NASA Astrophysics Data System (ADS)
Wang, Xinjun; Chen, Yunpeng; Chen, Huaihao; Gao, Yuan; He, Yifan; Li, Menghui; Lin, Hwaider; Sun, Neville; Sun, Nian
2018-05-01
Recently, large magnetoelectric coupling of a spinel/piezoelectric heterostructure has been reported. However, the linewidth of the spinel is very large due to lattice mismatch when ferrite is directly deposited on piezoelectric substrates. This indicates a large magnetic loss, which impedes the spinel/piezoelectric heterostructure from useful device applications. Mica is a well-known 2D material, which can be split manually layer by layer without the substrate clamping effect. In this report, NiZn ferrite was deposited on a mica substrate by a spin-spray deposition technique. Spin-spray deposition is a wet chemical synthesis technique involving several chemical reactions for generating high-quality crystalline spinel ferrite films with various compositions directly from an aqueous solution. The thickness of ferrite is 2 μm, and the linewidth of the ferromagnetic resonance (FMR) is 115 Oe which is suitable for RF/microwave devices. The large FMR field tuning of 605 Oe was observed in NiZn ferrite/mica/PMN-PT heterostructures with minimal substrate clamping effect by reducing the thickness of the mica substrate. These multiferroic heterostructures exhibiting combined giant magnetoelectric coupling and narrow ferromagnetic resonance linewidth offer great opportunities for flexible RF magnetic devices.
NASA Astrophysics Data System (ADS)
Mirzadeh Vaghefi, P.; Baghizadeh, A.; Willinger, M.; Lourenço, A. A. C. S.; Amaral, V. S.
2017-12-01
Oxide multiferroic thin films and heterostructures offer a wide range of properties originated from intrinsic coupling between lattice strain and nanoscale magnetic/electronic ordering. La0.9Ba0.1MnO3 (LBM) thin-films and LBM/BaTiO3/LBM (LBMBT) heterostructures were grown on single crystalline [100] silicon and [0001] Al2O3 using RF magnetron sputtering to study the effect of crystallinity and induced lattice mismatch in the film on magnetic properties of deposited films and heterostructures. The thicknesses of the films on Al2O3 and Si are 70 and 145 nm, respectively, and for heterostructures are 40/30/40 nm on both substrates. The microstructure of the films, state of strain and growth orientations was studied by XRD and microscopy techniques. Interplay of microstructure, strain and magnetic properties is further investigated. It is known that the crystal structure of substrates and imposed tensile strain affect the physical properties; i.e. magnetic behavior of the film. The thin layer grown on Al2O3 substrate shows out-of-plane compressive strain, while Si substrate induces tensile strain on the deposited film. The magnetic transition temperatures (Tc) of the LBM film on the Si and Al2O3 substrates are found to be 195 K and 203 K, respectively, slightly higher than the bulk form, 185 K. The LBMBT heterostructure on Si substrate shows drastic decrease in magnetization due to produced defects created by diffusion of Ti ions into magnetic layer. Meanwhile, the Tc in LBMBTs increases in respect to other studied single layers and heterostructure, because of higher tensile strain induced at the interfaces.
Wafer bonded epitaxial templates for silicon heterostructures
Atwater, Jr., Harry A.; Zahler, James M [Pasadena, CA; Morral, Anna Fontcubera I [Paris, FR
2008-03-11
A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.
Wafer bonded epitaxial templates for silicon heterostructures
NASA Technical Reports Server (NTRS)
Atwater, Harry A., Jr. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcubera I (Inventor)
2008-01-01
A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.
Pushing the Limits of Piezoresistive Effect by Optomechanical Coupling in 3C-SiC/Si Heterostructure.
Md Foisal, Abu Riduan; Qamar, Afzaal; Phan, Hoang-Phuong; Dinh, Toan; Tuan, Khoa-Nguyen; Tanner, Philip; Streed, Erik W; Dao, Dzung Viet
2017-11-22
This letter reports a giant opto-piezoresistive effect in p-3C-SiC/p-Si heterostructure under visible-light illumination. The p-3C-SiC/p-Si heterostructure has been fabricated by growing a 390 nm p-type 3C-SiC on a p-type Si substrate using the low pressure chemical vapor deposition (LPCVD) technique. The gauge factor of the heterostructure was found to be 28 under a dark condition; however, it significantly increased to about -455 under illumination of 635 nm wavelength at 3.0 mW/cm 2 . This gauge factor is over 200 times higher than that of commercial metal strain gauge, 16 times higher than that of 3C-SiC thinfilm, and approximately 5 times larger than that of bulk Si. This enhancement of the gauge factor was attributed to the opto-mechanical coupling effect in p-3C-SiC/p-Si heterostructure. The opto-mechanical coupling effect is the amplified effect of the photoconductivity enhancement and strain-induced band structure modification in the p-type Si substrate. These findings enable extremely high sensitive and robust mechanical sensors, as well as optical sensors at low cost, as no complicated nanofabrication process is required.
Enhancing elastic stress relaxation in SiGe/Si heterostructures by Si pillar necking
NASA Astrophysics Data System (ADS)
Isa, F.; Salvalaglio, M.; Arroyo Rojas Dasilva, Y.; Jung, A.; Isella, G.; Erni, R.; Timotijevic, B.; Niedermann, P.; Gröning, P.; Montalenti, F.; von Känel, H.
2016-10-01
We demonstrate that the elastic stress relaxation mechanism in micrometre-sized, highly mismatched heterostructures may be enhanced by employing patterned substrates in the form of necked pillars, resulting in a significant reduction of the dislocation density. Compositionally graded Si1-xGex crystals were grown by low energy plasma enhanced chemical vapour deposition, resulting in tens of micrometres tall, three-dimensional heterostructures. The patterned Si(001) substrates consist of micrometre-sized Si pillars either with the vertical {110} or isotropically under-etched sidewalls resulting in narrow necks. The structural properties of these heterostructures were investigated by defect etching and transmission electron microscopy. We show that the dislocation density, and hence the competition between elastic and plastic stress relaxation, is highly influenced by the shape of the substrate necks and their proximity to the mismatched epitaxial material. The SiGe dislocation density increases monotonically with the crystal width but is significantly reduced by the substrate under-etching. The drop in dislocation density is interpreted as a direct effect of the enhanced compliance of the under-etched Si pillars, as confirmed by the three-dimensional finite element method simulations of the elastic energy distribution.
Two-Dimensional Heterostructure as a Platform for Surface-Enhanced Raman Scattering.
Tan, Yang; Ma, Linan; Gao, Zhibin; Chen, Ming; Chen, Feng
2017-04-12
Raman enhancement on a flat nonmetallic surface has attracted increasing attention, ever since the discovery of graphene enhanced Raman scattering. Recently, diverse two-dimensional layered materials have been applied as a flat surface for the Raman enhancement, attributed to different mechanisms. Looking beyond these isolated materials, atomic layers can be reassembled to design a heterostructure stacked layer by layer with an arbitrary chosen sequence, which allows the flow of charge carriers between neighboring layers and offers novel functionalities. Here, we demonstrate the heterostructure as a novel Raman enhancement platform. The WSe 2 (W) monolayer and graphene (G) were stacked together to form a heterostructure with an area of 10 mm × 10 mm. Heterostructures with different stacked structuress are used as platforms for the enhanced Raman scattering, including G/W, W/G, G/W/G/W, and W/G/G/W. On the surface of the heterostructure, the intensity of the Raman scattering is much stronger compared with isolated layers, using the copper phthalocyanine (CuPc) molecule as a probe. It is found that the Raman enhancement effect on heterostructures depends on stacked methods. Phonon modes of CuPc have the strongest enhancement on G/W. W/G and W/G/G/W have a stronger enhancement than that on the isolated WSe 2 monolayer, while lower than the graphene monolayer. The G/W/G/W/substrate demonstrated a comparable Raman enhancement effect than the G/W/substrate. These differences are due to the different interlayer couplings in heterostructures related to electron transition probability rates, which are further proved by first-principle calculations and probe-pump measurements.
Preparation and characterization of BiFeO3/La0.7Sr0.3MnO3 heterostructure grown on SrTiO3 substrate
NASA Astrophysics Data System (ADS)
Zhao, Chenwei; Zhou, Chaochao; Chen, Changle
2017-09-01
In this paper, BiFeO3/La0.7Sr0.3MnO3 heterostructure is fabricated on the SrTiO (100) substrate using the pulsed laser deposition method (PLD). Magnetization hystersis loops of the BiFeO3/La0.7Sr0.3MnO3 heterostructure are obtained at 300 K and 80 K. The heterostructure exhibits evident ferromagnetic characteristic at both room temperature and 80 K. At 80 K, magnetization of the heterostructure is stronger than room temperature magnetic measure. The temperature dependence of resistance of the heterostructure with different currents is also studied. With different currents, there appears to be a peak resistance about 180 K. When I is 50 uA, ΔR is 68.4%. And when I is 100 uA, ΔR is 79.3%. The BiFeO3/La0.7Sr0.3MnO3 heterostructure exhibits a positive colossal magnetoresistance (MR) effect over a temperature range of 80-300 K. In our heterostructure, maximum magnetic resistance appears in 210 K, and MR = 44.34%. Mechanism analysis of the leakage current at room temperature shows that the leakage current is the interface-limited Schottky emission, but not dominated by the Poole-Frenkel emission or SCLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooth, Alexander, E-mail: a.pooth@bristol.ac.uk; IQE; Uren, Michael J.
2015-12-07
Charge trapping and transport in the carbon doped GaN buffer of a GaN-based hetero-structure field effect transistor (HFET) has been investigated under both positive and negative substrate bias. Clear evidence of redistribution of charges in the carbon doped region by thermally generated holes is seen, with electron injection and capture observed during positive bias. Excellent agreement is found with simulations. It is shown that these effects are intrinsic to the carbon doped GaN and need to be controlled to provide reliable and efficient GaN-based power HFETs.
Porous silicon-copper phthalocyanine heterostructure based photoelectrochemical cell
NASA Astrophysics Data System (ADS)
A. Betty, C.; N, Padma; Arora, Shalav; Survaiya, Parth; Bhattacharya, Debarati; Choudhury, Sipra; Roy, Mainak
2018-01-01
A hybrid solar cell consisting of nanostructured p-type porous silicon (PS) deposited with visible light absorbing dye, Copper Phthalocyanine (CuPc) has been prepared in the photoelectrochemical cell configuration. P-type PS with (100) and (111) orientations which have different porous structures were used for studying the effects of the substrate morphology on the cell efficiency. Heterostructures were prepared by depositing three different thicknesses of CuPc for optimizing the cell efficiency. Structural and surface characterizations were studied using XRD, Raman, SEM and AFM on the PS-CuPc heterostructure. XRD spectrum on both plane silicon and porous silicon indicates the π-π stacking of CuPc with increased disorder for CuPc film on porous silicon. Electrochemical characterizations under sun light type radiation have been carried out to evaluate the photosensitivity of the heterostructure. Between the two different substrates, (100) PS gives better photocurrent, possibly due to the higher surface area and lower series resistance of the structure. Among the (100) PS substrates, (100) PS with 15 nm CuPc film gives Voc more than 1 V resulting in higher efficiency for the cell. The study suggests the scope for optimization of solar cell efficiency using various combinations of the substrate structure and thickness of the sensitizing layer.
Electronic transport and photovoltaic properties in Bi2Sr2Co2Oyepitaxial heterostructures
NASA Astrophysics Data System (ADS)
Guo, Hai-Zhong; Gu, Lin; Yang, Zhen-Zhong; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Le; Jin, Kui-Juan; Lu, Hui-Bin; Wang, Can; Ge, Chen; He, Meng; Yang, Guo-Zhen
2013-08-01
Epitaxial heterostructures constructed from the thermoelectric cobalt Bi2Sr2Co2Oy thin films and SrTiO3 as well as SrTi0.993Nb0.007O3 substrates were fabricated by pulsed-laser deposition. The scanning transmission electron microscopy results confirm that the heterostructures are epitaxial, with sharp and coherent interfaces. The temperature-dependent electrical transport properties and the Hall effects were systematically investigated. The Bi2Sr2Co2Oy/SrTi0.993Nb0.007O3 p-n heterostructure exhibits good rectifying current-voltage characteristics over a wide temperature range. A strong photovoltaic effect was observed in the Bi2Sr2Co2Oy/SrTi0.993Nb0.007O3 heterostructure, with the temperature-dependent photovoltage being systematically investigated. The present work shows a great potential of this new heterostructures as photoelectric devices.
Enhanced photoresponse characteristics of transistors using CVD-grown MoS2/WS2 heterostructures
NASA Astrophysics Data System (ADS)
Shan, Junjie; Li, Jinhua; Chu, Xueying; Xu, Mingze; Jin, Fangjun; Fang, Xuan; Wei, Zhipeng; Wang, Xiaohua
2018-06-01
Semiconductor heterostructures based on transition metal dichalcogenides provide a broad platform to research two-dimensional nanomaterials and design atomically thin devices for fundamental and applied interests. The MoS2/WS2 heterostructure was prepared on SiO2/Si substrate by chemical vapor deposition (CVD) in our research. And the optical properties of the heterostructure was characterized by Raman and photoluminescence (PL) spectroscopy. The similar 2 orders of magnitude decrease of PL intensity in MoS2/WS2 heterostructures was tested, which is attribute to the electrical and optical modulation effects are connected with the interfacial charge transfer between MoS2 and WS2 films. Using MoS2/WS2 heterostructure as channel material of the phototransistor, we demonstrated over 50 folds enhanced photoresponsivity of multilayer MoS2 field-effect transistor. The results indicate that the MoS2/WS2 films can be a promising heterostructure material to enhance the photoresponse characteristics of MoS2-based phototransistors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Di; Baek, David J.; Hong, Seung Sae
2016-08-22
The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite heterostructures. However, separation of these layers from the growth substrate has proven challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-solublemore » Sr 3Al 2O 6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr 3Al 2O 6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds.« less
Lu, Di; Baek, David J.; Hong, Seung Sae; ...
2016-09-12
Here, the ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals 1, 2, 3, 4, 5, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality 6, 7, 8, 9 and emergent phenomena, as seen in perovskite heterostructures 10, 11, 12. However, separation of these layers from the growth substrate has proved challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general methodmore » to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr 3Al 2O 6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr 3Al 2O 6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds 13, 14.« less
NASA Astrophysics Data System (ADS)
Tang, Xiaoli; Su, Hua; Zhang, Huaiwu; Sun, Nian X.
2016-11-01
Dual-range, nonvolatile magnetization modulation induced by voltage impulses was investigated in the metglas/lead zirconate titanate (PZT) heterostructure at room temperature. The heterostructure was obtained by bonding a square metglas ribbon on the top electrode of the PZT substrate, which contained defect dipoles resulting from acceptor doping. The PZT substrate achieved two strain hysteretic loops with the application of specific voltage impulse excitation modes. Through strain-mediated magnetoelectric coupling between the metglas ribbon and the PZT substrate, two strain hysteretic loops led to a dual-range nonvolatile magnetization modulation in the heterostructure. Reversible and stable voltage-impulse-induced nonvolatile modulation in the ferromagnetic resonance field and magnetic hysteresis characteristics were also realized. This method provides a promising approach in reducing energy consumption in magnetization modulation and other related devices.
Graphene-Nanodiamond Heterostructures and their application to High Current Devices
Zhao, Fang; Vrajitoarea, Andrei; Jiang, Qi; Han, Xiaoyu; Chaudhary, Aysha; Welch, Joseph O.; Jackman, Richard B.
2015-01-01
Graphene on hydrogen terminated monolayer nanodiamond heterostructures provides a new way to improve carrier transport characteristics of the graphene, offering up to 60% improvement when compared with similar graphene on SiO2/Si substrates. These heterostructures offers excellent current-carrying abilities whilst offering the prospect of a fast, low cost and easy methodology for device applications. The use of ND monolayers is also a compatible technology for the support of large area graphene films. The nature of the C-H bonds between graphene and H-terminated NDs strongly influences the electronic character of the heterostructure, creating effective charge redistribution within the system. Field effect transistors (FETs) have been fabricated based on this novel herterostructure to demonstrate device characteristics and the potential of this approach. PMID:26350107
Hong, Young Joon; Kim, Yong-Jin; Jeon, Jong-Myeong; Kim, Miyoung; Choi, Jun Hee; Baik, Chan Wook; Kim, Sun Il; Park, Sung Soo; Kim, Jong Min; Yi, Gyu-Chul
2011-05-20
We report on the fabrication of high-quality GaN on soda-lime glass substrates, heretofore precluded by both the intolerance of soda-lime glass to the high temperatures required for III-nitride growth and the lack of an epitaxial relationship with amorphous glass. The difficulties were circumvented by heteroepitaxial coating of GaN on ZnO nanorods via a local microheating method. Metal-organic chemical vapor deposition of ZnO nanorods and GaN layers using the microheater arrays produced high-quality GaN/ZnO coaxial nanorod heterostructures at only the desired regions on the soda-lime glass substrates. High-resolution transmission electron microscopy examination of the coaxial nanorod heterostructures indicated the formation of an abrupt, semicoherent interface. Photoluminescence and cathodoluminescence spectroscopy was also applied to confirm the high optical quality of the coaxial nanorod heterostructures. Mg-doped GaN/ZnO coaxial nanorod heterostructure arrays, whose GaN shell layers were grown with various different magnesocene flow rates, were further investigated by using photoluminescence spectroscopy for the p-type doping characteristics. The suggested method for fabrication of III-nitrides on glass substrates signifies potentials for low-cost and large-size optoelectronic device applications.
Identifying suitable substrates for high-quality graphene-based heterostructures
NASA Astrophysics Data System (ADS)
Banszerus, L.; Janssen, H.; Otto, M.; Epping, A.; Taniguchi, T.; Watanabe, K.; Beschoten, B.; Neumaier, D.; Stampfer, C.
2017-06-01
We report on a scanning confocal Raman spectroscopy study investigating the strain-uniformity and the overall strain and doping of high-quality chemical vapour deposited (CVD) graphene-based heterostuctures on a large number of different substrate materials, including hexagonal boron nitride (hBN), transition metal dichalcogenides, silicon, different oxides and nitrides, as well as polymers. By applying a hBN-assisted, contamination free, dry transfer process for CVD graphene, high-quality heterostructures with low doping densities and low strain variations are assembled. The Raman spectra of these pristine heterostructures are sensitive to substrate-induced doping and strain variations and are thus used to probe the suitability of the substrate material for potential high-quality graphene devices. We find that the flatness of the substrate material is a key figure for gaining, or preserving high-quality graphene.
Organic heterostructures deposited by MAPLE on AZO substrate
NASA Astrophysics Data System (ADS)
Socol, M.; Preda, N.; Stanculescu, A.; Breazu, C.; Florica, C.; Stanculescu, F.; Iftimie, S.; Girtan, M.; Popescu-Pelin, G.; Socol, G.
2017-09-01
Organic heterostructures based on poly(3-hexylthiophene) (P3HT) and fullerene (C60) as blends or multilayer were deposited on Al:ZnO (AZO) by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. The AZO layers were obtained by Pulsed Laser Deposition (PLD) on glass substrate, the high quality of the films being reflected by the calculated figure of merit. The organic heterostructures were investigated from morphological, optical and electrical point of view by atomic force microscopy (AFM), UV-vis spectroscopy, photoluminescence (PL) and current-voltage (I-V) measurements, respectively. The increase of the C60 content in the blend heterostructure has as result a high roughness. Compared with the multilayer heterostructure, those based on blends present an improvement in the electrical properties. Under illumination, the highest current value was recorded for the heterostructure based on the blend with the higher C60 amount. The obtained results showed that MAPLE is a useful technique for the deposition of the organic heterostructures on AZO as transparent conductor electrode.
Superthin Solar Cells Based on AIIIBV/Ge Heterostructures
NASA Astrophysics Data System (ADS)
Pakhanov, N. A.; Pchelyakov, O. P.; Vladimirov, V. M.
2017-11-01
A comparative analysis of the prospects of creating superthin, light-weight, and highly efficient solar cells based on AIIIBV/InGaAs and AIIIBV/Ge heterostructures is performed. Technological problems and prospects of each variant are discussed. A method of thinning of AIIIBV/Ge heterostructures with the use of an effective temporary carrier is proposed. The method allows the process to be performed almost with no risk of heterostructure fracture, thinning of the Ge junction down to several tens of micrometers (or even several micrometers), significant enhancement of the yield of good structures, and also convenient and reliable transfer of thinned solar cells to an arbitrary light and flexible substrate. Such a technology offers a possibility of creating high-efficiency thin and light solar cells for space vehicles on the basis of mass-produced AIIIBV/Ge heterostructures.
Method for forming monolayer graphene-boron nitride heterostructures
Sutter, Peter Werner; Sutter, Eli Anguelova
2016-08-09
A method for fabricating monolayer graphene-boron nitride heterostructures in a single atomically thin membrane that limits intermixing at boundaries between graphene and h-BN, so as to achieve atomically sharp interfaces between these materials. In one embodiment, the method comprises exposing a ruthenium substrate to ethylene, exposing the ruthenium substrate to oxygen after exposure to ethylene and exposing the ruthenium substrate to borazine after exposure to oxygen.
NASA Astrophysics Data System (ADS)
Zeng, Yu; Chen, XiFang; Yi, Zao; Yi, Yougen; Xu, Xibin
2018-05-01
The pyramidal silicon substrate is formed by wet etching, then ZnO nanorods are grown on the surface of the pyramidal microstructure by a hydrothermal method to form a moth-eye composite heterostructure. The composite heterostructure of this material determines its excellent anti-reflection properties and ability to absorb light from all angles. In addition, due to the effective heterojunction binding area, the composite micro/nano structure has excellent photoelectric conversion performance. Its surface structure and the large specific surface area gives the material super hydrophilicity, excellent gas sensing characteristic, and photocatalytic properties. Based on the above characteristics, the micro/nano heterostructure can be used in solar cells, sensors, light-emitting devices, and photocatalytic fields.
NASA Astrophysics Data System (ADS)
Wang, Maoyuan; Liu, Liping; Liu, Cheng-Cheng; Yao, Yugui
2016-04-01
We investigate van der Waals (vdW) heterostructures made of germanene, stanene, or silicene with hexagonal boron nitride (h-BN). The intriguing topological properties of these buckled honeycomb materials can be maintained and further engineered in the heterostructures, where the competition between the substrate effect and external electric fields can be used to control the tunable topological phase transitions. Using such heterostructures as building blocks, various vdW topological domain walls (DW) are designed, along which there exist valley polarized quantum spin Hall edge states or valley-contrasting edge states which are protected by valley(spin)- resolved topological charges and can be tailored by the patterning of the heterojunctions and by external fields.
NASA Astrophysics Data System (ADS)
Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Xue, Yang; Ma, Chunlan; Yang, Zhongqin
2018-02-01
Graphene-based heterostructures are a promising material system for designing the topologically nontrivial Chern insulating devices. Recently, a two-dimensional monolayer ferromagnetic insulator CrI3 was successfully synthesized in experiments [B. Huang et al., Nature (London) 546, 270 (2017), 10.1038/nature22391]. Here, these two interesting materials are proposed to build a heterostructure (Gr /CrI3). Our first-principles calculations show that the system forms a van der Waals (vdW) heterostructure, which is relatively facilely fabricated in experiments. A Chern insulating state is acquired in the Gr /CrI3 heterostructure if the vdW gap is compressed to a distance between about 3.3 and 2.4 Å, corresponding to a required external pressure between about 1.4 and 18.3 GPa. Amazingly, very strong magnetization (about 150 meV) is found in graphene, induced by the substrate CrI3, despite the vdW interactions between them. A low-energy effective model is employed to understand the mechanism. The work functions, contact types, and band alignments of the Gr /CrI3 heterostructure system are also studied. Our work demonstrates that the Gr /CrI3 heterostructure is a promising system to observe the quantum anomalous Hall effect at high temperatures (up to 45 K) in experiments.
NASA Astrophysics Data System (ADS)
Hao, Guanhua; Noviasky, Nicholas; Cao, Shi; Sabirianov, Ildar; Yin, Yuewei; Ilie, Carolina C.; Kirianov, Eugene; Sharma, Nishtha; Sokolov, Andrei; Marshall, Andrew; Xu, Xiaoshan; Dowben, Peter A.
2018-04-01
The effect of intermediate interfacial oxidation on the in-plane magnetization of multilayer stack Pt/Co/Gd2O3, on a p-type silicon substrate, has been investigated by magneto-optical Kerr effect (MOKE) measurements, the anomalous Hall effect, and magnetoresistance measurements. While voltage controlled perpendicular magnetic anisotropy of a metal/oxide heterostructure is known, this heterostructure displays an inverse relationship between voltage and coercivity. The anomalous Hall effect demonstrates a significant change in hysteresis, with the applied bias sign. There is a higher perpendicular magnetic anisotropy with positive bias exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.Y.; Si, M.S., E-mail: sims@lzu.edu.cn; Peng, S.L.
2015-11-15
Blue phosphorene (BP) was theoretically predicted to be thermally stable recently. Considering its similar in-layer hexagonal lattice to MoS{sub 2}, MoS{sub 2} could be an appropriate substrate to grow BP in experiments. In this work, the van der Waals (vdW) heterostructures are constructed by stacking BP on top of MoS{sub 2}. The thermal stability and electronic structures are evaluated based on first principles calculations with vdW-corrected exchange-correlation functional. The formation of the heterostructures is demonstrated to be exothermic and the most stable stacking configuration is confirmed. The heterostructures BP/MoS{sub 2} preserve both the properties of BP and MoS{sub 2} butmore » exhibit relatively narrower bandgaps due to the interlayer coupling effect. The band structures can be further engineered by applying external electric fields. An indirect–direct bandgap transition in bilayer BP/MoS{sub 2} is demonstrated to be controlled by the symmetry property of the built-in electric dipole fields. - Graphical abstract: An indirect-direct band gap transition occurs in van der Waals heterostructure of MoS{sub 2}/BP under external electric fields which is demonstrated to be controlled by the symmetry of the built-in electric dipole fields. - Highlights: • The stacking of heterostructures of BP/MoS{sub 2} is demonstrated to be exothermic. • This suggests that it is possible to grow BP using MoS{sub 2} as the substrate. • The band structures of the heterostructures are exploited. • It realizes an indirect–direct gap transition under external electric fields. • The symmetry of the built-in electric dipole fields controls such gap transition.« less
Electrical breakdown and nanogap formation of indium oxide core/shell heterostructure nanowires.
Jung, Minkyung; Song, Woon; Sung Lee, Joon; Kim, Nam; Kim, Jinhee; Park, Jeunghee; Lee, Hyoyoung; Hirakawa, Kazuhiko
2008-12-10
We report the electrical breakdown behavior and subsequent nanogap formation of In(2)O(3)/InO(x) core/shell heterostructure nanowires with substrate-supported and suspended structures. The radial heterostructure nanowires, composed of crystalline In(2)O(3) cores and amorphous In-rich shells, are grown by chemical vapor deposition. As the nanowires broke down, they exhibited two distinct current drops in the current-voltage characteristics. The tips of the broken nanowires were found to have a cone or a volcano shape depending on the width of the nanowire. The shape, the size, and the position of the nanogap depend strongly on the device structure and the nanowire dimensions. The substrate-supported and the suspended devices exhibit distinct breakdown behavior which can be explained by the diffusive thermal transport model. The breakdown temperature of the nanowire is estimated to be about 450 K, close to the melting temperature of indium. We demonstrated the usefulness of this technique by successful fabrication of working pentacene field-effect transistors.
Atwater, Jr., Harry A.; Zahler, James M.
2006-11-28
Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.
NASA Astrophysics Data System (ADS)
Kakkerla, Ramesh Kumar; Anandan, Deepak; Hsiao, Chih-Jen; Yu, Hung Wei; Singh, Sankalp Kumar; Chang, Edward Yi
2018-05-01
We demonstrate the growth of vertically aligned Au-free InAs and InAs/GaSb heterostructure nanowires on Si (1 1 1) substrate by Metal Organic Chemical Vapor Deposition (MOCVD). The effect of growth temperature on the morphology and growth rate of the InAs and InAs/GaSb heterostructure nanowires (NWs) is investigated. Control over diameter and length of the InAs NWs and the GaSb shell thickness was achieved by using growth temperature. As the GaSb growth temperature increase, GaSb radial growth rate increases due to the increase in alkyl decomposition at the substrate surface. Diffusivity of the adatoms increases as the GaSb growth temperature increase which results in tapered GaSb shell growth. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) measurements revealed that the morphology and shell thickness can be tuned by the growth temperature. Electron microscopy also shows the formation of GaSb both in radial and axial directions outside the InAs NW core can be controlled by the growth temperature. This study demonstrates the control over InAs NWs growth and the GaSb shell thickness can be achieved through proper growth temperature control, such technique is essential for the growth of nanowire for future nano electronic devices, such as Tunnel FET.
Zhang, Zhaofu; Qian, Qingkai; Li, Baikui; Chen, Kevin J
2018-05-23
Interface engineering is a key strategy to deal with the two-dimensional (2D)/three-dimensional (3D) hybrid heterostructure, since the properties of this atomic-layer-thick 2D material can easily be impacted by the substrate environment. In this work, the structural, electronic, and optical properties of the 2D/3D heterostructure of monolayer MoS 2 on wurtzite GaN surface without and with nitridation interfacial layer are systematically investigated by first-principles calculation and experimental analysis. The nitridation interfacial layer can be introduced into the 2D/3D heterostructure by remote N 2 plasma treatment to GaN sample surface prior to stacking monolayer MoS 2 on top. The calculation results reveal that the 2D/3D integrated heterostructure is energetically favorable with a negative formation energy. Both interfaces demonstrate indirect band gap, which is a benefit for longer lifetime of the photoexcited carriers. Meanwhile, the conduction band edge and valence band edge of the MoS 2 side increases after nitridation treatment. The modification to band alignment is then verified by X-ray photoelectron spectroscopy measurement on MoS 2 /GaN heterostructures constructed by a modified wet-transfer technique, which indicates that the MoS 2 /GaN heterostructure without nitridation shows a type-II alignment with a conduction band offset (CBO) of only 0.07 eV. However, by the deployment of interface nitridation, the band edges of MoS 2 move upward for ∼0.5 eV as a result of the nitridized substrate property. The significantly increased CBO could lead to better electron accumulation capability at the GaN side. The nitridized 2D/3D heterostructure with effective interface treatment exhibits a clean band gap and substantial optical absorption ability and could be potentially used as practical photocatalyst for hydrogen generation by water splitting using solar energy.
Electron microscopy characterization of AlGaN/GaN heterostructures grown on Si (111) substrates
NASA Astrophysics Data System (ADS)
Gkanatsiou, A.; Lioutas, Ch. B.; Frangis, N.; Polychroniadis, E. K.; Prystawko, P.; Leszczynski, M.
2017-03-01
AlGaN/GaN buffer heterostructures were grown on "on axis" and 4 deg off Si (111) substrates by MOVPE. The electron microscopy study reveals the very good epitaxial growth of the layers. Almost c-plane orientated nucleation grains are achieved after full AlN layer growth. Step-graded AlGaN layers were introduced, in order to prevent the stress relaxation and to work as a dislocation filter. Thus, a crack-free smooth surface of the final GaN epitaxial layer is achieved in both cases, making the buffer structure ideal for the forthcoming growth of the heterostructure (used for HEMT device applications). Finally, the growth of the AlGaN/GaN heterostructure on top presents characteristic and periodic undulations (V-pits) on the surface, due to strain relaxation reasons. The AlN interlayer grown in between the heterostructure demonstrates an almost homogeneous thickness, probably reinforcing the 2DEG electrical characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleshin, A. N., E-mail: a.n.aleshin@mail.ru; Bugaev, A. S.; Ermakova, M. A.
2015-08-15
The crystallographic characteristics of the design elements of a metamorphic high-electron-mobility (MHEMT) heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel are determined based on reciprocal space mapping. The heterostructure is grown by molecular beam epitaxy on the vicinal surface of a GaAs substrate with a deviation angle from the (001) plane of 2° and consists of a stepped metamorphic buffer containing six layers including an inverse step, a high-temperature buffer layer with constant composition, and active HEMT layers. The InAs content in the layers of the metamorphic buffer is varied from 0.1 to 0.48. Reciprocal space maps are constructed for themore » (004) symmetric reflection and (224)+ asymmetric reflection. It is found that the heterostructure layers are characterized both by a tilt angle relative to the plane of the (001) substrate and a rotation angle around the [001] axis. The tilt angle of the layer increases as the InAs concentration in the layer increases. It is shown that a high-temperature buffer layer of constant composition has the largest degree of relaxation compared with all other layers of the heterostructure.« less
NASA Astrophysics Data System (ADS)
Lai, Yi-Chen; Ho, Hsin-Chia; Shih, Bo-Wei; Tsai, Feng-Yu; Hsueh, Chun-Hway
2018-05-01
Surface-enhanced Raman scattering (SERS) substrate with a higher surface area, enhanced light harvesting, multiple hot spots and strong electromagnetic field enhancements would exhibit enhanced Raman signals. Herein, the Ag nanoparticle/ZnO nanowire heterostructure decorated periodic silicon nanotube (Ag@ZnO@SiNT) substrate was proposed and fabricated. The proposed structure employed as SERS-active substrate was examined, and the results showed both the high performance in terms of high sensitivity and good reproducibility. Furthermore, the Ag@ZnO@SiNT substrate demonstrated the self-cleaning performance through the photocatalytic degradation of probed molecules upon UV-irradiation. The results showed that the proposed nanostructure had high performance, good reproducibility and reusability, and it is a promising SERS-active substrate for molecular sensing and cleaning.
NASA Astrophysics Data System (ADS)
Pan, Lei; Dong, Xun; Li, Zhonghui; Luo, Weike; Ni, Jinyu
2018-07-01
AlGaN/GaN heterostructures were grown on Si (1 1 1) substrates with different AlN nucleation layers (NL) by metal-organic chemical vapor deposition (MOCVD). The results indicate that the growth temperature of AlN NL has a noticeable influence on the structural, electronic and optical properties of the AlGaN/GaN heterostructures. Optimizing the growth temperature to 1040 °C led to quasi-2D smooth surface of the AlN NL with providing sufficient compressive stress to suppress cracking of the subsequent GaN layer during the cooling process, resulting in improved crystalline quality of GaN layer and superior two-dimensional electron gas (2DEG) performance of the AlGaN/GaN heterostructure.
NASA Technical Reports Server (NTRS)
Xing, G. C.; Bachmann, Klaus J.
1993-01-01
The growth of ZnGeP2/GaP double and multiple heterostructures on GaP substrates by organometallic chemical vapor deposition is reported. These epitaxial films were deposited at a temperature of 580 C using dimethylzinc, trimethylgallium, germane, and phosphine as source gases. With appropriate deposition conditions, mirror smooth epitaxial GaP/ZnGeP2 multiple heterostructures were obtained on (001) GaP substrates. Transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS) studies of the films showed that the interfaces are sharp and smooth. Etching study of the films showed dislocation density on the order of 5x10(exp 4)cm(sup -2). The growth rates of the GaP layers depend linearly on the flow rates of trimethylgallium. While the GaP layers crystallize in zinc-blende structure, the ZnGeP2 layers crystallize in the chalcopyrite structure as determined by (010) electron diffraction pattern. This is the first time that multiple heterostructures combining these two crystal structures were made.
Thin SiGe virtual substrates for Ge heterostructures integration on silicon
NASA Astrophysics Data System (ADS)
Cecchi, S.; Gatti, E.; Chrastina, D.; Frigerio, J.; Müller Gubler, E.; Paul, D. J.; Guzzi, M.; Isella, G.
2014-03-01
The possibility to reduce the thickness of the SiGe virtual substrate, required for the integration of Ge heterostructures on Si, without heavily affecting the crystal quality is becoming fundamental in several applications. In this work, we present 1 μm thick Si1-xGex buffers (with x > 0.7) having different designs which could be suitable for applications requiring a thin virtual substrate. The rationale is to reduce the lattice mismatch at the interface with the Si substrate by introducing composition steps and/or partial grading. The relatively low growth temperature (475 °C) makes this approach appealing for complementary metal-oxide-semiconductor integration. For all the investigated designs, a reduction of the threading dislocation density compared to constant composition Si1-xGex layers was observed. The best buffer in terms of defects reduction was used as a virtual substrate for the deposition of a Ge/SiGe multiple quantum well structure. Room temperature optical absorption and photoluminescence analysis performed on nominally identical quantum wells grown on both a thick graded virtual substrate and the selected thin buffer demonstrates a comparable optical quality, confirming the effectiveness of the proposed approach.
Germanene on single-layer ZnSe substrate: novel electronic and optical properties.
Ye, H Y; Hu, F F; Tang, H Y; Yang, L W; Chen, X P; Wang, L G; Zhang, G Q
2018-06-01
In this work, the structural, electronic and optical properties of germanene and ZnSe substrate nanocomposites have been investigated using first-principles calculations. We found that the large direct-gap ZnSe semiconductors and zero-gap germanene form a typical orbital hybridization heterostructure with a strong binding energy, which shows a moderate direct band gap of 0.503 eV in the most stable pattern. Furthermore, the heterostructure undergoes semiconductor-to-metal band gap transition when subjected to external out-of-plane electric field. We also found that applying external strain and compressing the interlayer distance are two simple ways of tuning the electronic structure. An unexpected indirect-direct band gap transition is also observed in the AAII pattern via adjusting the interlayer distance. Quite interestingly, the calculated results exhibit that the germanene/ZnSe heterobilayer structure has perfect optical absorption in the solar spectrum as well as the infrared and UV light zones, which is superior to that of the individual ZnSe substrate and germanene. The staggered interfacial gap and tunability of the energy band structure via interlayer distance and external electric field and strain thus make the germanene/ZnSe heterostructure a promising candidate for field effect transistors (FETs) and nanoelectronic applications.
NASA Astrophysics Data System (ADS)
Li, Delong; Gong, Youning; Wang, Miaosheng; Pan, Chunxu
2017-04-01
A kind of sandwich-like NiCo2O4/rGO/NiO heterostructure composite has been successfully anchored on nickel foam substrate via a three-step hydrothermal method with successive annealing treatment. The smart combination of NiCo2O4, reduced graphene oxide (rGO), and NiO nanostructure in the sandwich-like nano architecture shows a promising synergistic effect for supercapacitors with greatly enhanced electrochemical performance. For serving as supercapacitor electrode, the NiCo2O4/rGO/NiO heterostructure materials exhibit remarkable specific capacitance of 2644 mF cm-2 at current density of 1 mA cm-2, and excellent capacitance retentions of 97.5% after 3000 cycles. It is expected that the present heterostructure will be a promising electrode material for high-performance supercapacitors.
NASA Astrophysics Data System (ADS)
Walker, Roger C.; Shi, Tan; Jariwala, Bhakti; Jovanovic, Igor; Robinson, Joshua A.
2017-10-01
Single layers of tungsten diselenide (WSe2) can be used to construct ultra-thin, high-performance electronics. Additionally, there has been considerable progress in controlled and direct growth of single layers on various substrates. Based on these results, high-quality WSe2-based devices that approach the limit of physical thickness are now possible. Such devices could be useful for space applications, but understanding how high-energy radiation impacts the properties of WSe2 and the WSe2/substrate interface has been lacking. In this work, we compare the stability against high energy proton radiation of WSe2 and silicon carbide (SiC) heterostructures generated by mechanical exfoliation of WSe2 flakes and by direct growth of WSe2 via metal-organic chemical vapor deposition (MOCVD). These two techniques produce WSe2/SiC heterostructures with distinct differences due to interface states generated during the MOCVD growth process. This difference carries over to differences in band alignment from interface states and the ultra-thin nature of the MOCVD-grown material. Both heterostructures are not susceptible to proton-induced charging up to a dose of 1016 protons/cm2, as measured via shifts in the binding energy of core shell electrons and a decrease in the valence band offset. Furthermore, the MOCVD-grown material is less affected by the proton exposure due to its ultra-thin nature and a greater interaction with the substrate. These combined effects show that the directly grown material is suitable for multi-year use in space, provided that high quality devices can be fabricated from it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khabibullin, R. A., E-mail: khabibullin@isvch.ru; Shchavruk, N. V.; Pavlov, A. Yu.
2016-10-15
The Postgrowth processing of GaAs/AlGaAs multilayer heterostructures for terahertz quantumcascade lasers (QCLs) are studied. This procedure includes the thermocompression bonding of In–Au multilayer heterostructures with a doped n{sup +}-GaAs substrate, mechanical grinding, and selective wet etching of the substrate, and dry etching of QCL ridge mesastripes through a Ti/Au metallization mask 50 and 100 μm wide. Reactive-ion-etching modes with an inductively coupled plasma source in a BCl{sub 3}/Ar gas mixture are selected to obtain vertical walls of the QCL ridge mesastripes with minimum Ti/Au mask sputtering.
NASA Astrophysics Data System (ADS)
Kim, Daehee; Kim, Hanul; Yun, Wan Soo; Watanabe, Kenji; Taniguchi, Takashi; Rho, Heesuk; Bae, Myung-Ho
2018-04-01
Understanding the energy transport by charge carriers and phonons in two-dimensional (2D) van der Waals heterostructures is essential for the development of future energy-efficient 2D nanoelectronics. Here, we performed in situ spatially resolved Raman thermometry on an electrically biased graphene channel and its hBN substrate to study the energy dissipation mechanism in graphene/hBN heterostructures. By comparing the temperature profile along the biased graphene channel with that along the hBN substrate, we found that the thermal boundary resistance between the graphene and hBN was in the range of (1-2) ~ × 10-7 m2 K W-1 from ~100 °C to the onset of graphene break-down at ~600 °C in air. Consideration of an electro-thermal transport model together with the Raman thermometry conducted in air showed that a doping effect occurred under a strong electric field played a crucial role in the energy dissipation of the graphene/hBN device up to T ~ 600 °C.
Magnetometory of AlGaN/GaN heterostructure wafers
NASA Astrophysics Data System (ADS)
Tsubaki, K.; Maeda, N.; Saitoh, T.; Kobayashi, N.
2005-06-01
AlGaN/GaN heterostructure wafers are becoming a key technology for next generation cellar-phone telecommunication system because of their potential for high-performance microwave applications. Therefore, the electronic properties of a 2DEG in AlGaN/GaN heterostructures have recently been discussed. In this paper, we performed the extraordinary Hall effect measurement and the SQUID magnetometory of AlGaN/GaN heterostructure wafer at low temperature. The AlGaN/GaN heterostructures were grown by low-pressure metal-organic chemical vapour phase epitaxy on (0001) SiC substrate using AlN buffers. The electron mobility and electron concentration at 4.2 K are 9,540cm2/V s and 6.6 × 1012cm-2, respectively. In the extraordinary Hall effect measurement of AlGaN/GaN heterostructures, the hysteresis of Hall resistance appeared below 4.5 K and disappeared above 4.5 K. On the other hand, the hysteresis of magnetometric data obtained by SQUID magnetometory appears near zero magnetic field when the temperature is lower than 4.5 K. At the temperature larger than 4.5 K, the hysteresis of magnetometric data disappears. And the slopes of magnetometric data with respect to magnetic field become lower as obeying Currie-Weiss law and the Curie temperature TC is 4.5 K. Agreement of TC measured by the extraordinary Hall effect and the SQUID magnetometory implies the ferromagnetism at the AlGaN/GaN heterojunction. However, the conformation of the ferromagnetism of AlGaN/GaN heterostructure is still difficult and the detailed physical mechanism is still unclear.
NASA Astrophysics Data System (ADS)
Park, Joung-Man; Wang, Zuo-Jia; Kwon, Dong-Jun; DeVries, Lawrence
2011-02-01
Nano- and hetero-structures of carbon nanotube (CNT) and indium tin oxide (ITO) can control significantly piezoelectric and optoelectronic properties in Microelectromechanical Systems (MEMS) as sensing and actuator under cyclic loading. Optimized preparing conditions were obtained for multi-functional purpose of the specimen by obtaining the best dispersion and turbidity in the solution. Optical transmittance and electrical properties were investigated for CNT and ITO dipping and spraying coating on boro-silicate glass and polyethylene terephthalate (PET) substrates by electrical resistance measurement under cyclic loading and wettability test. Uniform dip-coating was performed using Wilhelmy plate method due to its simple and convenience. Spraying coating was applied to the specimen additionally. The change in the electrical resistance and optical properties of coated layer were mainly dependent upon the number of dip-coating, the concentration of CNT and ITO solutions, and the surface treatment condition. Electric properties of coating layers were measured using four-point probe method, and surface resistance was calculated using a dual configuration method. Optical transmittance of CNT and ITO coated PET film was also evaluated using UV spectrum. Surface energy and their hydrophilic and hydrophobic properties of CNT and ITO coated substrates were investigated by wettability test via static and dynamic contact angle measurements. As the elapsing time of cyclic loading passed, the stability of surface resistance and thus comparative interfacial adhesion between coated layer and substrates was evaluated to compare the thermodynamic work of adhesion, Wa. As dip-coating number increased, surface resistance of coated CNT decreased, whereas the transmittance decreased step-by-step due to the thicker CNT and ITO networked layer. Nano- and heterostructural effects of CNT and ITO solution on the optical and electrical effects have been studied continuously.
NASA Astrophysics Data System (ADS)
Wang, Xiu; Zhou, Zhiming; Liang, Zhiyu; Zhuang, Zanyong; Yu, Yan
2017-11-01
The Fe0/C3N4/MoS2 heterostructure was fabricated through photochemical synthesis that was free of NaBH4. Specifically, the g-C3N4/MoS2 (GCNM) composite was used as the substrate. Visible light excited the electrons from the valence band of the GCNM in the substrate, and the excited electrons reduced the Fe2+ ions in the solution nearby GCNM to Fe0 and then created the Fe0/C3N4/MoS2 heterostructure. Small Fe0 (<9 nm) dots well dispersed on the GCNM surface were obtained, because the diffusion of the Fe ions in the solution and the diffusion of the electrons on the GCNM substrate restricted the growth of Fe0 nanoparticles. The smaller size of Fe0 provided a larger number of active metal centers and improved the carrier separation efficiency. As a result, the Fe0/C3N4/MoS2 heterostructure exhibited superior catalytic properties in the redox reactions of rhodamine B, Cr(VI), Pb(II), and Cd(II). It could also be readily recycled without severe loss of catalytic performance.
2010-05-17
arranged by Prof. A. Zaslavsky Keywords: Gallium nitride High electron mobility transistor Molecular beam epitaxy Homoepitaxy Doping a b s t r a c t AlGaN...GaN/Be:GaN heterostructures have been grown by rf-plasma molecular beam epitaxy on free- standing semi-insulating GaN substrates, employing...hydride vapor phase epitaxy (HVPE) grown GaN sub- strates has enabled the growth by molecular beam epitaxy (MBE) of AlGaN/GaNHEMTswith significantly
NASA Astrophysics Data System (ADS)
Koshelev, O. A.; Nechaev, D. V.; Sitnikova, A. A.; Ratnikov, V. V.; Ivanov, S. V.; Jmerik, V. N.
2017-11-01
The paper describes experimental results on low temperature plasma-assisted molecular beam epitaxy of GaN/AlN heterostructures on both 6H-SiC and Si(111) substrates. We demonstrate that application of migration enhanced epitaxy and metal-modulated epitaxy for growth of AlN nucleation and buffer layers lowers the screw and edge(total)threading dislocation (TD) densities down to 1.7·108 and 2·109 cm-2, respectively, in a 2.8-μm-thick GaN buffer layer grown atop of AlN/6H-SiC. The screw and total TD densities of 1.2·109 and 7.4·109 cm-2, respectively, were achieved in a 1-μm-thickGaN/AlNheterostructure on Si(111). Stress generation and relaxation in GaN/AlN heterostructures were investigated by using multi-beam optical stress sensor (MOSS) to achieve zero substrate curvature at room temperature. It is demonstrated that a 1-μm-thick GaN/AlN buffer layer grown by PA MBE provides planar substrate morphology in the case of growth on Si substrates whereas 5-μm-thick GaN buffer layers have to be used to achieve the same when growing on 6H-SiC substrates.
Enhancement of gaps in thin graphitic films for heterostructure formation
NASA Astrophysics Data System (ADS)
Hague, J. P.
2014-04-01
There are a large number of atomically thin graphitic films with a structure similar to that of graphene. These films have a spread of band gaps relating to their ionicity and, also, to the substrate on which they are grown. Such films could have a range of applications in digital electronics, where graphene is difficult to use. I use the dynamical cluster approximation to show how electron-phonon coupling between film and substrate can enhance these gaps in a way that depends on the range and strength of the coupling. It is found that one of the driving factors in this effect is a charge density wave instability for electrons on a honeycomb lattice that can open a gap in monolayer graphene. The enhancement at intermediate coupling is sufficiently large that spatially varying substrates and superstrates could be used to create heterostructures in thin graphitic films with position-dependent electron-phonon coupling and gaps, leading to advanced electronic components.
