequently required, the lag-phase will evolve to be longer whereas, in frequently changing environments, the lag-phase will evolve to be shorter. PMID:27125900

  3. The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate.

    PubMed

    Chu, Dominique; Barnes, David J

    2016-01-01

    Bi-phasic or diauxic growth is often observed when microbes are grown in a chemically defined medium containing two sugars (for example glucose and lactose). Typically, the two growth stages are separated by an often lengthy phase of arrested growth, the so-called lag-phase. Diauxic growth is usually interpreted as an adaptation to maximise population growth in multi-nutrient environments. However, the lag-phase implies a substantial loss of growth during the switch-over. It therefore remains unexplained why the lag-phase is adaptive. Here we show by means of a stochastic simulation model based on the bacterial PTS system that it is not possible to shorten the lag-phase without incurring a permanent growth-penalty. Mechanistically, this is due to the inherent and well established limitations of biological sensors to operate efficiently at a given resource cost. Hence, there is a trade-off between lost growth during the diauxic switch and the long-term growth potential of the cell. Using simulated evolution we predict that the lag-phase will evolve depending on the distribution of conditions experienced during adaptation. In environments where switching is less frequently required, the lag-phase will evolve to be longer whereas, in frequently changing environments, the lag-phase will evolve to be shorter. PMID:27125900

  4. Theoretical magnetograms based on quantitative simulation of a magnetospheric substorm

    NASA Technical Reports Server (NTRS)

    Chen, C.-K.; Wolf, R. A.; Karty, J. L.; Harel, M.

    1982-01-01

    Substorm currents derived from the Rice University computer simulation of the September 19, 1976 substorm event are used to compute theoretical magnetograms as a function of universal time for various stations, integrating the Biot-Savart law over a maze of about 2700 wires and bands that carry the ring, Birkeland and horizontal ionospheric currents. A comparison of theoretical results with corresponding observations leads to a claim of general agreement, especially for stations at high and middle magnetic latitudes. Model results suggest that the ground magnetic field perturbations arise from complicated combinations of different kinds of currents, and that magnetic field disturbances due to different but related currents cancel each other out despite the inapplicability of Fukushima's (1973) theorem. It is also found that the dawn-dusk asymmetry in the horizontal magnetic field disturbance component at low latitudes is due to a net downward Birkeland current at noon, a net upward current at midnight, and, generally, antisunward-flowing electrojets.

  5. Coordinated observations of the magnetosphere - The development of a substorm.

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Sharp, R. D.; Shelley, E. G.; Haerendel, G.; Hones, E. W.

    1972-01-01

    Coordinated observations of a substorm are reported by using data from all-sky camera (ASCA) stations near the northern conjugate of the ATS 5 geostationary satellite, plasma and magnetic-field experiments on the ATS 5 satellite, Vela 5B at 18 earth radii in the magnetotail, the Heos 1 interplanetary probe, and ground-based magnetograms. The substorm event occurred after a very quiet day and was preceded by a development period during which the interplanetary field turned southward and the plasma energy density increased near the earth on the nightside. This period was also evidenced by a depression of the midlatitude H component of the geomagnetic field at the earth's surface. The auroral breakup was preceded by the appearance of quiet arcs, the leveling off of the plasma energy density increase at ATS, and the disappearance of the tail plasma at 18 earth radii.

  6. Early MITHRAS results - The electric field response to substorms

    NASA Astrophysics Data System (ADS)

    de La Beaujardiere, O.; Holt, J.; Nielsen, E.

    1983-12-01

    The MITHRAS data base offers a unique opportunity to observe simultaneously the auroral-zone ion convection pattern with three radars, widely separated in longitude. It is attempted to separate local-time versus universal-time effects in a study of the electric field signature associated with substorms. Preliminary results indicate that this signature is similar at a given local time, regardless of the longitude of the station. In the dawn and dusk sectors the electric field is intensified, whereas around noon and midnight the electric field appears to reverse during a substorm. The potential drop across the polar cap can be estimated from the potential across the auroral oval. The radar data agree well with the relationship found by Reiff and co-workers between the solar wind energy parameter epsilon and the cross-tail potential.

  7. On the dynamical development of the downward field-aligned current in the substorm current wedge

    SciTech Connect

    Pellinen, R.J.; Pulkkinen, T.I.; Huuskonen, A.

    1995-08-01

    We report observations of a substorm event on March 4, 1979, onset at 2236 UT, which confirm the participation of the upward accelerated ionospheric electrons in the substorm current wedge current during the first few minutes after the substorm onset. The slow ions do not contribute much to the downward current immediately after the substorm onset, whereas the precipitating magnetospheric electrons quickly set up the upward current. A scanning photometer was centrally placed at the center of the downward current during the event. The observations suggest that the current was mainly caused by cold ionospheric electrons. 27 refs., 8 figs.

  8. ATS-5 observations of plasma sheet particles before the expansion-phase onset, appendix C.. [plasma-particle interactions, magnetic storms and auroras

    NASA Technical Reports Server (NTRS)

    Fujii, K.; Nishida, A.; Sharp, R. D.; Shelley, E. G.

    1975-01-01

    Behavior of the plasma sheet around its earthward edge during substorms was studied by using high resolution (every 2.6 sec) measurements of proton and electron fluxes by ATS-5. In the injection region near midnight the flux increase at the expansion-phase onset is shown to lag behind the onset of the low-latitude positive bay by several minutes. Depending upon the case, before the above increase (1) the flux stays at a constant level, (2) it gradually increases for some tens of minutes, or (3) it briefly drops to a low level. Difference in the position of the satellite relative to the earthward edge and to the high-latitude boundary of the plasma sheet is suggested as a cause of the above difference in flux variations during the growth phase of substorms. Magnetograms and tables (data) are shown.

  9. Dynamic substorm injections - Similar magnetospheric phenomena at earth and Mercury

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Feynman, J.; Slavin, J. A.

    1987-01-01

    Correlations between energetic electrons, plasma electrons, and magnetic fields during the Mercury 1 energetic particle events are examined and comparisons are made with several well-documented substorm injections at the earth. The data reveal that the B and B-prime events possess the same characteristics as single-point observations of terrestrial dynamic injections. Several recently discovered correlations between the energetic electrons, plasma electrons, and magnetic fields at Mercury are discussed.

  10. Flow Pattern relative to the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Chu, X.; McPherron, R. L.; Hsu, T.

    2013-12-01

    Magnetospheric substorms play a key role in the coupling of the solar wind and the magnetosphere. The Substorm Current Wedge (SCW) is a key element in the present physical model of substorms. It is widely accepted that the SCW is created by earthward busty flows, but the generation mechanism is still unknown. Previous studies suggest pressure gradients and magnetic vortices are possible candidates. Due to the sparse coverage of satellites in space, these studies were strongly dependent on the assumption that the satellites were in the generation region of the field-aligned currents (FAC) forming the SCW. In this work, we take advantage of an inversion technique that determines the parameters describing the SCW and perform a statistical study on the plasma and magnetic field parameters of the flow pattern relative to the SCW. The inversion technique finds the location and the intensity of the SCW from midlatitude magnetic data. The technique has been validated using auroral observations, Equivalent Ionospheric Currents (EIC), SYM-H index from SuperMAG, and magnetic perturbations at geosynchronous orbit by the GOES satellite. A database of substorm events has been created using midlatitude positive bays, which are the ground signature of the SCW at lower latitudes. The inversion technique is applied to each event in the database to determine the location of the origin of the SCW. The inversion results are also used to find conjunction events with space observations from VAP (RBSP), THEMIS and GOES. The plasma and magnetic field parameters such as the pressure gradient and magnetic vorticity are then categorized as a function of their location relative to the origin of the SCW. How the distribution/pattern of the pressure gradient and vorticity are related to the properties of the SCW (locations and intensity of the FAC), and flows (entropy, velocity and density) will be determined.

  11. The Differences in Onset Time of Conjugate Substorms

    NASA Astrophysics Data System (ADS)

    Weygand, J. M.; Zesta, E.; McPherron, R. L.; Hsu, T. S.

    2014-12-01

    The auroral electrojet (AE) index is traditionally calculated from 13 ground magnetometer stations located around the typical northern auroral oval location. Similar coverage in the Southern Hemisphere index (SAE) does not exist, so the AE calculation has only been performed using Northern Hemisphere data. In the present study, we use seven southern auroral region ground magnetometers as well as their conjugate Northern Hemisphere data to calculate conjugate AE indices for 274 days covering all four seasons. With this dataset over 1200 substorm onsets have been identified in the SAE index using the technique of Hsu et al. [2012]. A comparison of the SAE index with the world data center standard AE index shows that the substorm onsets do not always occur at the same time with differences on the order of several minutes. In this study we examine the differences in the onset time and the reason for those differences using our conjugate AE indices and using pairs of conjugate ground magnetometer stations. Specifically, we used the pair of stations at West Antarctica Ice Sheet Divide and Sanikiluaq, Canada and Syowa, Antarctica and Tjörnes, Iceland. The largest differences in onset time appear to be related to the IMF Bz and magnetic field line length. Differences on the order of minutes for the onset time of conjugate substorms have serious implications for substorm theories. The problem is that waves from a current disruption region to the mid tail, or flows from the mid tail to the current disruption region take the same amount of time (~2 minutes), which makes it difficult to decide where the onset disturbance is initiated, particularly when onset indicators have differences on the order of minutes.

  12. Spectacular ionospheric flow structures associated with substorm auroral onset

    NASA Astrophysics Data System (ADS)

    Gallardo-Lacourt, B. I.; Nishimura, Y.; Lyons, L. R.; Zou, Y.; Angelopoulos, V.; Donovan, E.; Mende, S. B.; Ruohoniemi, J.; McWilliams, K. A.; Nishitani, N.

    2013-12-01

    Auroral observations have shown that brightening at substorm auroral onset consists of azimuthally propagating beads forming along a pre-existing arc. However, the ionospheric flow structure related to this wavy auroral structure has not been previously identified. We present 2-d line-of-sight flow observations and auroral images from the SuperDARN radars and the THEMIS ground-based all-sky-imager array to investigate the ionospheric flow pattern associated with the onset. We have selected events where SuperDARN was operating in the THEMIS mode, which provides measurements along the northward looking radar beam that have time resolution (6 s) comparable to the high time resolution of the imagers and gives us a unique tool to detect properties of flows associated with the substorm onset instability. We find very fast flows (~1000 m/s) that initiated simultaneously with the onset arc beads propagating across the THEMIS-mode beam meridian. The flows show oscillations at ~9 mHz, which corresponds to the periodicity of the auroral beads propagating across the radar beam. 2-d radar measurements also show a wavy pattern in the azimuthal direction with a wavelength of ~74 km, which is close to the azimuthal separation of individual beads, although this determination is limited by the 2 minute radar scan period. These strong correlations (in time and space) between auroral beading and the fast ionospheric flows suggest that these spectacular flows are an important feature of the substorm onset instability within the inner plasma sheet. Also, a clockwise flow shear was observed in association with individual auroral beads, suggesting that such flow shear is a feature of the unstable substorm onset waves.

  13. Calibrating a Magnetotail Model for Storm/Substorm Forecasting

    NASA Astrophysics Data System (ADS)

    Horton, W.; Siebert, S.; Mithaiwala, M.; Doxas, I.

    2003-12-01

    The physics network model called WINDMI for the solar WIND driven Magnetosphere-Ionosphere weather system is calibrated on substorm databases [1] using a genetic algorithm. We report on the use of the network as a digital filter to classify the substorms into three types; a process traditionally performed individual inspection. We then turn to using the filter on the seven Geospace Environmental Modeling (GEM) Storms designated for community wide study. These storms cover periods of days and contain many substorms. First the WINDMI model is run with the 14 parameters set from the study based on the Blanchard-McPherron database of 117 isolated substorms with 80% of the data having the AL below -500nT. In contrast, the GEM storms have long periods with AL in the range of -1000nT. The prediction error measured with the average-relative variance (ARV) is of approximately unity. Reapplying the genetic algorithm the parameters shift such that the one long storm has an ARV=0.59. Physics modifications of the basic WINDMI model including the injection of sheet plasma into the ring current are being evaluated in terms of their impact on the ARV and comparisons with non-physics based signal processing prediction filters. Ensembles of initial conditions are run with 700MHz G3 CPU run times of order 17 sec per orbit per day of real data. The AMD AthlonXP 1700+ processor takes 5sec per orbit per day. The IBM SP-2 speed will be reported. With such speeds it is possible to run balls of initial conditions. Substrom Classification with the WINDMI Model, W. Horton, R.S. Weigel, D. Vassiliadis, and I. Doxas, Nonlinear Processes in Geophysics, 1-9, 2003. This work was supported by the National Science Foundation Grant ATM-0229863.

  14. Problems with mapping the auroral oval and magnetospheric substorms

    NASA Astrophysics Data System (ADS)

    Antonova, E. E.; Vorobjev, V. G.; Kirpichev, I. P.; Yagodkina, O. I.; Stepanova, M. V.

    2015-10-01

    Accurate mapping of the auroral oval into the equatorial plane is critical for the analysis of aurora and substorm dynamics. Comparison of ion pressure values measured at low altitudes by Defense Meteorological Satellite Program (DMSP) satellites during their crossings of the auroral oval, with plasma pressure values obtained at the equatorial plane from Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite measurements, indicates that the main part of the auroral oval maps into the equatorial plane at distances between 6 and 12 Earth radii. On the nightside, this region is generally considered to be a part of the plasma sheet. However, our studies suggest that this region could form part of the plasma ring surrounding the Earth. We discuss the possibility of using the results found here to explain the ring-like shape of the auroral oval, the location of the injection boundary inside the magnetosphere near the geostationary orbit, presence of quiet auroral arcs in the auroral oval despite the constantly high level of turbulence observed in the plasma sheet, and some features of the onset of substorm expansion.

  15. Observations of the Ionospheric Response to a Weak Substorm Onset

    NASA Astrophysics Data System (ADS)

    Chartier, A.; Gjerloev, J. W.; Ohtani, S.; Nikoukar, R.; Forte, B.

    2015-12-01

    We present observations of substorm onset at Tromsø, Norway. This event was unusually well observed by ground magnetometers, incoherent scatter radar, satellites, an allsky camera and a scintillation monitor in the vicinity of the onset location. At onset, ground magnetometer observations indicate the formation of a westward electrojet above Tromsø and, at the same location, allsky camera images show an arc brightening and moving poleward. Satellite observations are consistent with an onset location at Tromsø, followed by a westward surge of dipolarization. Two features of the ionospheric response are observed by the incoherent scatter radar at Tromsø: 1) At onset, ion drift velocities reduce sharply from 100-400 m/s to roughly zero, consistent with a field-aligned potential drop shielding the ionosphere from magnetospheric convection. 2) There is a two-stage enhancement of the westward electrojet, with each stage directly preceded by an increase of ionization. Both these features are consistent with the theory that the inner magnetosphere acts neither as a current nor a voltage generator during substorm onset. Figure shows EISCAT observations of line-of-sight ion drifts, electron and ion temperatures. There is a transition from ExB drift, indicated by a decrease in ion velocity in panel (a), to electron precipitation indicated by increased electron temperatures in panel (b). Substorm onset occurs at the transition time, around 20:02:30 UT.

  16. Direct impact of substorm on outer radiation belt

    NASA Astrophysics Data System (ADS)

    Ebihara, Y.; Tanaka, T.

    2012-12-01

    According to Akebono satellite observations, substorms may have a direct impact on relativistic electrons in the heart of the outer radiation belt, but its underlying mechanism remains unsolved. The difficulties arise from uncertainty in identifying and modeling the electric field associated with substorms. We solved a set of 4-D drift kinetic equations for trapped electrons in the inner magnetosphere (L<7.4) under the electric and magnetic fields provided by a global magnetohydrodynamics (MHD) simulation. We found that relativistic electrons are effectively redistributed by two types of electric fields that are self-consistently induced. The first is a large-amplitude, highly fluctuating electric field (type-1 electric field) caused by imbalance between the JxB force and the grad-P force. The other is a large-amplitude, fairly stable electric field (type-2 electric field) associated with a localized flow propagating earthward. The relativistic electrons are effectively transported inward by the type-2 electric field because it persists for several drift periods of the relativistic electrons. The transport process appears to be different from radial diffusion because its direction is primarily earthward. Our simulations suggest that the force-induced processes, which are self-consistently coupled to the electromagnetic processes, play an essential role in the substorm-associated redistribution of particles in the inner magnetosphere.

  17. A nonthermal ion layer with high anisotropies at the plasmasheet boundary during substorm recovery

    NASA Technical Reports Server (NTRS)

    Moebius, E.; Scholer, M.; Hovestadt, D.; Klecker, B.; Ipavich, F. M.; Gloeckler, G.

    1981-01-01

    The energy spectra and anisotropies of protons and alpha particles are investigated at the plasmasheet boundary during the recovery phase of geomagnetic substorms using the Max Planck Institut/University of Maryland sensor system on the ISEE-1 satellite. The observations are found to reveal the presence of a thin nonthermal layer of approximately 60 keV/charge protons and alpha particles at the plasmasheet boundary, the particles streaming highly collimated in earthward direction. It is pointed out that the alpha particle layer is confined within the proton layer. It is thought that the principal features of the layers can be explained in terms of an acceleration model proposed by Speiser (1965) for the environment of a magnetic neutral line.

  18. Observations of a nonthermal ion layer at the plasma sheet boundary during substorm recovery

    NASA Technical Reports Server (NTRS)

    Moebius, E.; Scholer, M.; Hovestadt, D.; Klecker, B.; Ipavich, F. M.; Gloeckler, G.

    1980-01-01

    Measurements of the energy and angular distributions of energetic protons and alpha particles (not less than 30 keV/charge) in the geomagnetic tail are presented. The measurements were made during the recovery phase of a geomagnetic substorm on Apr. 19, 1978, with the Max-Planck-Institut/University of Maryland sensor system on the Isee 1 satellite. The measurements were also correlated with plasma observations made by the LASL/MPE instrument on Isee 1. The data reveal the presence of a thin nonthermal layer of protons and alpha particles at the plasma sheet boundary. The particles have their maximum flux at 60 keV/charge and are streaming highly collimated in the earthward direction. The alpha particle layer is confined within the proton layer. Many aspects of the observations are in agreement with an acceleration model near the neutral line proposed by Jaeger and Speiser (1974)

  19. Thin film growth using hetero embryo: demonstration on pyrochlore phase.

    PubMed

    Pillonnet, A; Le Bihan, V; Masenelli, B; Ledoux, G; Marty, O; Mélinon, P; Dujardin, C

    2010-05-01

    The paper reports the possible use of nanoparticles embedded in amorphous host as hetero embryos in order to grow complex crystalline phases as thin film. Demonstration is performed in the prototypical case of pyrochlore phase Gd(2)Ti(2)O(7) grown from Gd(2)O(3) nanoparticles embedded in TiO(2) matrix at low temperature. As embryos, two kinds of nanoparticles are compared: clusters deposited by low energy cluster beam deposition (LECBD) and nanostructured films elaborated by sol-gel process. The growth has been analyzed by X-ray diffraction and transmission electron microscopy. Furthermore, the nanoparticles have been doped with Eu(3+) luminescence probes in order to follow the nucleation mechanisms at the atomic scale. It is shown that the size, shape, and composition of hetero embryos and as well their interfaces are of paramount importance to enhance the formation of complex materials, such as pyrochlore. By this mean, the first step in classical nucleation science, controlling the height of the energetic barrier, is skipped and the synthesis conditions can be eased.

  20. ZnO nanorod growth by plasma-enhanced vapor phase transport with different growth durations

    SciTech Connect

    Kim, Chang-Yong; Oh, Hee-bong; Ryu, Hyukhyun; Yun, Jondo; Lee, Won-Jae

    2014-09-01

    In this study, the structural properties of ZnO nanostructures grown by plasma-enhanced vapor phase transport (PEVPT) were investigated. Plasma-treated oxygen gas was used as the oxygen source for the ZnO growth. The structural properties of ZnO nanostructures grown for different durations were measured by scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. The authors comprehensively analyzed the growth of the ZnO nanostructures with different growth durations both with and without the use of plasma-treated oxygen gas. It was found that PEVPT has a significant influence on the growth of the ZnO nanorods. PEVPT with plasma-treated oxygen gas facilitated the generation of nucleation sites, and the resulting ZnO nanorod structures were more vertical than those prepared by conventional VPT without plasma-treated oxygen gas. As a result, the ZnO nanostructures grown using PEVPT showed improved structural properties compared to those prepared by the conventional VPT method.

  1. Indium Growth and Island Height Control on Si Submonolayer Phases

    SciTech Connect

    Chen, Jizhou

    2009-01-01

    ) have a wave length of 13.4 nm so it can curve on the surface of an sample to make structure as small as the order of 10 nm. however, lithograph usually causes permanent damages to the surface and in many cases the QDs are damaged during the lithograph and therefore result in high percentage of defects. Quantum size effect has attracted more and more interests in surface science due to many of its effects. One of its effects is the height preference in film growing and the resulting possibility of uniformly sized self-assemble nanostructure. The experiment of Pb islands on In 4x1 phase shows that both the height and the width can be controlled by proper growth conditions, which expands the growth dimensions from 1 to 2. This discover leads us to study the In/Pb interface. In Ch.3, we found that the Pb islands growing on In 4x1-Si(111) surface which have uniform height due to QSE and uniform width due to the constriction of In 4x1 lattice have unexpected stability. These islands are stable in even RT, unlike usual nanostructures on Pb/Si surface which are stable only at low temperature. Since similar structures are usually grown at low temperature, this discovery makes the grown structures closer to technological applications. It also shows the unusual of In/Pb interface. Then we studied the In islands grown on Pb-α-√3x√3-Si(111) phase in Ch.4. These islands have fcc structure in the first few layers, and then convert to bct structure. The In fcc islands have sharp height preference due to QSE like Pb islands. However, the preferred height is different (7 layer for Pb on Si 7x7 and 4 layer for Pb on In 4x1), due to the difference of interface. The In islands structure prefers to be bct than fcc with coverage increase. It is quantitatively supported by first-principle calculation. Unexpectedly, the In islands grown on various of In interfaces didn't show QSE effects and phase transition from fcc and bct structures as on the Pb-α interface (Ch.6). In g(s) curve there

  2. Crystal-Phase Control by Solution-Solid-Solid Growth of II-VI Quantum Wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2016-02-10

    A simple and potentially general means of eliminating the planar defects and phase alternations that typically accompany the growth of semiconductor nanowires by catalyzed methods is reported. Nearly phase-pure, defect-free wurtzite II-VI semiconductor quantum wires are grown from solid rather than liquid catalyst nanoparticles. The solid-catalyst nanoparticles are morphologically stable during growth, which minimizes the spontaneous fluctuations in nucleation barriers between zinc blende and wurtzite phases that are responsible for the defect formation and phase alternations. Growth of single-phase (in our cases the wurtzite phase) nanowires is thus favored. PMID:26731426

  3. Random and periodic substorms and their origins in the solar wind

    SciTech Connect

    Borovsky, J.E.; Belian, R.D.; Nemzek, R.J.; Smith, C.W.

    1994-05-01

    Substorms occur (recur) in two fashions: periodically with time or randomly in time. A statistical analysis of the time intervals {Delta}t between subsequent substorm onsets clearly shows these two types of substorms. When substorms are recurring periodically, the period is 3.1 {plus_minus} 1.2 hours, and the distribution of periods is gaussian. When substorms are occurring randomly, the time intervals {Delta}t between successive substorm onsets are distributed according to the exponential distribution exp({minus}{delta}t//5 hours), with a 5-hour mean interval between random onsets. With the use of the Los Alamos geosynchronous energetic-particle dam and the OMNI solar-wind data, it is shown that periodic substorms are associated with time intervals when the average value of the IMF is southward for extended periods of time and it is shown that randomly occurring substorms are statistically correlated with randomly occurring northward-to-southward reversals of the 1-hour-averaged values of the IMF B{sub z}.

  4. Inertial magnetic field reconnection and magnetospheric substorms.

    NASA Technical Reports Server (NTRS)

    Van Hoven, G.; Cross, M. A.

    1973-01-01

    We describe and calculate the growth rate of a magnetohydrodynamic neutral-sheet instability due to electron-inertia terms in the infinite-conductivity Ohm's law. The results are compared with an approximate Vlasov-equation calculation, and are shown to be particularly germane to the geomagnetic-tail instability.

  5. Phase conversion and interface growth in phase-separated 3He - 4He liquid mixtures

    NASA Astrophysics Data System (ADS)

    Abe, Haruka; Satoh, Takeo; Burmistrov, Serguei N.

    2005-10-01

    We have developed a method for measuring the transmission coefficient of a sound propagating through the interface in phase-separated He3-He4 liquid mixtures. The method and the results are described with discussions by examining the phase-conversion process of He3 quasiparticles driven to flow across the interface. From the data, we have determined the kinetic growth coefficient of the interface, ξ(T,P,ω) , as a function of temperature, pressure, and frequency. The temperature range of the present investigation is about 2-100mK at the pressure mainly around 1bar with sound frequency 9.64, 14.4, and 32.4MHz . The main specific features observed for the kinetic growth coefficient are, as follows: (i) there is a maximum at some temperature Tm(ω) depending on the frequency, (ii) above Tm(ω) , ξ decreases with the increase of temperature as ∝ω5/2T-3 , and (iii) below Tm(ω) , ξ becomes frequency independent and diminishes as a cube of temperature, T3 .

  6. Aurora and substorm triggering by high-power radio emission of SURA facility

    NASA Astrophysics Data System (ADS)

    Ruzhin, Yuri; Kuznetsov, Vladimir; Kovalev, Victor; Karabadzhak, Georgy; Plastinin, Yuri; Frolov, Vladimir; Parrot, Michel; Ruzhina, Tatiana

    2013-04-01

    We present the results of the experiments on modification of the ionosphere by high-power high-frequency (HF) waves from the SURA heating facility. It is important to notice that from among all of 15 our experiments spent to 2007-2012 with ionosphere modulated heating only in two of them very similar disturbances in a magnetic field are registered which can be interpreted as a signature of man-induced substorms by SURA heater. The effects of modification were observed on board the International Space Station (ISS), DEMETER satellite and groundbased observatories. For all Sura-ISS experiments the HF ordinary waves are used had the frequency more than plasma frequency at F2 max. As results the radiated powerful waves illuminate the full volume of ionosphere inside the FOV for antenna (36° in meridian plane) of SURA facility. The first complex experiment on modification of the ionosphere by high-power radio emission from the SURA heating facility was carried out on October 2, 2007 at 18:40 - 19:00 UT. The ISS observations with an optical TV camera have provided more than 1000 images of a bright local glow, which appeared within the field of view of the camera as the Space Station was passing over the location of the active SURA facility. The brightness of the glow reached tens of kiloRayleighs. The compact bright aurora appeared Northeast of the heating facility (200 - 300 km) and was moving Eastward in the image plane. Making use of GPS and DEMETER satellite data, that reveal the plasmapause position close to SURA latitude during the first SURA experiment (02.10.2007), and geomagnetic data, defining the time of beginning of a regenerative phase of a geomagnetic storm, leads to conclusion that these conditions promoted the substorm triggering in the first SURA experiment with the advent of the bright local aurora registered on the Russian Segment 0f ISS at the moment of artificial substorm activation. In second experiment of 25.10.2010 almost identically to the first

  7. Nucleation and growth of the Alpha-Prime Phase martensitic phase in Pu-Ga Alloys

    SciTech Connect

    Blobaum, K M; Krenn, C R; Wall, M A; Massalski, T B; Schwartz, A J

    2005-02-09

    In a Pu-2.0 at% Ga alloy, it is observed experimentally that the amount of the martensitic alpha-prime product formed upon cooling the metastable delta phase below the martensite burst temperature (M{sub b}) is a function of the holding temperature and holding time of a prior conditioning (''annealing'') treatment. Before subjecting a sample to a cooling and heating cycle to form and revert the alpha-prime phase, it was first homogenized for 8 hours at 375 C to remove any microstructural memory of prior transformations. Subsequently, conditioning was carried out in a differential scanning calorimeter apparatus at temperatures in the range between -50 C and 370 C for periods of up to 70 hours to determine the holding time and temperature that produced the largest volume fraction of alpha-prime upon subsequent cooling. Using transformation peak areas (i.e., the heats of transformation) as a measure of the amount of alpha-prime formed, the largest amount of alpha-prime was obtained following holding at 25 C for at prime least 6 hours. Additional time at 25 C, up to 70 hours, did not increase the amount of subsequent alpha-prime formation. At 25 C, the Pu-2.0 at% Ga alloy is below the eutectoid transformation temperature in the phase diagram and the expected equilibrium phases are {alpha} and Pu{sub 3}Ga, although a complete eutectoid decomposition of delta to these phases is expected to be extremely slow. It is proposed here that the influence of the conditioning treatment can be attributed to the activation of alpha-phase embryos in the matrix as a beginning step toward the eutectoid decomposition, and we discuss the effects of spontaneous self-irradiation accompanying the Pu radioactive decay on the activation process. Subsequently, upon cooling, certain embryos appear to be active as sites for the burst growth of martensitic alpha-prime particles, and their amount, distribution, and potency appear to contribute to the total amount of martensitic product formed. A

  8. Ballistic Impact Studies of a Thermophilic Bacterium - The Importance of Growth Phase in Survival

    NASA Astrophysics Data System (ADS)

    Blank, C. E.; Ahrens, T. J.; Long, M.; Bertani, L. E.; Rashev, M.; Cady, S. L.; Hugo, R. C.; Orphan, V. J.

    2007-03-01

    Our studies of Thermus and E. coli suggest that growth temperature, growth phase (whether cells are actively growing or starved), morphology, and cell wall ultrastructure play important roles in microbial survivability following ballistic impact.

  9. Quantitative maps of geomagnetic perturbation vectors during substorm onset and recovery

    PubMed Central

    Pothier, N M; Weimer, D R; Moore, W B

    2015-01-01

    We have produced the first series of spherical harmonic, numerical maps of the time-dependent surface perturbations in the Earth's magnetic field following the onset of substorms. Data from 124 ground magnetometer stations in the Northern Hemisphere at geomagnetic latitudes above 33° were used. Ground station data averaged over 5 min intervals covering 8 years (1998–2005) were used to construct pseudo auroral upper, auroral lower, and auroral electrojet (AU*, AL*, and AE*) indices. These indices were used to generate a list of substorms that extended from 1998 to 2005, through a combination of automated processing and visual checks. Events were sorted by interplanetary magnetic field (IMF) orientation (at the Advanced Composition Explorer (ACE) satellite), dipole tilt angle, and substorm magnitude. Within each category, the events were aligned on substorm onset. A spherical cap harmonic analysis was used to obtain a least error fit of the substorm disturbance patterns at 5 min intervals up to 90 min after onset. The fits obtained at onset time were subtracted from all subsequent fits, for each group of substorm events. Maps of the three vector components of the averaged magnetic perturbations were constructed to show the effects of substorm currents. These maps are produced for several specific ranges of values for the peak |AL*| index, IMF orientation, and dipole tilt angle. We demonstrate an influence of the dipole tilt angle on the response to substorms. Our results indicate that there are downward currents poleward and upward currents just equatorward of the peak in the substorms' westward electrojet. Key Points Show quantitative maps of ground geomagnetic perturbations due to substorms Three vector components mapped as function of time during onset and recovery Compare/contrast results for different tilt angle and sign of IMF Y-component PMID:26167445

  10. What effect do substorms have on the content of the radiation belts?

    PubMed Central

    Rae, I. J.; Murphy, K. R.; Freeman, M. P.; Huang, C.‐L.; Spence, H. E.; Boyd, A. J.; Coxon, J. C.; Jackman, C. M.; Kalmoni, N. M. E.; Watt, C. E. J.

    2016-01-01

    Abstract Substorms are fundamental and dynamic processes in the magnetosphere, converting captured solar wind magnetic energy into plasma energy. These substorms have been suggested to be a key driver of energetic electron enhancements in the outer radiation belts. Substorms inject a keV “seed” population into the inner magnetosphere which is subsequently energized through wave‐particle interactions up to relativistic energies; however, the extent to which substorms enhance the radiation belts, either directly or indirectly, has never before been quantified. In this study, we examine increases and decreases in the total radiation belt electron content (TRBEC) following substorms and geomagnetically quiet intervals. Our results show that the radiation belts are inherently lossy, shown by a negative median change in TRBEC at all intervals following substorms and quiet intervals. However, there are up to 3 times as many increases in TRBEC following substorm intervals. There is a lag of 1–3 days between the substorm or quiet intervals and their greatest effect on radiation belt content, shown in the difference between the occurrence of increases and losses in TRBEC following substorms and quiet intervals, the mean change in TRBEC following substorms or quiet intervals, and the cross correlation between SuperMAG AL (SML) and TRBEC. However, there is a statistically significant effect on the occurrence of increases and decreases in TRBEC up to a lag of 6 days. Increases in radiation belt content show a significant correlation with SML and SYM‐H, but decreases in the radiation belt show no apparent link with magnetospheric activity levels.

  11. What effect do substorms have on the content of the radiation belts?

    PubMed Central

    Rae, I. J.; Murphy, K. R.; Freeman, M. P.; Huang, C.‐L.; Spence, H. E.; Boyd, A. J.; Coxon, J. C.; Jackman, C. M.; Kalmoni, N. M. E.; Watt, C. E. J.

    2016-01-01

    Abstract Substorms are fundamental and dynamic processes in the magnetosphere, converting captured solar wind magnetic energy into plasma energy. These substorms have been suggested to be a key driver of energetic electron enhancements in the outer radiation belts. Substorms inject a keV “seed” population into the inner magnetosphere which is subsequently energized through wave‐particle interactions up to relativistic energies; however, the extent to which substorms enhance the radiation belts, either directly or indirectly, has never before been quantified. In this study, we examine increases and decreases in the total radiation belt electron content (TRBEC) following substorms and geomagnetically quiet intervals. Our results show that the radiation belts are inherently lossy, shown by a negative median change in TRBEC at all intervals following substorms and quiet intervals. However, there are up to 3 times as many increases in TRBEC following substorm intervals. There is a lag of 1–3 days between the substorm or quiet intervals and their greatest effect on radiation belt content, shown in the difference between the occurrence of increases and losses in TRBEC following substorms and quiet intervals, the mean change in TRBEC following substorms or quiet intervals, and the cross correlation between SuperMAG AL (SML) and TRBEC. However, there is a statistically significant effect on the occurrence of increases and decreases in TRBEC up to a lag of 6 days. Increases in radiation belt content show a significant correlation with SML and SYM‐H, but decreases in the radiation belt show no apparent link with magnetospheric activity levels. PMID:27656336

  12. 2-D Convection and Electrodynamic Features of Substorms Revealed by Multiple Radar Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Zou, S.

    2010-12-01

    Substorms are one of the fundamental elements of geomagnetic activity, which involve complex magnetosphere-ionosphere coupling processes. In this work, we aim to better understand the evolution of high latitude ionospheric convection and the relevant current systems associated with substorms, with emphasis on these features near the nightside Harang reversal region. Three different types of radars, including the Super Dual Auroral Radar Network (SuperDARN) coherent-scatter radars, the new advanced modular incoherent-scatter radar at Poker Flat (PFISR), and the Sondrestrom ISR, have been utilized. Observations from these radars, together with those from complementary instruments, including satellites and other ground-based instruments, have enabled fundamental new understanding of the ionospheric electrodynamic properties associated with substorms. In this presentation, I focus on electrodynamics near the nightside Harang reversal region. Observations from the SuperDARN and the PFISR radars revealed that auroral activity at substorm onset is located near the center of the Harang reversal, which represents a key feature of magnetospheric and ionospheric convection and is part of the Region 2 system. The observations also show nightside convection flows exhibit repeatable, distinct variations at different locations relative to the substorm-related auroral activity. Taking advantage of the simultaneous flow and ionization measurements from PFISR, a current closure relation has been found between the Region 2 and the substorm field-aligned current systems. By synthesizing these observations, a 2-D comprehensive view of the nightside ionospheric electrodynamical features, including electrical equipotentials, flows and FACs, and their evolution associated with substorms has been constructed, which has revealed a strong coupling between the substorm and the Region 2 current systems. This study sheds new light on substorm-related magnetosphere-ionosphere coupling and

  13. Evolution of high latitude ionospheric convection associated with substorms: Multiple radar observations

    NASA Astrophysics Data System (ADS)

    Zou, Shasha

    The work presented in this dissertation concerns evolution of the high latitude ionospheric convection and the relevant current systems associated with substorms, with emphasize on these features near the nightside Harang reversal region. Three different types of radars, including the Super Dual Auroral Radar Network (SuperDARN) coherent-scatter radars, the new advanced modular incoherent-scatter radar at Poker Flat (PFISR), and the Sondrestrom incoherent-scatter radar (ISR), have been utilized. Observations from those radars, together with those from complementary instruments, including satellites and other ground-based instruments, have revealed fundamental new understand of the ionospheric electrodynamic properties associated with substorms. By using the SuperDARN and the PFISR radars, we found that the auroral activity at substorm onset is located in the center of the Harang reversal, which represents a key region in the magnetospheric and ionospheric convection and is part of the Region 2 system. We have also shown that nightside convection flows exhibit repeatable, distinct variations at different locations relative to the substorm-related auroral activity. Taking advantage of the simultaneous flow and ionization measurements from PFISR, a current closure relation has been found between the Region 2 and the substorm field-aligned current systems. These observations demonstrate a strong coupling between the Region 2 system and the substorm dynamics. This study sheds new light on the substorm-related magnetosphere-ionosphere coupling and contributes to the building of a holistic picture of the substorm dynamics. The third radar has been used to study the dayside ionospheric convection response to the external soar wind and IMF driving and its role in substorm dynamics. The results have been applied to study substorm triggering and in the future could be used to study the relation between the external driving and the formation of the Harang reversal.