Conducting LaAlO3/SrTiO3 heterointerfaces on atomically-flat substrates prepared by deionized-water
Connell, J. G.; Nichols, J.; Gruenewald, J. H.; Kim, D.-W.; Seo, S. S. A.
2016-01-01
We have investigated how the recently-developed water-leaching method for atomically-flat SrTiO3 (STO) substrates affects the transport properties of LaAlO3 (LAO) and STO heterointerfaces. Using pulsed laser deposition at identical growth conditions, we have synthesized epitaxial LAO thin-films on two different STO substrates, which are prepared by water-leaching and buffered hydrofluoric acid (BHF) etching methods. The structural, transport, and optical properties of LAO/STO heterostructures grown on water-leached substrates show the same high-quality as the samples grown on BHF-etched substrates. These results indicate that the water-leaching method can be used to grow complex oxide heterostructures with atomically well-defined heterointerfaces without safety concerns. PMID:27033248
Yang, Tiefeng; Zheng, Biyuan; Wang, Zhen; Xu, Tao; Pan, Chen; Zou, Juan; Zhang, Xuehong; Qi, Zhaoyang; Liu, Hongjun; Feng, Yexin; Hu, Weida; Miao, Feng; Sun, Litao; Duan, Xiangfeng; Pan, Anlian
2017-12-04
High-quality two-dimensional atomic layered p-n heterostructures are essential for high-performance integrated optoelectronics. The studies to date have been largely limited to exfoliated and restacked flakes, and the controlled growth of such heterostructures remains a significant challenge. Here we report the direct van der Waals epitaxial growth of large-scale WSe 2 /SnS 2 vertical bilayer p-n junctions on SiO 2 /Si substrates, with the lateral sizes reaching up to millimeter scale. Multi-electrode field-effect transistors have been integrated on a single heterostructure bilayer. Electrical transport measurements indicate that the field-effect transistors of the junction show an ultra-low off-state leakage current of 10 -14 A and a highest on-off ratio of up to 10 7 . Optoelectronic characterizations show prominent photoresponse, with a fast response time of 500 μs, faster than all the directly grown vertical 2D heterostructures. The direct growth of high-quality van der Waals junctions marks an important step toward high-performance integrated optoelectronic devices and systems.
Surface plasmon effect in electrodeposited diamond-like carbon films for photovoltaic application
NASA Astrophysics Data System (ADS)
Ghosh, B.; Ray, Sekhar C.; Espinoza-González, Rodrigo; Villarroel, Roberto; Hevia, Samuel A.; Alvarez-Vega, Pedro
2018-04-01
Diamond-like carbon (DLC) films and nanocrystalline silver particles containing diamond-like carbon (DLC:Ag) films were electrodeposited on n-type silicon substrate (n-Si) to prepare n-Si/DLC and n-Si/DLC:Ag heterostructures for photovoltaic (PV) applications. Surface plasmon resonance (SPR) effect in this cell structure and its overall performance have been studied in terms of morphology, optical absorption, current-voltage characteristics, capacitance-voltage characteristics, band diagram and external quantum efficiency measurements. Localized surface plasmon resonance effect of silver nanoparticles (Ag NPs) in n-Si/DLC:Ag PV structure exhibited an enhancement of ∼28% in short circuit current density (JSC), which improved the overall efficiency of the heterostructures.
Vertical epitaxial wire-on-wire growth of Ge/Si on Si(100) substrate.
Shimizu, Tomohiro; Zhang, Zhang; Shingubara, Shoso; Senz, Stephan; Gösele, Ulrich
2009-04-01
Vertically aligned epitaxial Ge/Si heterostructure nanowire arrays on Si(100) substrates were prepared by a two-step chemical vapor deposition method in anodic aluminum oxide templates. n-Butylgermane vapor was employed as new safer precursor for Ge nanowire growth instead of germane. First a Si nanowire was grown by the vapor liquid solid growth mechanism using Au as catalyst and silane. The second step was the growth of Ge nanowires on top of the Si nanowires. The method presented will allow preparing epitaxially grown vertical heterostructure nanowires consisting of multiple materials on an arbitrary substrate avoiding undesired lateral growth.
Compositional dependence of the band gap in Ga(NAsP) quantum well heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandieri, K., E-mail: kakhaber.jandieri@physik.uni-marburg.de; Ludewig, P.; Wegele, T.
We present experimental and theoretical studies of the composition dependence of the direct band gap energy in Ga(NAsP)/GaP quantum well heterostructures grown on either (001) GaP- or Si-substrates. The theoretical description takes into account the band anti-crossing model for the conduction band as well as the modification of the valence subband structure due to the strain resulting from the pseudomorphic epitaxial growth on the respective substrate. The composition dependence of the direct band gap of Ga(NAsP) is obtained for a wide range of nitrogen and phosphorus contents relevant for laser applications on Si-substrate.
NASA Astrophysics Data System (ADS)
Arimoto, Keisuke; Nakazawa, Hiroki; Mitsui, Shohei; Utsuyama, Naoto; Yamanaka, Junji; Hara, Kosuke O.; Usami, Noritaka; Nakagawa, Kiyokazu
2017-11-01
A strained Si/relaxed SiGe heterostructure grown on Si(110) substrate is attractive as a platform for high-hole-mobility Si-based electronic devices. To improve the electrical property, a smoother surface is desirable. In this study, we investigated surface morphology and microstructural aspects of strained Si/relaxed SiGe/Si(110) heterostructures grown by solid-source (SS) molecular beam epitaxy (MBE). It was revealed that SSMBE provides a way to grow strained Si/relaxed SiGe heterostructures with smooth surfaces. In addition, it was found that the strain in the SiGe layer of the SSMBE-grown sample is highly anisotropic whereas that of the GSMBE-grown sample is almost biaxially relaxed. Along with the surface morphology, the symmetry in degree of strain relaxation has implications for the electrical property. Results of a calculation shows that anisotropic strain is preferable for device application since it confines holes solely in the strained Si layer where hole mobility is enhanced.
Regulation of depletion layer width in Pb(Zr,Ti)O3/Nb:SrTiO3 heterostructures
NASA Astrophysics Data System (ADS)
Bai, Yu; Jie Wang, Zhan; Cui, Jian Zhong; Zhang, Zhi Dong
2018-05-01
Improving the tunability of depletion layer width (DLW) in ferroelectric/semiconductor heterostructures is important for the performance of some devices. In this work, 200-nm-thick Pb(Zr0.4Ti0.6)O3 (PZT) films were deposited on different Nb-doped SrTiO3 (NSTO) substrates, and the tunability of DLW at PZT/NSTO interfaces were studied. Our results showed that the maximum tunability of the DLW was achieved at the NSTO substrate with 0.5 wt% Nb. On the basis of the modified capacitance model and the ferroelectric semiconductor theory, we suggest that the tunability of the DLW in PZT/NSTO heterostructures can be attributed to a delicate balance of the depletion layer charge and the ferroelectric polarization charge. Therefore, the performance of some devices related to the tunability of DLW in ferroelectric/semiconductor heterostructures can be improved by modulating the doping concentration in semiconducting electrode materials.
NASA Astrophysics Data System (ADS)
Phuoc, Nguyen N.; Ong, C. K.
2016-10-01
We report our detailed investigation of the electrical tuning of the ferromagnetic resonance frequency and frequency linewidth in multiferroic heterostructures consisting of FeCo thin films grown onto [Pb(Mg1/3Nb2/3) O3]0.68-[PbTiO3]0.32 (PMN-PT) substrates with NiFe underlayers. Our study shows that the electrical tuning range of both ferromagnetic resonance frequency and frequency linewidth in this FeCo/PMN-PT heterostructure can be very large. Specifically, the resonance frequency can be tuned from 1.8 GHz to 10.3 GHz, and the frequency linewidth can be changed from 1.6 GHz to 7.3 GHz. The electrical tuning of these microwave properties is discussed in conjunction with the result from the static magnetic characterization and is explained based on the strain-driven magnetoelectric heterostructured effect.
Thin film GaP for solar cell application
NASA Astrophysics Data System (ADS)
Morozov, I. A.; Gudovskikh, A. S.; Kudryashov, D. A.; Nikitina, E. V.; Kleider, J.-P.; Myasoedov, A. V.; Levitskiy, V.
2016-08-01
A new approach to the silicon based heterostructures technology consisting of the growth of III-V compounds (GaP) on a silicon substrate by low-temperature plasma enhanced atomic layer deposition (PE-ALD) is proposed. The basic idea of the method is to use a time modulation of the growth process, i.e. time separated stages of atoms or precursors transport to the growing surface, migration over the surface, and crystal lattice relaxation for each monolayer. The GaP layers were grown on Si substrates by PE-ALD at 350°C with phosphine (PH3) and trimethylgallium (TMG) as sources of III and V atoms. Scanning and transmission electron microscopy demonstrate that the grown GaP films have homogeneous amorphous structure, smooth surface and a sharp GaP/Si interface. The GaP/Si heterostructures obtained by PE-ALD compare favourably to that conventionally grown by molecular beam epitaxy (MBE). Indeed, spectroscopic ellipsometry measurements indicate similar interband optical absorption while photoluminescence measurements indicate higher charge carrier effective lifetime. The better passivation properties of GaP layers grown by PE-ALD demonstrate a potential of this technology for new silicon based photovoltaic heterostructure
Electronic transport in graphene-based heterostructures
NASA Astrophysics Data System (ADS)
Tan, J. Y.; Avsar, A.; Balakrishnan, J.; Koon, G. K. W.; Taychatanapat, T.; O'Farrell, E. C. T.; Watanabe, K.; Taniguchi, T.; Eda, G.; Castro Neto, A. H.; Özyilmaz, B.
2014-05-01
While boron nitride (BN) substrates have been utilized to achieve high electronic mobilities in graphene field effect transistors, it is unclear how other layered two dimensional (2D) crystals influence the electronic performance of graphene. In this Letter, we study the surface morphology of 2D BN, gallium selenide (GaSe), and transition metal dichalcogenides (tungsten disulfide (WS2) and molybdenum disulfide (MoS2)) crystals and their influence on graphene's electronic quality. Atomic force microscopy analysis shows that these crystals have improved surface roughness (root mean square value of only ˜0.1 nm) compared to conventional SiO2 substrate. While our results confirm that graphene devices exhibit very high electronic mobility (μ) on BN substrates, graphene devices on WS2 substrates (G/WS2) are equally promising for high quality electronic transport (μ ˜ 38 000 cm2/V s at room temperature), followed by G/MoS2 (μ ˜ 10 000 cm2/V s) and G/GaSe (μ ˜ 2200 cm2/V s). However, we observe a significant asymmetry in electron and hole conduction in G/WS2 and G/MoS2 heterostructures, most likely due to the presence of sulphur vacancies in the substrate crystals. GaSe crystals are observed to degrade over time even under ambient conditions, leading to a large hysteresis in graphene transport making it a less suitable substrate.
Multilayer heterostructures and their manufacture
Hammond, Scott R; Reese, Matthew; Rupert, Benjamin; Miedaner, Alexander; Curtis, Clavin; Olson, Dana; Ginley, David S
2015-11-04
A method of synthesizing multilayer heterostructures including an inorganic oxide layer residing on a solid substrate is described. Exemplary embodiments include producing an inorganic oxide layer on a solid substrate by a liquid coating process under relatively mild conditions. The relatively mild conditions include temperatures below 225.degree. C. and pressures above 9.4 mb. In an exemplary embodiment, a solution of diethyl aluminum ethoxide in anhydrous diglyme is applied to a flexible solid substrate by slot-die coating at ambient atmospheric pressure, and the diglyme removed by evaporation. An AlO.sub.x layer is formed by subjecting material remaining on the solid substrate to a relatively mild oven temperature of approximately 150.degree. C. The resulting AlO.sub.x layer exhibits relatively high light transmittance and relatively low vapor transmission rates for water. An exemplary embodiment of a flexible solid substrate is polyethylene napthalate (PEN). The PEN is not substantially adversely affected by exposure to 150.degree. C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Y. C.; Gao, J., E-mail: jugao@hku.hk
2016-08-22
Co-doped amorphous carbon (Co-C)/silicon heterostructures were fabricated by growing Co-C films on n-type Si substrates using pulsed laser deposition. A photovoltaic effect (PVE) has been observed at room temperature. Open-circuit voltage V{sub oc} = 320 mV and short-circuit current density J{sub sc }= 5.62 mA/cm{sup 2} were measured under illumination of 532-nm light with the power of 100 mW/cm{sup 2}. In contrast, undoped amorphous carbon/Si heterostructures revealed no significant PVE. Based on the PVE and photoconductivity (PC) investigated at different temperatures, it was found that the energy conversion efficiency increased with increasing the temperature and reached the maximum at room temperature, while the photoconductivity showed amore » reverse temperature dependence. The observed competition between PVE and PC was correlated with the way to distribute absorbed photons. The possible mechanism, explaining the enhanced PVE and PC in the Co-C/Si heterostructures, might be attributed to light absorption enhanced by localized surface plasmons in Co nanoparticles embedded in the carbon matrix.« less
Breuer, Tobias; Witte, Gregor
2013-10-09
A variety of low dimensional C60 structures has been grown on supporting pentacene multilayers. By choice of substrate temperature during growth the effective diffusion length of evaporated fullerenes and their nucleation at terraces or step edges can be precisely controlled. AFM and SEM measurements show that this enables the fabrication of either 2D adlayers or solely 1D chains decorating substrate steps, while at elevated growth temperature continuous wetting of step edges is prohibited and instead the formation of separated C60 clusters pinned at the pentacene step edges occurs. Remarkably, all structures remain thermally stable at room temperature once they are formed. In addition the various fullerene structures have been overgrown by an additional pentacene capping layer. Utilizing the different probe depth of XRD and NEXAFS, we found that no contiguous pentacene film is formed on the 2D C60 structure, whereas an encapsulation of the 1D and 0D structures with uniformly upright oriented pentacene is achieved, hence allowing the fabrication of low dimensional buried organic heterostructures.
NASA Astrophysics Data System (ADS)
Bhattacharya, P.; Hazari, A.; Jahangir, S.
2018-02-01
GaN-based nanowire heterostructure arrays epitaxially grown on (001)Si substrates have unique properties and present the potential to realize useful devices. The active light-emitting region in the nanowire heterostructures are usually InGaN disks, whose composition can be varied to tune the emission wavelength. We have demonstrated light emitting diodes and edgeemitting diode lasers with power outputs 10mW with emission in the 600-1300nm wavelength range. These light sources are therefore useful for a variety of applications, including silicon photonics. Molecular beam epitaxial growth of the nanowire heterostructure arrays on (001)Si substrates and the characteristics of 1.3μm nanowire array edge emitting lasers, guided wave photodiodes and a monolithic photonic integrated circuit designed for 1.3μm operation are described.
Investigation of the Optical and Electronic Properties of Crystalline Organic Materials
1990-06-14
38 (A) EFFECTS OF DEPOSTION RATE ---------------- 38 0 (B) EFFECTS OF SUBSTRATE TEMPERATURE ------ 40 11.5 ANISOTROPIES IN CRYSTALLINE ORGANIC THIN...depostion rate .- ------------------------------------------------------------------ 41 Fig. 2.10: Scanning electron micrographs showing the surface...materials grown be lattice-matched. Hence, relatively strain -free heterostructures using materials with large lattice-mismatch can be realized by the
IZO deposited by PLD on flexible substrate for organic heterostructures
NASA Astrophysics Data System (ADS)
Socol, M.; Preda, N.; Stanculescu, A.; Breazu, C.; Florica, C.; Rasoga, O.; Stanculescu, F.; Socol, G.
2017-05-01
In:ZnO (IZO) thin films were deposited on flexible plastic substrates by pulsed laser deposition (PLD) method. The obtained layers present adequate optical and electrical properties competitive with those based on indium tin oxide (ITO). The figure of merit (9 × 10-3 Ω-1) calculated for IZO layers demonstrates that high quality coatings can be prepared by this deposition technique. A thermal annealing (150 °C for 1 h) or an oxygen plasma etching (6 mbar for 10 min.) were applied to the IZO layers to evaluate the influence of these treatments on the properties of the transparent coatings. Using vacuum evaporation, organic heterostructures based on cooper phthalocyanine (CuPc) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) were deposited on the untreated and treated IZO layers. The optical and electrical properties of the heterostructures were investigated by UV-Vis, FTIR and current-voltage ( I- V) measurements. For the heterostructure fabricated on IZO treated in oxygen plasma, an improvement in the current value with at least one order of magnitude was evidenced in the I- V characteristics recorded in dark conditions. Also, an increase in the current value for the heterostructure deposited on untreated IZO layer can be achieved by adding an organic layer such as tris-8-hydroxyquinoline aluminium (Alq3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seredin, P. V.; Gordienko, N. N.; Glotov, A. V.
2009-08-15
In structures with a porous buffer layer, residual internal stresses caused by a mismatch between the crystal-lattice parameters of the epitaxial GaInP alloy and the GaAs substrate are redistributed to the porous layer that acts as a buffer and is conducive to disappearance of internal stresses. Doping of the epitaxial layer with dysprosium exerts a similar effect on the internal stresses in the film-substrate structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veal, Boyd W.; Kim, Seong Keun; Zapol, Peter
2016-06-10
Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the filmmore » and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment.« less
NASA Astrophysics Data System (ADS)
Wei, Maocai; Liu, Meifeng; Wang, Xiuzhang; Li, Meiya; Zhu, Yongdan; Zhao, Meng; Zhang, Feng; Xie, Shuai; Hu, Zhongqiang; Liu, Jun-Ming
2017-03-01
Epitaxial Bi0.9Eu0.1FeO3 (BEFO) thin films are deposited on Nb-doped SrTiO3 (NSTO) substrates by pulsed laser deposition to fabricate the Pt/BEFO/NSTO (001) heterostructures. These heterostructures possess bipolar resistive switching, where the resistances versus writing voltage exhibits a distinct hysteresis loop and a memristive behavior with good retention and anti-fatigue characteristics. The local resistive switching is confirmed by the conductive atomic force microscopy (C-AFM), suggesting the possibility to scale down the memory cell size. The observed memristive behavior could be attributed to the ferroelectric polarization effect, which modulates the height of potential barrier and width of depletion region at the BEFO/NSTO interface. The continuously tunable resistive switching behavior could be useful to achieve non-volatile, high-density, multilevel random access memory with low energy consumption.
Fan, Jinchang; Qi, Kun; Zhang, Lei; Zhang, Haiyan; Yu, Shansheng; Cui, Xiaoqiang
2017-05-31
Tailoring the interfacial structure of Pt-based catalysts has emerged as an effective strategy to improve catalytic activity. However, little attention has been focused on investigating the relationship between the interfacial facets and their catalytic activity. Here, we design and implement Pd-Pt interfaces with controlled heterostructure features by epitaxially growing Pt nanoparticles on Pd nanosheets. On the basis of both density functional theory calculation and experimental results, we demonstrate that charge transfer from Pd to Pt is highly dependent on the interfacial facets of Pd substrates. Therefore, the Pd-Pt heterostructure with Pd(100)-Pt interface exhibits excellent activity and long-term stability for hydrogen evolution and methanol/ethanol oxidation reactions in alkaline medium, much better than that with Pd (111)-Pt interface or commercial Pt/C. Interfacial crystal facet-dependent electronic structural modulation sheds a light on the design and investigation of new heterostructures for high-activity catalysts.
Veal, Boyd W.; Kim, Seong Keun; Zapol, Peter; ...
2016-06-10
Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behavior, large changes in metal-insulator transition temperatures, or enhanced catalytic activity. Here in this paper, we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In 2O 3 films grown on ionically conducting Y 2O 3-stabilized ZrO 2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygenmore » vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behavior is dependent on interface properties and is attained without cation doping or changes in the gas environment.« less
Hydrogen-surfactant-assisted coherent growth of GaN on ZnO substrate
NASA Astrophysics Data System (ADS)
Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Zhu, Junyi
2018-01-01
Heterostructures of wurtzite based devices have attracted great research interest because of the tremendous success of GaN in light emitting diodes (LED) industry. High-quality GaN thin films on inexpensive and lattice matched ZnO substrates are both commercially and technologically desirable. Intrinsic wetting conditions, however, forbid such heterostructures as the energy of ZnO polar surfaces is much lower than that of GaN polar surfaces, resulting in 3D growth mode and poor crystal quality. Based on first-principles calculations, we propose the use of surfactant hydrogen to dramatically alter the growth mode of the heterostructures. Stable H-involved surface configurations and interfaces are investigated with the help of our newly developed modelling techniques. The temperature and chemical potential dependence of our proposed strategy, which is critical in experiments, is predicted by applying the experimental Gibbs free energy of H2. Our thermodynamic wetting condition analysis is a crucial step for the growth of GaN on ZnO, and we find that introducing H will not degrade the stability of ZnO substrate. This approach will allow the growth of high-quality GaN thin films on ZnO substrates. We believe that our new strategy may reduce the manufactory cost, improve the crystal quality, and improve the efficiency of GaN-based devices.
Strain-Engineered Nanomembrane Substrates for Si/SiGe Heterostructures
NASA Astrophysics Data System (ADS)
Sookchoo, Pornsatit
For Group IV materials, including silicon, germanium, and their alloys, although they are most widely used in the electronics industry, the development of photonic devices is hindered by indirect band gaps and large lattice mismatches. Thus, any heterostructures involving Si and Ge (4.17% lattice mismatch) are subject to plastic relaxation by dislocation formation in the heterolayers. These defects make many devices impossible and at minimum degrade the performance of those that are possible. Fabrication using elastic strain engineering in Si/SiGe nanomembranes (NMs) is an approach that is showing promise to overcome this limitation. A key advantage of such NM substrates over conventional bulk substrates is that they are relaxed elastically and therefore free of dislocations that occur in the conventional fabrication of SiGe substrates, which are transferred to the epilayers and roughen film interfaces. In this thesis, I use the strain engineering of NMs or NM stacks to fabricate substrates for the epitaxial growth of many repeating units of Si/SiGe heterostructure, known as a 'superlattice', by the elastic strain sharing of a few periods of the repeating unit of Si/SiGe heterolayers or a Si/SiGe/Si tri-layer structure. In both cases, the process begins with the epitaxial growth of Si/SiGe heterolayers on silicon-on-insulator (SOI), where each layer thickness is designed to stay below its kinetic critical thickness for the formation of dislocations. The heterostructure NMs are then released by etching of the SiO2 sacrificial layer in hydrofluoric acid. The resulting freestanding NMs are elastically relaxed by the sharing of strain between the heterolayers. The NMs can be bonded in-place to their host substrate or transferred to another host substrate for the subsequent growth of many periods of superlattice film. The magnitude of strain sharing in these freestanding NMs is influenced by their layer thicknesses and layer compositions. As illustrated in this dissertation, strain-engineering of such NMs can provide the enabling basis for improved Group IV optoelectronic devices.
Low-temperature magnetotransport in Si/SiGe heterostructures on 300 mm Si wafers
NASA Astrophysics Data System (ADS)
Scappucci, Giordano; Yeoh, L.; Sabbagh, D.; Sammak, A.; Boter, J.; Droulers, G.; Kalhor, N.; Brousse, D.; Veldhorst, M.; Vandersypen, L. M. K.; Thomas, N.; Roberts, J.; Pillarisetty, R.; Amin, P.; George, H. C.; Singh, K. J.; Clarke, J. S.
Undoped Si/SiGe heterostructures are a promising material stack for the development of spin qubits in silicon. To deploy a qubit into high volume manufacturing in a quantum computer requires stringent control over substrate uniformity and quality. Electron mobility and valley splitting are two key electrical metrics of substrate quality relevant for qubits. Here we present low-temperature magnetotransport measurements of strained Si quantum wells with mobilities in excess of 100000 cm2/Vs fabricated on 300 mm wafers within the framework of advanced semiconductor manufacturing. These results are benchmarked against the results obtained in Si quantum wells deposited on 100 mm Si wafers in an academic research environment. To ensure rapid progress in quantum wells quality we have implemented fast feedback loops from materials growth, to heterostructure FET fabrication, and low temperature characterisation. On this topic we will present recent progress in developing a cryogenic platform for high-throughput magnetotransport measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekorkin, S. M.; Zvonkov, B. N.; Baidus, N. V.
2017-01-15
The radiative properties of InGaAs/GaAs/InGaP laser structures with radiation output through the substrate depending on the number of quantum wells in the active region and laser diodes on their basis are investigated. It is established that the presence of six–eight quantum wells in the active region is optimum from the viewpoint of observable values of the threshold current and the output optical power of lasers.
Enhanced Hole Mobility and Density in GaSb Quantum Wells
2013-01-01
Keywords: Molecular beam epitaxy Quantum wells Semiconducting III–V materials Field-effect transistors GaSb a b s t r a c t Modulation-doped quantum wells...QWs) of GaSb clad by AlAsSb were grown by molecular beam epitaxy on InP substrates. By virtue of quantum confinement and compressive strain of the...heterostructures studied here are grown by molecular beam epitaxy (MBE) on semi-insulating (001) InP substrates using a Riber Compact 21T MBE system. A cross
Fabrication and characterization of AlN metal-insulator-semiconductor grown Si substrate
NASA Astrophysics Data System (ADS)
Mahyuddin, A.; Azrina, A.; Mohd Yusoff, M. Z.; Hassan, Z.
2017-11-01
An experimental investigation was conducted to explore the effect of inserting a single AlGaN interlayer between AlN epilayer and GaN/AlN heterostructures on Si (111) grown by molecular beam epitaxy (MBE). It is confirmed from the scanning electron microscopy (SEM) that the AlGaN interlayer has a remarkable effect on reducing the tensile stress and dislocation density in AlN top layer. Capacitance-voltage (C-V) measurements were conducted to study the electrical properties of AlN/GaN heterostructures. While deriving the findings through the calculation it is suggested that the AlGaN interlayer can significantly reduce the value of effective oxide charge density and total effective number of charges per unit area which are 1.37 × 10-6C/cm2 and 8.55 × 1012cm-2, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jr-Tai, E-mail: jrche@ifm.liu.se; Hsu, Chih-Wei; Forsberg, Urban
2015-02-28
Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H{sub 2} atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ∼2000 cm{sup 2}/V·s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon andmore » oxygen concentrations were found up to ∼1 × 10{sup 20 }cm{sup −3} at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm{sup 2} SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.« less
NASA Astrophysics Data System (ADS)
Kim, Gunwoo
Magnetoelectric random access memory (MERAM) has emerged as a promising new class of non-volatile solid-state memory device. It offers nondestructive reading along with low power consumption during the write operation. A common implementation of MERAM involves use of multiferroic tunneling junctions (MFTJs), which besides offering non-volatility are both electrically and magnetically tunable. Fundamentally, a MFTJ consists of a heterostructure of an ultrathin multiferroic or ferroelectric material as the active tunneling barrier sandwiched between ferromagnetic electrodes. Thereby, the MFTJ exhibits both tunnel electroresistance (TER) and tunnel magnetoresistance (TMR) effects with application of an electric and magnetic field, respectively. In this thesis work, we have developed two-dimensional (2D) thin-film multiferroic heterostructure METJ prototypes consisting of ultrathin ferroelectric BaTiO3 (BTO) layer and a conducting ferromagnetic La0.67Sr 0.33MnO3 (LSMO) electrode. The heteroepitaxial films are grown using the pulsed laser deposition (PLD) technique. This oxide heterostructure offers the opportunity to study the nano-scale details of the tunnel electroresistance (TER) effect using scanning probe microscopy techniques. We performed the measurements using the MFP-3D (Asylum Research) scanning probe microscope. The ultrathin BTO films (1.2-2.0 nm) grown on LSMO electrodes display both ferro- and piezo-electric properties and exhibit large tunnel resistance effect. We have explored the growth and properties of one-dimensional (1D) heterostructures, referred to as multiferoric nanowire (NW) heterostructures. The ferromagnetic/ferroelectric composite heterostructures are grown as sheath layers using PLD on lattice-matched template NWs, e.g. MgO, that are deposited by chemical vapor deposition utilizing the vapor-liquid-solid (VLS) mechanism. The one-dimensional geometry can substantially overcome the clamping effect of the substrate present in two-dimensional structures because of the reduced volume of the template. This leads to minimum constraint of displacements at the interface and thereby significantly enhances the magnetoelectric (ME) effect. We characterized the nanostructures using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results of our studies utilizing multiferroic 2-D thin films and 1-D NW architectures clearly demonstrate the potential of these heterostructures for future device applications, such as in MERAM, data storage, magneto-electric field sensors, etc.
NASA Astrophysics Data System (ADS)
Entani, S.; Kiguchi, M.; Saiki, K.; Koma, A.
2003-01-01
Epitaxial growth of CoO films was studied using reflection high-energy electron diffraction (RHEED), electron energy loss spectroscopy (EELS), ultraviolet photoelectron spectroscopy (UPS) and Auger electron spectroscopy (AES). The RHEED results indicated that an epitaxial CoO film grew on semiconductor and metal substrates (CoO (0 0 1)∥GaAs (0 0 1), Cu (0 0 1), Ag (0 0 1) and [1 0 0]CoO∥[1 0 0] substrates) by constructing a complex heterostructure with two alkali halide buffer layers. The AES, EELS and UPS results showed that the grown CoO film had almost the same electronic structure as bulk CoO. We could show that use of alkali halide buffer layers was a good way to grow metal oxide films on semiconductor and metal substrates in an O 2 atmosphere. The alkali halide layers not only works as glue to connect very dissimilar materials but also prevents oxidation of metal and semiconductor substrates.
Pan, Minghu; Liang, Liangbo; Lin, Wenzhi; ...
2016-09-28
Van der Waals (vdW) heterostructures consist of isolated atomic planar structures, assembled layer- by-layer into desired structures in a well-defined sequence. Graphene deposited on hexagonal boron nitride (h-BN) has been first considered as a testbed system for vdW heterostructures, and many others have been demonstrated both theoretically and experimentally, revealing many attractive properties and phenomena. However, much less emphasis has been placed on how graphene actively affects h-BN properties. Here, we perform local probe measurements on single-layer h-BN grown over graphene and highlight the manifestation of a proximity effect that significantly affects the electronic properties of h-BN due to itsmore » coupling with the underlying graphene. We find electronic states originating from the graphene layer and the Cu substrate to be injected into the wide electronic gap of the h-BN top layer. Such proximity effect is further confirmed in a study of the variation of h-BN in-gap states with interlayer couplings, elucidated using a combination of topographical/ spectroscopic measurements and first-principles density functional theory calculations. In conclusion, the findings of this work indicate the potential of mutually engineering electronic properties of the components of vdW heterostructures.« less
Coherent assembly of heterostructures in ternary and quaternary carbonitrides
NASA Astrophysics Data System (ADS)
Caicedo, J. C.; Aperador, W.; Saldarriaga, W.
2018-05-01
In this study, ternary and quaternary carbonitride heterostructure systems were grown on silicon (100) substrates in order to investigate coherent assembly in TiCN/TiNbCN. The heterostructure films were grown using the reactive r. f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n), while maintaining a constant total coating thickness (∼3 μm). The heterostructures were characterized by high angle X-ray diffraction (HA-XRD) and low angle X-ray diffraction, while the TiCN and TiNbCN layers were analyzed by X-ray photoelectron spectroscopy and transmission electron microscopy. The HA-XRD results indicated preferential growth in the face-centered cubic (111) crystal structure for the [TiCN/TiNbCN]n heterostructures. The maximum coherent assembly was observed with the presence of satellite peaks. Thus, ternary and quaternary carbonitride films were designed and deposited on Si (100) substrates with bilayer periods (Λ) in a broad range from nanometers to hundreds of nanometers in order to study the structural evolution and coherent assembly progress as the bilayer thickness decreased. We determined physical properties comprising the critical angle (θc) (0.362°), electronic density (ρe) (0.521 × 1033 el/m3), dispersion coefficient (δ) (0.554 el/m3), and refractive index (n) (0.999944) as functions of the number of bilayers (n).
Gallium nitride heterostructures on 3D structured silicon.
Fündling, Sönke; Sökmen, Unsal; Peiner, Erwin; Weimann, Thomas; Hinze, Peter; Jahn, Uwe; Trampert, Achim; Riechert, Henning; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas
2008-10-08
We investigated GaN-based heterostructures grown on three-dimensionally patterned Si(111) substrates by metal organic vapour phase epitaxy, with the goal of fabricating well controlled high quality, defect reduced GaN-based nanoLEDs. The high aspect ratios of such pillars minimize the influence of the lattice mismatched substrate and improve the material quality. In contrast to other approaches, we employed deep etched silicon substrates to achieve a controlled pillar growth. For that a special low temperature inductively coupled plasma etching process has been developed. InGaN/GaN multi-quantum-well structures have been incorporated into the pillars. We found a pronounced dependence of the morphology of the GaN structures on the size and pitch of the pillars. Spatially resolved optical properties of the structures are analysed by cathodoluminescence.
Laser diode bars based on strain-compensated AlGaPAs/GaAs heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marmalyuk, Aleksandr A; Ladugin, M A; Yarotskaya, I V
2012-01-31
Traditional (in the AlGaAs/GaAs system) and phosphorus-compensated (in the AlGaAs/AlGaPAs/GaAs system) laser heterostructures emitting at a wavelength of 850 nm are grown by MOVPE and studied. Laser diode bars are fabricated and their output characteristics are studied. The method used to grow heterolayers allowed us to control (minimise) mechanical stresses in the AlGaPAs/GaAs laser heterostructure, which made it possible to keep its curvature at the level of the initial curvature of the substrate. It is shown that the use of a compensated AlGaPAs/GaAs heterostructure improves the linear distribution of emitting elements in the near field of laser diode arrays andmore » allows the power - current characteristic to retain its slope at high pump currents owing to a uniform contact of all emitting elements with the heat sink. The radius of curvature of the grown compensated heterostructures turns out to be smaller than that of traditional heterostructures.« less
Rouhi, Jalal; Mamat, Mohamad Hafiz; Ooi, C. H. Raymond; Mahmud, Shahrom; Mahmood, Mohamad Rusop
2015-01-01
High-density and well-aligned ZnO–ZnS core–shell nanocone arrays were synthesized on fluorine-doped tin oxide glass substrate using a facile and cost-effective two-step approach. In this synthetic process, the ZnO nanocones act as the template and provide Zn2+ ions for the ZnS shell formation. The photoluminescence spectrum indicates remarkably enhanced luminescence intensity and a small redshift in the UV region, which can be associated with the strain caused by the lattice mismatch between ZnO and ZnS. The obtained diffuse reflectance spectra show that the nanocone-based heterostructure reduces the light reflection in a broad spectral range and is much more effective than the bare ZnO nanocone and nanorod structures. Dye-sensitized solar cells based on the heterostructure ZnO–ZnS nanocones are assembled, and high conversion efficiency (η) of approximately 4.07% is obtained. The η improvement can be attributed primarily to the morphology effect of ZnO nanocones on light-trapping and effectively passivating the interface surface recombination sites of ZnO nanocones by coating with a ZnS shell layer. PMID:25875377
Electric microwave absorption for the study of GaAs/AlGaAs heterostructure systems
NASA Astrophysics Data System (ADS)
Zappe, Hans P.; Jantz, Wolfgang
1990-12-01
The use of magnetic-field-dependent microwave absorption as a nondestructive and contact-free means to study transport behavior in GaAs/AlGaAs devices is explored. This technique allows quick measurement of resistance, mobility, and carrier concentration in bulk substrates as well as in the two-dimensional electron gas of heterostructure quantum wells. The two- and three-dimensional conductivities may be separably evaluated, allowing detailed study of conduction in the active layer of high-electron-mobility devices. A brief theoretical foundation is provided, followed by application of the approach to examination of device structural dependencies, carrier-density conduction behavior, and the effects of etch processing on quantum-well integrity.
NASA Astrophysics Data System (ADS)
Aggarwal, R.; Ingale, Alka A.; Dixit, V. K.
2018-01-01
Effects of lattice and polar/nonpolar mismatch between the GaP layer and Ge(111) substrate are investigated by spatially resolved Raman spectroscopy. The red shifted transverse optical (TO) and longitudinal optical (LO) phonons due to residual strain, along with asymmetry to TO phonon ∼358 cm-1 are observed in GaP/Ge(111). The peak intensity variation of mode ∼358 cm-1 with respect to TO phonon across the crystallographic morphed surface of GaP micro structures is associated with the topographical variations using atomic force microscopy mapping and Raman spectroscopy performed on both in plane and cross-sectional surface. Co-existence of GaP allotropes, i.e. wurtzite phase near heterojunction interface and dominant zinc-blende phase near surface is established using the spatially resolved polarized Raman spectroscopy from the cross sectional surface of heterostructures. This consistently explains effect of surface morphology on Raman spectroscopy from GaP(111). The study shows the way to identify crystalline phases in other advanced semiconductor heterostructures without any specific sample preparation.
NASA Astrophysics Data System (ADS)
Das, Tanmoy; Jang, Houk; Bok Lee, Jae; Chu, Hyunwoo; Kim, Seong Dae; Ahn, Jong-Hyun
2015-12-01
Graphene-based heterostructured vertical transistors have attracted a great deal of research interest. Herein we propose a Si-based technology platform for creating graphene/ultrathin semiconductor/metal (GSM) junctions, which can be applied to large-scale and low-power electronics compatible with a variety of substrates. We fabricated graphene/Si nanomembrane (NM)/metal vertical heterostructures by using a dry transfer technique to transfer Si NMs onto chemical vapor deposition-grown graphene layers. The resulting van der Waals interfaces between graphene and p-Si NMs exhibited nearly ideal Schottky barrier behavior. Due to the low density of states of graphene, the graphene/Si NM Schottky barrier height can be modulated by modulating the band profile in the channel region, yielding well-defined current modulation. We obtained a maximum current on/off ratio (Ion/Ioff) of up to ˜103, with a current density of 102 A cm-2. We also observed significant dependence of Schottky barrier height Δφb on the thickness of the Si NMs. We confirmed that the transport in these devices is dominated by the effects of the graphene/Si NM Schottky barrier.
NASA Technical Reports Server (NTRS)
Heyd, A. R.; Alterovitz, S. A.; Croke, E. T.
1995-01-01
Si(x)Ge(1-x)heterostructures on Si substrates have been widely studied due to the maturity of Si technology. However, work on Si(x)Ge)1-x) heterostructures on Ge substrates has not received much attention. A Si(x)Ge(1-x) layer on a Si substrate is under compressive strain while Si(x)Ge(1-x) on Ge is under tensile strain; thus the critical points will behave differently. In order to accurately characterize high Ge content Si(x)Ge(1-x) layers the energy shift algorithm used to calculate alloy compositions, has been modified. These results have been used along with variable angle spectroscopic ellipsometry (VASE) measurements to characterize Si(x)Ge(1-x)/Ge superlattices grown on Ge substrates. The results agree closely with high resolution x-ray diffraction measurements made on the same samples. The modified energy shift algorithm also allows the VASE analysis to be upgraded in order to characterize linearly graded layers. In this work VASE has been used to characterize graded Si(x)Ge(1-x) layers in terms of the total thickness, and the start and end alloy composition. Results are presented for a 1 micrometer Si(x)Ge(1-x) layer linearly graded in the range 0.5 less than or equal to x less than or equal to 1.0.
Strain field mapping of dislocations in a Ge/Si heterostructure.
Liu, Quanlong; Zhao, Chunwang; Su, Shaojian; Li, Jijun; Xing, Yongming; Cheng, Buwen
2013-01-01
Ge/Si heterostructure with fully strain-relaxed Ge film was grown on a Si (001) substrate by using a two-step process by ultra-high vacuum chemical vapor deposition. The dislocations in the Ge/Si heterostructure were experimentally investigated by high-resolution transmission electron microscopy (HRTEM). The dislocations at the Ge/Si interface were identified to be 90° full-edge dislocations, which are the most efficient way for obtaining a fully relaxed Ge film. The only defect found in the Ge epitaxial film was a 60° dislocation. The nanoscale strain field of the dislocations was mapped by geometric phase analysis technique from the HRTEM image. The strain field around the edge component of the 60° dislocation core was compared with those of the Peierls-Nabarro and Foreman dislocation models. Comparison results show that the Foreman model with a = 1.5 can describe appropriately the strain field around the edge component of a 60° dislocation core in a relaxed Ge film on a Si substrate.
Strain-induced magnetization control in an oxide multiferroic heterostructure
NASA Astrophysics Data System (ADS)
Motti, Federico; Vinai, Giovanni; Petrov, Aleksandr; Davidson, Bruce A.; Gobaut, Benoit; Filippetti, Alessio; Rossi, Giorgio; Panaccione, Giancarlo; Torelli, Piero
2018-03-01
Controlling magnetism by using electric fields is a goal of research towards novel spintronic devices and future nanoelectronics. For this reason, multiferroic heterostructures attract much interest. Here we provide experimental evidence, and supporting density functional theory analysis, of a transition in L a0.65S r0.35Mn O3 thin film to a stable ferromagnetic phase, that is induced by the structural and strain properties of the ferroelectric BaTi O3 (BTO) substrate, which can be modified by applying external electric fields. X-ray magnetic circular dichroism measurements on Mn L edges with a synchrotron radiation show, in fact, two magnetic transitions as a function of temperature that correspond to structural changes of the BTO substrate. We also show that ferromagnetism, absent in the pristine condition at room temperature, can be established by electrically switching the BTO ferroelectric domains in the out-of-plane direction. The present results confirm that electrically induced strain can be exploited to control magnetism in multiferroic oxide heterostructures.
NASA Astrophysics Data System (ADS)
Li, Jiayu; Lin, Li; Huang, Guang-Yao; Kang, N.; Zhang, Jincan; Peng, Hailin; Liu, Zhongfan; Xu, H. Q.
2018-02-01
Graphene/hexagonal boron nitride (G/h-BN) heterostructures offer an excellent platform for developing nanoelectronic devices and for exploring correlated states in graphene under modulation by a periodic superlattice potential. Here, we report on transport measurements of nearly 0 ° -twisted G/h-BN heterostructures. The heterostructures investigated are prepared by dry transfer and thermally annealing processes and are in the low mobility regime (approximately 3000 cm2 V-1 s-1 at 1.9 K). The replica Dirac spectra and Hofstadter butterfly spectra are observed on the hole transport side, but not on the electron transport side, of the heterostructures. We associate the observed electron-hole asymmetry with the presence of a large difference between the opened gaps in the conduction and valence bands and a strong enhancement in the interband contribution to the conductivity on the electron transport side in the low-mobility G/h-BN heterostructures. We also show that the gaps opened at the central Dirac point and the hole-branch secondary Dirac point are large, suggesting the presence of strong graphene-substrate interaction and electron-electron interaction in our G/h-BN heterostructures. Our results provide additional helpful insight into the transport mechanism in G/h-BN heterostructures.
NASA Astrophysics Data System (ADS)
Babjuck, T. I.; Buntar, A. G.; Shevtchuk, L. S.
2001-06-01
Hetero-transitions on a base of InAs and AnSb compounds permitted to obtain cheap light diodes and detectors with the atmosphere maximal transparency region sensibility. There is assumed simultaneously, that the phon radiation in InAs-InAs1-xSbx is not large, which positively effects on receiver parameters. Changing the composition of InAs-InAs1- xSbx solution, one may obtain the structure with the width of forbidden zone of the want of 0.35 to 0,1 eV. There is developed the heterostructures crystalline lattice parameters determining method (for substrate and film) with the DRON-3M x-ray diffractometer. There was found the nonlinear dependence of the heterostructures lattice parameter on the composition. Investigations of interatomic interaction in dependence on composition and also on the forbidden zone width Eg(x) have show, that solid solutions InAs-InAs1- xSbx may be used for the obtaining of infra-red receiver.
NaCl-assisted one-step growth of MoS2-WS2 in-plane heterostructures
NASA Astrophysics Data System (ADS)
Wang, Zhan; Xie, Yong; Wang, Haolin; Wu, Ruixue; Nan, Tang; Zhan, Yongjie; Sun, Jing; Jiang, Teng; Zhao, Ying; Lei, Yimin; Yang, Mei; Wang, Weidong; Zhu, Qing; Ma, Xiaohua; Hao, Yue
2017-08-01
Transition metal dichalcogenides (TMDs) have attracted considerable interest for exploration of next-generation electronics and optoelectronics in recent years. Fabrication of in-plane lateral heterostructures between TMDs has opened up excellent opportunities for engineering two-dimensional materials. The creation of high quality heterostructures with a facile method is highly desirable but it still remains challenging. In this work, we demonstrate a one-step growth method for the construction of high-quality MoS2-WS2 in-plane heterostructures. The synthesis was carried out using ambient pressure chemical vapor deposition (APCVD) with the assistance of sodium chloride (NaCl). It was found that the addition of NaCl played a key role in lowering the growth temperatures, in which the Na-containing precursors could be formed and condensed on the substrates to reduce the energy of the reaction. As a result, the growth regimes of MoS2 and WS2 are better matched, leading to the formation of in-plane heterostructures in a single step. The heterostructures were proved to be of high quality with a sharp and clear interface. This newly developed strategy with the assistance of NaCl is promising for synthesizing other TMDs and their heterostructures.
Self-assembly of electronically abrupt borophene/organic lateral heterostructures
Liu, Xiaolong; Wei, Zonghui; Balla, Itamar; Mannix, Andrew J.; Guisinger, Nathan P.; Luijten, Erik; Hersam, Mark C.
2017-01-01
Two-dimensional boron sheets (that is, borophene) have recently been realized experimentally and found to have promising electronic properties. Because electronic devices and systems require the integration of multiple materials with well-defined interfaces, it is of high interest to identify chemical methods for forming atomically abrupt heterostructures between borophene and electronically distinct materials. Toward this end, we demonstrate the self-assembly of lateral heterostructures between borophene and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). These lateral heterostructures spontaneously form upon deposition of PTCDA onto submonolayer borophene on Ag(111) substrates as a result of the higher adsorption enthalpy of PTCDA on Ag(111) and lateral hydrogen bonding among PTCDA molecules, as demonstrated by molecular dynamics simulations. In situ x-ray photoelectron spectroscopy confirms the weak chemical interaction between borophene and PTCDA, while molecular-resolution ultrahigh-vacuum scanning tunneling microscopy and spectroscopy reveal an electronically abrupt interface at the borophene/PTCDA lateral heterostructure interface. As the first demonstration of a borophene-based heterostructure, this work will inform emerging efforts to integrate borophene into nanoelectronic applications. PMID:28261662
Removal of GaAs growth substrates from II-VI semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Bieker, S.; Hartmann, P. R.; Kießling, T.; Rüth, M.; Schumacher, C.; Gould, C.; Ossau, W.; Molenkamp, L. W.
2014-04-01
We report on a process that enables the removal of II-VI semiconductor epilayers from their GaAs growth substrate and their subsequent transfer to arbitrary host environments. The technique combines mechanical lapping and layer selective chemical wet etching and is generally applicable to any II-VI layer stack. We demonstrate the non-invasiveness of the method by transferring an all-II-VI magnetic resonant tunneling diode. High resolution x-ray diffraction proves that the crystal integrity of the heterostructure is preserved. Transport characterization confirms that the functionality of the device is maintained and even improved, which is ascribed to completely elastic strain relaxation of the tunnel barrier layer.