  14. Two satellite study of substorm expansion near geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Holter, Ø.; Galopeau, P.; Roux, A.; Perraut, S.; Pedersen, A.; Korth, A.; Bösinger, T.

    2004-12-01

    During several time intervals in 1979-1980 the satellites GEOS-2 and SCATHA were situated relatively close on the nightside of the Earth at geosynchronous distances. Several substorm events were identified during these periods. The event considered in this paper was recorded on 22 May 1979, when the satellites were separated by less than 30min in local time around 21:00 LT. The observed 45 to 60 s delay of magnetic signatures observed at the two s/c indicates a westward expansion of ~7.7°/min. At the two s/c, the magnetic signatures are, in particular for the azimuthal magnetic field components, quite different. At GEOS-2, being close to the magnetic equator, the dominant feature is a dipolarization with a weak field-aligned current signature corresponding to a symmetric current which cancels at the equator. On SCATHA, however, being close to the current sheet boundary, the azimuthal magnetic field indicates a strong field-aligned Birkeland current structure. On both s/c the first indication of an approaching substorm was an increase in the high energy ion flux followed by a reduction in the flux intensity of energetic electrons and a further tailward stretching of the magnetic field, starting ~2min before the onset of the magnetic field dipolarization. The tailward stretching, the observed variations of the magnetic field components, and the subsequent dipolarization are interpreted in terms of an azimuthally tilted field-aligned current system passing the s/c on the tailward side from east to west. The westward expansion and dipolarization observed at the two s/c are consistent with the propagation of a Rayleigh-Taylor type instability. The increased radial ion flux corresponds to the ExB-drift due to the substorm associated electric field.

  15. The reason for magnetospheric substorms and solar flares

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1983-01-01

    It has been proposed that magnetospheric substorms and solar flares are a result of the same mechanism. It is suggested that this mechanism is connected with the escape, or attempted escape, of energized plasma from a region of closed magnetic field lines bounded by a magnetic bottle. In the case of the earth, it must be plasma that is able to maintain a discrete auroral arc, and it is proposed that the cross-tail current connected to the arc is filamentary in nature to provide the field-aligned current sheet above the arc.

  16. On the velocity distribution of ion jets during substorm recovery

    NASA Technical Reports Server (NTRS)

    Birn, J.; Forbes, T. G.; Hones, E. W., Jr.; Bame, S. J.; Paschmann, G.

    1981-01-01

    The velocity distribution of earthward jetting ions that are observed principally during substorm recovery by satellites at approximately 15-35 earth radii in the magnetotail is quantitatively compared with two different theoretical models - the 'adiabatic deformation' of an initially flowing Maxwellian moving into higher magnetic field strength (model A) and the field-aligned electrostatic acceleration of an initially nonflowing isotropic Maxwellian including adiabatic deformation effects (model B). The assumption is made that the ions are protons or, more generally, that they consist of only one species. It is found that both models can explain the often observed concave-convex shape of isodensity contours of the distribution function.

  17. Statistical survey on sawtooth events, SMCs and isolated substorms

    NASA Astrophysics Data System (ADS)

    Partamies, N.; Pulkkinen, T. I.; McPherron, R. L.; McWilliams, K.; Bryant, C. R.; Tanskanen, E.; Singer, H. J.; Reeves, G. D.; Thomsen, M. F.

    2009-08-01

    Solar wind driving can cause a variety of different responses in the magnetosphere. Strong and steady driving during geomagnetic storms may result in sawtooth events. Strong to moderate driving may be followed by either sawtooth events or steady magnetospheric convection (SMC) events. Lower solar wind energy input typically leads to the formation of isolated non-storm substorms. This study uses superposed epoch analysis to reveal the typical properties of these three event groups as well as their similarities and differences. We use IMF and solar wind parameters, as well as ground-based indices (AL, SYM-H, ASY-H, PCN) to examine the level of solar wind driving and its response in the magnetosphere. Our results show that sawtooth events are associated with the strongest ionospheric activity. The subgroups of events during constant solar wind EY show that the key difference between the events is the average solar wind speed. Particularly, the high activity during sawtooth events is driven by high solar wind speed, while the lowest average speed during the SMCs may explain the lack of substorm activity during the steady convection periods.

  18. Electron acceleration in the near-Earth magnetotail in substorms

    NASA Astrophysics Data System (ADS)

    Asano, Y.; Shinohara, I.; Retino, A.; Daly, P.; Kronberg, E.; Khotyaintsev, Y.; Vaivads, A.; Owen, C. J.; Fazakerley, A. N.; Nakamura, R.; Baumjohann, W.; Nagai, T.; Takada, T.; Miyashita, Y.; Fujimoto, M.; Lucek, E. A.; Reme, H.

    2008-12-01

    We investigate substorm events in the near-Earth magnetotail in order to examine acceleration signatures of electrons using data from the Cluster satellites with separation larger than 1 RE. Thermal electrons detected by the PEACE instrument and the high-energy electron flux from the RAPID instrument are analyzed and compared with simultaneous magnetic field, electric field, and ion observations from FGM, EFW, and CIS instruments, respectively. It is found that electrons with energies up to a few hundreds keV exhibit the hardest spectra in the initial stage of the events. These electrons are associated with fast Earthward ion flows and the enhancement of the dipolar magnetic field and the electric field. Although most of the distributions are isotropic, electrons sometimes show the preferential increase of the perpendicular flux, suggesting the effect of betatron acceleration. These electron signatures last only for about one minute, and after that either the flux quickly decreases or a more isotropic flux is observed. The spectra gradually become softer in the course of substorms, and the spectra are softer than the initial state in some cases. The soft spectra are sometimes associated with the temporal drop of the perpendicular electrons. The larger flux is observed by the satellite closer to the Earth, while the satellite on the tailward side shows a faster response to magnetotail perturbations. We discuss possible acceleration mechanisms and the flux transport in the magnetotail.

  19. Analysis of a Prototypical Substorm with Conjugate Ground Magnetic Data

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; Engebretson, M. J.; Chu, X.; Gjerloev, J. W.; Angelopoulos, V.; McPherron, R. L.; Weatherwax, A. T.

    2015-12-01

    The substorm at about 5 UT on February 26, 2008 (Angelopoulos et al., Science, 2008) has been taken as prototypical of reconnection in the Near-Earth Neutral Line model. Further examination by Pu et al. (JGR, 2010) showed that the event was preceded an hour earlier by one with very similar signatures. Traditional use of AE-related indices suggests that the first event was smaller in terms of electric currents than the second. More detailed examination of ground magnetic data shows that it was in fact comparable: in addition, the second event was considerably further to the west. We present results from Automated Meridian Modeling showing that a simple electrojet model with only three parameters (electrojet borders and current) matches data well with approximately 0.2 MA cross-meridian current in both subevents. There was also good conjugacy between hemispheres for both, as indicated by Antarctic magnetometers and inversion based on them. SuperMag data gives dense enough magnetometer coverage that the layout of the substorm current wedge, with auroral zone westward electrojet and subauroral perturbations mainly due to field-aligned current, can be determined. The quantitative data from the ground provides a context in which flows, magnetic fields, and other parameters at the THEMIS constellation and other conjugate spacecraft may be interpreted.

  20. Role of inductive electric fields in substorm development

    NASA Technical Reports Server (NTRS)

    Heikkila, Walter J.

    1992-01-01

    A study discussing and investigating the role of inductive electric fields in substorm development is presented. It is common to use the scalar potential phi to calculate the electrostatic field E(sup ES)-(inverted Delta)(phi). However, vector potential A has not been extensively used to analyze results by the relation for the inductive electric field E(sup IND)-delta A/delta t. Because of the weak dependence in distance (1/r) these potentials show the effect of distant sources, unlike MHD (Magnetohydrodynamic) theory which is strictly local. The two can be separated by the choice of the Coulomb (transverse) gauge. It is proper to consider that the plasma polarizes to counteract the activation of the inductive electric field; this is a matter of cause and effect. However, such polarization produces a curl free electrostatic field and thus cannot alter the electromotive force due to induction. This idea has some interesting consequences for plasma physics, including violations of MHD theory, creation of the substorm current diversion, and a fresh look at dayside merging via plasma transfer events.

  1. Effects of substorm electrojet on declination along concurrent geomagnetic latitudes in the northern auroral zone

    NASA Astrophysics Data System (ADS)

    Edvardsen, Inge; Johnsen, Magnar G.; Løvhaug, Unni P.

    2016-10-01

    The geomagnetic field often experiences large fluctuations, especially at high latitudes in the auroral zones. We have found, using simulations, that there are significant differences in the substorm signature, in certain coordinate systems, as a function of longitude. This is confirmed by the analysis of real, measured data from comparable locations. Large geomagnetic fluctuations pose challenges for companies involved in resource exploitation since the Earth's magnetic field is used as the reference when navigating drilling equipment. It is widely known that geomagnetic activity increases with increasing latitude and that the largest fluctuations are caused by substorms. In the auroral zones, substorms are common phenomena, occurring almost every night. In principle, the magnitude of geomagnetic disturbances from two identical substorms along concurrent geomagnetic latitudes around the globe, at different local times, will be the same. However, the signature of a substorm will change as a function of geomagnetic longitude due to varying declination, dipole declination, and horizontal magnetic field along constant geomagnetic latitudes. To investigate and quantify this, we applied a simple substorm current wedge model in combination with a dipole representation of the Earth's magnetic field to simulate magnetic substorms of different morphologies and local times. The results of these simulations were compared to statistical data from observatories and are discussed in the context of resource exploitation in the Arctic. We also attempt to determine and quantify areas in the auroral zone where there is a potential for increased space weather challenges compared to other areas.

  2. Transcriptional characterization of Salmonella TA100 in log and stationary phase: influence of growth phase on mutagenicity of MX.

    PubMed

    Ward, William O; Swartz, Carol D; Hanley, Nancy M; DeMarini, David M

    2010-10-13

    The Salmonella mutagenicity assay can be performed using cells that are in different growth phases. Thus, the plate-incorporation assay involves plating stationary-phase cells with the mutagen, after which the cells undergo a brief lag phase and, consequently, are exposed to the mutagen and undergo mutagenesis while in the logarithmic (log) phase. In contrast, a liquid-suspension assay involves exposure of either log- or stationary-phase cells to the mutagen for a specified period of time, sometimes followed by a wash, resulting in the cells growing in medium in the absence of the mutagen. To explore global gene expression in Salmonella, and to test for possible effects of growth phase and transcriptional status on mutagenesis, we performed microarray analysis on cells of Salmonella strain TA100 exposed to the drinking-water mutagen MX in either the log or stationary phase. The genes in functional pathways involving amino acid transport and metabolism and energy metabolism were expressed differentially in log-phase cells, whereas genes in functional pathways involving protein trafficking, cell envelope, and two-component systems using common signal transduction were expressed differentially in stationary-phase cells. More than 90% of the ribosomal-protein biosynthesis genes were up-regulated in stationary- versus log-phase cells. MX was equally mutagenic to cells in log- and stationary-phase growth when the results were expressed as mutant frequencies (revertants/survivors/μM), but it was twice as mutagenic in stationary-phase cells when the results were expressed as mutant yields (revertants/nmole or revertants/μM). There was a complex transcriptional response underlying these results, with mucA/B being greatly up-regulated in log-phase cells but umuC/D up-regulated in stationary-phase cells. The transcriptional state of TA100 cells at the time of mutagen treatment may influence the outcome of mutagen treatment.

  3. Quantitative maps of geomagnetic perturbation vectors during substorm onset and recovery

    NASA Astrophysics Data System (ADS)

    Pothier, N. M.; Weimer, D. R.; Moore, W. B.

    2015-02-01

    We have produced the first series of spherical harmonic, numerical maps of the time-dependent surface perturbations in the Earth's magnetic field following the onset of substorms. Data from 124 ground magnetometer stations in the Northern Hemisphere at geomagnetic latitudes above 33° were used. Ground station data averaged over 5 min intervals covering 8 years (1998-2005) were used to construct pseudo auroral upper, auroral lower, and auroral electrojet (AU*, AL*, and AE*) indices. These indices were used to generate a list of substorms that extended from 1998 to 2005, through a combination of automated processing and visual checks. Events were sorted by interplanetary magnetic field (IMF) orientation (at the Advanced Composition Explorer (ACE) satellite), dipole tilt angle, and substorm magnitude. Within each category, the events were aligned on substorm onset. A spherical cap harmonic analysis was used to obtain a least error fit of the substorm disturbance patterns at 5 min intervals up to 90 min after onset. The fits obtained at onset time were subtracted from all subsequent fits, for each group of substorm events. Maps of the three vector components of the averaged magnetic perturbations were constructed to show the effects of substorm currents. These maps are produced for several specific ranges of values for the peak |AL*| index, IMF orientation, and dipole tilt angle. We demonstrate an influence of the dipole tilt angle on the response to substorms. Our results indicate that there are downward currents poleward and upward currents just equatorward of the peak in the substorms' westward electrojet.

  4. Comparison of attached and suspended growth methanogenesis in a two phase system

    SciTech Connect

    Roy, D.; Gough, R.H.; Jones, L.M.

    1986-01-01

    Performance of an attached growth methane phase was compared to that of a completely mixed methane phase in a two-phase anaerobic process. An anaerobic rotating biological contactor (AnRBC) and a completely mixed stirred tank reactor (CSTR) were used to study the attached growth and suspended growth phase systems, respectively. In the methane phase, the hydraulic retention time (HRT) was varied from 10 to 72 hours and the pH was maintained either at 6.0 or at 7.5. The attached growth methane system was observed to be more efficient than the suspended growth methane process in methane production per gram of total organic carbon (TOC) removed.

  5. A scheme for reducing deceleration-phase Rayleigh-Taylor growth in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-05-01

    It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh-Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.

  6. Control of grain growth using intergranular silicate phases in cubic yttria stabilized zirconia

    SciTech Connect

    Sharif, A.A.; Imamura, P.H.; Mecartney, M.L.; Mitchell, T.E.

    1998-07-01

    Grain growth kinetics for 8 mol% yttria stabilized cubic zirconia (8Y-CSZ) were investigated. Optimal process parameters required to achieve a small grain size and full density for cubic 8Y-CSZ included a rapid heating rate (100 C/min) and hot isostatic pressing. Grain growth rates could also be controlled by the deliberate addition of 1 wt% of intergranular phases of borosilicate, barium silicate, and lithium aluminum silicate glasses. Lithium aluminum silicate, the intergranular phase with the highest solubility for yttria and zirconia, enhanced grain growth compared to control samples without grain boundary phases. The borosilicate intergranular phase, with the lowest solubility for yttria and zirconia, was the most effective in suppressing grain growth. Activation energies for grain growth were in the range of 400 kJ/mol, and the grain growth exponent ranged from 2 for lithium aluminum silicate containing samples, to 3 for pure samples, to 4 for barium silicate and borosilicate containing samples.

  7. Equatorward shift of the cleft during magnetospheric substorms as observed by Isis 1

    NASA Technical Reports Server (NTRS)

    Yasuhara, F.; Akasofu, S.-I.; Winningham, J. D.; Heikkila , W. J.

    1973-01-01

    Isis 1 satellite observations of the cleft position during magnetospheric substorms show that the cleft shifts equatorward as the interplanetary B sub z component turns southward and substorm activity increases and that it shifts back toward higher latitudes as substorm activity subsides and B sub z returns northward. Also, unusually low latitudes for the cleft (less than 70 deg invariant latitude) were found during geomagnetic storms with significant Dst values and large negative B sub z values. Significant shifts occur in the cleft location with no accompanying effect seen in the AE index; however, B sub z is observed to be southward during these periods.

  8. Investigation of Growth Phase-Dependent Acid Tolerance in Bifidobacteria longum BBMN68.

    PubMed

    Jin, Junhua; Song, Jingyi; Ren, Fazheng; Zhang, Hongxing; Xie, Yuanhong; Ma, Jingsheng; Li, Xue

    2016-11-01

    The underlying mechanisms imparting the growth phase-dependent acid tolerance have not been extensively investigated. In this study, we compared the acid resistance of the Bifidobacterium longum strain BBMN68 from different growth phases at lethal pH values (pH 2.5, 3.0, and 3.5), and analyzed the activity of H(+)-ATPase, the composition of fatty acids, and the mRNA abundance of ffh, uvrA, recA, lexA, groES, and dnaK in cells from different growth phases. The results indicated that the survival rates of cells from early stationary (ES) and late stationary (LS) growth phases at lethal pH values were significantly higher than those of exponential growth phase cells. Our findings indicated that by inducing a continuously auto-acidizing environment during cell growth, the acid resistance of ES and LS cells was strengthened. The higher activity of H(+)-ATPase, the decrease in unsaturated fatty acids, and the increased expression of genes involved in DNA repair and protein protection in the cells in stationary growth phase were all implicated in the significantly increased acid resistance of ES and LS cells compared with exponential growth phase cells of the B. longum strain BBMN68.

  9. Condensed phase conversion and growth of nanorods and other materials instead of from vapor

    DOEpatents

    Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong

    2010-10-19

    Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed phase matrix material instead of from vapor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.

  10. On the growth of an intermediate phase in coherently stressed thin plates

    SciTech Connect

    Johnson, W.C.

    2000-03-14

    Cahn-Hilliard type equations are derived to study the competitive growth of three isostructural phases in binary, stressed, thin-plate diffusion couple when the lattice parameter depends either linearly or quadratically on the composition. Compositional stresses change qualitatively and quantitatively the evolution of the intermediate phase with respect to the stress-free case. Growth kinetics depend critically on whether the plate is free to bend or is affixed to a rigid substrate. The thickness of the intermediate phase is proportional to the square root of time for the rigid substrate case, but can depend on plate thickness and exceed a linear dependence on time for other conditions. Compositional strains can stabilize a non-equilibrium phase, prevent the growth of an equilibrium phase, and give rise to the stable coexistence of three coherent phases, in contradiction to the Gibbs phase rule for hydrostatically stressed systems.

  11. Observations of a High-Latitude Stable Electron Auroral Emission at Approximately 16 MLT During a Large Substorm

    NASA Technical Reports Server (NTRS)

    Cattell, C.; Dombeck, J.; Preiwisch, A.; Thaller, S.; Vo, P.; Wilson, L. B., III; Wygant, J.; Mende, S. B.; Frey, H. U.; Ilie, R.; Lu, G.

    2011-01-01

    During an interval when the interplanetary magnetic field was large and primarily duskward and southward, a stable region of auroral emission was observed on 17 August 2001 by IMAGE at 16 magnetic local time, poleward of the main aurora, for 1 h, from before the onset of a large substorm through the recovery phase. In a region where ions showed the energy dispersion expected for the cusp, strong field \\aligned currents and Poynting flux were observed by Polar (at 1.8 RE in the Southern Hemisphere) as it transited field lines mapping to the auroral spot in the Northern Hemisphere. The data are consistent with the hypothesis that the long \\lasting electron auroral spot maps to the magnetopause region where reconnection was occurring. Under the assumption of conjugacy between the Northern and Southern hemispheres on these field lines, the Polar data suggest that the electrons on these field lines were accelerated by Alfven waves and/or a quasi \\static electric field, primarily at altitudes below a few RE since the in situ Poynting flux (mapped to 100 km) is comparable to the energy flux of the emission while the mapped in situ electron energy flux is much smaller. This event provides the first example of an emission due to electrons accelerated at low altitudes at the foot point of a region of quasi \\steady dayside reconnection. Cluster data in the magnetotail indicate that the Poynting flux from the reconnection region during this substorm is large enough to account for the observed nightside aurora.

  12. Growth of strontium barium niobate: the liquidus solidus phase diagram

    NASA Astrophysics Data System (ADS)

    Ulex, Michael; Pankrath, Rainer; Betzler, Klaus

    2004-10-01

    The liquidus-solidus phase diagram of strontium barium niobate, Sr xBa 1Nb 2O 6, is determined over the whole existence region of the tetragonal phase. For this purpose, single crystals of various compositions within this range were grown. The compositions of the melts and the grown crystals as well as the corresponding liquidus temperatures were accurately determined. The tetragonal phase was found to exist from a lower limit with the crystal composition x=0.26 to an upper limit of x=0.87. The respective liquidus temperatures vary between 1452 and 1492C.

  13. Recent Themis and Coordinated GBO Measurements of Substorm Expansion Onset: Do We Finally Have an Answer?

    NASA Technical Reports Server (NTRS)

    Kepko, Larry

    2011-01-01

    For nearly 30 years an often-times heated debate has engaged the substorm community: Do substorms begin with the formation of a new reconnection site in the midtail plasmasheet (the Near-Earth Neutral Line model) or do they begin near the transition region between stretched tail and dipolar field lines (the Current Disruption model). The THEMIS mission, with a coordinated suite of five in-situ spacecraft and ground observatories. has greatly extended our understanding of how substorms initiate and evolve. But have the new data resolved the fundamental question? In this talk I review the last few year's of substorm research, with an emphasis of how the THEMIS data have revolutionized our understanding.

  14. The earth's magnetosphere under continued forcing - Substorm activity during the passage of an interplanetary magnetic cloud

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Freeman, M. P.; Burlaga, L. F.; Lepping, R. P.; Takahashi, K.

    1993-01-01

    Magnetic field and energetic particle observations from six spacecraft in the near-earth magnetotail are described and combined with ground magnetograms to document for the first time the magnetospheric substorm activity during a 30-hour long transit of an interplanetary cloud at 1 AU. During an earlier 11-hr interval when B(z) was continuously positive, the magnetosphere was quiescent, while in a later 18-hr interval when B(z) was uninterruptedly negative a large magnetic storm was set off. In the latter interval the substorm onsets recurred on average every 50 min. Their average recurrence frequency remained relatively undiminished even when the magnetic cloud B(z) and other measures of the interplanetary energy input decreased considerably. These results concur with current models of magnetospheric substorms based on deterministic nonlinear dynamics. The substorm onset occurred when the cloud's magnetic field had a persistent northward component but was predominantly westward pointing.

  15. Explosive magnetic reconnection - puzzle to be solved as the energy supply process for magnetospheric substorms

    SciTech Connect

    Akasofu, S.I.

    1985-01-01

    It is pointed out that magnetospheric substorms are perhaps the most basic type of disturbances which occur throughout the magnetosphere. There is little doubt that the energy for magnetospheric substorms is delivered from the sun to the magnetosphere by the solar wind, and theoretical and observational studies have been conducted to uncover the processes associated with the energy transfer from the solar wind to the magnetosphere, and the subsequent processes leading to various magnetospheric substorm phenomena. It has been widely accepted that explosive magnetic reconnection supplies the energy for magnetospheric substorm processes. It is indicated that the auroral phenomena must be various manifestations of a large-scale electrical discharge process which is powered by the solar wind-magnetosphere dynamo. Certain problems regarding explosive magnetic reconnection are discussed. 23 references.

  16. Space Borne and Ground-Based Observations of Transient Processes Occurring Around Substorm Onset

    NASA Technical Reports Server (NTRS)

    Kepko, L.; Spanswick, E.; Angelopoulos, V.; Donovan, E.

    2010-01-01

    The combined THEMIS five spacecraft in-situ and ground magnetic and visible camera arrays have advanced considerably our understanding of the causal relationship between midtail plasma flows, transient ionospheric features, and ground magnetic signatures. In particular recent work has shown a connection between equatorward moving visible ionospheric transients and substorm onset, in both white-light and 6300 nm emissions. These observations, together with THEMIS in-situ measurements of bulk flows, provides strict constraints on the sequence of events leading to substorm auroral onset.We first provide a brief summary of these observations, highlighting in particular areas where the two observations differ, and suggest reasons for the differences. Next, by combining the observed correlation of flow and Pi2 waveform with a unified model of global Pi2 generation and substorm current wedge initiation we present a self-consistent description of the dynamical processes and communicative pathways that occur just prior to and during substorm expansion onset.

  17. Explosive magnetic reconnection - Puzzle to be solved as the energy supply process for magnetospheric substorms?

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1985-01-01

    It is pointed out that magnetospheric substorms are perhaps the most basic type of disturbances which occur throughout the magnetosphere. There is little doubt that the energy for magnetospheric substorms is delivered from the sun to the magnetosphere by the solar wind, and theoretical and observational studies have been conducted to uncover the processes associated with the energy transfer from the solar wind to the magnetosphere, and the subsequent processes leading to various magnetospheric substorm phenomena. It has been widely accepted that explosive magnetic reconnection supplies the energy for magnetospheric substorm processes. It is indicated that the auroral phenomena must be various manifestations of a large-scale electrical discharge process which is powered by the solar wind-magnetosphere dynamo. Certain problems regarding explosive magnetic reconnection are discussed.

  18. The Relationship Between Magnetotail Dynamics and Substorm Onset Longitudes Determined from Spacecraft Images

    NASA Technical Reports Server (NTRS)

    Ieda, A.; Fairfield, D. H.; Mukai, T.; Saito, Y.

    1999-01-01

    Geotail plasma and magnetic field observations of plasmoids between 25 and 30 Re have been compared to Polar UVI observations of auroral brightenings. Plasmoids almost always corresponded to brightenings but the brightenings were sometimes weak and spatially limited and did not always grow to a global substorm. Even a case where a plasmoid event occurred with fast post-plasmoid flow corresponded to a weak brightening but no substorm. Some brightenings did not correspond to plasmoids, but these events were observed away from the longitude of Geotail. The plasmoids are observed 0-2 min after the brightenings in most cases. It seems likely that formation of a near-Earth neutral line causes each brightening in the polar ionosphere, but these formations do not have a one-to-one relationship with a substorm onset. What causes development of the full, large-scale substorm remains an open question.

  19. Electric field evidence for tailward flow at substorm onset

    NASA Technical Reports Server (NTRS)

    Nishida, A.; Tulunay, Y. K.; Mozer, F. S.; Cattell, C. A.; Hones, E. W., Jr.; Birn, J.

    1983-01-01

    Electric field observations made near the neutral sheet of the magnetotail provide additional support for the view that reconnection occurs in the near-earth region of the tail. Southward turnings of the magnetic field that start at, or shortly after, substorm onsets are accompanied by enhancements in the dawn-to-dusk electric field, resulting in a tailward E x B drift velocity. Both the magnetic and the electric fields in the tailward-flowing plasma are nonuniform and vary with inferred spatial scales of several earth radii in the events examined in this paper. These nonuniformities may be the consequence of the tearing-mode process. The E x B flow was also towards the neutral sheet and away from midnight in the events studied.

  20. Testing of typical spacecraft materials in a simulated substorm environment

    NASA Technical Reports Server (NTRS)

    Stephens, N. J.; Berkopec, F. D.; Staskus, J. V.; Blech, R. A.; Narciso, S. J.

    1976-01-01

    An investigation to determine spacecraft materials characteristics under charging conditions was conducted at the Lewis Research Center substorm simulation facility. The test specimens were spacecraft paints, silvered Teflon, thermal blankets and solar array segments. The samples, ranging in size from 300 to 1,000 sq cm were exposed to monoenergetic electron energies from 2 to 20 keV at a current density of 1 nA sq cm. The samples generally behaved as capacitors with strong voltage gradients at their edges. The charging characteristics of the silvered Teflon, Kapton, and solar cell covers were controlled by the secondary emission characteristics. Insulators that did not discharge were the spacecraft paints and the quartz fiber cloth thermal blanket sample. All other samples did experience discharges when the surface voltage reached -8 to -16 kV. The discharges were photographed. The breakdown voltage for each sample was determined and the average energy lost in the discharge was computed.

  1. Flow bursts, breakup arc, and substorm current wedge

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2015-04-01

    Energy liberated by the reconnection process in the near-Earth tail is transported via flow bursts toward the dipolar magnetosphere during substorms. The breakup arc is a manifestation of the arrival of the bursts under flow braking and energy deposition. Its structure and behavior is analyzed on the basis of five striking spatial, temporal, and energetic properties, qualitatively and in part also quantitatively. A key element is the formation of stop layers. They are thin layers, of the width of an ion gyro radius, in which the magnetic field makes a transition from tail to near-dipolar magnetosphere configurations and in which the kinetic energy of fast flows is converted into electromagnetic energy of kinetic Alfvén waves. The flows arise from the relaxation of the strong magnetic shear stresses in the leading part of the flow bursts. The bright narrow arcs of less than 10 km width inside the broad poleward expanding breakup arc, Alfvénic in nature and visually characterized by erratic short-lived rays, are seen as traces of the stop layers. The gaps between two narrow and highly structured arcs are filled with more diffuse emissions. They are attributed to the relaxation of the less strained magnetic field of the flow bursts. Eastward flows along the arcs are linked to the shrinking gaps between two successive arcs and the entry of auroral streamers into the dipolar magnetosphere in the midnight sector. Flow braking in the stop layers forms multiple pairs of narrow balanced currents and cannot be behind the formation of the substorm current wedge. Instead, its origin is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the high-beta plasma, after the high magnetic shears have relaxed and the fast flows and stop layer process have subsided, in other words, to the "dying flow bursts."

  2. A Catapult (Slingshot) Current Sheet Relaxation Model for Substorm Triggering

    NASA Astrophysics Data System (ADS)

    Machida, S.; Miyashita, Y.; Ieda, A.

    2010-12-01

    Based on the results of our superposed epoch analysis of Geotail data, we have proposed a catapult (slingshot) current sheet relaxation model in which earthward flows are produced in the central plasma sheet (CPS) due to the catapult (slingshot) current sheet relaxation, together with the rapid enhancement of Poynting flux toward the CPS in the lobe around X ~ -15 Re about 4 min before the substrom onset. These earthward flows are characterized by plasma pressure decrease and large amplitude magnetic field fluctuations. When these flows reach X ~ 12Re in the magnetotail, they give significant disturbances to the inner magnetosphere to initiate some instability such as a ballooning instability or other instabilities, and the substorm starts in the inner magnetosphere. The occurrence of the magnetic reconnection is a natural consequence of the initial convective earthward flows, because the relaxation of a highly stretched catapult current sheet produces a very thin current at its tailward edge being surrounded by intense magnetic fields which were formerly the off-equatorial lobe magnetic fields. Recently, Nishimura et al. [2010] reported that the substorm onset begins when faint poleward discrete arcs collide with equatorward quiet arcs. The region of earthward convective flows correlatively moves earthward prior to the onset. Thus, this region of the earthward convective flows seems to correspond to the faint poleward discrete arcs. Interestingly, our statistical analysis shows that the earthward convective flows are not produced by the magnetic reconnection, but they are attributed to the dominance of the earthward JxB force over the tailward pressure associated with the progress of the plasma sheet thinning.

  3. Effect of magnetospheric substorms on asymptotic directions of arrival of cosmic ray relativistic protons

    NASA Astrophysics Data System (ADS)

    Pchelkin, V. V.

    2010-06-01

    The effect of magnetospheric storm on the propagation of relativistic protons has been analyzed. The method of trajectory calculations has been used to estimate changes in the reception cones for 21 stations, caused by the storm of July 19-20, 2000, accompanied by considerable saw-tooth substorm disturbances. It has been indicated that the degree of the substorm effect on the propagation of cosmic ray (CR) relativistic protons, registered with ground detectors, differs for different stations and depends on a distance of the particle trajectory from the localization of a substorm disturbance. The maximal effect for the considered substorm was found at Inuvik and McMurdo stations. Changes in the reception cone, caused by the substorm at these stations, were comparable or even larger than changes caused by the storm. Based on the calculations, the conclusion has been drawn that a disturbance (substorm) localized in space results in the appearance of relatively local zones on the Earth’s surface where characteristics of the asymptotic arrival of relativistic particles are changed.

  4. A current disruption mechanism in the neutral sheet - A possible trigger for substorm expansions

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.

    1990-01-01

    A linear analysis is performed to investigate the kinetic cross-field streaming instability in the earth's magnetotail neutral sheet region. Numerical solution of the dispersion equation shows that the instability can occur under conditions expected for the neutral sheet just prior to the onset of substorm expansion. The excited waves are obliquely propagating whistlers with a mixed polarization in the lower hybrid frequency range. The ensuing turbulence of this instability can lead to a local reduction of the cross-tail current causing it to continue through the ionosphere to form a substorm current wedge. A substorm expansion onset scenario is proposed based on this instability in which the relative drift between ions and electrons is primarily due to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is within the range of electric field values detected in the neutral sheet region during substorm intervals. The skew in local time of substorm onset location and the three conditions under which substorm onset is observed can be understood on the basis of the proposed scenario.

  5. Multi-scale modulations of SYM and ASY-H disturbances during substorm

    NASA Astrophysics Data System (ADS)

    Singh, Anand Kumar; Sinha, Ashwini Kumar; Pathan, B. M.

    Low latitude geomagnetic field disturbances at different local times are investigated during substorm. The magnetic field disturbances during substorm consist of fluctuations of various temporal scales as indicated by power spectra. The field disturbances of different frequencies (called as modes) during substorm may have different origin. It is observed that waveforms of various modes are usually local time dependent. SYM and ASY-H indices for modes of different temporal scales have been derived in a way similar to the derivation of standard SYM and ASY indices. SYM-H index corresponding to a particular mode, in general, has amplitude smaller than those at individual stations, whereas the ASY-H index gets enhanced during the substorm. This suggests that modes of different frequencies contribute significantly to the standard ASY-H. It is further observed that all the modes during substorm propagate azimuthally westward. The derived ASY-H for all the modes oscillates at a frequency twice of those at individual stations, whereas none of the stations exhibits the second harmonic. This could be associated with the longitudinal propagation characteristics of the magnetic disturbances during the substorm and is reflected in all the embedded modes.

  6. Condensed phase conversion and growth of nanorods instead of from vapor

    DOEpatents

    Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong

    2005-08-02

    Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed chase matrix material instead of from vacor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.

  7. Fundamental Aspects of External Triggers and Non-Triggers of Substorm Particle Injections, and Implications on Sawtooth Events and Repetitive Substorms

    NASA Astrophysics Data System (ADS)

    Lee, D.; Lyons, L.; Reeves, G.

    2005-12-01

    It is important to understand what specific types of solar wind disturbances lead to a substorm and what other specific types do not. The types of solar wind disturbances include a variation in either IMF or dynamic pressure or a combination of simultaneous variations in both. We used observations of geosynchronous particle fluxes at energies of tens to hundreds of keV and found the following features. (1) A northward turning of the IMF is found to trigger the typical substorm injection as well known already. The injection front is wider when it is triggered by a northward turning under a strongly southward IMF condition. (2) The effect by the northward turning can however be cancelled out by a simultaneous increase of the IMF By magnitude and/or a simultaneous decrease of the dynamic pressure, leading to no substorm. (3) Generally a pressure increase leads to a compression effect which appears as flux increase or decrease or even no change, depending on the radial profile of the particle distribution at constant adiabatic invariants. This compression effect can be different between different MLTs and different particle species. (4) However, a pressure increase under strongly southward IMF conditions leads to not only the typical compression effect but also a nightside substorm injection, i.e., a two-mode response. (5) This pressure-induced substorm injection can however be cancelled out by a simultaneous (further) decrease of the already-southward IMF and/or by a simultaneous increase of the IMF By magnitude. (6) In addition, the effects by a simultaneous increase of both IMF Bz and dynamic pressure add up to lead to a substorm injection accompanied by the typical compression effect, while no substorm injection is expected by a pressure decrease or a decrease of the IMF Bz or a simultaneous decrease of both. We suggest that a substorm injection is triggered only by a variation or a combination of variations that results in a convection reduction within the inner

  8. A phase-field model coupled with lattice kinetics solver for modeling crystal growth in furnaces

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie; Tartakovsky, Alexandre M.; Henager, Charles H.

    2014-02-02

    In this study, we present a new numerical model for crystal growth in a vertical solidification system. This model takes into account the buoyancy induced convective flow and its effect on the crystal growth process. The evolution of the crystal growth interface is simulated using the phase-field method. Two novel phase-field models are developed to model the crystal growth interface in vertical gradient furnaces with two temperature profile setups: 1) fixed wall temperature profile setup and 2) time-dependent temperature profile setup. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. This model is used to investigate the effect of furnace operational conditions on crystal growth interface profiles and growth velocities. For a simple case of macroscopic radial growth, the phase-field model is validated against an analytical solution. Crystal growth in vertical gradient furnaces with two temperature profile setups have been also investigated using the developed model. The numerical simulations reveal that for a certain set of temperature boundary conditions, the heat transport in the melt near the phase interface is diffusion dominant and advection is suppressed.

  9. Ultrastructure of Pseudomonas saccharophila at early and late log phase of growth.

    NASA Technical Reports Server (NTRS)

    Young, H. L.; Chao, F.-C.; Turnbill, C.; Philpott, D. E.

    1972-01-01

    Description of the fine structure of Pseudomonas saccarophila at the early log phase and the late log phase of growth, such as shown by electron microscopy with the aid of various techniques of preparation. The observations reported suggested that, under the experimental conditions applied, P. saccharophila multiplies by the method of constrictive division.

  10. Effect of lag time distribution on the lag phase of bacterial growth - a Monte Carlo analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to use Monte Carlo simulation to evaluate the effect of lag time distribution of individual bacterial cells incubated under isothermal conditions on the development of lag phase. The growth of bacterial cells of the same initial concentration and mean lag phase durati...

  11. Tyrosine requirement during the rapid catch-up growth phase of recovery from severe childhood undernutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The requirement for aromatic amino acids, during the rapid catch-up in weight phase of recovery from severe childhood under nutrition (SCU) is not clearly established. As a first step, the present study aimed to estimate the tyrosine requirement of children with SCU during the catch-up growth phase ...

  12. The development of a growth regime map for a novel reverse-phase wet granulation process.

    PubMed

    Wade, Jonathan B; Martin, Gary P; Long, David F

    2016-10-15

    The feasibility of a novel reverse-phase wet granulation process has been established and potential advantages identified. Granule growth in the reverse-phase process proceeds via a steady state growth mechanism controlled by capillary forces, whereas granule growth in the conventional process proceeds via an induction growth regime controlled by viscous forces. The resultant reverse-phase granules generally have greater mass mean diameter and lower intragranular porosity when compared to conventional granules prepared under the same liquid saturation and impeller speed conditions indicating the two processes may be operating under different growth regimes. Given the observed differences in growth mechanism and consolidation behaviour of the reverse-phase and conventional granules the applicability of the current conventional granulation regime map is unclear. The aim of the present study was therefore to construct and evaluate a growth regime map, which depicts the regime as a function of liquid saturation and Stokes deformation number, for the reverse-phase granulation process. Stokes deformation number was shown to be a good predictor of both granule mass mean diameter and intragranular porosity over a wide range of process conditions. The data presented support the hypothesis that reverse-phase granules have a greater amount of surface liquid present which can dissipate collision energy and resist granule rebound resulting in the greater granule growth observed. As a result the reverse-phase granulation process results in a greater degree of granule consolidation than that produced using the conventional granulation process. Stokes deformation number was capable of differentiating these differences in the granulation process.

  13. Selective growth of single phase VO{sub 2}(A, B, and M) polymorph thin films

    SciTech Connect

    Srivastava, Amar; Saha, Surajit; Rotella, Helene; Pal, Banabir; Kalon, Gopinadhan; Mathew, Sinu; Motapothula, Mallikarjuna; Dykas, Michal; Yang, Ping; Okunishi, Eiji; Sarma, D. D.; Venkatesan, T.

    2015-02-01

    We demonstrate the growth of high quality single phase films of VO{sub 2}(A, B, and M) on SrTiO{sub 3} substrate by controlling the vanadium arrival rate (laser frequency) and oxidation of the V atoms. A phase diagram has been developed (oxygen pressure versus laser frequency) for various phases of VO{sub 2} and their electronic properties are investigated. VO{sub 2}(A) phase is insulating VO{sub 2}(B) phase is semi-metallic, and VO{sub 2}(M) phase exhibits a metal-insulator transition, corroborated by photo-electron spectroscopic studies. The ability to control the growth of various polymorphs opens up the possibility for novel (hetero)structures promising new device functionalities.

  14. Substorms observations during two geomagnetically active periods in March 2012 and March 2015

    NASA Astrophysics Data System (ADS)

    Guineva, V.; Despirak, I.; Kozelov, B.

    2016-05-01

    In this work two events of strong geomagnetic activity were examined: the period 7-17 March 2012, which is one of the most disturbed periods during the ascending phase of Solar Cycle 24, and the severe geomagnetic storm on 17-20 March 2015. During the first period four consecutive magnetic storms occurred on 7, 9, 12, and 15 March. These storms were caused by Sheath, MC and HSS, and the detailed scenarios for the storms were different. The second event is a storm of fourth level with Kp = 8, the strongest one during the last four years, the so-called "St. Patrick's Day 2015 Event". A geomagnetic storm of such intensity was observed in September 2011. Our analysis was based on the 10-s sampled IMAGE magnetometers data, the 1-min sampled OMNI solar wind and interplanetary magnetic field (IMF) data and observations of the Multiscale Aurora Imaging Network (MAIN) in Apatity. The particularities in the behaviours of substorms connected with different storms during these two interesting strongly disturbed periods are discussed.

  15. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, jennifer; Blizzard, Mike; Nicholson, Ann; Robertson, Mika

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC). The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  16. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, Jennifer; Blizzard, Mike; Robertson, Mike

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC)2. The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  17. Multi-point Observations and Modeling of Particle Injections During Substorms

    NASA Astrophysics Data System (ADS)

    Henderson, M. G.; Woodroffe, J. R.; Jordanova, V.; Harris, C.

    2015-12-01

    Dispersionless and dispersed particle injections associated with substorms have been studied for many years based on observations acquired primarily at geosynchronous orbit. A general picture that has emerged is that particles are energized and rapidly transported/organized behind an "injection boundary" that penetrates closer to Earth in some magnetic local time sector (e.g. the so-called double-spiral injection boundary model). While this picture provides a very good description of injections at geosynchronous orbit, with the launch of the Van Allen Probes mission, we are now able to explore the evolution of injection signatures well inside of geosynchronous orbit at multiple locations as well. We find that the injection boundary model also appears to reproduce a number of complicated types of dispersion patterns observed in the Van Allen Probes particle data. The dispersion patterns are found to depend dramatically on orbital configuration and timing of onset relative to the phasing of the spacecraft in their orbits. In addition to observational results, we present results of simulated dispersion patterns obtained from the injection boundary model using guiding center particle tracing in two different field configurations: 1) a simplistic dipole magnetic field with Volland-Stern electric field, and 2) RAM/SCB running in the Space Weather Modeling Framework.

  18. Chirality-Dependent Vapor-Phase Epitaxial Growth and Termination of Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Bilu; Liu, Jia; Zhou, Chongwu; USC nanolab Team

    2014-03-01

    Chirality-pure single-wall carbon nanotubes are highly desired for both fundamental study and many of their technological applications. Recently, we have shown that chirality-pure short nanotubes can be used as seeds for vapor-phase epitaxial cloning growth, opening up a new route toward chirality-controlled carbon nanotube synthesis. Nevertheless, the yield of vapor-phase epitaxial growth is rather limited at the present stage, due to the lack of mechanistic understanding of the process. Here we report chirality-dependent growth kinetics and termination mechanism for the vapor-phase epitaxial growth of seven single- chirality nanotubes of (9, 1), (6, 5), (8, 3), (7, 6), (10, 2), (6, 6), and (7, 7), covering near zigzag, medium chiral angle, and near armchair semiconductors, as well as armchair metallic nanotubes. Our results reveal that the growth rates of nanotubes increase with their chiral angles while the active lifetimes of the growth hold opposite trend. Consequently, the chirality distribution of a nanotube ensemble is jointly determined by both growth rates and lifetimes. These results correlate nanotube structures and properties with their growth behaviors and deepen our understanding of chirality-controlled growth of nanotubes.

  19. Ribosomal crystallography: from crystal growth to initial phasing

    NASA Astrophysics Data System (ADS)

    Thygesen, J.; Krumbholz, S.; Levin, I.; Zaytzev-Bashan, A.; Harms, J.; Bartels, H.; Schlünzen, F.; Hansen, H. A. S.; Bennett, W. S.; Volkmann, N.; Agmon, I.; Eisenstein, M.; Dribin, A.; Maltz, E.; Sagi, I.; Morlang, S.; Fua, M.; Franceschi, F.; Weinstein, S.; Böddeker, N.; Sharon, R.; Anagnostopoulos, K.; Peretz, M.; Geva, M.; Berkovitch-Yellin, Z.; Yonath, A.

    1996-10-01

    Preliminary phases were determined by the application of the isomorphous replacement method at low and intermediate resolution for structure factor amplitudes collected from crystals of large and small ribosomal subunits from halophilic and thermophilic bacteria. Derivatization was performed with dense heavy atom clusters, either by soaking or by specific covalent binding prior to the crystallization. The resulting initial electron density maps contain features comparable in size to those expected for the corresponding particles. The packing arrangements of these maps have been compared with motifs observed by electron microscopy in positively stained thin sections of embedded three-dimensional crystals, as well as with phase sets obtained by ab-initio computations. Aimed at higher resolution phasing, procedures are being developed for multi-site binding of relatively small dense metal clusters at selected locations. Potential sites are being inserted either by mutagenesis or by chemical modifications to facilitate cluster binding to the large halophilic and the small thermophilic ribosomal subunits which yield crystals diffracting to the highest resolution obtained so far for ribosomes, 2.9 and 7.3 Å, respectively. For this purpose the surfaces of these ribosomal particles have been characterized and conditions for quantitative reversible detachment of selected ribosomal proteins have been found. The corresponding genes are being cloned, sequenced, mutated to introduce the reactive side-groups (mainly cysteines) and overexpressed. To assist the interpretation of the anticipated electron density maps, sub-ribosomal stable complexes were isolated from H50S. One of these complexes is composed of two proteins and the other is made of a stretch of the rRNA and a protein. For exploiting the exposed parts of the surface of these complexes for heavy atom binding and for attempting the determination of their three-dimensional structure, their components are being produced

  20. Event study combining magnetospheric and ionospheric perspectives of the substorm current wedge modeling

    NASA Astrophysics Data System (ADS)

    Sergeev, V. A.; Nikolaev, A. V.; Kubyshkina, M. V.; Tsyganenko, N. A.; Singer, H. J.; Rodriguez, J. V.; Angelopoulos, V.; Nakamura, R.; Milan, S. E.; Coxon, J. C.; Anderson, B. J.; Korth, H.

    2014-12-01

    Unprecedented spacecraft and instrumental coverage and the isolated nature and distinct step-like development of a substorm on 17 March 2010 has allowed validation of the two-loop substorm current wedge model (SCW2L). We find a close spatiotemporal relationship of the SCW with many other essential signatures of substorm activity in the magnetotail and demonstrate its azimuthally localized structure and stepwise expansion in the magnetotail. We confirm that ground SCW diagnostics makes it possible to reconstruct and organize the azimuthal spatiotemporal substorm development pattern with accuracy better than 1 h magnetic local time (MLT) in the case of medium-scale substorm. The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE)-based study of global field-aligned current distribution indicates that (a) the SCW-related field-aligned current system consists of simultaneously activated R1- and R2-type currents, (b) their net currents have a R1-sense, and (c) locations of net current peaks are consistent with the SCW edge locations inferred from midlatitude variations. Thanks to good azimuthal coverage of four GOES and three Time History of Events and Macroscale Interactions during Substorms spacecraft, we evaluated the intensities of the SCW R1- and R2-like current loops (using the SCW2L model) obtained from combined magnetospheric and ground midlatitude magnetic observations and found the net currents consistent (within a factor of 2) with the AMPERE-based estimate. We also ran an adaptive magnetospheric model and show that SCW2L model outperforms it in predicting the magnetic configuration changes during substorm dipolarizations.

  1. Role of Nucleation and Growth in Two-Phase Microstructure Formation

    SciTech Connect

    Shin, Jong Ho

    2007-01-01

    During the directional solidification of peritectic alloys, a rich variety of two-phase microstructures develop, and the selection process of a specific microstructure is complicated due to the following two considerations. (1) In contrast to many single phase and eutectic microstructures that grow under steady state conditions, two-phase microstructures in a peritectic system often evolve under non-steady-state conditions that can lead to oscillatory microstructures, and (2) the microstructure is often governed by both the nucleation and the competitive growth of the two phases in which repeated nucleation can occur due to the change in the local conditions during growth. In this research, experimental studies in the Sn-Cd system were designed to isolate the effects of nucleation and competitive growth on the dynamics of complex microstructure formation. Experiments were carried out in capillary samples to obtain diffusive growth conditions so that the results can be analyzed quantitatively. At high thermal gradient and low velocity, oscillatory microstructures were observed in which repeated nucleation of the two phases was observed at the wall-solid-liquid junction. Quantitative measurements of nucleation undercooling were obtained for both the primary and the peritectic phase nucleation, and three different ampoule materials were used to examine the effect of different contact angles at the wall on nucleation undercooling. Nucleation undercooling for each phase was found to be very small, and the experimental undercooling values were orders of magnitude smaller than that predicted by the classical theory of nucleation. A new nucleation mechanism is proposed in which the clusters of atoms at the wall ahead of the interface can become a critical nucleus when the cluster encounters the triple junction. Once the nucleation of a new phase occurs, the microstructure is found to be controlled by the relative growth of the two phases that give rise to different

  2. The effect of growth phase on proton and metal adsorption by Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Daughney, Christopher J.; Fowle, David A.; Fortin, Danielle

    2001-04-01

    Several recent studies have applied surface complexation models to quantify metal adsorption by bacterial surfaces. Although these models can account for the effects of many abiotic variables (such as pH and ionic strength), to date, the effects of biotic variables (such as growth phase) have not been investigated. In this study, we quantify the effect of growth phase on surface site concentrations, deprotonation constants, and metal-binding constants by performing acid-base titrations and Cd and Fe(III) batch adsorption experiments using suspensions containing Bacillus subtilis cultured to exponential, stationary, and sporulated phase. For each type of surface site, concentrations and p Ka values describing deprotonation decrease as the cells move from exponential to stationary phase, but remain constant from stationary to sporulated phase. Due to the variations in site concentrations and deprotonation constants, Cd and Fe(III) binding constants are largest for stationary-phase cells and smallest for sporulated cells, even though cells in stationary phase adsorb roughly 5% to 10% less metal (per unit weight) than exponential-phase cells, and roughly 10% to 20% more metal than sporulated cells. These variations in surface complexation model parameters indicate that any attempt to predict proton or metal adsorption by bacteria must consider the growth phase of the population.

  3. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    PubMed

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test. PMID:26868257

  4. Walking the tightrope of bioavailability: growth dynamics of PAH degraders on vapour‐phase PAH

    PubMed Central

    Hanzel, Joanna; Thullner, Martin; Harms, Hauke; Wick, Lukas Y.

    2012-01-01

    Summary Microbial contaminant degradation may either result in the utilization of the compound for growth or act as a protective mechanism against its toxicity. Bioavailability of contaminants for nutrition and toxicity has opposite consequences which may have resulted in quite different bacterial adaptation mechanisms; these may particularly interfere when a growth substrate causes toxicity at high bioavailability. Recently, it has been demonstrated that a high bioavailability of vapour‐phase naphthalene (NAPH) leads to chemotactic movement of NAPH‐degrading Pseudomonas putida (NAH7) G7 away from the NAPH source. To investigate the balance of toxic defence and substrate utilization, we tested the influence of the cell density on surface‐associated growth of strain PpG7 at different positions in vapour‐phase NAPH gradients. Controlled microcosm experiments revealed that high cell densities increased growth rates close (< 2 cm) to the NAPH source, whereas competition for NAPH decreased the growth rates at larger distances despite the high gas phase diffusivity of NAPH. At larger distance, less microbial biomass was likewise sustained by the vapour‐phase NAPH. Such varying growth kinetics is explained by a combination of bioavailability restrictions and NAPH‐based inhibition. To account for this balance, a novel, integrated ‘Best Equation’ describing microbial growth influenced by substrate availability and inhibition is presented. PMID:21951380

  5. Growth potential of exponential- and stationary-phase Salmonella Typhimurium during sausage fermentation.

    PubMed

    Birk, T; Henriksen, S; Müller, K; Hansen, T B; Aabo, S

    2016-11-01

    Raw meat for sausage production can be contaminated with Salmonella. For technical reasons, meat is often frozen prior to mincing but it is unknown how growth of Salmonella in meat prior to freezing affects its growth potential during sausage fermentation. We investigated survival of exponential- and stationary-phase Salmonella Typhimurium (DT12 and DTU292) during freezing at -18°C and their subsequent growth potential during 72h sausage fermentation at 25°C. After 0, 7 and >35d of frozen storage, sausage batters were prepared with NaCl (3%) and NaNO2 (0, 100ppm) and fermented with and without starter culture. With no starter culture, both strains grew in both growth phases. In general, a functional starter culture abolished S. Typhimurium growth independent of growth phase and we concluded that ensuring correct fermentation is important for sausage safety. However, despite efficient fermentation, sporadic growth of exponential-phase cells of S. Typhimurium was observed drawing attention to the handling and storage of sausage meat.

  6. Epitaxial growth of germanium thin films on crystal silicon substrates by solid phase crystallization

    NASA Astrophysics Data System (ADS)

    Isomura, Masao; Kanai, Mikuri

    2015-04-01

    We have investigated the solid phase crystallization (SPC) of amorphous germanium (a-Ge) precursors on single crystalline silicon (c-Si) substrates as seed layers and successfully obtained the epitaxial growth of Ge. The n-type (100) Si substrate is most suitable for preferential growth following the substrate orientation, because the velocity of preferential growth is higher than those on the other substrates and preferential growth is completed before random nucleation. The impurity contamination in the a-Ge precursors probably enhances random nucleation. The epitaxial growth is disturbed by the impurity contamination at a relatively high SPC temperature in the intrinsic and p-type Si substrates with the (100) orientation and the n-type and intrinsic Si substrates with the (111) orientation, because the lower velocity of preferential growth allows random crystallization. Almost no epitaxial growth is observed on the p-type (111) Si substrates even when low-impurity a-Ge precursors are used.

  7. Growth resumption from stationary phase reveals memory in Escherichia coli cultures

    PubMed Central

    Jõers, Arvi; Tenson, Tanel

    2016-01-01

    Frequent changes in nutrient availability often result in repeated cycles of bacterial growth and dormancy. The timing of growth resumption can differ among isogenic cells and delayed growth resumption can lead to antibiotic tolerant persisters. Here we describe a correlation between the timing of entry into stationary phase and resuming growth in the next period of cell proliferation. E. coli cells can follow a last in first out rule: the last ones to shut down their metabolism in the beginning of stationary phase are the first to recover in response to nutrients. This memory effect can last for several days in stationary phase and is not influenced by environmental changes. We observe that the speed and heterogeneity of growth resumption depends on the carbon source. A good carbon source (glucose) can promote rapid growth resumption even at low concentrations, and is seen to act more like a signal than a growth substrate. Heterogeneous growth resumption can protect the population from adverse effect of stress, investigated here using heat-shock, because the stress-resilient dormant cells are always present. PMID:27048851

  8. Growth method for chalcongenide phase-change nanostructures

    NASA Technical Reports Server (NTRS)

    Yu, Bin (Inventor); Sun, Xuhui (Inventor); Meyyappan, Meyya (Inventor)

    2010-01-01

    A method for growth of an alloy for use in a nanostructure, to provide a resulting nanostructure compound including at least one of Ge.sub.xTe.sub.y, In.sub.xSb.sub.y, In.sub.xSe.sub.y, Sb.sub.xTe.sub.y, Ga.sub.xSb.sub.y, Ge.sub.xSb.sub.y,Te.sub.z, In.sub.xSb.sub.yTe.sub.z, Ga.sub.xSe.sub.yTe.sub.z, Sn.sub.xSb.sub.yTe.sub.z, In.sub.xSb.sub.yGe.sub.z, Ge.sub.wSn.sub.xSb.sub.yTe.sub.z, Ge.sub.wSb.sub.xSe.sub.yTe.sub.z, and Te.sub.wGe.sub.xSb.sub.yS.sub.z, where w, x, y and z are numbers consistent with oxidization states (2, 3, 4, 5, 6) of the corresponding elements. The melt temperatures for some of the resulting compounds are in a range 330-420.degree. C., or even lower with some compounds.

  9. Radiosensitivity of different tissues from carrot root at different phases of growth in culture

    SciTech Connect

    Degani, N.; Pickholtz, D.

    1980-09-01

    The present work compares the effect of ..gamma..-radiation dose and time in culture on the growth of cambium and phloem carrot (Daucus carota) root explants. It was found that the phloem is more radiosensitive than the cambium and that both tissues were more radiosensitive when irradiated on excision at the G/sub 1/ phase rather than at the end of the lag phase on the ninth day of growth in culture when cells were predominantly at the G/sub 2/ phase. The nuclear volumes of cells from both tissues were similar but were larger at the end of the more radioresistant lag phase than those of the G/sub 1/ phase on excision. However, nuclear volume could not account for the differences in radiosensitivity between either the tissues or irradiation times in culture.

  10. Phase field modelling of stressed grain growth: Analytical study and the effect of microstructural length scale

    SciTech Connect

    Jamshidian, M.; Rabczuk, T.

    2014-03-15

    We establish the correlation between the diffuse interface and sharp interface descriptions for stressed grain boundary migration by presenting analytical solutions for stressed migration of a circular grain boundary in a bicrystalline phase field domain. The validity and accuracy of the phase field model is investigated by comparing the phase field simulation results against analytical solutions. The phase field model can reproduce precise boundary kinetics and stress evolution provided that a thermodynamically consistent theory and proper expressions for model parameters in terms of physical material properties are employed. Quantitative phase field simulations are then employed to investigate the effect of microstructural length scale on microstructure and texture evolution by stressed grain growth in an elastically deformed polycrystalline aggregate. The simulation results reveal a transitional behaviour from normal to abnormal grain growth by increasing the microstructural length scale.

  11. Global Remote Sensing of Precipitating Electron Energies: A Comparison of Substorms and Pressure Pulse Related Intensifications

    NASA Technical Reports Server (NTRS)

    Chua, D.; Parks, G. K.; Brittnacher, M. J.; Germany, G. A.; Spann, J. F.

    2000-01-01

    The Polar Ultraviolet Imager (UVI) observes aurora responses to incident solar wind pressure pulses and interplanetary shocks such its those associated with coronal mass ejections. Previous observations have demonstrated that the arrival of it pressure pulse at the front of the magnetosphere results in highly disturbed geomagnetic conditions and a substantial increase in both dayside and nightside aurora precipitations. Our observations show it simultaneous brightening over bread areas of the dayside and nightside auroral in response to a pressure pulse, indicating that more magnetospheric regions participate as sources for auroral precipitation than during isolate substorm. We estimate the characteristic energies of incident auroral electrons using Polar UVI images and compare the precipitation energies during pressure pulse associated event to those during isolated substorms. We estimate the characteristic energies of incident auroral electrons using Polar UVI images and compare the precipitation energies during pressure pulse associated events to those during isolated auroral substorms. Electron precipitation during substorms has characteristic energies greater than 10 KeV and is structured both in local time and in magnetic latitude. For auroral intensifications following the arrival of'a pressure pulse or interplanetary shock. Electron precipitation is less spatially structured and has greater flux of lower characteristic energy electrons (Echar less than 7 KeV) than during isolated substorm onsets. These observations quantify the differences between global and local auroral precipitation processes and will provide a valuable experimental check for models of sudden storm commencements and magnetospheric response to perturbations in the solar wind.

  12. Energetic Electron Transport in the Inner Magnetosphere During Geomagnetic Storms and Substorms

    NASA Technical Reports Server (NTRS)

    McKenzie, D. L.; Anderson, P. C.

    2005-01-01

    We propose to examine the relationship of geomagnetic storms and substorms and the transport of energetic particles in the inner magnetosphere using measurements of the auroral X-ray emissions by PIXIE. PIXIE provides a global view of the auroral oval for the extended periods of time required to study stormtime phenomena. Its unique energy response and global view allow separation of stormtime particle transport driven by strong magnetospheric electric fields from substorm particle transport driven by magnetic-field dipolarization and subsequent particle injection. The relative importance of substorms in releasing stored magnetospheric energy during storms and injecting particles into the inner magnetosphere and the ring current is currently hotly debated. The distribution of particles in the inner magnetosphere is often inferred from measurements of the precipitating auroral particles. Thus, the global distributions of the characteristics of energetic precipitating particles during storms and substorms are extremely important inputs to any description or model of the geospace environment and the Sun-Earth connection. We propose to use PIXIE observations and modeling of the transport of energetic electrons to examine the relationship between storms and substorms.

  13. Ionospheric localisation and expansion of long-period Pi1 pulsations at substorm onset

    NASA Astrophysics Data System (ADS)

    Milling, David K.; Rae, I. Jonathan; Mann, Ian R.; Murphy, Kyle R.; Kale, Andy; Russell, Christopher T.; Angelopoulos, Vassilis; Mende, Stephen

    2008-07-01

    We examine the initial ionospheric localisation and expansion of Pi1 pulsations associated with a substorm onset observed on 1st November 2006 with the combined CARISMA and THEMIS GMAG network of ground-based magnetometers. We demonstrate how the first ionospheric pulsation disturbance lies in the long-period Pi1 band. The long-period Pi1 pulsations at substorm onset are initially localised in longitude, and expands away from an epicentre in the ionosphere, with ~16 s timing between stations. We further establish a link between the location of the downward field-aligned current (FAC) element which subsequently develops within the substorm current wedge (SCW), and the initial location of the onset of long-period Pi1 pulsations. The arrival of the initial long-period Pi1 wavepacket demonstrates the importance of global networks of ground-based magnetometers for probing substorm onset. The Pi1 expansion proceeds westward at a rate of approximately 1 MLT hour per ~20 seconds, representing a very rapid expansion of the Pi1 signal at the ground. The resolution of the Pi1 localisation and the rate of expansion suggest Pi1 waves can play an important role in studies of the causal sequence of energy release in substorms.

  14. Modeling Substorm Injections with a Simple Magnetotail model

    NASA Astrophysics Data System (ADS)

    Kabin, Konstantin; Spanswick, Emma; Donovan, Eric; Kalugin, German

    2016-07-01

    Magnetotail dipolarizations, often associated with substorms, produce significant energetic particle enhancements in the night-time magnetosphere. We developed a simple yet self-consistent model for the electric and magnetic fields during dipolarizations, which is based on our earlier work (Kabin et al., JGR 2010). This model is very flexible and is particularly well suited for describing transition from the dipole-like to tail-like magnetic fields. We perform test particle simulations in the electric and magnetic fields specified by the model and find substantial energization of both electron and protons associated with the motion of this transition region. This energy gain is sufficient to explain many features of Dispersionless Injections. The energization of the particles is caused by betatron acceleration due to both the local increases in the magnetotail field strength during a dipolarization and to the particles drift closer to the Earth. In some cases the energy of an electron was found to increase by a factor of 25 or more. Our results are particularly well suited for comparison with riometer observations which often show clear signatures of Dispersionless Injections.

  15. Magnetic cloud passage at Earth and associated substorm activity

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Freeman, M. P.; Burlaga, L. F.

    1992-01-01

    An approach to the study of the solar wind-magnetosphere interaction by signal type, that is, by examining the effect in the magnetosphere of well defined interplanetary structures, is presented. Focus is on the response of the magnetosphere to interplanetary magnetic clouds. Among their properties are: the slow and smooth variation of the magnetic field vector, with fluctuation level well below common interplanetary values; the similarly well behaved bulk flow; the wide range of field and flow parameters; and the longevity of passage (1 to 2 days). If the magnetic cloud is oriented such that a long period of uninterruptedly northward pointing field is followed by a long interval of continuously southward pointing field, then the transition of the magnetosphere from a quiescent state (the 'ground state') to a very active state can be studied, the latter being sustained by continued forcing from the magnetic cloud. A synopsis of the main findings of a recent study in such an interaction is given, concentrating on the substorm activity attending the second part of cloud passage.

  16. Dying Flow Bursts as Generators of the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Haerendel, G.

    2015-12-01

    Many theories or conjectures exist on the driver of the substorm current wedge, e.g. rerouting of the tail current, current disruption, flow braking, vortex formation, and current sheet collapse. Magnitude, spatial scale, and temporal development of the related magnetic perturbations suggest that the generator is related to the interaction of the flow bursts with the dipolar magnetosphere after onset of reconnection in the near-Earth tail. The question remains whether it is the flow energy that feeds the wedge current or the internal energy of the arriving plasma. In this presentation I argue for the latter. The current generation is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the preceding layer of high-beta plasma after flow braking. The generator current is the grad-B current at the outer boundary of the compressed high-beta plasma layers. It needs the sequential arrival of several flow bursts to account for duration and magnitude of the ionospheric closure current.

  17. Dying Flow Bursts as Generators of the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2016-07-01

    Many theories or conjectures exist on the driver of the substorm current wedge, e.g. rerouting of the tail current, current disruption, flow braking, vortex formation, and current sheet collapse. Magnitude, spatial scale, and temporal development of the related magnetic perturbations suggest that the generator is related to the interaction of the flow bursts with the dipolar magnetosphere after onset of reconnection in the near-Earth tail. The question remains whether it is the flow energy that feeds the wedge current or the internal energy of the arriving plasma. In this presentation I argue for the latter. The current generation is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the preceding layer of high-beta plasma after flow braking. The generator current is the grad-B current at the outer boundary of the compressed high-beta plasma layers. It needs the sequential arrival of several flow bursts to account for duration and magnitude of the ionospheric closure current.

  18. Reconnection in substorms and solar flares: analogies and differences

    SciTech Connect

    Birn, Joachim

    2008-01-01

    Magnetic reconnection is the crucial process in the release of magnetic energy associated with magnetospheric substorms and with solar flares. On the basis of three-dimensional resistive MHD simulations we investigate similarities and differences between the two scenarios. We address in particular mechanisms that lead to the onset of reconnection and on energy release, transport, and conversion mechanisms. Analogous processes might exist in the motion of field line footpoints on the sun and in magnetic flux addition to the magnetotail. In both cases such processes might lead to a loss of neighboring equilibrium, characterized by the formation of very thin embedded current sheet, which acts as trigger for reconnection. We find that Joule (or ohmic) dissipation plays only a minor role in the overall energy transfer associated with reconnection. The dominant transfer of released magnetic energy occurs to electromagnetic energy (Poynting) flux and to thermal energy transport as enthalpy flux. The former dominates in low-beta, specifically initially force-free current sheets expected for the solar corona, while the latter dominates in high-beta current sheets, such as the magnetotail. In both cases the outflow from the reconnection site becomes bursty, i.e. spatially and temporally localized, yet carrying most of the outflow energy. Hence an analogy might exist between bursty bulk flows (BBFs) in the magnetotail and pulses of Poynting flux in solar flares.

  19. Heterogeneous nucleation and growth dynamics in the light-induced phase transition in vanadium dioxide

    DOE PAGES

    Brady, Nathaniel F.; Appavoo, Kannatassen; Seo, Minah; Nag, Joyeeta; Prasankumar, Rohit P.; Haglund, Richard F.; Hilton, David J.

    2016-03-02

    Here we report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Lastly, above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of 40.5 ± 2 ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state.

  20. Heterogeneous nucleation and growth dynamics in the light-induced phase transition in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Brady, Nathaniel F.; Appavoo, Kannatassen; Seo, Minah; Nag, Joyeeta; Prasankumar, Rohit P.; Haglund, Richard F., Jr.; Hilton, David J.

    2016-03-01

    We report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of 40.5+/- 2 ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state.

  1. GEOTAIL and POLAR Observations of Auroral Kilometric Radiation and Terrestrial Low Frequency Bursts and their Relationship to Energetic Particles, Auroras, and Other Substorm Phenomena

    NASA Technical Reports Server (NTRS)

    Anderson, R . R.; Gurnett, D. A.; Frank, L. A.; Thomsen, Michelle F.; Parks, G. K.; Brittnacher, M. J.; Spann, James F., Jr.; Imhoff, W. L.; Mobilia, J. H.

    1999-01-01

    Terrestrial low frequency (LF) bursts are plasma wave phenomena that appear to be a part of the low frequency end of the auroral kilometric radiation (AKR) spectrum and are observed during strong substorms, GEOTAIL and POLAR plasma wave observations from within the magnetosphere show that the AKR increases in intensity and its lower frequency limits decrease when LF bursts are observed. The first is expected as it is shows substorm onset and the latter indicates that the AKR source region is expanding to higher altitudes. Images from the POLAR VIS Earth Camera operating in the far-UV range and the POLAR UVI experiment usually feature an auroral brightening and an expansion of the aurora to higher latitudes at the time of the LF bursts. Enhanced fluxes of X-rays from precipitating electrons have also been observed by POLAR PIXIE. High resolution ground Abstract: magnetometer data from the CANOPUS and IMAGE networks show that the LF bursts occur when the expansive phase onset signatures are most intense. The ground magnetometer data and the CANOPUS meridian scanning photometer data sometimes show that during the LF burst events the expansive phase onset starts at unusually low latitudes and moves poleward. Large injections of energetic protons and electrons have also been detected by the GOES and LANL geosynchronous satellites during LF burst events. While most of the auroral brightenings and energetic particle injections associated with the LF bursts occur near local midnight, several have been observed as early as mid-afternoon. From these various measurements, we are achieving a better understanding of the plasma and particle motions during substorms that are associated with the generation and propagation of terrestrial LF bursts

  2. Bacterial Growth Phase Influences Methylmercury Production by the Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132

    SciTech Connect

    Biswas, Abir; Brooks, Scott C; Miller, Carrie L; Mosher, Jennifer J; Yin, Xiangping Lisa; Drake, Meghan M

    2011-01-01

    The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate-fumarate media. This NOM did not affect MMHg production even under very low Hg:SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg-NOM to growing cultures 24h before sampling (late addition) resulted in {approx}2x greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid- and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to {approx}3x more MMHg, indicating the potential importance of growth phase in studies of MMHg production.

  3. Bacterial growth phase influences methylmercury production by the sulfate-reducing bacterium Desulfovibrio desulfuricans ND132.

    PubMed

    Biswas, Abir; Brooks, Scott C; Miller, Carrie L; Mosher, Jennifer J; Yin, Xiangping L; Drake, Meghan M

    2011-09-01

    The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate-fumarate media. This NOM did not affect MMHg production even under very low Hg:SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg-NOM to growing cultures 24 h before sampling (late addition) resulted in ~2× greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid- and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to ~3× more MMHg, indicating the potential importance of growth phase in studies of MMHg production.

  4. Bacterial Growth Phase Influences Methylmercury Production by the Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132

    SciTech Connect

    Biswas, Abir; Brooks, Scott C; Miller, Carrie L; Mosher, Jennifer J; Yin, Xiangping Lisa; Drake, Meghan M

    2011-01-01

    The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate fumarate media. This NOM did not affect MMHg production even under very low Hg: SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg NOM to growing cultures 24 h before sampling (late addition) resulted in ~2 greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid-and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to ~3 more MMHg, indicating the potential importance of growth phase in studies of MMHg production.

  5. Coupled peritectic growth of the {alpha}- and {gamma}-phases in binary titanium aluminides

    SciTech Connect

    Meissen, F.; Busse, P.; Laakmann, J.

    1996-12-31

    Coupled growth during three phase equilibrium solidification is well known from directionally solidified eutectic systems, and was recently generated in monotectic systems. Several theories predict a stationary peritectic reaction and coupled growth of the properitectic and the peritectic phases therefore should be possible. In spite of these theories coupled growth has not been observed up to now. The TiAl system was selected for further investigation on this topic because of its technical relevance and the fact that it meets the condition mentioned for coupled growth. In a Bridgman laboratory furnace, TiAl with 53.4 at.% Al was directionally solidified with solidification rates v between 0.025 mm/min and 0.1 mm/min and a temperature gradient up to 20 K/mm. The resulting microstructures, analyzed using optical and scanning microscopy with EDX and WDX, consist of two phases parallel to the growth direction. At v = 0.05 to 0.1 mm/min, the alloy solidifies as properitectical {alpha}, which subsequently eutectoidally transforms to a substructure of {alpha}{sub 2}-Ti{sub 3}Al and {gamma}-TiAl, and peritectic {gamma}. The lamellar {alpha}{sub 2}/{gamma}-substructure is oriented parallel to the growth direction. The experimental results were compared with the existing theoretical models of a stationary peritectic reaction and the possibility of metastable eutectic growth was discussed.

  6. A strategy for reducing stagnation phase hydrodynamic instability growth in inertial confinement fusion implosions

    SciTech Connect

    Clark, D. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-15

    Encouraging progress is being made in demonstrating control of ablation front hydrodynamic instability growth in inertial confinement fusion implosion experiments on the National Ignition Facility [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)]. Even once ablation front stabilities are controlled, however, instability during the stagnation phase of the implosion can still quench ignition. A scheme is proposed to reduce the growth of stagnation phase instabilities through the reverse of the “adiabat shaping” mechanism proposed to control ablation front growth. Two-dimensional radiation hydrodynamics simulations confirm that improved stagnation phase stability should be possible without compromising fuel compression.

  7. Recent THEMIS and Coordinated GBO Measurements of Substorm Expansion Onset: Do We Finally Have an Answer?

    NASA Technical Reports Server (NTRS)

    Kepko, L.

    2011-01-01

    For nearly 30 years an often-times heated debate has engaged the substorm community: Do substorms begin with the formation of a new reconnection site in the midtail plasma sheet (the Near-Earth Neutral Line model) or do they begin near the transition region between stretched tail and dipolar field lines (the Current Disruption model). The THEMIS mission, with a coordinated suite of five in-situ spacecraft and ground observatories, has greatly extended our understanding of how substorms initiate and evolve. But have the new data resolved the fundamental question? In this talk I review the last few year's of sub storm research, with an emphasis of how the THEMIS data have revolutionized our understanding.

  8. Energy supply processes for magnetospheric substorms and solar flares - Tippy bucket model or pitcher model?

    NASA Astrophysics Data System (ADS)

    Akasofu, S.-I.

    1985-01-01

    In the past, both magnetospheric substorms and solar flares have almost exclusively been discussed in terms of explosive magnetic reconnection. Such a model may conceptually be illustrated by the so-called 'tippy-bucket model', which causes sudden unloading processes, namely a sudden (catastrophic, stochastic, and unpredictable) conversion of stored magnetic energy. However, recent observations indicate that magnetospheric substorms can be understood as a result of a directly driven process which can conceptually be illustrated by the 'pitcher model' in which the output rate varies in harmony with the input rate. It is also possible that solar flare phenomena are directly driven by a photospheric dynamo. Thus, explosive magnetic reconnection may simply be an unworkable hypothesis and may not be a puzzle to be solved as the primary energy supply process for magnetospheric substorms and solar flares.

  9. Grain growth kinetics in liquid-phase-sintered zinc oxide-barium oxide ceramics

    NASA Technical Reports Server (NTRS)

    Yang, Sung-Chul; German, Randall M.

    1991-01-01

    Grain growth of ZnO in the presence of a liquid phase of the ZnO-BaO system has been studied for temperatures from 1300 to 1400 C. The specimens were treated in boiling water and the grains were separated by dissolving the matrix phase in an ultrasonic bath. As a consequence 3D grain size measurements were possible. Microstructural examination shows some grain coalescence with a wide range of neck size ratios and corresponding dihedral angles, however, most grains are isolated. Lognormal grain size distributions show similar shapes, indicating that the growth mechanism is invariant over this time and temperature. All regressions between G exp n and time for n = 2 and 3 proved statistically significant. The rate constants calculated with the growth exponent set to n = 3 are on the same order of magnitude as in metallic systems. The apparent activation energy for growth is estimated between 355 and 458 kJ/mol.