NASA Astrophysics Data System (ADS)
Bayati, Mohammad Reza
The main focus of this study was placed on structure-property correlation in TiO2 and VO2 based epitaxial heterostructures where the photochemical and electrical properties were tuned through microstructural engineering. In the framework of domain matching epitaxy, epitaxial growth of TiO2 and VO2 heterostructures on different substrates were explained. The theta-2theta and ϕ scan X-ray diffraction measurements and detailed high resolution electron microscopy studies corroborated our understanding of the epitaxial growth and the crystallographic arrangement across the interfaces. The influence of the laser and substrate variables on structural characteristics of the films was investigated using X-ray photoelectron spectroscopy, room temperature photoluminescence spectroscopy, and UV-Vis spectrophotometry. In addition, morphological studies were performed by atomic force microscopy. Photochemical properties of the heterostructures were assessed through measuring surface wettability characteristics and photocatalytic reaction rate constant of degradation of 4-chlorophenol under ultraviolet and visible irradiations. We also studied electrical properties employing 4-probe measurement technique. The effect of post treatment processes, such as vacuum annealing and laser treatment, on structure and properties was investigated as well. The role of point defects and deviation from the stoichiometry on photochemical and electrical properties was addressed. In this research, TiO2 epilayers with controlled phase structure, defect content, and crystallographic alignments were grown on sapphire and silicon substrates. Integration with silicon was achieved using cubic and tetragonal yttria-stabilized zirconia buffer layers. I was able to tune the phase structure of the TiO2 based heterostructures from pure rutile to pure anatase and establish an epitaxial relationship across the interfaces in each case. These heterostructures were used for two different purposes. First, their application in environmental remediation was taken into account. The photochemical efficiency of the samples was evaluated under ultraviolet and visible illuminations. I was able to establish a correlation between the growth conditions and the photocatalytic activity of single crystalline TiO 2 thin films. Visible-light-responsive TiO2 films were fabricated via vacuum annealing of the samples where point defects, namely oxygen vacancies and titanium interstitial, are surmised to play a critical role. An ultrafast switching was observed in wetting characteristics of the single crystalline rutile TiO2 films from a hydrophobic state to a superhydrophilic state by single pulsed excimer laser annealing. It was observed that the laser annealing almost doubles the photocatalytic efficiency of the anatase epitaxial thin films. I was able to measure the photochemical properties of the rutile and the anatase TiO2 heterostructures in a controlled way due to the single crystalline nature of the films. Second, the rutile TiO2 epilayers with different out-of-plane orientations were deposited and used as a platform for VO2 based epitaxial heterostructures with the aim of manipulating of microstructure and electrical properties of the VO 2 films. Vanadium dioxide (VO2) is an interesting material due to the abrupt change in electrical resistivity and infrared transmittance at about 68 °C. The transition temperature can be tuned through microstructural engineering. It was the idea behind using rutile TiO2 with different crystallographic orientations as a template to tune the semiconductor to metal transition characteristics of the VO2 top layer. I successfully grew VO2(001), VO2(100), and VO2(2¯01) epitaxial thin films on TiO2(100)/c-sapphire, TiO2(101)/r-sapphire, and TiO2(001)/ m-sapphire platforms, respectively. It was observed that tetragonal phase of VO2 was stabilized at lower temperatures leading to a significant decrease in the semiconductor to metal transition temperature. In other words, we were able to tune the transition temperature of the VO 2 epitaxial heterostructures. This achievement introduces the VO 2 based single crystalline heterostructures as a promising candidate for a wide range of applications where different transition temperatures are required. The epitaxial relationships were established and atomic arrangement across the interfaces was studied in detail.
Wei, Wei; Qin, Zhixin; Fan, Shunfei; Li, Zhiwei; Shi, Kai; Zhu, Qinsheng; Zhang, Guoyi
2012-10-10
A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV.
2012-01-01
A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV. PMID:23046910
Behura, Sanjay; Nguyen, Phong; Debbarma, Rousan; Che, Songwei; Seacrist, Michael R; Berry, Vikas
2017-05-23
Hexagonal boron nitride (h-BN) is an ideal platform for interfacing with two-dimensional (2D) nanomaterials to reduce carrier scattering for high-quality 2D electronics. However, scalable, transfer-free growth of hexagonal boron nitride (h-BN) remains a challenge. Currently, h-BN-based 2D heterostructures require exfoliation or chemical transfer of h-BN grown on metals resulting in small areas or significant interfacial impurities. Here, we demonstrate a surface-chemistry-influenced transfer-free growth of large-area, uniform, and smooth h-BN directly on silicon (Si)-based substrates, including Si, silicon nitride (Si 3 N 4 ), and silicon dioxide (SiO 2 ), via low-pressure chemical vapor deposition. The growth rates increase with substrate electronegativity, Si < Si 3 N 4 < SiO 2 , consistent with the adsorption rates calculated for the precursor molecules via atomistic molecular dynamics simulations. Under graphene with high grain density, this h-BN film acts as a polymer-free, planar-dielectric interface increasing carrier mobility by 3.5-fold attributed to reduced surface roughness and charged impurities. This single-step, chemical interaction guided, metal-free growth mechanism of h-BN for graphene heterostructures establishes a potential pathway for the design of complex and integrated 2D-heterostructured circuitry.
High T(sub c) superconductor/ferroelectric heterostructures
NASA Astrophysics Data System (ADS)
Ryder, Daniel F., Jr.
1994-12-01
Thin films of the ferroelectric perovskite, Ba(x) Sr(1-x) TiO3 (BST), were deposited on superconducting (100)YBa2Cu3O(x)(YBCO)/ (100)Yttria-stabilized zirconia(YSZ) substrates and (100)Si by ion-beam sputtering. Microstructural and compositional features of the ceramic bilayer were assessed by a combination of x-ray diffraction (XRD) and scanning electron microscopy. The films were smooth and featureless, and energy dispersive x-ray spectroscopy (EDX) data indicated that film composition closely matched target composition. XRD analysis showed that films deposited on YBCO substrates were highly c-axis textured, while the films deposited on (100)Si did not exhibit any preferred growth morphology. The superconducting properties of the YBCO substrate layer were maintained throughout the processing stages and, as such, it was demonstrated that ion beam sputtering is a viable method for the deposition of Ferroelectric/YBCO heterostructures.
Growth of heterostructures on InAs for high mobility device applications
NASA Astrophysics Data System (ADS)
Contreras-Guerrero, R.; Wang, S.; Edirisooriya, M.; Priyantha, W.; Rojas-Ramirez, J. S.; Bhuwalka, K.; Doornbos, G.; Holland, M.; Oxland, R.; Vellianitis, G.; Van Dal, M.; Duriez, B.; Passlack, M.; Diaz, C. H.; Droopad, R.
2013-09-01
The growth of heterostructures lattice matched to InAs(100) substrates for high mobility electronic devices has been investigated. The oxide removal process and homoepitaxial nucleation depends on the deposition parameters to avoid the formation of surface defects that can propagate through the structure during growth which can result in degraded device performance. The growth parameters for InAs homoepitaxy were found to be within an extremely narrow range when using As4 with a slight increase using As2. High structural quality lattice matched AlAsxSb1-x buffer layer was grown on InAs(100) substrates using a digital growth technique with the AlAs mole fraction adjusted by varying the incident As flux. Using the AlAsxSb1-x buffer layer, the transport properties of thin InAs channel layers were determined on conducting native substrates.
NASA Astrophysics Data System (ADS)
Jacobson, R. B.; Li, Yize; Foote, Ryan; Cui, Xiaorui; Savage, Donald; Sookchoo, Pornsatit; Eriksson, Mark; Lagally, Max
2014-03-01
A high-quality 2-dimensional electron gas (2DEG) is crucial for quantum electronics and spintronics. Grown heterostructures on SiGe nanomembranes (NMs) show promise to create these 2DEG structures because they have reduced strain inhomogeneities and mosaic tilt. We investigate charge transport properties of these SiGe NMs/heterostructures over a range of temperatures and compare them with results from heterostructures grown on compositionally graded SiGe substrates. Measurements are done by creating Hall bars with top gates on the samples. From the magneto-transport data, low-carrier-density mobility values are calculated. Initial results on the grown heterostructures give a typical curve for mobility versus carrier density, but extraction of the zero-carrier-density mobility is dependent on the curve-fitting technique. Sponsored by United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the U.S. Government.
Nanowires Bending over Backward from Strain Partitioning in Asymmetric Core-Shell Heterostructures.
Lewis, Ryan B; Corfdir, Pierre; Küpers, Hanno; Flissikowski, Timur; Brandt, Oliver; Geelhaar, Lutz
2018-04-11
The flexibility and quasi-one-dimensional nature of nanowires offer wide-ranging possibilities for novel heterostructure design and strain engineering. In this work, we realize arrays of extremely and controllably bent nanowires comprising lattice-mismatched and highly asymmetric core-shell heterostructures. Strain sharing across the nanowire heterostructures is sufficient to bend vertical nanowires over backward to contact either neighboring nanowires or the substrate itself, presenting new possibilities for designing nanowire networks and interconnects. Photoluminescence spectroscopy on bent-nanowire heterostructures reveals that spatially varying strain fields induce charge carrier drift toward the tensile-strained outside of the nanowires, and that the polarization response of absorbed and emitted light is controlled by the bending direction. This unconventional strain field is employed for light emission by placing an active region of quantum dots at the outer side of a bent nanowire to exploit the carrier drift and tensile strain. These results demonstrate how bending in nanoheterostructures opens up new degrees of freedom for strain and device engineering.
Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering
NASA Astrophysics Data System (ADS)
Pergolesi, Daniele; Roddatis, Vladimir; Fabbri, Emiliana; Schneider, Christof W.; Lippert, Thomas; Traversa, Enrico; Kilner, John A.
2015-02-01
Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity.
Thermally evaporated hybrid perovskite for hetero-structured green light-emitting diodes
NASA Astrophysics Data System (ADS)
Mariano, Fabrizio; Listorti, Andrea; Rizzo, Aurora; Colella, Silvia; Gigli, Giuseppe; Mazzeo, Marco
2017-10-01
Thermal evaporation of green-light emitting perovskite (MaPbBr3) films is reported. Morphological studies show that a soft thermal treatment is needed to induce an outstanding crystal growth and film organization. Hetero-structured light-emitting diodes, embedding as-deposited and annealed MAPbBr3 films as active layers, are fabricated and their performances are compared, highlighting that the perovskite evolution is strongly dependent on the growing substrate, too.
NASA Astrophysics Data System (ADS)
Baerwolff, A.; Enders, P.; Knauer, A.; Linke, D.; Zeimer, U.
1988-11-01
It is shown that the yield of fault-free laser diodes is related to the density and distribution of dislocations in the substrate. A method is described for visualization of etch pits and of their relationship to defects in the substrate.
NASA Astrophysics Data System (ADS)
Zheng, Renjing
Van der Waals (vdW) materials (also called as two-dimensional (2D) material in some literature) systems have received extensive attention recently due to their potential applications in next-generation electronics platform. Exciting properties have been discovered in this field, however, the performance and properties of the systems rely on the materials' quality and interface significantly, leading to the urgent need for scalable synthesis of high-quality vdW crystals and heterostructures. Toward this direction, this dissertation is devoted on the study of Molecular Beam Epitaxy (MBE) growth and various characterization of vdW materials and heterostructures, especially graphene and hexagonal boron nitride (h-BN). The goal is to achieve high-quality vdW materials and related heterostructures. There are mainly four projects discussed in this dissertation. The first project (Chapter 2) is about MBE growth of large-area h-BN on copper foil. After the growth, the film was transferred onto SiO2 substrate for characterization. It is observed that as-grown film gives evident h-BN Raman spectrum; what's more, h-BN peak intensity and position is dependent on film thickness. N-1s and B-1s XPS peaks further suggest the formation of h-BN. AFM and SEM images show the film is flat and continuous over large area. Our synthesis method shows it's possible to use MBE to achieve h-BN growth and could also pave a way for some unique structure, such as h-BN/graphene heterostructures and doped h-BN films by MBE. The second project (Chapter 3) is focused on establishment of grapehene/h-BN heterostructure on cobalt (Co) film. In-situ epitaxial growth of graphene/h-BN heterostructures on Co film substrate was achieved by using plasma-assisted MBE. The direct graphene/h-BN vertical stacking structures were demonstrated and further confirmed by various characterizations, such as Raman spectroscopy, SEM, XPS and TEM. Large area heterostructures consisting of single- /bilayer graphene and multilayer h-BN were achieved. The mismatch angle between graphene and h-BN is below 1º. The third project (Chapter 4) is about graphene growth on Fe by MBE at low temperature. Temperature-dependent growth of graphene on Fe using MBE is studied. Two-dimensional (2D), large-area graphene samples were grown on Fe thin films, and characterized by Raman, X-ray photoelectron spectroscopy, X-ray diffraction, optical microscopy, transmission electron microscopy and atomic force microscopy. Graphene is achieved on Fe at a wide growth temperature range and as low as 400 °C. The growth mechanism is studied and shows graphene growth is associated with formation and decomposition of iron carbide. The forth part is about a convenient way to produce vdW heterostructures: graphene growth of exfoliated h-BN on Co. We demonstrated graphene/h-BN heterostructures by growing graphene onto the substrates which consist of exfoliated h-BN on Co thin film using MBE. The heterostructure samples grown at different temperatures and growth durations were characterized by Raman, optical microscopy, atomic force microscopy, microwave impedance microscopy and scanning tunneling microscopy. It is found that the graphene/h-BN heterostructures were formed by the formation of graphene underneath rather than on top of the h-BN flakes. The growth mechanism is discussed. In summary, we develop and optimize growth of vdW materials (h-BN and graphene), and vdW heterostructures by MBE. Various characterization has been carried out to evaluate properties of the films in structural, optical and electrical aspects. Our results reveal that MBE can provide an excellent alternative way for reliable growth of high-quality and large-size vdW materials and related heterostructures, which will attract more attention for the utilization of MBE in vdW materials research.
Electric field control of magnetic properties in FeRh/PMN-PT heterostructures
NASA Astrophysics Data System (ADS)
Xie, Yali; Zhan, Qingfeng; Shang, Tian; Yang, Huali; Liu, Yiwei; Wang, Baomin; Li, Run-Wei
2018-05-01
We investigated electric control of magnetic properties in FeRh/PMN-PT heterostructures. An electric field of 1 kV/cm applied on the PMN-PT substrate could increase the coercivity of FeRh film from 60 to 161 Oe at 360 K where the FeRh antiferromagnetic to ferromagnetic phase transition occurs. The electric field dependent coercive field reveals a butterfly shape, indicating a strain-mediated magnetoelectric coupling across the FeRh/PMN-PT interface. However, the uniaxial magnetic anisotropy of FeRh is almost unchanged with the applied electric field on the PMN-PT substrate, which suggests the change of coercivity in FeRh films is mainly due to the shift of the magnetic transition temperature under the electric field.
NASA Astrophysics Data System (ADS)
Althowibi, Fahad A.; Ayers, John E.
2018-02-01
In this work we investigated the dislocation-dependent behavior of Pendellösung fringes from two types of semiconductor heterostructures: a uniform-composition InGaAs epitaxial layer grown on a GaAs (001) substrate with an intermediate step-graded InGaAs buffer, and an InGaAs/InAlAs high electron mobility transistor grown on an InP (001) substrate. Dynamical x-ray diffraction simulations were carried out in the 004, 115,135, and 117 geometry, assuming Cu kα1 incident radiation, for both structures. The dislocation density strongly affects the intensities and widths of Pendellösung fringes, and we have established quantitative relationships which will allow characterization of the dislocation density.
GaN/NbN epitaxial semiconductor/superconductor heterostructures
NASA Astrophysics Data System (ADS)
Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D. Scott; Nepal, Neeraj; Downey, Brian P.; Muller, David A.; Xing, Huili G.; Meyer, David J.; Jena, Debdeep
2018-03-01
Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors—silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor—an electronic gain element—to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance—a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.
GaN/NbN epitaxial semiconductor/superconductor heterostructures.
Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D Scott; Nepal, Neeraj; Downey, Brian P; Muller, David A; Xing, Huili G; Meyer, David J; Jena, Debdeep
2018-03-07
Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors-silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor-an electronic gain element-to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance-a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.
Son, Youngwoo; Li, Ming-Yang; Cheng, Chia-Chin; Wei, Kung-Hwa; Liu, Pingwei; Wang, Qing Hua; Li, Lain-Jong; Strano, Michael S
2016-06-08
In the pursuit of two-dimensional (2D) materials beyond graphene, enormous advances have been made in exploring the exciting and useful properties of transition metal dichalcogenides (TMDCs), such as a permanent band gap in the visible range and the transition from indirect to direct band gap due to 2D quantum confinement, and their potential for a wide range of device applications. In particular, recent success in the synthesis of seamless monolayer lateral heterostructures of different TMDCs via chemical vapor deposition methods has provided an effective solution to producing an in-plane p-n junction, which is a critical component in electronic and optoelectronic device applications. However, spatial variation of the electronic and optoelectonic properties of the synthesized heterojunction crystals throughout the homogeneous as well as the lateral junction region and the charge carrier transport behavior at their nanoscale junctions with metals remain unaddressed. In this work, we use photocurrent spectral atomic force microscopy to image the current and photocurrent generated between a biased PtIr tip and a monolayer WSe2-MoS2 lateral heterostructure. Current measurements in the dark in both forward and reverse bias reveal an opposite characteristic diode behavior for WSe2 and MoS2, owing to the formation of a Schottky barrier of dissimilar properties. Notably, by changing the polarity and magnitude of the tip voltage applied, pixels that show the photoresponse of the heterostructure are observed to be selectively switched on and off, allowing for the realization of a hyper-resolution array of the switchable photodiode pixels. This experimental approach has significant implications toward the development of novel optoelectronic technologies for regioselective photodetection and imaging at nanoscale resolutions. Comparative 2D Fourier analysis of physical height and current images shows high spatial frequency variations in substrate/MoS2 (or WSe2) contact that exceed the frequencies imposed by the underlying substrates. These results should provide important insights in the design and understanding of electronic and optoelectronic devices based on quantum confined atomically thin 2D lateral heterostructures.
Perovskite-based heterostructures integrating ferromagnetic-insulating La0.1Bi0.9MnO3
NASA Astrophysics Data System (ADS)
Gajek, M.; Bibes, M.; Barthélémy, A.; Varela, M.; Fontcuberta, J.
2005-05-01
We report on the growth of thin films and heterostructures of the ferromagnetic-insulating perovskite La0.1Bi0.9MnO3. We show that the La0.1Bi0.9MnO3 perovskite grows single phased, epitaxially, and with a single out-of-plane orientation either on SrTiO3 substrates or onto strained La2/3Sr1/3MnO3 and SrRuO3 ferromagnetic-metallic buffer layers. We discuss the magnetic properties of the La0.1Bi0.9MnO3 films and heterostructures in view of their possible potential as magnetoelectric or spin-dependent tunneling devices.
NASA Astrophysics Data System (ADS)
Cui, Jizhai; Liang, Cheng-Yen; Paisley, Elizabeth A.; Sepulveda, Abdon; Ihlefeld, Jon F.; Carman, Gregory P.; Lynch, Christopher S.
2015-08-01
Experimental results demonstrate the ability of a surface electrode pattern to produce sufficient in-plane strain in a PbZr0.52Ti0.48O3 (PZT) thin film clamped by a Si substrate to control magnetism in a 1000 nm diameter Ni ring. The electrode pattern and the Ni ring/PZT thin film heterostructure were designed using a finite element based micromagnetics code. The magnetoelectric heterostructures were fabricated on the PZT film using e-beam lithography and characterized using magnetic force microscopy. Application of voltage to the electrodes moved one of the "onion" state domain walls. This method enables the development of complex architectures incorporating strain-mediated multiferroic devices.
Multifunctional epitaxial systems on silicon substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709; Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968
2016-09-15
Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such asmore » threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin-film heterostructure systems that span a variety of ferroelectric, multiferroic, magnetic, photocatalytic, and smart materials. Their properties have been extensively investigated and their functionality found to be comparable to films grown on single-crystal oxide substrates previously reported by researchers in this field. In addition, this review explores the utility of using laser processing to introduce stable defects in a controlled way and induce magnetism and engineer the optical and electrical properties of nonmagnetic oxides such as BaTiO{sub 3}, VO{sub 2}, NiO, and TiO{sub 2} as an alternative for incorporating additional magnetic and conducting layers into the structure. These significant materials advancements herald a flurry of exciting new advances in CMOS-compatible multifunctional devices.« less
NASA Astrophysics Data System (ADS)
Palneedi, Haribabu; Yeo, Hong Goo; Hwang, Geon-Tae; Annapureddy, Venkateswarlu; Kim, Jong-Woo; Choi, Jong-Jin; Trolier-McKinstry, Susan; Ryu, Jungho
2017-09-01
In this study, a flexible magnetoelectric (ME) heterostructure of PZT/Ni was fabricated by depositing a (001) oriented Pb(Zr0.52Ti0.48)O3 (PZT) film on a thin, flexible Ni foil buffered with LaNiO3/HfO2. Excellent ferroelectric properties and large ME voltage coefficient of 3.2 V/cmṡOe were realized from the PZT/Ni heterostructure. The PZT/Ni composite's high performance was attributed to strong texturing of the PZT film, coupled with the compressive stress in the piezoelectric film. Besides, reduced substrate clamping in the PZT film due to the film on the foil structure and strong interfacial bonding in the PZT/LaNiO3/HfO2/Ni heterostructure could also have contributed to the high ME performance of PZT/Ni.
NASA Astrophysics Data System (ADS)
Lai, Billy; Li, Qiang; Lau, Kei May
2018-02-01
InAs/GaSb nanoridge heterostructures were grown on V-grooved (0 0 1) Si by metal organic chemical vapor deposition. Combining the aspect ratio trapping process and a low temperature GaAs buffer, we demonstrated high quality GaSb nanoridge templates for InAs/GaSb heterostructure growth. Two different interfaces, a transitional GaAsSb and an InSb-like interface, were investigated when growing these heterostructures. A 500 °C growth temperature in conjunction with a GaAsSb interface was determined to produce the optimal interface, properly compensating for the tensile strain accumulated when growing InAs on GaSb. Without the need for a complicated switching sequence, this GaAsSb-like interface utilized at the optimized temperature is the initial step towards InAs/GaSb type II superlattice and other device structures integrated onto Si.
Influence of dislocations on indium diffusion in semi-polar InGaN/GaN heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Yao; National Institute for Materials Science, Tsukuba, Ibaraki 305-0044; Sun, Huabin
2015-05-15
The spatial distribution of indium composition in InGaN/GaN heterostructure is a critical topic for modulating the wavelength of light emitting diodes. In this letter, semi-polar InGaN/GaN heterostructure stripes were fabricated on patterned GaN/Sapphire substrates by epitaxial lateral overgrowth (ELO), and the spatial distribution of indium composition in the InGaN layer was characterized by using cathodoluminescence. It is found that the indium composition is mainly controlled by the diffusion behaviors of metal atoms (In and Ga) on the surface. The diffusivity of metal atoms decreases sharply as migrating to the region with a high density of dislocations and other defects, whichmore » influences the distribution of indium composition evidently. Our work is beneficial for the understanding of ELO process and the further development of InGaN/GaN heterostructure based devices.« less
NASA Astrophysics Data System (ADS)
Aleshin, A. N.; Bugaev, A. S.; Ermakova, M. A.; Ruban, O. A.
2016-03-01
The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In0.4Ga0.6As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for the 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In x Ga1- x As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.
NASA Astrophysics Data System (ADS)
Sarmiento, Julio; Patino, Edgar J.
2014-03-01
Superconductor/ferromagnet heterostructures are currently a subject of strong research due to novel phenomena resulting from the proximity effect. Among the most investigated ones are the oscillations of the critical temperature as function of the ferromagnet thickness. The oscillatory behavior of Tc is theoretically explained as to be result of the generation of the FFLO (Fulde-Ferrel-Larkin-Ovchinnikov) state of Cooper pairs under the presence of the exchange field of the ferromagnet. With the advancement of experimental techniques for S/F bilayers growth new questions regarding the effect of the interface transparency can to be addressed. For instance the influence of the interface roughness on the proximity effect. For studying this phenomenon Nb/Co and Nb/Cu/Co samples were sputtered on SiO2 substrates with different roughness. Characterization of these samples show a significant variation of Tc with the interface roughness. This results point towards a possible relationship between transparency and roughness of the interface. Proyecto Semilla Facultad de Ciencias Universidad de los Andes.
Optimising the visibility of graphene and graphene oxide on gold with multilayer heterostructures
NASA Astrophysics Data System (ADS)
Velický, Matěj; Hendren, William R.; Donnelly, Gavin E.; Katzen, Joel M.; Bowman, Robert M.; Huang, Fumin
2018-07-01
Metals have been increasingly used as substrates in devices based on two-dimensional (2D) materials. However, the high reflectivity of bulk metals results in low optical contrast (<3%) and therefore poor visibility of transparent mono- and few-layer 2D materials on these surfaces. Here we demonstrate that by engineering the complex reflectivity of a purpose-designed multilayer heterostructure composed of thin Au films (2–8 nm) on SiO2/Si substrate, the optical contrast of graphene and graphene oxide (GO) can be significantly enhanced in comparison to bulk Au, up to about 3 and 5 times, respectively. In particular, we achieved ∼17% optical contrast for monolayer GO, which is even 2 times higher than that on bare SiO2/Si substrate. The experimental results are in good agreement with theoretical simulations. This concept is demonstrated for Au, but the methodology is applicable to other metals and can be adopted to design a variety of high-contrast metallic substrates. This will facilitate research and applications of 2D materials in areas such as plasmonics, photonics, catalysis and sensors.
Optimising the visibility of graphene and graphene oxide on gold with multilayer heterostructures.
Velický, Matěj; Hendren, William R; Donnelly, Gavin E; Katzen, Joel M; Bowman, Robert M; Huang, Fumin
2018-07-06
Metals have been increasingly used as substrates in devices based on two-dimensional (2D) materials. However, the high reflectivity of bulk metals results in low optical contrast (<3%) and therefore poor visibility of transparent mono- and few-layer 2D materials on these surfaces. Here we demonstrate that by engineering the complex reflectivity of a purpose-designed multilayer heterostructure composed of thin Au films (2-8 nm) on SiO 2 /Si substrate, the optical contrast of graphene and graphene oxide (GO) can be significantly enhanced in comparison to bulk Au, up to about 3 and 5 times, respectively. In particular, we achieved ∼17% optical contrast for monolayer GO, which is even 2 times higher than that on bare SiO 2 /Si substrate. The experimental results are in good agreement with theoretical simulations. This concept is demonstrated for Au, but the methodology is applicable to other metals and can be adopted to design a variety of high-contrast metallic substrates. This will facilitate research and applications of 2D materials in areas such as plasmonics, photonics, catalysis and sensors.
NASA Astrophysics Data System (ADS)
Belenchuk, A.; Shapoval, O.; Roddatis, V.; Bruchmann-Bamberg, V.; Samwer, K.; Moshnyaga, V.
2016-12-01
We report on the interface engineering in correlated manganite heterostructures by octahedral decoupling using embedded stacks of atomic layers that form the Ruddlesden-Popper structure. A room temperature magnetic decoupling was achieved through deposition of a (SrO)2-TiO2-(SrO)2 sequence of atomic layers at the interface between La0.7Sr0.3MnO3 and La0.7Sr0.3Mn0.9Ru0.1O3 films. Moreover, the narrowing of the interfacial dead layer in ultrathin La0.7Sr0.3MnO3 films was demonstrated by insertion of a single (SrO)2 rock-salt layer at the interface with the SrTiO3(100) substrate. The obtained results are discussed based on the symmetry breaking and disconnection of the MnO6 octahedra network at the interface that may lead to the improved performance of all-oxide magnetic tunnel junctions. We suggest that octahedral decoupling realized by formation of Ruddlesden-Popper interfaces is an effective structural mechanism to control functionalities of correlated perovskite heterostructures.
NASA Astrophysics Data System (ADS)
Stanculescu, A.; Rasoga, O.; Socol, M.; Vacareanu, L.; Grigoras, M.; Socol, G.; Stanculescu, F.; Breazu, C.; Matei, E.; Preda, N.; Girtan, M.
2017-09-01
Mixed layers of azomethine oligomers containing 2,5-diamino-3,4-dicyanothiophene as central unit and triphenylamine (LV5) or carbazol (LV4) at both ends as donor and fullerene derivative, [6,6]-phenyl-C61 butyric acid butyl ester ([C60]PCB-C4) as acceptor, have been prepared by Matrix Assisted Pulsed Laser Evaporation (MAPLE) on glass/ITO and Si substrates. The effect of weight ratio between donor and acceptor (1:1; 1:2) and solvent type (chloroform, dimethylsulphoxide) on the optical (UV-vis transmission/absorption, photoluminescence) and morphological properties of LV4 (LV5): [C60]PCB-C4 mixed layers has been evidenced. Dark and under illumination I-V characteristics of the heterostructures realized with these mixed layers sandwiched between ITO and Al electrodes have revealed a solar cell behavior for the heterostructures prepared with both LV4 and LV5 using chloroform as matrix solvent. The solar cell structure realized with oligomer LV5, glass/ITO/LV5: [C60]PCB-C4 (1:1) has shown the best parameters.
NASA Astrophysics Data System (ADS)
Arisawa, You; Sawano, Kentarou; Usami, Noritaka
2017-06-01
The influence of ion implantation energies on compressively strained Si/relaxed Si1-xCx heterostructures formed on Ar ion implanted Si substrates was investigated. It was found that relaxation ratio can be enhanced over 100% at relatively low implantation energies, and compressive strain in the topmost Si layer is maximized at 45 keV due to large lattice mismatch. Cross-sectional transmission electron microscope images revealed that defects are localized around the hetero-interface between the Si1-xCx layer and the Ar+-implanted Si substrate when the implantation energy is 45 keV, which decreases the amount of defects in the topmost Si layer and the upper part of the Si1-xCx buffer layer.
DC Characteristics of InAs/AlSb HEMTs at Cryogenic Temperatures
2009-05-01
Molecular Beam Epitaxy - MBE XIV, April 2007, Volumes 301- 302, Pages 1025-1029 Fig. 5: SEM image showing the 2x50μm InAs/AlSb HEMT . 325 ...started with a heterostructure grown by molecular beam epitaxy on a semi- insulating InP substrate. The heterostructure is shown in Fig. 1. Mesa isolation...DC characteristics of InAs/AlSb HEMTs at cryogenic temperatures G. Moschetti, P-Å Nilsson, N. Wadefalk, M. Malmkvist, E. Lefebvre, J. Grahn
Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm
NASA Astrophysics Data System (ADS)
Morozov, S. V.; Rumyantsev, V. V.; Fadeev, M. A.; Zholudev, M. S.; Kudryavtsev, K. E.; Antonov, A. V.; Kadykov, A. M.; Dubinov, A. A.; Mikhailov, N. N.; Dvoretsky, S. A.; Gavrilenko, V. I.
2017-11-01
We report on stimulated emission at wavelengths up to 19.5 μm from HgTe/HgCdTe quantum well heterostructures with wide-gap HgCdTe dielectric waveguide, grown by molecular beam epitaxy on GaAs(013) substrates. The mitigation of Auger processes in structures under study is exemplified, and the promising routes towards the 20-50 μm wavelength range, where HgCdTe lasers may be competitive to the prominent emitters, are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Jizhai; Liang, Cheng-Yen; Sepulveda, Abdon
Experimental results demonstrate the ability of a surface electrode pattern to produce sufficient in-plane strain in a PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) thin film clamped by a Si substrate to control magnetism in a 1000 nm diameter Ni ring. The electrode pattern and the Ni ring/PZT thin film heterostructure were designed using a finite element based micromagnetics code. The magnetoelectric heterostructures were fabricated on the PZT film using e-beam lithography and characterized using magnetic force microscopy. Application of voltage to the electrodes moved one of the “onion” state domain walls. This method enables the development of complex architectures incorporating strain-mediated multiferroicmore » devices.« less
Surface effects on exciton diffusion in non polar ZnO/ZnMgO heterostructures
NASA Astrophysics Data System (ADS)
Sakr, G.; Sartel, C.; Sallet, V.; Lusson, A.; Patriarche, G.; Galtier, P.; Barjon, J.
2017-12-01
The diffusion of excitons injected in ZnO/Zn0.92Mg0.08O quantum well heterostructures grown by metal-organic-vapor-phase-epitaxy on non-polar ZnO substrates is investigated at room temperature. Cathodoluminescence linescans in a field-emission-gun scanning-electron-microscope are performed across cleaved cross-sections. A 55 nm diffusion length is assessed for excitons in bulk ZnMgO. When prepared as small angle bevels using focused ion beam (FIB), the effective diffusion length of excitons is shown to decrease down to 8 nm in the thinner part of the slab. This effect is attributed to non-radiative surface recombinations, with a 7 × 104 cm s-1 recombination velocity estimated at the FIB-machined ZnMgO surface. The strong reduction of the diffusion extent in such thin lamellae usually used for transmission electron microscopy could be use improve the spatial resolution of cathodoluminescence images, often limited by diffusion processes.
2016-06-06
the widely used lead zirconate titanate ceramics which have a typical piezoelectric coefficient d31 of ~- 200pC/N, PMN-PT single crystals used in...substrate clamping effect, therefore, a relatively giant tunability can be obtained. However, the normally large roughness of piezoelectric layer...is the saturation magnetostriction constant, Y the Young’s modulus of the magnetic film, deff the effective piezoelectric coefficient, E
Ameen, Sadia; Akhtar, M Shaheer; Kimi, Young Soon; Yang, O-Bong; Shin, Hyung-Shik
2011-04-01
A heterostructure was fabricated using p-type plasma polymerized polyaniline (PANI) and n-type (single and bilayer) titanium dioxide (TiO2) thin film on FTO glass. The deposition of single and bilayer TiO2 thin film on FTO substrate was achieved through doctor blade followed by dip coating technique before subjected to plasma enhanced polymerization. To fabricate p-n heterostructure, a plasma polymerization of aniline was conducted using RF plasma at 13.5 MHz and at the power of 120 W on the single and bilayer TiO2 thin film electrodes. The morphological, optical and the structural characterizations revealed the formation of p-n heterostructures between PANI and TiO2 thin film. The PANI/bilayer TiO2 heterostructure showed the improved current-voltage (I-V) characteristics due to the substantial deposition of PANI molecules into the bilayer TiO2 thin film which provided good conducting pathway and reduced the degree of excitons recombination. The change of linear I-V behavior of PANI/TiO2 heterostructure to non linear behavior with top Pt contact layer confirmed the formation of Schottky contact at the interfaces of Pt layer and PANI/TiO2 thin film layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gries, K. I.; Vogel, S.; Straubinger, R.
The self-assembled formation of ordered, vertically stacked rocksalt/wurtzite Mg{sub x}Zn{sub 1−x}O heterostructures by planar phase separation is shown. These heterostructures form quasi “natural” two-dimensional hetero-interfaces between the different phases upon annealing of MgO-oversaturated wurtzite Mg{sub x}Zn{sub 1−x}O layers grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates. The optical absorption spectra show a red shift simultaneous with the appearance of a cubic phase upon annealing at temperatures between 900 °C and 1000 °C. Transmission electron microscopy reveals that these effects are caused by phase separation leading to the formation of a vertically ordered rock salt/wurtzite heterostructures. To explain these observations, wemore » suggest a phase separation epitaxy model that considers this process being initiated by the formation of a cubic (Mg,Zn)Al{sub 2}O{sub 4} spinel layer at the interface to the sapphire substrate, acting as a planar seed for the epitaxial precipitation of rock salt Mg{sub x}Zn{sub 1−x}O. The equilibrium fraction x of magnesium in the resulting wurtzite (rock salt) layers is approximately 0.15 (0.85), independent of the MgO content of the as-grown layer and determined by the annealing temperature. This model is confirmed by photoluminescence analysis of the resulting layer systems after different annealing temperatures. In addition, we show that the thermal annealing process results in a significant reduction in the density of edge- and screw-type dislocations, providing the possibility to fabricate high quality templates for quasi-homoepitaxial growth.« less
Quantum transport through MoS2 constrictions defined by photodoping.
Epping, Alexander; Banszerus, Luca; Güttinger, Johannes; Krückeberg, Luisa; Watanabe, Kenji; Taniguchi, Takashi; Hassler, Fabian; Beschoten, Bernd; Stampfer, Christoph
2018-05-23
We present a device scheme to explore mesoscopic transport through molybdenum disulfide (MoS 2 ) constrictions using photodoping. The devices are based on van-der-Waals heterostructures where few-layer MoS 2 flakes are partially encapsulated by hexagonal boron nitride (hBN) and covered by a few-layer graphene flake to fabricate electrical contacts. Since the as-fabricated devices are insulating at low temperatures, we use photo-induced remote doping in the hBN substrate to create free charge carriers in the MoS 2 layer. On top of the device, we place additional metal structures, which define the shape of the constriction and act as shadow masks during photodoping of the underlying MoS 2 /hBN heterostructure. Low temperature two- and four-terminal transport measurements show evidence of quantum confinement effects.
Quantum transport through MoS2 constrictions defined by photodoping
NASA Astrophysics Data System (ADS)
Epping, Alexander; Banszerus, Luca; Güttinger, Johannes; Krückeberg, Luisa; Watanabe, Kenji; Taniguchi, Takashi; Hassler, Fabian; Beschoten, Bernd; Stampfer, Christoph
2018-05-01
We present a device scheme to explore mesoscopic transport through molybdenum disulfide (MoS2) constrictions using photodoping. The devices are based on van-der-Waals heterostructures where few-layer MoS2 flakes are partially encapsulated by hexagonal boron nitride (hBN) and covered by a few-layer graphene flake to fabricate electrical contacts. Since the as-fabricated devices are insulating at low temperatures, we use photo-induced remote doping in the hBN substrate to create free charge carriers in the MoS2 layer. On top of the device, we place additional metal structures, which define the shape of the constriction and act as shadow masks during photodoping of the underlying MoS2/hBN heterostructure. Low temperature two- and four-terminal transport measurements show evidence of quantum confinement effects.
Bano, Amreen; Gaur, N K
2018-01-15
A variety of theoretical and experimental works have reported several potential applications of MoS 2 monolayer based heterostructures (HSs) such as light emitting diodes, photodetectors and field effect transistors etc. In the present work, we have theoretically performed as a model case study, MoS 2 monolayer deposited over insulating SrTiO 3 (001) to study the band alignment at TiO 2 termination. The interfacial characteristics are found to be highly dependent on the interface termination. With an insulating oxide material, a significant band gap (0.85eV) is found in MoS 2 /TiO 2 interface heterostructure (HS). A unique electronic band profile with an indirect band gap (0.67eV) is observed in MoS 2 monolayer when confined in a cubic environment of SrTiO 3 (STO). Adsorption analysis showed the chemisorption of MoS 2 on the surface of STO substrate with TiO 2 termination which is justified by the charge density calculations that shows the existence of covalent bonding at the interface. The fabrication of HS of such materials paves the path for developing the unprecedented 2D materials with exciting properties such as semiconducting devices, thermoelectric and optoelectronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleshin, A. N., E-mail: a.n.aleshin@mail.ru; Bugaev, A. S.; Ermakova, M. A.
2016-03-15
The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In{sub 0.4}Ga{sub 0.6}As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for themore » 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In{sub x}Ga{sub 1–x}As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.« less
NASA Astrophysics Data System (ADS)
Molaei, Roya
The novel functionalities of Vanadium dioxide (VO2), such as, several orders of magnitude transition in resistivity and IR transmittance, provide the exciting opportunity for the development of next generation memory, sensor, and field-effect based devices. A critical issue in the development of practical devices based on metal oxides is the integration of high quality epitaxial oxide thin films with the existing silicon technology which is based on silicon (100) substrates. However, silicon is not suitable for epitaxial growth of oxides owing to its tendency to readily form an amorphous oxide layer or silicide at the film-substrate interface. The oxide films deposited directly on silicon exhibit poor crystallinity and are not suitable for device applications. To overcome this challenge, appropriate substrate templates must be developed for the growth of oxide thin films on silicon substrates. The primary objective of this dissertation was to develop an integration methodology of VO2 with Si (100) substrates so they could be used in "smart" sensor type of devices along with other multifunctional devices on the same silicon chip. This was achieved by using a NiO/c- YSZ template layer deposited in situ. It will be shown that if the deposition conditions are controlled properly. This approach was used to integrate VO 2 thin films with Si (100) substrates using pulsed laser deposition (PLD) technique. The deposition methodology of integrating VO2 thin films on silicon using various other template layers will also be discussed. Detailed epitaxial relationship of NiO/c-YSZ/Si(100) heterostructures as a template to growth of VO2 as well as were studied. We also were able to create a p-n junction within a single NiO epilayer through subsequent nanosecond laser annealing, as well as established a structure-property correlation in NiO/c-YSZ/Si(100) thin film epitaxial heterostructures with especial emphasis on the stoichiometry and crystallographic characteristics. NiO/c-YSZ/Si(100) heterostructures were used as template to grow fully relaxed VO2 thin films. The detailed x-ray diffraction, transmission electron microscopy (TEM), electrical characterization results for the deposited films will be presented. In the framework on domain matching epitaxy, epitaxial growth of VO2 (tetragonal crystal structure at growth temperature) on NiO has been explained. Our detailed phi-scan X-ray diffraction measurements corroborate our understanding of the epitaxial growth and in-plane atomic arrangements at the interface. It was observed that the transition characteristics (sharpness, over which electrical property changes are completed, amplitude, transition temperature, and hysteresis) are a strong function of microstructure, strain, and stoichiometry. We have shown that by the choosing the right template layer, strain in the VO2 thin films can be fully relaxed and near-bulk VO2 transition temperatures can be achieved. Finally, I will present my research work on modification of semiconductor-to-metal transition characteristics and effect on room temperature magnetic properties of VO2 thin films upon laser annealing. While the microstructure (epitaxy, crystalline quality etc.) and phase were preserved, we envisage these changes to occur as a result of introduction of oxygen vacancies upon laser treatment.
Strain Effects in Epitaxial VO2 Thin Films on Columnar Buffer-Layer TiO2/Al2O3 Virtual Substrates.
Breckenfeld, Eric; Kim, Heungsoo; Burgess, Katherine; Charipar, Nicholas; Cheng, Shu-Fan; Stroud, Rhonda; Piqué, Alberto
2017-01-18
Epitaxial VO 2 /TiO 2 thin film heterostructures were grown on (100) (m-cut) Al 2 O 3 substrates via pulsed laser deposition. We have demonstrated the ability to reduce the semiconductor-metal transition (SMT) temperature of VO 2 to ∼44 °C while retaining a 4 order of magnitude SMT using the TiO 2 buffer layer. A combination of electrical transport and X-ray diffraction reciprocal space mapping studies help examine the specific strain states of VO 2 /TiO 2 /Al 2 O 3 heterostructures as a function of TiO 2 film growth temperatures. Atomic force microscopy and transmission electron microscopy analyses show that the columnar microstructure present in TiO 2 buffer films is responsible for the partially strained VO 2 film behavior and subsequently favorable transport characteristics with a lower SMT temperature. Such findings are of crucial importance for both the technological implementation of the VO 2 system, where reduction of its SMT temperature is widely sought, as well as the broader complex oxide community, where greater understanding of the evolution of microstructure, strain, and functional properties is a high priority.
NASA Technical Reports Server (NTRS)
Croke, E. T.; Wang, K. L.; Heyd, A. R.; Alterovitz, S. A.; Lee, C. H.
1996-01-01
Variable angle spectroscopic ellipsometry (VASE) has been used to characterize Si(x)Ge(1-x)/Ge superlattices (SLs) grown on Ge substrates and thick Si(x)Ge(1-x)/Ge heterostructures grown on Si substrates. Our VASE analysis yielded the thicknesses and alloy compositions of all layers within the optical penetration depth of the surface. In addition, strain effects were observed in the VASE results for layers under both compressive and tensile strain. Results for the SL structures were found to be in close agreement with high resolution x-ray diffraction measurements made on the same samples. The VASE analysis has been upgraded to characterize linearly graded Si(x)Ge(1-x) buffer layers. The algorithm has been used to determine the total thickness of the buffer layer along with the start and end alloy composition by breaking the total thickness into many (typically more than 20) equal layers. Our ellipsometric results for 1 (mu)m buffer layers graded in the ranges 0.7 less than or = x less than or = 1.0, and 0.5 less than or = x less than or = 1.0 are presented, and compare favorably with the nominal values.
Dislocation gliding and cross-hatch morphology formation in AIII-BV epitaxial heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalskiy, V. A., E-mail: kovalva@iptm.ru; Vergeles, P. S.; Eremenko, V. G.
2014-12-08
An approach for understanding the origin of cross-hatch pattern (CHP) on the surface of lattice mismatched GaMnAs/InGaAs samples grown on GaAs (001) substrates is developed. It is argued that the motion of threading dislocations in the (111) slip planes during the relaxation of InGaAs buffer layer is more complicated process and its features are similar to the ones of dislocation half-loops gliding in plastically deformed crystals. The heterostructures were characterized by atomic force microscopy and electron beam induced current (EBIC). Detailed EBIC experiments revealed contrast features, which cannot be accounted for by the electrical activity of misfit dislocations at themore » buffer/substrate interface. We attribute these features to specific extended defects (EDs) generated by moving threading dislocations in the partially relaxed InGaAs layers. We believe that the core topology, surface reconstruction, and elastic strains from these EDs accommodated in slip planes play an important role in the CHP formation. The study of such electrically active EDs will allow further understanding of degradation and changes in characteristics of quantum devices based on strained heterostructures.« less
NASA Astrophysics Data System (ADS)
Singh, Kirandeep; Kaur, Davinder
2017-02-01
The manipulation of magnetic states and materials' spin degree-of-freedom via a control of an electric (E-) field has been recently pursued to develop magnetoelectric (ME) coupling-driven electronic data storage devices with high read/write endurance, fast dynamic response, and low energy dissipation. One major hurdle for this approach is to develop reliable materials which should be compatible with prevailing silicon (Si)-based complementary metal-oxide-semiconductor (CMOS) technology, simultaneously allowing small voltage for the tuning of magnetization switching. In this regard, multiferroic heterostructures where ferromagnetic (FM) and ferroelectric (FE) layers are alternatively grown on conventional Si substrates are promising as the piezoelectric control of magnetization switching is anticipated to be possible by an E-field. In this work, we study the ferromagnetic shape memory alloys based PbZr0.52Ti0.48O3/Ni50Mn35In15 (PZT/Ni-Mn-In) multiferroic heterostructures, and investigate their potential for CMOS compatible non-volatile magnetic data storage applications. We demonstrate the voltage-impulse controlled nonvolatile, reversible, and bistable magnetization switching at room temperature in Si-integrated PZT/Ni-Mn-In thin film multiferroic heterostructures. We also thoroughly unveil the various intriguing features in these materials, such as E-field tuned ME coupling and magnetocaloric effect, shape memory induced ferroelectric modulation, improved fatigue endurance as well as Refrigeration Capacity (RC). This comprehensive study suggests that these novel materials have a great potential for the development of unconventional nanoscale memory and refrigeration devices with self-cooling effect and enhanced refrigeration efficiency, thus providing a new venue for their applications.
NASA Astrophysics Data System (ADS)
Tsukazaki, A.; Ohtomo, A.; Kawasaki, M.; Akasaka, S.; Yuji, H.; Tamura, K.; Nakahara, K.; Tanabe, T.; Kamisawa, A.; Gokmen, T.; Shabani, J.; Shayegan, M.
2008-12-01
We report measurements of the spin susceptibility and the electron effective mass for two-dimensional electrons confined at the interfaces of MgxZn1-xO/ZnO single heterostructures ( x=0.05 , 0.08, and 0.11), grown by molecular-beam epitaxy on (0001) ZnO substrates. By tuning the built-in polarization through control of the barrier composition, the electron density was systematically varied in the range of 5.6×1011-1.6×1012cm-2 , corresponding to a range of 3.1≤rs≤5.2 , where rs is the average electron spacing measured in units of the effective Bohr radius. We used the coincidence technique, where crossings of the spin-split Landau levels occur at critical tilt angles of magnetic field, to evaluate the spin susceptibility. In addition, we determined the effective mass from the temperature dependence of the Shubnikov-de Haas oscillations measured at the coincidence conditions. The susceptibility and the effective mass both gradually increase with decreasing electron density, reflecting the role of electron-electron interaction.
Hydrogen Surfactant Effect on ZnO/GaN Heterostructures Growth
NASA Astrophysics Data System (ADS)
Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Zhu, Junyi
To grow high quality heterostructures based on ZnO and GaN, growth conditions that favor the layer by layer (Frank-Van der Merwe) growth mode have to be applied. However, if A wets B, B would not wet A without special treatments. A famous example is the epitaxial growth of Si/Ge/Si heterostructure with the help of arsenic surfactant in the late 1980s. It has been confirmed by the previous experiments and our calculations that poor crystal quality and 3D growth mode were obtained when GaN grown on ZnO polar surfaces while high quality ZnO was achieved on (0001) and (000-1)-oriented GaN. During the standard OMVPE growth processes, hydrogen is a common impurity and hydrogen-involved surface reconstructions have been well investigated experimentally and theoretically elsewhere. Due to the above facts, we proposed key growth strategies by using hydrogen as a surfactant to achieve ideal growth mode for GaN on ZnO (000-1) surface. This novel strategy may for the first time make the growth of high quality GaN single crystal on ZnO substrate possible. This surfactant effect is expected to largely improve the crystal quality and the efficiency of ZnO/GaN super lattices or other heterostructure devices. Part of the computing resources was provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project code of 4053134 and 3132748 at CUHK.
Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures
NASA Astrophysics Data System (ADS)
McManus, Daryl; Vranic, Sandra; Withers, Freddie; Sanchez-Romaguera, Veronica; Macucci, Massimo; Yang, Huafeng; Sorrentino, Roberto; Parvez, Khaled; Son, Seok-Kyun; Iannaccone, Giuseppe; Kostarelos, Kostas; Fiori, Gianluca; Casiraghi, Cinzia
2017-05-01
Exploiting the properties of two-dimensional crystals requires a mass production method able to produce heterostructures of arbitrary complexity on any substrate. Solution processing of graphene allows simple and low-cost techniques such as inkjet printing to be used for device fabrication. However, the available printable formulations are still far from ideal as they are either based on toxic solvents, have low concentration, or require time-consuming and expensive processing. In addition, none is suitable for thin-film heterostructure fabrication due to the re-mixing of different two-dimensional crystals leading to uncontrolled interfaces and poor device performance. Here, we show a general approach to achieve inkjet-printable, water-based, two-dimensional crystal formulations, which also provide optimal film formation for multi-stack fabrication. We show examples of all-inkjet-printed heterostructures, such as large-area arrays of photosensors on plastic and paper and programmable logic memory devices. Finally, in vitro dose-escalation cytotoxicity assays confirm the biocompatibility of the inks, extending their possible use to biomedical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaturvedi, P.; Chouksey, S.; Banerjee, D.