  10. Phase selective growth and characterization of vanadium dioxide films on silicon substrates

    SciTech Connect

    Watanabe, Tomo; Okimura, Kunio; Hajiri, Tetsuya; Kimura, Shin-ichi; Sakai, Joe

    2013-04-28

    We report on selective growth of VO{sub 2} films with M1, M2, and intermediate T phases on silicon (Si) substrates by using inductively coupled plasma (ICP)-assisted sputtering (ICPS) under particular conditions. The film composed of M2 phase was proved to be under strong in-plane compressive stress, which is consistent with stress-induced M2 phase. Crystalline structural phase transition (SPT) properties of these films were demonstrated together with infrared light transmittance as a measure of insulator-metal transition (IMT) against temperature. Characteristic correlations between SPT and IMT for films with M2 and intermediate-T phases were reported. Ultraviolet photoelectron spectroscopy measurements probed an energy gap of the film in the M2 phase at around 0.4 eV from the Fermi level indicating the presence of a Mott gap.

  11. The growth of vapor bubble and relaxation between two-phase bubble flow

    NASA Astrophysics Data System (ADS)

    Mohammadein, S. A.; Subba Reddy Gorla, Rama

    2002-10-01

    This paper presents the behavior of the bubble growth and relaxation between vapor and superheated liquid. The growth and thermal relaxation time between the two-phases are obtained for different levels of superheating. The heat transfer problem is solved numerically by using the extended Scriven model. Results are compared with those of Scriven theory and MOBY DICK experiment with reasonably good agreement for lower values of superheating.

  12. Magnetosphere-Ionosphere Coupling Processes in the Ionospheric Trough Region During Substorms

    NASA Astrophysics Data System (ADS)

    Zou, S.; Moldwin, M.; Nicolls, M. J.; Ridley, A. J.; Coster, A. J.; Yizengaw, E.; Lyons, L. R.; Donovan, E.

    2013-12-01

    The ionospheric troughs are regions of remarkable electron density depression at the subauroral and auroral latitudes, and are categorized into the mid-latitude trough or high-latitude trough, depending on their relative location to the auroral oval. Substorms are one fundamental element of geomagnetic activity, during which structured field-aligned currents (FACs) and convection flows develop in the subauroral and auroral ionosphere. The auroral/trough region is expected to experience severe electron density variations during substorms. Accurate specification of the trough dynamics during substorms and understanding its relationship with the structured FACs and convection flows are of important practical purpose, including providing observational foundations for assessing the attendant impact on navigation and communication. In addition, troughs are important since they map to magnetospheric boundaries allowing the remote sensing of magnetosphere-ionosphere coupling processes. In this talk, we discuss the dynamics of the mid-latitude and high-latitude troughs during substorms based on multi-instrument observations. Using GPS total electron content (TEC) data, we characterize the location and width of the mid-latitude trough through the substorm lifecycle and compare them with existing trough empirical models. Using a combination of incoherent scattering radar (ISR), GPS TEC, auroral imager and a data assimilative model, we investigate the relationship between the high-latitude trough and FACs as well as convection flows. The high-latitude trough is found to be collocated with a counter-clockwise convection flow vortex east of the Harang reversal region, and downward FACs as part of the substorm current system are suggested to be responsible for the high-latitude trough formation. In addition, complex ionospheric electron temperature within the high-latitude trough is found, i.e., increase in the E region while decrease in the F region. We discuss possible

  13. Arginine methylation in yeast proteins during stationary-phase growth and heat shock.

    PubMed

    Lakowski, Ted M; Pak, Magnolia L; Szeitz, András; Thomas, Dylan; Vhuiyan, Mynol I; Clement, Bernd; Frankel, Adam

    2015-12-01

    Arginine methyltransferases (RMTs) catalyze the methylation of arginine residues on proteins. We examined the effects of log-phase growth, stationary-phase growth, and heat shock on the formation of methylarginines on yeast proteins to determine if the conditions favor a particular type of methylation. Utilizing linear ion trap mass spectrometry, we identify methylarginines in wild-type and RMT deletion yeast strains using secondary product ion scans (MS(3)), and quantify the methylarginines using multiple reaction monitoring (MRM). Employing MS(3) and isotopic incorporation, we demonstrate for the first time that Nη1, Nη2-dimethylarginine (sDMA) is present on yeast proteins, and make a detailed structural determination of the fragment ions from the spectra. Nη-monomethylarginine (ηMMA), Nδ-monomethylarginine (δMMA), Nη1, Nη1-dimethylarginine (aDMA), and sDMA were detected in RMT deletion yeast using MS(3) and MRM with and without isotopic incorporation, suggesting that additional RMT enzymes remain to be discovered in yeast. The concentrations of ηMMA and δMMA decreased by half during heat shock and stationary phase compared to log-phase growth of wild-type yeast, whereas sDMA increased by as much as sevenfold and aDMA decreased by 11-fold. Therefore, upon entering stressful conditions like heat shock or stationary-phase growth, there is a net increase in sDMA and decreases in aDMA, ηMMA, and δMMA on yeast proteins.

  14. Controlled vapour-phase deposition synthesis and growth mechanism of Bi2Te3 nanostructures

    NASA Astrophysics Data System (ADS)

    Lei, W.; Madni, I.; Ren, Y. L.; Yuan, C. L.; Luo, G. Q.; Faraone, L.

    2016-08-01

    This work presents a study on the controlled growth and the growth mechanism of vapour-phase deposited two-dimensional Bi2Te3 nanostructures by investigating the influence of growth conditions on the morphology of Bi2Te3 nanostructures. The formation of a hexagonal plate geometry for Bi2Te3 nanostructures is a consequence of the large difference in growth rate between crystal facets along <0001> and <11 2 ¯ 0> directions. Under low Ar carrier gas flow rates (60-100 sccm), the growth of Bi2Te3 nanoplates occurs in the mass-transport limited regime, whereas under high carrier gas flow rates (130 sccm), the growth of Bi2Te3 nanoplates is in the surface-reaction limited regime. This leads to an increase in the lateral size of Bi2Te3 nanoplates with increasing the Ar carrier gas flow rate from 60 to 100 sccm, and a decrease in size for a flow rate of 130 sccm. In addition, the lateral size of Bi2Te3 nanoplates was found to increase with increasing growth time due to the kinetic characteristics of material growth. The proposed growth model provides an effective guide for achieving controlled growth of Bi2Te3 nanoplates, as well as other two dimensional nanomaterials.

  15. Nucleus and spiral growth mechanisms of nitride semiconductors in metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Akasaka, Tetsuya; Yamamoto, Hideki

    2014-10-01

    Nucleus and spiral growth mechanisms of GaN and InN are investigated using the selective-area metalorganic vapor phase epitaxy (SA-MOVPE) technique on GaN bulk substrates. Nucleus growth of GaN occurs within selective areas having no screw-type dislocations, while spiral growth occurs within selective areas having screw-type dislocations. These growth modes are simultaneously observed on a single substrate in a single growth run. The nucleus and spiral growths of GaN result in the formation of step-free surfaces and growth spirals, respectively, wherein the interstep distance of growth spirals enables us to estimate the degree of surface supersaturation (σ). The σ dependences of nucleus and spiral growth rates of GaN are experimentally investigated. We found that these dependences are well explained by the classical crystal growth theories advocated by Burton, Cabrera, and Frank. We also investigate nucleation of InN using step-free GaN surfaces as an ideal platform.

  16. Growth Conditions and Cell Cycle Phase Modulate Phase Transition Temperatures in RBL-2H3 Derived Plasma Membrane Vesicles.

    PubMed

    Gray, Erin M; Díaz-Vázquez, Gladys; Veatch, Sarah L

    2015-01-01

    Giant plasma membrane vesicle (GPMV) isolated from a flask of RBL-2H3 cells appear uniform at physiological temperatures and contain coexisting liquid-ordered and liquid-disordered phases at low temperatures. While a single GPMV transitions between these two states at a well-defined temperature, there is significant vesicle-to-vesicle heterogeneity in a single preparation of cells, and average transition temperatures can vary significantly between preparations. In this study, we explore how GPMV transition temperatures depend on growth conditions, and find that average transition temperatures are negatively correlated with average cell density over 15°C in transition temperature and nearly three orders of magnitude in average surface density. In addition, average transition temperatures are reduced by close to 10°C when GPMVs are isolated from cells starved of serum overnight, and elevated transition temperatures are restored when serum-starved cells are incubated in serum-containing media for 12 h. We also investigated variation in transition temperature of GPMVs isolated from cells synchronized at the G1/S border through a double Thymidine block and find that average transition temperatures are systematically higher in GPMVs produced from G1 or M phase cells than in GPMVs prepared from S or G1 phase cells. Reduced miscibility transition temperatures are also observed in GPMVs prepared from cells treated with TRAIL to induce apoptosis or sphingomyelinase, and in some cases a gel phase is observed at temperatures above the miscibility transition in these vesicles. We conclude that at least some variability in GPMV transition temperature arises from variation in the local density of cells and asynchrony of the cell cycle. It is hypothesized that GPMV transition temperatures are a proxy for the magnitude of lipid-mediated membrane heterogeneity in intact cell plasma membranes at growth temperatures. If so, these results suggest that cells tune their plasma membrane

  17. A Modeling substorm Dynamics of the Magnetosphere Using Self-Organized Criticality Approach

    NASA Astrophysics Data System (ADS)

    Bolzan, Mauricio; Rosa, Reinaldo

    2016-07-01

    Responses of Earth magnetic field during substorms exhibits a number of characteristics features such as the power-law spectra of fluctuations on different scales and signatures of low effective dimensions. Due the magnetosphere are constantly out-equilibrium their behavior is similar to real sandpiles during substorms, features of self-organized criticality (SOC) systems. Thus, in this work we presented a simple mathematical model to AE-index based on self-organizing sandpile mentioned by Uritsky and Pudovkin (1998), but we input the dissipation process inside the model. The statistical and multifractal tools to characterization of dynamical processes was used.

  18. Statistical visualization of the Earth's magnetotail based on Geotail data and the implied substorm model

    NASA Astrophysics Data System (ADS)

    Machida, S.; Miyashita, Y.; Ieda, A.; Nosé, M.; Nagata, D.; Liou, K.; Obara, T.; Nishida, A.; Saito, Y.; Mukai, T.

    2009-03-01

    We investigated the temporal and spatial development of the near-Earth magnetotail during substorms based on multi-dimensional superposed-epoch analysis of Geotail data. The start time of the auroral break-up (t=0) of each substorm was determined from auroral data obtained by the Polar and IMAGE spacecraft. The key parameters derived from the plasma, magnetic-field, and electric-field data from Geotail were sorted by their meridional X(GSM)-Z(proxy) coordinates. The results show that the Poynting flux toward the plasma-sheet center starts at least 10 min before the substorm onset, and is further enhanced at X~-12 RE (Earth radii) around 4 min before the onset. Simultaneously, large-amplitude fluctuations occurred, and earthward flows in the central plasma sheet between X~-11 RE and X~-19 RE and a duskward flow around X=-10 RE were enhanced. The total pressure starts to decrease around X=-16 RE about 4 min before the onset of the substorm. After the substorm onset, a notable dipolarization is observed and tailward flows commence, characterised by southward magnetic fields in the form of a plasmoid. We confirm various observable-parameter variations based on or predicted by the relevant substorm models; however, none of these can explain our results perfectly. Therefore, we propose a catapult (slingshot) current-sheet relaxation model, in which an earthward convective flow produced by catapult current-sheet relaxation and a converted duskward flow near the Earth are enhanced through flow braking around 4 min before the substorm onset. These flows induce a ballooning instability or other instabilities, causing the observed current disruption. The formation of the magnetic neutral line is a natural consequence of the present model, because the relaxation of a highly stretched catapult current-sheet produces a very thin current at its tailward edge being surrounded by intense earthward and tailward magnetic fields which were formerly the off-equatorial lobe magnetic

  19. Effect of growth phase on the fatty acid compositions of four species of marine diatoms

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Mai, Kangsen

    2005-04-01

    The fatty acid compositions of four species of marine diatoms ( Chaetoceros gracilis MACC/B13, Cylindrotheca fusiformis MACC/B211, Phaeodactylum tricornutum MACC/B221 and Nitzschia closterium MACC/B222), cultivated at 22°C±1°C with the salinity of 28 in f/2 medium and harvested in the exponential growth phase, the early stationary phase and the late stationary phase, were determined. The results showed that growth phase has significant effect on most fatty acid contents in the four species of marine diatoms. The proportions of 16:0 and 16:1n-7 fatty acids increased while those of 16:3n-4 and eicosapentaenoic acid (EPA) decreased with increasing culture age in all species studied. The subtotal of saturated fatty acids (SFA) increased with the increasing culture age in all species with the exception of B13. The subtotal of monounsaturated fatty acids (MUFA) increased while that of polyunsaturated fatty acids (PUFA) decreased with culture age in the four species of marine diatoms. MUFA reached their lowest value in the exponential growth phase, whereas PUFA reached their highest value in the same phase.

  20. Charged Particle Energization and Transport in the Magnetotail during Substorms

    NASA Astrophysics Data System (ADS)

    Pan, Qingjiang

    This dissertation addresses the problem of energization of particles (both electrons and ions) to tens and hundreds of keV and the associated transport process in the magnetotail during substorms. Particles energized in the magnetotail are further accelerated to even higher energies (hundreds of keV to MeV) in the radiation belts, causing space weather hazards to human activities in space and on ground. We develop an analytical model to quantitatively estimate flux changes caused by betatron and Fermi acceleration when particles are transported along narrow high-speed flow channels from the magnetotail to the inner magnetosphere. The model shows that energetic particle flux can be significantly enhanced by a modest compression of the magnetic field and/or shrinking of the distance between the magnetic mirror points. We use coordinated spacecraft measurements, global magnetohydrodynamic (MHD) simulations driven by measured upstream solar wind conditions, and large-scale kinetic (LSK) simulations to quantify electron local acceleration in the near-Earth reconnection region and nonlocal acceleration during plasma earthward transport. Compared to the analytical model, application of the LSK simulations is much less restrictive because trajectories of millions of test particles are calculated in the realistically determined global MHD fields and the results are statistical. The simulation results validated by the observations show that electrons following a power law distribution at high energies are generated earthward of the reconnection site, and that the majority of the energetic electrons observed in the inner magnetosphere are caused by adiabatic acceleration in association with magnetic dipolarizations and fast flows during earthward transport. We extend the global MHD+LSK simulations to examine ion energization and compare it with electron energization. The simulations demonstrate that ions in the magnetotail are first nonadiabatically accelerated in the weak

  1. Substorm simulation: Insight into the mechanisms of initial brightening

    NASA Astrophysics Data System (ADS)

    Ebihara, Y.; Tanaka, T.

    2015-09-01

    Initial brightening of the aurora is an optical manifestation of the beginning of a substorm expansion and is accompanied by large-amplitude upward field-aligned currents (FACs). Based on global magnetohydrodynamic simulation, we suggest the possible generation mechanism of the upward FAC that may manifest the initial brightening. (1) A formation of the near-Earth neutral line (NENL) releases the tension force that accelerates plasma earthward. (2) The earthward (perpendicular) flow is converted to a field-aligned flow when flow braking takes place. (3) A high-pressure region propagates earthward along a field line. (4) The off-equatorial high-pressure region pulls in and discharges ambient plasma, which generates a flow vorticity around it. (5) Region 1-sense FAC is generated in the upper part of the off-equatorial high-pressure region. (6) The upward FAC is connected with the ionosphere in the center of the Harang discontinuity, causing the initial brightening. Additional dynamo is generated in the near-Earth region, which transmits electromagnetic energy. Upward FAC that manifests the initial brightening seems to be necessarily originated in the near-Earth off-equatorial region where the magnitude of the perpendicular (diamagnetic) current is relatively small in comparison with that of the FAC. Near the equatorial plane, the perpendicular current is comparable to or larger than FAC so that a current line is diverted from a magnetic field line and that the FAC generated near the equatorial plane is not necessarily connected with the ionosphere. The proposed mechanism occurs regardless of the location of the NENL and may explain some of auroral forms.

  2. Nonguiding Center Motion and Substorm Effects in the Magnetotail

    NASA Technical Reports Server (NTRS)

    Kaufmann, Richard L.; Kontodinas, Ioannis D.; Ball, Bryan M.; Larson, Douglas J.

    1997-01-01

    Thick and thin models of the middle magnetotail were developed using a consistent orbit tracing technique. It was found that currents carried near the equator by groups of ions with anisotropic distribution functions are not well approximated by the guiding center expressions. The guiding center equations fail primarily because the calculated pressure tensor is not magnetic field aligned. The pressure tensor becomes field aligned as one moves away from the equator, but here there is a small region in which the guiding center equations remain inadequate because the two perpendicular components of the pressure tensor are unequal. The significance of nonguiding center motion to substorm processes then was examined. One mechanism that may disrupt a thin cross-tail current sheet involves field changes that cause ions to begin following chaotic orbits. The lowest-altitude chaotic region, characterized by an adiabaticity parameter kappa approx. equal to 0.8, is especially important. The average cross-tail particle drift is slow, and we were unable to generate a thin current sheet using such ions. Therefore, any process that tends to create a thin current sheet in a region with kappa approaching 0.8 may cause the cross-tail current to get so low that it becomes insufficient to support the lobes. A different limit may be important in resonant orbit regions of a thin current sheet because particles reach a maximum cross-tail drift velocity. If the number of ions per unit length decreases as the tail is stretched, this part of the plasma sheet also may become unable to carry the cross-tail current needed to support the lobes. Thin sheets are needed for both resonant and chaotic orbit mechanisms because the distribution function must be highly structured. A description of current continuity is included to show how field aligned currents can evolve during the transition from a two-dimensional (2-D) to a 3-D configuration.

  3. The Substorm Current Wedge: Further Insights from MHD Simulations

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, M.

    2015-01-01

    Using a recent magnetohydrodynamic simulation of magnetotail dynamics, we further investigate the buildup and evolution of the substorm current wedge (SCW), resulting from flow bursts generated by near-tail reconnection. Each flow burst generates an individual current wedge, which includes the reduction of cross-tail current and the diversion to region 1 (R1)-type field-aligned currents (earthward on the dawn and tailward on the duskside), connecting the tail with the ionosphere. Multiple flow bursts generate initially multiple SCW patterns, which at later times combine to a wider single SCW pattern. The standard SCWmodel is modified by the addition of several current loops, related to particular magnetic field changes: the increase of Bz in a local equatorial region (dipolarization), the decrease of |Bx| away from the equator (current disruption), and increases in |By| resulting from azimuthally deflected flows. The associated loop currents are found to be of similar magnitude, 0.1-0.3 MA. The combined effect requires the addition of region 2 (R2)-type currents closing in the near tail through dawnward currents but also connecting radially with the R1 currents. The current closure at the inner boundary, taken as a crude proxy of an idealized ionosphere, demonstrates westward currents as postulated in the original SCW picture as well as North-South currents connecting R1- and R2-type currents, which were larger than the westward currents by a factor of almost 2. However, this result should be applied with caution to the ionosphere because of our neglect of finite resistance and Hall effects.

  4. Surface and Thin Film Analysis during Metal Organic Vapour Phase Epitaxial Growth

    SciTech Connect

    Richter, Wolfgang

    2007-06-14

    In-situ analysis of epitaxial growth is the essential ingredient in order to understand the growth process, to optimize growth and last but not least to monitor or even control the epitaxial growth on a microscopic scale. In MBE (molecular beam epitaxy) in-situ analysis tools existed right from the beginning because this technique developed from Surface Science technology with all its electron based analysis tools (LEED, RHEED, PES etc). Vapour Phase Epitaxy, in contrast, remained for a long time in an empirical stage ('alchemy') because only post growth characterisations like photoluminescence, Hall effect and electrical conductivity were available. Within the last two decades, however, optical techniques were developed which provide similar capabilities as in MBE for Vapour Phase growth. I will discuss in this paper the potential of Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellipsometry (SE) for the growth of thin epitaxial semiconductor layers with zincblende (GaAs etc) and wurtzite structure (GaN etc). Other techniques and materials will be also mentioned.

  5. Surface and Thin Film Analysis during Metal Organic Vapour Phase Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Richter, Wolfgang

    2007-06-01

    In-situ analysis of epitaxial growth is the essential ingredient in order to understand the growth process, to optimize growth and last but not least to monitor or even control the epitaxial growth on a microscopic scale. In MBE (molecular beam epitaxy) in-situ analysis tools existed right from the beginning because this technique developed from Surface Science technology with all its electron based analysis tools (LEED, RHEED, PES etc). Vapour Phase Epitaxy, in contrast, remained for a long time in an empirical stage ("alchemy") because only post growth characterisations like photoluminescence, Hall effect and electrical conductivity were available. Within the last two decades, however, optical techniques were developed which provide similar capabilities as in MBE for Vapour Phase growth. I will discuss in this paper the potential of Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellipsometry (SE) for the growth of thin epitaxial semiconductor layers with zincblende (GaAs etc) and wurtzite structure (GaN etc). Other techniques and materials will be also mentioned.

  6. The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis

    PubMed Central

    Ciarletta, P.; Foret, L.; Ben Amar, M.

    2011-01-01

    Cutaneous melanoma is disproportionately lethal despite its relatively low incidence and its potential for cure in the early stages. The aim of this study is to foster understanding of the role of microstructure on the occurrence of morphological changes in diseased skin during melanoma evolution. The authors propose a biomechanical analysis of its radial growth phase, investigating the role of intercellular/stromal connections on the initial stages of epidermis invasion. The radial growth phase of a primary melanoma is modelled within the multi-phase theory of mixtures, reproducing the mechanical behaviour of the skin layers and of the epidermal–dermal junction. The theoretical analysis takes into account those cellular processes that have been experimentally observed to disrupt homeostasis in normal epidermis. Numerical simulations demonstrate that the loss of adhesiveness of the melanoma cells both to the basal laminae, caused by deregulation mechanisms of adherent junctions, and to adjacent keratynocytes, consequent to a downregulation of E-cadherin, are the fundamental biomechanical features for promoting tumour initiation. Finally, the authors provide the mathematical proof of a long wavelength instability of the tumour front during the early stages of melanoma invasion. These results open the perspective to correlate the early morphology of a growing melanoma with the biomechanical characteristics of its micro-environment. PMID:20656740

  7. Decrease in spermidine content during logarithmic phase of cell growth delays spore formation of Bacillus subtilis.

    PubMed

    Ishii, I; Takada, H; Terao, K; Kakegawa, T; Igarashi, K; Hirose, S

    1994-11-01

    Bacillus subtilis 168M contained a large amount of spermidine during the logarithmic phase of growth, but the amount decreased drastically during the stationary phase. The extracts, prepared from B. subtilis cells harvested in the logarithmic phase, contained activity of arginine decarboxylase (ADC) rather than the activity of ornithine decarboxylase. In the presence of alpha-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of ADC, the amount of spermidine in B. subtilis during the logarithmic phase decreased to about 25% of the control cells. Under these conditions, spore formation of B. subtilis 168M delayed greatly without significant inhibition of cell growth. The decrease in spermidine content in the logarithmic phase rather than in the stationary phase was involved in the delay of sporulation. Electron microscopy of cells at 24 hrs. of culture confirmed the delay of spore formation by the decrease of spermidine content. Furthermore, the delay of sporulation was negated by the addition of spermidine. These data suggest that a large amount of spermidine existing during the logarithmic phase plays an important role in the sporulation of B. subtilis.

  8. Phase diagram of growth mode for the SiGe/Si heterostructure system with misfit dislocations

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuo; Ujihara, Toru; Usami, Noritaka; Fujiwara, Kozo; Sazaki, Gen; Shishido, Toetsu

    2004-01-01

    The strain, surface and interface energies of the SiGe/Si (SiGe grown on Si) heterostructure system with and without misfit dislocations were calculated for the Frank-van der Merwe (FM), Stranski-Krastanov (SK) and Volmer-Weber (VW) growth modes essentially based on the three kinds of fundamental and simple structures. The free energies for each growth mode were derived from these energies, and it was determined as a function of the composition and layer thickness of SiGe on Si. By comparison of the free energies, the phase diagrams of the FM, SK and VW growth modes for the SiGe/Si system were determined. The (1 1 1) and (1 0 0) reconstructed surfaces were selected for this calculation. From the phase diagrams, it was found for the growth of SiGe on Si that the layer-by-layer growth such as the FM mode was easy to be obtained when the Ge composition is small, and the island growth on a wetting layer such as the SK mode was easy to be obtained when the Ge composition is large. The VW mode is energetically stable in the Ge-rich compositional range, but it is difficult for the VW mode to appear in the actual growth of SiGe on Si because the VW region is right above the SK region. The regions of the SK and VW modes for the (1 1 1) heterostructure are larger than those for the (1 0 0) one because the strain energy of the (1 1 1) face is larger than that of the (1 0 0) face. The regions of the SK and VW modes for the heterostructure with misfit dislocations are narrower than those for the one without misfit dislocations because the strain energy is much released by misfit dislocations. The phase diagrams roughly explain the behavior of the FM and SK growth modes of SiGe on Si.

  9. Growth Kinetics of Intracellular RNA/Protein Droplets: Signature of a Liquid-Liquid Phase Transition?

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Zhu, Lian; Haataja, Mikko; Brangwynne, Clifford P.

    2015-03-01

    Nonmembrane-bound organelles are functional, dynamic assemblies of RNA and/or protein that can self-assemble and disassemble within the cytoplasm or nucleoplasm. The possibility that underlying intracellular phase transitions may drive and mediate the morphological evolution of some membrane-less organelles has been supported by several recent studies. In this talk, results from a collaborative experimental-theoretical study of the growth and dissolution kinetics of nucleoli and extranucleolar droplets (ENDs) in C. elegans embryos will be presented. We have employed Flory-Huggins solution theory, reaction-diffusion kinetics, and quantitative statistical dynamic scaling analysis to characterize the specific growth mechanisms at work. Our findings indicate that both in vivo and in vitro droplet scaling and growth kinetics are consistent with those resulting from an equilibrium liquid-liquid phase transition mediated by passive nonequilibrium growth mechanisms - simultaneous Brownian coalescence and Ostwald ripening. This supports a view in which cells can employ phase transitions to drive structural organization, while utilizing active processes, such as local transcriptional activity, to fine tune the kinetics of these phase transitions in response to given conditions.

  10. Growth phase and ompR regulation of transcription of microcin B17 genes.

    PubMed

    Hernández-Chico, C; San Millán, J L; Kolter, R; Moreno, F

    1986-09-01

    The synthesis of the peptide antibiotic microcin B17 was shown to occur as the cells entered the stationary phase of growth. This type of growth phase regulation is commonly observed in the production of a number of different bacterial products such as toxins and antibiotics. Microcin B17 synthesis is also dependent on the product of the ompR gene. To determine the role of transcription in this double regulation of microcin B17 production, operon fusions with Mu d1 (Ap lac) were constructed. Insertions were obtained in all four plasmid genes involved in production of microcin B17 (mcbA-D) and in the immunity region. Three classes of fusions were obtained. Fusions into mcbA, mcbB, and mcbC (first class) exhibited an increase in their transcription as the cells approached the stationary phase. These increases as well as basal levels of transcription were dependent on OmpR. Expression of fusions in mcbD and in the immunity region (second class) was also dependent on OmpR, but their expression remained constant throughout growth. One fusion in mcbC (third class) was obtained which was transcribed in the opposite direction than the others. It showed no growth phase regulation and no OmpR dependence. The implications of these results in terms of the transcriptional organization of the mbc genes are discussed.

  11. Studies of proteinograms in dermatophytes by disc electrophoresis. 1. Protein bands in relation to growth phase

    NASA Technical Reports Server (NTRS)

    Danev, P.; Friedrich, E.; Balabanov, V.

    1983-01-01

    Homogenates were prepared from various growth phases of Microsporum gypseum grown on different amino acids as the nitrogen source. When analyzed on 7.5% polyacrylamide disc gels, the water-soluble proteins in these homogenates gave essentially identical banding patterns.

  12. Quantitative investigation of cellular growth in directional solidification by phase-field simulation.

    PubMed

    Wang, Zhijun; Wang, Jincheng; Li, Junjie; Yang, Gencang; Zhou, Yaohe

    2011-10-01

    Using a quantitative phase-field model, a systematic investigation of cellular growth in directional solidification is carried out with emphasis on the selection of cellular tip undercooling, tip radius, and cellular spacing. Previous analytical models of cellular growth are evaluated according to the phase-field simulation results. The results show that cellular tip undercooling and tip radius not only depend on the pulling velocity and thermal gradient, but also depend on the cellular interaction related to the cellular spacing. The cellular interaction results in a finite stable range of cellular spacing. The lower limit is determined by the submerging mechanism while the upper limit comes from the tip splitting instability corresponding to the absence of the cellular growth solution, both of which can be obtained from phase-field simulation. Further discussions on the phase-field results also present an analytical method to predict the lower limit. Phase-field simulations on cell elimination between cells with equal spacing validate the finite range of cellular spacing and give deep insight into the cellular doublon and oscillatory instability between cell elimination and tip splitting.

  13. The problem of the acceleration of electrons of the outer radiation belt and magnetospheric substorms

    NASA Astrophysics Data System (ADS)

    Antonova, E. E.; Stepanova, M. V.

    2015-09-01

    Predicting of the location of the maximum in high-energy electron fluxes filling a new radiation belt is an endeavor being carried out by physicists studying the magnetosphere. We analyzed the data from the Defense Meteorological Satellite Program (DMSP) satellites and ground-based magnetometers obtained during geomagnetic storm on 8-9 October 2012. The minimum value of the disturbance storm time (Dst) was -111 nT, and the maximum in high-energy electron fluxes that appeared during the recovery phase was observed at L = 4 Re. At the same time, we analyzed the motion of the auroral oval toward lower latitudes and related substorm activity using the data of the low-orbiting DMSP satellites and the IMAGE magnetic meridian network. It was found from the DMSP satellites' measurements that the maximum of the energy density of precipitating ions, the maximum of the plasma pressure, and the most equatorial part of the westward auroral electrojet are all located at the 60° geomagnetic latitude. This value corresponds to L = 4 Re, i.e., it coincides with the location of the maximum in high-energy electron fluxes. This L-value also agrees with the predictions of the Tverskaya relation between the minimum in Dst variation and the location of the maximum of the energetic electron fluxes, filling a new radiation belt. The obtained results show that the location of this maximum could be predicted solely from the data of the auroral particle precipitations and/or ground-based magnetic observations.

  14. Acceleration and deceleration phase nonlinear Rayleigh-Taylor growth at spherical interfaces

    SciTech Connect

    Clark, D S; Tabak, M

    2005-04-08

    The Layzer model for the nonlinear evolution of bubbles in the Rayleigh-Taylor instability has recently been generalized to the case of spherically imploding interfaces [D. S. Clark and M. Tabak, to appear, PRE (2005).]. The spherical case is more relevant to, e.g., inertial confinement fusion or various astrophysical phenomena when the convergence is strong or the perturbation wavelength is comparable to the interface curvature. Here, the model is further extended to the case of bubble growth during the deceleration (stagnation) phase of a spherical implosion and to the growth of spikes during both the acceleration and deceleration phases. Differences in the nonlinear growth rates for both bubbles and spikes are found when compared with planar results. The model predictions are verified by comparison with numerical hydrodynamics simulations.

  15. A new mechanistic growth model for simultaneous determination of lag phase duration and exponential growth rate and a new Belehdradek-type model for evaluating the effect of temperature on growth rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new mechanistic growth model was developed to describe microbial growth under isothermal conditions. The new mathematical model was derived from the basic observation of bacterial growth that may include lag, exponential, and stationary phases. With this model, the lag phase duration and exponen...

  16. Phase behavior and crystal nucleation and growth in a system of short semi-flexible chains

    NASA Astrophysics Data System (ADS)

    Vorselaars, Bart; Quigley, David

    2014-03-01

    A system of semi-flexible short chains is simulated to study its phase behavior and ability to crystallize, by using a combination of molecular dynamics and other techniques. For calculating the free energy of the liquid phase a new method is introduced. It is very simple to implement in practice and leads to accurate computation of the melting curve. Furthermore we determine the rate of nucleation and crystal growth in this system via a combination of path-sampling and brute-force simulation techniques. By comparing these quantities, we infer the initial microstructure of the solid phase. Due to the strong anisotropy in the crystal growth rate grains no thicker than a single chain are common, even at moderate supercoolings. This work is supported by the UK Engineering and Physical Sciences Research Council (EPSRC).

  17. Phase-field study of three-dimensional steady-state growth shapes in directional solidification.

    PubMed

    Gurevich, Sebastian; Karma, Alain; Plapp, Mathis; Trivedi, Rohit

    2010-01-01

    We use a quantitative phase-field approach to study directional solidification in various three-dimensional geometries for realistic parameters of a transparent binary alloy. The geometries are designed to study the steady-state growth of spatially extended hexagonal arrays, linear arrays in thin samples, and axisymmetric shapes constrained in a tube. As a basis to address issues of dynamical pattern selection, the phase-field simulations are specifically geared to identify ranges of primary spacings for the formation of the classically observed "fingers" (deep cells) with blunt tips and "needles" with parabolic tips. Three distinct growth regimes are identified that include a low-velocity regime with only fingers forming, a second intermediate-velocity regime characterized by coexistence of fingers and needles that exist on separate branches of steady-state growth solutions for small and large spacings, respectively, and a third high-velocity regime where those two branches merge into a single one. Along the latter, the growth shape changes continuously from fingerlike to needlelike with increasing spacing. These regimes are strongly influenced by crystalline anisotropy with the third regime extending to lower velocity for larger anisotropy. Remarkably, however, steady-state shapes and tip undercoolings are only weakly dependent on the growth geometry. Those results are used to test existing theories of directional finger growth as well as to interpret the hysteretic nature of the cell-to-dendrite transition.

  18. Theoretical and numerical study of lamellar eutectic three-phase growth in ternary alloys.

    PubMed

    Choudhury, Abhik; Plapp, Mathis; Nestler, Britta

    2011-05-01

    We investigate lamellar three-phase patterns that form during the directional solidification of ternary eutectic alloys in thin samples. A distinctive feature of this system is that many different geometric arrangements of the three phases are possible, contrary to the widely studied two-phase patterns in binary eutectics. Here, we first analyze the case of stable lamellar coupled growth of a symmetric model ternary eutectic alloy, using a Jackson-Hunt-type calculation in thin film geometry, for arbitrary configurations, and derive expressions for the front undercooling as a function of velocity and spacing. Next, we carry out phase-field simulations to test our analytic predictions and to study the instabilities of the simplest periodic lamellar arrays. For large spacings, we observe different oscillatory modes that are similar to those found previously for binary eutectics and that can be classified using the symmetry elements of the steady-state pattern. For small spacings, we observe a new instability that leads to a change in the sequence of the phases. Its onset can be well predicted by our analytic calculations. Finally, some preliminary phase-field simulations of three-dimensional growth structures are also presented.

  19. Correlated observations of substorm effects in the near-earth region and the deep magnetotail

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Baumjohann, W.; Baker, D. N.; Bame, S. J.; Gloeckler, G.; Ipavich, F. M.; Smith, E. J.; Tsurutani, B. T.

    1985-01-01

    Simultaneous observations of energetic particle measurements from the geosynchronous satellite 1982-019 and magnetic field, electron plasma, and energetic proton and electron measurements obtained with ISEE 3 in the deep tail are presented. The data are supplemented by ground magnetograms. A substorm occurred on March 22, 1983, close to 0300 UT as identified in the ground magnetograms and by a particle injection at geosynchronous orbit. About 10 min later, ISEE 3 observed (at a distance of approximately 130 RE in the deep tail) magnetic field, plasma, and energetic particle signatures consistent with the passage of a plasmoid. After the passage of the plasmoid the satellite enters shortly into a lobelike environment, in which an energetic proton beam is observed. High-resolution magnetic field data are indicative of small-scale structures in the postplasmoid plasma sheet. From the plasma sheet flow speed during the plasmoid's passage it is concluded that the 0300 UT substorm is responsible for its origin. This allows an approximate timing of the plasmoid release at a near-earth neutral line and of the plasma sheet recovery after substorm onset, and it indicates a close relationship between processes in the near-earth plasma sheet and the deep tail during substorms.

  20. Observations of magnetospheric substorms occurring with no apparent solar wind/IMF trigger

    SciTech Connect

    Henderson, M.G.; Reeves, G.D.; Belian, R.D.; Murphree, J.S.

    1996-03-01

    An outstanding topic in magnetospheric physics is whether substorms are always externally triggered by disturbances in either the interplanetary magnetic field or solar wind, or whether they can also occur solely as the result of an internal magnetospheric instability. Over the past decade, arguments have been made on both sides of this issue. Horwitz and McPherron have shown examples of substorm onsets which they claimed were not externally triggered. However, as pointed out by Lyons, there are several problems associated with these studies that make their results somewhat inconclusive. In particular, in the McPherron et al. study, fluctuations in the B{sub y} component were not considered as possible triggers. Furthermore, Lyons suggests that the sharp decreases in the AL index during intervals of steady IMF/solar wind, are not substorms at all but rather that they are just enhancements of the convection driven DP2 current system that are often observed to occur during steady magnetospheric convection events. In the present study, we utilize a much more comprehensive dataset (consisting of particle data from the Los Alamos energetic particle detectors at geosynchronous orbit, IMP 8 magnetometer and plasma data, Viking UV auroral imager data, mid-latitude Pi2 pulsation data, ground magnetometer data and ISEE1 magnetic field and energetic particle data) to show as unambiguously as possible that typical substorms can indeed occur in the absence of an identifiable trigger in the solar wind/IMF.

  1. Saw-tooth substorms: inconsistency of repetitive bay-like magnetic disturbances with behavior of aurora

    NASA Astrophysics Data System (ADS)

    Troshichev, Oleg; Stauning, Peter; Liou, Kan; Reeves, Geoffrey

    The relationships between the magnetic disturbances in the auroral zone, aurora dynamics and particles injections at the geostationary orbit have been analyzed in detail for 62 repetitive bay-like magnetic disturbances (sawtooth substorms). It is shown that lack of the auroral breakup is typical of the powerful repetitive bay-like disturbances, unlike the isolated ("classi-cal") magnetospheric substorms. In case of sawtooth substorms the aurora in the oval usually demonstrates high activity well before (up to few hours) the magnetic disturbance onset. One of the distinguishing features of the auroral activity is the double oval structure, which is most noticeable near the dusk meridian. The close relation of the auroral behavior to the parti-cle injections at geostationary orbit breaks down. The conclusion is made, that the powerful repetitive bay-like magnetic disturbances display that kind of disturbance, which is regulated by the ionospheric electric field variations unlike to the isolated ("classical") substorms strongly related to the varying auroral particle precipitation.

  2. Shape-Constrained Sparse and Low-Rank Decomposition for Auroral Substorm Detection.

    PubMed

    Yang, Xi; Gao, Xinbo; Tao, Dacheng; Li, Xuelong; Han, Bing; Li, Jie

    2016-01-01

    An auroral substorm is an important geophysical phenomenon that reflects the interaction between the solar wind and the Earth's magnetosphere. Detecting substorms is of practical significance in order to prevent disruption to communication and global positioning systems. However, existing detection methods can be inaccurate or require time-consuming manual analysis and are therefore impractical for large-scale data sets. In this paper, we propose an automatic auroral substorm detection method based on a shape-constrained sparse and low-rank decomposition (SCSLD) framework. Our method automatically detects real substorm onsets in large-scale aurora sequences, which overcomes the limitations of manual detection. To reduce noise interference inherent in current SLD methods, we introduce a shape constraint to force the noise to be assigned to the low-rank part (stationary background), thus ensuring the accuracy of the sparse part (moving object) and improving the performance. Experiments conducted on aurora sequences in solar cycle 23 (1996-2008) show that the proposed SCSLD method achieves good performance for motion analysis of aurora sequences. Moreover, the obtained results are highly consistent with manual analysis, suggesting that the proposed automatic method is useful and effective in practice. PMID:25826810

  3. A multisatellite study of a pseudo-substorm onset in the near-Earth magnetotail

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Anderson, B. J.; Sibeck, D. G.; Newell, P. T.; Zanetti, L. J.; Potemra, T. A.; Takahashi, K.; Lopez, R. E.; Angelopoulos, V.; Nakamura, R.

    1993-01-01

    This paper reports the multisatellite and ground observations of two pseudo-substorm onset events that occurred successively at 0747 UT and 0811 UT, May 30, 1985, with more attention to the 0747 UT onset. The distinguishing features of the 0747 UT event are as follows. (1) The substorm-associated tail reconfiguration started in a very localized region in the near-Earth magnetotail. (2) The magnitude of the current disruption decreased markedly as the disruption region expanded tailward. (3) On the ground the onset of a very small negative bay (approx. 40 nT) was observed simultaneously with the onset of the current disruption, but over a much wider local time sector than the near-Earth tail reconfiguration. Positive bay onsets at mid-latitudes also had a longitudinally wide distribution. From these features we infer than in the present event the current disruption took place filamentarily near AMPTE/CCE at approx. 8.8 R(sub E). It is also inferred that pseudo-substorm onsets are distinguished from standard substorm onsets by the absence of a global expansion of the current disruption, and that the spatial scales of the onset region in the magnetosphere is not a major difference between the two. The present study suggests that the spatial distribution of the magnetic distortion before onsets is an important factor to determine the expansion scale of the current disruption. It is also suggested that the current disruption is basically an internal process of the magnetosphere.

  4. NASCAP Modeling Computations On Large Optics Spacecraft In Geosynchronous Substorm Environments

    NASA Astrophysics Data System (ADS)

    Stevens, N. John; Purvis, Carolyn K.

    1980-08-01

    Satellites in geosynchronous orbits have been found to be charged to significant negative voltages during encounters with geomagnetic substorms. When satellite surfaces are charged, there is a probability of enhanced contamination from charged particles attracted back to the satellite by electrostatic forces. This could be particularily disturbing to large satellites using sensitive optical systems. In this study the NASA Charging Analyzer Program (NASCAP) is used to evaluate qualitatively the possibility of such enhanced contamination on a conceptual version of a large satellite. The evaluation is made by computing surface voltages on the satellite due to encounters with substorm environments and then com-puting charged-particle trajectories in the electric fields around the satellite. Particular attention is paid to the possibility of contaminants reaching a mirror surface inside a dielectric tube because this mirror represents a shielded optical surface in the satellite model used. Deposition of low energy charged particles from other parts of the spacecraft onto the mirror was found to be possible in the assumed moderate substorm environment condition. In the assumed severe substorm environment condition, however, voltage build up on the inside and edges of the dielectric tube in which the mirror is located prevents contaminants from reaching the mirror surface.

  5. Phase-field study of crystal growth in three-dimensional capillaries: Effects of crystalline anisotropy.

    PubMed

    Debierre, Jean-Marc; Guérin, Rahma; Kassner, Klaus

    2016-07-01

    Phase-field simulations are performed to explore the thermal solidification of a pure melt in three-dimensional capillaries. Motivated by our previous work for isotropic or slightly anisotropic materials, we focus here on the more general case of anisotropic materials. Different channel cross sections are compared (square, hexagonal, circular) to reveal the influence of geometry and the effects of a competition between the crystal and the channel symmetries. In particular, a compass effect toward growth directions favored by the surface energy is identified. At given undercooling and anisotropy, the simulations generally show the coexistence of several growth modes. The relative stability of these growth modes is tested by submitting them to a strong spatiotemporal noise for a short time, which reveals a subtle hierarchy between them. Similarities and differences with experimental growth modes in confined geometry are discussed qualitatively. PMID:27575207

  6. Phase-field study of crystal growth in three-dimensional capillaries: Effects of crystalline anisotropy

    NASA Astrophysics Data System (ADS)

    Debierre, Jean-Marc; Guérin, Rahma; Kassner, Klaus

    2016-07-01

    Phase-field simulations are performed to explore the thermal solidification of a pure melt in three-dimensional capillaries. Motivated by our previous work for isotropic or slightly anisotropic materials, we focus here on the more general case of anisotropic materials. Different channel cross sections are compared (square, hexagonal, circular) to reveal the influence of geometry and the effects of a competition between the crystal and the channel symmetries. In particular, a compass effect toward growth directions favored by the surface energy is identified. At given undercooling and anisotropy, the simulations generally show the coexistence of several growth modes. The relative stability of these growth modes is tested by submitting them to a strong spatiotemporal noise for a short time, which reveals a subtle hierarchy between them. Similarities and differences with experimental growth modes in confined geometry are discussed qualitatively.

  7. Strong interactive growth behaviours in solution-phase synthesis of three-dimensional metal oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Lee, Jung Min; No, You-Shin; Kim, Sungwoong; Park, Hong-Gyu; Park, Won Il

    2015-02-01

    Wet-chemical synthesis is a promising alternative to the conventional vapour-phase method owing to its advantages in commercial-scale production at low cost. Studies on nanocrystallization in solution have suggested that growth rate is commonly affected by the size and density of surrounding crystals. However, systematic investigation on the mutual interaction among neighbouring crystals is still lacking. Here we report on strong interactive growth behaviours observed during anisotropic growth of zinc oxide hexagonal nanorods arrays. In particular, we found multiple growth regimes demonstrating that the diameter of the rod is dependent on its height. Local interactions among the growing rods result in cases where height is irrelevant to the diameter, increased with increasing diameter or inversely proportional to the diameter. These phenomena originate from material diffusion and the size-dependent Gibbs-Thomson effect that are universally applicable to a variety of material systems, thereby providing bottom-up strategies for diverse three-dimensional nanofabrication.

  8. Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices

    NASA Astrophysics Data System (ADS)

    Newell, P. T.; Gjerloev, J. W.

    2011-12-01

    A generalization of the traditional 12-station auroral electrojet (AE) index to include more than 100 magnetometer stations, SME, is an excellent predictor of global auroral power (AP), even at high cadence (1 min). We use this index, and a database of more than 53,000 substorms derived from it, covering 1980-2009, to investigate time and energy scales in the magnetosphere, during substorms and otherwise. We find, contrary to common opinion, that substorms do not have a preferred recurrence rate but instead have two distinct dynamic regimes, each following a power law. The number of substorms recurring after a time Δt, N(Δt), varies as Δt-1.19 for short times (<80 min) and as Δt-1.76 for longer times (>3 hours). Other evidence also shows these distinct regimes for the magnetosphere, including a break in the power law spectra for SME at about 3 hours. The time between two consecutive substorms is only weakly correlated (r = 0.18 for isolated and r = 0.06 for recurrent) with the time until the next, suggesting quasiperiodicity is not common. However, substorms do have a preferred size, with the typical peak SME magnitude reaching 400-600 nT, but with a mean of 656 nT, corresponding to a bit less than 40 GW AP. More surprisingly, another characteristic scale exists in the magnetosphere, namely, a peak in the SME distribution around 61 nT, corresponding to about 5 GW precipitating AP. The dominant form of auroral precipitation is diffuse aurora; thus, these values are properties of the magnetotail thermal electron distribution. The characteristic 5 GW value specifically represents a preferred minimum below which the magnetotail rarely drops. The magnetotail experiences continuous loss by precipitation, so the existence of a preferred minimum implies driving that rarely disappears altogether. Finally, the distribution of SME values across all times, in accordance with earlier work on AE, is best fit by the sum of two distributions, each normal in log(SME). The lower

  9. VISIONS: Combined remote sensing and in situ observations of auroral zone ion outflow during a substorm

    NASA Astrophysics Data System (ADS)

    Rowland, D. E.; Clemmons, J. H.; Hecht, J. H.; Lemon, C. L.; Collier, M. R.; Keller, J. W.; Pfaff, R. F.; Klenzing, J.; McLain, J.

    2013-12-01

    The 'first step' in the chain of events that energizes thermal ions from a few tenths of an eV to 10 keV and transports them from the topside ionosphere to high altitudes occurs in the 300-1000 km altitude regime. In this region, various drivers work together to heat and accelerate the ions and push them up the field line. These include Joule heating, soft electron precipitation (driving ambipolar fields), and BBELF and VLF waves. Since the ions need to gain at least several eV to reach the higher altitudes where wave-particle interactions have been observed to form ion conics and beams, the low-altitude region serves as a 'rate limiting step' for the overall process of ion energization and outflow. Major outstanding questions still remain as to the extent and duration of outflow, and the details of the mechanisms that drive it - questions that can only be resolved by studying this critical altitude region. VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) was a sounding rocket mission launched Feb 7, 2013, at 0821 UTC from Poker Flat, AK into the expansion phase of an auroral substorm. VISIONS was expressly designed to take advantage of the sounding rocket trajectory (slow motion through the auroral features and vertical profile) and a unique combination of in situ and remote sensing to shed new light on the drivers of low-altitude ion outflow. VISIONS carried five instruments, which together with ground-based instrumentation, measure the relevant parameters for studying ion outflow: 1) a low-energy energetic neutral atom (ENA) imager, MILENA, to remotely sense ion outflow from 50 eV to 3 keV 2) an electrostatic analyzer for electrons from 3 eV - 30 keV 3) an electrostatic analyzer for ions from 1.5 eV - 15 eV 4) a four-channel visible imager (6300, 3914, H-Beta, and 8446) with 90 degree field of view for understanding electron precipitation over a wide area and for comparison with the ENA images 5) a fields and thermal plasma suite that

  10. The Effects of Temperature and Growth Phase on the Lipidomes of Sulfolobus islandicus and Sulfolobus tokodaii

    PubMed Central

    Jensen, Sara Munk; Neesgaard, Vinnie Lund; Skjoldbjerg, Sandra Landbo Nedergaard; Brandl, Martin; Ejsing, Christer S.; Treusch, Alexander H.

    2015-01-01

    The functionality of the plasma membrane is essential for all organisms. Adaption to high growth temperatures imposes challenges and Bacteria, Eukarya, and Archaea have developed several mechanisms to cope with these. Hyperthermophilic archaea have earlier been shown to synthesize tetraether membrane lipids with an increased number of cyclopentane moieties at higher growth temperatures. Here we used shotgun lipidomics to study this effect as well as the influence of growth phase on the lipidomes of Sulfolobus islandicus and Sulfolobus tokodaii for the first time. Both species were cultivated at three different temperatures, with samples withdrawn during lag, exponential, and stationary phases. Three abundant tetraether lipid classes and one diether lipid class were monitored. Beside the expected increase in the number of cyclopentane moieties with higher temperature in both archaea, we observed previously unreported changes in the average cyclization of the membrane lipids throughout growth. The average number of cyclopentane moieties showed a significant dip in exponential phase, an observation that might help to resolve the currently debated biosynthesis pathway of tetraether lipids. PMID:26308060

  11. Simultaneous ground-satellite observation of Pi 2 pulsations associated with upward/downward FACs of the substorm current wedge

    NASA Astrophysics Data System (ADS)

    Uozumi, T.; Yumoto, K.; Imajo, S.; Koga, K.; Obara, T.; Baishev, D. G.; Shevtsov, B. M.; Milling, D. K.; Mann, I. R.; Ikeda, A.; Abe, S.; Yoshikawa, A.; Kawano, H.

    2011-12-01

    The formation of a substorm current wedge (SCW) is one of the fundamental processes in the expansion phase of the magnetospheric substorm [e.g. McPherron et al., 1973]. Uozumi et al. [2011] found that the ground Pi 2 timeseries had high coherencies with simultaneously observed AKR timeseries, regardless of whether the Pi 2 timeseries were associated with upward FAC or downward FAC; this fact suggests that the upward SCW and the downward SCW oscillated in a synchronized manner. This aspect was deduced from ground observations, and should be verified by a simultaneous observation on the ground and in the magnetosphere. In order to clarify the timing relation of Pi 2s that are associated with SCW oscillations, we made a comparative study by combining the ground and satellite data. We analyzed simultaneous ground-satellite observation of Pi 2 pulsation at the ETS-VIII geosynchronous orbit [Koga and Obara, 2008] and at MAGDAS/CPMN [Yumoto and the MAGDAS Group, 2006] high-, middle- and low-latitude stations. We picked up a Pi 2 event that exhibited a high coherency in the waveform among the ground and satellite Pi 2. A typical Pi 2 occurred around 1121UT on July 28, 2008. MLT of each ground station and ETS-VIII at the occurrence of the Pi 2 was as follows: TIK: 19.5h, KUJ: 20.0h, ETS-VIII: 20.8h, ZYK: 20.9h, MGD: 21.0h, PTK: 21.5h and WAD: 3.7h. Characteristics of the Pi 2 event are summarized as follows: (1) the initial deflection of the ground Pi 2s and magnetic bay variations in the D (eastward) component indicate the signature of the upward (at TIK, ZYK, MGD and PTK) and downward (at WAD) FAC of the SCW. (2) Pi 2 oscillated in- or 180deg out-of-phase among the D on the ground and N (eastward) components at the geosynchronous altitude (correlation coefficient: |Υ|> 0.75, phase delay: |ΔT|<10s). (3) Pi 2 oscillations in the H (northward) and P (parallel to the earth rotation axis) component exhibited phase (time) difference among them (|ΔT| < ~50s). By taking into

  12. The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie

    2016-07-01

    In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.

  13. Requirement of peroxiredoxin on the stationary phase of yeast cell growth.

    PubMed

    Watanabe, Toshihiko; Irokawa, Hayato; Ogasawara, Ayako; Iwai, Kenta; Kuge, Shusuke

    2014-02-01

    Toxic chemicals often induce reactive oxygen species (ROS). Although one of the most abundant ROS-sensitive proteins is in the peroxiredoxin (Prx) family, the function of Prx proteins is poorly understood because they are inactivated under high concentrations of hydrogen peroxide. Like mammalian cells, the model eukaryote Saccharomyces cerevisiae possesses multiple Prx proteins. Among the five Prx family proteins, Tsa1 and Ahp1 have the highest and second-highest expression levels, respectively. Here, we focused on a previously uncharacterized phenotype resulting from Tsa1 loss: impaired growth during the late exponential phase. We overexpressed catalase (CTT1) and Ahp1 in cells with disruptions in TSA1 and its homologue, TSA2 (tsa1/2Δ cells), and we found that neither Ctt1 nor Ahp1 overexpression suppressed the impaired cell growth at the stationary phase, although the ROS levels were successfully suppressed. Furthermore, the cell cycle profile was not altered by Tsa1/2 loss, at least in the late exponential phase; however, the glucose consumption rate slowed in the late exponential phase. Our results suggest that ROS levels are not responsible for the growth phenotype. Tsa1 might have a specific function that could not be replaced by Ahp1. PMID:24418709

  14. Direct observations of sigma phase growth and dissolution in 2205 duplex stainless steel

    SciTech Connect

    Palmer, T.A.; Elmer, J.W.; Babu, S.S.; Specht, E.D.

    2007-10-10

    The formation and growth of sigma ({sigma}) phase in a 2205 duplex stainless steel is monitored during an 850 C isothermal heat treatment using an in situ synchrotron x-ray diffraction technique. At this temperature, {sigma} phase is first observed within approximately 40 seconds of the start of the isothermal heat treatment and grows rapidly over the course of the 3600 second heat treatment to a volume fraction of approximately 13%. A simultaneous increase in the austenite ({gamma}) volume fraction and a decrease in the ferrite ({delta}) volume fraction are observed. The {sigma} phase formed at this temperature is rapidly dissolved within approximately 200 seconds when the temperature is increased to 1000 C. Accompanying this rapid dissolution of the {sigma} phase, the {delta} and {gamma} volume fractions both approach the balanced (50/50) level observed in the as-received material.

  15. Direct Observations of Sigma Phase Growth and Dissolution in 2205 Duplex Stainless Steel

    SciTech Connect

    Palmer, T; Elmer, J; Babu, S; Specht, E

    2005-06-14

    The formation and growth of sigma ({sigma}) phase in a 2205 duplex stainless steel is monitored during an 850 C isothermal heat treatment using an in situ synchrotron x-ray diffraction technique. At this temperature, {sigma} phase is first observed within approximately 40 seconds of the start of the isothermal heat treatment and grows rapidly over the course of the 3600 second heat treatment to a volume fraction of approximately 13%. A simultaneous increase in the austenite ({gamma}) volume fraction and a decrease in the ferrite ({delta}) volume fraction are observed. The {sigma} phase formed at this temperature is rapidly dissolved within approximately 200 seconds when the temperature is increased to 1000 C. Accompanying this rapid dissolution of the {sigma} phase, the {delta} and {gamma} volume fractions both approach the balanced (50/50) level observed in the as-received material.

  16. Phase field modelling of strain induced crystal growth in an elastic matrix

    NASA Astrophysics Data System (ADS)

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-01

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation.

  17. On the nature of ULF wave power during nightside auroral activations and substorms: 2. Temporal evolution

    NASA Astrophysics Data System (ADS)

    Rae, I. J.; Murphy, K. R.; Watt, C. E. J.; Mann, I. R.

    2011-01-01

    We present a statistical analysis of the time evolution of ground magnetic fluctuations in three (12-48 s, 24-96 s and 48-192 s) period bands during nightside auroral activations. We use an independently derived auroral activation list composed of both substorms and pseudo-breakups to provide an estimate of the activation times of nightside aurora during periods with comprehensive ground magnetometer coverage. One hundred eighty-one events in total are studied to demonstrate the statistical nature of the time evolution of magnetic wave power during the ˜30 min surrounding auroral activations. We find that the magnetic wave power is approximately constant before an auroral activation, starts to grow up to 90 s prior to the optical onset time, maximizes a few minutes after the auroral activation, then decays slightly to a new, and higher, constant level. Importantly, magnetic ULF wave power always remains elevated after an auroral activation, whether it is a substorm or a pseudo-breakup. We subsequently divide the auroral activation list into events that formed part of ongoing auroral activity and events that had little preceding geomagnetic activity. We find that the evolution of wave power in the ˜10-200 s period band essentially behaves in the same manner through auroral onset, regardless of event type. The absolute power across ULF wave bands, however, displays a power law-like dependency throughout a 30 min period centered on auroral onset time. We also find evidence of a secondary maximum in wave power at high latitudes ˜10 min following isolated substorm activations. Most significantly, we demonstrate that magnetic wave power levels persist after auroral activations for ˜10 min, which is consistent with recent findings of wave-driven auroral precipitation during substorms. This suggests that magnetic wave power and auroral particle precipitation are intimately linked and key components of the substorm onset process.

  18. GPU phase-field lattice Boltzmann simulations of growth and motion of a binary alloy dendrite

    NASA Astrophysics Data System (ADS)

    Takaki, T.; Rojas, R.; Ohno, M.; Shimokawabe, T.; Aoki, T.

    2015-06-01

    A GPU code has been developed for a phase-field lattice Boltzmann (PFLB) method, which can simulate the dendritic growth with motion of solids in a dilute binary alloy melt. The GPU accelerated PFLB method has been implemented using CUDA C. The equiaxed dendritic growth in a shear flow and settling condition have been simulated by the developed GPU code. It has been confirmed that the PFLB simulations were efficiently accelerated by introducing the GPU computation. The characteristic dendrite morphologies which depend on the melt flow and the motion of the dendrite could also be confirmed by the simulations.

  19. Modeling void growth and movement with phase change in thermal energy storage canisters

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Namkoong, David; Skarda, J. Raymond Lee

    1993-01-01

    A scheme was developed to model the thermal hydrodynamic behavior of thermal energy storage salts. The model included buoyancy, surface tension, viscosity, phases change with density difference, and void growth and movement. The energy, momentum, and continuity equations were solved using a finite volume formulation. The momentum equation was divided into two pieces. The void growth and void movement are modeled between the two pieces of the momentum equations. Results showed this scheme was able to predict the behavior of thermal energy storage salts.

  20. Demonstrating the Temperature Gradient Impact on Grain Growth in UO2 Using the Phase Field Method

    SciTech Connect

    Michael R Tonks; Yongfeng Zhang; Xianming Bai; Paul C Millett

    2014-01-01

    Grain boundaries (GBs) are driven to migrate up a temperature gradient. In this work, we use a phase field (PF) model to investigate the impact of temperature gradients on normal grain growth. GB motion in 2D UO2 polycrystals is predicted under increasing temperature gradients. We find that the temperature gradient does not significantly impact the average grain growth behavior, because the curvature driving force is dominant. However, it does cause significant local migration of the individual grains. In addition, the change in the GB mobility due to the temperature gradient results in larger grains in the hot portion of the polycrystal.

  1. An observational study regarding the rate of growth in vertical and radial growth phase superficial spreading melanomas

    PubMed Central

    Betti, Roberto; Agape, Elena; Vergani, Raffaella; Moneghini, Laura; Cerri, Amilcare

    2016-01-01

    The natural history of superficial spreading melanomas (SSMs) involves the progression from a radial growth phase (RGP) to a vertical growth phase (VGP). Currently, a patient's history represents the only method to estimate the rate of tumor growth. The present study aimed to verify whether the estimated rate of growth (ROG) of SSMs with a RGP or VGP exhibited any differences, and to evaluate the possible implications for the most important prognostic determinants. ROG was quantified as the ratio between Breslow's thickness in millimeters (mm) and the time of tumor growth in months, defined as the time between the date that the patient had first noticed the lesion in which melanoma subsequently developed and the date on which the patient first felt this lesion changed. A total of 105 patients (58 male and 47 female) were studied. Of these, 66 had VGP-SSMs, whilst 39 had RGP-only SSMs (RGP-SSMs). No significant differences in age and gender were observed between these groups. The mean Breslow's thickness in patients with VGP-SSMs was significantly greater than in patients with RGP-SSMs (0.78±0.68 vs. 0.48±0.22 mm, P=0.0096). Similarly, the ROG was observed to be higher in VGP-SSM vs. RGP-SSM patients (0.13±0.16 vs. 0.065±0.09 mm/month, P=0.0244). In patients with VGP-SSMs, Breslow's thickness and ROG were significantly higher for tumors with a mitotic rate of ≥1 mitosis/mm2 compared with those with <1 mitosis/mm2 (1.15±0.96 vs. 0.56±0.30 mm, P=0.0005; and 0.188±0.20 vs. 0.09±0.12 mm/month, P=0.0228, respectively). According to these results, two subsets of SSMs exist: The first is characterized by the presence of mitosis and a higher ROG, while the second exhibits a more indolent behavior and is characterized by an RGP only. Given the differences in the Breslow's thickness and ROG, clinicians must be aware of the possible diagnostic delay in these subsets of melanoma that, differently from true nodular melanomas, generally fulfill the classical ABCD

  2. Initial signatures of magnetic field and energetic particle fluxes at tail reconfiguration - Explosive growth phase

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; Mcentire, R. W.; Iijima, T.

    1992-01-01

    The initial signatures of tail field reconfiguration observed in the near-earth magnetotail are examined using data obtained by the AMPTE/CCE magnetometer and the Medium Energy Particle Analyzer. It is found that the tail reconfiguration events could be classified as belonging to two types, Type I and Type II. In Type I events, a current disruption is immersed in a hot plasma region expanding from inward (earthward/equatorward) of the spacecraft; consequently, the spacecraft is immersed in a hot plasma region expanding from inward. The Type II reconfiguration event is characterized by a distinctive interval (explosive growth phase) just prior to the local commencement of tail phase.

  3. [Effect of microwaves on Chlamydomonas actinochloris culture in the stationary phase of growth].

    PubMed

    Grigor'eva, O O; Berezovskaia, M A; Datsenko, A I

    2013-01-01

    Effects of the microwave radiation on the culture of Chlamydomonas actinochloris green flagellar alga in the stationary phase of growth are studied. After exposure to radiation at the maximum dose of 125 J/g, the cell functional state worsened but all the studied parameters were restored in 20 days and in the long run found to be even better than the control indices. The data are compared with the similar ones obtained earlier for the lag phase culture. The studied sample is found to be more resistant to the irradiation than the previous one.

  4. Effect of cloud microphysics on particle growth under mixed phase conditions

    NASA Astrophysics Data System (ADS)

    Pfitzenmaier, Lukas; Dufournet, Yann; Unal, Christine; Russchenberg, Herman; Myagkov, Alexander; Seifert, Patric

    2015-04-01

    Mixed phase clouds contain both ice particles and super-cooled cloud water droplets in the same volume of air. Currently, one of the main challenges is to observe and understand how ice particles grow by interacting with liquid water within the mixed-phase clouds. In the mid latitudes this process is one of the most efficient processes for precipitation formation. It is particularly important to understand under which conditions growth processes are most efficient within such clouds. The observation of microphysical cloud properties from the ground is one possible approach to study the liquid-ice interaction that play a role on the ice crystal growth processes. The study presented here is based on a ground-based multi-sensor technique. Dataset of this study was taken during the ACCEPT campaign (Analysis of the Composition of mixed-phase Clouds with Extended Polarization Techniques) at Cabauw The Netherlands, autumn 2014. Measurements with the Transportable Atmospheric RAdar (TARA), S-band precipitation radar profiler, from the Delft Technical University, and Ka-band cloud radar systems were performed in cooperation with the Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany. All the radar systems had full Doppler capabilities. In addition , TARA and one of the Ka-band radar systems had full polarimetric capabilities as well, in order to get information of the ice phase within mixed-phase cloud systems. Lidar, microwave radiometer and radiosonde measurements were combined to describe the liquid phase within such clouds. So a whole characterisation of microphysical processes within mixed-phase cloud systems could be done. This study shows how such a combination of instruments is used to: - Detect the liquid layer within the ice clouds - Describe the microphysical conditions for ice particle growth within mixed phase clouds based on cloud hydrometeor shape, size, number concentration obtained from measurements The project aims to observe

  5. Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation.

    PubMed

    Zhang, Xuezhi; Amendola, Pasquale; Hewson, John C; Sommerfeld, Milton; Hu, Qiang

    2012-07-01

    The effects of changes in cellular characteristics and dissolved organic matter (DOM) on dissolved air flotation (DAF) harvesting of Chlorella zofingiensis at the different growth phases were studied. Harvesting efficiency increased with Al(3+) dosage and reached more than 90%, regardless of growth phases. In the absence of DOM, the ratio of Al(3+) dosage to surface functional group concentration determined the harvesting efficiency. DOM in the culture medium competed with algal cell surface functional groups for Al(3+), and more Al(3+) was required for cultures with DOM than for DOM-free cultures to achieve the same harvesting efficiency. As the culture aged, the increase of Al(3+) dosage due to increased DOM was less than the decrease of Al(3+) dosage associated with reduced cell surface functional groups, resulting in overall reduced demand for Al(3+). The interdependency of Al(3+) dosage and harvesting efficiency on concentrations of cell surface functional groups and DOM was successfully modeled. PMID:22541950

  6. The temporal evolution of a small auroral substorm as viewed from high altitudes with Dynamics Explorer 1

    NASA Technical Reports Server (NTRS)

    Craven, J. D.; Frank, L. A.

    1985-01-01

    A small auroral substorm is investigated with auroral imaging photometers carried on the spacecraft Dynamics Explorer 1. Initial brightening along the auroral oval and the subsequent westward and poleward motions of intense, localized emission regions are associated with auroral surges. Following substorm onset, another region of less intense emissions is observed to develop at lower latitudes and adjacent to the bright region near local midnight. This second region expands towards the east. The bright zone of auroral emissions associated with the surges is interpreted as the signature of electron acceleration along magnetic field lines threading the boundary layer of the plasma sheet in the magnetotail. The more diffuse, less intense region is identified with eastward-drifting electrons injected into the plasma sheet and ring current following substorm onset. No rapid poleward motion of the discrete aurora is detected during substorm recovery.

  7. The effect of temperature and bacterial growth phase on protein extraction by means of electroporation.

    PubMed

    Haberl-Meglič, Saša; Levičnik, Eva; Luengo, Elisa; Raso, Javier; Miklavčič, Damijan

    2016-12-01

    Different chemical and physical methods are used for extraction of proteins from bacteria, which are used in variety of fields. But on a large scale, many methods have severe drawbacks. Recently, extraction by means of electroporation showed a great potential to quickly obtain proteins from bacteria. Since many parameters are affecting the yield of extracted proteins, our aim was to investigate the effect of temperature and bacterial growth phase on the yield of extracted proteins. At the same time bacterial viability was tested. Our results showed that the temperature has a great effect on protein extraction, the best temperature post treatment being 4°C. No effect on bacterial viability was observed for all temperatures tested. Also bacterial growth phase did not affect the yield of extracted proteins or bacterial viability. Nevertheless, further experiments may need to be performed to confirm this observation, since only one incubation temperature (4°C) and one incubation time before and after electroporation (0.5 and 1h) were tested for bacterial growth phase. Based on our results we conclude that temperature is a key element for bacterial membrane to stay in a permeabilized state, so more proteins flow out of bacteria into surrounding media. PMID:27561651

  8. Thin film growth of the 2122-phase of BCSCO superconductor with high degree of crystalline perfection

    NASA Technical Reports Server (NTRS)

    Raina, K. K.; Narayanan, S.; Pandey, R. K.

    1992-01-01

    Thin films of the 80 K-phase of BiCaSrCu-oxide superconductor having the composition of Bi2Ca1.05Sr2.1Cu2.19O(x) and high degree of crystalline perfection have been grown on c-axis oriented twin free single crystal substrates of NdGaO3. This has been achieved by carefully establishing the growth conditions of the LPE experiments. The temperature regime of 850 to 830 C and quenching of the specimens on the termination of the growth period are found to be pertinent for the growth of quasi-single crystalline superconducting BCSCO films on NdGaO3 substrates. The TEM analysis reveals a single crystalline nature of these films which exhibit 100 percent reflectivity in infrared regions at liquid nitrogen temperature.

  9. Supersaturation in nucleus and spiral growth of GaN in metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Akasaka, Tetsuya; Kobayashi, Yasuyuki; Kasu, Makoto

    2010-10-01

    Nucleus and spiral growth mechanisms of GaN were experimentally studied by varying the degree of supersaturation, σ, in selective-area metal organic vapor phase epitaxy. The spiral growth rate of GaN increased proportionally to σ2 in the σ range from 0.0632 to 0.230. The nucleus growth rate of GaN was much smaller than the spiral one in the σ range. The nucleation rate was almost zero at σ lower than 0.130, suddenly increased at higher σ values, and reached ˜107 cm-2 s-1 at σ of 0.230. These results are consistent with a theoretical analysis [W. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. R. Soc. London, Ser. A 243, 299 (1951)].

  10. Studying the relationship between redox and cell growth using quantitative phase imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sridharan, Shamira; Leslie, Matthew T.; Bapst, Natalya; Smith, John; Gaskins, H. Rex; Popescu, Gabriel

    2016-03-01

    Quantitative phase imaging has been used in the past to study the dry mass of cells and study cell growth under various treatment conditions. However, the relationship between cellular redox and growth rates has not yet been studied in this context. This study employed the recombinant Glrx-roGFP2 redox biosensor targeted to the mitochondrial matrix or cytosolic compartments of A549 lung epithelial carcinoma cells. The Glrx-roGFP2s biosensor consists of a modified GFP protein containing internal cysteine residues sensitive to the local redox environment. The formation/dissolution of sulfide bridges contorts the internal chromophore, dictating corresponding changes in florescence emission that provide direct measures of the local redox potential. Combining 2-channel florescent imaging of the redox sensor with quantitative phase imaging allowed observation of redox homeostasis alongside measurements of cellular mass during full cycles of cellular division. The results indicate that mitochondrial redox showed a stronger inverse correlation with cell growth than cytoplasmic redox states; although redox changes are restricted to a 5% range. We are now studying the relationship between mitochondrial redox and cell growth in an isogenic series of breast cell lines built upon the MCF-10A genetic background that vary both in malignancy and metastatic potential.

  11. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    PubMed Central

    Heinzelmann, Sandra M.; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between −149 and −264‰) and chemoautotrophs (εlipid/water between −217 and −275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  12. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids.

    PubMed

    Heinzelmann, Sandra M; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S; Schouten, Stefan; van der Meer, Marcel T J

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between -149 and -264‰) and chemoautotrophs (εlipid/water between -217 and -275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  13. Evolution of auroral acceleration region field-aligned current systems, plasma, and potentials observed by Cluster during substorms

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Frey, H. U.; Goldstein, M. L.; Bonnell, J. W.; Mozer, F.

    2015-12-01

    The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. The acceleration processes that occur therein accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. Though this region has garnered considerable attention, the temporal evolution of field-aligned current systems, associated acceleration processes, and resultant changes in the plasma constituents that occur during key stages of substorm development remain unclear. In this study we present a survey of Cluster traversals within and just above the auroral acceleration region (≤3 Re altitude) during substorms. Particular emphasis is on the spatial morphology and developmental sequence of auroral acceleration current systems, potentials and plasma constituents, with the aim of identifying controlling factors, and assessing auroral emmission consequences. Exploiting multi-point measurements from Cluster in combination with auroral imaging, we reveal the injection powered, Alfvenic nature of both the substorm onset and expansion of auroral particle acceleration. We show evidence that indicates substorm onsets are characterized by the gross-intensification and filamentation/striation of pre-existing large-scale current systems to smaller/dispersive scale Alfven waves. Such an evolutionary sequence has been suggested in theoretical models or single spacecraft data, but has not been demonstrated or characterized in multispacecraft observations until now. It is also shown how the Alfvenic variations over time may dissipate to form large-scale inverted-V structures characteristic of the quasi-static aurora. These findings suggest that, in addition to playing active roles in driving substorm aurora, inverted-V and Alfvenic acceleration processes are causally linked. Key

  14. Studies of Westward Electrojets and Field-Aligned Currents in the Magnetotail during Substorms: Implications for Magnetic Field Models

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Our studies elucidated the relationship between the auroral arcs and magnetotail phenomena. One paper examined particle energization in the source region of the field-aligned currents that intensify at substorm onset when the arc brightens to form the westward electrojet. A second paper examined the relationship between the precipitating particles in the arcs, the location of the westward electrojet, and magnetospheric source regions. Two earlier papers also investigated the roles that field aligned currents and particle acceleration have during substorms.

  15. Transcriptional Characterization of Salmonella TAl00 in Growth and Stationary Phase: Mutagenesis of MX in Both Types of Cells

    EPA Science Inventory

    The Salmonella (Ames) mutagenicity assay can be performed using cells that are in different growth phases. Thus, the plate-incorporation assay involves plating stationary-phase cells with the mutagen, after which the cells undergo a brief lag phase and, consequently, are exposed ...

  16. New separation methodologies for the distinction of the growth phases of Saccharomyces cerevisiae cell cycle.

    PubMed

    Lainioti, G Ch; Kapolos, J; Koliadima, A; Karaiskakis, G

    2010-03-12

    In the present work two separation techniques, namely the gravitational field-flow fractionation (GrFFF) and the reversed-flow gas chromatography (RFGC), are proposed for the distinction of the growth phases of Saccharomyces cerevisiae (AXAZ-1) yeast cycle at different temperatures (30 degrees C, 25 degrees C, 20 degrees C, and 15 degrees C) and pH (2.0, 3.0, 4.0 and 5.0) values. During the fermentation processes, differences observed in the peak profiles, obtained by GrFFF, can be related with the unlike cell growth. The distinction of the phases of AXAZ-1 cell cycle with the GrFFF, was also confirmed with the RFGC technique, which presented similar fermentation time periods for the alcoholic fermentation phases. Simultaneously, the reaction rate constant for each phase of the fermentation process and the activation energies were determined with the aid of the RFGC technique. Finally, the application of both the GrFFF and the RFGC techniques, in combination with high-performance liquid chromatography, allowed us to find the ideal experimental conditions (temperature and pH) for the alcoholic fermentation by AXAZ-1. The results indicate that S. cerevisiae cells performed better at 30 degrees C, whereas at lower temperatures decreases in the fermentation rate and in the number of viable cells were observed. Moreover, the pH of the medium (pH 5.0) resulted in higher fermentation rates and ethanol productivities.