2015-11-09
We have demonstrated a type-II band-aligned heterostructure between pulsed laser deposited topological insulator bismuth telluride and metal organic-chemical-vapour deposited GaN on a sapphire substrate. The heterostructure shows a large valence band-offset of 3.27 eV as determined from x-ray photoelectron spectroscopy, which is close to the bandgap of GaN (3.4 eV). Further investigation using x-ray diffraction, Raman spectroscopy, and energy-dispersive x-ray spectrum reveals the stoichiometric and material properties of bismuth telluride on GaN. Steady state photon emission from GaN is found to be modulated by the charge transfer process due to diffusion across the junction. The time constant involved with the charge transfermore » process is found to be 0.6 ns by transient absorption spectroscopy. The heterostructure can be used for designing devices with different functionalities and improving the performance of the existing devices on GaN.« less
A dewetting route to grow heterostructured nanoparticles based on thin film heterojunctions.
Li, Junjie; Yin, Deqiang; Li, Qiang; Chen, Chunlin; Huang, Sumei; Wang, Zhongchang
2015-12-21
Heterostructured nanoparticles have received considerable attention for their various applications due to their unique and tunable functionalities with respect to their individual bulk constituents. However, the current wet chemical synthesis of multicomponent heterostructured nanoparticles is rather complicated. Here, we report a simple and quick method to fabricate Co-Au dumbbell arrays by dewetting Co/Au heterojunctions on a Si substrate and demonstrate that the Co-Au dumbbells vary in size from 2 to 28 nm. We further show by chemical mapping that Co bells are covered by a pseudomorphic Au wetting layer of ∼4 Å, preventing the bells from oxidation. By controlling the thickness of metal heterojunctions and the annealing time, the morphology of the Co-Au nanoparticle is found to be transformed from the dumbbell to the core shell. This facile route is demonstrated to be useful for fabricating other metal-metal and metal-oxide heterostructures and hence holds technological promise for functional applications.
The relationship between the dislocations and microstructure in In0.82Ga0.18As/InP heterostructures.
Zhao, Liang; Guo, Zuoxing; Wei, Qiulin; Miao, Guoqing; Zhao, Lei
2016-10-11
In this work, we propose a formation mechanism to explain the relationship between the surface morphology (and microstructure) and dislocations in the In 0.82 Ga 0.18 As/InP heterostructure. The In 0.82 Ga 0.18 As epitaxial layers were grown on the InP (100) substrate at various temperatures (430 °C, 410 °C and 390 °C) using low pressure metalorganic chemical vapor deposition (LP-MOCVD). Obvious protrusions and depressions were obseved on the surface of the In 0.82 Ga 0.18 As/InP heterostructure because of the movement of dislocations from the core to the surface. The surface morphologies of the In 0.82 Ga 0.18 As/InP (100) system became uneven with increasing temperature, which was associated with the formation of dislocations. Such research investigating the dislocation of large lattice mismatch heterostructures may play an important role in the future-design of semiconductor films.
NASA Astrophysics Data System (ADS)
Ferragut, R.; Dupaquier, A.; Brivio, S.; Bertacco, R.; Egger, W.
2011-09-01
Defects in an ultrathin Au/La2/3Sr1/3MnO3/SrTiO3 (Au/LSMO/STO) heterostructure displaying electroresistive behavior were studied using variable energy positron annihilation spectroscopy. Vacancy-like defects were found to be the dominant positron traps in the LSMO and STO thin perovskite oxides with a number density >1017 cm-3 and 2 × 1017 cm-3 in the STO substrate. High defect density was revealed by strong positron trapping at the Au/LSMO interface. Oxygen deficiency in LSMO would be the main source of these traps. Besides, a low density of sub-nano voids of ˜6 Å was found in the substrate and in the thin LSMO/STO films.
Degradation sources in GaAs--AlGaAs double-heterostructure lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, R.; Nakashima, H.; Kishino, S.
1975-07-01
Several sources of the dark-line defect (DLD) that causes rapid degradation of GaAs-AlGaAs double-heterostructure (DH) lasers have been identified by means of photoluminescence (PL) topography and a laser-induced degradation technique. All the sources that have been identified correspond to crystal defects, among which dark-spot defects (DSD) that are native to as-grown wafers are found to be most important. The growth and propagation processes of DLDs and DSDs have also been investigated. These defects are found to be highly mobile under high-intensity laser pumping. The correlation between the substrate dislocations and the DSDs has been examined by etching and x-ray topography.more » Although most DSDs correspond to etch-pits in epilayers, they are not always correlated with substrate dislocations. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mintairov, S. A., E-mail: mintairov@scell.ioffe.ru; Emelyanov, V. M.; Rybalchenko, D. V.
Heterostructures of metamorphic GaInAs photovoltaic converters (PVCs) are on GaAs substrates by the metal-organic chemical vapor deposition (MOCVD) method. It is shown that using a multilayer metamorphic buffer with a step of 2.5% in indium content and layer thicknesses of 120 nm provides the high quality of bulk layers subsequently grown on the buffer up to an indium content of 24%. PVCs with a long-wavelength photosensitivity edge up to 1300 nm and a quantum efficiency of ~80% in the spectral range 1050–1100 nm are fabricated. Analysis of the open-circuit voltage of the PVCs and diffusion lengths of minority carriers inmore » the layers demonstrates that the density of misfit dislocations penetrating into the bulk layers increases at an indium content exceeding 10%.« less
Raman study of annealed two-dimensional heterostructure of graphene on hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Souibgui, Mourad; Ajlani, Hosni; Cavanna, Antonnella; Oueslati, Meherzi; Meftah, Abdelaziz; Madouri, Ali
2017-12-01
In this paper, we investigate stacked 2D graphene layers on hexagonal boron nitride (h-BN). The graphene is obtained by high-quality chemical vapor deposition (CVD) and transferred to the h-BN substrate. We focus our attention on annealing effect at 1040 °C on single graphene layer (SGL) and bilayer graphene (BLG) on h-BN substrate using Raman spectroscopy. Our results show, before annealing, a twist angle θ = 0.63 ° between the SGL and the h-BN substrate and a twist angle 3 ° <θG1G2 < 8 ° between the two graphene layers of the BLG. After annealing, the analysis of the graphene G and 2D bands show a rotational reorientation of the graphene layer with respect to the h-BN substrate. Raman mapping also shows that the rotational reorientation is spatially dependent.
Sherohman, John W [Livermore, CA; Coombs, III, Arthur W.; Yee, Jick Hong [Livermore, CA; Wu, Kuang Jen J [Cupertino, CA
2007-05-29
For the first time, an aluminum antimonide (AlSb) single crystal substrate is utilized to lattice-match to overlying semiconductor layers. The AlSb substrate establishes a new design and fabrication approach to construct high-speed, low-power electronic devices while establishing inter-device isolation. Such lattice matching between the substrate and overlying semiconductor layers minimizes the formation of defects, such as threaded dislocations, which can decrease the production yield and operational life-time of 6.1-.ANG. family heterostructure devices.
Akkari, Marwa; Aranda, Pilar; Ben Haj Amara, Abdessalem; Ruiz-Hitzky, Eduardo
2016-01-01
In this study, ZnO/SiO 2 -clay heterostructures were successfully synthesized by a facile two-step process applied to two types of clays: montmorillonite layered silicate and sepiolite microfibrous clay mineral. In the first step, intermediate silica-organoclay hybrid heterostructures were prepared following a colloidal route based on the controlled hydrolysis of tetramethoxysilane in the presence of the starting organoclay. Later on, pre-formed ZnO nanoparticles (NP) dispersed in 2-propanol were incorporated under ultrasound irradiation to the silica-organoclay hybrid heterostructures dispersed in 2-propanol, and finally, the resulting solids were calcinated to eliminate the organic matter and to produce ZnO nanoparticles (NP) homogeneously assembled to the clay-SiO 2 framework. In the case of montmorillonite the resulting materials were identified as delaminated clays of ZnO/SiO 2 -clay composition, whereas for sepiolite, the resulting heterostructure is constituted by the assembling of ZnO NP to the sepiolite-silica substrate only affecting the external surface of the clay. The structural and morphological features of the prepared heterostructures were characterized by diverse physico-chemical techniques (such as XRD, FTIR, TEM, FE-SEM). The efficiency of these new porous ZnO/SiO 2 -clay heterostructures as potential photocatalysts in the degradation of organic dyes and the removal of pharmaceutical drugs in water solution was tested using methylene blue and ibuprofen compounds, respectively, as model of pollutants.
NASA Astrophysics Data System (ADS)
Ning, J. Q.; Zheng, C. C.; Zheng, L. X.; Xu, S. J.
2015-08-01
Spatially resolved Raman light scattering experiments were performed on a zinc-blende GaN/GaAs heterostructure with confocal micro-Raman scattering technique under the backscattering geometric configuration. By varying the illumination spot locations across the heterostructure interface, we found that the Raman light scattering spectral features change remarkably. The interface effect on the GaAs substrate manifested as a much broader lineshape of the transverse optical (TO) phonon mode. Two kinds of broadening mechanisms, namely, spatial correlation induced wave-vector relaxation effect and lattice-mismatch strain + compositional intermixing effect, have been identified. The former leads to the broadening of the TO mode at the low-energy side, whereas the latter accounts for the broadening at the high-energy side. The diffuse light scattering from the highly defective nucleation layer of GaN was found to produce a broad scattering background of the GaN TO mode. The methodology and conclusions of the present work could be applicable to Raman spectroscopic studies on other material interfaces.
NASA Astrophysics Data System (ADS)
Redondo-Cubero, A.; David-Bosne, E.; Wahl, U.; Miranda, P.; da Silva, M. R.; Correia, J. G.; Lorenz, K.
2018-03-01
Strain is a critical parameter affecting the growth and the performance of many semiconductor systems but, at the same time, the accurate determination of strain profiles in heterostructures can be challenging, especially at the nanoscale. Ion channelling/blocking is a powerful technique for the detection of the strain state of thin films, normally carried out through angular scans with conventional particle detectors. Here we report the novel application of position sensitive detectors for the evaluation of the strain in a series of AlInN/GaN heterostructures with different compositions and thicknesses. The tetragonal strain is varied from compressive to tensile and analysed through bidimensional blocking patterns. The results demonstrate that strain can be correctly quantified when compared to Monte Carlo channelling simulations, which are essential because of the presence of ion steering effects at the interface between the layer and the substrate. Despite this physical limitation caused by ion steering, our results show that full bidimensional patterns can be applied to detect fingerprints and enhance the accuracy for most critical cases, in which the angular shift associated to the lattice distortion is below the critical angle for channelling.
NASA Astrophysics Data System (ADS)
Olga, Chichvarina
Ferroelectric thin film capacitor heterostructures have attracted considerable attention in the last decade because of their potential applications in piezoelectric sensors, actuators, power generators and non-volatile memory devices. Strongly correlated all-perovskite oxide heterojunctions are of a particular interest, as their material properties (electronic, structural, magnetic and optical, etc.) can be tuned via doping, interface effect, applied electrical field, and formation of two-dimensional electron gas (2DEG), etc. The right selection of electrode material for this type of capacitor-like structures may modify and enhance the performance of a device, as the electrode/barrier layer interfaces can significantly influence its macroscopic properties. Although there is a number of reports on the effect of electrode interfaces on the properties of PZT capacitors deposited on SRO buffered STO substrate, very little is known about Fe3O4/PZT and AZO/PZT electrode interfaces. This thesis comprises two parts. In the first part we present a systematic study of the structural, transport, magnetic and optical properties of oxide thin films: AZO, Fe3O4 and SRO. These monolayers were fabricated via pulsed laser deposition technique on quartz, MgO and STO substrates respectively. The second part of this thesis elucidates the behaviour of these three oxides as electrode components in PZT/SRO/STO heteroepitaxial structures. The highlights of the work are summarized below: 1) Zinc-blende (ZB) phase of ZnO was predicted to possess higher values of conductivity and higher doping efficiency compared to its wurzite counterpart and thus has greater chances of facilitating the fabrication of ZnO-electrode-based devices. However, zinc-blende is a metastable phase, and it is challenging to obtain single-phase ZB. To tackle this challenge we tuned parameters such-as film thickness, substrate and annealing effect, and achieved a ZB phase of Ti-doped ZnO, ZB-(Zn1-xTix)O thin film. An in-depth systematic study on ZnO zinc-blende formation and the underlying mechanism is presented in Chapter 3 of this work. In addition, this study also looked into the effect of ZnO doping with hydrogen and aluminum. 2) Perpendicular magnetic anisotropy in electrodes is an essential property for the development of certain types of random access memories. In order to study magnetic anisotropy of ferroelectric Fe3O4, we fabricated Fe3O4 epitaxial films of various thicknesses on MgO substrates with different orientations. Fe3O4 thin films on MgO (111)-oriented substrates showed prominent out-of-plane magnetic anisotropy. With the purpose of exploring the mechanism behind this phenomenon, we investigated the role of substrate orientation and film thickness dependency. It was shown that by using the substrates of different orientations and thereby, altering the substrate lattice strain the anisotropy manipulation in Fe3O4, thin films is possible. 3) The last part of the thesis focuses on the performance of AZO/PZT/SRO/STO and Fe3O4/PZT/SRO/STO heterostructures. High quality crystalline films with sharp interfaces and rms surface roughness 1 nm were achieved. Pronounced bipolar switching was observed in both heterostructures. More importantly, it was found that physical properties of Fe3O 4/Pb(Zr0.52Ti0.48)O3/SrRuO3/SrTiO 3 heterostructure can be modulated by introducing Fe2+ and Fe3+ cations into Pb(Zr0.52Ti0.48)O 3 active layer. The sample showed MR signal of 3% after being set into low-resistance state, attributing to the formation of Fe-related semiconductor-like channel in the Pb(Zr0.52Ti0.48)O3 layer. After resetting to high-resistance state, MR signal disappeared due to the rupture of the channel. The results paves the way to the realization of a nonvolatile multiple states Pb(ZrTi)O 3-based hybrid memory.
NASA Astrophysics Data System (ADS)
Losurdo, M.; Giangregorio, M.; Capezzuto, P.; Bruno, G.; de Rosa, R.; Roca, F.; Summonte, C.; Plá, J.; Rizzoli, R.
2002-01-01
Indium-tin-oxide (ITO) films deposited by sputtering and e-gun evaporation on both transparent (Corning glass) and opaque (c-Si, c-Si/SiO2) substrates and in c-Si/a-Si:H/ITO heterostructures have been analyzed by spectroscopic ellipsometry (SE) in the range 1.5-5.0 eV. Taking the SE advantage of being applicable to absorbent substrate, ellipsometry is used to determine the spectra of the refractive index and extinction coefficient of the ITO films. The effect of the substrate surface on the ITO optical properties is focused and discussed. To this aim, a parametrized equation combining the Drude model, which considers the free-carrier response at the infrared end, and a double Lorentzian oscillator, which takes into account the interband transition contribution at the UV end, is used to model the ITO optical properties in the useful UV-visible range, whatever the substrate and deposition technique. Ellipsometric analysis is corroborated by sheet resistance measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Subhra, E-mail: subhra1109@gmail.com; Biswas, Dhrubes; Department of E and E C E, Indian Institute of Technology Kharagpur, Kharagpur 721302
2015-05-15
Plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructures on Si(111) substrate with three buffer thickness (600 nm/400 nm/200 nm) have been reported. An unique growth process has been developed that supports lower temperature epitaxy of GaN buffer which minimizes thermally generated tensile strain through appropriate nitridation and AlN initiated epitaxy for achieving high quality GaN buffer which supports such ultra-thin heterostructures in the range of 10-15Å. It is followed by investigations of role of buffer thickness on formation of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructure, in terms of stress-strain and threading dislocation (TD). Structural characterization were performedmore » by High-Resolution X-Ray Diffraction (HRXRD), room-temperature Photoluminescence (RT-PL), High Resolution Transmission Electron Microscopy (HRTEM) and Atomic Force Microscopy (AFM). Analysis revealed increasing biaxial tensile stress of 0.6918 ± 0.04, 1.1084, 1.1814 GPa in heterostructures with decreasing buffer thickness of 600, 400, 200 nm respectively which are summed up with residual tensile strain causing red-shift in RT-PL peak. Also, increasing buffer thickness drastically reduced TD density from the order 10{sup 10} cm{sup −2} to 10{sup 8} cm{sup −2}. Surface morphology through AFM leads to decrease of pits and root mean square value with increasing buffer thickness which are resulted due to reduction of combined effect of strain and TDs.« less
NASA Astrophysics Data System (ADS)
Ruíz-Robles, M. A.; Abundiz-Cisneros, N.; Bender-Pérez, C. E.; Gutiérrez-Lazos, C. D.; Fundora-Cruz, A.; Solís-Pomar, F.; Pérez-Tijerina, E.
2018-03-01
The design and optical characterization by UV–vis transmittance of ultrathin low-emissivity (low-e) windows by reactive sputtering are reported. Two heterostructures on a glass substrate were considered for the low-e windows. The first heterostructure is Si3N4/TiO2/ZnO/Ag/SnO2/Si3N4 and the second is Si3N4/Ag/Si3N4. The transmittance and reflectance of these heterostructures were simulated to determine the required thickness of each layer. The first heterostructure exhibited maximum transmittance of 85% at 550 nm, slightly higher than the one determined by simulation and less than 50% transmittance in the near-infrared region (900 nm). The second heterostructure exhibited transmittance greater than 86% at 550 nm and <50% transmittance in the near-infrared region. In addition, we found that the bandwidth and maximum position of the transmittance depend on the Si3N4 layer thickness. Specifically, the thickness of the first Si3N4 layer allows the modulation of the transmittance bandwidth and the thickness of the second Si3N4 layer allows the modulation of the maximum position. The low-e windows were protected by the deposition of an ultrathin film of NiCr alloy (Ni 80%, Cr 20%) that preserved the optical characteristics and decreased the maximum of the transmittance only by 3%.
NASA Astrophysics Data System (ADS)
Ni, Yi-Qiang; He, Zhi-Yuan; Yao, Yao; Yang, Fan; Zhou, De-Qiu; Zhou, Gui-Lin; Shen, Zhen; Zhong, Jian; Zheng, Yue; Zhang, Bai-Jun; Liu, Yang
2015-05-01
We report a novel structure of AlGaN/GaN heterostructure field effect transistors (HFETs) with a Si and Mg pair-doped interlayer grown on Si substrate. By optimizing the doping concentrations of the pair-doped interlayers, the mobility of 2DEG increases by twice for the conventional structure under 5 K due to the improved crystalline quality of the conduction channel. The proposed HFET shows a four orders lower off-state leakage current, resulting in a much higher on/off ratio (˜ 109). Further temperature-dependent performance of Schottky diodes revealed that the inhibition of shallow surface traps in proposed HFETs should be the main reason for the suppression of leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 51177175 and 61274039), the National Basic Research Project of China (Grant Nos. 2010CB923200 and 2011CB301903), the Ph.D. Program Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Sci. & Tech. Collaboration Program of China (Grant No. 2012DFG52260), the National High-tech R&D Program of China (Grant No. 2014AA032606), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17).
NASA Astrophysics Data System (ADS)
Singh, A. K.; Rathi, Amit; Riyaj, Md.; Bhardwaj, Garima; Alvi, P. A.
2017-11-01
Quaternary and ternary alloy semiconductors offer an extra degree of flexibility in terms of bandgap tuning. Modifications in the wave functions and alterations in optical transitions in quaternary and ternary QW (quantum well) heterostructures due to external uniaxial strain provide valuable insights on the characteristics of the heterostructure. This paper reports the optical gain in strained InGaAsP/GaAsSb type-II QW heterostructure (well width = 20 Å) under external uniaxial strain at room temperature (300 K). The entire heterostructure is supposed to be grown on InP substrate pseudomorphically. Band structure, wave functions, energy dispersion and momentum matrix elements of the heterostructure have been computed. 6 × 6 diagonalised k → ·p → Hamiltonian matrix of the system is evaluated and Luttinger-Kohn model has been applied for the band structure and wavefunction calculations. TE mode optical gain spectrum in the QW-heterostructure under uniaxial strain along [110] is calculated. Optical gain of the heterostructure as a function of 2D carrier density and temperature variation is investigated. The variation of the peak optical gain as a function of As and Sb fractions in InGaAsP as a barrier and GaAsSb as a well respectively is exhibited. For a charge carrier injection of 5 ×1012 /cm2 , the TE optical gain is 3952 cm-1 at room temperature under no external uniaxial strain. Significant increase in TE mode optical gain is observed under high external uniaxial strain (1, 5 and 10 GPa) along [110] within IR (Infrared region) region.
Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices
Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang
2016-01-01
Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers. PMID:27181337
NASA Astrophysics Data System (ADS)
Aleshin, A. N.; Bugaev, A. S.; Ruban, O. A.; Tabachkova, N. Yu.; Shchetinin, I. V.
2017-10-01
Spatial distribution of residual elastic strain in the layers of two step-graded metamophic buffers of various designs, grown by molecular beam epitaxy from ternary InxAl1-xAs solutions on GaAs(001) substrates, is obtained using reciprocal space mapping by three-axis X-ray diffractometry and the linear theory of elasticity. The difference in the design of the buffers enabled the formation of a dislocation-free layer with different thickness in each of the heterostructures, which was the main basis of this study. It is shown that, in spite of the different design of graded metamorphic buffers, the nature of strain fields in them is the same, and the residual elastic strains in the final elements of both buffers adjusted for the effect of work hardening subject to the same phenomenological law, which describes the strain relief process in single-layer heterostructures.
NASA Astrophysics Data System (ADS)
Li, Pengfei; Ren, Xinguo; He, Lixin
2017-10-01
Plasmon excitations in free-standing graphene and graphene/hexagonal boron nitride (hBN) heterostructure are studied using linear-response time-dependent density functional theory within the random phase approximation. Within a single theoretical framework, we examine both the plasmon dispersion behavior and lifetime (linewidth) of Dirac and π plasmons on an equal footing. Particular attention is paid to the influence of the hBN substrate and the anisotropic effect. Furthermore, a model-based analysis indicates that the correct dispersion behavior of π plasmons should be ωπ(q ) =√{Eg2+β ql} for small q 's, where Eg is the band gap at the M point in the Brillouin zone, and β is a fitting parameter. This model is radically different from previous proposals, but in good agreement with our calculated results from first principles.
Magneto-optical properties of BaTiO3/La0.76Sr0.24MnO3/BaTiO3 heterostructures
NASA Astrophysics Data System (ADS)
Moog, M.; Singamaneni, S. R.; Prater, J. T.; Biegalski, M. D.; Tsui, F.
2018-05-01
The magnetic properties of epitaxial BaTiO3/La0.76Sr0.24MnO3/BaTiO3 (BTO/LSMO/BTO) heterostructures have been studied using magneto-optic Kerr effect (MOKE) technique. Both longitudinal and polar MOKE were probed as a function of magnetic field and temperature (in the range between 80 and 320 K) for epitaxial films of BTO/LSMO/BTO and LSMO grown on TiO2-terminated SrTiO3 (001) substrates by pulsed laser deposition technique. The LSMO film without the BTO layers exhibits nearly square field-dependent MOKE hysteresis loops with low saturation fields below a bulk-like Curie temperature (TC) of ˜ 350K. In contrast, the film with the BTO layers exhibits a significantly suppressed TC of 155 K, accompanied by significantly enhanced coercive fields and perpendicular magnetic anisotropy.
Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices.
Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang
2016-05-16
Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers.
On the properties of organic heterostructures prepared with nano-patterned metallic electrode
NASA Astrophysics Data System (ADS)
Breazu, C.; Socol, M.; Preda, N.; Matei, E.; Rasoga, O.; Girtan, M.; Mallet, R.; Stanculescu, F.; Stanculescu, A.
2018-06-01
This paper presents a comparative study between the properties of the heterostructures realized with single/multi layer organic (zinc phthalocyanine or/and fullerene) prepared on Si substrate between flat or patterned aluminum (Al) layer metallic electrode and multi layer ZnO/Au/ZnO transparent conductor electrode (TCE). The UV-Nanoimprint Lithography was used for the realization of a 2D array of nanostructures (holes/pillars) characterized by a periodicity of 1.1 μm and cylindrical shape: diameter = 400 nm and depth/height = 300 nm. The effect of the electrode patterning on the properties of the organic heterostructures was analyzed. For the samples with patterned Al electrode was remarked a slight red shift of the peaks in the reflection spectra determined by an increased interaction between the organic molecules in the delimited region of the patterned holes. The shape of the emission spectra at excitation with UV light showed a narrow intense peak around 500 nm associated with the intense resonance phenomena between the energy of the incident light and the surface plasmons in the patterned Al layer. The TCE followed the morphology of the organic film on which it was deposited. The significant differences between the morphology of the top layer in the heterostructures realized on flat and patterned Al are correlated with the total thickness of the successively deposited layers and with the particularities of the molecular arrangement, leading to the preservation or deleting of patterning. An injection contact behavior was evidence for most heterostructures built on flat and patterned Al. The slight increase in current at an applied bias <1 V in the heterostructure Si/Al/ZnPc/TCE is attributed to the larger interfacial area between the patterned Al electrode and ZnPc layer compared to the interface area between flat Al and ZnPc. A buffer layer of 1,4,5,8-naphthalen-tetracarboxylic dianhydride (NTCDA), sandwiched between the flat metallic electrode and organic film in the heterostructure Si/Al/C60/ZnPc/TCE has determined an increase in the current at low applied voltages.
Positron annihilation studies on the behaviour of vacancies in LaAlO3/SrTiO3 heterostructures
NASA Astrophysics Data System (ADS)
Yuan, Guoliang; Li, Chen; Yin, Jiang; Liu, Zhiguo; Wu, Di; Uedono, Akira
2012-11-01
The formation and diffusion of vacancies are studied in LaAlO3/SrTiO3 heterostructures. Oxygen vacancies (VOS) appear easily in the SrTiO3 substrate during LaAlO3 film growth at 700 °C and 10-4 Pa oxygen pressure rather than at 10-3-10-1 Pa, thus the latter two-dimensional electron gas should come from the polarity discontinuity at the (LaO)+/(TiO2)0 interface. For SrTiO3-δ/LaAlO3/SrTiO3, high-density VOS of the SrTiO3-δ film can pass through the LaAlO3 film and then diffuse to 1.7 µm depth in the SrTiO3 substrate, suggesting that LaAlO3 has VOS at its middle-deep energy levels within the band gap. Moreover, high-density VOS may combine with a strontium/titanium vacancy (VSr/Ti) to form VSr/Ti-O complexes in the SrTiO3 substrate at 700 °C.
Kuchuk, Andrian V; Lytvyn, Petro M; Li, Chen; Stanchu, Hryhorii V; Mazur, Yuriy I; Ware, Morgan E; Benamara, Mourad; Ratajczak, Renata; Dorogan, Vitaliy; Kladko, Vasyl P; Belyaev, Alexander E; Salamo, Gregory G
2015-10-21
We report on AlxGa1-xN heterostructures resulting from the coherent growth of a positive then a negative gradient of the Al concentration on a [0001]-oriented GaN substrate. These polarization-doped p-n junction structures were characterized at the nanoscale by a combination of averaging as well as depth-resolved experimental techniques including: cross-sectional transmission electron microscopy, high-resolution X-ray diffraction, Rutherford backscattering spectrometry, and scanning probe microscopy. We observed that a small miscut in the substrate orientation along with the accumulated strain during growth led to a change in the mosaic structure of the AlxGa1-xN film, resulting in the formation of macrosteps on the surface. Moreover, we found a lateral modulation of charge carriers on the surface which were directly correlated with these steps. Finally, using nanoscale probes of the charge density in cross sections of the samples, we have directly measured, semiquantitatively, both n- and p-type polarization doping resulting from the gradient concentration of the AlxGa1-xN layers.
Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures.
Zhang, Qiang; Chen, Yuxuan; Zhang, Chendong; Pan, Chi-Ruei; Chou, Mei-Yin; Zeng, Changgan; Shih, Chih-Kang
2016-12-14
The van der Waals interaction in vertical heterostructures made of two-dimensional (2D) materials relaxes the requirement of lattice matching, therefore enabling great design flexibility to tailor novel 2D electronic systems. Here we report the successful growth of MoSe 2 on single-layer hexagonal boron nitride (hBN) on the Ru(0001) substrate using molecular beam epitaxy. Using scanning tunnelling microscopy and spectroscopy, we found that the quasi-particle bandgap of MoSe 2 on hBN/Ru is about 0.25 eV smaller than those on graphene or graphite substrates. We attribute this result to the strong interaction between hBN/Ru, which causes residual metallic screening from the substrate. In addition, the electronic structure and the work function of MoSe 2 are modulated electrostatically with an amplitude of ∼0.13 eV. Most interestingly, this electrostatic modulation is spatially in phase with the Moiré pattern of hBN on Ru(0001) whose surface also exhibits a work function modulation of the same amplitude.
Zhang, Guoqiang; Rainville, Christophe; Salmon, Adrian; Takiguchi, Masato; Tateno, Kouta; Gotoh, Hideki
2015-11-24
This work presents a method that bridges the gap between the nanometer-scale bottom-up and micrometer-scale top-down approaches for site-defined nanostructures, which has long been a significant challenge for applications that require low-cost and high-throughput manufacturing processes. We realized the bridging by controlling the seed indium nanoparticle position through a self-assembly process. Site-defined InP nanowires were then grown from the indium-nanoparticle array in the vapor-liquid-solid mode through a "seed and grow" process. The nanometer-scale indium particles do not always occupy the same locations within the micrometer-scale open window of an InP exposed substrate due to the scale difference. We developed a technique for aligning the nanometer-scale indium particles on the same side of the micrometer-scale window by structuring the surface of a misoriented InP (111)B substrate. Finally, we demonstrated that the developed method can be used to grow a uniform InP/InAs axial-heterostructure nanowire array. The ability to form a heterostructure nanowire array with this method makes it possible to tune the emission wavelength over a wide range by employing the quantum confinement effect and thus expand the application of this technology to optoelectronic devices. Successfully pairing a controllable bottom-up growth technique with a top-down substrate preparation technique greatly improves the potential for the mass-production and widespread adoption of this technology.
Controlling astigmatism and polarization in a stripe heterojunction laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boroshnev, A.V.; Gorshkova, O.A.; Kobyakova, M.S.
1985-02-01
It is shown that it is possible to change the waveguide properties of a heterojunction laser and to control its optical characteristics in a single heterostructure fabricated on a substrate with a terraced profile. (AIP)
NASA Astrophysics Data System (ADS)
Oh, Seung Kyu; Cho, Moon Uk; Dallas, James; Jang, Taehoon; Lee, Dong Gyu; Pouladi, Sara; Chen, Jie; Wang, Weijie; Shervin, Shahab; Kim, Hyunsoo; Shin, Seungha; Choi, Sukwon; Kwak, Joon Seop; Ryou, Jae-Hyun
2017-09-01
We investigate thermo-electronic behaviors of flexible AlGaN/GaN heterostructure field-effect transistors (HFETs) for high-power operation of the devices using Raman thermometry, infrared imaging, and current-voltage characteristics. A large negative differential conductance observed in HFETs on polymeric flexible substrates is confirmed to originate from the decreasing mobility of the two-dimensional electron gas channel caused by the self-heating effect. We develop high-power transistors by suppressing the negative differential conductance in the flexible HFETs using chemical lift-off and modified Ti/Au/In metal bonding processes with copper (Cu) tapes for high thermal conductivity and low thermal interfacial resistance in the flexible hybrid structures. Among different flexible HFETs, the ID of the HFETs on Cu with Ni/Au/In structures decreases only by 11.3% with increasing drain bias from the peak current to the current at VDS = 20 V, which is close to that of the HFETs on Si (9.6%), solving the problem of previous flexible AlGaN/GaN transistors.
NASA Astrophysics Data System (ADS)
Gurram, M.; Omar, S.; van Wees, B. J.
2018-07-01
The current research in graphene spintronics strives for achieving a long spin lifetime, and efficient spin injection and detection in graphene. In this article, we review how hexagonal boron nitride (hBN) has evolved as a crucial substrate, as an encapsulation layer, and as a tunnel barrier for manipulation and control of spin lifetimes and spin injection/detection polarizations in graphene spin valve devices. First, we give an overview of the challenges due to conventional SiO2/Si substrate for spin transport in graphene followed by the progress made in hBN based graphene heterostructures. Then we discuss in detail the shortcomings and developments in using conventional oxide tunnel barriers for spin injection into graphene followed by introducing the recent advancements in using the crystalline single/bi/tri-layer hBN tunnel barriers for an improved spin injection and detection which also can facilitate two-terminal spin valve and Hanle measurements at room temperature, and are of technological importance. A special case of bias induced spin polarization of contacts with exfoliated and chemical vapour deposition (CVD) grown hBN tunnel barriers is also discussed. Further, we give our perspectives on utilizing graphene-hBN heterostructures for future developments in graphene spintronics.
Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection.
Ding, Hong; Dwaraknath, Shyam S; Garten, Lauren; Ndione, Paul; Ginley, David; Persson, Kristin A
2016-05-25
With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structures favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.
Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection
Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren; ...
2016-05-04
With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO 2 compounds which provides a rich chemical and structural polymorph space. Here, we find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO 2 substrates, where the VO 2 brookite phase would be preferentially grown on the a-c TiO 2 brookite plane whilemore » the columbite and anatase structures favor the a-b plane on the respective TiO 2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO 2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. Our criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.« less
Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren
With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structuresmore » favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.« less
Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren
With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO 2 compounds which provides a rich chemical and structural polymorph space. Here, we find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO 2 substrates, where the VO 2 brookite phase would be preferentially grown on the a-c TiO 2 brookite plane whilemore » the columbite and anatase structures favor the a-b plane on the respective TiO 2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO 2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. Our criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.« less
Catalytic growth of vertically aligned SnS/SnS2 p-n heterojunctions
NASA Astrophysics Data System (ADS)
Degrauw, Aaron; Armstrong, Rebekka; Rahman, Ajara A.; Ogle, Jonathan; Whittaker-Brooks, Luisa
2017-09-01
Nanowire arrays of SnS/SnS2 p-n heterojunctions are grown on transparent indium tin oxide (ITO) coated-glass and Si/SiO2 substrates via chemical vapor transport (CVT). The nanowire arrays are comprised of individual SnS/SnS2 heterostructures that are highly oriented with their lengths and morphologies controlled by the CVT conditions (i.e. reaction temperature, flow rate, and reaction time). The growth and optoelectronic characterization of these well-defined SnS/SnS2 p-n heterostructures pave the way for the fabrication of highly efficient solar cell devices.
NASA Astrophysics Data System (ADS)
Di Gaspare, L.; Capellini, G.; Chudoba, C.; Sebastiani, M.; Evangelisti, F.
1996-09-01
We apply a new experimental method for determining band lineups at the Ge/Si(100) heterostructure. This method uses a modern version of an old spectroscopy: the photoelectric yield spectroscopy excited with photons in the near UV range. It is shown that both substrate and overlayer valence-band tops can be identified in the yield spectrum, thus allowing a direct and precise determination of the band lineup. We find an offset of 0.36 ± 0.02 eV for heterojunctions whose overlayers were grown according to the Stranski-Krastanov mechanism.
Impact of MoO3 interlayer on the energy level alignment of pentacene-C60 heterostructure.
Zou, Ye; Mao, Hongying; Meng, Qing; Zhu, Daoben
2016-02-28
Using in situ ultraviolet photoelectron spectroscopy, the electronic structure evolutions at the interface between pentacene and fullerene (C60), a classical organic donor-acceptor heterostructure in organic electronic devices, on indium-tin oxide (ITO) and MoO3 modified ITO substrates have been investigated. The insertion of a thin layer MoO3 has a significant impact on the interfacial energy level alignment of pentacene-C60 heterostructure. For the deposition of C60 on pentacene, the energy difference between the highest occupied molecular orbital of donor and the lowest unoccupied molecular orbital of acceptor (HOMO(D)-LUMO(A)) offset of C60/pentacene heterostructure increased from 0.86 eV to 1.54 eV after the insertion of a thin layer MoO3 on ITO. In the inverted heterostructrure where pentacene was deposited on C60, the HOMO(D)-LUMO(A) offset of pentacene/C60 heterostructure increased from 1.32 to 2.20 eV after MoO3 modification on ITO. The significant difference of HOMO(D)-LUMO(A) offset shows the feasibility to optimize organic electronic device performance through interfacial engineering approaches, such as the insertion of a thin layer high work function MoO3 films.
DX centers in indium aluminum arsenide heterostructures
NASA Astrophysics Data System (ADS)
Sari, Huseyin
DX centers are point defects observed in many n-type doped III-V compound semi conductors. They have unique properties, which include large differences between their optical and thermal ionization energies, and a temperature dependence of the capture cross-sections. As a result of these properties DX centers exhibit a reduction in free carrier concentration and a large persistent photoconductivity (PPC) effect. DX centers also lead to a shift in the threshold voltage of modulation doped field effect transistors (MODFET) structures, at low temperatures. Most of the studies on this defect have been carried out on the Ga xAl1-xAs material system. However, to date there is significantly less work on DX centers in InxAl1-xAs compounds. This is partly due to difficulties associated with the growth of defect free materials other than lattice matched In0.52Al 0.48As on InP and partly because the energy level of the DX center is in resonance with the conduction band in In0.52Al0.48As. The purpose of this dissertation is to extend the DX center investigation to InAlAs compounds, primarily in the indirect portion of the InAlAs bandgap. In this work the indium composition dependence of the DX centers in In xAl1-xAs/InyGa1-yAs-based heterostructure is studied experimentally. Different InxAl 1-xAs epitaxial layers with x = 0.10, x = 0.15, x = 0.20, and x = 0.34 in a MODFET-like heterostructure were grown by Molecular Beam Epitaxy (MBE) on (001) GaAs substrates. In order to compensate the lattice mismatch between epitaxial layers and their substrates, step-graded buffer layers with indium composition increments of x = 0.10, every 2000 A, were used. For the samples grown with different indium contents Hall measurements as a function of both temperature and different cooling biases were performed in order to determine their carrier concentrations. A self consistent Poisson-Schrodinger numerical software is used to model the heterostructures. With the help of this numerical model and the grand canonical ensemble (GCE) the energy levels of the DX centers relative to the conduction band edge were estimated. The optical properties of the DX centers were also investigated using a 1.0 mum thick, Si-doped bulk-like GaAlAs epitaxial layer grown by MBE on a GaAs substrate. A conductivity modulation experiment using a stripe-patterned mask has been performed at 77°K. A conductivity difference, up to 10 4 along parallel and perpendicular directions relative to the stripes, has been measured. The difference in conductivity is a result of the large PPC effect of the DX centers and clearly indicates the localized nature of these deep levels.
NASA Astrophysics Data System (ADS)
Yang, Huihui; Gao, Feng; Dai, Mingjin; Jia, Dechang; Zhou, Yu; Hu, Pingan
2017-03-01
Two-dimensional (2D) layered materials, such as graphene, hexagonal boron nitride (h-BN), molybdenum disulfide (MoS{}2 ), have attracted tremendous interest due to their atom-thickness structures and excellent physical properties. h-BN has predominant advantages as the dielectric substrate in FET devices due to its outstanding properties such as chemically inert surface, being free of dangling bonds and surface charge traps, especially the large-band-gap insulativity. h-BN involved vertical heterostructures have been widely exploited during the past few years. Such heterostructures adopting h-BN as dielectric layers exhibit enhanced electronic performance, and provide further possibilities for device engineering. Besides, a series of intriguing physical phenomena are observed in certain vertical heterostructures, such as superlattice potential induced replication of Dirac points, band gap tuning, Hofstadter butterfly states, gate-dependent pseudospin mixing. Herein we focus on the rapid developments of h-BN synthesis and fabrication of vertical heterostructures devices based on h-BN, and review the novel properties as well as the potential applications of the heterostructures composed of h-BN. Project supported by the National Natural Science Foundation of China (Nos. 61390502, 21373068), the National Basic Research Program of China (No. 2013CB632900), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51521003), and the Self-Planned Task of State Key Laboratory of Robotics and System (No. SKLRS201607B).
Rectifying magnetic tunnel diode like behavior in Co2MnSi/ZnO/p-Si heterostructure
NASA Astrophysics Data System (ADS)
Maji, Nilay; Nath, T. K.
2018-04-01
The rectifying magnetic tunnel diode like behavior has been observed in Co2MnSi/ZnO/p-Si heterostructure. At first an ultra thin layer of ZnO has been deposited on p-Si (100) substrate with the help of pulsed laser deposition (PLD). After that a highly spin-polarized Heusler alloy Co2MnSi (CMS) film (250 nm) has been grown on ZnO/p-Si using electron beam physical vapor deposition technique. The phase purity of the sample has been confirmed through high resolution X-Ray diffraction technique. The electrical transport properties have been investigated at various isothermal conditions in the temperature range of 77-300 K. The current-voltage characteristics exhibit an excellent rectifying tunnel diode like behavior throughout the temperature regime. The current (I) across the junction has been found to decrease with the application of an external magnetic field parallel to the plane of the CMS film clearly indicating positive junction magnetoresistance (JMR) of the heterostructure. The magnetic field dependent JMR behavior of our heterostructure has been investigated in the same temperature range. Our heterostructure clearly demonstrates a giant positive JMR at 78 K (˜264%) and it starts decreasing with increasing temperature. If we compare our results with earlier reported results on other heterostructures, it can be seen that the JMR value for our heterojunction saturates at a much lower external magnetic field, thus creating it a better alternative for spin tunnel diodes in upcoming spintronics device applications.
Infrared Emitters and Photodetectors with InAsSb Bulk Active Region
2013-04-29
SLS) buffers on GaSb substrates [9]. By that time, 145 meV (A.= 8.6 J.lm) was reported to be the minimum energy gap for the bulk lnAsSb alloys at 77...substrate side (b) GaSb substrate thinned to 200iJm Figure 5. (a) The band diagram of the heterostructure with the undoped bulk InAsSb0.2 layer...shift of the EL energy peak compared to the PL peak at/, ... I 0 1-1m is explained by band filling under electrical injection. A sublinear
Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures
NASA Astrophysics Data System (ADS)
Crook, Adam M.; Nair, Hari P.; Ferrer, Domingo A.; Bank, Seth R.
2011-08-01
We present a growth method that overcomes the mismatch in rotational symmetry of ErAs and conventional III-V semiconductors, allowing for epitaxially integrated semimetal/semiconductor heterostructures. Transmission electron microscopy and reflection high-energy electron diffraction reveal defect-free overgrowth of ErAs layers, consisting of >2× the total amount of ErAs that can be embedded with conventional layer-by-layer growth methods. We utilize epitaxial ErAs nanoparticles, overgrown with GaAs, as a seed to grow full films of ErAs. Growth proceeds by diffusion of erbium atoms through the GaAs spacer, which remains registered to the underlying substrate, preventing planar defect formation during subsequent GaAs growth. This growth method is promising for metal/semiconductor heterostructures that serve as embedded Ohmic contacts to epitaxial layers and epitaxially integrated active plasmonic devices.
Ultrafast relaxation dynamics in BiFeO 3/YBa 2Cu 3O 7 bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, D.; Nair, Saritha K.; He, Mi
The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO 3 (BFO) and superconducting YBa 2Cu 3O 7 (YBCO) grown on (001) SrTiO 3 substrate is studied by time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCOinterface as observed inmagnetization data. An extensionmore » of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.« less
Ultrafast relaxation dynamics in BiFeO 3/YBa 2Cu 3O 7 bilayers
Springer, D.; Nair, Saritha K.; He, Mi; ...
2016-02-12
The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO 3 (BFO) and superconducting YBa 2Cu 3O 7 (YBCO) grown on (001) SrTiO 3 substrate is studied by time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCOinterface as observed inmagnetization data. An extensionmore » of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.« less
Interface-engineered oxygen octahedral coupling in manganite heterostructures
NASA Astrophysics Data System (ADS)
Huijben, M.; Koster, G.; Liao, Z. L.; Rijnders, G.
2017-12-01
Control of the oxygen octahedral coupling (OOC) provides a large degree of freedom to manipulate physical phenomena in complex oxide heterostructures. Recently, local tuning of the tilt angle has been found to control the magnetic anisotropy in ultrathin films of manganites and ruthenates, while symmetry control can manipulate the metal insulator transition in nickelate thin films. The required connectivity of the octahedra across the heterostructure interface enforces a geometric constraint to the 3-dimensional octahedral network in epitaxial films. Such geometric constraint will either change the tilt angle to retain the connectivity of the corner shared oxygen octahedral network or guide the formation of a specific symmetry throughout the epitaxial film. Here, we will discuss the control of OOC in manganite heterostructures by interface-engineering. OOC driven magnetic and transport anisotropies have been realized in LSMO/NGO heterostructures. Competition between the interfacial OOC and the strain further away from the interface leads to a thickness driven sharp transition of the anisotropic properties. Furthermore, octahedral relaxation leading to a change of p-d hybridization driven by interfacial OOC appears to be the strongest factor in thickness related variations of magnetic and transport properties in epitaxial LSMO films on NGO substrates. The results unequivocally link the atomic structure near the interfaces to the macroscopic properties. The strong correlation between a controllable oxygen network and the functionalities will have significant impact on both fundamental research and technological application of correlated perovskite heterostructures. By controlling the interfacial OOC, it is possible to pattern in 3 dimensions the magnetization to achieve non-collinear magnetization in both in-plane and out of plane directions, thus making the heterostructures promising for application in orthogonal spin transfer devices, spin oscillators, and low field sensors.
Band gap and mobility of epitaxial perovskite BaSn1 -xHfxO3 thin films
NASA Astrophysics Data System (ADS)
Shin, Juyeon; Lim, Jinyoung; Ha, Taewoo; Kim, Young Mo; Park, Chulkwon; Yu, Jaejun; Kim, Jae Hoon; Char, Kookrin
2018-02-01
A wide band-gap perovskite oxide BaSn O3 is attracting much attention due to its high electron mobility and oxygen stability. On the other hand, BaHf O3 was recently reported to be an effective high-k gate oxide. Here, we investigate the band gap and mobility of solid solutions of BaS n1 -xH fxO3 (x =0 -1 ) (BSHO) as a basis to build advanced perovskite oxide heterostructures. All the films were epitaxially grown on MgO substrates using pulsed laser deposition. Density functional theory calculations confirmed that Hf substitution does not create midgap states while increasing the band gap. From x-ray diffraction and optical transmittance measurements, the lattice constants and the band-gap values are significantly modified by Hf substitution. We also measured the transport properties of n -type La-doped BSHO films [(Ba ,La ) (Sn ,Hf ) O3 ] , investigating the feasibility of modulation doping in the BaSn O3/BSHO heterostructures. The Hall measurement data revealed that, as the Hf content increases, the activation rate of the La dopant decreases and the scattering rate of the electrons sharply increases. These properties of BSHO films may be useful for applications in various heterostructures based on the BaSn O3 system.
Zhao, Y.; Wan, Z.; Xu, X.; Patil, S. R.; Hetmaniuk, U.; Anantram, M. P.
2015-01-01
Hexagonal boron nitride (hBN) is drawing increasing attention as an insulator and substrate material to develop next generation graphene-based electronic devices. In this paper, we investigate the quantum transport in heterostructures consisting of a few atomic layers thick hBN film sandwiched between graphene nanoribbon electrodes. We show a gate-controllable vertical transistor exhibiting strong negative differential resistance (NDR) effect with multiple resonant peaks, which stay pronounced for various device dimensions. We find two distinct mechanisms that are responsible for NDR, depending on the gate and applied biases, in the same device. The origin of first mechanism is a Fabry-Pérot like interference and that of the second mechanism is an in-plane wave vector matching when the Dirac points of the electrodes align. The hBN layers can induce an asymmetry in the current-voltage characteristics which can be further modulated by an applied bias. We find that the electron-phonon scattering suppresses the first mechanism whereas the second mechanism remains relatively unaffected. We also show that the NDR features are tunable by varying device dimensions. The NDR feature with multiple resonant peaks, combined with ultrafast tunneling speed provides prospect for the graphene-hBN-graphene heterostructure in the high-performance electronics. PMID:25991076
Electrical properties of thermoelectric cobalt Ca3Co4O9 epitaxial heterostructures
NASA Astrophysics Data System (ADS)
Guo, Haizhong; Wang, Shufang; Wang, Le; Jin, Kui-juan; Chen, Shanshan; Fu, Guangsheng; Ge, Chen; Lu, Huibin; Wang, Can; He, Meng; Yang, Guozhen
2013-03-01
Heterostructures fabricated from layered cobalt oxides offer substantial advantages for thermoelectric applications. C-axis-oriented Ca3Co4O9 (CCO) thin films on SrTiO3 substrates and Ca3Co4O9/SrTi0.993Nb0.007O3 p-n heterojunctions were fabricated by pulsed laser deposition. The measurements of in-plane resistivity, thermopower, and magnetic properties performed on the Ca3Co4O9 thin films were found to be comparable to ab-plane those of the single crystals due to good orientation of the films. The temperature dependence of the electrical transport properties of Ca3Co4O9/SrTi0.993Nb0.007O3 p-n heterojunction was also investigated. The junction shows two distinctive transport mechanisms at different temperature regimes under forward bias: tunneling across the Schottky barrier in the temperature range of 100-380 K, and tunneling mechanism at low bias and thermal emission mechanism at high bias between 10 and 100 K. However, for the case of low reverse bias, the trap assisted tunneling process should be considered for the leakage current. Negative magnetoresistance effect is observed at low temperatures, related to the electron spin-dependent scattering and the interface resistance of the heterostructures.
NASA Astrophysics Data System (ADS)
Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin
2015-03-01
Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.
Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin
2015-01-01
Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.
2011-08-17
cathodoluminescence (CL), and Hall effect measurement. We will disclose how structural and point defects affect the internal quantum efficiency. We have a complete...18. S. F. Chichibu, A. Uedono, T. Onuma, S. P. DenBaars, U. K. Mishra, J. S. Speck, and S. Nakamura, “Impact of Point Defects on the Luminescence...A. Uedono, “Major impacts of point defects and impurities on the carrier recombination dynamics in AlN,” Appl. Phys. Lett. 97(20), 201904 (2010
NASA Astrophysics Data System (ADS)
Blinov, L. M.; Lazarev, V. V.; Yudin, S. G.; Artemov, V. V.; Palto, S. P.; Gorkunov, M. V.
2018-01-01
The electro-optic effect in three nanoscale heterostructures, in each of which a thin layer of dielectric or ferroelectric material is inserted between two planar metal electrodes, has been studied. Each structure has one aluminum layer, containing a subwavelength grating with a period of 400 nm, contacting with either the glass substrate or air. The light transmission spectra of structures with subwavelength grating contain characteristic plasmon dips. Short external-voltage pulses affect the change in the refractive index of the corresponding active layer. Significant values of these changes may be useful for designing optical modulators.
NASA Astrophysics Data System (ADS)
Ludewig, P.; Reinhard, S.; Jandieri, K.; Wegele, T.; Beyer, A.; Tapfer, L.; Volz, K.; Stolz, W.
2016-03-01
High-quality, pseudomorphically strained Ga(NAsP)/(BGa)(AsP)-multiple quantum well heterostructures (MQWH) have been deposited on exactly oriented (001) Si-substrate by metal organic vapour phase epitaxy (MOVPE) in a wide temperature range between 525 °C and 700 °C. The individual atomic incorporation efficiencies, growth rates as well as nanoscale material properties have been clarified by applying detailed high-resolution X-ray diffraction (HR-XRD), photoluminescence (PL) spectroscopy and high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) studies. An almost constant N-incorporation efficiency is obtained for a wide growth temperature range from 550 °C up to 650 °C. The P-incorporation is steadily increasing with increasing growth temperature reaching values at high temperatures in excess of the applied gas phase ratio. While the lower interface from the binary GaP- to the quaternary Ga(NAsP)-material system is very sharp, the upper interface is significantly rougher with a roughness scale of ±0.43 nm in quantum well thickness variation at a growth temperature of 525 °C. This roughness scale increases steadily with increasing growth temperature. No indication of any phase separation effects is detected in the Ga(NAsP)-material system even at the highest growth temperature of 700 °C. The obtained experimental results are briefly discussed with respect to the anticipated metastable character of the novel dilute-nitride Ga(NAsP)-material system grown lattice-matched to (001) Si-substrate.
NASA Astrophysics Data System (ADS)
Fandan, R.; Pedrós, J.; Schiefele, J.; Boscá, A.; Martínez, J.; Calle, F.
2018-05-01
Surface plasmon polaritons in graphene couple strongly to surface phonons in polar substrates leading to hybridized surface plasmon-phonon polaritons (SPPPs). We demonstrate that a surface acoustic wave (SAW) can be used to launch propagating SPPPs in graphene/h-BN heterostructures on a piezoelectric substrate like AlN, where the SAW-induced surface modulation acts as a dynamic diffraction grating. The efficiency of the light coupling is greatly enhanced by the introduction of the h-BN film as compared to the bare graphene/AlN system. The h-BN interlayer not only significantly changes the dispersion of the SPPPs but also enhances their lifetime. The strengthening of the SPPPs is shown to be related to both the higher carrier mobility induced in graphene and the coupling with h-BN and AlN surface phonons. In addition to surface phonons, hyperbolic phonons polaritons (HPPs) appear in the case of multilayer h-BN films leading to hybridized hyperbolic plasmon-phonon polaritons (HPPPs) that are also mediated by the SAW. These results pave the way for engineering SAW-based graphene/h-BN plasmonic devices and metamaterials covering the mid-IR to THz range.
NASA Astrophysics Data System (ADS)
Liu, Dong; Cho, Sang June; Park, Jeongpil; Seo, Jung-Hun; Dalmau, Rafael; Zhao, Deyin; Kim, Kwangeun; Gong, Jiarui; Kim, Munho; Lee, In-Kyu; Albrecht, John D.; Zhou, Weidong; Moody, Baxter; Ma, Zhenqiang
2018-02-01
AlGaN based 229 nm light emitting diodes (LEDs), employing p-type Si to significantly increase hole injection, were fabricated on single crystal bulk aluminum nitride (AlN) substrates. Nitride heterostructures were epitaxially deposited by organometallic vapor phase epitaxy and inherit the low dislocation density of the native substrate. Following epitaxy, a p-Si layer is bonded to the heterostructure. LEDs were characterized both electrically and optically. Owing to the low defect density films, large concentration of holes from p-Si, and efficient hole injection, no efficiency droop was observed up to a current density of 76 A/cm2 under continuous wave operation and without external thermal management. An optical output power of 160 μW was obtained with the corresponding external quantum efficiency of 0.03%. This study demonstrates that by adopting p-type Si nanomembrane contacts as a hole injector, practical levels of hole injection can be realized in UV light-emitting diodes with very high Al composition AlGaN quantum wells, enabling emission wavelengths and power levels that were previously inaccessible using traditional p-i-n structures with poor hole injection efficiency.
Indium-incorporation efficiency in semipolar (11-22) oriented InGaN-based light emitting diodes
NASA Astrophysics Data System (ADS)
Monavarian, Morteza; Metzner, Sebastian; Izyumskaya, Natalia; Okur, Serdal; Zhang, Fan; Can, Nuri; Das, Saikat; Avrutin, Vitaliy; Özgür, Ümit; Bertram, Frank; Christen, Jürgen; Morkoç, Hadis
2015-03-01
Reduced electric field in semipolar (1122) GaN/InGaN heterostructures makes this orientation attractive for high efficiency light emitting diodes. In this work, we investigated indium incorporation in semipolar (1122) GaN grown by metal-organic chemical vapor deposition on planar m-plane sapphire substrates. Indium content in the semipolar material was compared with that in polar c-plane samples grown under the same conditions simultaneously side by side on the same holder. The investigated samples incorporated dual GaN/InGaN/GaN double heterostructures with 3nm wide wells. In order to improve optical quality, both polar and semipolar templates were grown using an in-situ epitaxial lateral overgrowth (ELO) technique. Indium incorporation efficiency was derived from the comparison of PL spectra measured on the semipolar and polar structures at the highest excitation density, which allowed us to minimize the effect of quantum confined Stark effect on the emission wavelength. Our data suggests increased indium content in the semipolar material by up to 3.0%, from 15% In in c- GaN to 18% In in (1122) GaN.
Quaternary BeMgZnO by plasma-enhanced molecular beam epitaxy for BeMgZnO/ZnO heterostructure devices
NASA Astrophysics Data System (ADS)
Ullah, M. B.; Toporkov, M.; Avrutin, V.; Özgür, Ü.; Smith, D. J.; Morkoç, H.
2017-02-01
We investigated the crystal structure, growth kinetics and electrical properties of BeMgZnO/ZnO heterostructures grown by Molecular Beam Epitaxy (MBE). Transmission Electron Microscopy (TEM) studies revealed that incorporation of Mg into the BeZnO solid solution eliminates the high angle grain boundaries that are the major structural defects in ternary BeZnO. The significant improvement of x-ray diffraction intensity from quaternary BeMgZnO alloy compared to ternary BeZnO was attributed to the reduction of lattice strain, which is present in the latter due to the large difference of covalent radii between Be and Zn (1.22 Å for Zn, 0.96 Å for Be). Incorporation of Mg, which has a larger covalent radius of 1.41Å, reduced the strain in BeMgZnO thin films and also enhanced Be incorporation on lattice sites in the wurtzite lattice. The Zn/(Be + Mg) ratio necessary to obtain single-crystal O-polar BeMgZnO on (0001) GaN/sapphire templates was found to increase with increasing substrate temperature:3.9, 6.2, and 8.3 at substrate temperatures of 450°C, 475°C, and 500°C, respectively. Based on analysis of photoluminescence spectra from Be0.03MgyZn0.97-yO and evolution of reflection high-energy electron diffraction patterns observed in situ during the MBE growth, it has been deduced that more negative formation enthalpy of MgO compared to ZnO and the increased surface mobility of Mg adatoms at elevated substrate temperatures give rise to the nucleation of a MgO-rich wurtzite phase at relatively low Zn/(Be + Mg) ratios. We have demonstrated both theoretically and experimentally that the incorporation of Be into the barrier in Zn-polar BeMgZnO/ZnO and O-polar ZnO/BeMgZnO polarization doped heterostructures allows the alignment of piezoelectric polarization vector with that of spontaneous polarization due to the change of strain sign, thus increasing the amount of net polarization. This made it possible to achieve Zn-polar BeMgZnO/ZnO heterostructures grown on GaN/sapphire templates with two-dimensional electron gas densities substantially exceeding those in Zn-polar MgZnO/ZnO and O-polar ZnO/MgZnO heterostructures with similar Mg content.
InGaAsP/InP laser development for single-mode, high-data-rate communications
NASA Technical Reports Server (NTRS)
Ladany, I.; Levin, E. R.; Magee, C. W.; Smith, R. T.
1981-01-01
Materials studies as well as general and specific device development were carried out in the InGaAsP system. A comparison was made of three standard methods of evaluating substrate quality by means of dislocation studies. A cause of reduced yield of good wafers, the pullover of melt from one bin to the next, has been analyzed. Difficulties with reproducible zinc acceptor doping have been traced to segregation of zinc in the In/Zn alloy used for the doping source. Using EBIC measurments, the pn junction was shown to drift in location depending on factors not always under control. An analysis of contact structures by SIMS showed that the depth to which the sintered Au/Zn contact penetrates into the structure is typically 0.13 microns, or well within the cap layer and out of the p-type cladding and thus not deleterious to laser prformance. The problem of single-mode laser development was investigated and it was shown to be related to the growth habit over four different possible substrate configurations. The fabrication of constricted double heterojunctions, mesa stripe buried heterostructures, and buried heterostructures was discussed, and measurements were presented on the device properties of single-mode buried heterostructure lasers. Results include single spectral line emission at 3 mW and a threshold current of 60 mA.
Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Zaunbrecher, Katherine N.; Kuciauskas, Darius; Swartz, Craig H.; Dippo, Pat; Edirisooriya, Madhavie; Ogedengbe, Olanrewaju S.; Sohal, Sandeep; Hancock, Bobby L.; LeBlanc, Elizabeth G.; Jayathilaka, Pathiraja A. R. D.; Barnes, Teresa M.; Myers, Thomas H.
2016-08-01
Heterostructures with CdTe and CdTe1-xSex (x ˜ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ˜ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ˜6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.
Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaunbrecher, Katherine N.; Kuciauskas, Darius; Swartz, Craig H.
Heterostructures with CdTe and CdTe 1-xSex (x ~ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ~ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects havemore » a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ~6 um, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 us with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 us.« less
Desplanque, L; Fahed, M; Han, X; Chinni, V K; Troadec, D; Chauvat, M-P; Ruterana, P; Wallart, X
2014-11-21
We report on the selective area molecular beam epitaxy of InAs/AlGaSb heterostructures on a GaSb (001) substrate. This method is used to realize Esaki tunnel diodes with a tunneling area down to 50 nm × 50 nm. The impact of the size reduction on the peak current density of the diode is investigated, and we show how the formation of the InAs facets can deeply affect the band-to-band tunneling properties of the heterostructure. This phenomenon is explained by the surface-dependent incorporation of Si dopant during growth.
Electro-pumped whispering gallery mode ZnO microlaser array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, G. Y.; State Key Laboratory of Bioelectronics, School of Electronic Science and Engineering, Southeast University, Nanjing 210096; Li, J. T.
2015-01-12
By employing vapor-phase transport method, ZnO microrods are fabricated and directly assembled on p-GaN substrate to form a heterostructural microlaser array, which avoids of the relatively complicated etching process comparing previous work. Under applied forward bias, whispering gallery mode ZnO ultraviolet lasing is obtained from the as-fabricated heterostructural microlaser array. The device's electroluminescence originates from three distinct electron-hole recombination processes in the heterojunction interface, and whispering gallery mode ultraviolet lasing is obtained when the applied voltage is beyond the lasing threshold. This work may present a significant step towards future fabrication of a facile technique for micro/nanolasers.
Npn double heterostructure bipolar transistor with ingaasn base region
Chang, Ping-Chih; Baca, Albert G.; Li, Nein-Yi; Hou, Hong Q.; Ashby, Carol I. H.
2004-07-20
An NPN double heterostructure bipolar transistor (DHBT) is disclosed with a base region comprising a layer of p-type-doped indium gallium arsenide nitride (InGaAsN) sandwiched between n-type-doped collector and emitter regions. The use of InGaAsN for the base region lowers the transistor turn-on voltage, V.sub.on, thereby reducing power dissipation within the device. The NPN transistor, which has applications for forming low-power electronic circuitry, is formed on a gallium arsenide (GaAs) substrate and can be fabricated at commercial GaAs foundries. Methods for fabricating the NPN transistor are also disclosed.
NASA Astrophysics Data System (ADS)
Wofford, Joseph M.; Nakhaie, Siamak; Krause, Thilo; Liu, Xianjie; Ramsteiner, Manfred; Hanke, Michael; Riechert, Henning; J. Lopes, J. Marcelo
2017-02-01
Van der Waals heterostructures combining hexagonal boron nitride (h-BN) and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas. In particular, the growth of h-BN on graphene has proven to be challenging due to the inertness of the graphene surface. Here we exploit a scalable molecular beam epitaxy based method to allow both the h-BN and graphene to form in a stacked heterostructure in the favorable growth environment provided by a Ni(111) substrate. This involves first saturating a Ni film on MgO(111) with C, growing h-BN on the exposed metal surface, and precipitating the C back to the h-BN/Ni interface to form graphene. The resulting laterally continuous heterostructure is composed of a top layer of few-layer thick h-BN on an intermediate few-layer thick graphene, lying on top of Ni/MgO(111). Examinations by synchrotron-based grazing incidence diffraction, X-ray photoemission spectroscopy, and UV-Raman spectroscopy reveal that while the h-BN is relaxed, the lattice constant of graphene is significantly reduced, likely due to nitrogen doping. These results illustrate a different pathway for the production of h-BN/graphene heterostructures, and open a new perspective for the large-area preparation of heterosystems combining graphene and other 2D or 3D materials.
Guo, Qi; Xu, Xiaoguang; Wang, Fang; Lu, Yunhao; Chen, Jikun; Wu, Yanjun; Meng, Kangkang; Wu, Yong; Miao, Jun; Jiang, Yong
2018-06-01
We report the in-plane electric field controlled ferromagnetism of La 2/3 Sr 1/3 MnO 3 (LSMO) films epitaxially deposited on [Pb(Mg 1/3 Nb 2/3 )O 3 ] 0.7 -(PbTiO 3 ) 0.3 (PMN-PT) (001), (011) and (111) single crystal substrates. The in-plane coercivities (H c∥ ) and remanences of the LSMO films greatly depend on the in-plane electric field applied on the PMN-PT (001) and (011) substrates. The experimental change of H c∥ is consistent with the Stoner-Wohlfarth model and first principle calculation with the electric field varying from -10 to 10 kV cm -1 . Moreover, the Curie temperature and anisotropic magnetoresistance of the LSMO films can also be manipulated by an in-plane electric field. Finally, the LSMO/PMN-PT (001) heterostructure is designed to be a new kind of magnetic signal generator with the source of electric field.
In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes
NASA Astrophysics Data System (ADS)
Liu, Zheng; Ma, Lulu; Shi, Gang; Zhou, Wu; Gong, Yongji; Lei, Sidong; Yang, Xuebei; Zhang, Jiangnan; Yu, Jingjiang; Hackenberg, Ken P.; Babakhani, Aydin; Idrobo, Juan-Carlos; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M.
2013-02-01
Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature, whereas an atomically thin layer of h-BN is a dielectric with a wide bandgap of ~5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be seamlessly stitched together, hybrid atomic layers with interesting electronic applications could be created. Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size ranging from tens of nanometres to millimetres. The resulting graphene/h-BN atomic layers can be peeled off the growth substrate and transferred to various platforms including flexible substrates. We also show that the technique can be used to fabricate two-dimensional devices, such as a split closed-loop resonator that works as a bandpass filter.
NASA Astrophysics Data System (ADS)
Guo, Qi; Xu, Xiaoguang; Wang, Fang; Lu, Yunhao; Chen, Jikun; Wu, Yanjun; Meng, Kangkang; Wu, Yong; Miao, Jun; Jiang, Yong
2018-06-01
We report the in-plane electric field controlled ferromagnetism of La2/3Sr1/3MnO3 (LSMO) films epitaxially deposited on [Pb(Mg1/3Nb2/3)O3]0.7-(PbTiO3)0.3 (PMN-PT) (001), (011) and (111) single crystal substrates. The in-plane coercivities (H c∥) and remanences of the LSMO films greatly depend on the in-plane electric field applied on the PMN-PT (001) and (011) substrates. The experimental change of H c∥ is consistent with the Stoner–Wohlfarth model and first principle calculation with the electric field varying from ‑10 to 10 kV cm‑1. Moreover, the Curie temperature and anisotropic magnetoresistance of the LSMO films can also be manipulated by an in-plane electric field. Finally, the LSMO/PMN-PT (001) heterostructure is designed to be a new kind of magnetic signal generator with the source of electric field.
NASA Astrophysics Data System (ADS)
Djiokap, S. R. Tankio; Urgessa, Z. N.; Mbulanga, C. M.; Boumenou, C. Kameni; Venter, A.; Botha, J. R.
2018-04-01
In this paper, the growth of ZnO nanorods on bare and NiO-coated p-Si substrates is reported. A two-step chemical bath deposition process has been used to grow the nanorods. X-ray diffraction and scanning probe microscopy confirmed that the NiO films were polycrystalline, and that the average grain size correlated with the NiO layer thickness. The ZnO nanorod morphology, orientation and optical properties seemed to be unaffected by the intermediate NiO layer thickness. Current-voltage measurements confirmed the rectifying behavior of all the ZnO/NiO/Si heterostructures. The inclusion of a NiO layer between the substrate and the ZnO nanorods are shown to cause a reduction in both the forward and reverse bias currents. This is in qualitative agreement with the band diagram of these heterostructures, which suggests that the intermediate NiO layer should act as an electron blocking layer.
Love waves in functionally graded piezoelectric materials by stiffness matrix method.
Ben Salah, Issam; Wali, Yassine; Ben Ghozlen, Mohamed Hédi
2011-04-01
A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO(2), the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour. Copyright © 2010 Elsevier B.V. All rights reserved.
2013-08-29
similar layer thicknesses. This offset indicates that the electric field profile of our Schottky diode is different than for unpatterned samples, implying...sacrificing uniformity by further optimizing the substrate Figure 3. (a) Schematic of the Schottky diode heterostructure, indicating the patterned substrate...and negative (X−) trions are indicated . (c) Distribution of linewidths for 80 PL lines from dots grown in high density arrays such as those in Figure 2b
NASA Astrophysics Data System (ADS)
Sorokin, S. V.; Sedova, I. V.; Belyaev, K. G.; Rakhlin, M. V.; Yagovkina, M. A.; Toropov, A. A.; Ivanov, S. V.
2018-03-01
Data on the molecular beam epitaxy (MBE) technology, design, and luminescent properties of heterostructures with CdTe/Zn(Mg)(Se)Te quantum dots on InAs(001) substrates are presented. X-ray diffraction has been used to study short-period ZnTe/MgTe/MgSe superlattices used as wide-bandgap barriers in structures with CdTe/ZnTe quantum dots for the effective confinement of holes. It is shown that the design of these superlattices must take into account the replacement of Te atoms by selenium on MgSe/ZnTe and MgTe/MgSe heterointerfaces. Heterostructures with CdTe/Zn(Mg)(Se)Te quantum dots exhibit photoluminescence at temperatures up to 300 K. The spectra of microphotoluminescence at T = 10 K display a set of emission lines from separate CdTe/ZnTe quantum dots, the surface density of which is estimated at 1010 cm-2.
Enhanced photoemission from glancing angle deposited SiOx-TiO2 axial heterostructure nanowire arrays
NASA Astrophysics Data System (ADS)
Dhar, J. C.; Mondal, A.; Singh, N. K.; Chattopadhyay, K. K.
2013-05-01
The glancing angle deposition technique has been employed to synthesize SiOx-TiO2 heterostructure nanowire (NW) arrays on indium tin oxide (ITO) coated glass substrate. A field emission gun scanning electron microscopic image shows that the average diameter of the NWs is ˜50 nm. Transmission electron microscopy images show the formation of heterostructure NWs, which consist of ˜180 nm SiOx and ˜210 nm long TiO2. The selected-area electron diffraction shows the amorphous nature of the synthesized NWs, which was also confirmed by X-ray diffraction method. The main band absorption edges at 3.5 eV were found for both the SiOx-TiO2 and TiO2 NW arrays on ITO coated glass plate from optical absorption measurement. Ti3+ defect related sub-band gap transition at 2.5 eV was observed for TiO2 NWs, whereas heterostructure NWs revealed the SiOx optical band gap related transition at ˜2.2 eV. Two fold improved photon absorption as well as five times photoluminescence emission enhancement were observed for the SiOx-TiO2 multilayer NWs compared to TiO2 NWs.
Magnetometory Measurement of AlGaN/GaN 2DEG
NASA Astrophysics Data System (ADS)
Tsubaki, K.; Maeda, N.; Saitoh, T.; Kobayashi, N.
2004-03-01
AlGaN/GaN heterostructure devices have been attracting much attention because of their potential for high-performance microwave applications. Therefore, the electronic properties of a 2DEG in AlGaN/GaN heterostructures have recently been discussed. In this paper, we performed the magnetometory measurement of AlGaN/GaN 2DEG at low temperature. The AlGaN/GaN heterostructures were grown by low-pressure metal-organic chemical vapour phase epitaxy on (0001) SiC substrate using AlN buffers. The electron mobility and electron concentration at 4.2 K are 9,540 cm^2/Vs and 6.6 × 10^12 cm-2, respectively. When the temperature is lower than 4.5 K the hysteresis of magnetometric data is observed near zero magnetic field. At the temperature larger than 4.5 K, the hysteresis of magnetometric data disappears and the slope of magnetometric data with respect to magnetic field becomes lower as obeying Currie-Weiss law. In general the hysteresis and Currie-Weiss law behavior in magnetometric data imply the possibility of the ferromagnetism, but the conformation of the ferromagnetism of AlGaN/GaN heterostructure is still difficult and the detailed physical mechanism is still unclear.
Challenges and opportunities of ZnO-related single crystalline heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozuka, Y.; Tsukazaki, A.; PRESTO, Japan Science and Technology Agency
2014-03-15
Recent technological advancement in ZnO heterostructures has expanded the possibility of device functionalities to various kinds of applications. In order to extract novel device functionalities in the heterostructures, one needs to fabricate high quality films and interfaces with minimal impurities, defects, and disorder. With employing molecular-beam epitaxy and single crystal ZnO substrates, the density of residual impurities and defects can be drastically reduced and the optical and electrical properties have been dramatically improved for the ZnO films and heterostructures with Mg{sub x}Zn{sub 1-x}O. Here, we overview such recent technological advancement from various aspects of application. Towards optoelectronic devices such asmore » a light emitter and a photodetector in an ultraviolet region, the development of p-type ZnO and the fabrication of excellent Schottky contact, respectively, have been subjected to intensive studies for years. For the former, the fine tuning of the growth conditions to make Mg{sub x}Zn{sub 1-x}O as intrinsic as possible has opened the possibilities of making p-type Mg{sub x}Zn{sub 1-x}O through NH{sub 3} doping method. For the latter, conducting and transparent polymer films spin-coated on Mg{sub x}Zn{sub 1-x}O was shown to give almost ideal Schottky junctions. The wavelength-selective detection can be realized with varying the Mg content. From the viewpoint of electronic devices, two-dimensional electrons confined at the Mg{sub x}Zn{sub 1-x}O/ZnO interfaces are promising candidate for quantum devices because of high electron mobility and strong electron-electron correlation effect. These wonderful features and tremendous opportunities in ZnO-based heterostructures make this system unique and promising in oxide electronics and will lead to new quantum functionalities in optoelectronic devices and electronic applications with lower energy consumption and high performance.« less
Strain effect on magnetic property of antiferromagnetic insulator SmFeO3
NASA Astrophysics Data System (ADS)
Kuroda, M.; Tanahashi, N.; Hajiri, T.; Ueda, K.; Asano, H.
2018-05-01
Thin films and heterostructures of antiferromagnetic insulator SmFeO3 were fabricated on LaAlO3 (001) substrates by magnetron sputtering, and their structural, magnetic properties were investigated. It was found that epitaxially strained thin films showed a pronounced magnetic anisotropy with the enhanced magnetization up to 65 emu/cc, which is approximately ten times larger than the bulk value. The observed enhancement of magnetization was considered to be due to the lattice distortion and the non-collinear antiferromagnetic spin ordering of SmFeO3.
Strained GaSb/AlAsSb Quantum Wells for p-Channel Field-Effect Transistors
2008-01-01
Available online 18 October 2008 PACS: 72.80.Ey 73.61.Ey 81.05.Ea 85.30.Tv Keywords: A3. Molecular beam epitaxy A3. Quantum wells B2. Semiconducting III–V...were grown by molecular beam epitaxy on GaAs substrates. The buffer layer and barrier layers consisted of relaxed AlAsxSb1x. The composition of the...composition in order to control the strain in the GaSb quantum well. The heterostructures studied here are grown by molecular beam epitaxy (MBE) on semi
Parallel charge sheets of electron liquid and gas in La0.5Sr0.5TiO3/SrTiO3 heterostructures
Renshaw Wang, X.; Sun, L.; Huang, Z.; Lü, W. M.; Motapothula, M.; Annadi, A.; Liu, Z. Q.; Zeng, S. W.; Venkatesan, T.; Ariando
2015-01-01
We show here a new phenomenon in La0.5Sr0.5TiO3/SrTiO3 (LSTO/STO) heterostructures; that is a coexistence of three-dimensional electron liquid (3DEL) and 2D electron gas (2DEG), separated by an intervening insulating LSTO layer. The two types of carriers were revealed through multi-channel analysis of the evolution of nonlinear Hall effect as a function of film thickness, temperature and back gate voltage. We demonstrate that the 3D electron originates from La doping in LSTO film and the 2D electron at the surface of STO is due to the polar field in the intervening insulating layer. As the film thickness is reduced below a critical thickness of 6 unit cells (uc), an abrupt metal-to-insulator transition (MIT) occurs without an intermediate semiconducting state. The properties of the LSTO layer grown on different substrates suggest that the insulating phase of the intervening layer is a result of interface strain induced by the lattice mismatch between the film and substrate. Further, by fitting the magnetoresistance (MR) curves, the 6 unit cell thick LSTO is shown to exhibit spin-orbital coupling. These observations point to new functionalities, in addition to magnetism and superconductivity in STO-based systems, which could be exploited in a multifunctional context. PMID:26669575
Phonon-Mediated Colossal Magnetoresistance in Graphene/Black Phosphorus Heterostructures.
Liu, Yanpeng; Yudhistira, Indra; Yang, Ming; Laksono, Evan; Luo, Yong Zheng; Chen, Jianyi; Lu, Junpeng; Feng, Yuan Ping; Adam, Shaffique; Loh, Kian Ping
2018-06-13
There is a huge demand for magnetoresistance (MR) sensors with high sensitivity, low energy consumption, and room temperature operation. It is well-known that spatial charge inhomogeneity due to impurities or defects introduces mobility fluctuations in monolayer graphene and gives rise to MR in the presence of an externally applied magnetic field. However, to realize a MR sensor based on this effect is hampered by the difficulty in controlling the spatial distribution of impurities and the weak magnetoresistance effect at the monolayer regime. Here, we fabricate a highly stable monolayer graphene-on-black phosphorus (G/BP) heterostructure device that exhibits a giant MR of 775% at 9 T magnetic field and 300 K, exceeding by far the MR effects from devices made from either monolayer graphene or few-layer BP alone. The positive MR of the G/BP device decreases when the temperature is lowered, indicating a phonon-mediated process in addition to scattering by charge impurities. Moreover, a nonlocal MR of >10 000% is achieved for the G/BP device at room temperature due to an enhanced flavor Hall effect induced by the BP channel. Our results show that electron-phonon coupling between 2D material and a suitable substrate can be exploited to create giant MR effects in Dirac semimetals.
NASA Technical Reports Server (NTRS)
Chang, K. I.; Yeh, Y. C. M.; Iles, P. A.; Morris, R. K.
1987-01-01
The performance of gallium arsenide solar cells grown on Ge substrates is discussed. In some cases the substrate was thinned to reduce overall cell weight with good ruggedness. The conversion efficiency of 2 by 2 cm cells under AMO reached 17.1 percent with a cell thickness of 6 mils. The work described forms the basis for future cascade cell structures, where similar interconnecting problems between the top cell and the bottom cell must be solved. Applications of the GaAs/Ge solar cell in space and the expected payoffs are discussed.
Li, Binzhi; Chopdekar, Rajesh V.; N'Diaye, Alpha T.; ...
2016-10-10
The impact of interfacial electronic reconstruction on the magnetic characteristics of La0.7Sr0.3CoO3 (LSCO)/La0.7Sr0.3MnO3 (LSMO) superlattices was investigated as a function of layer thickness using a combination of soft x-ray magnetic spectroscopy and bulk magnetometry. We found that the magnetic properties of the LSCO layers are impacted by two competing electronic interactions occurring at the LSCO/substrate and LSMO/LSCO interfaces. For thin LSCO layers (< 5 nm), the heterostructures exist in a highly coupled state where the chemically distinct layers behave as a single magnetic compound with magnetically active Co2+ ions. As the LSCO thickness increases, a high coercivity LSCO layer developsmore » which biases a low coercivity layer, which is composed not only of the LSMO layer, but also an interfacial LSCO layer. These results suggest a new route to tune the magnetic properties of transition metal oxide heterostructures through careful control of the interface structure.« less
A review on III-V core-multishell nanowires: growth, properties, and applications
NASA Astrophysics Data System (ADS)
Royo, Miquel; De Luca, Marta; Rurali, Riccardo; Zardo, Ilaria
2017-04-01
This review focuses on the emerging field of core-multishell (CMS) semiconductor nanowires (NWs). In these kinds of wires, a NW grown vertically on a substrate acts as a template for the coaxial growth of two or more layers wrapped around it. Thanks to the peculiar geometry, the strain is partially released along the radial direction, thus allowing the creation of fascinating heterostructures, even based on lattice mismatched materials that would hardly grow in a planar geometry. Enabling the unique bridging of the 1D nature of NWs with the exciting properties of 2D heterostructures, these novel systems are becoming attractive for material science, as well as fundamental and applied physics. We will focus on NWs made of III-V and III-V-based alloys as they represent a model system in which present growth techniques have reached a high degree of control on the material structural properties, and many physical properties have been assessed, from both the theoretical and experimental points of view. In particular, we provide an overview on the growth methods and structural properties of CMS NWs, on the modulation doping mechanisms enabled by these heterostructures, on the effects of a magnetic field, and on the phononic and optical properties typical of CMS NWs. Moreover, we review the main technological applications based on these systems, such as optoelectronic and photovoltaic devices.
Li, An-Ping; Park, Jewook; Lee, Jaekwang; ...
2014-01-01
Two-dimensional (2D) interfaces between crystalline materials have been shown to generate unusual interfacial electronic states in complex oxides1-4. Recently, a onedimensional (1D) polar-on-nonpolar interface has been realized in hexagonal boron nitride (hBN) and graphene heterostructures 5-10, where a coherent 1D boundary is expected to possess peculiar electronic states dictated by edge states of graphene and the polarity of hBN 11-13. Here we present a combined scanning tunneling microscopy (STM) and firstprinciples theory study of the graphene-hBN boundary to provide a rare glimpse into the spatial and energetic distributions of the 1D boundary states in real-space. The interfaces studied here aremore » crystallographically coherent with sharp transitions from graphene zigzag edges to B (or N) terminated hBN atomic layers on a Cu foil substrate5. The revealed boundary states are about 0.6 eV below or above the Fermi energy depending on the termination of the hBN at the boundary, and are extended along but localized at the boundary with a lateral thickness of 2-3nm. These results suggest that unconventional physical effects similar to those observed at 2D interfaces can also exist in lower dimensions, opening a route for tuning of electronic properties at interfaces in 2D heterostructures.« less
NASA Astrophysics Data System (ADS)
Navarro, H.; Sirena, M.; González Sutter, J.; Troiani, H. E.; del Corro, P. G.; Granell, P.; Golmar, F.; Haberkorn, N.
2018-01-01
We report the electrical transport properties of conducting/insulator/conducting heterostructures by studying current-voltage IV curves at room temperature. The measurements were obtained on tunnel junctions with different areas (900, 400 and 100 μm2) using a conducting atomic force microscope. Trilayers with GdBa2Cu3O7 (GBCO) as the bottom electrode, SrTiO3 or BaTiO3 (thicknesses between 1.6 and 4 nm) as the insulator barrier, and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO3 substrates For SrTiO3 and BaTiO3 barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. In addition, hysteretic IV curves are obtained for BaTiO3 barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/BaTiO3/GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/insulator/conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures).
Emission and reflection spectra from AlxGa1-xN/GaN single heterostructures
NASA Astrophysics Data System (ADS)
Reynolds, D. C.; Hoelscher, J.; Litton, C. W.; Collins, T. C.; Fitch, R.; Via, G. D.; Gillespie, J.; Crespo, A.; Jenkins, T. J.; Saxler, A.
2003-10-01
Emission and reflection spectra from AlGaN/GaN single heterostructures grown on SiC substrates were investigated. Two-dimensional electron gas (2DEG) transitions were observed in both emission and reflection. The transitions are sharp, associated with the excited state of the 2DEG, reflect the conservation of the K-selection rule, and are excitonlike. The transitions are also associated with both the A- and B-valence bands. To verify the origin of the reflection and emission spectra, the top AlGaN layer was removed by reactive ion etching. After etching, only the excitonic reflection and emission spectra associated with GaN were observed.
NASA Astrophysics Data System (ADS)
Jeon, J.; Jung, J.; Chow, K. H.
2017-12-01
We report the coexistence of non-volatile bi-polar resistive switching (RS) and tunneling magnetoresistance (TMR) in spatially confined La0.3Pr0.4Ca0.3MnO3 films grown on LaAlO3 substrates. At certain temperatures, the arrangement of electronic phase domains in these narrow systems mimics those found in heterostructured metal-insulator-metal devices. The relative spin orientations between adjacent ferromagnetic metallic phase domains enable the TMR effect, while the creation/annihilation of conduction filaments between the metallic phase domains produces the RS effect.
Interfacial coupling and polarization of perovskite ABO3 heterostructures
NASA Astrophysics Data System (ADS)
Wu, Lijun; Wang, Zhen; Zhang, Bangmin; Yu, Liping; Chow, G. M.; Tao, Jing; Han, Myung-Geun; Guo, Hangwen; Chen, Lina; Plummer, E. W.; Zhang, Jiandi; Zhu, Yimei
2017-02-01
Interfaces with subtle difference in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. In this article, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 (PSMO) films and La0.67Sr0.33MnO3 (LSMO) films of various thicknesses on SrTiO3 (STO) substrate. In particular, using atomically resolved imaging and electron energy-loss spectroscopy (EELS), we measured interface related local lattice distortion, BO6 octahedral rotation and cation-anion displacement induced polarization. In the very thin PSMO film, an unexpected interface-induced ferromagnetic polaronic insulator phase was observed during the cubic-to-tetragonal phase transition of the substrate STO, due to the enhanced electron-phonon interaction and atomic disorder in the film. On the other hand, for the very thin LSMO films we observed a remarkably deep polarization in non-ferroelectric STO substrate near the interface. Combining the experimental results with first principles calculations, we propose that the observed deep polarization is induced by an electric field originating from oxygen vacancies that extend beyond a dozen unit-cells from the interface, thus providing important evidence of the role of defects in the emergent interface properties of transition metal oxides.
Wang, Yi; Long, Yang; Yang, Zhiqing; Zhang, Dun
2018-06-05
Visible-light-driven (VLD) BiOI/BiOBr heterostructure films with hierarchical microstructure have been firstly fabricated on 304 stainless steel wire mesh (304SSWM) substrates through a novel ion-exchange method using the BiOI film as precursor. The concentration of tetrabutylammonium bromide (TBAB) is the key factor to control the composition and microstructure of BiOI/BiOBr films. Physical, chemical, and optical properties of BiOI/BiOBr heterostructure films were characterized by X-ray diffraction, scanning electron microscope, energy-dispersive X-ray spectroscopy, high resolution transmittance electron microscopy, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance absorption, and fluorescence spectrophotometer, respectively. The VLD photocatalytic ability of the BiOI/BiOBr heterostructure film coated 304SSWM was studied by degrading rhodamine B and pIRES2-EGFP plasmid as target water organic pollutants and pathogenic bacteria genetic materials. The BiOI/BiOBr heterostructure film coated 304SSWM fabricated with 50 mM TBAB has excellent photocatalytic activity, stability, and reusability in the cycled experiments. The reasons for these unique features can be ascribed to the formation of heterojuction structure and the open framework structure of the 304SSWM. The current work can provide new strategies to construct novel VLD photoactive functional films for water purification and disinfection. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cui, B. S.; Guo, X. B.; Wu, K.; Li, D.; Zuo, Y. L.; Xi, L.
2016-03-01
Strain mediated magnetization switching of ferromagnetic/substrate/piezoelectric actuator heterostructures has become a hot issue due to the advantage of low-power consumption. In this work, Fe65Co35 thin films were deposited on a flexible polyamides (PI) substrate, which has quite low Young’s module (~4 GPa for PI as compared to ~180 GPa for Si) and benefits from complete transfer of the strain from the piezoelectric actuator to magnetic thin films. A complete 90° transition of the magnetic easy axis was realized in 50 nm thick FeCo films under the voltage of 70 V, while a less than 90° rotation angle of the magnetic easy axis direction was observed in other samples, which was ascribed to the distribution of the anisotropy field and/or the orthogonal misalignment between stress induced anisotropy and original uniaxial anisotropy. A model considering two uniaxial anisotropies with orthogonal arrangement was used to quantitatively understand the observed results and the linear-like voltage dependent anisotropy field, especially for 10 nm FeCo films, in which the switching mechanism along the easy axis direction can be explained by the domain wall depinning model. It indicates that the magnetic domain-wall movement velocity may be controlled by strain through tuning the energy barrier of the pinning in heterostructures. Moreover, voltage-driven 90° magnetization switching with low-power consumption was achieved in this work.
NASA Astrophysics Data System (ADS)
Agrawal, M.; Ravikiran, L.; Dharmarasu, N.; Radhakrishnan, K.; Karthikeyan, G. S.; Zheng, Y.
2017-01-01
The stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy (PA-MBE) has been studied. AlN nucleation layer and GaN layer were grown as a function of III/V ratio. GaN/AlN structure is found to form buried cracks when AlN is grown in the intermediate growth regime(III/V˜1)and GaN is grown under N-rich growth regime (III/V<1). The III/V ratio determines the growth mode of the layers that influences the lattice mismatch at the GaN/AlN interface. The lattice mismatch induced interfacial stress at the GaN/AlN interface relaxes by the formation of buried cracks in the structure. Additionally, the stress also relaxes by misorienting the AlN resulting in two misorientations with different tilts. Crack-free layers were obtained when AlN and GaN were grown in the N-rich growth regime (III/V<1) and metal rich growth regime (III/V≥1), respectively. AlGaN/GaN high electron mobility transistor (HEMT) heterostructure was demonstrated on 2-inch SiC that showed good two dimensional electron gas (2DEG) properties with a sheet resistance of 480 Ω/sq, mobility of 1280 cm2/V.s and sheet carrier density of 1×1013 cm-2.
Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaunbrecher, Katherine N.; National Renewable Energy Laboratory, Golden, Colorado 80401; Kuciauskas, Darius
Heterostructures with CdTe and CdTe{sub 1-x}Se{sub x} (x ∼ 0.01) absorbers between two wider-band-gap Cd{sub 1-x}Mg{sub x}Te barriers (x ∼ 0.25–0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have amore » zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ∼6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravikiran, L.; Radhakrishnan, K., E-mail: ERADHA@ntu.edu.sg; Yiding, Lin
2015-01-14
To improve the confinement of two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistor (HEMT) heterostructures, AlGaN/GaN/AlGaN double heterojunction HEMT (DH-HEMT) heterostructures were grown using ammonia-MBE on 100-mm Si substrate. Prior to the growth, single heterojunction HEMT (SH-HEMT) and DH-HEMT heterostructures were simulated using Poisson-Schrödinger equations. From simulations, an AlGaN buffer with “Al” mole fraction of 10% in the DH-HEMT was identified to result in both higher 2DEG concentration (∼10{sup 13 }cm{sup −2}) and improved 2DEG confinement in the channel. Hence, this composition was considered for the growth of the buffer in the DH-HEMT heterostructure. Hall measurements showed a roommore » temperature 2DEG mobility of 1510 cm{sup 2}/V.s and a sheet carrier concentration (n{sub s}) of 0.97 × 10{sup 13 }cm{sup −2} for the DH-HEMT structure, while they are 1310 cm{sup 2}/V.s and 1.09 × 10{sup 13 }cm{sup −2}, respectively, for the SH-HEMT. Capacitance-voltage measurements confirmed the improvement in the confinement of 2DEG in the DH-HEMT heterostructure, which helped in the enhancement of its room temperature mobility. DH-HEMT showed 3 times higher buffer break-down voltage compared to SH-HEMT, while both devices showed almost similar drain current density. Small signal RF measurements on the DH-HEMT showed a unity current-gain cut-off frequency (f{sub T}) and maximum oscillation frequency (f{sub max}) of 22 and 25 GHz, respectively. Thus, overall, DH-HEMT heterostructure was found to be advantageous due to its higher buffer break-down voltages compared to SH-HEMT heterostructure.« less
One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy
NASA Astrophysics Data System (ADS)
Sahoo, Prasana K.; Memaran, Shahriar; Xin, Yan; Balicas, Luis; Gutiérrez, Humberto R.
2018-01-01
Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the junctions. Our new approach offers greater flexibility and control than previous methods for continuous growth of transition-metal-dichalcogenide-based multi-junction lateral heterostructures. These findings could be extended to other families of two-dimensional materials, and establish a foundation for the development of complex and atomically thin in-plane superlattices, devices and integrated circuits.
NASA Astrophysics Data System (ADS)
Srikant, V.; Tarsa, E. J.; Clarke, D. R.; Speck, J. S.
1995-02-01
Expitaxial ferroelectric BaTiO3 thin films have been grown on (001) MgO and MgO-buffered (001) GaAs substrates by pulsed laser deposition to explore the effect of substrate lattice parameter. X-ray-diffraction studies showed that the BaTiO3 films on both MgO single-crystal substrates and MgO-buffered (001) GaAs substrates have a cube-on-cube epitaxy; however, for the BaTiO3 films grown on MgO the spacing of the planes parallel to the substrate was close to the c-axis dimension of the unconstrained tetragonal phase, whereas the BaTiO3 films on MgO/GaAs exhibited a spacing closer to the a-axis dimension of the unconstrained tetragonal phase. The cube-on-cube epitaxy was maintained through the heterostructures even when thin epitaxial intermediate buffer layers of SrTiO3 and La(0.5)Sr(0.5)CoO3 were used. The intermediate layers had no effect on the position of the BaTiO3 peak in theta - 2 theta scans. Together, these observations indicate that, for the materials combinations studied, it is the thermal-expansion mismatch between the film and the underlying substrate that determines the crystallographic orientation of the BaTiO3 film. Preliminary measurements indicate that the BaTiO3 films are 'weakly' ferroelectric.
Structural and optical characteristics of GaAs films grown on Si/Ge substrates
NASA Astrophysics Data System (ADS)
Rykov, A. V.; Dorokhin, M. V.; Vergeles, P. S.; Baidus, N. V.; Kovalskiy, V. A.; Yakimov, E. B.; Soltanovich, O. A.
2018-03-01
A GaAs/AlAs heterostructure and a GaAs film grown on Si/Ge substrates have been fabricated and studied. A Ge buffer on a silicon substrate was fabricated using the MBE process. A3B5 films were grown by MOCVD at low pressures. Photoluminescence spectroscopy was used to define the optical quality of A3B5 films. Structural properties were investigated using the electron beam induced current method. It was established that despite a rather high density of dislocations on the epitaxial layers, the detected photoluminescence radiation of layers indicates the acceptable crystalline quality of the top GaAs layer.
NASA Astrophysics Data System (ADS)
Shiojima, Kenji; Konishi, Hiroaki; Imadate, Hiroyoshi; Yamaoka, Yuya; Matsumoto, Kou; Egawa, Takashi
2018-04-01
We have demonstrated the use of scanning internal photoemission microscopy (SIPM) to characterize crystal defects in an AlGaN/GaN heterostructure grown on Si substrates. SIPM enabled the visualization of unusually grown regions owing to cracking of the Si substrates. In these regions, photocurrent was large, which was consistent with leaky current-voltage characteristics. We also found smaller photoyield regions, which may originate from the Al-rich AlGaN regions on hillocks. We confirmed the usefulness of SIPM for investigating the inhomogeneity of crystal quality and electrical characteristics from macroscopic viewpoints.
Electric-field-induced strain effects on the magnetization of a Pr 0.67Sr 0.33MnO 3 film
Zhang, B.; Sun, C. -J.; Lu, W.; ...
2015-05-26
The electric-field control of magnetic properties of Pr 0.67Sr 0.33MnO 3 (PSMO) film on piezoelectric Pb(Mg 1/3Nb 2/3)O 3-PbTiO 3 (PMNT) substrate was investigated. The piezoelectric response of the PMNT substrate to the electric field produced strain that was coupled to the PSMO film. The in-plane compressive (tensile) strain increased (decreased) the magnetization. The change of magnetic moment was associated with the Mn ions. First principle simulations showed that the strain-induced electronic redistribution of the two e g orbitals (3d z 2 and 3d x 2 -y 2) of Mn ions was responsible for the change of magnetic moment. Thismore » work demonstrates that the magnetoelectric effect in manganite/piezoelectric hetero-structures originates from the change in eg orbital occupancy of Mn ions induced by strain rather than the interfacial effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhongguang; Khanaki, Alireza; Tian, Hao
2016-07-25
Graphene/hexagonal boron nitride (G/h-BN) heterostructures have attracted a great deal of attention because of their exceptional properties and wide variety of potential applications in nanoelectronics. However, direct growth of large-area, high-quality, and stacked structures in a controllable and scalable way remains challenging. In this work, we demonstrate the synthesis of h-BN/graphene (h-BN/G) heterostructures on cobalt (Co) foil by sequential deposition of graphene and h-BN layers using plasma-assisted molecular beam epitaxy. It is found that the coverage of h-BN layers can be readily controlled on the epitaxial graphene by growth time. Large-area, uniform-quality, and multi-layer h-BN films on thin graphite layersmore » were achieved. Based on an h-BN (5–6 nm)/G (26–27 nm) heterostructure, capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration were fabricated to evaluate the dielectric properties of h-BN. The measured breakdown electric field showed a high value of ∼2.5–3.2 MV/cm. Both I-V and C-V characteristics indicate that the epitaxial h-BN film has good insulating characteristics.« less
Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators.