  17. A three-dimensional phase diagram of growth-induced surface instabilities

    PubMed Central

    Wang, Qiming; Zhao, Xuanhe

    2015-01-01

    A variety of fascinating morphological patterns arise on surfaces of growing, developing or aging tissues, organs and microorganism colonies. These patterns can be classified into creases, wrinkles, folds, period-doubles, ridges and delaminated-buckles according to their distinctive topographical characteristics. One universal mechanism for the pattern formation has been long believed to be the mismatch strains between biological layers with different expanding or shrinking rates, which induce mechanical instabilities. However, a general model that accounts for the formation and evolution of these various surface-instability patterns still does not exist. Here, we take biological structures at their current states as thermodynamic systems, treat each instability pattern as a thermodynamic phase, and construct a unified phase diagram that can quantitatively predict various types of growth-induced surface instabilities. We further validate the phase diagram with our experiments on surface instabilities induced by mismatch strains as well as the reported data on growth-induced instabilities in various biological systems. The predicted wavelengths and amplitudes of various instability patterns match well with our experimental data. It is expected that the unified phase diagram will not only advance the understanding of biological morphogenesis, but also significantly facilitate the design of new materials and structures by rationally harnessing surface instabilities. PMID:25748825

  18. Phase-field modeling of epitaxial growth: Applications to step trains and island dynamics

    NASA Astrophysics Data System (ADS)

    Hu, Zhengzheng; Lowengrub, John S.; Wise, Steven M.; Voigt, Axel

    2012-01-01

    In this paper, we present a new phase-field model including combined effects of edge diffusion, the Ehrlich-Schwoebel barrier, deposition and desorption to simulate epitaxial growth. A new free energy function together with a correction to the initial phase variable profile is used to efficiently capture the morphological evolution when a large deposition flux is imposed. A formal matched asymptotic analysis is performed to show the reduction of the phase-field model to the classical sharp interface Burton-Cabrera-Frank model for step flow when the interfacial thickness vanishes. The phase-field model is solved by a semi-implicit finite difference scheme, and adaptive block-structured Cartesian meshes are used to dramatically increase the efficiency of the solver. The numerical scheme is used to investigate the evolution of perturbed circularly shaped small islands. The effect of edge diffusion is investigated together with the Ehrlich-Schwoebel barrier. We also investigate the linear and nonlinear regimes of a step meandering instability. We reproduce the predicted scaling law for the growth of the meander amplitude, which was based on an analysis of a long wavelength regime. New nonlinear behavior is observed when the meander wavelength is comparable to the terrace width. In particular, a previously unobserved regime of coarsening dynamics is found to occur when the meander wavelength is comparable to the terrace width.

  19. What Might We Learn About Magnetospheric Substorms at the Earth from the MESSENGER Measurements at Mercury?

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2008-01-01

    Satellite observations at the Earth, supported by theory and modeling, have established a close connection between the episodes of intense magnetospheric convection termed substorms and the occurrence of magnetic reconnection. Magnetic reconnection at the dayside magnetopause results in strong energy input to the magnetosphere. This energy can either be stored or used immediately to power the magnetospheric convection that produces the phenomena that collectively define the 'substorm.' However, many aspects of magnetic reconnection and the dynamic response of the coupled solar wind - magnetosphere - ionosphere system at the Earth during substorms remain poorly understood. For example, the rate of magnetic reconnection is thought to be proportional to the local Alfven speed, but the limited range of changes in this solar wind parameter at 1 AU have made it difficult to detect its influence over energy input to the Earth's magnetosphere. In addition, the electrical conductance of the ionosphere and how it changes in response to auroral charged particle precipitation are hypothesized to play a critical role in the development of substorms, but the nature of this electrodynamic interaction remain difficult to deduce from Earth observations alone. The amount of energy the terrestrial magnetosphere can store in its tail, the duration of the storage, and the trigger(s) for its dissipation are all thought to be determined by not only the microphysics of the cross-tail current layer, but also the properties of the coupled magnetosphere - ionosphere system. Again, the separation of microphysics effects from system response has proved very difficult using measurements taken only at the Earth. If MESSENGER'S charged particle and magnetic field measurements confirm the occurrence of terrestrial-style substorms in Mercury's miniature magnetosphere, then it may be possible to determine how magnetospheric convection, field-aligned currents, charged particle acceleration

  20. Substorms and polar cap convection: the 10 January 2004 interplanetary CME case

    NASA Astrophysics Data System (ADS)

    Andalsvik, Y.; Sandholt, P. E.; Farrugia, C. J.

    2012-01-01

    The expansion-contraction model of Dungey cell plasma convection has two different convection sources, i.e. reconnections at the magnetopause and in the magnetotail. The spatial-temporal structure of the nightside source is not yet well understood. In this study we shall identify temporal variations in the winter polar cap convection structure during substorm activity under steady interplanetary conditions. Substorm activity (electrojets and particle precipitations) is monitored by excellent ground-satellite DMSP F15 conjunctions in the dusk-premidnight sector. We take advantage of the wide latitudinal coverage of the IMAGE chain of ground magnetometers in Svalbard - Scandinavia - Russia for the purpose of monitoring magnetic deflections associated with polar cap convection and substorm electrojets. These are augmented by direct observations of polar cap convection derived from SuperDARN radars and cross-track ion drift observations during traversals of polar cap along the dusk-dawn meridian by spacecraft DMSP F13. The interval we study is characterized by moderate, stable forcing of the magnetosphere-ionosphere system (EKL = 4.0-4.5 mV m-1; cross polar cap potential (CPCP), Φ (Boyle) = 115 kV) during Earth passage of an interplanetary CME (ICME), choosing an 4-h interval where the magnetic field pointed continuously south-west (Bz < 0; By < 0). The combination of continuous monitoring of ground magnetic deflections and the F13 cross-track ion drift observations in the polar cap allows us to infer the temporal CPCP structure on time scales less than the ~10 min duration of F13 polar cap transits. We arrived at the following estimates of the dayside and nightside contributions to the CPCP (CPCP = CPCP/day + CPCP/night) under two intervals of substorm activity: CPCP/day ~110 kV; CPCP/night ~50 kV (45% CPCP increase during substorms). The temporal CPCP structure during one of the substorm cases resulted in a dawn-dusk convection asymmetry measured by DMSP F13 which

  1. Chirality-preserving growth of helical filaments in the B4 phase of bent-core liquid crystals.

    PubMed

    Chen, Dong; Maclennan, Joseph E; Shao, Renfan; Yoon, Dong Ki; Wang, Haitao; Korblova, Eva; Walba, David M; Glaser, Matthew A; Clark, Noel A

    2011-08-17

    The growth of helical filaments in the B4 liquid-crystal phase was investigated in mixtures of the bent-core and calamitic mesogens NOBOW and 8CB. Freezing-point depression led to nucleation of the NOBOW B4 phase directly from the isotropic phase in the mixtures, forming large left- and right-handed chiral domains that were easily observed in the microscope. We show that these domains are composed of homochiral helical filaments formed in a nucleation and growth process that starts from a nucleus of arbitrary chirality and continues with chirality-preserving growth of the filaments. A model that accounts for the observed local homochirality and phase coherence of the branched filaments is proposed. This model will help in providing a better understanding of the nature of the B4 phase and controlling its growth and morphology for applications, such as the use of the helical nanophase as a nanoheterogeneous medium. PMID:21692442

  2. Heterogeneous growth of cadmium and cobalt carbonate phases at the (101¯4) calcite surface

    SciTech Connect

    Xu, Man; Ilton, Eugene S.; Engelhard, Mark H.; Qafoku, Odeta; Felmy, Andrew R.; Rosso, Kevin M.; Kerisit, Sebastien N.

    2015-03-01

    The ability of surface precipitates to form heteroepitaxially is an important factor that controls the extent of heterogeneous growth. In this work, the growth of cadmium and cobalt carbonate phases on (10-14) calcite surfaces is compared for a range of initial saturation states with respect to otavite (CdCO3) and sphaerocobaltite (CoCO3), two isostructural metal carbonates that exhibit different lattice misfits with respect to calcite. Calcite single crystals were reacted in static conditions for 16 hours with CdCl2 and CoCl2 aqueous solutions with initial concentrations 0.3 ≤ [Cd2+]0 ≤ 100 μM and 25 ≤ [Co2+]0 ≤ 200 μM. The reacted crystals were imaged in situ with atomic force microscopy (AFM) and analyzed ex situ with X-ray photoelectron spectroscopy (XPS). AFM images of Cd-reacted crystals showed the formation of large islands elongated along the direction, clear evidence of heteroepitaxial growth, whereas surface precipitates on Co-reacted crystals were small round islands. Deformation of calcite etch pits in both cases indicated the incorporation of Cd and Co at step edges. XPS analysis pointed to the formation of a Cd-rich (Ca,Cd)CO3 solid solution coating atop the calcite substrate. In contrast, XPS measurements of the Co-reacted crystals provided evidence for the formation of a mixed hydroxy-carbonate cobalt phase. The combined AFM and XPS results suggest that the lattice misfit between CoCO3 and CaCO3 ( 15% based on surface areas) is too large to allow for heteroepitaxial growth of a pure cobalt carbonate phase on calcite surfaces in aqueous solutions and at ambient conditions. The use of the satellite structure of the Co 2p3/2 photoelectron line as a tool for determining the nature of cobalt surface precipitates is also discussed.

  3. Intensification of β-poly(L: -malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase.

    PubMed

    Cao, Weifeng; Luo, Jianquan; Zhao, Juan; Qiao, Changsheng; Ding, Luhui; Qi, Benkun; Su, Yi; Wan, Yinhua

    2012-07-01

    β-Poly(malic acid) (PMLA) has attracted industrial interest because this polyester can be used as a prodrug or for drug delivery systems. In PMLA production by Aureobasidium pullulans ipe-1, it was found that PLMA production was associated with cell growth in the early exponential growth phase and dissociated from cell growth in the late exponential growth phase. To enhance PMLA production in the late phase, different fermentation modes and strategies for controlling culture redox potential (CRP) were studied. The results showed that high concentrations of produced PMLA (above 40 g/l) not only inhibited PMLA production, but also was detrimental to cell growth. Moreover, when CRP increased from 57 to 100 mV in the late exponential growth phase, the lack of reducing power in the broth also decreased PMLA productivity. PMLA productivity could be enhanced by repeated-batch culture to maintain cell growth in the exponential growth phase, or by cell-recycle culture with membrane to remove the produced PMLA, or by maintaining CRP below 70 mV no matter which kind of fermentation mode was adopted. Repeated-batch culture afforded a high PMLA concentration (up to 63.2 g/l) with a productivity of 1.15 g l(-1) h(-1). Cell-recycle culture also confirmed that PMLA production by the strain ipe-1 was associated with cell growth.

  4. Effect of Nb on the Growth Behavior of Co3Sn2 Phase in Undercooled Co-Sn Melts

    NASA Astrophysics Data System (ADS)

    Kang, Jilong; Xu, Wanqiang; Wei, Xiuxun; Ferry, Michael; Li, Jinfu

    2016-09-01

    The growth behavior of the primary β-Co3Sn2 phase in (Co67Sn33)100-x Nb x (x = 0, 0.5, 0.8, 1.0) hypereutectic alloys at different melt undercoolings was investigated systematically. The growth pattern of the β-Co3Sn2 phase at low undercooling changes with the Nb content from fractal seaweed (x = 0, 0.5) into dendrite (x = 0.8) and then returns to fractal seaweed (x = 1.0) as a response to the changes in interface energy anisotropy and interface kinetic anisotropy. As undercooling increases, the dendritic growth of the β-Co3Sn2 phase in (Co67Sn33)99.2Nb0.8 alloy gives way to fractal seaweed growth at an undercooling of 32 K (-241 °C). At larger undercooling, the fractal seaweed growth is further replaced by compact seaweed growth, which occurred in the other three alloys investigated. The growth velocity of the β-Co3Sn2 phase slightly increases at low and intermediate undercooling but clearly decreases at larger undercooling due to the Nb addition. The growth velocity sharply increases as the growth pattern of the Co3Sn2 phase transits from fractal seaweed into compact seaweed.

  5. The mobility of the amorphous phase in polyethylene as a determining factor for slow crack growth.

    PubMed

    Men, Y F; Rieger, J; Enderle, H-F; Lilge, D

    2004-12-01

    Polyethylene (PE) pipes generally exhibit a limited lifetime, which is considerably shorter than their chemical degradation period. Slow crack growth failure occurs when pipes are used in long-distance water or gas distribution though being exposed to a pressure lower than the corresponding yield stress. This slow crack growth failure is characterized by localized craze growth and craze fibril rupture. In the literature, the lifetime of PE pipes is often considered as being determined by the density of tie chains connecting adjacent crystalline lamellae. But this consideration cannot explain the excellent durability of the recent bimodal grade PE for pipe application. We show in this paper the importance of the craze fibril length as the determining factor for the pipe lifetime. The conclusions are drawn from stress analysis. It is found that longer craze fibrils sustain lower stress and are deformed to a lesser degree. The mobility of the amorphous phase is found to control the amount of material that can be "sucked" in by the craze fibrils and thus the length of the craze fibrils. The mobility of the amorphous phase can be monitored by dynamic mechanical analysis measurements. Excellent agreement between the mobility thus derived and lifetimes of PE materials as derived from FNCT (full notch creep test) is given, thus providing an effective means to estimate the lifetime of PE pipes by considering well-defined physical properties.

  6. A dual-phase-lag diffusion model for predicting thin film growth

    NASA Astrophysics Data System (ADS)

    Chen, J. K.; Beraun, J. E.; Tzou, D. Y.

    2000-03-01

    A dual-phase-lag diffusion (DPLD) model, which extends Fick's law by including two lagging times, icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/> j for the mass flux vector and icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/> icons/Journals/Common/rho" ALT="rho" ALIGN="MIDDLE"/> for the density gradient, is developed to predict thin film growth. Depending upon the phase lag ratio icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/> icons/Journals/Common/rho" ALT="rho" ALIGN="MIDDLE"/> /icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/> j , the DPLD model uniquely characterizes four types of growth kinetics as reported in the literature. The model validation with experimental data of silicon oxidation and Hg1-x Cdx Te film deposition demonstrates that the present model captures the anomalous behaviour of thin film growth from the very beginning of the process to relatively long times very well.

  7. Tree Image Growth Analysis Using the Instantaneous Phase and Frequency Modulation

    SciTech Connect

    Ramachandran, Janakiramanan; Pattichis, Marios S.; Scuderi, Louis A.; Baba, Justin S

    2011-01-01

    We propose the use of Amplitude-Modulation Frequency-Modulation (AM-FM) methods for tree growth analysis. Tree growth is modeled using phase modulation. For adapting AM-FM methods to different images, we introduce the use of fast filterbank filter coefficient computation based on piecewise linear polynomials and radial frequency magnitude estimation using integer-based Savitzky-Golay filters for derivative estimation. For a wide range of images, a simple filterbank design with only 4 channel filters is used. Filterbank specification is based on two different methods. For each input image, the FM image is estimated using dominant component analysis. A tree growthmodel is developed to characterize and depict quarterly and half-seasonal growth of trees using instantaneous phase. Qualitative evaluation of inter- and intraring reconstruction is performed on 20 aspen images and a mixture of 12 tree images of various types. Qualitative scores indicate that the results were mostly of good to excellent quality (4.4/5.0 and 4.0/5.0 for the two databases, resp.).

  8. Morphological analysis and muscle-associated gene expression during different muscle growth phases of Megalobrama amblycephala.

    PubMed

    Zhu, K C; Yu, D H; Zhao, J K; Wang, W M; Wang, H L

    2015-01-01

    Skeletal muscle growth is regulated by both positive and negative factors, such as myogenic regulatory factors (MRFs) and myostatin (MSTN), and involves both hyperplasia and hypertrophy. In the present study, morphological changes during muscle development in Megalobrama amblycephala were characterized and gene expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) analysis in juvenile [60, 90, 120, and 180 days post-hatching (dph)] and adult fish. Our results show that during muscle development, the frequency of muscle fibers with a diameter <20 μm dramatically decreased in both red and white muscles, with a concomitant increase in the frequency of >30 μm fibers in red muscle and >50 μm fibers in white muscle. At 90-120 dph, the ratio of hyperplastic to hypertrophic areas in red and white muscles increased, but later decreased at 120-180 dph. The effect of hypertrophy was significantly larger than hyperplasia during these phases. qRT-PCR indicated MRF and MSTN (MSTNa and MSTNb) genes had similar expression patterns that peaked at 120 dph, with the exception of MSTNa. This new information on the molecular regulation of muscle growth and rapid growth phases will be of value to the cultivation of M. amblycephala.

  9. Substorm variations in the magnitude of the magnetic field - AMPTE/CCE observations

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Sibeck, D. G.; Lui, A. T. Y.; Takahashi, K.; Mcentire, R. W.

    1988-01-01

    Using energetic-particle data taken in the near-earth tail by the AMPTE/Charge Composition Explorer (CCE) satellite, 167 ion injection events, that were essentially dispersionless over a 25-285 keV energy range, were identified, and the variations in the total magnetic field strength over the course of these events were examined in order to determine the dependence of the magnetic field strength on dipole latitude. Results indicate that, during periods of substorm activity, the latitudinal position of the current sheet varied significantly within the 32-deg wedge centered on the dipole equator traversed by CCE. Results also suggest that, even in the near-earth magnetotail out to 8.8 R(E) (CCE apogee), the local field measurements are a better guide to the determination of satellite's position relative to the current shield during a substorm, than is the magnetic latitude.

  10. A statistical study of magnetic field magnitude changes during substorms in the near earth tail

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Lui, A. T. Y.; Mcentire, R. W.; Potemra, T. A.; Krimigis, S. M.

    1990-01-01

    Using AMPTE/CCE data taken in 1985 and 1986 when the CCE apogee (8.8 earth radii) was within 4.5 hours of midnight, 167 injection events in the near-earth magnetotail have been cataloged. These events are exactly or nearly dispersionless on a 72-sec time scale from 25 keV to 285 keV. The changes in the field magnitude are found to be consistent with the expected effects of the diversion/disruption of the cross-tail current during a substorm, and the latitudinal position of the current sheet is highly variable within the orbit of CCE. The local time variation of the magnetic-field changes implies that the substorm current wedge is composed of longitudinally broad Birkeland currents.

  11. Nonaqueous seeded growth of flower-like mixed-phase titania nanostructures for photocatalytic applications

    SciTech Connect

    Hsu, Y.-C.; Lin, H.-C.; Chen, C.-H.; Liao, Y.-T.; Yang, C.-M.

    2010-09-15

    A nonaqueous seeded-grown synthesis of three-dimensional TiO{sub 2} nanostructures in the benzyl alcohol reaction system was reported. The synthesis was simple, high-yield, and requires no structural directing or capping agents. It could be largely accelerated by applying microwave heating. The TiO{sub 2} nanostructures had a unique flower-like morphology and high surface area. Furthermore, the structural analyses suggested that the nanostructures had a non-uniform distribution of crystalline phases, with the inner part rich in anatase and the outer part rich in rutile. After heat treatments, the mixed-phase TiO{sub 2} nanostructures exhibited high photocatalytic activities for the photodegradation of methylene blue as compared to Degussa P25. The high photoactivities may be associated with the high surface area and the synergistic effect resulting from the anisotropic mixed-phase nanostructures. The results demonstrate the uniqueness of the nonaqueous seeded growth and the potential of the TiO{sub 2} nanostructures for practical applications. - Graphical abstract: Flower-like TiO{sub 2} nanostructures synthesized by a nonaqueous seeded growth without using any structural directing or capping agents.

  12. Influence of Crystal Growth Cooling Conditions on Thermoelectric Properties of Aurivillius Phase Bi-V-O

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Segawa, Mizuki; Yagasaki, Takayoshi

    2016-11-01

    Aurivillius phase Bi2VO5.5 is known as an oxygen ion conductor. In previous studies on Bi2VO5.5, the Seebeck coefficient of the sintered body was about 10 mVK-1 at 800 K. However, the resistivity was 103 Ω m at 800 K. It seemed that this high resistivity was caused by high grain boundary resistance because of cracks at boundaries. In this study, specimens have been prepared by a melting method, aimed at reducing the boundaries. The influence of crystal growth cooling conditions on the thermoelectric properties of Aurivillius phase Bi-V-O is discussed. The crystal growth cooling conditions investigated were slow cooling with cooling rate of 9 K h-1, furnace cooling, and quenching. The surface and cross-section of the sample were observed by scanning electron microscopy (SEM). The crystalline phase was identified by x-ray diffraction (XRD) analysis. The resistivity was measured by the direct current (DC) two or four terminals method. The Seebeck coefficient was measured by the small temperature difference method. The transgranular resistance and grain boundary resistance were evaluated by the complex impedance method. All samples consisted of layered grains. The grain thickness at cross section decreased with increasing cooling rate. The resistivity of the quenched and slowly cooled specimens was approximately 1000 times lower compared with the furnace cooled specimen and sintered body over the measured temperature range.

  13. Influence of Crystal Growth Cooling Conditions on Thermoelectric Properties of Aurivillius Phase Bi-V-O

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Segawa, Mizuki; Yagasaki, Takayoshi

    2016-08-01

    Aurivillius phase Bi2VO5.5 is known as an oxygen ion conductor. In previous studies on Bi2VO5.5, the Seebeck coefficient of the sintered body was about 10 mVK-1 at 800 K. However, the resistivity was 103 Ω m at 800 K. It seemed that this high resistivity was caused by high grain boundary resistance because of cracks at boundaries. In this study, specimens have been prepared by a melting method, aimed at reducing the boundaries. The influence of crystal growth cooling conditions on the thermoelectric properties of Aurivillius phase Bi-V-O is discussed. The crystal growth cooling conditions investigated were slow cooling with cooling rate of 9 K h-1, furnace cooling, and quenching. The surface and cross-section of the sample were observed by scanning electron microscopy (SEM). The crystalline phase was identified by x-ray diffraction (XRD) analysis. The resistivity was measured by the direct current (DC) two or four terminals method. The Seebeck coefficient was measured by the small temperature difference method. The transgranular resistance and grain boundary resistance were evaluated by the complex impedance method. All samples consisted of layered grains. The grain thickness at cross section decreased with increasing cooling rate. The resistivity of the quenched and slowly cooled specimens was approximately 1000 times lower compared with the furnace cooled specimen and sintered body over the measured temperature range.

  14. Impact of nanoscale zero valent iron on bacteria is growth phase dependent.

    PubMed

    Chaithawiwat, Krittanut; Vangnai, Alisa; McEvoy, John M; Pruess, Birgit; Krajangpan, Sita; Khan, Eakalak

    2016-02-01

    The toxic effect of nanoscale zero valent iron (nZVI) particles on bacteria from different growth phases was studied. Four bacterial strains namely Escherichia coli strains JM109 and BW25113, and Pseudomonas putida strains KT2440 and F1 were experimented. The growth curves of these strains were determined. Bacterial cells were harvested based on the predetermined time points, and exposed to nZVI. Cell viability was determined by the plate count method. Bacterial cells in lag and stationary phases showed higher resistance to nZVI for all four bacterial strains, whereas cells in exponential and decline phases were less resistant to nZVI and were rapidly inactivated when exposed to nZVI. Bacterial inactivation increased with the concentration of nZVI. Furthermore, less than 14% bacterial inactivation was observed when bacterial cells were exposed to the filtrate of nZVI suspension suggesting that the physical interaction between nZVI and cell is necessary for bacterial inactivation.

  15. Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S.

    PubMed

    Lange, R; Hengge-Aronis, R

    1991-07-01

    The novel sigma factor (sigma S) encoded by rpoS (katF) is required for induction of many growth phase-regulated genes and expression of a variety of stationary-phase phenotypes in Escherichia coli. Here we demonstrate that wild-type cells exhibit spherical morphology in stationary phase, whereas rpoS mutant cells remain rod shaped and are generally larger. Size reduction of E. coli cells along the growth curve is a continuous and at least biphasic process, the second phase of which is absent in rpoS-deficient cells and correlates with induction of the morphogene bolA in wild-type cells. Stationary-phase induction of bolA is dependent on sigma S. The "gearbox" a characteristic sequence motif present in the sigma S-dependent growth phase- and growth rate-regulated bolAp1 promoter, is not recognized by sigma S, since stationary-phase induction of the mcbA promoter, which also contains a gearbox, does not require sigma S, and other sigma S-controlled promoters do not contain gearboxes. However, good homology to the potential -35 and -10 consensus sequences for sigma S regulation is found in the bolAp1 promoter.

  16. In situ spatiotemporal measurements of the detailed azimuthal substructure of the substorm current wedge

    PubMed Central

    Forsyth, C; Fazakerley, A N; Rae, I J; J Watt, C E; Murphy, K; Wild, J A; Karlsson, T; Mutel, R; Owen, C J; Ergun, R; Masson, A; Berthomier, M; Donovan, E; Frey, H U; Matzka, J; Stolle, C; Zhang, Y

    2014-01-01

    The substorm current wedge (SCW) is a fundamental component of geomagnetic substorms. Models tend to describe the SCW as a simple line current flowing into the ionosphere toward dawn and out of the ionosphere toward dusk, linked by a westward electrojet. We use multispacecraft observations from perigee passes of the Cluster 1 and 4 spacecraft during a substorm on 15 January 2010, in conjunction with ground-based observations, to examine the spatial structuring and temporal variability of the SCW. At this time, the spacecraft traveled east-west azimuthally above the auroral region. We show that the SCW has significant azimuthal substructure on scales of 100 km at altitudes of 4000–7000 km. We identify 26 individual current sheets in the Cluster 4 data and 34 individual current sheets in the Cluster 1 data, with Cluster 1 passing through the SCW 120–240 s after Cluster 4 at 1300–2000 km higher altitude. Both spacecraft observed large-scale regions of net upward and downward field-aligned current, consistent with the large-scale characteristics of the SCW, although sheets of oppositely directed currents were observed within both regions. We show that the majority of these current sheets were closely aligned to a north-south direction, in contrast to the expected east-west orientation of the preonset aurora. Comparing our results with observations of the field-aligned current associated with bursty bulk flows (BBFs), we conclude that significant questions remain for the explanation of SCW structuring by BBF-driven “wedgelets.” Our results therefore represent constraints on future modeling and theoretical frameworks on the generation of the SCW. Key Points The substorm current wedge (SCW) has significant azimuthal structure Current sheets within the SCW are north-south aligned The substructure of the SCW raises questions for the proposed wedgelet scenario PMID:26167439

  17. Two genetically separable phases of growth inhibition induced by blue light in Arabidopsis seedlings

    NASA Technical Reports Server (NTRS)

    Parks, B. M.; Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1998-01-01

    High fluence-rate blue light (BL) rapidly inhibits hypocotyl growth in Arabidopsis, as in other species, after a lag time of 30 s. This growth inhibition is always preceded by the activation of anion channels. The membrane depolarization that results from the activation of anion channels by BL was only 30% of the wild-type magnitude in hy4, a mutant lacking the HY4 BL receptor. High-resolution measurements of growth made with a computer-linked displacement transducer or digitized images revealed that BL caused a rapid inhibition of growth in wild-type and hy4 seedlings. This inhibition persisted in wild-type seedlings during more than 40 h of continuous BL. By contrast, hy4 escaped from the initial inhibition after approximately 1 h of BL and grew faster than wild type for approximately 30 h. Wild-type seedlings treated with 5-nitro-2-(3-phenylpropylamino)-benzoic acid, a potent blocker of the BL-activated anion channel, displayed rapid growth inhibition, but, similar to hy4, these seedlings escaped from inhibition after approximately 1 h of BL and phenocopied the mutant for at least 2.5 h. The effects of 5-nitro-2-(3-phenylpropylamino)-benzoic acid and the HY4 mutation were not additive. Taken together, the results indicate that BL acts through HY4 to activate anion channels at the plasma membrane, causing growth inhibition that begins after approximately 1 h. Neither HY4 nor anion channels appear to participate greatly in the initial phase of inhibition.

  18. Using priority growth orientation of crystallite of the Monte Carlo method to study the process of crystal nucleation and growth in liquid phase

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Chen, Manjiao; Huang, Jiankang; Gu, Yufen; Fan, Ding

    2016-01-01

    The technique of “crystallite growth preferred orientation” was presented based on the Monte Carlo (MC) simulations of grain growth, and its factor was used to establish a lattice coordinate tracking method. The nucleation and growth of crystal from the liquid phase throughout the whole simulation were examined. Changes in solid fraction and crystallite size were counted via simulation by lattice tracking. Results showed that the established model could properly reflect crystallite nucleation and growth. The model was also determined capable of accurately estimating the number of solid phase fraction and achieving change in crystallite size by the lattice tracking method. The change in solid fraction and MC step (MCS) satisfied the S curve during simulation. The crystallite growth index was 0.477, which was relatively close to the theoretical value of 0.5.

  19. Transient composite electric field disturbances near dip equator associated with auroral substorms

    SciTech Connect

    Hanumath Sastri, J.; Ramesh, K.B.; Ranganath Rao, H.N. )

    1992-07-24

    Ionosonde data of Kodaikanal and Huancayo are used to show the simultaneous occurrence of a transient disturbance in F region height of composite polarity in day and night sectors near the dip equator during the auroral substorm activity on 20 August 1979. At Kodaikanal which is on the nightside at the time of the substorm activity, h[prime]F first underwent an abrupt and rapid decrease (80km in 1 hr) followed by a much larger increase (120km in 1 hr). Perturbation in hpF2 of exactly opposite polarity was simultaneously seen at Huancayo which is on the dayside. The decrease in h[prime]F at Kodaikana (increase in hpF2 at Huancayo) occurred in association with an increase in polar cap potential drop, [phi] (estimated from IMF parameters), and the subsequent increase (decrease at Huancayo) with a decrease in polar cap potential. The F-region height disturbance is interpreted as the manifestation of a global transient composite disturbance in equatorial zonal electric field caused by the prompt penetration of substorm-related high latitude electric fields into the equatorial ionosphere. The polarity pattern of the electric field disturbance is consistent with the global convection models which predict westward (eastward) electric fields at night (by day) near the geomagnetic equator in response to an increase in polar cap potential drop, and fields of opposite signs for a decrease in polar cap potential.

  20. Response of dayside Pc 5 pulsations to substorm activity in the nighttime magnetosphere

    NASA Astrophysics Data System (ADS)

    Samson, J. C.; Rostoker, G.

    1981-02-01

    The possibility of using ULF (1-20 mHz) waves to diagnose the structure of the magnetosphere has recently given new impetus to the study of Pc 4,5 magnetic pulsations. In this paper it is demonstrated that the frequency spectrum of dayside Pc 4,5 pulsations near noon may be significantly altered in association with the onset of a magnetospheric substorm near midnight. The response time for the dayside Pc pulsations to a substorm onset can be as short as 2-3 min, suggesting information transfer across the magnetosphere at velocities of the order of the Alfven speed. The characteristic response of the dayside pulsations is a marked increase in the dominant frequency at stations inside the dayside auroral oval. The results taken together with the observations of dayside auroras by Eather et al. (1979) suggest that substorm onsets are accompanied by a sudden inward motion of the center of the partial ring current. It is proposed that this ring current motion causes changes in the magnetic field in the equatorial plane of the magnetosphere that result in changes in the Alfven velocity on field lines where the magnetic pulsations are observed. Possible mechanisms for the generation of Pc 4,5 pulsations are discussed in the light of the observations reported.

  1. Response of dayside Pc 5 pulsations to substorm activity in the nighttime magnetosphere

    SciTech Connect

    Samson, J.C.; Rostoker, G.

    1981-02-01

    The possibility of using ULF (1-20 mHz) waves to diagnose the structure of the magnetosphere has recently given new impetus to the study of Pc 4,5 magnetic pulsations. In this paper we demonstrate that the frequency spectrum of dayside Pc 4,5 pulsations near noon may be significantly altered in association with the onset of a magnetospheric substorm near midnight. The response time for the dayside Pc pulsations to a substorm onset can be as short as 2-3 min, suggesting information transfer across the magnetosphere at velocities of the order of the Alfven speed. The characteristic response of the dayside pulsations is a marked increase in the dominant frequency at stations inside the dayside auroral oval. Our results taken together with the observations of dayside auroras by Eather et al. (1979) suggest that substorm onsets are accompanied by a sudden inward motion of the center of the partial ring current. We propose that this ring current motion causes changes in the magnetic field in the equatorial plane of the magnetosphere that result in changes in the Alfven velocity on field lines where the magnetic pulsations are observed. Possible mechanisms for the generation of Pc 4,5 pulsations are discussed in the light of the observations reported in this paper.

  2. A simulation study of the thermosphere mass density response to substorms using GITM

    NASA Astrophysics Data System (ADS)

    Liu, Xianjing; Ridley, Aaron

    2015-09-01

    The temporal and spatial variations of the thermospheric mass density during a series of idealized substorms were investigated using the Global Ionosphere Thermosphere Model (GITM). The maximum mass density perturbation of an idealized substorm with a peak variation of hemispheric power (HP) of 50 GW and interplanetary magnetic field (IMF) Bz of -2 nT was ~14% about 50 min after the substorm onset in the nightside sector of the auroral zone. The mass density response to different types of energy input has a strong local time dependence, with the mass density perturbation due to only an IMF Bz variation peaking in the dusk sector and the density perturbation due to only HP variation peaks in the nightside sector. Simulations with IMF Bz changes only and HP changes only showed that the system behaves slightly nonlinearly when both IMF and HP variations are included (a maximum of 6% of the nonlinearity) and that the nonlinearity grows with energy input. The neutral gas heating rate due to Joule heating was of same magnitude as the heating rate due to precipitation, but the majority of the temperature enhancement due to the heating due to precipitation occurs at lower altitude as compared to the auroral heating. About 110 min after onset, a negative mass density perturbation (~-5%) occurred in the night sector, which was consistent with the mass density measurement of the CHAMP satellite.

  3. A Numerical Simulation of Impulses in the Magnetosphere Associated with Substorms: OpenGGCM Result

    NASA Astrophysics Data System (ADS)

    Ferdousi, B.; Raeder, J.

    2015-12-01

    The onset of substorms is still an unsolved problem in Space Physics even though many physical models explaining the substorm process have been proposed. Distinguishing the processes that occur during first 2 minutes of substorm process depends critically on the correct timing of different signals in the plasma sheet and the ionosphere. This has been difficult to accomplish with data alone, since signals are sometimes ambiguous, or they have not been observed at the right locations. To investigate signal propagation paths and signal travel times, we use OpenGGCM global simulation. By launching impulses from various locations in the tail, we investigate the path taken by the waves and the time it takes for different waves to reach the ionosphere. We find that it takes around 60 seconds for waves to travel from 30 RE to the ionosphere, contrary to many previous reports. We also find that the Tamao path is not generally the preferred path for waves originating in the plasma sheet, and that waves travel faster through the lobes. In addition, we find that a point source in the tail around 10-15 RE leads to spread-out signals in the ionosphere, whereas a point source further down in the tail around 20-30 RE leads to more localized signatures in the ionosphere. We also use the same technique to launch impulses in the dayside magnetosphere, and we find it takes less than 1 minute for wave to travel from the dayside to the nightside.

  4. Impulse Travel Time from the Magnetotail to the Aurora Region during substorm: OpenGGCM Simulation

    NASA Astrophysics Data System (ADS)

    Ferdousi, Banafsheh; Raeder, Jimmy

    2016-07-01

    The onset of substorms is an unsolved problem in Space Physics although there are many models explaining the substorm process. Studying the processes that occur during first 2 minutes of substorm depends critically on the correct timing between different signals in the plasma sheet and the ionosphere. This has been difficult to accomplish with data alone, since signals are sometimes ambiguous, or they have not been observed in the right locations. To investigate signal propagation paths and signal travel times, we use Magnetohydrodynamic global simulations of the Earth magnetosphere: OpenGGCM. The waves are created at different locations in the magnetotail by perturbing plasma pressure in the plasma sheet. Thus, we can study wave path in the magnetotail and determine its travel time to the ionosphere. Contrary to previous studies, we find that wave travel reach the ionosphere from the midtail around 60 seconds. We also find that waves travel faster through the lobes, and the Tamao path is not generally the preferred path for waves originating in the plasma sheet. Furthermore, we find that the impulses that are generated closer to earth lead to dispersed ionosphere signatures, whereas the impulses originated in midtail region lead to more localized signatures.

  5. Substorm aurorae and their connection to the inner magnetosphere. Technical report

    SciTech Connect

    Lopez, R.E.; Meng, C.I.; Spence, H.E.