Ye, Fan; Lee, Jaesung; Feng, Philip X-L
2017-11-30
Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline epi-layers each down to a few nanometers thick, the intriguing limit would be hetero-atomic-layer structures. Here we report the first experimental demonstration of freestanding van der Waals heterostructures and their functional nanomechanical devices. By stacking single-layer (1L) MoS 2 on top of suspended single-, bi-, tri- and four-layer (1L to 4L) graphene sheets, we realize an array of MoS 2 -graphene heterostructures with varying thickness and size. These heterostructures all exhibit robust nanomechanical resonances in the very high frequency (VHF) band (up to ∼100 MHz). We observe that fundamental-mode resonance frequencies of the heterostructure devices fall between the values of graphene and MoS 2 devices. Quality (Q) factors of heterostructure resonators are lower than those of graphene but comparable to those of MoS 2 devices, suggesting interface damping related to interlayer interactions in the van der Waals heterostructures. This study validates suspended atomic layer heterostructures as an effective device platform and provides opportunities for exploiting mechanically coupled effects and interlayer interactions in such devices.
NASA Astrophysics Data System (ADS)
Quach, Patrick; Jollivet, Arnaud; Isac, Nathalie; Bousseksou, Adel; Ariel, Frédéric; Tchernycheva, Maria; Julien, François H.; Montes Bajo, Miguel; Tamayo-Arriola, Julen; Hierro, Adrián.; Le Biavan, Nolwenn; Hugues, Maxime; Chauveau, Jean-Michel
2017-03-01
Quantum cascade (QC) lasers opens new prospects for powerful sources operating at THz frequencies. Up to now the best THz QC lasers are based on intersubband emission in GaAs/AlGaAs quantum well (QW) heterostructures. The maximum operating temperature is 200 K, which is too low for wide-spread applications. This is due to the rather low LO-phonon energy (36 meV) of GaAs-based materials. Indeed, thermal activation allows non-radiative path through electron-phonon interaction which destroys the population inversion. Wide band gap materials such as ZnO have been predicted to provide much higher operating temperatures because of the high value of their LO-phonon energy. However, despite some observations of intersubband absorption in c-plane ZnO/ZnMgO quantum wells, little is known on the fundamental parameters such as the conduction band offset in such heterostructures. In addition the internal field inherent to c-plane grown heterostuctures is an handicap for the design of QC lasers and detectors. In this talk, we will review a systematic investigation of ZnO/ZnMgO QW heterostructures with various Mg content and QW thicknesses grown by plasma molecular beam epitaxy on low-defect m-plane ZnO substrates. We will show that most samples exhibit TM-polarized intersubband absorption at room temperature linked either to bound-to-quasi bound inter-miniband absorption or to bound-to bound intersubband absorption depending on the Mg content of the barrier material. This systematic study allows for the first time to estimate the conduction band offset of ZnO/ZnMgO heterostructures, opening prospects for the design of QC devices operating at THz frequencies. This was supported by the European Union's Horizon 2020 research and innovation programme under grant agreement #665107.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolyarov, Maxim A.; Liu, Guanxiong; Balandin, Alexander A., E-mail: balandin@ee.ucr.edu
2015-07-13
We have investigated low-frequency 1/f noise in the boron nitride–graphene–boron nitride heterostructure field-effect transistors on Si/SiO{sub 2} substrates (f is a frequency). The device channel was implemented with a single layer graphene encased between two layers of hexagonal boron nitride. The transistors had the charge carrier mobility in the range from ∼30 000 to ∼36 000 cm{sup 2}/Vs at room temperature. It was established that the noise spectral density normalized to the channel area in such devices can be suppressed to ∼5 × 10{sup −9 }μm{sup 2 }Hz{sup −1}, which is a factor of ×5 – ×10 lower than that in non-encapsulated graphene devices on Si/SiO{sub 2}. The physicalmore » mechanism of noise suppression was attributed to screening of the charge carriers in the channel from traps in SiO{sub 2} gate dielectric and surface defects. The obtained results are important for the electronic and optoelectronic applications of graphene.« less
Tang, Y B; Chen, Z H; Song, H S; Lee, C S; Cong, H T; Cheng, H M; Zhang, W J; Bello, I; Lee, S T
2008-12-01
Vertically aligned Mg-doped GaN nanorods have been epitaxially grown on n-type Si substrate to form a heterostructure for fabricating p-n heterojunction photovoltaic cells. The p-type GaN nanorod/n-Si heterojunction cell shows a well-defined rectifying behavior with a rectification ratio larger than 10(4) in dark. The cell has a high short-circuit photocurrent density of 7.6 mAlcm2 and energy conversion efficiency of 2.73% under AM 1.5G illumination at 100 mW/cm2. Moreover, the nanorod array may be used as an antireflection coating for solar cell applications to effectively reduce light loss due to reflection. This study provides an experimental demonstration for integrating one-dimensional nanostructure arrays with the substrate to directly fabricate heterojunction photovoltaic cells.
Lasing and Longitudinal Cavity Modes in Photo-Pumped Deep Ultraviolet AlGaN Heterostructures
2013-04-29
of the structures were intentionally doped. The AlGaN composition was determined by triple -axis high-resolution X-ray diffraction measurements. Cross...threshold can be achieved on single crystal AlN substrates. This achievement serves as a starting point towards realizing electrically pumped sub-300 nm UV
NASA Astrophysics Data System (ADS)
Lu, Xiangmeng; Kumagai, Naoto; Minami, Yasuo; Kitada, Takahiro
2018-04-01
We fabricated a coupled multilayer cavity with a GaAs/Ge/GaAs sublattice reversal structure for terahertz emission application. Sublattice reversal in GaAs/Ge/GaAs was confirmed by comparing the anisotropic etching profile of an epitaxial sample with those of reference (113)A and (113)B GaAs substrates. The interfaces of GaAs/Ge/GaAs were evaluated at the atomic level by scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDX) mapping. Defect-free GaAs/Ge/GaAs heterostructures were observed in STEM images and the sublattice lattice was directly seen through atomic arrangements in EDX mapping. A GaAs/AlAs coupled multilayer cavity with a sublattice reversal structure was grown on the (113)B GaAs substrate after the confirmation of sublattice reversal. Smooth GaAs/AlAs interfaces were formed over the entire region of the coupled multilayer cavity structure both below and above the Ge layer. Two cavity modes with a frequency difference of 2.9 THz were clearly observed.
Optimization of the defects and the nonradiative lifetime of GaAs/AlGaAs double heterostructures
NASA Astrophysics Data System (ADS)
Cevher, Z.; Folkes, P. A.; Hier, H. S.; VanMil, B. L.; Connelly, B. C.; Beck, W. A.; Ren, Y. H.
2018-04-01
We used Raman scattering and time-resolved photoluminescence spectroscopy to investigate the molecular-beam-epitaxy (MBE) growth parameters that optimize the structural defects and therefore the internal radiative quantum efficiency of MBE-grown GaAs/AlGaAs double heterostructures (DH). The DH structures were grown at two different temperatures and three different As/Ga flux ratios to determine the conditions for an optimized structure with the longest nonradiative minority carrier lifetime. Raman scattering measurements show an improvement in the lattice disorder in the AlGaAs and GaAs layers as the As/Ga flux ratio is reduced from 40 to 15 and as the growth temperature is increased from 550 to 595 °C. The optimized structure is obtained with the As/Ga flux ratio equal to 15 and the substrate temperature 595 °C. This is consistent with the fact that the optimized structure has the longest minority carrier lifetime. Moreover, our Raman studies reveal that incorporation of a distributed Bragg reflector layer between the substrate and DH structures significantly reduces the defect density in the subsequent epitaxial layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Xing; Jin, Meimei; Dong, Huaqing
2014-12-15
A novel g-C{sub 3}N{sub 4}/TiO{sub 2} nanobelt (NB) heterostructure was successfully designed and prepared. The as-prepared g-C{sub 3}N{sub 4}/TiO{sub 2} NB heterostructure exhibited high photocatalytic activity not only in the photodegradation of Rhodamine B (RhB) but also in photocatalytic H{sub 2} production. The g-C{sub 3}N{sub 4}/TiO{sub 2} NB heterostructure with a mass ratio of 1:1 demonstrated the best performance in the photodegradation of RhB, whereas a mass ratio of 3:1 demonstrated the highest H{sub 2} production rate of 46.6 μmol h{sup −1} in photocatalytic H{sub 2} production. We conclude that the synergistic effect between g-C{sub 3}N{sub 4} and TiO{sub 2}more » NBs promotes the photogenerated carrier separation in space. This valuable insight into the rational architectural design of nanostructure-based photocatalysts is expected to shed light on other photocatalytic reaction systems in the future. - Graphical abstract: A novel strategy to fabricate the g-C{sub 3}N{sub 4}/TiO{sub 2} nanobelt (NB) heterostructures was reported. The g-C{sub 3}N{sub 4}/TiO{sub 2} NB heterostructures exhibited highly effective photocatalytic activities for photodegradation of Rhodamine B and H{sub 2} production. - Highlights: • A novel strategy to fabricate the g-C{sub 3}N{sub 4}/TiO{sub 2} NB heterostructures was reported. • The heterostructure exhibited high catalytic activity in photodegradation of RhB. • The heterostructure showed good H{sub 2} productivity in photocatalytic water splitting. • The synergistic effect between g-C{sub 3}N{sub 4} and TiO{sub 2} NBs are important. • This study shows that the heterostructure can be an effective photocatalyst.« less
Electronic properties and morphology of copper oxide/n-type silicon heterostructures
NASA Astrophysics Data System (ADS)
Lindberg, P. F.; Gorantla, S. M.; Gunnæs, A. E.; Svensson, B. G.; Monakhov, E. V.
2017-08-01
Silicon-based tandem heterojunction solar cells utilizing cuprous oxide (Cu2O) as the top absorber layer show promise for high-efficiency conversion and low production cost. In the present study, single phase Cu2O films have been realized on n-type Si substrates by reactive magnetron sputtering at 400 °C. The obtained Cu2O/Si heterostructures have subsequently been heat treated at temperatures in the 400-700 °C range in Ar flow and extensively characterized by x-ray diffraction (XRD) measurements, transmission electron microscopy (TEM) imaging and electrical techniques. The Cu2O/Si heterojunction exhibits a current rectification of ~5 orders of magnitude between forward and reverse bias voltages. High resolution cross-sectional TEM-images show the presence of a ~2 nm thick interfacial SiO2 layer between Cu2O and the Si substrate. Heat treatments below 550 °C result in gradual improvement of crystallinity, indicated by XRD. At and above 550 °C, partial phase transition to cupric oxide (CuO) occurs followed by a complete transition at 700 °C. No increase or decrease of the SiO2 layer is observed after the heat treatment at 550 °C. Finally, a thin Cu-silicide layer (Cu3Si) emerges below the SiO2 layer upon annealing at 550 °C. This silicide layer influences the lateral current and voltage distributions, as evidenced by an increasing effective area of the heterojunction diodes.
ZnO nanorods for electronic and photonic device applications
NASA Astrophysics Data System (ADS)
Yi, Gyu-Chul; Yoo, Jinkyoung; Park, Won Il; Jung, Sug Woo; An, Sung Jin; Kim, H. J.; Kim, D. W.
2005-11-01
We report on catalyst-free growth of ZnO nanorods and their nano-scale electrical and optical device applications. Catalyst-free metalorganic vapor-phase epitaxy (MOVPE) enables fabrication of size-controlled high purity ZnO single crystal nanorods. Various high quality nanorod heterostructures and quantum structures based on ZnO nanorods were also prepared using the MOVPE method and characterized using scanning electron microscopy, transmission electron microscopy, and optical spectroscopy. From the photoluminescence spectra of ZnO/Zn 0.8Mg 0.2O nanorod multi-quantum-well structures, in particular, we observed a systematic blue-shift in their PL peak position due to quantum confinement effect of carriers in nanorod quantum structures. For ZnO/ZnMgO coaxial nanorod heterostructures, photoluminescence intensity was significantly increased presumably due to surface passivation and carrier confinement. In addition to the growth and characterizations of ZnO nanorods and their quantum structures, we fabricated nanoscale electronic devices based on ZnO nanorods. We report on fabrication and device characteristics of metal-oxidesemiconductor field effect transistors (MOSFETs), Schottky diodes, and metal-semiconductor field effect transistors (MESFETs) as examples of the nanodevices. In addition, electroluminescent devices were fabricated using vertically aligned ZnO nanorods grown p-type GaN substrates, exhibiting strong visible electroluminescence.
NASA Astrophysics Data System (ADS)
Sebastiani, M.; di Gaspare, L.; Capellini, G.; Bittencourt, C.; Evangelisti, F.
1995-10-01
We present a new experimental method for determining band lineups at the semiconductor heterojunctions and apply it to the c-Si100/a-Si:H heterostructure. This method uses a modern version of an old spectroscopy: the photoelectric yield spectroscopy excited with photons in the near UV range. It is shown that both substrate and overlayer valence-band tops can be identified in the yield spectrum due to the high escape depth and the high dynamical range of the technique, thus allowing a direct and precise determination of the band lineup. A value of ΔEV = 0.44+/-0.02 eV was found for the valence band discontinuity.
Veal, B. W.; Eastman, J. A.
2017-03-01
Thin film In 2O 3/YSZ heterostructures exhibit significant increases in electrical conductance with time when small in-plane electric fields are applied. Contact resistances between the current electrodes and film, and between current electrodes and substrate are responsible for the behavior. With an in-plane electric field, different field profiles are established in the two materials, with the result that oxygen ions can be driven across the heterointerface, altering the doping of the n-type In 2O 3. Furthermore, a low frequency inductive feature observed in AC impedance spectroscopy measurements under DC bias conditions was found to be due to frequency-dependent changes inmore » the contact resistance.« less
Optoelectronics: Continuously Spatial-Wavelength-Tunable Nanowire Lasers on a Single Chip
2014-01-28
journals (N/A for none) 1. P. L. Nichols, Z. Liu, L. Yin, and C. Z. Ning, CdxPb1- xS Alloy Nanowires and Heterostructures with Simultaneous Emission in Mid...multiple-bandgap solar cells using spatially composition-graded CdxPb1- xS nanowires on a single substrate: a design study, Optics Express (07 2011...Quaternary ZnCdSSe Alloy Nanowires with Tunable Light Emission Between 350 nm and 710 nm on a Single Substrate, (11 2009) C.Z. Ning, A.L. Pan, and
Yuan, Shuoguo; Yang, Zhibin; Xie, Chao; Yan, Feng; Dai, Jiyan; Lau, Shu Ping; Chan, Helen L W; Hao, Jianhua
2016-12-01
A vertical graphene heterostructure field-effect transistor (VGHFET) using an ultrathin ferroelectric film as a tunnel barrier is developed. The heterostructure is capable of providing new degrees of tunability and functionality via coupling between the ferroelectricity and the tunnel current of the VGHFET, which results in a high-performance device. The results pave the way for developing novel atomic-scale 2D heterostructures and devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of making nanopatterns and nanostructures and nanopatterned functional oxide materials
Dravid, Vinayak P; Donthu, Suresh K; Pan, Zixiao
2014-02-11
Method for nanopatterning of inorganic materials, such as ceramic (e.g. metal oxide) materials, and organic materials, such as polymer materials, on a variety of substrates to form nanopatterns and/or nanostructures with control of dimensions and location, all without the need for etching the materials and without the need for re-alignment between multiple patterning steps in forming nanostructures, such as heterostructures comprising multiple materials. The method involves patterning a resist-coated substrate using electron beam lithography, removing a portion of the resist to provide a patterned resist-coated substrate, and spin coating the patterned resist-coated substrate with a liquid precursor, such as a sol precursor, of the inorganic or organic material. The remaining resist is removed and the spin coated substrate is heated at an elevated temperature to crystallize the deposited precursor material.
NASA Astrophysics Data System (ADS)
Zhou, Cai; Shen, Lvkang; Liu, Ming; Gao, Cunxu; Jia, Chenglong; Jiang, Changjun
2018-01-01
The ability to manipulate the magnetism on interfacing ferromagnetic and ferroelectric materials via electric fields to achieve an emergent multiferroic response has enormous potential for nanoscale devices with novel functionalities. Herein, a strong electric-field control of the magnetism modulation is reported for a single-crystal Co (14 nm )/(001 )Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (PMN-PT) heterostructure by fabricating an epitaxial Co layer on a PMN-PT substrate. Electric-field-tuned ferromagnetic resonance exhibits a large resonance field shift, with a 120-Oe difference between that under positive and negative remanent polarizations, which demonstrates nonvolatile electric-field control of the magnetism. Further, considering the complexity of the twofold symmetry magnetic anisotropy, the linear change of the fourfold symmetry magnetic anisotropy, relating to the single-crystal cubic magnetocrystal anisotropy of the Co thin film, is resolved and quantified to exert a magnon-driven, strong direct magnetoelectric effect on the Co /PMN -PT interface. These results are promising for future multiferroic devices.
Kuciauskas, Darius; Myers, Thomas H.; Barnes, Teresa M.; ...
2017-02-20
From time- and spatially resolved optical measurements, we show that extended defects can have a large effect on the charge-carrier recombination in II-VI semiconductors. In CdTe double heterostructures grown by molecular beam epitaxy on the InSb (100)-orientation substrates, we characterized the extended defects and found that near stacking faults the space-charge field extends by 2-5 μm. Charge carriers drift (with the space-charge field strength of 730-1,360 V cm -1) and diffuse (with the mobility of 260 ± 30 cm 2 V -1 s -1) toward the extended defects, where the minority-carrier lifetime is reduced from 560 ns to 0.25 ns.more » Furthermore, the extended defects are nonradiative recombination sinks that affect areas significantly larger than the typical crystalline grains in II-VI solar cells. From the correlative time-resolved photoluminescence and second-harmonic generation microscopy data, we developed a band-diagram model that can be used to analyze the impact of extended defects on solar cells and other electronic devices.« less
NASA Astrophysics Data System (ADS)
Quintero, P. A.; Jeen, H.; Knowles, E. S.; Biswas, A.; Meisel, M. W.; Andrus, M. J.; Talham, D. R.
2011-03-01
The magnetic and transport properties of heterostructured films consisting of Prussian blue analogues, Aj M' k [M(CN)6 ]l . n H2 O (M' M-PBA), where A is an alkali ion and M' ,M are transition metals, and manganites have been studied. Specifically, NiCr-PBA and CoFe-PBA films of ~ 100 ~nm thickness have been deposited on perovskite (La 1-y Pr y)0.67 Ca 0.33 Mn O3 (LPCMO) manganese films of ~ 30 ~nm thickness. The effect of the ferromagnetic NiCr-PBA, Tc ~ 70 ~K, and the photo-controllable ferrimagnetic CoFe-PBA, Tc ~ 20 ~K, on the I-V properties of the LPCMO will be reported, where special attention will be given to the changes of the transition temperatures of the ferromagnetic metallic (FMM) and the charge-ordered insulating (COI) phases in the LPCMO substrate. ** Supported by NSF DMR-0701400 (MWM), DMR-0804452 (AB), DMR-1005581 (DRT), DMR-0654118 (NHMFL), and by scholarship from the Organization of American States (PAQ). D.M.~Pajerowski et al., J.~Am.~Chem. Soc. 132 (2010) 4058.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuciauskas, Darius; Myers, Thomas H.; Barnes, Teresa M.
From time- and spatially resolved optical measurements, we show that extended defects can have a large effect on the charge-carrier recombination in II-VI semiconductors. In CdTe double heterostructures grown by molecular beam epitaxy on the InSb (100)-orientation substrates, we characterized the extended defects and found that near stacking faults the space-charge field extends by 2-5 μm. Charge carriers drift (with the space-charge field strength of 730-1,360 V cm -1) and diffuse (with the mobility of 260 ± 30 cm 2 V -1 s -1) toward the extended defects, where the minority-carrier lifetime is reduced from 560 ns to 0.25 ns.more » Furthermore, the extended defects are nonradiative recombination sinks that affect areas significantly larger than the typical crystalline grains in II-VI solar cells. From the correlative time-resolved photoluminescence and second-harmonic generation microscopy data, we developed a band-diagram model that can be used to analyze the impact of extended defects on solar cells and other electronic devices.« less
Two-dimensional GaSe/MoSe 2 misfit bilayer heterojunctions by van der Waals epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xufan; Lin, Ming-Wei; Lin, Junhao
Two-dimensional (2D) heterostructures hold the promise for future atomically-thin electronics and optoelectronics due to their diverse functionalities. While heterostructures consisting of different transition metal dichacolgenide monolayers with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) or edge epitaxy, constructing heterostructures from monolayers of layered semiconductors with large lattice misfits still remains challenging. Here, we report the growth of monolayer GaSe/MoSe 2 heterostructures with large lattice misfit by two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe 2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientationmore » between the two layers, forming an incommensurate vdW heterostructure. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe 2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe 2 monolayer domains in lateral GaSe/MoSe 2 heterostructures, GaSe monolayers are found to overgrow MoSe 2 during CVD, forming a stripe of vertically stacked vdW heterostructure at the crystal interface. Such vertically-stacked vdW GaSe/MoSe 2 heterostructures are shown to form p-n junctions with effective transport and separation of photo-generated charge carriers between layers, resulting in a gate-tunable photovoltaic response. In conclusion, these GaSe/MoSe 2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.« less
Two-dimensional GaSe/MoSe 2 misfit bilayer heterojunctions by van der Waals epitaxy
Li, Xufan; Lin, Ming-Wei; Lin, Junhao; ...
2016-04-01
Two-dimensional (2D) heterostructures hold the promise for future atomically-thin electronics and optoelectronics due to their diverse functionalities. While heterostructures consisting of different transition metal dichacolgenide monolayers with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) or edge epitaxy, constructing heterostructures from monolayers of layered semiconductors with large lattice misfits still remains challenging. Here, we report the growth of monolayer GaSe/MoSe 2 heterostructures with large lattice misfit by two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe 2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientationmore » between the two layers, forming an incommensurate vdW heterostructure. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe 2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe 2 monolayer domains in lateral GaSe/MoSe 2 heterostructures, GaSe monolayers are found to overgrow MoSe 2 during CVD, forming a stripe of vertically stacked vdW heterostructure at the crystal interface. Such vertically-stacked vdW GaSe/MoSe 2 heterostructures are shown to form p-n junctions with effective transport and separation of photo-generated charge carriers between layers, resulting in a gate-tunable photovoltaic response. In conclusion, these GaSe/MoSe 2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.« less
Role of interfacial transition layers in VO2/Al2O3 heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Honghui; Chisholm, Matthew F; Yang, Tsung-Han
2011-01-01
Epitaxial VO2 films grown by pulsed laser deposition (PLD) on c-cut sapphire substrates ((0001) Al2O3) were studied by aberration-corrected scanning transmission electron microscopy (STEM). A number of film/substrate orientation relationships were found and are discussed in the context of the semiconductor-metal transition (SMT) characteristics. A structurally and electronically modified buffer layer was revealed on the interface and was attributed to the interface free-energy minimization process of accommodating the symmetry mismatch between the substrate and the film. This interfacial transition layer is expected to affect the SMT behavior when the interfacial region is a significant fraction of the VO2 film thickness.
Graphene-Molybdenum Disulfide-Graphene Tunneling Junctions with Large-Area Synthesized Materials.
Joiner, Corey A; Campbell, Philip M; Tarasov, Alexey A; Beatty, Brian R; Perini, Chris J; Tsai, Meng-Yen; Ready, William J; Vogel, Eric M
2016-04-06
Tunneling devices based on vertical heterostructures of graphene and other 2D materials can overcome the low on-off ratios typically observed in planar graphene field-effect transistors. This study addresses the impact of processing conditions on two-dimensional materials in a fully integrated heterostructure device fabrication process. In this paper, graphene-molybdenum disulfide-graphene tunneling heterostructures were fabricated using only large-area synthesized materials, unlike previous studies that used small exfoliated flakes. The MoS2 tunneling barrier is either synthesized on a sacrificial substrate and transferred to the bottom-layer graphene or synthesized directly on CVD graphene. The presence of graphene was shown to have no impact on the quality of the grown MoS2. The thickness uniformity of MoS2 grown on graphene and SiO2 was found to be 1.8 ± 0.22 nm. XPS and Raman spectroscopy are used to show how the MoS2 synthesis process introduces defects into the graphene structure by incorporating sulfur into the graphene. The incorporation of sulfur was shown to be greatly reduced in the absence of molybdenum suggesting molybdenum acts as a catalyst for sulfur incorporation. Tunneling simulations based on the Bardeen transfer Hamiltonian were performed and compared to the experimental tunneling results. The simulations show the use of MoS2 as a tunneling barrier suppresses contributions to the tunneling current from the conduction band. This is a result of the observed reduction of electron conduction within the graphene sheets.
Li, Chia-Hsun; Hsu, Chan-Wei; Lu, Shih-Yuan
2018-07-01
TiO 2 nanocrystals decorated core-shell CdS-CdO nanorod arrays, TiO 2 @CdO/CdS NR, were fabricated as high efficiency anodes for photoelctrochemical hydrogen generation. The novel sandwich heterostructure was constructed from first growth of CdS nanorod arrays on a fluorine doped tin oxide (FTO) substrate with a hydrothermal process, followed by in situ generation of CdO thin films of single digit nanometers from the CdS nanorod surfaces through thermal oxidation, and final decoration of TiO 2 nanocrystals of 10-20 nm via a successive ionic layer absorption and reaction process. The core-shell CdS-CdO heterostructure possesses a Z-scheme band structure to enhance interfacial charge transfer, facilitating effective charge separation to suppress electron-hole recombination within CdS for much improved current density generation. The final decoration of TiO 2 nanocrystals passivates surface defects and trap states of CdO, further suppressing surface charge recombination for even higher photovoltaic conversion efficiencies. The photoelectrochemical performances of the plain CdS nanorod array were significantly improved with the formation of the sandwich heterostructure, achieving a photo current density of 3.2 mA/cm 2 at 1.23 V (vs. RHE), a 141% improvement over the plain CdS nanorod array and a 32% improvement over the CdO/CdS nanorod array. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Subhra, E-mail: subhra1109@gmail.com; Biswas, Dhrubes; Department of E and E C E, Indian Institute of Technology Kharagpur, Kharagpur 721302
2015-02-23
This work reports on the detailed plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructures on Si(111) substrate with three different buffer thickness (600 nm, 400 nm, and 200 nm). Growth through critical optimization of growth conditions is followed by the investigation of impact of varying buffer thickness on the formation of ultra-thin 1.5 nm, In{sub 0.17}Al{sub 0.83}N–1.25 nm, GaN–1.5 nm, In{sub 0.17}Al{sub 0.83}N heterostructure, in terms of threading dislocation (TD) density. Analysis reveals a drastic reduction of TD density from the order 10{sup 10 }cm{sup −2} to 10{sup 8 }cm{sup −2} with increasing buffer thickness resulting smooth ultra-thin active region for thick buffer structure.more » Increasing strain with decreasing buffer thickness is studied through reciprocal space mapping analysis. Surface morphology through atomic force microscopy analysis also supports our study by observing an increase of pits and root mean square value (0.89 nm, 1.2 nm, and 1.45 nm) with decreasing buffer thickness which are resulted due to the internal strain and TDs.« less
NASA Astrophysics Data System (ADS)
Singamaneni, S. R.; Prater, J. T.; Glavic, A.; Lauter, V.; Narayan, J.
2018-05-01
This work reports polarized neutron reflectivity (PNR) measurements performed using the Magnetism Reflectometer at Oak Ridge National Laboratory on epitaxial BiFeO3(BFO)/La0.7Sr0.3MnO3(LSMO)/SrTiO3(STO)/MgO/TiN heterostructure deposited on Si (100) substrates. By measuring the angular dependence of neutrons reflected from the sample, PNR can provide insights on interface magnetic spin structure, chemical composition and magnetic depth profiles with a nanometer resolution. Our first analysis of nuclear scattering length density (NSLD) and magnetic scattering length density (MSLD) depth profiles measured at 4 K have successfully reproduced most of the expected features of this heterostructure, such as the NSLD for the Si, TiN, MgO, STO, LSMO layers and remanent magnetization (2.28μB/Mn) of bulk LSMO. However, the SLD of the BFO is decreased by about 30% from the expected value. When 5 V was applied across the BFO/LSMO interface, we found that the magnetic moment of the LSMO layer could be varied by about 15-20% at 6 K. Several mechanisms such as redistribution of oxygen vacancies, interface strain, charge screening and valence state change at the interface could be at play. Work is in progress to gain an improved in-depth understanding of these effects using MOKE and STEM-Z interface specific measurements.
Chen, Yu-Ze; Wang, Sheng-Wen; Su, Teng-Yu; Lee, Shao-Hsin; Chen, Chia-Wei; Yang, Chen-Hua; Wang, Kuangye; Kuo, Hao-Chung; Chueh, Yu-Lun
2018-05-01
Phase-engineered type-II metal-selenide heterostructures are demonstrated by directly selenizing indium-tin oxide to form multimetal selenides in a single step. The utilization of a plasma system to assist the selenization facilitates a low-temperature process, which results in large-area films with high uniformity. Compared to single-metal-selenide-based photodetectors, the multimetal-selenide photodetectors exhibit obviously improved performance, which can be attributed to the Schottky contact at the interface for tuning the carrier transport, as well as the type-II heterostructure that is beneficial for the separation of the electron-hole pairs. The multimetal-selenide photodetectors exhibit a response to light over a broad spectrum from UV to visible light with a high responsivity of 0.8 A W -1 and an on/off current ratio of up to 10 2 . Interestingly, all-transparent photodetectors are successfully produced in this work. Moreover, the possibility of fabricating devices on flexible substrates is also demonstrated with sustainable performance, high strain tolerance, and high durability during bending tests. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Anderson, T. J.; Zhou, H.; Xie, L.; Podkaminer, J. P.; Patzner, J. J.; Ryu, S.; Pan, X. Q.; Eom, C. B.
2017-09-01
The precise control of interfacial atomic arrangement in ABO3 perovskite heterostructures is paramount, particularly in cases where the subsequent electronic properties of the material exhibit geometrical preferences along polar crystallographic directions that feature inevitably complex surface reconstructions. Here, we present the B-site interfacial structure in polar (111) and non-polar (001) SrIrO3/SrTiO3 interfaces. The heterostructures were examined using scanning transmission electron microscopy and synchrotron-based coherent Bragg rod analysis. Our results reveal the preference of B-site intermixing across the (111) interface due to the polarity-compensated SrTiO3 substrate surface prior to growth. By comparison, the intermixing at the non-polar (001) interface is negligible. This finding suggests that the intermixing may be necessary to mitigate epitaxy along heavily reconstructed and non-stoichiometric (111) perovskite surfaces. Furthermore, this preferential B-site configuration could allow the geometric design of the interfacial perovskite structure and chemistry to selectively engineer the correlated electronic states of the B-site d-orbital.
n-VO2/p-GaN based nitride-oxide heterostructure with various thickness of VO2 layer grown by MBE
NASA Astrophysics Data System (ADS)
Wang, Minhuan; Bian, Jiming; Sun, Hongjun; Liu, Weifeng; Zhang, Yuzhi; Luo, Yingmin
2016-12-01
High quality VO2 films with precisely controlled thickness were grown on p-GaN/sapphire substrates by oxide molecular beam epitaxy (O-MBE). Results indicated that a distinct reversible semiconductor-to-metal (SMT) phase transition was observed for all the samples in the temperature dependent electrical resistance measurement, and the influence of VO2 layer thickness on the SMT properties of the as-grown n-VO2/p-GaN based nitride-oxide heterostructure was investigated. Meanwhile, the clear rectifying transport characteristics originated from the n-VO2/p-GaN interface were demonstrated before and after SMT of the VO2 over layer, which were attributed to the p-n junction behavior and Schottky contact character, respectively. Moreover, the X-ray photoelectron spectroscopy (XPS) analyses confirmed the valence state of vanadium (V) in VO2 films was principally composed of V4+ with trace amount of V5+. The design and modulation of the n-VO2/p-GaN based heterostructure devices will benefit significantly from these achievements.
Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities
Dufferwiel, S.; Schwarz, S.; Withers, F.; Trichet, A. A. P.; Li, F.; Sich, M.; Del Pozo-Zamudio, O.; Clark, C.; Nalitov, A.; Solnyshkov, D. D.; Malpuech, G.; Novoselov, K. S.; Smith, J. M.; Skolnick, M. S.; Krizhanovskii, D. N.; Tartakovskii, A. I.
2015-01-01
Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light–matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light–part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized. PMID:26446783
Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy.
Li, Xufan; Lin, Ming-Wei; Lin, Junhao; Huang, Bing; Puretzky, Alexander A; Ma, Cheng; Wang, Kai; Zhou, Wu; Pantelides, Sokrates T; Chi, Miaofang; Kravchenko, Ivan; Fowlkes, Jason; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai
2016-04-01
Two-dimensional (2D) heterostructures hold the promise for future atomically thin electronics and optoelectronics because of their diverse functionalities. Although heterostructures consisting of different 2D materials with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) epitaxy, constructing heterostructures from layered semiconductors with large lattice misfits remains challenging. We report the growth of 2D GaSe/MoSe2 heterostructures with a large lattice misfit using two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between the two layers, forming a periodic superlattice. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructures at the crystal interface. Such vertically stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photogenerated charge carriers between layers, resulting in a gate-tunable photovoltaic response. These GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.
Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy
Li, Xufan; Lin, Ming-Wei; Lin, Junhao; Huang, Bing; Puretzky, Alexander A.; Ma, Cheng; Wang, Kai; Zhou, Wu; Pantelides, Sokrates T.; Chi, Miaofang; Kravchenko, Ivan; Fowlkes, Jason; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai
2016-01-01
Two-dimensional (2D) heterostructures hold the promise for future atomically thin electronics and optoelectronics because of their diverse functionalities. Although heterostructures consisting of different 2D materials with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) epitaxy, constructing heterostructures from layered semiconductors with large lattice misfits remains challenging. We report the growth of 2D GaSe/MoSe2 heterostructures with a large lattice misfit using two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between the two layers, forming a periodic superlattice. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructures at the crystal interface. Such vertically stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photogenerated charge carriers between layers, resulting in a gate-tunable photovoltaic response. These GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells. PMID:27152356
Strain effect in epitaxial VO2 thin films grown on sapphire substrates using SnO2 buffer layers
NASA Astrophysics Data System (ADS)
Kim, Heungsoo; Bingham, Nicholas S.; Charipar, Nicholas A.; Piqué, Alberto
2017-10-01
Epitaxial VO2/SnO2 thin film heterostructures were deposited on m-cut sapphire substrates via pulsed laser deposition. By adjusting SnO2 (150 nm) growth conditions, we are able to control the interfacial strain between the VO2 film and SnO2 buffer layer such that the semiconductor-to-metal transition temperature (TC) of VO2 films can be tuned without diminishing the magnitude of the transition. It is shown that in-plane tensile strain and out-of-plane compressive strain of the VO2 film leads to a decrease of Tc. Interestingly, VO2 films on SnO2 buffer layers exhibit a structural phase transition from tetragonal-like VO2 to tetragonal-VO2 during the semiconductor-to-metal transition. These results suggest that the strain generated by SnO2 buffer provides an effective way for tuning the TC of VO2 films.
360° deterministic magnetization rotation in a three-ellipse magnetoelectric heterostructure
NASA Astrophysics Data System (ADS)
Kundu, Auni A.; Chavez, Andres C.; Keller, Scott M.; Carman, Gregory P.; Lynch, Christopher S.
2018-03-01
A magnetic dipole-coupled magnetoelectric heterostructure comprised of three closely spaced ellipse shapes was designed and shown to be capable of achieving deterministic in-plane magnetization rotation. The design approach used a combination of conventional micromagnetic simulations to obtain preliminary configurations followed by simulations using a fully strain-coupled, time domain micromagnetic code for a detailed assessment of performance. The conventional micromagnetic code has short run times and was used to refine the ellipse shape and orientation, but it does not accurately capture the effects of the strain gradients present in the piezoelectric and magnetostrictive layers that contribute to magnetization reorientation. The fully coupled code was used to assess the effects of strain and magnetic field gradients on precessional switching in the side ellipses and on the resulting dipole-field driven magnetization reorientation in the center ellipse. The work led to a geometry with a CoFeB ellipse (125 nm × 95 nm × 4 nm) positioned between two smaller CoFeB ellipses (75 nm × 50 nm × 4 nm) on a 500 nm PZT-5H film substrate clamped at its bottom surface. The smaller ellipses were oriented at 45° and positioned at 70° and 250° about the central ellipse due to the film deposition on a thick substrate. A 7.3 V pulse applied to the PZT for 0.22 ns produced 180° switching of the magnetization in the outer ellipses that then drove switching in the center ellipse through dipole-dipole coupling. Full 360° deterministic rotation was achieved with a second pulse. The temporal response of the resulting design is discussed.
NASA Astrophysics Data System (ADS)
Das, Sudhansu Sekhar; Kumar, M. Senthil
2017-12-01
Heterostructure films of the form n-Si/Si(tSi)/Fe(800 Å) were prepared by DC magnetron sputtering. In these films, the Si and Fe (800 Å) films were deposited onto n-Si(100) substrates. Substrates with different doping concentration ND were used. The thickness tSi of the interleaved Si layer is varied. For tSi = 0, the heterostructures form n-Si/Fe Schottky junctions. Structural studies on the samples as performed through XRD indicate the polycrystalline nature of the films. The magnetization data showed that the samples have in-plane easy axis of magnetization. The coercivity of the samples is of the order of 90 Oe. The I-V measurements on the samples showed nonlinear behavior. The diode ideality factor η = 2.6 is observed for the junction with ND = 1018 cm-3. The leakage current I0 increases with the increase of ND. Magnetic field has less effect on the electrical properties of the junctions. A positive magnetoresistance in the range 1 - 10 % was observed for the Si/Fe Schottky junctions in the presence of magnetic field of strength 2 T. The origin of the MR is analyzed using a model where the ratio of the currents across the junctions with and without the applied magnetic field, IH=2T/IH=0 is studied as a function of the bias voltage Vbias. The ratio IH=2T/IH=0 shows a decreasing trend with the Vbias, suggesting that the contribution to the MR in our n-Si/Fe Schottky junctions due to the spin dependent scattering is very less as compared to that due to the suppression of the impact ionization process.
Studies on the InAlN/InGaN/InAlN/InGaN double channel heterostructures with low sheet resistance
NASA Astrophysics Data System (ADS)
Zhang, Yachao; Wang, Zhizhe; Xu, Shengrui; Chen, Dazheng; Bao, Weimin; Zhang, Jinfeng; Zhang, Jincheng; Hao, Yue
2017-11-01
High quality InAlN/InGaN/InAlN/InGaN double channel heterostructures were proposed and grown by metal organic chemical vapor deposition. Benefiting from the adoption of the pulsed growth method and Two-Step AlN interlayer, the material quality and interface characteristics of the double channel heterostructures are satisfactory. The results of the temperature-dependent Hall effect measurement indicated that the transport properties of the double channel heterostructures were superior to those of the traditional single channel heterostructures in the whole test temperature range. Meanwhile, the sheet resistance of the double channel heterostructures reached 218.5 Ω/□ at 300 K, which is the record of InGaN-based heterostructures. The good transport properties of the InGaN double channel heterostructures are beneficial to improve the performance of the microwave power devices based on nitride semiconductors.
Lin, Yung-Chen; Kim, Dongheun; Li, Zhen; ...
2016-12-14
Here we report on strain-induced structural defect formation in core Si nanowire of Si/Ge core/shell nanowire heterostructure and influences of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only Ge shell region or in both Ge shell and Si core regions and is associated with the increase of the shell volume fraction. Themore » relax of misfit strain in [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of cross-over defect formation is of great importance for the understanding of heteroepitaxy in radial heterostructures at nanoscale and building the three dimensional heterostructures for the various applications. In addition, the effect of the defect formation on nanomaterial’s functionality is investigated by electrochemical performance test. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yung-Chen; Kim, Dongheun; Li, Zhen
Here we report on strain-induced structural defect formation in core Si nanowire of Si/Ge core/shell nanowire heterostructure and influences of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only Ge shell region or in both Ge shell and Si core regions and is associated with the increase of the shell volume fraction. Themore » relax of misfit strain in [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of cross-over defect formation is of great importance for the understanding of heteroepitaxy in radial heterostructures at nanoscale and building the three dimensional heterostructures for the various applications. In addition, the effect of the defect formation on nanomaterial’s functionality is investigated by electrochemical performance test. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.« less
Graphene/blue-phosphorus heterostructure as potential anode materials for sodium-ion batteries
NASA Astrophysics Data System (ADS)
Fan, Kaimin; Tang, Ting; Wu, Shiyun; Zhang, Zhiyuan
2018-01-01
The first-principles calculations based on density functional theory (DFT) have been implemented to investigate the graphene/blue-phosphorus (G/BP) heterostructure as potential anode material for SIBs. The adsorption and diffusion behaviors of sodium (Na) in G/BP heterostructure and the effect of external electric field on Na adsorption have been investigated. The results indicate that G/BP heterostructure with Na adsorption is metallic due to Na incorporation, which is of benefit for electronic conductivity as anode material. The results show that the design of G/BP heterostructure is an efficient scheme to enhance the Na adsorption in G/BP without affecting the high mobility of Na in the G/BP heterostructure surface. The present work demonstrates that the external electric field can effectively modulate the adsorption of Na, and the adsorption behavior of Na is more sensitive to the external electric field when E > 0.10 V Å-1 in G/BP heterostructure. The Mulliken population analysis and DOS calculations have been performed to explore the charge transfer and the interaction between Na and G/BP.
Islam, Md Ashraful; Kim, Jung Han; Schropp, Anthony; Kalita, Hirokjyoti; Choudhary, Nitin; Weitzman, Dylan; Khondaker, Saiful I; Oh, Kyu Hwan; Roy, Tania; Chung, Hee-Suk; Jung, Yeonwoong
2017-10-11
Two-dimensional (2D) transition metal dichalcogenides (TMDs) such as molybdenum or tungsten disulfides (MoS 2 or WS 2 ) exhibit extremely large in-plane strain limits and unusual optical/electrical properties, offering unprecedented opportunities for flexible electronics/optoelectronics in new form factors. In order for them to be technologically viable building-blocks for such emerging technologies, it is critically demanded to grow/integrate them onto flexible or arbitrary-shaped substrates on a large wafer-scale compatible with the prevailing microelectronics processes. However, conventional approaches to assemble them on such unconventional substrates via mechanical exfoliations or coevaporation chemical growths have been limited to small-area transfers of 2D TMD layers with uncontrolled spatial homogeneity. Moreover, additional processes involving a prolonged exposure to strong chemical etchants have been required for the separation of as-grown 2D layers, which is detrimental to their material properties. Herein, we report a viable strategy to universally combine the centimeter-scale growth of various 2D TMD layers and their direct assemblies on mechanically deformable substrates. By exploring the water-assisted debonding of gold (Au) interfaced with silicon dioxide (SiO 2 ), we demonstrate the direct growth, transfer, and integration of 2D TMD layers and heterostructures such as 2D MoS 2 and 2D MoS 2 /WS 2 vertical stacks on centimeter-scale plastic and metal foil substrates. We identify the dual function of the Au layer as a growth substrate as well as a sacrificial layer which facilitates 2D layer transfer. Furthermore, we demonstrate the versatility of this integration approach by fabricating centimeter-scale 2D MoS 2 /single walled carbon nanotube (SWNT) vertical heterojunctions which exhibit current rectification and photoresponse. This study opens a pathway to explore large-scale 2D TMD van der Waals layers as device building blocks for emerging mechanically deformable electronics/optoelectronics.
Three-dimensional self-organization of crystalline gold nanoparticles in amorphous alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Chunming; Zhou Honghui; Wei Wei
Multilayered heterostructures containing gold nanoparticles embedded in amorphous alumina matrices were deposited on silicon (001) substrates using pulsed laser deposition. The three-dimensional ordering of gold nanoparticles within these multilayered heterostructures was investigated using cross-sectional transmission electron microscopy and image Fourier transformation. Self-organization of gold nanoparticles along the vertical direction was observed in films grown at 20 and at 320 deg. C. Self-organization occurred by means of two different growth modes; both vertically correlated growth (top-on-top) and anticorrelated growth (top-on-middle) mechanisms were observed. The results of these studies suggest that the driving force for vertical ordering in this material is relatedmore » to the long-range elastic interactions among the nanoparticles within the growing films.« less
Ferroelectric enhancement in heterostructured ZnO /BiFeO3-PbTiO3 film
NASA Astrophysics Data System (ADS)
Yu, Shengwen; Chen, Rui; Zhang, Guanjun; Cheng, Jinrong; Meng, Zhongyan
2006-11-01
The authors have prepared heterostructured ZnO /BiFeO3-PbTiO3 (BFO-PT) composite film and BFO-PT film on Pt /Ti/SiO2/Si substrates by pulsed-laser deposition. The structure and morphologies of the films were characterized by x-ray diffraction (XRD) and scanning electron microscope. XRD results show that both films are perovskite structured last with different orientations. The leakage current density in the ZnO /BFO-PT film was found to be nearly two orders of magnitude lower. This could be due to the introduced ZnO layer behaving as a Schottky barrier between the BFO-PT film and top electrodes. The dramatic ferroelectric enhancement in ZnO /BFO-PT film is mostly ascribed to the improved insulation.
Growth and interface engineering in thin-film Ba0.6Sr0.4TiO3 /SrMoO3 heterostructures
NASA Astrophysics Data System (ADS)
Radetinac, Aldin; Ziegler, Jürgen; Vafaee, Mehran; Alff, Lambert; Komissinskiy, Philipp
2017-04-01
Epitaxial heterostructures of ferroelectric Ba0.6Sr0.4TiO3 and highly conducting SrMoO3 were grown by pulsed laser deposition on SrTiO3 (0 0 1) substrates. Surface oxidation of the SrMoO3 film is suppressed using a thin cap interlayer of Ba0.6Sr0.4TiO3-δ grown in reduced atmosphere. As shown by X-ray photoelectron spectroscopy, the Mo4+ valence state of the SrMoO3 films is stable upon annealing of the sample in oxygen up to 600 °C. The described oxygen interface engineering enables utilization of the highly conducting material SrMoO3 in multilayer oxide ferroelectric varactors.
NASA Astrophysics Data System (ADS)
Driad, R.; Sah, R. E.; Schmidt, R.; Kirste, L.
2012-01-01
We present structural, stress, and electrical properties of plasma assisted e-beam evaporated hafnium dioxide (HfO2) layers on n-type InP substrates. These layers have subsequently been used for surface passivation of InGaAs/InP heterostructure bipolar transistors either alone or in combination with plasma enhanced chemical vapor deposited SiO2 layers. The use of stacked HfO2/SiO2 results in better interface quality with InGaAs/InP heterostructures, as illustrated by smaller leakage current and improved breakdown voltage. These improvements can be attributed to the reduced defect density and charge trapping at the dielectric-semiconductor interface. The deposition at room temperature makes these films suitable for sensitive devices.
Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity.
Wan, Yi; Xiao, Jun; Li, Jingzhen; Fang, Xin; Zhang, Kun; Fu, Lei; Li, Pan; Song, Zhigang; Zhang, Hui; Wang, Yilun; Zhao, Mervin; Lu, Jing; Tang, Ning; Ran, Guangzhao; Zhang, Xiang; Ye, Yu; Dai, Lun
2018-02-01
Engineering the substrate of 2D transition metal dichalcogenides can couple the quasiparticle interaction between the 2D material and substrate, providing an additional route to realize conceptual quantum phenomena and novel device functionalities, such as realization of a 12-time increased valley spitting in single-layer WSe 2 through the interfacial magnetic exchange field from a ferromagnetic EuS substrate, and band-to-band tunnel field-effect transistors with a subthreshold swing below 60 mV dec -1 at room temperature based on bilayer n-MoS 2 and heavily doped p-germanium, etc. Here, it is demonstrated that epitaxially grown single-layer MoS 2 on a lattice-matched GaN substrate, possessing a type-I band alignment, exhibits strong substrate-induced interactions. The phonons in GaN quickly dissipate the energy of photogenerated carriers through electron-phonon interaction, resulting in a short exciton lifetime in the MoS 2 /GaN heterostructure. This interaction enables an enhanced valley helicity at room temperature (0.33 ± 0.05) observed in both steady-state and time-resolved circularly polarized photoluminescence measurements. The findings highlight the importance of substrate engineering for modulating the intrinsic valley carriers in ultrathin 2D materials and potentially open new paths for valleytronics and valley-optoelectronic device applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szyszka, A., E-mail: szyszka@ihp-microelectronics.com, E-mail: adam.szyszka@pwr.wroc.pl; Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw; Lupina, L.