    1994-04-15

    In this report the authors present evidence from the low-altitude DMSP F7 satellite that the poleward edge of auroral luminosity in the nightside auroral zone does not necessarily correspond to the boundary between plasma-filled flux tubes and flux tubes devoid of plasma. Assuming that the low-altitude boundary corresponds to the boundary between the lobe and the plasma sheet, this implies that the boundary between open and closed field lines may lie poleward of the most poleward auroral luminosity. Thus the assumption that the poleward boundary of auroral luminosity is a good indicator of the open-closed boundary may not always be correct. Furthermore, they show clear evidence that an auroral surge may also be located equatorward of the open-closed boundary. Therefore, tailward of the region of the plasma sheet to which the surge is connected there may exist undisturbed plasma sheet that has not yet been disconnected from the ionosphere. This means that substorm-associated reconnection does not necessarily begin to reconnect lobe field lines at the onset of a substorm. Moreover, available evidence strongly suggests that the arc that brightens at the onset of a substorm and that develops into a surge maps to the inner magnetotail, to that region at the inner edge of the plasma sheet where the magnetic field changes from a dipolar to a tail-like configuration. This would be consistent with recent studies that connect auroral breakup to the near-Earth (

  6. Linking Space-Borne and Ground-Based Observations Observed Around Substorm Onset to Magnetospheric Processes

    NASA Technical Reports Server (NTRS)

    Kepko, Larry; Spanswick, Emma; Angelopoulos, Vassilis; Donovan, Eric

    2011-01-01

    The combined THEMIS five spacecraft in-situ and ground magnetic and camera arrays have advanced considerably our understanding of the causal relationship between midtail plasma flows, transient ionospheric features, and ground magnetic signatures. In particular, recent work has shown a connection between equatorward moving visible ionospheric transients and substorm onset, in both 6300 nm and white-light emissions. Although both observations detail pre-onset auroral features the interpretations differ substantially. We first provide a brief summary of these observations, highlighting in particular areas where the two observations differ, and suggest reasons for the differences. We then detail how these observations relate to dynamical magnetospheric processes, and show how they constrain models of transient convection. Next, we pull together observations and models of Pi2 generation, substorm current wedge (SCW) initiation and dipolarization to present a self-consistent description of the dynamical processes and communicative pathways that occur just prior to and during substorm expansion onset. Finally, we present a summary of open questions and suggest a roadmap for future work.

  7. Phase stability of iron-carbon nanocarbides and implications for the growth of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Awasthi, Neha

    Catalyst nanoparticles play a crucial role in the synthesis of single-walled carbon nanotubes by chemical vapor deposition technique. Understanding the thermal behavior of the nano-catalysts, their interaction with Carbon and stability of nanocarbides can give better insight into the growth mechanism and control over selective, yield of nanotubes. In this work, we present results using first-principle calculations and classical molecular dynamics simulations to understand the thermodynamics of free and Al2O3 supported Fe-C nanoparticles. We observe that the substrate plays an important role during the growth reaction by increasing the melting temperatures of small and medium size Fe nanoparticles. We investigate Fe-C phase diagrams for small Fe nanoparticles (d˜2nm) and discover that as the size of the Fe nanoparticle is reduced, the eutectic point shifted significantly toward lower temperatures, as expected from the Gibbs-Thomson law, and also toward lower concentrations of C. We devise a simple model based on the Young-Laplace pressure-radius relation, to predict the behavior of the phases competing for stability in Fe-C nanoclusters at low temperature. We identify ranges of nanoparticle sizes which are compatible for steady state-, limited- and no-growth of SWCNTs corresponding to unaffected, reduced and no solubility of C in the Fe nanoparticles. We also calculate Fe-Mo-C ternary phase diagrams to investigate the behavior of bimetallic Fe:Mo catalyst nanoparticles. Our results show that addition of Mo (upto small concentrations) lowers the minimum radius when stable carbides nucleate and poison the catalyst, which enables a larger range of catalyst nanoparticles sizes to nucleate nanotubes. We also find that pure Fe has the highest surface concentration in Fe:Mo nanoparticles and is likely to be the active nucleation site for nanotubes.

  8. Specific growth rate observer for the growing phase of a Polyhydroxybutyrate production process.

    PubMed

    Jamilis, Martín; Garelli, Fabricio; Mozumder, Md Salatul Islam; Volcke, Eveline; De Battista, Hernán

    2015-03-01

    This paper focuses on the specific growth rate estimation problem in a Polyhydroxybutyrate bioplastic production process by industrial fermentation. The kinetics of the process are unknown and there are uncertainties in the model parameters and inputs. During the first hours of the growth phase of the process, biomass concentration can be measured online by an optical density sensor, but as cell density increases this method becomes ineffective and biomass measurement is lost. An asymptotic observer is developed to estimate the growth rate for the case without biomass measurement based on corrections made by a pH control loop. Furthermore, an exponential observer based on the biomass measurement is developed to estimate the growth rate during the first hours, which gives the initial condition to the asymptotic observer. Error bounds and robustness to uncertainties in the models and in the inputs are found. The estimation is independent of the kinetic models of the microorganism. The characteristic features of the observer are illustrated by numerical simulations and validated by experimental results. PMID:25307471

  9. Spatial structure and temporal evolution of energetic particle injections in the inner magnetosphere during the 14 July 2013 substorm event

    SciTech Connect

    Gkioulidou, Matina; Ohtani, S.; Mitchell, D. G.; Ukhorskiy, A. Y.; Reeves, G. D.; Turner, D. L.; Gjerloev, J. W.; Nosé, M.; Koga, K.; Rodriguez, J. V.; Lanzerotti, L. J.

    2015-03-20

    Recent results by the Van Allen Probes mission showed that the occurrence of energetic ion injections inside geosynchronous orbit could be very frequent throughout the main phase of a geomagnetic storm. Understanding, therefore, the formation and evolution of energetic particle injections is critical in order to quantify their effect in the inner magnetosphere. We present a case study of a substorm event that occurred during a weak storm (Dst ~ –40 nT) on 14 July 2013. Van Allen Probe B, inside geosynchronous orbit, observed two energetic proton injections within 10 min, with different dipolarization signatures and duration. The first one is a dispersionless, short-timescale injection pulse accompanied by a sharp dipolarization signature, while the second one is a dispersed, longer-timescale injection pulse accompanied by a gradual dipolarization signature. We combined ground magnetometer data from various stations and in situ particle and magnetic field data from multiple satellites in the inner magnetosphere and near-Earth plasma sheet to determine the spatial extent of these injections, their temporal evolution, and their effects in the inner magnetosphere. Our results indicate that there are different spatial and temporal scales at which injections can occur in the inner magnetosphere and depict the necessity of multipoint observations of both particle and magnetic field data in order to determine these scales.

  10. Plasmasphere pulsations observed simultaneously by midlatitude SuperDARN radars, ground magnetometers and THEMIS spacecraft during an auroral substorm

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Shi, X.; Baker, J. B. H.; Frissell, N. A.; Hartinger, M.; Liu, J.

    2015-12-01

    We present simultaneous ground and space-based observations of ultra-low frequency (ULF) pulsations which occurred during an auroral substorm on September 25th, 2014. Expansion phase onset began at 06:04 UT at which time three midlatitude SuperDARN radars observed strong pulsations in the Pi2 frequency range with peak to peak amplitude reaching as high as 1km/s. Similar pulsations occurred during a later auroral intensification which started at 06:20 UT. Both sets of pulsations were detected in a region of radar backscatter located inside the subauroral polarization stream (SAPS) equatorward of the auroral oval specified by THEMIS all sky imagers and inside the midlatitude density trough as mapped by GPS/TEC measurements. The amplitude of the pulsations was large enough to reverse the direction of the SAPS flow from westward to eastward. Similar pulsations were detected by electric field instrument aboard the THEMIS probe D located inside the plasmasphere. Simultaneous observations from several low-latitude ground magnetometers (some located on the dayside) further illustrate the global nature of the pulsations and suggest they may have been associated with a plasmaspheric cavity resonance (PCR). Pulsed tailward plasma flow observed by THEMIS probe E at the geosynchronous orbit suggests that the compressional energy to generate the PCR was from the Bursty Bulk Flows (BBFs) braking against the magnetospheric dipolar region.

  11. Spatial structure and temporal evolution of energetic particle injections in the inner magnetosphere during the 14 July 2013 substorm event

    DOE PAGES

    Gkioulidou, Matina; Ohtani, S.; Mitchell, D. G.; Ukhorskiy, A. Y.; Reeves, G. D.; Turner, D. L.; Gjerloev, J. W.; Nosé, M.; Koga, K.; Rodriguez, J. V.; et al

    2015-03-20

    Recent results by the Van Allen Probes mission showed that the occurrence of energetic ion injections inside geosynchronous orbit could be very frequent throughout the main phase of a geomagnetic storm. Understanding, therefore, the formation and evolution of energetic particle injections is critical in order to quantify their effect in the inner magnetosphere. We present a case study of a substorm event that occurred during a weak storm (Dst ~ –40 nT) on 14 July 2013. Van Allen Probe B, inside geosynchronous orbit, observed two energetic proton injections within 10 min, with different dipolarization signatures and duration. The first onemore » is a dispersionless, short-timescale injection pulse accompanied by a sharp dipolarization signature, while the second one is a dispersed, longer-timescale injection pulse accompanied by a gradual dipolarization signature. We combined ground magnetometer data from various stations and in situ particle and magnetic field data from multiple satellites in the inner magnetosphere and near-Earth plasma sheet to determine the spatial extent of these injections, their temporal evolution, and their effects in the inner magnetosphere. Our results indicate that there are different spatial and temporal scales at which injections can occur in the inner magnetosphere and depict the necessity of multipoint observations of both particle and magnetic field data in order to determine these scales.« less

  12. Reaction mechanisms in the organometallic vapor phase epitaxial growth of GaAs

    NASA Technical Reports Server (NTRS)

    Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B.

    1988-01-01

    The decomposition mechanisms of AsH3, trimethylgallium (TMGa), and mixtures of the two have been studied in an atmospheric-pressure flow system with the use of D2 to label the reaction products which are analyzed in a time-of-flight mass spectrometer. AsH3 decomposes entirely heterogeneously to give H2. TMGa decomposes by a series of gas-phase steps, involving methyl radicals and D atoms to produce CH3D, CH4, C2H6, and HD. TMGa decomposition is accelerated by the presence of AsH3. When the two are mixed, as in the organometallic vapor phase epitaxial growth of GaAs, both compounds decompose in concert to produce only CH4. A likely model is that of a Lewis acid-base adduct that forms and subsequently eliminates CH4.

  13. Phase variation in the phage growth limitation system of Streptomyces coelicolor A3(2).

    PubMed

    Sumby, Paul; Smith, Margaret C M

    2003-08-01

    The phase-variable phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2) is an unusual bacteriophage resistance mechanism that confers protection against the temperate phage phiC31 and homoimmune relatives. Pgl is subject to phase variation, and data presented here show that this is at least partially due to expansion and contraction of a polyguanine tract present within the putative adenine-specific DNA methyltransferase gene, pglX. Furthermore, the pglX paralogue SC6G9.02, here renamed pglS, was shown to be able to interfere with the Pgl phenotype, suggesting that PglS could provide an alternative activity to that conferred by PglX.

  14. Growth phase dependence of the activation of a bacterial gene for carotenoid synthesis by blue light.

    PubMed Central

    Fontes, M; Ruiz-Vázquez, R; Murillo, F J

    1993-01-01

    Myxococcus xanthus responds to blue light by producing carotenoid pigments. A mutation at a gene named carC is known to block the metabolism of phytoene, a carotenoid precursor, and this gene has now been cloned and sequenced. We show here that gene carC, which is homologous to phytoene dehydrogenase genes from other organisms, is tightly regulated by light through a mechanism that operates only when the cells have reached the stationary phase or are starved of a carbon source. A genetic element that mediates the effect of the growth phase has been identified. Gene carC is integrated with another unlinked carotenogenic gene in a single 'light regulon' controlled by common trans-acting genetic elements. A potential -35 site for the binding of sigma factors has been found upstream of the carC transcriptional start. However, the -10 region shows no similarity with analogous sites at promoters of other Gram-negative bacteria. Images PMID:8467787

  15. Growth phase dependent alterations in the surface coat of Acanthamoeba castellanii.

    PubMed

    Przełecka, A; Sobota, A

    1982-01-01

    Application of ruthenium red, cationized ferritin and concanavalin A to exponentially growing trophozoites reveals on their plasma membrane negatively charged surface coat bearing sugar residues. In the coat of trophozoites from advanced stationary growth phase no sugar residues can be visualized. In mature cysts the external layer of their wall is negatively charged, however, on their protoplast surface no terminals reacting with the 2 polycations, or with concanavalin A can be revealed, even though the penetration of the reagents has been ensured by enzymatic impairing of the cyst wall. The results are confronted with the known facts concerning alterations of physiological properties of plasma membrane occurring during the life cycle of Acanthamoeba.

  16. Lateral growth of GaN by liquid phase electroepitaxy using mesa-shaped substrate

    NASA Astrophysics Data System (ADS)

    Kambayashi, Daisuke; Takakura, Hiroyuki; Tomita, Masafumi; Iwakawa, Muneki; Mizuno, Yosuke; Maruyama, Takahiro; Naritsuka, Shigeya

    2016-10-01

    GaN microchannel epitaxy (MCE) was performed using a mesa-shaped substrate and liquid phase electroepitaxy. A flat and wide MCE layer was successfully obtained with a rectangular shape, which is formed by ±c-planes on both the top and bottom surfaces. MCE growth proceeded mainly in the lateral direction by the formation of these planes. Cathodoluminescence measurements showed that the laterally grown layers were almost free of dislocations, and that the dislocations in the mesa areas were confined by the vertical sides of the mesas. In the case of inclined sides, the dislocations would be expected to bend and spread into the laterally grown areas.

  17. Influence of phase transformation on stress evolution during growth of metal thin films on silicon.

    PubMed

    Fillon, A; Abadias, G; Michel, A; Jaouen, C; Villechaise, P

    2010-03-01

    In situ stress measurements during two-dimensional growth of low mobility metal films on amorphous Si were used to demonstrate the impact of interface reactivity and phase transformation on stress evolution. Using Mo1-xSix films as examples, the results show that the tensile stress rise, which develops after the film has become crystalline, is correlated with an increase in lateral grain size. The origin of the tensile stress is attributed to the volume change resulting from the alloy crystallization, which occurs at a concentration-dependent critical thickness. PMID:20366996

  18. Phase-field modeling of epitaxial growth in stochastic systems with interacting adsorbate

    NASA Astrophysics Data System (ADS)

    Kharchenko, Dmitrii O.; Kharchenko, Vasyl O.; Lysenko, Irina O.

    2011-04-01

    We study the epitaxial growth of pyramidal patterns in stochastic systems with interacting adsorbate within the framework of the phase-field approach based on the Burton-Cabrera-Frank model. Considering the statistical criteria of pattern formation, it is shown that the system dynamics is governed by the interaction strength of adatoms and the noise intensity of the total flux fluctuations. We have shown that the noise action can crucially change the processes of pyramidal pattern formation. The scaling behavior of the height-height correlation function is discussed.

  19. Growth phase and pH influence peptide signaling for competence development in Streptococcus mutans.

    PubMed

    Guo, Qiang; Ahn, Sang-Joon; Kaspar, Justin; Zhou, Xuedong; Burne, Robert A

    2014-01-01

    The development of competence by the dental caries pathogen Streptococcus mutans is mediated primarily through the alternative sigma factor ComX (SigX), which is under the control of multiple regulatory systems and activates the expression of genes involved in DNA uptake and recombination. Here we report that the induction of competence and competence gene expression by XIP (sigX-inducing peptide) and CSP (competence-stimulating peptide) is dependent on the growth phase and that environmental pH has a potent effect on the responses to XIP. A dramatic decline in comX and comS expression was observed in mid- and late-exponential-phase cells. XIP-mediated competence development and responses to XIP were optimal around a neutral pH, although mid-exponential-phase cells remained refractory to XIP treatment, and acidified late-exponential-phase cultures were resistant to killing by high concentrations of XIP. Changes in the expression of the genes for the oligopeptide permease (opp), which appears to be responsible for the internalization of XIP, could not entirely account for the behaviors observed. Interestingly, comS and comX expression was highly induced in response to endogenously overproduced XIP or ComS in mid-exponential-phase cells. In contrast to the effects of pH on XIP, competence induction and responses to CSP in complex medium were not affected by pH, although a decreased response to CSP in cells that had exited early-exponential phase was observed. Collectively, these results indicate that competence development may be highly sensitive to microenvironments within oral biofilms and that XIP and CSP signaling in biofilms could be spatially and temporally heterogeneous.

  20. VO{sub 2} (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms

    SciTech Connect

    Rao Popuri, Srinivasa; Artemenko, Alla; Labrugere, Christine; Miclau, Marinela; Villesuzanne, Antoine; Pollet, Michaël

    2014-05-01

    Well crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal reaction in the presence of V{sub 2}O{sub 5} and oxalic acid. With the advantage of high crystalline samples, we propose P4/ncc as an appropriate space group at room temperature. From morphological studies, we found that the oriented attachment and layer by layer growth mechanisms are responsible for the formation of VO{sub 2} (A) micro rods. The structural and electronic transitions in VO{sub 2} (A) are strongly first order in nature, and a marked difference between the structural transition temperatures and electronic transitions temperature was evidenced. The reversible intra- (LTP-A to HTP-A) and irreversible inter- (HTP-A to VO{sub 2} (M1)) structural phase transformations were studied by in-situ powder X-ray diffraction. Attempts to increase the size of the VO{sub 2} (A) microrods are presented and the possible formation steps for the flower-like morphologies of VO{sub 2} (M1) are described. - Graphical abstract: Using a single step and template free hydrothermal synthesis, well crystallized VO{sub 2} (A) microrods were prepared and the P4/ncc space group was assigned to the room temperature crystal structure. Reversible and irreversible phase transitions among different VO{sub 2} polymorphs were identified and their progressive nature was highlighted. Attempts to increase the microrods size, involving layer by layer formation mechanisms, are presented. - Highlights: • Highly crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal process. • The P4/ncc space group was determined for VO{sub 2} (A) at room temperature. • The electronic structure and progressive nature of the structural phase transition were investigated. • A weak coupling between structural and electronic phase transitions was identified. • Different crystallite morphologies were discussed in relation with growth mechanisms.

  1. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Metaferia, Wondwosen; Sun, Yan-Ting; Pietralunga, Silvia M.; Zani, Maurizio; Tagliaferri, Alberto; Lourdudoss, Sebastian

    2014-07-01

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III-V semiconductor layers on low cost and flexible substrates for solar cell applications.

  2. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    SciTech Connect

    Metaferia, Wondwosen; Sun, Yan-Ting Lourdudoss, Sebastian; Pietralunga, Silvia M.; Zani, Maurizio; Tagliaferri, Alberto

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  3. Battle of the Bacteria: Characterizing the Evolutionary Advantage of Stationary Phase Growth

    PubMed Central

    Kram, Karin E.; Yim, Kristina M.; Coleman, Aaron B.; Sato, Brian K.

    2016-01-01

    Providing students with authentic research opportunities has been shown to enhance learning and increase retention in STEM majors. Accordingly, we have developed a novel microbiology lab module, which focuses on the molecular mechanisms of evolution in E. coli, by examining the growth advantage in stationary phase (GASP) phenotype. The GASP phenotype is demonstrated by growing cells into long-term stationary phase (LTSP) and then competing them against un-aged cells in a fresh culture. This module includes learning goals related to strengthening practical laboratory skills and improving student understanding of evolution. In addition, the students generate novel data regarding the effects of different environmental stresses on GASP and the relationship between evolution, genotypic change, mutation frequency, and cell stress. Pairs of students are provided with the experimental background, select a specific aspect of the growth medium to modify, and generate a hypothesis regarding how this alteration will impact the GASP phenotype. From this module, we have demonstrated that students are able to achieve the established learning goals and have produced data that has furthered our understanding of the GASP phenotype. Journal of Microbiology & Biology Education PMID:27158307

  4. Vibrio fischeri exhibit the growth advantage in stationary-phase phenotype.

    PubMed

    Petrun, Branden; Lostroh, C Phoebe

    2013-02-01

    Vibrio fischeri are bioluminescent marine bacteria that can be isolated from their symbiotic animal partners or from ocean water. A V. fischeri population increases exponentially inside the light organ of the Hawaiian bobtail squid (Euprymna scolopes) while the host is quiescent during the day. This bacterial light organ population reaches stationary phase and then remains high during the night, when the squid use bacterial bioluminescence as a counter-predation strategy. At dawn, host squid release 90%-95% of the light organ contents into the ocean water prior to burying in the sand for the day. As the squid sleeps, the cycle of bacterial population growth in the light organ begins again. These V. fischeri cells that are vented into the ocean must persist under typical marine low nutrient conditions until they encounter another opportunity to colonize a host. We hypothesized that because V. fischeri regularly encounter cycles of feast and famine in nature, they would exhibit the growth advantage in stationary phase (GASP) phenotype. We found that older V. fischeri cells exhibit a Class 2 GASP response in which old cells increase dramatically in frequency while the population of young V. fischeri cells remains almost constant during co-incubation. PMID:23461521

  5. Battle of the Bacteria: Characterizing the Evolutionary Advantage of Stationary Phase Growth.

    PubMed

    Kram, Karin E; Yim, Kristina M; Coleman, Aaron B; Sato, Brian K

    2016-05-01

    Providing students with authentic research opportunities has been shown to enhance learning and increase retention in STEM majors. Accordingly, we have developed a novel microbiology lab module, which focuses on the molecular mechanisms of evolution in E. coli, by examining the growth advantage in stationary phase (GASP) phenotype. The GASP phenotype is demonstrated by growing cells into long-term stationary phase (LTSP) and then competing them against un-aged cells in a fresh culture. This module includes learning goals related to strengthening practical laboratory skills and improving student understanding of evolution. In addition, the students generate novel data regarding the effects of different environmental stresses on GASP and the relationship between evolution, genotypic change, mutation frequency, and cell stress. Pairs of students are provided with the experimental background, select a specific aspect of the growth medium to modify, and generate a hypothesis regarding how this alteration will impact the GASP phenotype. From this module, we have demonstrated that students are able to achieve the established learning goals and have produced data that has furthered our understanding of the GASP phenotype. Journal of Microbiology & Biology Education. PMID:27158307

  6. Slow growth of the Rayleigh-Plateau instability in aqueous two phase systems

    PubMed Central

    Geschiere, Sam D.; Ziemecka, Iwona; van Steijn, Volkert; Koper, Ger J. M.; Esch, Jan H. van; Kreutzer, Michiel T.

    2012-01-01

    This paper studies the Rayleigh-Plateau instability for co-flowing immiscible aqueous polymer solutions in a microfluidic channel. Careful vibration-free experiments with controlled actuation of the flow allowed direct measurement of the growth rate of this instability. Experiments for the well-known aqueous two phase system (ATPS, or aqueous biphasic systems) of dextran and polyethylene glycol solutions exhibited a growth rate of 1 s−1, which was more than an order of magnitude slower than an analogous experiment with two immiscible Newtonian fluids with viscosities and interfacial tension that closely matched the ATPS experiment. Viscoelastic effects and adhesion to the walls were ruled out as explanations for the observed behavior. The results are remarkable because all current theory suggests that such dilute polymer solutions should break up faster, not slower, than the analogous Newtonian case. Microfluidic uses of aqueous two phase systems include separation of labile biomolecules but have hitherto be limited because of the difficulty in making droplets. The results of this work teach how to design devices for biological microfluidic ATPS platforms. PMID:22536307

  7. An experimental study of growth and phase change of polar stratospheric cloud particles

    NASA Technical Reports Server (NTRS)

    Hallett, John; Teets, Edward

    1992-01-01

    This report describes the progress made on understanding phase changes related to solutions which may comprise Polar Stratospheric Clouds. In particular, it is concerned with techniques for investigating specific classes of metastability and phase change which may be important not only in Polar Stratospheric Clouds but in all atmospheric aerosols in general. While the lower level atmospheric aerosol consists of mixtures of (NH4)(SO4)2, NH4HSO4, NaCl among others, there is evidence that aerosol at PSC levels is composed of acid aerosol, either injected from volcanic events (such as Pinatubo) or having diffused upward from the lower atmosphere. In particular, sulfuric acid and nitric acid are known to occur at PSC levels, and are suspected of catalyzing ozone destruction reactions by adsorption on surfaces of crystallized particles. The present study has centered on two approaches: (1) the extent of supercooling (with respect to ice) and supersaturation (with respect to hydrate) and the nature of crystal growth in acid solutions of specific molality; and (2) the nature of growth from the vapor of HNO3 - H2O crystals both on a substrate and on a pre-existing aerosol.

  8. Towards an organic palaeosalinity proxy: the effect of salinity, growth rate and growth phase on the hydrogen isotopic composition of alkenones produced by haptophyte algae

    NASA Astrophysics Data System (ADS)

    Chivall, David; M'Boule, Daniela; Schouten, Stefan; Sinninghe Damsté, Jaap S.; van der Meer, Marcel T. J.

    2013-04-01

    Palaeosalinity is one of the most important oceanographic parameters which currently cannot be quantified with reasonable accuracy from sedimentary records. Schouten et al.1 established that the fractionation of hydrogen isotopes between growth water and alkenones produced by the haptophyte algae Emiliania huxleyi and Gephyrocapsa oceanica is salinity dependent. As such, the δD values of alkenones recovered from sediment cores can be used to reconstruct variations in palaeo- sea surface salinity.2 However, to accurately determine absolute palaeosalinity requires a better constraining of the relationship between this hydrogen fractionation, salinity and other parameters such as growth rate and growth phase. Here, we present results from our ongoing work to constrain the relationship between the fractionation factor αalkenone-water, salinity, growth rate and growth phase for the major alkenone-producing haptophytes. In batch cultures of different strains of the open-ocean haptophyte E. huxleyi sampled during the exponential growth phase, αC37alkenone-growthwater increases by between 0.0022 and 0.0033 per unit increase in salinity. A similar relationship is observed in batch cultures of the coastal haptophyte Isochrysis galbana, where α increases with each unit of salinity by 0.0019 - slightly less than for E. huxleyi. However, absolute αC37alkenone-growthwater values vary strongly between species suggesting that species composition has a strong impact on the δD value of alkenones. The fractionation factor for alkenones produced by batch cultures of I. galbana is affected by growth phase: the rate of change of αC37alkenone-growthwater with each unit of salinity decreases from 0.0019 in the exponential phase to 0.0010 during the stationary phase. We also show the effect of varying growth rate over the range 0.2-0.8 day-1 on the fractionation factor for alkenones produced by E. huxleyi grown in continuous culture. These data show that alkenone δD can be used to

  9. Inactivation of human pathogens during phase II composting of manure-based mushroom growth substrate.

    PubMed

    Weil, Jennifer D; Cutter, Catherine N; Beelman, Robert B; LaBorde, Luke F

    2013-08-01

    Commercial production of white button mushrooms (Agaricus bisporus) requires a specialized growth substrate prepared from composted agricultural by-products. Because horse and poultry manures are widely used in substrate formulations, there is a need to determine the extent to which the composting process is capable of eliminating human pathogens. In this study, partially composted substrate was inoculated with a pathogen cocktail (log 10⁶ to 10⁸ CFU/g) containing Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella. Pathogen and indicator-organism reductions were followed at temperatures that typically occurred during a standard 6-day phase II pasteurization and conditioning procedure. Controlled-temperature water bath studies at 48.8, 54.4, and 60°C demonstrated complete destruction of the three pathogens after 36.0, 8.0, and 0.5 h, respectively. Destruction of L. monocytogenes and E. coli O157:H7 at 54.4°C occurred more slowly than E. coli, total coliforms, Enterobacteriaceae, and Salmonella. Microbial reductions that occurred during a standard 6-day phase II pasteurization and conditioning treatment were studied in a small-scale mushroom production research facility. After phase II composting, E. coli, coliforms, and Enterobacteriaceae were below detectable levels, and inoculated pathogens were not detected by direct plating or by enrichment. The results of this study show that a phase II composting process can be an effective control measure for eliminating risks associated with the use of composted animal manures during mushroom production. Growers are encouraged to validate and verify their own composting processes through periodic microbial testing for pathogens and to conduct studies to assure uniform distribution of substrate temperatures during phase II.

  10. Precipitation of low energy electrons at high latitudes: Effects of substorms, interplanetary magnetic field and dipole tilt angle

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1972-01-01

    Data from the auroral particles experiment on OGO-4 were used to study effects of substorm activity, interplanetary magnetic field latitutde, and dipole tilt angle on high-latitude precipitation of 700 eV electrons. It was found that: (1) The high-latitude zone of 700 eV electron precipitation in late evening and early morning hours moves equatorward by 5 to 10 deg during substorms. (2) The low-latitude boundary of polar cusp electron precipitation at 9 to 15 hours MLT also moves equatorward by several degrees during substorms and, in the absence of significant substorm activity, after a period of southward interplanetary magnetic field. (3) With times containing substorm activity or a southward interplanetary magnetic field eliminated, the low-latitude boundary of polar cusp electron precipitation is found to move by approximately 4 deg over the total yearly range of tilt angles. At maximum winter and summer conditions the invariant latitude of the boundary is shown to shift by approximately -3 deg and +1 deg respectively from its equinox location.

  11. Methylation of yeast ribosomal protein S2 is elevated during stationary phase growth conditions.

    PubMed

    Ladror, Daniel T; Frey, Brian L; Scalf, Mark; Levenstein, Mark E; Artymiuk, Jacklyn M; Smith, Lloyd M

    2014-03-14

    Ribosomes, as the center of protein translation in the cell, require careful regulation via multiple pathways. While regulation of ribosomal synthesis and function has been widely studied on the transcriptional and translational "levels," the biological roles of ribosomal post-translational modifications (PTMs) are largely not understood. Here, we explore this matter by using quantitative mass spectrometry to compare the prevalence of ribosomal methylation and acetylation for yeast in the log phase and the stationary phase of growth. We find that of the 27 modified peptides identified, two peptides experience statistically significant changes in abundance: a 1.9-fold decrease in methylation for k(Me)VSGFKDEVLETV of ribosomal protein S1B (RPS1B), and a 10-fold increase in dimethylation for r(DiMe)GGFGGR of ribosomal protein S2 (RPS2). While the biological role of RPS1B methylation has largely been unexplored, RPS2 methylation is a modification known to have a role in processing and export of ribosomal RNA. This suggests that yeast in the stationary phase increase methylation of RPS2 in order to regulate ribosomal synthesis. These results demonstrate the utility of mass spectrometry for quantifying dynamic changes in ribosomal PTMs.

  12. Methylation of Yeast Ribosomal Protein S2 is Elevated During Stationary Phase Growth Conditions

    PubMed Central

    Ladror, Daniel T.; Frey, Brian L.; Scalf, Mark; Levenstein, Mark E.; Artymiuk, Jacklyn M.; Smith, Lloyd M.

    2014-01-01

    Ribosomes, as the center of protein translation in the cell, require careful regulation via multiple pathways. While regulation of ribosomal synthesis and function has been widely studied on the transcriptional and translational “levels,” the biological roles of ribosomal post-translational modifications (PTMs) are largely not understood. Here, we explore this matter by using quantitative mass spectrometry to compare the prevalence of ribosomal methylation and acetylation for yeast in the log phase and the stationary phase of growth. We find that of the 27 modified peptides identified, two peptides experience statistically significant changes in abundance: a 1.9-fold decrease in methylation for k(Me)VSGFKDEVLETV of ribosomal protein S1B (RPS1B), and a 10-fold increase in dimethylation for r(DiMe)GGFGGR of ribosomal protein S2 (RPS2). While the biological role of RPS1B methylation has largely been unexplored, RPS2 methylation is a modification known to have a role in processing and export of ribosomal RNA. This suggests that yeast in the stationary phase increase methylation of RPS2 in order to regulate ribosomal synthesis. These results demonstrate the utility of mass spectrometry for quantifying dynamic changes in ribosomal PTMs. PMID:24486316

  13. Control of in vivo (cellular) phleomycin sensitivity by nuclear genotype, growth phase, and metal ions

    SciTech Connect

    Moore, C.W.

    1982-03-01

    Nuclear genotype, growth phase, and the presence of metal ions all proved to be important in controlling the lethal effects of phleomycin in eukaryotic Saccharomyces cerevisiae. Among 120 normal and radiation-sensitive strains compared for their sensitivities to lethal effects of phleomycin, all mutant strains exhibiting enhanced sensitivities to phleomycin killing were also sensitive to killing by ionizing radiation. Mutants exhibiting sensitivities to phleomycin similar to normal strains of the same ploidy were sensitive to ultraviolet radiation. We conclude that cellular recovery from phleomycin-induced damage in yeast depends upon the function of some or all of 13 independent genes and upon at least some of the same steps in cellular pathways for the biological repair of damage by ionizing radiation. In this respect, the action of phleomycin is similar to the action of its structurally similar analog, bleomycin, even though phleomycin was substantially more cytotoxic. Stationary-phase haploid yeast cells were more sensitive than exponentially growing cells to killing by phleomycin. Survival of stationary-phase yeast was reduced to 0.3 +/- 0.07% (S.E.) after 20-min exposures to phleomycin (1 microgram/ml; approximately 6.7 x 10(-7) M), but lethal effects of phleomycin were completely eradicated (98% survival) by the presence of 0.05 M ethylenediaminetetraacetate during the treatment period. The inactivation indicates an important role for one or more metal ion(s) in the in vivo toxicity of the phleomycin-bleomycin group of anticancer antibiotics.

  14. Temporal transcriptomic analysis of Desulfovibrio vulgaris Hildenborough transition into stationary phase growth during electrondonor depletion

    SciTech Connect

    Clark, M.E.; He, Q.; He, Z.; Huang, K.H.; Alm, E.J.; Wan, X.-F.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Zhou, J.-Z.; Fields, M.W.

    2006-08-01

    Desulfovibrio vulgaris was cultivated in a defined medium, and biomass was sampled for approximately 70 h to characterize the shifts in gene expression as cells transitioned from the exponential to the stationary phase during electron donor depletion. In addition to temporal transcriptomics, total protein, carbohydrate, lactate, acetate, and sulfate levels were measured. The microarray data were examined for statistically significant expression changes, hierarchical cluster analysis, and promoter element prediction and were validated by quantitative PCR. As the cells transitioned from the exponential phase to the stationary phase, a majority of the down-expressed genes were involved in translation and transcription, and this trend continued at the remaining times. There were general increases in relative expression for intracellular trafficking and secretion, ion transport, and coenzyme metabolism as the cells entered the stationary phase. As expected, the DNA replication machinery was down-expressed, and the expression of genes involved in DNA repair increased during the stationary phase. Genes involved in amino acid acquisition, carbohydrate metabolism, energy production, and cell envelope biogenesis did not exhibit uniform transcriptional responses. Interestingly, most phage-related genes were up-expressed at the onset of the stationary phase. This result suggested that nutrient depletion may affect community dynamics and DNA transfer mechanisms of sulfate-reducing bacteria via the phage cycle. The putative feoAB system (in addition to other presumptive iron metabolism genes) was significantly up-expressed, and this suggested the possible importance of Fe{sup 2+} acquisition under metal-reducing conditions. The expression of a large subset of carbohydrate-related genes was altered, and the total cellular carbohydrate levels declined during the growth phase transition. Interestingly, the D. vulgaris genome does not contain a putative rpoS gene, a common attribute

  15. Growth rate induced monoclinic to tetragonal phase transition in epitaxial BiFeO{sub 3} (001) thin films

    SciTech Connect

    Liu Huajun; Yang Ping; Yao Kui; Wang, John

    2011-03-07

    Epitaxial BiFeO{sub 3} thin films were deposited on SrRuO{sub 3} buffered SrTiO{sub 3} (001) substrates at different growth rates by varying the radio frequency sputtering power. With increasing growth rate, the crystal structure of BiFeO{sub 3} films develops from monoclinic lattice to a mixture phase of tetragonal lattice T{sub 1} with c/a{approx}1.05 and giant tetragonal lattice T{sub 2} with c/a{approx}1.23, finally to a single tetragonal phase T{sub 2}, as shown by high resolution synchrotron x-ray diffraction reciprocal space mappings. The observed phase transitions, induced by film growth rate, offer an alternative strategy to manipulate crystalline phases in epitaxial ferroelectric thin films.

  16. Reflectometry-Ellipsometry Reveals Thickness, Growth Rate, and Phase Composition in Oxidation of Copper.

    PubMed

    Diaz Leon, Juan J; Fryauf, David M; Cormia, Robert D; Zhang, Min-Xian Max; Samuels, Kathryn; Williams, R Stanley; Kobayashi, Nobuhiko P

    2016-08-31

    The oxidation of copper is a complicated process. Copper oxide develops two stable phases at room temperature and standard pressure (RTSP): cuprous oxide (Cu2O) and cupric oxide (CuO). Both phases have different optical and electrical characteristics that make them interesting for applications such as solar cells or resistive switching devices. For a given application, it is necessary to selectively control oxide thickness and cupric/cuprous oxide phase volume fraction. The thickness and composition of a copper oxide film growing on the surface of copper widely depend on the characteristics of as-deposited copper. In this Research Article, two samples, copper films prepared by two different deposition techniques, electron-beam evaporation and sputtering, were studied. As the core part of the study, the formation of the oxidized copper was analyzed routinely over a period of 253 days using spectroscopic polarized reflectometry-spectroscopic ellipsometry (RE). An effective medium approximation (EMA) model was used to fit the RE data. The RE measurements were complemented and validated by using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and X-ray diffraction (XRD). Our results show that the two samples oxidized under identical laboratory ambient conditions (RTSP, 87% average relative humidity) developed unique oxide films following an inverse-logarithmic growth rate with thickness and composition different from each other over time. Discussion is focused on the ability of RE to simultaneously extract thickness (i.e., growth rate) and composition of copper oxide films and on plausible physical mechanisms responsible for unique oxidation habits observed in the two copper samples. It appears that extended surface characteristics (i.e., surface roughness and grain boundaries) and preferential crystalline orientation of as-deposited polycrystalline copper films control the growth kinetics of the copper oxide film. Analysis based on a noncontact

  17. Vapor phase growth and photoluminescence of oriented-attachment Zn2GeO4 nanorods array

    NASA Astrophysics Data System (ADS)

    Tang, Haiping; Zhu, Xingda; He, Haiping

    2016-10-01

    We carry out one-step vapor phase growth of high quality Zn2GeO4 nanorods array to provide insights into the growth mechanism of such ternary oxide nanostructures. The morphology and microstructure of these nanorods are investigated carefully. Under certain conditions, the nanorods follow the oriented-attachment growth which is unusual in vapor-based growth. Each nanorod consists of many nanocrystals aligned along the [110] direction. The nanorods show strong deep ultraviolet absorption around 260 nm and broad longlife green luminescence around 490 nm.

  18. Atmospheric and low pressure metalorganic vapor phase epitaxial growth of vertical quantum wells and quantum well wires on submicron gratings

    NASA Astrophysics Data System (ADS)

    Vermeire, G.; Moerman, I.; Yu, Z. Q.; Vermaerke, F.; van Daele, P.; Demeester, P.

    1994-02-01

    Nonplanar metalorganic vapor phase epitaxial growth on submicron gratings has been studied. Growth conditions have been determined to preserve the grating structure and also to enhance the formation of crescent shaped quantum well wire-like GaAs layers. These growth parameters have been used to grow the layer structure of a quantum well wire (QWW) laser, only needing one growth run. Although there is not yet clear evidence for two-dimensional quantum confinement, this technique offers some interesting perspectives for the realization of QWW lasers.

  19. Monte Carlo studies of a driven lattice gas. I. Growth and asymmetry during phase segregation

    SciTech Connect

    Alexander, F.J.; Laberge, C.A.; Lebowitz, J.L.

    1996-02-01

    We investigate the effects of an external field on the kinetics of phase segregation in systems with conservative diffusive dynamics. We find that, in contrast to the situation without a field, there are now qualitative differences between the results of microscopic simulations of a 2D lattice model with biased Kawasaki exchanges and those obtained from various modifications of the macroscopic Cahn-Hilliard equation (mCH). While both microscopic simulations and numerical solutions of MCH yield triangular domains, we find that in the former the triangles mainly point opposite to the field, while in the latter and in new calculations with the mCH they point along the field. On the other hand, the rate of growth of the clusters and their final state, bands parallel to the field, are similar. This issue and the question of the mesoscopic behavior of cell dynamical systems is discussed but not resolved.

  20. PHASE-FIELD SIMULATION OF INTERGRANULAR BUBBLE GROWTH AND PERCOLATION IN BICRYSTALS

    SciTech Connect

    Paul C. Millett; Michael Tonks; S. B. Biner; Liangzhe Zhang; K. Chockalingam; Yongfeng Zhang

    2012-06-01

    We present three-dimensional phase-field simulations of the growth and coalescence of intergranular bubbles in bicrystal grain geometries. We investigate the dependency of bubble percolation on two factors: the initial bubble density and the bubble shape, which is governed by the ratio of the grain boundary energy over the surface energy. We find that variations of each of these factors can lead to large discrepancies in the bubble coalescence rate, and eventual percolation, which may partially explain this observed occurrence in experimental investigations. The results presented here do not account for concurrent gas production and bubble resolution due to irradiation, therefore this simulation study is most applicable to post-irradiation annealing.

  1. Solubility, phase transition, kinetic ripening and growth rates of porcine pancreatic α-amylase isoenzymes

    NASA Astrophysics Data System (ADS)

    Boistelle, Roland; Astier, Jean Pierre; Marchis-Mouren, Guy; Desseaux, Véronique; Haser, Richard

    1992-09-01

    Two polymorphic modifications, A and B, of porcine pancreatic α-amylase were grown between 4 and 30°C. A and B crystals are made up by two isoenzymes so that four crystal varieties (AI, AII, BI, BII) exist. A and B are easily distinguished due to their typical crystal habits but there is no difference between AI and AII or BI and BII respectively at least as concerns their unit cells, crystal habits and solubilities for instance. On the other hand, the growth rates are somewhat different, even if the overall rate determining step is volume diffusion. The transition temperature between A and B polymorphs is 18°C, A being stable above this temperature. A and B can undergo a phase transition by slightly changing the temperature around the transition point. Kinetic ripening experiments show that ripening can be used for growing larger crystals at the expenses of smaller ones.

  2. The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae

    NASA Astrophysics Data System (ADS)

    Chivall, David; M'Boule, Daniela; Sinke-Schoen, Daniëlle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2014-09-01

    The isotopic fractionation of hydrogen during the biosynthesis of alkenones produced by marine haptophyte algae has been shown to depend on salinity and, as such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. The relationship between fractionation and salinity has previously only been determined during exponential growth, whilst it is not yet known in which growth phases natural haptophyte populations predominantly exist. We have therefore determined the relationship between the fractionation factor, αalkenones-water, and salinity for C37 alkenones produced in different growth phases of batch cultures of the major alkenone-producing coastal haptophytes Isochrysis galbana (strain CCMP 1323) and Chrysotila lamellosa (strain CCMP 1307) over a range in salinity from ca. 10 to 35. αalkenones-water was similar in both species, ranging over 0.841-0.900 for I. galbana and 0.838-0.865 for C. lamellosa. A strong (0.85 ⩽ R2 ⩽ 0.97; p < 0.0001) relationship between salinity and fractionation factor was observed in both species at all growth phases investigated. This suggests that alkenone δD has the potential to be used as a salinity proxy in neritic areas where haptophyte communities are dominated by these coastal species. However, there was a marked difference in the sensitivity of αalkenones-water to salinity between different growth phases: in the exponential growth phase of I. galbana, αalkenones-water increased by 0.0019 per salinity unit (S-1), but was less sensitive at 0.0010 and 0.0008 S-1 during the stationary and decline phases, respectively. Similarly, in C. lamellosa αalkenones-water increased by 0.0010 S-1 in the early stationary phase and by 0.0008 S-1 during the late stationary phase. Assuming the shift in sensitivity of αalkenones-water to salinity observed at the end of exponential growth in I. galbana is similar in other alkenone-producing species, the predominant growth phase of natural populations of

  3. Biogenesis and growth phase-dependent alteration of 5-methoxycarbonylmethoxyuridine in tRNA anticodons.

    PubMed

    Sakai, Yusuke; Miyauchi, Kenjyo; Kimura, Satoshi; Suzuki, Tsutomu

    2016-01-29

    Post-transcriptional modifications at the anticodon first (wobble) position of tRNA play critical roles in precise decoding of genetic codes. 5-carboxymethoxyuridine (cmo(5)U) and its methyl ester derivative 5-methoxycarbonylmethoxyuridine (mcmo(5)U) are modified nucleosides found at the anticodon wobble position in several tRNAs from Gram-negative bacteria. cmo(5)U and mcmo(5)U facilitate non-Watson-Crick base pairing with guanosine and pyrimidines at the third positions of codons, thereby expanding decoding capabilities. By mass spectrometric analyses of individual tRNAs and a shotgun approach of total RNA from Escherichia coli, we identified mcmo(5)U as a major modification in tRNA(Ala1), tRNA(Ser1), tRNA(Pro3) and tRNA(Thr4); by contrast, cmo(5)U was present primarily in tRNA(Leu3) and tRNA(Val1). In addition, we discovered 5-methoxycarbonylmethoxy-2'-O-methyluridine (mcmo(5)Um) as a novel but minor modification in tRNA(Ser1). Terminal methylation frequency of mcmo(5)U in tRNA(Pro3) was low (≈30%) in the early log phase of cell growth, gradually increased as growth proceeded and reached nearly 100% in late log and stationary phases. We identified CmoM (previously known as SmtA), an AdoMet-dependent methyltransferase that methylates cmo(5)U to form mcmo(5)U. A luciferase reporter assay based on a +1 frameshift construct revealed that terminal methylation of mcmo(5)U contributes to the decoding ability of tRNA(Ala1). PMID:26681692

  4. Treatment of advanced pancreatic cancer with opioid growth factor: phase I.

    PubMed

    Smith, Jill P; Conter, Robert L; Bingaman, Sandra I; Harvey, Harold A; Mauger, David T; Ahmad, Mejdi; Demers, Lawrence M; Stanley, Wayne B; McLaughlin, Patricia J; Zagon, Ian S

    2004-03-01

    Opioid growth factor (OGF) is an endogenous pentapeptide that inhibits growth of human pancreatic cancer cells in culture, as well as xenografts in nude mice. To establish the maximum tolerated dose (MTD), and determine safety and toxicity of OGF, a phase I trial was performed in patients with advanced unresectable pancreatic cancer. Patients with unresectable pancreatic adenocarcinoma were treated with escalating doses of OGF for 30 min i.v. to determine the MTD. The s.c. route of administration also was evaluated. Once the MTD was established, a group of patients was treated chronically, and monitored for safety and toxicity. Hypotension was the dose-limiting toxicity, resulting in a MTD of 250 microg/kg i.v. Due to limited solubility of OGF in small volumes, a maximum dose of 50 microg/kg twice daily was determined by the s.c. route of administration. No adverse events were reported for oxygen saturation, cardiac rhythm, laboratory values or neurological status in either the acute or chronic parts of the study with the i.v. or s.c. routes. During the chronic i.v. phase, two subjects had resolution of liver metastases and one showed regression of the pancreatic tumor. Mean survival from the time of diagnosis was 8.7 months (range 2-23 months) in the i.v. group and 9.5 months (range 1-18 months) in the s.c. group. We conclude that OGF can be safely administered to patients with advanced pancreatic cancer. Further studies are needed to determine the efficacy of OGF alone or in combination with present modes of therapy for the treatment of pancreatic cancer.

  5. Growth-Phase-Specific Modulation of Cell Morphology and Gene Expression by an Archaeal Histone Protein

    PubMed Central

    Dulmage, Keely A.; Todor, Horia

    2015-01-01

    ABSTRACT In all three domains of life, organisms use nonspecific DNA-binding proteins to compact and organize the genome as well as to regulate transcription on a global scale. Histone is the primary eukaryotic nucleoprotein, and its evolutionary roots can be traced to the archaea. However, not all archaea use this protein as the primary DNA-packaging component, raising questions regarding the role of histones in archaeal chromatin function. Here, quantitative phenotyping, transcriptomic, and proteomic assays were performed on deletion and overexpression mutants of the sole histone protein of the hypersaline-adapted haloarchaeal model organism Halobacterium salinarum. This protein is highly conserved among all sequenced haloarchaeal species and maintains hallmark residues required for eukaryotic histone functions. Surprisingly, despite this conservation at the sequence level, unlike in other archaea or eukaryotes, H. salinarum histone is required to regulate cell shape but is not necessary for survival. Genome-wide expression changes in histone deletion strains were global, significant but subtle in terms of fold change, bidirectional, and growth phase dependent. Mass spectrometric proteomic identification of proteins from chromatin enrichments yielded levels of histone and putative nucleoid-associated proteins similar to those of transcription factors, consistent with an open and transcriptionally active genome. Taken together, these data suggest that histone in H. salinarum plays a minor role in DNA compaction but important roles in growth-phase-dependent gene expression and regulation of cell shape. Histone function in haloarchaea more closely resembles a regulator of gene expression than a chromatin-organizing protein like canonical eukaryotic histone. PMID:26350964

  6. Biogenesis and growth phase-dependent alteration of 5-methoxycarbonylmethoxyuridine in tRNA anticodons

    PubMed Central

    Sakai, Yusuke; Miyauchi, Kenjyo; Kimura, Satoshi; Suzuki, Tsutomu

    2016-01-01

    Post-transcriptional modifications at the anticodon first (wobble) position of tRNA play critical roles in precise decoding of genetic codes. 5-carboxymethoxyuridine (cmo5U) and its methyl ester derivative 5-methoxycarbonylmethoxyuridine (mcmo5U) are modified nucleosides found at the anticodon wobble position in several tRNAs from Gram-negative bacteria. cmo5U and mcmo5U facilitate non-Watson–Crick base pairing with guanosine and pyrimidines at the third positions of codons, thereby expanding decoding capabilities. By mass spectrometric analyses of individual tRNAs and a shotgun approach of total RNA from Escherichia coli, we identified mcmo5U as a major modification in tRNAAla1, tRNASer1, tRNAPro3 and tRNAThr4; by contrast, cmo5U was present primarily in tRNALeu3 and tRNAVal1. In addition, we discovered 5-methoxycarbonylmethoxy-2′-O-methyluridine (mcmo5Um) as a novel but minor modification in tRNASer1. Terminal methylation frequency of mcmo5U in tRNAPro3 was low (≈30%) in the early log phase of cell growth, gradually increased as growth proceeded and reached nearly 100% in late log and stationary phases. We identified CmoM (previously known as SmtA), an AdoMet-dependent methyltransferase that methylates cmo5U to form mcmo5U. A luciferase reporter assay based on a +1 frameshift construct revealed that terminal methylation of mcmo5U contributes to the decoding ability of tRNAAla1. PMID:26681692

  7. Wp index: A new substorm index derived from high-resolution geomagnetic field data at low latitude

    NASA Astrophysics Data System (ADS)

    Nosé, M.; Iyemori, T.; Wang, L.; Hitchman, A.; Matzka, J.; Feller, M.; Egdorf, S.; Gilder, S.; Kumasaka, N.; Koga, K.; Matsumoto, H.; Koshiishi, H.; Cifuentes-Nava, G.; Curto, J. J.; Segarra, A.; ćElik, C.

    2012-08-01

    Geomagnetic field data with high time resolution (typically 1 s) have recently become more commonly acquired by ground stations. Such high time resolution data enable identifying Pi2 pulsations which have periods of 40-150 s and irregular (damped) waveforms. It is well-known that pulsations of this type are clearly observed at mid- and low-latitude ground stations on the nightside at substorm onset. Therefore, with 1-s data from multiple stations distributed in longitude around the Earth's circumference, substorm onset can be regularly monitored. In the present study we propose a new substorm index, the Wp index (Wave and planetary), which reflects Pi2 wave power at low-latitude, using geomagnetic field data from 11 ground stations. We compare the Wp index with the AE and ASY indices as well as the electron flux and magnetic field data at geosynchronous altitudes for 11 March 2010. We find that significant enhancements of the Wp index mostly coincide with those of the other data. Thus the Wp index can be considered a good indicator of substorm onset. The Wp index, other geomagnetic indices, and geosynchronous satellite data are plotted in a stack for quick and easy search of substorm onset. The stack plots and digital data of the Wp index are available at the Web site (http://s-cubed.info) for public use. These products would be useful to investigate and understand space weather events, because substorms cause injection of intense fluxes of energetic electrons into the inner magnetosphere and potentially have deleterious impacts on satellites by inducing surface charging.

  8. Timing substorm onsets via travel-time magnetoseismology: A case for the outside-in model

    NASA Astrophysics Data System (ADS)

    Chi, Peter; Russell, Christopher; Ohtani, Shin

    The time history of events during substorms is an important, outstanding problem in magnetospheric physics. The sequence has been described either by the "outside-in" model, in which the fast plasma flow ejected by reconnection in the mid-tail moves Earthward, or by the "inside-out" model, in which the onset starts with the cross-tail current sheet collapse at 8 to 12 RE in the tail that later initiates reconnection further downtail. In this study we examined the Pi 2 pulsations observed by ground magnetometers and the observations of auroral brightening to lay out the time history of events during a substorm on July 22, 1998. The arrival time of Pi 2, which refers to the first peak in Pi 2 amplitude, observed by IGPP-LANL and CARISMA magnetometers presents a strong function of latitude. Using the Tamao travel time as the forward model, the inversion from the observed Pi 2 arrival time infers that the onset in the magnetotail started at X = -22 RE at 0653:40 UT, or approximately one minute earlier than the Pi 2 onset time identified in ground data. The CARISMA photometer data at Fort Smith and Gillam show that the auroral brightening started at approximately 0656 UT, or more than two minutes after the estimated onset time in the magnetotail. The comparison between the impulse start time in the tail and the onset time of auroral brightening presents a clear case where the time history of events follows the outside-in model. The model identification is made more confidently by using the magnetoseismic method that can time substorm onsets in the magnetotail.

  9. Observations of field-aligned currents, waves, and electric fields at substorm onset

    NASA Technical Reports Server (NTRS)

    Smits, D. P.; Hughes, W. J.; Cattell, C. A.; Russell, C. T.

    1986-01-01

    Substorm onsets, identified Pi 2 pulsations observed on the Air Force Geophysics Laboratory Magnetometer Network, are studied using magnetometer and electric field data from ISEE 1 as well as magnetometer data from the geosynchronous satellites GOES 2 and 3. The mid-latitude magnetometer data provides the means of both timing and locating the substorm onset so that the spacecraft locations with respect to the substorm current systems are known. During two intervals, each containing several onsets or intensifications, ISEE 1 observed field-aligned current signatures beginning simultaneously with the mid-latitude Pi 2 pulsation. Close to the earth broadband bursts of wave noise were observed in the electric field data whenever field-aligned currents were detected. One onset occurred when ISEE 1 and GOES 2 were on the same field line but in opposite hemispheres. During this onset ISEE 1 and GOES 2 saw magnetic signatures which appear to be due to conjugate field-aligned currents flowing out of the western end of the westward auroral electrojets. The ISEE 1 signature is of a line current moving westward past the spacecraft. During the other interval, ISEE 1 was in the near-tail region near the midnight meridian. Plasma data confirms that the plasma sheet thinned and subsequently expanded at onset. Electric field data shows that the plasma moved in the opposite direction to the plasma sheet boundary as the boundary expanded which implies that there must have been an abundant source of hot plasma present. The plasma motion was towards the center of the plasma sheet and earthwards and consisted of a series of pulses rather than a steady flow.

  10. A Simulation Study of the Thermosphere Mass Density Response to Substorms Using GITM Model

    NASA Astrophysics Data System (ADS)

    Liu, X.; Ridley, A. J.

    2014-12-01

    The temporal and spatial variations of the thermosphere mass density during a variety of idealized substorms were investigated using the Global Ionosphere Thermosphere Model (GITM) simulation and Challenging Minisatellite Payload (CHAMP) satellite. From the GITM simulation, the maximum mass density perturbation of an idealized substorm with a peak variation of Hemispheric Power (HP) Index of 50 GW and interplanetary magnetic field (IMF) Bz of -2 nT was ~14% about 50 min after the substorm onset in the nightside sector of the aurora zone. About 110 min after onset, a negative mass density perturbation (~-5%) occurred in the night sector, which was consistent with the mass density measurement of the CHAMP satellite. Further investigation suggests that a large scale in situ gravity wave was generated in the aurora zone and propagated to the mid and low latitudes. Simulations with IMF Bz changes, with HP being constant and HP changing and IMF Bz being constant were run to investigate any nonlinearities in the combined response. The mass density perturbation due the IMF Bz variation peaks in the dusk sector and the density perturbation due to HP input peaks in the nightside sector. The non-linear of the mass density response to different energy input is less than 6%. The thermospheric mass density at higher altitudes is more sensitive to the Joule heating energy input. The change in hemisphere power adds electron density to lower altitudes, so the heating due to the HP change is at lower altitudes than the heating due to the IMF Bz change. This causes the density change due to the HP change to be larger than the density change due to the IMF change.

  11. Dynamical effects of geomagnetic storms and substorms in the middle-latitude ionosphere: An observational campaign

    NASA Astrophysics Data System (ADS)

    Pi, Xiaoqing; Mendillo, Michael; Hughes, W. Jeffrey; Buonsanto, Michael J.; Sipler, Dwight P.; Kelly, John; Zhou, Qihou; Lu, Gang; Hughes, Terrence J.

    2000-04-01

    An observational campaign was conducted in October 1992 for ~36 hours, at three high- to low-latitude sites near 75°W longitude (Sondre Stromfjord, Millstone Hill, and Arecibo). Vector plasma drift velocities are obtained using the incoherent scatter radar technique at each site. Neutral winds were measured using a Fabry-Perot interferometer, and 6300 Å airglow structures were imaged at the midlatitude site. Electric fields and meridional winds for the period were perturbed when magnetic storms and substorms occurred on the day and night of the campaign. The penetration of magnetospheric electric field and the following interplays between ionospheric electrodynamics and thermospheric wind perturbations in the midlatitude ionosphere are assessed using the multidiagnostic measurements. Evidence for traveling atmospheric disturbances (TADs) and large-scale gravity waves induced by auroral heating effects upon the thermosphere is identified. Diffuse aurora and a stable aurora red (SAR) arc were observed from Millstone Hill during the night of the campaign. The SAR arc moved southward when there were westward electric field perturbations, indicating plasmasphere compression in the postmidnight sector under substorm conditions. The SAR arc location was used to infer the motion of the magnetospheric shielding layer past the Millstone Hill site. Ionospheric F region disturbances in hmF2, NmF2, and total electron content were driven by the observed dynamics, exhibiting a complex mix of wind and electric field perturbations. While standard model episodes of penetration and shielding/overshielding occurred during the daytime event, such unambiguous clarifications were far less obvious during the nighttime event. This is perhaps due to the prolonged period of moderate geomagnetic activity that served as the background conditions for the substorms that occurred during the campaign.

  12. Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus.

    PubMed

    Zhang, Jia Lin; Zhao, Songtao; Han, Cheng; Wang, Zhunzhun; Zhong, Shu; Sun, Shuo; Guo, Rui; Zhou, Xiong; Gu, Cheng Ding; Yuan, Kai Di; Li, Zhenyu; Chen, Wei

    2016-08-10

    Blue phosphorus, a previously unknown phase of phosphorus, has been recently predicted by theoretical calculations and shares its layered structure and high stability with black phosphorus, a rapidly rising two-dimensional material. Here, we report a molecular beam epitaxial growth of single layer blue phosphorus on Au(111) by using black phosphorus as precursor, through the combination of in situ low temperature scanning tunneling microscopy and density functional theory calculation. The structure of the as-grown single layer blue phosphorus on Au(111) is explained with a (4 × 4) blue phosphorus unit cell coinciding with a (5 × 5) Au(111) unit cell, and this is verified by the theoretical calculations. The electronic bandgap of single layer blue phosphorus on Au(111) is determined to be 1.10 eV by scanning tunneling spectroscopy measurement. The realization of epitaxial growth of large-scale and high quality atomic-layered blue phosphorus can enable the rapid development of novel electronic and optoelectronic devices based on this emerging two-dimensional material. PMID:27359041

  13. Solution-Phase Epitaxial Growth of Quasi-Monocrystalline Cuprous Oxide on Metal Nanowires

    PubMed Central

    2014-01-01

    The epitaxial growth of monocrystalline semiconductors on metal nanostructures is interesting from both fundamental and applied perspectives. The realization of nanostructures with excellent interfaces and material properties that also have controlled optical resonances can be very challenging. Here we report the synthesis and characterization of metal–semiconductor core–shell nanowires. We demonstrate a solution-phase route to obtain stable core–shell metal–Cu2O nanowires with outstanding control over the resulting structure, in which the noble metal nanowire is used as the nucleation site for epitaxial growth of quasi-monocrystalline Cu2O shells at room temperature in aqueous solution. We use X-ray and electron diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, photoluminescence spectroscopy, and absorption spectroscopy, as well as density functional theory calculations, to characterize the core–shell nanowires and verify their structure. Metal–semiconductor core–shell nanowires offer several potential advantages over thin film and traditional nanowire architectures as building blocks for photovoltaics, including efficient carrier collection in radial nanowire junctions and strong optical resonances that can be tuned to maximize absorption. PMID:25233392

  14. Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus.

    PubMed

    Zhang, Jia Lin; Zhao, Songtao; Han, Cheng; Wang, Zhunzhun; Zhong, Shu; Sun, Shuo; Guo, Rui; Zhou, Xiong; Gu, Cheng Ding; Yuan, Kai Di; Li, Zhenyu; Chen, Wei

    2016-08-10

    Blue phosphorus, a previously unknown phase of phosphorus, has been recently predicted by theoretical calculations and shares its layered structure and high stability with black phosphorus, a rapidly rising two-dimensional material. Here, we report a molecular beam epitaxial growth of single layer blue phosphorus on Au(111) by using black phosphorus as precursor, through the combination of in situ low temperature scanning tunneling microscopy and density functional theory calculation. The structure of the as-grown single layer blue phosphorus on Au(111) is explained with a (4 × 4) blue phosphorus unit cell coinciding with a (5 × 5) Au(111) unit cell, and this is verified by the theoretical calculations. The electronic bandgap of single layer blue phosphorus on Au(111) is determined to be 1.10 eV by scanning tunneling spectroscopy measurement. The realization of epitaxial growth of large-scale and high quality atomic-layered blue phosphorus can enable the rapid development of novel electronic and optoelectronic devices based on this emerging two-dimensional material.

  15. Modeling crack growth during Li insertion in storage particles using a fracture phase field approach

    NASA Astrophysics Data System (ADS)

    Klinsmann, Markus; Rosato, Daniele; Kamlah, Marc; McMeeking, Robert M.

    2016-07-01

    Fracture of storage particles is considered to be one of the major reasons for capacity fade and increasing power loss in many commercial lithium ion batteries. The appearance of fracture and cracks in the particles is commonly ascribed to mechanical stress, which evolves from inhomogeneous swelling and shrinkage of the material when lithium is inserted or extracted. Here, a coupled model of lithium diffusion, mechanical stress and crack growth using a phase field method is applied to investigate how the formation of cracks depends on the size of the particle and the presence or absence of an initial crack, as well as the applied flux at the boundary. The model shows great versatility in that it is free of constraints with respect to particle geometry, dimension or crack path and allows simultaneous observation of the evolution of lithium diffusion and crack growth. In this work, we focus on the insertion process. In particular, we demonstrate the presence of intricate fracture phenomena, such as, crack branching or complete breakage of storage particles within just a single half cycle of lithium insertion, a phenomenon that was only speculated about before.

  16. Growth Phase-Dependent Activation of the DccRS Regulon of Campylobacter jejuni▿

    PubMed Central

    Wösten, Marc M. S. M.; van Dijk, Linda; Parker, Craig T.; Guilhabert, Magalie R.; van der Meer-Janssen, Ynske P. M.; Wagenaar, Jaap A.; van Putten, Jos P. M.

    2010-01-01

    Two-component systems are widespread prokaryotic signal transduction devices which allow the regulation of cellular functions in response to changing environmental conditions. The two-component system DccRS (Cj1223c-Cj1222c) of Campylobacter jejuni is important for the colonization of chickens. Here, we dissect the DccRS system in more detail and provide evidence that the sensor DccS selectively phosphorylates the cognate effector, DccR. Microarray expression profiling, real-time reverse transcription-PCR (RT-PCR), electrophoretic mobility shift assay, and primer extension analyses revealed that the DccRS regulon of strain 81116 consists of five promoter elements, all containing the consensus direct repeat sequence WTTCAC-N6-TTCACW covering the putative −35 promoter regions. One of these promoters is located in front of an operon encoding a putative macrolide efflux pump while the others are in front of genes coding for putative periplasmic or membrane proteins. The DccRS-regulated genes in C. jejuni strain 81116 are needed to enhance early in vivo growth of C. jejuni in 7-day-old chickens. The DccRS system is activated in the late stationary bacterial growth phase, probably by released metabolic products. Whole-genome mRNA profiling and real-time RT-PCR analysis under these conditions demonstrated that the system has no influence on the transcription of genes outside the DccRS regulon. PMID:20348251

  17. Intramyocardial transfer of hepatocyte growth factor as an adjunct to CABG: phase I clinical study.

    PubMed

    Kim, J S; Hwang, H Y; Cho, K R; Park, E-A; Lee, W; Paeng, J C; Lee, D S; Kim, H-K; Sohn, D-W; Kim, K-B

    2013-07-01

    The purpose of this phase I clinical trial was to evaluate the safety, tolerability and potential efficacy of VM202, naked DNA expressing two isoforms of hepatocyte growth factor, as an adjunct therapy to coronary artery bypass grafting (CABG) in patients with ischemic heart disease (IHD). Nine patients were assigned to receive increasing doses (0.5 to 2.0 mg) of VM202 injected into the right coronary artery (RCA) territory following completion of CABG for the left coronary artery territory. Patients were evaluated for safety and tolerability, and changes in myocardial functions were monitored via echocardiography, cardiac magnetic resonance imaging and myocardial single photon emission computed tomography throughout 6-month follow-up period. No serious complication related to VM202 was observed throughout the 6-month follow-up period. Global myocardial functions (wall motion score index, P=0.0084; stress perfusion, P=0.0002) improved during the follow-up period. In the RCA region, there was an increase in the stress perfusion (baseline vs 3-month, P=0.024; baseline vs 6-month, P=0.024) and also in the wall thickness of the diastolic and systolic phases. Intramyocardial injection of VM202 can be safely used in IHD patients with the tolerable dose of 2.0 mg. In addition, VM202 might appear to have improved regional myocardial perfusion and wall thickness in the injected region. PMID:23151518

  18. Investigation of the growth of garnet films by liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sandfort, R. M.

    1974-01-01

    Liquid phase expitaxy was investigated to determine its applicability to fabricating magnetic rare earth garnet films for spacecraft data recording systems. Two mixed garnet systems were investigated in detail: (1) Gd-Y and (2) Eu-Yb-Y. All films were deposited on Gd3Ga5012 substrates. The uniaxial anisotropy of the Gd-Y garnets is primarily stress-induced. These garnets are characterized by high-domain wall mobility, low coercivity and modest anisotropy. Characteristic length was found to be relatively sensitive to temperature. The Eu-Yb-Y garnets exhibit acceptable mobilities, good temperature stability and reasonable quality factors. The uniaxial anisotropy of these garnets is primarily growth-induced. The system is well suited for compositional "tailoring" to optimize specific desirable properties. Liquid phase epitaxy can be used to deposit Gd3Ga5012 spacing layers on magnetic garnet films and this arrangement possesses certain advantages over more conventional magnetic filmspacing layer combinations. However, it cannot be used if the magnetic film is to be ion implanted.

  19. Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase

    NASA Astrophysics Data System (ADS)

    Butler, Ethan E.; Huybers, Peter

    2015-03-01

    Maize yield is sensitive to high temperatures, and most large scale analyses have used a single, fixed sensitivity to represent this vulnerability over the course of a growing season. Field scale studies, in contrast, highlight how temperature sensitivity varies over the course of development. Here we couple United States Department of Agriculture yield and development data from 1981-2012 with weather station data to resolve temperature sensitivity according to both region and growth interval. On average, temperature sensitivity peaks during silking and grain filling, but there are major regional variations. In Northern states grain filling phases are shorter when temperatures are higher, whereas Southern states show little yield sensitivity and have longer grain filling phases during hotter seasons. This pattern of grain filling sensitivity and duration accords with the whole-season temperature sensitivity in US maize identified in recent studies. Further exploration of grain filling duration and its response to high temperatures may be useful in determining the degree to which maize agriculture can be adapted to a hotter climate.

  20. The Lewis Research Center geomagnetic substorm simulation facility. [its function in determining the response of spacecraft materials

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Stevens, N. J.; Sturman, J. C.

    1976-01-01

    A simulation facility was established at the NASA-Lewis Research Center to determine the response of typical spacecraft materials to the geomagnetic substorm environment and to evaluate instrumentation that will be used to monitor spacecraft system response to this environment. Space environment conditions simulated included the thermal-vacuum conditions of space, solar simulation, geomagnetic substorm electron fluxes and energies, and the low energy plasma environment. Measurements for spacecraft material tests included sample currents, sample surface potentials, and the cumulative number of discharges. Discharge transients were measured by means of current probes and oscilloscopes and were verified by a photomultiplier.

  1. Energetic particle beams in the plasma sheet boundary layer following substorm expansion - Simultaneous near-earth and distant tail observations

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Baker, D. N.; Gloeckler, G.; Ipavich, F. M.; Galvin, A. B.; Klecker, B.; Terasawa, T.; Tsurutani, B. T.

    1986-01-01

    Simultaneous observations of ions and electron beams in the near-earth and deep magnetotail following the onset of substorm are analyzed in terms of the substorm neutral line model. The observations were collected on March 20, 1983 with ISSE 1 and 3. Energy fluxes and intensity-time profiles of protons and electrons are studied. The data reveal that the reconnection at the near-earth neutral line produces ions and electrons for the plasma sheet boundary layer. The maximum electric potential along the neutral line is evaluated.

  2. A case study of lightning, whistlers, and associated ionospheric effects during a substorm particle injection event

    NASA Technical Reports Server (NTRS)

    Rodriguez, J. V.; Inan, U. S.; Li, Y. Q.; Holzworth, R. H.; Smith, A. J.; Orville, R. E.; Rosenberg, T. J.

    1992-01-01

    The relationships among cloud-to-ground (CG) lightning, sferics, whistlers, VLF amplitude perturbations, and other ionospheric phenomena occurring during substorm events were investigated using data from simultaneous ground-based observations of narrow-band and broad-band VLF radio waves and of CG lightning made during the 1987 Wave-Induced Particle Precipitation campaign conducted from Wallops Island (Virginia). Results suggest that the data collected on ionospheric phenomena during this event may represent new evidence of direct coupling of lightning energy to the lower ionosphere, either in conjunction with or in the absence of gyroresonant interactions between whistler mode waves and electrons in the magnetosphere.

  3. Comparison of outliers and novelty detection to identify ionospheric TEC irregularities during geomagnetic storm and substorm

    NASA Astrophysics Data System (ADS)

    Pattisahusiwa, Asis; Houw Liong, The; Purqon, Acep

    2016-08-01

    In this study, we compare two learning mechanisms: outliers and novelty detection in order to detect ionospheric TEC disturbance by November 2004 geomagnetic storm and January 2005 substorm. The mechanisms are applied by using v-SVR learning algorithm which is a regression version of SVM. Our results show that both mechanisms are quiet accurate in learning TEC data. However, novelty detection is more accurate than outliers detection in extracting anomalies related to geomagnetic events. The detected anomalies by outliers detection are mostly related to trend of data, while novelty detection are associated to geomagnetic events. Novelty detection also shows evidence of LSTID during geomagnetic events.

  4. Ice Formation and Growth in Orographically-Enhanced Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    David, Robert; Lowenthal, Douglas; Gannet Hallar, A.; McCubbin, Ian; Avallone, Linnea; Mace, Gerald; Wang, Zhien

    2015-04-01

    The formation and evolution of ice in mixed-phase clouds continues to be an active area of research due to the complex interactions between vapor, liquid and ice. Orographically-enhanced clouds are commonly mixed-phase during winter. An airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured temperature, and cloud droplet and ice crystal size distributions at SPL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes. Small ice crystal concentrations were routinely higher at the surface and a relationship between small ice crystal concentrations, large cloud droplet concentrations and temperature was observed, suggesting liquid-dependent ice nucleation near cloud base. Terrain flow effects on cloud microphysics and structure are considered.

  5. Behaviour of log-phase Escherichia coli at temperatures near the minimum for growth.

    PubMed

    Jones, T; Gill, C O; McMullen, L M

    2003-11-15

    The behaviour of cold-adapted, log-phase Escherichia coli in broth cultures incubated at temperatures between 7 and 15 degrees C was examined by determinations of numbers of colonies recovered on plate count agar (PCA); absorbance at 600 nm (A600); cell lengths from photomicrographs; and cell size distributions by flow cytometry. Cultures incubated between 7 and 10 degrees C were evaluated for 8 days or until A600 values approached 1.0. Cultures incubated at > or =12 degrees C were subcultured to maintain them in the log phase for up to 8 days. Numbers of colonies recovered declined when cultures were incubated at 7 degrees C, but increased when cultures were incubated at higher temperatures. However, A600 values increased during incubation at all temperatures. The mean lengths of cells doubled during incubation at 7 degrees C for 8 days, but remained constant during incubation at 10 degrees C for 1.25 days. Forward angle light scatter (FALS) measurements obtained by flow cytometry indicated that the mean length of cells increased at < or = 8 degrees C, but not at 10 degrees C. A reference value at the 90th percentile of FALS measurements on day 0 was used to determine changes in the distribution of the lengths of cells. About 80% or 17% of the cells were above the reference value after 5 days of incubation at 7 degrees C or 1.25 days of incubation at 10 degrees C, respectively. Cultures that were maintained in the log phase at 12 degrees C became increasingly heterogeneous in cell size after 2 days, but cultures that were maintained at 13 degrees C remained constant in cell size for 8 days. The observations have implications for the prediction of mesophile proliferation at temperatures that approach their minima for growth.

  6. The diagnostic performance of dental maturity for identification of the circumpubertal growth phases: a meta-analysis.

    PubMed

    Perinetti, Giuseppe; Westphalen, Graziela H; Biasotto, Matteo; Salgarello, Stefano; Contardo, Luca

    2013-05-23

    The present meta-analysis initially evaluates the reliability of dental maturation in the identification of the circumpubertal growth phases, essentially for determining treatment timing in orthodontics. A literature survey was performed using the Medline, LILACS and SciELO databases, and the Cochrane Library (2000 to 2011). Studies of the correlation between dental and cervical vertebral maturation methods were considered. The mandibular canine, the first and second premolars, and the second molar were investigated. After the selection, six articles qualified for the final analysis. The overall correlation coefficients were all significant, ranging from 0.57 to 0.73. Five of these studies suggested the use of dental maturation as an indicator of the growth phase. However, the diagnostic performance analysis uncovered limited reliability only for the identification of the pre-pubertal growth phase. The determination of dental maturity for the assessment of treatment timing in orthodontics is not recommended.

  7. Multiscale approach to CO2 hydrate formation in aqueous solution: phase field theory and molecular dynamics. Nucleation and growth.

    PubMed

    Tegze, György; Pusztai, Tamás; Tóth, Gyula; Gránásy, László; Svandal, Atle; Buanes, Trygve; Kuznetsova, Tatyana; Kvamme, Bjorn

    2006-06-21

    A phase field theory with model parameters evaluated from atomistic simulations/experiments is applied to predict the nucleation and growth rates of solid CO(2) hydrate in aqueous solutions under conditions typical to underwater natural gas hydrate reservoirs. It is shown that under practical conditions a homogeneous nucleation of the hydrate phase can be ruled out. The growth rate of CO(2) hydrate dendrites has been determined from phase field simulations as a function of composition while using a physical interface thickness (0.85+/-0.07 nm) evaluated from molecular dynamics simulations. The growth rate extrapolated to realistic supersaturations is about three orders of magnitude larger than the respective experimental observation. A possible origin of the discrepancy is discussed. It is suggested that a kinetic barrier reflecting the difficulties in building the complex crystal structure i