2014-08-28
Based on a novel double step oxide buffer heterostructure approach for GaN integration on Si, we present an optimized Metal-Semiconductor-Metal (MSM)-based Ultraviolet (UV) GaN photodetector system with integrated short-period (oxide/Si) Distributed Bragg Reflector (DBR) and leakage suppressing Metal-Oxide-Semiconductor (MOS) electrode contacts. In terms of structural properties, it is demonstrated by in-situ reflection high energy electron diffraction and transmission electron microscopy-energy dispersive x-ray studies that the DBR heterostructure layers grow with high thickness homogeneity and sharp interface structures sufficient for UV applications; only minor Si diffusion into the Y{sub 2}O{sub 3} films is detected under the applied thermal growth budget. Asmore » revealed by comparative high resolution x-ray diffraction studies on GaN/oxide buffer/Si systems with and without DBR systems, the final GaN layer structure quality is not significantly influenced by the growth of the integrated DBR heterostructure. In terms of optoelectronic properties, it is demonstrated that—with respect to the basic GaN/oxide/Si system without DBR—the insertion of (a) the DBR heterostructures and (b) dark current suppressing MOS contacts enhances the photoresponsivity below the GaN band-gap related UV cut-off energy by almost up to two orders of magnitude. Given the in-situ oxide passivation capability of grown GaN surfaces and the one order of magnitude lower number of superlattice layers in case of higher refractive index contrast (oxide/Si) systems with respect to classical III-N DBR superlattices, virtual GaN substrates on Si via functional oxide buffer systems are thus a promising robust approach for future GaN-based UV detector technologies.« less
Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology
Yeh, Min-Yen; Lei, Po-Hsun; Lin, Shao-Hsein; Yang, Chyi-Da
2016-01-01
Cu2ZnSnS4 (CZTS) thin films were deposited on glass substrates by using spin-coating and an annealing process, which can improve the crystallinity and morphology of the thin films. The grain size, optical gap, and atomic contents of copper (Cu), zinc (Zn), tin (Sn), and sulfur (S) in a CZTS thin film absorber relate to the concentrations of aqueous precursor solutions containing copper chloride (CuCl2), zinc chloride (ZnCl2), tin chloride (SnCl2), and thiourea (SC(NH2)2), whereas the electrical properties of CZTS thin films depend on the annealing temperature and the atomic content ratios of Cu/(Zn + Sn) and Zn/Sn. All of the CZTS films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, and Hall measurements. Furthermore, CZTS thin film was deposited on an n-type silicon substrate by using spin-coating to form an Mo/p-CZTS/n-Si/Al heterostructured solar cell. The p-CZTS/n-Si heterostructured solar cell showed a conversion efficiency of 1.13% with Voc = 520 mV, Jsc = 3.28 mA/cm2, and fill-factor (FF) = 66%. PMID:28773647
NASA Astrophysics Data System (ADS)
Lu, Yimin; Makihara, Katsunori; Takeuchi, Daichi; Ikeda, Mitsuhisa; Ohta, Akio; Miyazaki, Seiichi
2017-06-01
Hydrogenated microcrystalline (µc) Si/Ge heterostructures were prepared on quartz substrates by plasma-enhanced chemical vapor deposition (CVD) from VHF inductively coupled plasma of SiH4 just after GeH4 employing Ni nanodots (NDs) as seeds for crystalline nucleation. The crystallinity of the films and the progress of grain growth were characterized by Raman scattering spectroscopy and atomic force microscopy (AFM), respectively. When the Ge films were grown on Ni-NDs at 250 °C, the growth of µc-Ge films with crystallinity as high as 80% was realized without an amorphous phase near the Ge film/quartz substrate interface. After the subsequent Si film deposition at 250 °C, fine grains were formed in the early stages of film growth on µc-Ge films with compositional mixing (µc-Si0.85Ge0.15:H) caused by the release of large lattice mismatch between c-Si and c-Ge. With further increase in Si:H film thickness, the formation of large grain structures accompanied by fine grains was promoted. These results suggest that crystalline Si/Ge heterojunctions can be used for efficient carrier collection in solar cell application.
DFT study on the interfacial properties of vertical and in-plane BiOI/BiOIO3 hetero-structures.
Dai, Wen-Wu; Zhao, Zong-Yan
2017-04-12
Composite photocatalysts with hetero-structures usually favor the effective separation of photo-generated carriers. In this study, BiOIO 3 was chosen to form a hetero-structure with BiOI, due to its internal polar field and good lattice matching with BiOI. The interfacial properties and band offsets were focused on and analyzed in detail by DFT calculations. The results show that the charge depletion and accumulation mainly occur in the region near the interface. This effect leads to an interfacial electric field and thus, the photo-generated electron-hole pairs can be easily separated and transferred along opposite directions at the interface, which is significant for the enhancement of the photocatalytic activity. Moreover, according to the analysis of band offsets, the vertical BiOI/BiOIO 3 belongs to the type-II hetero-structure, while the in-plane BiOI/BiOIO 3 belongs to the type-I hetero-structure. The former type of hetero-structure has more favorable effects to enhance the photocatalytic activity of BiOI than that of the latter type of hetero-structure. In the case of the vertical BiOI/BiOIO 3 hetero-structure, photo-generated electrons can move from the conduction band of BiOI to that of BiOIO 3 , while holes can move from the valence band of BiOIO 3 to that of BiOI under solar radiation. In addition, the introduced internal electric field functions as a selector that can promote the separation of photo-generated carriers, resulting in the higher photocatalytic quantum efficiency. These findings illustrate the underlying mechanism for the reported experiments, and can be used as a basis for the design of novel highly efficient composite photocatalysts with hetero-structures.
NASA Astrophysics Data System (ADS)
O'Steen, M. L.; Fedler, F.; Hauenstein, R. J.
1999-10-01
Reflection high-energy electron diffraction (RHEED) and laterally spatially resolved high resolution x-ray diffraction (HRXRD) have been used to identify and characterize rf plasma-assisted molecular-beam epitaxial growth factors which strongly affect the efficiency of In incorporation into InxGa1-xN epitaxial materials. HRXRD results for InxGa1-xN/GaN superlattices reveal a particularly strong dependence of average alloy composition x¯ upon both substrate growth temperature and incident V/III flux ratio. For fixed flux ratio, results reveal a strong thermally activated behavior, with over an order-of-magnitude decrease in x¯ with increasing growth temperature within the narrow range 590-670 °C. Within this same range, a further strong dependence upon V/III flux ratio is observed. The decreased In incorporation at elevated substrate temperatures is tentatively attributed to In surface-segregation and desorption processes. RHEED observations support this segregation/desorption interpretation to account for In loss.
High-quality graphene flakes exfoliated on a flat hydrophobic polymer
NASA Astrophysics Data System (ADS)
Pedrinazzi, Paolo; Caridad, José M.; Mackenzie, David M. A.; Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke S.; Sordan, Roman; Booth, Timothy J.; Bøggild, Peter
2018-01-01
We show that graphene supported on a hydrophobic and flat polymer surface results in flakes with extremely low doping and strain as assessed by their Raman spectroscopic characteristics. We exemplify this technique by micromechanical exfoliation of graphene on flat poly(methylmethacrylate) layers and demonstrate Raman peak intensity ratios I(2D)/I(G) approaching 10, similar to pristine freestanding graphene. We verify that these features are not an artifact of optical interference effects occurring at the substrate: they are similarly observed when varying the substrate thickness and are maintained when the environment of the graphene flake is completely changed, by encapsulating preselected flakes between hexagonal boron nitride layers. The exfoliation of clean, pristine graphene layers directly on flat polymer substrates enables high performance, supported, and non-encapsulated graphene devices for flexible and transparent optoelectronic studies. We additionally show that the access to a clean and supported graphene source leads to high-quality van der Waals heterostructures and devices with reproducible carrier mobilities exceeding 50 000 cm2 V-1 s-1 at room temperature.
Fabrication of multilayered thin films via spin-assembly
Chiarelli, Peter A.; Robinson, Jeanne M.; Casson, Joanna L.; Johal, Malkiat S.; Wang, Hsing-Lin
2007-02-20
An process of forming multilayer thin film heterostructures is disclosed and includes applying a solution including a first water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species onto a substrate to form a first coating layer on the substrate, drying the first coating layer on the substrate, applying a solution including a second water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species onto the substrate having the first coating layer to form a second coating layer on the first coating layer wherein the second water-soluble polymer is of a different material than the first water-soluble polymer, and drying the second coating layer on the first coating layer so as to form a bilayer structure on the substrate. Optionally, one or more additional applying and drying sequences can be repeated with a water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species, so that a predetermined plurality of layers are built up upon the substrate.
Electronic structure of graphene- and BN-supported phosphorene
NASA Astrophysics Data System (ADS)
Davletshin, Artur R.; Ustiuzhanina, Svetlana V.; Kistanov, Andrey A.; Saadatmand, Danial; Dmitriev, Sergey V.; Zhou, Kun; Korznikova, Elena A.
2018-04-01
By using first-principles calculations, the effects of graphene and boron nitride (BN) substrates on the electronic properties of phosphorene are studied. Graphene-supported phosphorene is found to be metallic, while the BN-supported phosphorene is a semiconductor with a moderate band gap of 1.02 eV. Furthermore, the effects of the van der Waals interactions between the phosphorene and graphene or BN layers by means of the interlayer distance change are investigated. It is shown that the interlayer distance change leads to significant band gap size modulations and direct-indirect band gap transitions in the phosphorene-BN heterostructure. The presented band gap engineering of phosphorene may be a powerful technique for the fabrication of high-performance phosphorene-based nanodevices.
Carrier Localization in Confined Vanadate Superlattices
NASA Astrophysics Data System (ADS)
Eaton, Craig; Zhang, Lei; Engel-Herbert, Roman
2015-03-01
Perovskite oxide heterostructures have attracted attention due to the wealth of phenomena emerging at the interface, as well as the presence of strong electron correlations with potential applications as active electronic material for logic application utilizing the metal-to-insulator transition. Successful monolithic integration of perovskite oxides with Si makes them an ideal material choice. Here we present the growth of cubic SrTiO3/SrVO3/SrTiO3 heterostructures on (La0.3Sr0.7) (Al0.65Ta0.35) O3 substrates and orthorhombically distorted CaTiO3/CaVO3/CaTiO3 heterostructures on (LaSrAlTa4) O3 substrates by hybrid molecular beam epitaxy, where alkaline earth metals were supplied using conventional effusion cells and the transition metals from the metal-organic precursor titanium-isopropoxide and vanadium oxi-tri-isopropoxide. Here, the interfaces are non-polar and carrier confinement in the correlated vanadate metals (d1 configuration, 1 electron per unit cell) is achieved using insulating titanates as barrier material. Growth challenges associated with optimizing conditions for cation and oxygen stoichiometry are discussed. Confined structures down to 2 ML have been studied to demonstrate the potential for tuning incipient 2D Mott transition from 3D correlated metal. Room temperature hall measurements revealed carrier concentration in SrVO3 films are 2 × 1022 cm-3 in thick films and decreases to 8 × 1020 cm-3 at 3 ML confinement, revealing the onset of strong carrier localization. Direct comparison between SrVO3 and CaVO3 structures are presented to elucidate the role of dimensional confinement and structural distortion.
Voyloy, Dimitry; Lassiter, Matthew G.; Sokolov, Alexei P.; ...
2017-06-19
Polymer residue plays an important role in the performance of 2D heterostructured materials. Herein, we study the effect of polymer residual impurities on the electrical properties of graphene–boron nitride planar heterostructures. Large-area graphene (Gr) and hexagonal boron nitride (h-BN) monolayers were synthesized using chemical vapor deposition techniques. Atomic van-der-Waals heterostructure layers based on varied configurations of Gr and h-BN layers were assembled. The average interlayer resistance of the heterojunctions over a 1 cm 2 area for several planar heterostructure configurations was assessed by impedance spectroscopy and modeled by equivalent electrical circuits. As a result, conductive AFM measurements showed that themore » presence of polymer residues on the surface of the Gr and h-BN monolayers resulted in significant resistance deviations over nanoscale regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voyloy, Dimitry; Lassiter, Matthew G.; Sokolov, Alexei P.
Polymer residue plays an important role in the performance of 2D heterostructured materials. Herein, we study the effect of polymer residual impurities on the electrical properties of graphene–boron nitride planar heterostructures. Large-area graphene (Gr) and hexagonal boron nitride (h-BN) monolayers were synthesized using chemical vapor deposition techniques. Atomic van-der-Waals heterostructure layers based on varied configurations of Gr and h-BN layers were assembled. The average interlayer resistance of the heterojunctions over a 1 cm 2 area for several planar heterostructure configurations was assessed by impedance spectroscopy and modeled by equivalent electrical circuits. As a result, conductive AFM measurements showed that themore » presence of polymer residues on the surface of the Gr and h-BN monolayers resulted in significant resistance deviations over nanoscale regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, Nitin, E-mail: nchopra@eng.ua.edu; McWhinney, Hylton G.; Shi Wenwu
2011-06-15
Heterostructures composed of carbon nanotube (CNT) coated with Ni/NiO core/shell nanoparticles (denoted as CNC heterostructures) were synthesized in a wet-chemistry and single-step synthesis route involving direct nucleation of nanoparticles on CNT surface. Two different aspects of CNC heterostructures were studied here. First, it was observed that the nanoparticle coatings were more uniform on the as-produced and non-purified CNTs compared to purified (or acid treated) CNTs. These heterostructures were characterized using electron microscopy, Raman spectroscopy, and energy dispersive spectroscopy. Second, thermal stability of CNC heterostructures was studied by annealing them in N{sub 2}-rich (O{sub 2}-lean) environment between 125 and 750 deg.more » C for 1 h. A detailed X-ray photoelectron spectroscopy and Raman spectroscopy analysis was performed to evaluate the effects of annealing temperatures on chemical composition, phases, and stability of the heterostructures. It was observed that the CNTs present in the heterostructures completely decomposed and core Ni nanoparticle oxidized significantly between 600 and 750 deg. C. - Research Highlights: {yields} Heterostructures composed of CNTs coated with Ni/NiO core/shell nanoparticles. {yields} Poor nanoparticle coverage on purified CNT surface compared to non-purified CNTs. {yields} CNTs in heterostructures decompose between 600 and 750 deg. C in N{sub 2}-rich atmosphere. {yields} Metallic species in heterostructures were oxidized at higher temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Congxin, E-mail: xiacongxin@htu.edu.cn; Xue, Bin; Wang, Tianxing
The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.
NASA Technical Reports Server (NTRS)
Zou, Yingyin Kevin (Inventor); Jiang, Hua (Inventor); Li, Kewen Kevin (Inventor); Guo, Xiaomei (Inventor)
2012-01-01
A heterostructure of multiferroics or magnetoelectrics (ME) was disclosed. The film has both ferromagnetic and ferroelectric properties, as well as magneto-optic (MO) and electro-optic (EO) properties. Oxide buffer layers were employed to allow grown a cracking-free heterostructure a solution coating method.
NASA Astrophysics Data System (ADS)
Chen, Ying; Li, Hui; Ma, Qian; Che, Quande; Wang, Junpeng; Wang, Gang; Yang, Ping
2018-05-01
A series of hexagonal-like α-Fe2O3/ZnO/Au nanoplate heterostructures with tunable morphologies and superior ethanol gas-sensing performance were successfully synthesized via the facile multi-step reaction processes. Hexagonal-like α-Fe2O3 nanoplates with uniform size around 150 nm are employed as new sensor substrates for loading the well-distributed ZnO and Au nanoparticles with adjustable size distribution on the different surfaces. Brunauer-EmmeQ-Teller (BET) surface areas of α-Fe2O3 and α-Fe2O3/ZnO samples are evaluated to be 37.94 and 61.27 m2/g, respectively, while α-Fe2O3/ZnO/Au composites present the highest value of 79.08 m2/g. These α-Fe2O3-based functional materials can exhibit outstanding sensing properties to ethanol. When the ethanol concentration is 100 ppm, the response value of α-Fe2O3/ZnO/Au composites can reach up to 170, which is 14.6 and 80.3 times higher than that of α-Fe2O3/ZnO and pure α-Fe2O3, respectively. The recycling stability and long-time effectiveness can be availably maintained within 30 days, as well as the response and recovery times are shortened to 4 and 5 s, respectively. Significantly, the response value of α-Fe2O3/ZnO/Au composite is still up to 63 at an operating temperature of 280 °C even though the ethanol concentration decreases to 10 ppm. The enhanced gas sensing mechanism would be focused on the synergistic effects of phase compositions, surface heterogeneous structures, large specific surface area, and the selective depositions of Au nanoparticles in α-Fe2O3/ZnO/Au sensors. The synergistic effect of different surface heterostructures referring to α-Fe2O3/Au and α-Fe2O3/ZnO/Au and their novel electron transport processes on the surfaces are first investigated and discussed in details. It is expected that hexagonal-like α-Fe2O3/ZnO/Au nanoplate heterostructures with excellent sensing performance can be the promising highly-sensitive materials in the actual application for monitoring and detecting ethanol.
Nikam, Pratibha R; Baviskar, Prashant K; Majumder, Sutripto; Sali, Jaydeep V; Sankapal, Babasaheb R
2018-08-15
Controlled growth of different sizes of cadmium selenide (CdSe) nanoparticles over well aligned ZnO nanorods have been performed using successive ionic layer adsorption and reaction (SILAR) technique at room temperature (27 °C) in order to form nano heterostructure solar cells. Deposition of compact layer of zinc oxide (ZnO) by SILAR technique on fluorine doped tin oxide (FTO) coated glass substrate followed by growth of vertically aligned ZnO nanorods array using chemical bath deposition (CBD) at low temperature (<100 °C). Different characterization techniques viz. X-ray diffractometer, UV-Vis spectrophotometer, field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy have been used to know the structural, optical, morphological and compositional properties of synthesized nano heterostructure. The photovoltaic performance of the cells with variation in SILAR cycles for CdSe and with use of different electrolytes have been recorded as J-V characteristics and the maximum conversion efficiency of 0.63% have been attained with ferro/ferri cyanide electrolyte for 12 cycles CdSe coating over 1-D ZnO nanorods. Copyright © 2018 Elsevier Inc. All rights reserved.
On the persistence of polar domains in ultrathin ferroelectric capacitors.
Zubko, Pavlo; Lu, Haidong; Bark, Chung-Wung; Martí, Xavi; Santiso, José; Eom, Chang-Beom; Catalan, Gustau; Gruverman, Alexei
2017-07-19
The instability of ferroelectric ordering in ultra-thin films is one of the most important fundamental issues pertaining realization of a number of electronic devices with enhanced functionality, such as ferroelectric and multiferroic tunnel junctions or ferroelectric field effect transistors. In this paper, we investigate the polarization state of archetypal ultrathin (several nanometres) ferroelectric heterostructures: epitaxial single-crystalline BaTiO 3 films sandwiched between the most habitual perovskite electrodes, SrRuO 3 , on top of the most used perovskite substrate, SrTiO 3 . We use a combination of piezoresponse force microscopy, dielectric measurements and structural characterization to provide conclusive evidence for the ferroelectric nature of the relaxed polarization state in ultrathin BaTiO 3 capacitors. We show that even the high screening efficiency of SrRuO 3 electrodes is still insufficient to stabilize polarization in SrRuO 3 /BaTiO 3 /SrRuO 3 heterostructures at room temperature. We identify the key role of domain wall motion in determining the macroscopic electrical properties of ultrathin capacitors and discuss their dielectric response in the light of the recent interest in negative capacitance behaviour.
NASA Astrophysics Data System (ADS)
Du, Fan; Chen, Qing-Yun; Wang, Yun-Hai
2017-05-01
CuO/Cu2O photocathodes were successfully prepared via simply annealing the electrodeposited Cu2O on fluoride doped tin oxide (FTO) substrate. They were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscope (TEM), UV-vis absorption spectra and X-ray photoelectron spectroscopy (XPS). The results showed that the heterojunction of CuO/Cu2O was formed during the annealing process and presented the nature of p-type semiconductor. The photocurrent density and photoelectrochemical (PEC) stability of the p-type heterostructure CuO/Cu2O photocathode was improved greatly compared with the pure Cu2O, which was greatly affected by annealing time and temperature. The highest photo current density of -0.451 mA/cm2 and highest stability was obtained via annealing at 650 °C for 15 min (at -0.3 V vs. Ag/AgCl), which gave a remarkable improvement than the as-deposited Cu2O (-0.08 mA/cm2). This suggested that the CuO/Cu2O heterojunction facilitated the electron-hole pair separation and improved the photocathode's current and stability.
NASA Astrophysics Data System (ADS)
Zhou, Yunxia; Zhu, Jun; Liu, Xingpeng; Wu, Zhipeng
Ferroelectric Pb(Zr0.52,Ti0.48)O3(PZT) thin film was grown on n-type GaAs (001) substrate with SrTiO3 (STO) buffer layer by laser molecular beam epitaxy (L-MBE). The epitaxial process of the STO was in situ monitored by reflection high-energy electron diffraction (RHEED). The crystallographical growth orientation relationship was revealed to be (002) 〈100〉 PZT//(002) 〈100〉 STO//(001) 〈110〉 GaAs by RHEED and X-ray diffraction (XRD). It was found that a small lattice mismatch between PZT and GaAs with a 45∘ in-plane rotation relationship can be formed by inserting of a buffer layer STO. Besides, the enhanced electrical properties of the heterostructure were obtained with the short-circuit photocurrent increased to 52mA/cm2 and the better power conversation efficiency increased by 20% under AM1.5G (100mW/cm2) illumination. The work could provide a way for the application of this kind of heterostructure with high photocurrent response in optoelectronic thin film devices.
NASA Astrophysics Data System (ADS)
Maji, Nilay; Kar, Uddipta; Nath, T. K.
2018-02-01
The rectifying magnetic tunnel diode has been fabricated by growing Co2MnSi (CMS) Heusler alloy film carefully on a properly cleaned p-Si (100) substrate with the help of electron beam physical vapor deposition technique and its structural, electrical and magnetic properties have been experimentally investigated in details. The electronic- and magneto-transport properties at various isothermal conditions have been studied in the temperature regime of 78-300 K. The current-voltage ( I- V) characteristics of the junction show an excellent rectifying magnetic tunnel diode-like behavior throughout that temperature regime. The current ( I) across the junction has been found to decrease with the application of a magnetic field parallel to the plane of the CMS film clearly indicating positive junction magnetoresistance (JMR) of the heterostructure. When forward dc bias is applied to the heterostructure, the I- V characteristics are highly influenced on turning on the field B = 0.5 T at 78 K, and the forward current reduces abruptly (99.2% current reduction at 3 V) which is nearly equal to the order of the magnitude of the current observed in the reverse bias. Hence, our Co2MnSi/SiO2/p-Si heterostructure can perform in off ( I off)/on ( I on) states with the application of non-zero/zero magnetic field like a spin valve at low temperature (78 K).
NASA Astrophysics Data System (ADS)
Chen, Fayun; Zhang, Laijun; Wang, Xuewen; Zhang, Rongbin
2017-11-01
Noble-metal-free semiconductor materials are widely used for photocatalytic hydrogen generation because of their low cost. ZnO-based heterostructures with synergistic effects exhibit an effective photocatalytic activity. In this work, NiO@Ni-ZnO/reduced graphene oxide (rGO)/CdS heterostructures are synthesized by a multi-step method. rGO nanosheets and CdS nanoparticles were introduced into the heterostructures via a redox reaction and light-assisted growth, respectively. A novel Ni-induced electrochemical growth method was developed to prepare ZnO rods from Zn powder. NiO@Ni-ZnO/rGO/CdS heterostructures with a wide visible-light absorption range exhibited highly photocatalytic hydrogen generation rates under UV-vis and visible light irradiation. The enhanced photocatalytic activity is attributed to the Ni nanoparticles that act as cocatalysts for capturing photoexcited electrons and the improved synergistic effect between ZnO and CdS due to the rGO nanosheets acting as photoexcited carrier transport channels.
Growth and electrical characterization of two-dimensional layered MoS{sub 2}/SiC heterojunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Edwin W.; Nath, Digbijoy N.; Lee, Choong Hee
2014-11-17
The growth and electrical characterization of the heterojunction formed between two-dimensional (2D) layered p-molybdenum disulfide (MoS{sub 2}) and nitrogen-doped 4H silicon carbide (SiC) are reported. The integration of 2D semiconductors with the conventional three-dimensional (3D) substrates could enable semiconductor heterostructures with unprecedented properties. In this work, direct growth of p-type MoS{sub 2} films on SiC was demonstrated using chemical vapor deposition, and the MoS{sub 2} films were found to be high quality based on x-ray diffraction and Raman spectra. The resulting heterojunction was found to display rectification and current-voltage characteristics consistent with a diode for which forward conduction in themore » low-bias region is dominated by multi-step recombination tunneling. Capacitance-voltage measurements were used to determine the built-in voltage for the p-MoS{sub 2}/n-SiC heterojunction diode, and we propose an energy band line up for the heterostructure based on these observations. The demonstration of heterogeneous material integration between MoS{sub 2} and SiC enables a promising new class of 2D/3D heterostructures.« less
Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D
2017-05-01
The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. Copyright © 2016 Elsevier B.V. All rights reserved.
Positrons as interface-sensitive probes of polar semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Makkonen, I.; Snicker, A.; Puska, M. J.; Mäki, J.-M.; Tuomisto, F.
2010-07-01
Group-III nitrides in their wurtzite crystal structure are characterized by large spontaneous polarization and significant piezoelectric contributions in heterostructures formed of these materials. Polarization discontinuities in polar heterostructures grown along the (0001) direction result in huge built-in electric fields on the order of megavolt per centimeter. We choose the III-nitride heterostructures as archetypal representatives of polar heterostructures formed of semiconducting or insulating materials and study the behavior of positrons in these structures using first-principles electronic-structure theory supported by positron annihilation experiments for bulk systems. The strong electric fields drive positrons close to interfaces, which is clearly seen in the predicted momentum distributions of annihilating electron-positron pairs as changes relative to the constituent bulk materials. Implications of the effect to positron defect studies of polar heterostructures are addressed.
White Electroluminescence Using ZnO Nanotubes/GaN Heterostructure Light-Emitting Diode
2010-01-01
We report the fabrication of heterostructure white light–emitting diode (LED) comprised of n-ZnO nanotubes (NTs) aqueous chemically synthesized on p-GaN substrate. Room temperature electroluminescence (EL) of the LED demonstrates strong broadband white emission spectrum consisting of predominating peak centred at 560 nm and relatively weak violet–blue emission peak at 450 nm under forward bias. The broadband EL emission covering the whole visible spectrum has been attributed to the large surface area and high surface states of ZnO NTs produced during the etching process. In addition, comparison of the EL emission colour quality shows that ZnO nanotubes have much better quality than that of the ZnO nanorods. The colour-rendering index of the white light obtained from the nanotubes was 87, while the nanorods-based LED emit yellowish colour. PMID:20672120
Development of 1300 nm GaAs-Based Microcavity Light-Emitting Diodes
2001-06-01
vertical - cavity surface emitting lasers ( VCSEL ) and micro- cavity light- emitting diodes (MC-LED) for short-to-medium... epitaxial growth run [1 ]. Self-organized In(Ga)As quantum dot (QD) heterostructures grown by molecular beam epitaxy ( MBE ) are promising candidates as...successfully grown by molecular beam epitaxy on GaAs substrates without the need to rely on any in-situ calibration technique. Fabricated
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Ashish; Barth, Michael; Madan, Himanshu
2014-08-04
Compressively strained InSb (s-InSb) and Ge (s-Ge) quantum well heterostructures are experimentally studied, with emphasis on understanding and comparing hole transport in these two-dimensional confined heterostructures. Magnetotransport measurements and bandstructure calculations indicate 2.5× lower effective mass for s-InSb compared to s-Ge quantum well at 1.9 × 10{sup 12} cm{sup –2}. Advantage of strain-induced m* reduction is negated by higher phonon scattering, degrading hole transport at room temperature in s-InSb quantum well compared to s-Ge heterostructure. Consequently, effective injection velocity is superior in s-Ge compared to s-InSb. These results suggest s-Ge quantum well heterostructure is more favorable and promising p-channel candidate compared to s-InSbmore » for future technology node.« less
NASA Astrophysics Data System (ADS)
Yurjev, G. S.; Fainer, N. I.; Maximovskiy, E. A.; Kosinova, M. L.; Sheromov, M. A.; Rumyantsev, Yu. M.
1998-02-01
The structure of semiconductor and dielectric thin (100-300 nm) films was studied by diffraction of synchrotron radiation. The diffraction experiments were performed at both the station "Anomalous scattering" of the storage ring synchrotron facility VEPP-3 and DRON-4 diffractometer. The structure of CdS thin films grown on fused silica, single Si(100) and InP(100) substrates was investigated. The structure of Cu 2S thin films grown on fused silica, single Si(100) substrates and CdS/Si(100)-heterostructure was studied. The structure study was performed on Si 3N 4 films grown on GaAs(100) substrates. The structure of thin BN layers grown on single Si(100) substrates was studied. It was established that structural parameters of above-mentioned thin films coincide on the parameters of JCPDS International Centre for Diffraction Data.
Electronic states and band lineups in c-Si(100)/a-Si1-xCx:H heterojunctions
NASA Astrophysics Data System (ADS)
Brown, T. M.; Bittencourt, C.; Sebastiani, M.; Evangelisti, F.
1997-04-01
Heterostructures formed by depositing in situ amorphous hydrogenated silicon-carbon alloys on Si(100) substrates were characterized by photoelectric-yield spectroscopy, UPS, and XPS. It is shown that both substrate and overlayer valence-band tops can be identified on the photoelectric-yield spectrum, thus allowing a direct and precise determination of the band lineup. We find a valence-band discontinuity varying from 0.44 eV to 1.00 eV for carbon content ranging from 0 to 50%. The present data can be used as a test for the lineup theories and strongly support the interface dipole models.
Effects of interfacial alignments on the stability of graphene on Ru(0001) substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Lei; Liu, Yanmin; Ma, Tianbao, E-mail: mtb@mail.tsinghua.edu.cn
2016-06-27
Structure and electronic properties of two-dimensional materials could be tuned by interfacial misfit or orientation angles. However, graphene grown on Ru(0001) substrate usually shows stable moiré superlattice with a periodicity of 3.0 nm indicating an aligned geometry. The reason for the absence of misaligned structure is still unknown. We have performed first-principles calculation to investigate the microstructure and morphology of graphene on Ru(0001) substrate in both aligned and misaligned geometries with rotation angles of 0°, 7.6°, and 23.4°, respectively. Our results indicate that both the graphene corrugation and moiré superlattice periodicity decrease as the rotation angle increases. Meanwhile the interaction energymore » between graphene and Ru(0001) substrate also becomes weakened with the rotation angle, as the decrease and discretization of intense charge transfer sites at the graphene/Ru interface, which is closely related to the interface stacking structure. Counterintuitively, the strain energy in graphene also increases anomalously with the rotation angle, which is attributed to the highly distorted local deformation of graphene due to the strong but discrete covalent bonding with Ru substrate. The simultaneous increase in both the interaction energy and strain energy in graphene/Ru(0001) heterostructure with rotation angle contributes to the preferred configuration in the aligned state.« less
Single crystalline electronic structure and growth mechanism of aligned square graphene sheets
NASA Astrophysics Data System (ADS)
Yang, H. F.; Chen, C.; Wang, H.; Liu, Z. K.; Zhang, T.; Peng, H.; Schröter, N. B. M.; Ekahana, S. A.; Jiang, J.; Yang, L. X.; Kandyba, V.; Barinov, A.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Peng, H. L.; Liu, Z. F.; Chen, Y. L.
2018-03-01
Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES) to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation). Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001) copper surface structure but also discovered that the square graphene sheets' sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures)
Engineering of III-Nitride Semiconductors on Low Temperature Co-fired Ceramics.
Mánuel, J M; Jiménez, J J; Morales, F M; Lacroix, B; Santos, A J; García, R; Blanco, E; Domínguez, M; Ramírez, M; Beltrán, A M; Alexandrov, D; Tot, J; Dubreuil, R; Videkov, V; Andreev, S; Tzaneva, B; Bartsch, H; Breiling, J; Pezoldt, J; Fischer, M; Müller, J
2018-05-02
This work presents results in the field of advanced substrate solutions in order to achieve high crystalline quality group-III nitrides based heterostructures for high frequency and power devices or for sensor applications. With that objective, Low Temperature Co-fired Ceramics has been used, as a non-crystalline substrate. Structures like these have never been developed before, and for economic reasons will represent a groundbreaking material in these fields of Electronic. In this sense, the report presents the characterization through various techniques of three series of specimens where GaN was deposited on this ceramic composite, using different buffer layers, and a singular metal-organic chemical vapor deposition related technique for low temperature deposition. Other single crystalline ceramic-based templates were also utilized as substrate materials, for comparison purposes.
NASA Astrophysics Data System (ADS)
Singh, Kirandeep; Kaur, Davinder
2017-04-01
The current study reports the strong magnetoelectric coupling (M-E) in silicon (Si)-integrated ferromagnetic shape memory alloy-based PZT/Ni-Mn-In thin-film multiferroic heterostructure. The strain-mediated nature of converse M-E coupling is reflected from the butterfly-shaped normalized magnetization (M/M s) versus electric field plots. The direct M-E properties of the heterostructure were measured with a frequency of AC magnetic field, bias magnetic field, as well as with temperature. A maximum direct M-E coupling in the bilayered thin-film multiferroic heterostructures occurred at resonance frequencies around the first-order structural transitional temperature of the bottom Ni-Mn-In layer. It was observed that the measuring temperature remarkably affects the direct M-E characteristic of the heterostructure. A large direct ME effect and converse ME effect coefficient α DME ~ 894 mV cm-1.Oe and α CME ~ 2.7 × 10-5 s m-1, respectively, were achieved in the bilayer at room temperature. The mechanism of direct as well as converse M-E effects in the thin-film multiferroic heterostructures is discussed. The electrically driven angular dependence of normalized magnetization (M/M s) reveals the twofold symmetric magnetic anisotropy of the heterostructure, with the drastic shifting of the magnetic hard axis at E > E c (coercivity of PZT).
Local, global, and nonlinear screening in twisted double-layer graphene
Lu, Chih -Pin; Rodriguez-Vega, Martin; Li, Guohong; ...
2016-06-02
One-atom-thick crystalline layers and their vertical heterostructures carry the promise of designer electronic materials that are unattainable by standard growth techniques. To realize their potential it is necessary to isolate them from environmental disturbances, in particular those introduced by the substrate. However, finding and characterizing suitable substrates, and minimizing the random potential fluctuations they introduce, has been a persistent challenge in this emerging field. In this paper, we show that Landau-level (LL) spectroscopy offers the unique capability to quantify both the reduction of the quasiparticles’ lifetime and the long-range inhomogeneity due to random potential fluctuations. Harnessing this technique together withmore » direct scanning tunneling microscopy and numerical simulations we demonstrate that the insertion of a graphene buffer layer with a large twist angle is a very effective method to shield a 2D system from substrate interference that has the additional desirable property of preserving the electronic structure of the system under study. Finally, we further show that owing to its remarkable nonlinear screening capability a single graphene buffer layer provides better shielding than either increasing the distance to the substrate or doubling the carrier density and reduces the amplitude of the potential fluctuations in graphene to values even lower than the ones in AB-stacked bilayer graphene.« less
Local, global, and nonlinear screening in twisted double-layer graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Chih -Pin; Rodriguez-Vega, Martin; Li, Guohong
One-atom-thick crystalline layers and their vertical heterostructures carry the promise of designer electronic materials that are unattainable by standard growth techniques. To realize their potential it is necessary to isolate them from environmental disturbances, in particular those introduced by the substrate. However, finding and characterizing suitable substrates, and minimizing the random potential fluctuations they introduce, has been a persistent challenge in this emerging field. In this paper, we show that Landau-level (LL) spectroscopy offers the unique capability to quantify both the reduction of the quasiparticles’ lifetime and the long-range inhomogeneity due to random potential fluctuations. Harnessing this technique together withmore » direct scanning tunneling microscopy and numerical simulations we demonstrate that the insertion of a graphene buffer layer with a large twist angle is a very effective method to shield a 2D system from substrate interference that has the additional desirable property of preserving the electronic structure of the system under study. Finally, we further show that owing to its remarkable nonlinear screening capability a single graphene buffer layer provides better shielding than either increasing the distance to the substrate or doubling the carrier density and reduces the amplitude of the potential fluctuations in graphene to values even lower than the ones in AB-stacked bilayer graphene.« less
NASA Technical Reports Server (NTRS)
Henderson, R. H.; Sun, D.; Towe, E.
1995-01-01
The photoluminescence characteristics of pseudomorphic In(0.19)Ga(0.81)As/GaAs quantum well structures grown on both the conventional (001) and the unconventional (112)B GaAs substrate are investigated. It is found that the emission spectra of the structures grown on the (112)B surface exhibit some spectral characteristics not observed on similar structures grown on the (001) surface. A spectral blue shift of the e yields hh1 transition with increasing optical pump intensity is observed for the quantum wells on the (112) surface. This shift is interpreted to be evidence of a strain-induced piezoelectric field. A second spectral feature located within the band gap of the In(0.19)Ga(0.81)As layer is also observed for the (112) structure; this feature is thought to be an impurity-related emission. The expected transition energies of the quantum well structures are calculated using the effective mass theory based on the 4 x 4 Luttinger valence band Hamiltonian, and related strain Hamiltonian.
Impurity-induced states in superconducting heterostructures
NASA Astrophysics Data System (ADS)
Liu, Dong E.; Rossi, Enrico; Lutchyn, Roman M.
2018-04-01
Heterostructures allow the realization of electronic states that are difficult to obtain in isolated uniform systems. Exemplary is the case of quasi-one-dimensional heterostructures formed by a superconductor and a semiconductor with spin-orbit coupling in which Majorana zero-energy modes can be realized. We study the effect of a single impurity on the energy spectrum of superconducting heterostructures. We find that the coupling between the superconductor and the semiconductor can strongly affect the impurity-induced states and may induce additional subgap bound states that are not present in isolated uniform superconductors. For the case of quasi-one-dimensional superconductor/semiconductor heterostructures we obtain the conditions for which the low-energy impurity-induced bound states appear.
NASA Astrophysics Data System (ADS)
Gutiérrez, M.; Lloret, F.; Jurczak, P.; Wu, J.; Liu, H. Y.; Araújo, D.
2018-05-01
The objective of this work is the integration of InGaAs/GaSb/GaAs heterostructures, with high indium content, on GaAs and Si commercial wafers. The design of an interfacial misfit dislocation array, either on GaAs or Si substrates, allowed growth of strain-free devices. The growth of purposely designed superlattices with their active region free of extended defects on both GaAs and Si substrates is demonstrated. Transmission electron microscopy technique is used for the structural characterization and plastic relaxation study. In the first case, on GaAs substrates, the presence of dopants was demonstrated to reduce several times the threading dislocation density through a strain-hardening mechanism avoiding dislocation interactions, while in the second case, on Si substrates, similar reduction of dislocation interactions is obtained using an AlSb/GaSb superlattice. The latter is shown to redistribute spatially the interfacial misfit dislocation array to reduce dislocation interactions.
Dynamical scattering in coherent hard x-ray nanobeam Bragg diffraction
NASA Astrophysics Data System (ADS)
Pateras, A.; Park, J.; Ahn, Y.; Tilka, J. A.; Holt, M. V.; Kim, H.; Mawst, L. J.; Evans, P. G.
2018-06-01
Unique intensity features arising from dynamical diffraction arise in coherent x-ray nanobeam diffraction patterns of crystals having thicknesses larger than the x-ray extinction depth or exhibiting combinations of nanoscale and mesoscale features. We demonstrate that dynamical scattering effects can be accurately predicted using an optical model combined with the Darwin theory of dynamical x-ray diffraction. The model includes the highly divergent coherent x-ray nanobeams produced by Fresnel zone plate focusing optics and accounts for primary extinction, multiple scattering, and absorption. The simulation accurately reproduces the dynamical scattering features of experimental diffraction patterns acquired from a GaAs/AlGaAs epitaxial heterostructure on a GaAs (001) substrate.
Voltage control of magnetic anisotropy in epitaxial Ru/Co2FeAl/MgO heterostructures
NASA Astrophysics Data System (ADS)
Wen, Zhenchao; Sukegawa, Hiroaki; Seki, Takeshi; Kubota, Takahide; Takanashi, Koki; Mitani, Seiji
2017-03-01
Voltage control of magnetic anisotropy (VCMA) in magnetic heterostructures is a key technology for achieving energy-efficiency electronic devices with ultralow power consumption. Here, we report the first demonstration of the VCMA effect in novel epitaxial Ru/Co2FeAl(CFA)/MgO heterostructures with interfacial perpendicular magnetic anisotropy (PMA). Perpendicularly magnetized tunnel junctions with the structure of Ru/CFA/MgO were fabricated and exhibited an effective voltage control on switching fields for the CFA free layer. Large VCMA coefficients of 108 and 139 fJ/Vm for the CFA film were achieved at room temperature and 4 K, respectively. The interfacial stability in the heterostructure was confirmed by repeating measurements. Temperature dependences of both the interfacial PMA and the VCMA effect were also investigated. It is found that the temperature dependences follow power laws of the saturation magnetization with an exponent of ~2, where the latter is definitely weaker than that of conventional Ta/CoFeB/MgO. The significant VCMA effect observed in this work indicates that the Ru/CFA/MgO heterostructure could be one of the promising candidates for spintronic devices with voltage control.
Ferroelectric switching in epitaxial PbZr0.2Ti0.8O3/ZnO/GaN heterostructures
NASA Astrophysics Data System (ADS)
Wang, Juan; Salev, Pavel; Grigoriev, Alexei
As a wide-bandgap semiconductor, ZnO has gained substantial interest due to its favorable properties including high electron mobility, strong room-temperature luminescence, etc. The main obstacle of its application is the lack of reproducible and low-resistivity p-type ZnO. P-type doping of ZnO through the interface charge injection, which can be achieved by the polarization switching of ferroelectric films, is a tempting solution. We explored ferroelectric switching behavior of PbZr0.2Ti0.8O3/ZnO/GaN heterostructures epitaxially grown on Sapphire substrates by RF sputtering. The electrical measurements of Pt/PbZr0.2Ti0.8O3/ZnO/GaN ferroelectric-semiconductor capacitors revealed unusual behavior that is a combination of polarization switching and a diode I-V characteristics.
CdHgTe heterostructures for new-generation IR photodetectors operating at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varavin, V. S.; Vasilyev, V. V.; Guzev, A. A.
2016-12-15
The parameters of multilayer Cd{sub x}Hg{sub 1–x}Te heterostructures for photodetectors operating at wavelengths of up to 5 μm, grown by molecular-beam epitaxy (MBE) on silicon substrates, are studied. The passivating properties of thin CdTe layers on the surface of these structures are analyzed by measuring the C–V characteristics. The temperature dependences of the minority carrier lifetime in the photoabsorption layer after growth and thermal annealing are investigated. Samples of p{sup +}–n-type photodiodes are fabricated by the implantation of arsenic ions into n-type layers, doped with In to a concentration of (1–5) × 10{sup 15} cm{sup –3}. The temperature dependences ofmore » the reverse currents are measured at several bias voltages; these currents turn out to be almost two orders of magnitude lower than those for n{sup +}–p-type diodes.« less
Shape Evolution of Highly Lattice-Mismatched InN/InGaN Nanowire Heterostructures
NASA Astrophysics Data System (ADS)
Yan, Lifan; Hazari, Arnab; Bhattacharya, Pallab; Millunchick, Joanna M.
2018-02-01
We have investigated the structure and shape of GaN-based nanowires grown on (001) Si substrates for optoelectronic device applications. The nanowire heterostructures contained InN disks and In0.4Ga0.6N barrier layers in the active region. The resulting nanowire array comprised two differently shaped nanowires: shorter pencil-like nanowires and longer bead-like nanowires. The two different nanowire shapes evolve due to a variation in the In incorporation rate, which was faster for the bead-like nanowires. Both types of nanowires exhibited evidence of significant migration of both Ga and In during growth. Ga tended to diffuse away and down along the sidewalls, resulting in a Ga-rich shell for all nanowires. Despite the complex structure and great variability in the In composition, the optical properties of the nanowire arrays were very good, with strong luminescence peaking at ˜ 1.63 μm.
NASA Astrophysics Data System (ADS)
Graczyk, Piotr; Trzaskowska, Aleksandra; Załȩski, Karol; Mróz, Bogusław
2016-07-01
Full ferroelastic and simultaneously ferroelectric materials are interesting candidates for applications in devices based on multiferroic heterostructures. They should allow for non-volatile and low-power writing of data bits in magnetoelectric random access memories. Moreover, ferroelasticity, in contrast to piezoelectric material, make magnetic information in ferromagnetic film resistant to external fields. As an example for such a system, we have studied the magnetoelastic interaction between a thin ferromagnetic layer of {{Ni}}85{{Fe}}15 with a full ferroelastic-ferroelectric gadolinium molybdate {{Gd}}2{({{MoO}}4)}3 crystal. We have investigated the influence of {{Gd}}2{({{MoO}}4)}3 spontaneous strain onto magnetic properties of thin ferromagnetic film. Particularly, we have shown by Brillouin spectroscopy, that it is possible to modulate surface spin wave frequency of {{Ni}}85{{Fe}}15 by spontaneous strain of gadolinium molybdate substrate.
NASA Astrophysics Data System (ADS)
Matsuo, Norihiro; Doko, Naoki; Yasukawa, Yukiko; Saito, Hidekazu; Yuasa, Shinji
2018-07-01
We have grown an epitaxial MgO/Ga2O3 heterostructure on a MgO(001) substrate by molecular beam epitaxy. Crystallographic studies revealed the out-of-plane and in-plane crystal orientations between the MgO overlayer and the Ga2O3 layer, which were MgO(001) ∥ β-Ga2O3(001) and MgO[100] ∥ β-Ga2O3 [02\\bar{1}], respectively. The valence band offset at the MgO/β-Ga2O3 interface was determined to be 0.19 eV (type-II band alignment) by X-ray photoelectron spectroscopy, resulting in a large conduction band offset of 2.7–3.2 eV. These results indicate that MgO is a promising potential barrier for electrons in an epitaxial MgO/Ga2O3 multilayered structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paskiewicz, Deborah M.; Sichel-Tissot, Rebecca; Karapetrova, Evguenia
The field of oxide electronics has benefited from the wide spectrum of functionalities available to the ABO 3 perovskites, and researchers are now employing defect engineering in single crystalline heterostructures to tailor properties. However, bulk oxide single crystals are not conducive to many types of applications, particularly those requiring mechanical flexibility. Here, we demonstrate the realization of an all-oxide, single-crystalline nanomembrane heterostructure. With a surface-to-volume ratio of 2 × 10 7 , the nanomembranes are fully flexible and can be readily transferred to other materials for handling purposes or for new materials integration schemes. Using in situ synchrotron X-ray scattering,more » we find that the nanomembranes can bond to other host substrates near room temperature and demonstrate coupling between surface reactivity and electromechanical properties in ferroelectric nanomembrane systems. Finally, the synthesis technique described here represents a significant advancement in materials integration and provides a new platform for the development of flexible oxide electronics.« less
Effect of doping on the intersubband absorption in Si- and Ge-doped GaN/AlN heterostructures
NASA Astrophysics Data System (ADS)
Ajay, A.; Lim, C. B.; Browne, D. A.; Polaczyński, J.; Bellet-Amalric, E.; Bleuse, J.; den Hertog, M. I.; Monroy, E.
2017-10-01
In this paper, we study band-to-band and intersubband (ISB) characteristics of Si- and Ge-doped GaN/AlN heterostructures (planar and nanowires) structurally designed to absorb in the short-wavelength infrared region, particularly at 1.55 μm. Regarding the band-to-band properties, we discuss the variation of the screening of the internal electric field by free carriers, as a function of the doping density and well/nanodisk size. We observe that nanowire heterostructures consistently present longer photoluminescence decay times than their planar counterparts, which supports the existence of an in-plane piezoelectric field associated to the shear component of the strain tensor in the nanowire geometry. Regarding the ISB characteristics, we report absorption covering 1.45-1.75 μm using Ge-doped quantum wells, with comparable performance to Si-doped planar heterostructures. We also report similar ISB absorption in Si- and Ge-doped nanowire heterostructures indicating that the choice of dopant is not an intrinsic barrier for observing ISB phenomena. The spectral shift of the ISB absorption as a function of the doping concentration due to many body effects confirms that Si and Ge efficiently dope GaN/AlN nanowire heterostructures.
Tuning Magnetic Order in Transition Metal Oxide Thin Films
NASA Astrophysics Data System (ADS)
Grutter, Alexander John
In recent decades, one of the most active and promising areas of condensed matter research has been that of complex oxides. With the advent of new growth techniques such as pulsed laser deposition and molecular beam epitaxy, a wealth of new magnetic and electronic ground states have emerged in complex oxide heterostructures. The wide variety of ground states in complex oxides is well known and generally attributed to the unprecedented variety of valence, structure, and bonding available in these systems. The tunability of this already diverse playground of states and interactions is greatly multiplied in thin films and heterostructures by the addition of parameters such as substrate induced strain and interfacial electronic reconstruction. Thus, recent studies have shown emergent properties such as the stabilization of ferromagnetism in a paramagnetic system, conductivity at the interface of two insulators, and even exchange bias at the interface between a paramagnet and a ferromagnet. Despite these steps forward, there remains remarkable disagreement on the mechanisms by which these emergent phenomena are stabilized. The contributions of strain, stoichiometry, defects, intermixing, and electronic reconstruction are often very difficult to isolate in thin films and superlattices. This thesis will present model systems for isolating the effects of strain and interfacial electronic interactions on the magnetic state of complex oxides from alternative contributions. We will focus first on SrRuO3, an ideal system in which to isolate substrate induced strain effects. We explore the effects of structural distortions in the simplest case of growth on (100) oriented substrates. We find that parameters including saturated magnetic moment and Curie temperature are all highly tunable through substrate induced lattice distortions. We also report the stabilization of a nonmagnetic spin-zero configuration of Ru4+ in tetragonally distorted films under tensile strain. Through growth on (110) and (111) oriented substrates we explore the effects of different distortion symmetries on SrRuO3 and demonstrate the first reported strain induced transition to a high-spin state of Ru 4+. Finally, we examine the effects of strain on SrRuO3 thin films and demonstrate a completely reversible universal out-of-plane magnetic easy axis on films grown on different substrate orientations. Having demonstrated the ability to tune nearly every magnetic parameter of SrRuO 3 through strain, we turn to magnetic properties at interfaces. We study the emergent interfacial ferromagnetism in superlattices of the paramagnetic metal CaRuO3 and the antiferromagnetic insulator CaMnO3 and demonstrate that the interfacial ferromagnetic layer in this system is confined to a single unit cell of CaMnO3 at the interface. We discuss the remarkable oscillatory dependence of the saturated magnetic moment on the thickness of the CaMnO3 layers and explore mechanisms by which this oscillation may be stabilized. We find long range coherence of the antiferromagnetism of the CaMnO3 layers across intervening layers of paramagnetic CaRuO3. Finally, we utilize the system of LaNiO3/CaMnO3 to separate the effects of intermixing and interfacial electronic reconstruction and conclusively demonstrate intrinsic interfacial ferromagnetism at the interface between a paramagnetic metal and an antiferromagnetic insulator. We find that the emergent ferromagnetism is stabilized through interfacial double exchange and that the leakage of conduction electrons from the paramagnetic metal to the antiferromagnetic insulator is critical to establishing the ferromagnetic ground state.
DFT+DMFT study of strain and interface effects in d1 and d2 t2 g-perovskites
NASA Astrophysics Data System (ADS)
Sclauzero, Gabriele; Dymkowski, Krzysztof; Ederer, Claude
2015-03-01
Metal-insulator transitions in thin films of early-transition metal correlated oxides are linked to both epitaxial strain and electronic reconstruction at the film/substrate interface. We separately address these two key factors for LaTiO3 and LaVO3 through density functional theory plus dynamical mean-field theory (DFT+DMFT). We find that mere epitaxial strain suffices to induce an insulator-to-metal transition in LaTiO3, but not in LaVO3, in agreement with recent experiments. We show that this difference can be explained by the combined effect of strain-induced changes in the crystal field splitting of t2 g orbitals and different orbital filling in these two materials. The role of the interface is investigated through DFT+DMFT simulations of LaVO3/SrTiO3 heterostructures with varying superlattice periodicities and substrate terminations. Our aim is to assess whether the metallicity observed at the LaVO3/SrTiO3 interface could be driven by pure electronic reconstruction effects, rather than structural or stoichiometric reasons (such as, e.g., O-related defects).
Influence of Growth Parameters and Annealing on Properties of MBE Grown GaAsSbN SQWs
NASA Technical Reports Server (NTRS)
Wu, Liangjin; Iyer, Shanthi; Nunna, Kalyan; Bharatan, Sudhakar; Li, Jia; Collis, Ward J.
2005-01-01
In this paper we report the growth of GaAsSbN/GaAs single quantum well (SQW) heterostructures by molecular beam epitaxy (MBE) and their properties. A systematic study has been carried out to determine the effect of growth conditions, such as the source shutter opening sequence and substrate temperature, on the structural and optical properties of the layers. The substrate temperatures in the range of 450-470 C were found to be optimal. Simultaneous opening of the source shutters (SS) resulted in N incorporation almost independent of substrate temperature and Sb incorporation higher at lower substrate temperatures. The effects of ex-situ annealing in nitrogen ambient and in-situ annealing under As ovepressure on the optical properties of the layers have also been investigated. A significant increase in photoluminescence (PL) intensity with reduced full width at half maxima (FWHM) in conjunction with a blue shift in the emission energy was observed on 10 annealing the samples. In in-situ annealed samples, the PL line shapes were more symmetric and the temperature dependence of the PL peak energy indicated significant decrease in the exciton localization energy as exhibited by a less pronounced S-shaped curve. The inverted S-shaped curve observed in the temperature dependence of PL FWHM is also discussed. 1.61 micrometer emission with FWHM of 25 meV at 20K has been obtained in in-situ annealed GaAsSbN/GaAs SQW grown at 470 C by SS.
Broderick, Christopher A; Jin, Shirong; Marko, Igor P; Hild, Konstanze; Ludewig, Peter; Bushell, Zoe L; Stolz, Wolfgang; Rorison, Judy M; O'Reilly, Eoin P; Volz, Kerstin; Sweeney, Stephen J
2017-04-19
The potential to extend the emission wavelength of photonic devices further into the near- and mid-infrared via pseudomorphic growth on conventional GaAs substrates is appealing for a number of communications and sensing applications. We present a new class of GaAs-based quantum well (QW) heterostructure that exploits the unusual impact of Bi and N on the GaAs band structure to produce type-II QWs having long emission wavelengths with little or no net strain relative to GaAs, while also providing control over important laser loss processes. We theoretically and experimentally demonstrate the potential of GaAs 1-x Bi x /GaN y As 1-y type-II QWs on GaAs and show that this approach offers optical emission and absorption at wavelengths up to ~3 µm utilising strain-balanced structures, a first for GaAs-based QWs. Experimental measurements on a prototype GaAs 0.967 Bi 0.033 /GaN 0.062 As 0.938 structure, grown via metal-organic vapour phase epitaxy, indicate good structural quality and exhibit both photoluminescence and absorption at room temperature. The measured photoluminescence peak wavelength of 1.72 μm is in good agreement with theoretical calculations and is one of the longest emission wavelengths achieved on GaAs to date using a pseudomorphically grown heterostructure. These results demonstrate the significant potential of this new class of III-V heterostructure for long-wavelength applications.
NASA Astrophysics Data System (ADS)
Broderick, Christopher A.; Jin, Shirong; Marko, Igor P.; Hild, Konstanze; Ludewig, Peter; Bushell, Zoe L.; Stolz, Wolfgang; Rorison, Judy M.; O'Reilly, Eoin P.; Volz, Kerstin; Sweeney, Stephen J.
2017-04-01
The potential to extend the emission wavelength of photonic devices further into the near- and mid-infrared via pseudomorphic growth on conventional GaAs substrates is appealing for a number of communications and sensing applications. We present a new class of GaAs-based quantum well (QW) heterostructure that exploits the unusual impact of Bi and N on the GaAs band structure to produce type-II QWs having long emission wavelengths with little or no net strain relative to GaAs, while also providing control over important laser loss processes. We theoretically and experimentally demonstrate the potential of GaAs1-xBix/GaNyAs1-y type-II QWs on GaAs and show that this approach offers optical emission and absorption at wavelengths up to ~3 µm utilising strain-balanced structures, a first for GaAs-based QWs. Experimental measurements on a prototype GaAs0.967Bi0.033/GaN0.062As0.938 structure, grown via metal-organic vapour phase epitaxy, indicate good structural quality and exhibit both photoluminescence and absorption at room temperature. The measured photoluminescence peak wavelength of 1.72 μm is in good agreement with theoretical calculations and is one of the longest emission wavelengths achieved on GaAs to date using a pseudomorphically grown heterostructure. These results demonstrate the significant potential of this new class of III-V heterostructure for long-wavelength applications.
NASA Astrophysics Data System (ADS)
Kaplan, D.; Gong, Y.; Mills, K.; Swaminathan, V.; Ajayan, P. M.; Shirodkar, S.; Kaxiras, E.
2016-03-01
A detailed study of the excitation dependence of the photoluminescence (PL) from monolayers of MoS2 and WS2/MoS2 heterostructures grown by chemical vapor deposition on Si substrates has revealed that the luminescence from band edge excitons from MoS2 monolayers shows a linear dependence on excitation intensity for both above band gap and resonant excitation conditions. In particular, a band separated by ∼55 meV from the A exciton, referred to as the C band, shows the same linear dependence on excitation intensity as the band edge excitons. A band similar to the C band has been previously ascribed to a trion, a charged, three-particle exciton. However, in our study the C band does not show the 3/2 power dependence on excitation intensity as would be expected for a three-particle exciton. Further, the PL from the MoS2 monolayer in a bilayer WS2/MoS2 heterostructure, under resonant excitation conditions where only the MoS2 absorbs the laser energy, also revealed a linear dependence on excitation intensity for the C band, confirming that its origin is not due to a trion but instead a bound exciton, presumably of an unintentional impurity or a native point defect such as a sulfur vacancy. The PL from the WS2/MoS2 heterostructure, under resonant excitation conditions also showed additional features which are suggested to arise from the interface states at the heteroboundary. Further studies are required to clearly identify the origin of these features.
Broderick, Christopher A.; Jin, Shirong; Marko, Igor P.; Hild, Konstanze; Ludewig, Peter; Bushell, Zoe L.; Stolz, Wolfgang; Rorison, Judy M.; O’Reilly, Eoin P.; Volz, Kerstin; Sweeney, Stephen J.
2017-01-01
The potential to extend the emission wavelength of photonic devices further into the near- and mid-infrared via pseudomorphic growth on conventional GaAs substrates is appealing for a number of communications and sensing applications. We present a new class of GaAs-based quantum well (QW) heterostructure that exploits the unusual impact of Bi and N on the GaAs band structure to produce type-II QWs having long emission wavelengths with little or no net strain relative to GaAs, while also providing control over important laser loss processes. We theoretically and experimentally demonstrate the potential of GaAs1−xBix/GaNyAs1−y type-II QWs on GaAs and show that this approach offers optical emission and absorption at wavelengths up to ~3 µm utilising strain-balanced structures, a first for GaAs-based QWs. Experimental measurements on a prototype GaAs0.967Bi0.033/GaN0.062As0.938 structure, grown via metal-organic vapour phase epitaxy, indicate good structural quality and exhibit both photoluminescence and absorption at room temperature. The measured photoluminescence peak wavelength of 1.72 μm is in good agreement with theoretical calculations and is one of the longest emission wavelengths achieved on GaAs to date using a pseudomorphically grown heterostructure. These results demonstrate the significant potential of this new class of III-V heterostructure for long-wavelength applications. PMID:28422129
Growth and Properties of Lattice Matched GaAsSbN Epilayer on GaAs for Solar Cell Applications
NASA Technical Reports Server (NTRS)
Bharatan, Sudhakar; Iyer, Shanthi; Matney, Kevin; Collis, Ward J.; Nunna Kalyan; Li, Jia; Wu, Liangjin; McGuire, Kristopher; McNeil, Laurie E.
2006-01-01
The growth and properties of GaAsSbN single quantum wells (SQWs) are investigated in this work. The heterostructures were grown on GaAs substrates in an elemental solid source molecular beam epitaxy (MBE) system assisted with a RF plasma nitrogen source. A systematic study has been carried out to determine the influence of various growth conditions, such as the growth temperature and the source shutter-opening sequence, on the quality of the grown layers and the incorporation of N and Sb. The effects of ex situ and in situ annealing under As overpressure on the optical properties of the layers have also been investigated. Substrate temperature in the range of 450-470 C was found to be optimum. Simultaneous opening of the source shutters was found to yield sharper QW interfaces. N and Sb incorporations were found to depend strongly upon substrate temperatures and source shutter opening sequences. A significant increase in PL intensity with a narrowing of PL line shape and blue shift in emission energy were observed on annealing the GaAsSbN/GaAs SQW, with in situ annealing under As overpressure providing better results, compared to ex situ annealing.
Pyroelectric effect and lattice thermal conductivity of InN/GaN heterostructures
NASA Astrophysics Data System (ADS)
Hansdah, Gopal; Sahoo, Bijay Kumar
2018-06-01
The built-in-polarization (BIP) of InN/GaN heterostructures enhances Debye temperature, phonon mean free path and thermal conductivity of the heterostructure at room temperature. The variation of thermal conductivities (kp: including polarization mechanism and k: without polarization mechanism) with temperature predicts the existence of a transition temperature (Tp) between primary and secondary pyroelectric effect. Below Tp, kp is lower than k; while above Tp, kp is significantly contributed from BIP mechanism due to thermal expansion. A thermodynamic theory has been proposed to explain the result. The room temperature thermal conductivity of InN/GaN heterostructure with and without polarization is respectively 32 and 48 W m-1 K-1. The temperature Tp and room temperature pyroelectric coefficient of InN has been predicted as 120 K and -8.425 μC m-2 K-1, respectively which are in line with prior literature studies. This study suggests that thermal conductivity measurement in InN/GaN heterostructures can help to understand the role of phonons in pyroelectricity.
Chen, Xuanhu; Xu, Yang; Zhou, Dong; Yang, Sen; Ren, Fang-Fang; Lu, Hai; Tang, Kun; Gu, Shulin; Zhang, Rong; Zheng, Youdou; Ye, Jiandong
2017-10-25
The metastable α-phase Ga 2 O 3 is an emerging material for developing solar-blind photodetectors and power electronic devices toward civil and military applications. Despite its superior physical properties, the high quality epitaxy of metastable phase α-Ga 2 O 3 remains challenging. To this end, single crystalline α-Ga 2 O 3 epilayers are achieved on nonpolar ZnO (112̅0) substrates for the first time and a high performance Au/α-Ga 2 O 3 /ZnO isotype heterostructure-based Schottky barrier avalanche diode is demonstrated. The device exhibits self-powered functions with a dark current lower than 1 pA, a UV/visible rejection ratio of 10 3 and a detectivity of 9.66 × 10 12 cm Hz 1/2 W -1 . Dual responsivity bands with cutoff wavelengths at 255 and 375 nm are observed with their peak responsivities of 0.50 and 0.071 A W -1 at -5 V, respectively. High photoconductive gain at low bias is governed by a barrier lowing effect at the Au/Ga 2 O 3 and Ga 2 O 3 /ZnO heterointerfaces. The device also allows avalanche multiplication processes initiated by pure electron and hole injections under different illumination conditions. High avalanche gains over 10 3 and a low ionization coefficient ratio of electrons and holes are yielded, leading to a total gain over 10 5 and a high responsivity of 1.10 × 10 4 A W -1 . Such avalanche heterostructures with ultrahigh gains and bias-tunable UV detecting functionality hold promise for developing high performance solar-blind photodetectors.
Rathi, Servin; Lee, Inyeal; Lim, Dongsuk; Wang, Jianwei; Ochiai, Yuichi; Aoki, Nobuyuki; Watanabe, Kenji; Taniguchi, Takashi; Lee, Gwan-Hyoung; Yu, Young-Jun; Kim, Philip; Kim, Gil-Ho
2015-08-12
Lateral and vertical two-dimensional heterostructure devices, in particular graphene-MoS2, have attracted profound interest as they offer additional functionalities over normal two-dimensional devices. Here, we have carried out electrical and optical characterization of graphene-MoS2 heterostructure. The few-layer MoS2 devices with metal electrode at one end and monolayer graphene electrode at the other end show nonlinearity in drain current with drain voltage sweep due to asymmetrical Schottky barrier height at the contacts and can be modulated with an external gate field. The doping effect of MoS2 on graphene was observed as double Dirac points in the transfer characteristics of the graphene field-effect transistor (FET) with a few-layer MoS2 overlapping the middle part of the channel, whereas the underlapping of graphene have negligible effect on MoS2 FET characteristics, which showed typical n-type behavior. The heterostructure also exhibits a strongest optical response for 520 nm wavelength, which decreases with higher wavelengths. Another distinct feature observed in the heterostructure is the peak in the photocurrent around zero gate voltage. This peak is distinguished from conventional MoS2 FETs, which show a continuous increase in photocurrent with back-gate voltage. These results offer significant insight and further enhance the understanding of the graphene-MoS2 heterostructure.
Vacuum-deposited, nonpolymeric flexible organic light-emitting devices.
Gu, G; Burrows, P E; Venkatesh, S; Forrest, S R; Thompson, M E
1997-02-01
We demonstrate mechanically flexible, organic light-emitting devices (OLED's) based on the nonpolymetric thin-film materials tris-(8-hydroxyquinoline) aluminum (Alq(3)) and N, N(?) -diphenyl- N, N(?) -bis(3-methylphenyl)1- 1(?) biphenyl-4, 4(?) diamine (TPD). The single heterostructure is vacuum deposited upon a transparent, lightweight, thin plastic substrate precoated with a transparent, conducting indium tin oxide thin film. The flexible OLED performance is comparable with that of conventional OLED's deposited upon glass substrates and does not deteriorate after repeated bending. The large-area (~1 - cm>(2)) devices can be bent without failure even after a permanent fold occurs if they are on the convex substrate surface or over a bend radius of ~0.5>cm if they are on the concave surface. Such devices are useful for ultralightweight, flexible, and comfortable full-color flat panel displays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza
2015-11-23
Hexagonal boron nitride (h-BN) single-crystal domains were grown on cobalt (Co) substrates at a substrate temperature of 850–900 °C using plasma-assisted molecular beam epitaxy. Three-point star shape h-BN domains were observed by scanning electron microscopy, and confirmed by Raman and X-ray photoelectron spectroscopy. The h-BN on Co template was used for in situ growth of multilayer graphene, leading to an h-BN/graphene heterostructure. Carbon atoms preferentially nucleate on Co substrate and edges of h-BN and then grow laterally to form continuous graphene. Further introduction of carbon atoms results in layer-by-layer growth of graphene on graphene and lateral growth of graphene on h-BNmore » until it may cover entire h-BN flakes.« less
Fabrication and Gas-Sensing Properties of Ni-Silicide/Si Nanowires.
Hsu, Hsun-Feng; Chen, Chun-An; Liu, Shang-Wu; Tang, Chun-Kai
2017-12-01
Ni-silicide/Si nanowires were fabricated by atomic force microscope nano-oxidation on silicon-on-insulator substrates, selective wet etching, and reactive deposition epitaxy. Ni-silicide nanocrystal-modified Si nanowire and Ni-silicide/Si heterostructure multi-stacked nanowire were formed by low- and high-coverage depositions of Ni, respectively. The Ni-silicide/Si Schottky junction and Ni-silicide region were attributed high- and low-resistance parts of nanowire, respectively, causing the resistance of the Ni-silicide nanocrystal-modified Si nanowire and the Ni-silicide/Si heterostructure multi-stacked nanowire to be a little higher and much lower than that of Si nanowire. An O 2 sensing device was formed from a nanowire that was mounted on Pt electrodes. When the nanowires exposed to O 2 , the increase in current in the Ni-silicide/Si heterostructure multi-stacked nanowire was much larger than that in the other nanowires. The Ni-silicide nanocrystal-modified Si nanowire device had the highest sensitivity. The phenomenon can be explained by the formation of a Schottky junction at the Ni-silicide/Si interface in these two types of Ni-Silicide/Si nanowire and the formation of a hole channel at the silicon nanowire/native oxide interface after exposing the nanowires to O 2 .
Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Shisheng, E-mail: shishenglin@zju.edu.cn; Chen, Hongsheng; State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027
2015-11-09
We report a type of solar cell based on graphene/CdTe Schottky heterostructure, which can be improved by surface engineering as graphene is atomic thin. By coating a layer of ultrathin CdSe quantum dots onto graphene/CdTe heterostructure, the power conversion efficiency is increased from 2.08% to 3.10%. Photo-induced doping is mainly accounted for this enhancement, as evidenced by field effect transport, Raman, photoluminescence, and quantum efficiency measurements. This work demonstrates a feasible way of improving the performance of graphene/semiconductor heterostructure solar cells by combining one dimensional with two dimensional materials.
Novel Design of Type I High Power Mid-IR Diode Lasers for Spectral Region 3 - 4.2 Microns
2014-09-25
multifold improvement of the device characteristics. Cascade pumping was achieved utilizing efficient interband tunneling through "leaky" window in band...Initially cascade pumping scheme was applied to laser heterostructures utilizing gain sections based on either intersubband [1] or type-II interband ...active regions, metamorphic virtual substrate and cascade pumping scheme. Cascade pumping of type-I quantum well gain section opened the whole new
2014-01-01
Taniguchi Advanced Materials Laboratory National Institute for Materials Science 1–1 Namiki, Tsukuba , 305–0044 , Japan Prof. J. Hone Department...of Mechanical Engineering Columbia University New York , NY , 10027 , USA DOI : 10.1002/adma.201304973 The growth of high-quality organic...vdW heterostructures, combined with recent progress on large-area growth of layered materials , [ 6,7 ] provides new opportunities for the scalable
Low-bandgap, monolithic, multi-bandgap, optoelectronic devices
Wanlass, Mark W.; Carapella, Jeffrey J.
2016-01-05
Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.
Optical absorption in planar graphene superlattice: The role of structural parameters
NASA Astrophysics Data System (ADS)
Azadi, L.; Shojaei, S.
2018-04-01
We theoretically studied the optically driven interband transitions in a planar graphene superlattices (PGSL) formed by patterning graphene sheet on laterally hetrostructured substrate as Sio2/hBN. A tunable optical transitions between minibands is observed based on engineering structural parameters. We derive analytically expression for optical absorption from two-band model. Considerable optical absorption is obtained for different ratios between widths of heterostructured substrate and is explained analytically from the view point of wavefunction engineering and miniband dispersion, in details. The role of different statuses of polarization as circular and linear are considered. Our study paves a way toward the control of optical properties of PGSLs to be implemented in optoelectronics devices.
Tuning the properties of an MgO layer for spin-polarized electron transport
NASA Astrophysics Data System (ADS)
Zhao, Chong-Jun; Ding, Lei; Zhao, Zhi-Duo; Zhang, Peng; Cao, Xing-Zhong; Wang, Bao-Yi; Zhang, Jing-Yan; Yu, Guang-Hua
2014-08-01
The influence of substrate temperature and annealing on quality/microstructural evolution of MgO, as well as the resultant magnetoresistance (MR) ratio, has been investigated. It has been found that the crystallinity of MgO in the MgO/NiFe/MgO heterostructures gradually improves with increasing substrate temperature. This behavior facilitates the transport of spin-polarized electrons, resulting in a high MR value. After annealing, the formation of vacancy clusters in MgO layers observed through positron annihilation spectroscopy leads to an increase in MR at different levels because of the crystallinity improvement of MgO. However, these vacancy clusters as another important defect can limit further improvement in MR.
Low-bandgap, monolithic, multi-bandgap, optoelectronic devices
Wanlass, Mark W.; Carapella, Jeffrey J.
2014-07-08
Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.
Low-bandgap, monolithic, multi-bandgap, optoelectronic devices
Wanlass, Mark W.; Carapella, Jeffrey J.
2016-03-22
Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.
Improved photoelectrochemical performance of BiVO4/MoO3 heterostructure thin films
NASA Astrophysics Data System (ADS)
Kodan, Nisha; Mehta, B. R.
2018-05-01
Bismuth vanadate (BiVO4) and Molybdenum trioxide (MoO3) thin films have been prepared by RF sputtering technique. BiVO4 thin films were deposited on indium doped tin oxide (In: SnO2; ITO) substrates at room temperature and 80W applied rf power. The prepared BiVO4 thin films were further annealed at 450°C for 2 hours in air to obtain crystalline monoclinic phase and successively coated with MoO3 thin films deposited at 150W rf power and 400°C for 30 minutes. The effect of coupling BiVO4 and MoO3 on the structural, optical and photoelectrochemical (PEC) properties have been studied. Optical studies reveal that coupling of BiVO4 and MoO3 results in improvement of optical absorption in visible region of solar spectrum. PEC study shows approximate 3-fold and 38-fold increment in photocurrent values of BiVO4/MoO3 (0.38 mA/cm2) heterostructure thin film as compared to MoO3 (0.15 mA/cm2) and BiVO4 (10 µA/cm2) thin films at applied bias of 1 V vs Ag/AgCl in 0.5 M Na2SO4 (pH=7) electrolyte.
Progress on Electronic and Optoelectronic Devices of 2D Layered Semiconducting Materials.
Wang, Feng; Wang, Zhenxing; Jiang, Chao; Yin, Lei; Cheng, Ruiqing; Zhan, Xueying; Xu, Kai; Wang, Fengmei; Zhang, Yu; He, Jun
2017-09-01
2D layered semiconducting materials (2DLSMs) represent the thinnest semiconductors, holding many novel properties, such as the absence of surface dangling bonds, sizable band gaps, high flexibility, and ability of artificial assembly. With the prospect of bringing revolutionary opportunities for electronic and optoelectronic applications, 2DLSMs have prospered over the past twelve years. From materials preparation and property exploration to device applications, 2DLSMs have been extensively investigated and have achieved great progress. However, there are still great challenges for high-performance devices. In this review, we provide a brief overview on the recent breakthroughs in device optimization based on 2DLSMs, particularly focussing on three aspects: device configurations, basic properties of channel materials, and heterostructures. The effects from device configurations, i.e., electrical contacts, dielectric layers, channel length, and substrates, are discussed. After that, the affect of the basic properties of 2DLSMs on device performance is summarized, including crystal defects, crystal symmetry, doping, and thickness. Finally, we focus on heterostructures based on 2DLSMs. Through this review, we try to provide a guide to improve electronic and optoelectronic devices of 2DLSMs for achieving practical device applications in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel
2015-06-30
Thin films of topological insulators are often capped with an insulating layer since topological insulators are known to be fragile to degradation. However, capping can hinder the observation of novel transport properties of the surface states. To understand the influence of capping on the surface states, it is crucial to understand the crystal structure and the atomic arrangement at the interfaces. Here, we use x-ray diffraction to establish the crystal structure of magnetic topological insulator Cr-doped (Bi,Sb) 2Te 3 (CBST) films grown on SrTiO 3 (1 1 1) substrates with and without a Te capping layer. We find that bothmore » the film and capping layer are single crystal and that the crystal quality of the film is independent of the presence of the capping layer, but that x-rays cause sublimation of the CBST film, which is prevented by the capping layer. Our findings show that the different transport properties of capped films cannot be attributed to a lower crystal quality but to a more subtle effect such as a different electronic structure at the interface with the capping layer. Our results on the crystal structure and atomic arrangements of the topological heterostructure will enable modelling the electronic structure and design of topological heterostructures.« less
Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors.
Karimi, Mohammad; Jain, Vishal; Heurlin, Magnus; Nowzari, Ali; Hussain, Laiq; Lindgren, David; Stehr, Jan Eric; Buyanova, Irina A; Gustafsson, Anders; Samuelson, Lars; Borgström, Magnus T; Pettersson, Håkan
2017-06-14
The possibility to engineer nanowire heterostructures with large bandgap variations is particularly interesting for technologically important broadband photodetector applications. Here we report on a combined study of design, fabrication, and optoelectronic properties of infrared photodetectors comprising four million n + -i-n + InP nanowires periodically ordered in arrays. The nanowires were grown by metal-organic vapor phase epitaxy on InP substrates, with either a single or 20 InAsP quantum discs embedded in the i-segment. By Zn compensation of the residual n-dopants in the i-segment, the room-temperature dark current is strongly suppressed to a level of pA/NW at 1 V bias. The low dark current is manifested in the spectrally resolved photocurrent measurements, which reveal strong photocurrent contributions from the InAsP quantum discs at room temperature with a threshold wavelength of about 2.0 μm and a bias-tunable responsivity reaching 7 A/W@1.38 μm at 2 V bias. Two different processing schemes were implemented to study the effects of radial self-gating in the nanowires induced by the nanowire/SiO x /ITO wrap-gate geometry. Summarized, our results show that properly designed axial InP/InAsP nanowire heterostructures are promising candidates for broadband photodetectors.
Li, Jian-Cai; Wei, Zeng-Xi; Huang, Wei-Qing; Ma, Li-Li; Hu, Wangyu; Peng, Ping; Huang, Gui-Fang
2018-02-05
A high light-absorption coefficient and long-range hot-carrier transport of hybrid organic-inorganic perovskites give huge potential to their composites in solar energy conversion and environmental protection. Understanding interfacial interactions and their effects are paramount for designing perovskite-based heterostructures with desirable properties. Herein, we systematically investigated the interfacial interactions in monolayer and few-layer SnS/CH 3 NH 3 PbI 3 heterostructures and their effects on the electronic and optical properties of these structures by density functional theory. It was found that the interfacial interactions in SnS/CH 3 NH 3 PbI 3 heterostructures were van der Waals (vdW) interactions, and they were found to be insensitive to the layer number of 2D SnS sheets. Interestingly, although their band gap decreased upon increasing the layer number of SnS, the near-gap electronic states and optical absorption spectra of these heterostructures were found to be strikingly similar. This feature was determined to be critical for the design of 2D layered SnS-based heterostructures. Strong absorption in the ultraviolet and visible-light regions, type II staggered band alignment at the interface, and few-layer SnS as an active co-catalyst make 2D SnS/CH 3 NH 3 PbI 3 heterostructures promising candidates for photocatalysis, photodetectors, and solar energy harvesting and conversion. These results provide first insight into the nature of interfacial interactions and are useful for designing hybrid organic-inorganic perovskite-based devices with novel properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Park, Beomjin; Park, Jaesung; Son, Jin Gyeong; Kim, Yong-Jin; Yu, Seong Uk; Park, Hyo Ju; Chae, Dong-Hun; Byun, Jinseok; Jeon, Gumhye; Huh, Sung; Lee, Seoung-Ki; Mishchenko, Artem; Hyun, Seung; Lee, Tae Geol; Han, Sang Woo; Ahn, Jong-Hyun; Lee, Zonghoon; Hwang, Chanyong; Novoselov, Konstantin S; Kim, Kwang S; Hong, Byung Hee; Kim, Jin Kon
2015-08-25
Precise graphene patterning is of critical importance for tailor-made and sophisticated two-dimensional nanoelectronic and optical devices. However, graphene-based heterostructures have been grown by delicate multistep chemical vapor deposition methods, limiting preparation of versatile heterostructures. Here, we report one-pot synthesis of graphene/amorphous carbon (a-C) heterostructures from a solid source of polystyrene via selective photo-cross-linking process. Graphene is successfully grown from neat polystyrene regions, while patterned cross-linked polystyrene regions turn into a-C because of a large difference in their thermal stability. Since the electrical resistance of a-C is at least 2 orders of magnitude higher than that for graphene, the charge transport in graphene/a-C heterostructure occurs through the graphene region. Measurement of the quantum Hall effect in graphene/a-C lateral heterostructures clearly confirms the reliable quality of graphene and well-defined graphene/a-C interface. The direct synthesis of patterned graphene from polymer pattern could be further exploited to prepare versatile heterostructures.
Complementary junction heterostructure field-effect transistor
Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.
1995-01-01
A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.
Complementary junction heterostructure field-effect transistor
Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.
1995-12-26
A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.
Compound Semiconductors for Low-Power p-Channel Field-Effect Transistors
2009-07-01
making III–V FETs has been different than for silicon FETs. Growth techniques such as molecular beam epitaxy (MBE) are used to create heterostructures in...lities for III–V compounds. This article reviews the recent work to enhance hole mobilities in antimonide-based quantum wells. Epitaxial heterostructures...article reviews the recent work to enhance hole mobilities in antimonide-based quantum wells. Epitaxial heterostructures have been grown with the channel
Lin, Yung-Chen; Bilgin, Ismail; Ahmed, Towfiq; ...
2016-09-21
Heterostructuring provides novel opportunities for exploring emergent phenomena and applications by developing designed properties beyond those of homogeneous materials. Advances in nanoscience enable the preparation of heterostructures formed incommensurate materials. Two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, are of particular interest due to their distinct physical characteristics. There have been recent changes in new research areas related to 2D/2D heterostructures. But, other heterostructures such as 2D/three-dimensional (3D) materials have not been thoroughly studied yet although the growth of 3D materials on 2D materials creating 2D/3D heterostructures with exceptional carrier transport properties has been reported. Here also wemore » report a novel heterostructure composed of Ge and monolayer MoS 2, prepared by chemical vapor deposition. A single crystalline Ge (110) thin film was grown on monolayer MoS 2. The electrical characteristics of Ge and MoS 2 in the Ge/MoS 2 heterostructure were remarkably different from those of isolated Ge and MoS 2. The field-effect conductivity type of the monolayer MoS 2 is converted from n-type to p-type by growth of the Ge thin film on top of it. Undoped Ge on MoS 2 is highly conducting. The observations can be explained by charge transfer in the heterostructure as opposed to chemical doping via the incorporation of impurities, based on our first-principles calculations.« less
Optical, photonic and optoelectronic properties of graphene, h-NB and their hybrid materials
NASA Astrophysics Data System (ADS)
Wang, Jingang; Ma, Fengcai; Liang, Wenjie; Wang, Rongming; Sun, Mengtao
2017-06-01
Because of the linear dispersion relation and the unique structure of graphene's Dirac electrons, which can be tuned the ultra-wide band, this enables more applications in photonics, electronics and plasma optics. As a substrate, hexagonal boron nitride (h-BN) has an atomic level flat surface without dangling bonds, a weak doping effect and a response in the far ultraviolet area. So the graphene/h-BN heterostructure is very attractive due to its unique optical electronics characteristics. Graphene and h-BN which are stacked in different ways could open the band gap of graphene, and form a moiré pattern for graphene on h-BN and the superlattice in the Brillouin zone, which makes it possible to build photoelectric devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egorov, A. Yu., E-mail: anton@beam.ioffe.ru; Karachinsky, L. Ya.; Novikov, I. I.
Possible design concepts for long-wavelength vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range on GaAs substrates are suggested. It is shown that a metamorphic GaAs–InGaAs heterostructure with a thin buffer layer providing rapid transition from the lattice constant of GaAs to that of In{sub x}Ga{sub 1–x}As with an indium fraction of x < 0.3 can be formed by molecular-beam epitaxy. Analysis by transmission electron microscopy demonstrated the effective localization of mismatch dislocations in the thin buffer layer and full suppression of their penetration into the overlying InGaAs metamorphic layer.
Interface Schottky barrier engineering via strain in metal-semiconductor composites
NASA Astrophysics Data System (ADS)
Ma, Xiangchao; Dai, Ying; Yu, Lin; Huang, Baibiao
2016-01-01
The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation demonstrates that strain can be an effective way to decrease the interface SBH and that the n-type SBH can be more effectively decreased than the p-type SBH. Astonishingly, strain affects the interface SBH mainly by changing the intrinsic properties of Au and TiO2, whereas the interfacial potential alignment is almost independent of strain due to two opposite effects, which are induced by strain at the interfacial region. These observed trends can be understood on the basis of the general free-electron gas model of typical metals, the tight-binding theory and the crystal-field theory, which suggest that similar trends may be generalized for many other metal-semiconductor heterostructures. Given the commonness and tunability of strain in typical heterostructures, we anticipate that the tunability of the interface SBH with strain described here can provide an alternative effective way for realizing more efficient applications of relevant heterostructures.The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation demonstrates that strain can be an effective way to decrease the interface SBH and that the n-type SBH can be more effectively decreased than the p-type SBH. Astonishingly, strain affects the interface SBH mainly by changing the intrinsic properties of Au and TiO2, whereas the interfacial potential alignment is almost independent of strain due to two opposite effects, which are induced by strain at the interfacial region. These observed trends can be understood on the basis of the general free-electron gas model of typical metals, the tight-binding theory and the crystal-field theory, which suggest that similar trends may be generalized for many other metal-semiconductor heterostructures. Given the commonness and tunability of strain in typical heterostructures, we anticipate that the tunability of the interface SBH with strain described here can provide an alternative effective way for realizing more efficient applications of relevant heterostructures. Electronic supplementary information (ESI) available: The changes of Au 5d DOS, valence bands of TiO2, the interfacial bond length and interfacial energy with strain, and the local DOS results for the change of SBH with strain. See DOI: 10.1039/c5nr05583k
Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures.
Xiao, Di; Zhu, Wenguang; Ran, Ying; Nagaosa, Naoto; Okamoto, Satoshi
2011-12-20
Topological insulators are characterized by a non-trivial band topology driven by the spin-orbit coupling. To fully explore the fundamental science and application of topological insulators, material realization is indispensable. Here we predict, based on tight-binding modelling and first-principles calculations, that bilayers of perovskite-type transition-metal oxides grown along the [111] crystallographic axis are potential candidates for two-dimensional topological insulators. The topological band structure of these materials can be fine-tuned by changing dopant ions, substrates and external gate voltages. We predict that LaAuO(3) bilayers have a topologically non-trivial energy gap of about 0.15 eV, which is sufficiently large to realize the quantum spin Hall effect at room temperature. Intriguing phenomena, such as fractional quantum Hall effect, associated with the nearly flat topologically non-trivial bands found in e(g) systems are also discussed.
NASA Astrophysics Data System (ADS)
Abramkin, D. S.; Gutakovskii, A. K.; Shamirzaev, T. S.
2018-03-01
The experimental ascertainment of band alignment type for semiconductor heterostructures with diffused interfaces is discussed. A method based on the analysis of the spectral shift of photoluminescence (PL) band with excitation density (Pex) that takes into account state filling and band bending effects on the PL band shift is developed. It is shown that the shift of PL band maximum position is proportional to ℏωmax ˜ (Ue + Uh).ln(Pex) + b.Pex1/3, where Ue (Uh) are electron (hole) Urbach energy tail, and parameter b characterizes the effect of band bending or is equal to zero for heterostructures with type-II or type-I band alignment, respectively. The method was approved with InAs/AlAs, GaAs/AlAs, GaSb/AlAs, and AlSb/AlAs heterostructures containing quantum wells.
NASA Astrophysics Data System (ADS)
Kim, Younghyun; Sung, Yunsu; Yang, Jung-Tack; Choi, Woo-Young
2018-02-01
The characteristics of high-power broad-area laser diodes with the improved heat sinking structure are numerically analyzed by a technology computer-aided design based self-consistent electro-thermal-optical simulation. The high-power laser diodes consist of a separate confinement heterostructure of a compressively strained InGaAsP quantum well and GaInP optical cavity layers, and a 100-μm-wide rib and a 2000-μm long cavity. In order to overcome the performance deteriorations of high-power laser diodes caused by self-heating such as thermal rollover and thermal blooming, we propose the high-power broad-area laser diode with improved heat-sinking structure, which another effective heat-sinking path toward the substrate side is added by removing a bulk substrate. It is possible to obtain by removing a 400-μm-thick GaAs substrate with an AlAs sacrificial layer utilizing well-known epitaxial liftoff techniques. In this study, we present the performance improvement of the high-power laser diode with the heat-sinking structure by suppressing thermal effects. It is found that the lateral far-field angle as well as quantum well temperature is expected to be improved by the proposed heat-sinking structure which is required for high beam quality and optical output power, respectively.
2011-01-01
The growth of high mobility two-dimensional hole gases (2DHGs) using GaAs-GaAlAs heterostructures has been the subject of many investigations. However, despite many efforts hole mobilities in Be-doped structures grown on (100) GaAs substrate remained considerably lower than those obtained by growing on (311)A oriented surface using silicon as p-type dopant. In this study we will report on the properties of hole traps in a set of p-type Be-doped Al0.29Ga0.71As samples grown by molecular beam epitaxy on (100) and (311)A GaAs substrates using deep level transient spectroscopy (DLTS) technique. In addition, the effect of the level of Be-doping concentration on the hole deep traps is investigated. It was observed that with increasing the Be-doping concentration from 1 × 1016 to 1 × 1017 cm-3 the number of detected electrically active defects decreases for samples grown on (311)A substrate, whereas, it increases for (100) orientated samples. The DLTS measurements also reveal that the activation energies of traps detected in (311)A are lower than those in (100). From these findings it is expected that mobilities of 2DHGs in Be-doped GaAs-GaAlAs devices grown on (311)A should be higher than those on (100). PMID:21711687
Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors
NASA Astrophysics Data System (ADS)
Zhang, Yuewei; Joishi, Chandan; Xia, Zhanbo; Brenner, Mark; Lodha, Saurabh; Rajan, Siddharth
2018-06-01
In this work, we demonstrate modulation-doped β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors. The maximum sheet carrier density for a two-dimensional electron gas (2DEG) in a β-(AlxGa1-x)2O3/Ga2O3 heterostructure is limited by the conduction band offset and parasitic channel formation in the barrier layer. We demonstrate a double heterostructure to realize a β-(AlxGa1-x)2O3/Ga2O3/(AlxGa1-x)2O3 quantum well, where electrons can be transferred from below and above the β-Ga2O3 quantum well. The confined 2DEG charge density of 3.85 × 1012 cm-2 was estimated from the low-temperature Hall measurement, which is higher than that achievable in a single heterostructure. Hall mobilities of 1775 cm2/V.s at 40 K and 123 cm2/V.s at room temperature were measured. Modulation-doped double heterostructure field effect transistors showed a maximum drain current of IDS = 257 mA/mm, a peak transconductance (gm) of 39 mS/mm, and a pinch-off voltage of -7.0 V at room temperature. The three-terminal off-state breakdown measurement on the device with a gate-drain spacing (LGD) of 1.55 μm showed a breakdown voltage of 428 V, corresponding to an average breakdown field of 2.8 MV/cm. The breakdown measurement on the device with a scaled gate-drain spacing of 196 nm indicated an average breakdown field of 3.2 MV/cm. The demonstrated modulation-doped β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistor could act as a promising candidate for high power and high frequency device applications.
Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate
2013-01-01
Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques. PMID:23448090
Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate.
Wei, Xianqi; Zhao, Ranran; Shao, Minghui; Xu, Xijin; Huang, Jinzhao
2013-02-28
Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques.
NASA Astrophysics Data System (ADS)
Aikawa, Masaki; Onuki, Yuya; Hayasaka, Natsuki; Nishiyama, Tetsuo; Kamada, Naoki; Han, Xu; Kallarasan Periyanayagam, Gandhi; Uchida, Kazuki; Sugiyama, Hirokazu; Shimomura, Kazuhiko
2018-02-01
The bonding-temperature-dependent lasing characteristics of 1.5 a µm GaInAsP laser diode (LD) grown on a directly bonded InP/Si substrate were successfully obtained. We have fabricated the InP/Si substrate using a direct hydrophilic wafer bonding technique at bonding temperatures of 350, 400, and 450 °C, and deposited GaInAsP/InP double heterostructure layers on this InP/Si substrate. The surface conditions, X-ray diffraction (XRD) analysis, photoluminescence (PL) spectra, and electrical characteristics after the growth were compared at these bonding temperatures. No significant differences were confirmed in X-ray diffraction analysis and PL spectra at these bonding temperatures. We realized the room-temperature lasing of the GaInAsP LD on the InP/Si substrate bonded at 350 and 400 °C. The threshold current densities were 4.65 kA/cm2 at 350 °C and 4.38 kA/cm2 at 400 °C. The electrical resistance was found to increase with annealing temperature.
Self-organization of palladium nanoislands on GaN and AlxGa1-xN/GaN heterostructures
NASA Astrophysics Data System (ADS)
Stafiniak, Andrzej; Szymański, Tomasz; Paszkiewicz, Regina
2017-12-01
We report on systematic study on the dewetting process of thin Pd layer and self-organized Pd nano-islands on SiO2, GaN and AlxGa1-xN/GaN heterostructures with various Al content. The influence of factors such as the thickness of metal layer, type of top layer of AlGaN/GaN heterostructures, temperature and time of annealing process on the dimensions, shapes and density of Pd islands was analyzed. Comparing the behavior of self-organization of Pd islands on Al0.25Ga0.75N/GaN and SiO2 we can conclude that solid-state dewetting process on SiO2 occures much faster than on Al0.25Ga0.75N. For substrates with SiO2 this process requires less energy and can arise for thicker layer. On the Al0.25Ga0.75N surface the islands take more crystalline shape which is probably due to surface reconstruction of Pd-Ga alloy thin layer on interface. For thin metal layer the coalescence of islands into larger islands similar to Ostwald ripening mechanism was observed. Greater surface roughness of AlxGa1-xN/GaN heterostructures with higher Al content causes an increase of surface density of islands and the reduction of their sizes which improves the roundness. In case of GaN and AlxGa1-xN layers with Al content lower than 20%, the surface degradation caused by annealing process was observed. Probably, this is due to the decomposition of layers with gallium droplet formation on catalytic metal islands.
Novel Engineered Compound Semiconductor Heterostructures for Advanced Electronics Applications
1992-06-22
Mechanism of light -induced reactivation of acceptors in p-type hydrogenated gallium arsenide. I. Szafranek, M. Szafranek, and G.E. Stillman. Phys. Rev.B...observed in these data. The heterojunc- techniques employed were first developed in tion is illuminated through the InP substrate with the light of GaAs-Al... light . The photocurrent was detected using conventional chopper and lock-in amplifier ’ 1h s techniques. A pyroelectric detector was used as a reference
Qi, Zhengqing John; Hong, Sung Ju; Rodríguez-Manzo, Julio A; Kybert, Nicholas J; Gudibande, Rajatesh; Drndić, Marija; Park, Yung Woo; Johnson, A T Charlie
2015-03-25
CVD graphene devices on stacked CVD hexagonal boron nitride (hBN) are demonstrated using a novel low-contamination transfer method, and their electrical performance is systematically compared to devices on SiO(2). An order of magnitude improvement in mobility, sheet resistivity, current density, and sustained power is reported when the oxide substrate is covered with five-layer CVD hBN. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ding, Yi-min; Shi, Jun-jie; Zhang, Min; Zhu, Yao-hui; Wu, Meng; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang
2018-07-01
Within the framework of the spin-polarized density-functional theory, we have studied the electronic and magnetic properties of InSe/black-phosphorus (BP) heterostructure doped with 3d transition-metal (TM) atoms from Sc to Zn. The calculated binding energies show that TM-atom doping in the van der Waals (vdW) gap of InSe/BP heterostructure is energetically favorable. Our results indicate that magnetic moments are induced in the Sc-, Ti-, V-, Cr-, Mn- and Co-doped InSe/BP heterostructures due to the existence of non-bonding 3d electrons. The Ni-, Cu- and Zn-doped InSe/BP heterostructures still show nonmagnetic semiconductor characteristics. Furthermore, in the Fe-doped InSe/BP heterostructure, the half-metal property is found and a high spin polarization of 100% at the Fermi level is achieved. The Cr-doped InSe/BP has the largest magnetic moment of 4.9 μB. The Sc-, Ti-, V-, Cr- and Mn-doped InSe/BP heterostructures exhibit antiferromagnetic ground state. Moreover, the Fe- and Co-doped systems display a weak ferromagnetic and paramagnetic coupling, respectively. Our studies demonstrate that the TM doping in the vdW gap of InSe/BP heterostructure is an effective way to modify its electronic and magnetic properties.
Interface thermal conductance of van der Waals monolayers on amorphous substrates
NASA Astrophysics Data System (ADS)
Correa, Gabriela C.; Foss, Cameron J.; Aksamija, Zlatan
2017-03-01
Heterostructures based on atomic monolayers are emerging as leading materials for future energy efficient and multifunctional electronics. Due to the single atom thickness of monolayers, their properties are strongly affected by interactions with the external environment. We develop a model for interface thermal conductance (ITC) in an atomic monolayer van der Waals bonded to a disordered substrate. Graphene on SiO2 is initially used in our model and contrasted against available experimental data; the model is then applied to monolayer molybdenum disulfide (MoS2) on SiO2 substrate. Our findings show the dominant carrier of heat in both graphene and MoS2 in the cross-plane direction is the flexural (ZA) phonon mode, owing to the large overlap between graphene ZA and substrate vibrational density of states. The rate of phonon transfer across the interface depends quadratically on the substrate coupling constant K a , but this interaction also causes a lifting of the lowest flexural phonon modes. As a result, ITC depends roughly linearly on the strength of the coupling between a monolayer and its substrate. We conclude that, in both graphene and MoS2 on SiO2, substrate adhesion plays a strong role in determining ITC, requiring further study of substrate coupling in TMDCs.
Optical Properties of Nanoscale Bismuth Selenide and Its Heterocrystals
NASA Astrophysics Data System (ADS)
Vargas, Anthony
Over the past 12 years since the groundbreaking work on graphene, the field of 2D layered materials has grown by leaps and bounds as more materials are theoretically predicted and experimentically verified. These materials and their unique electronic, optical, and mechanical properties have inspired the scientific community to explore and investigate novel, fundamental physical phenomena as well create and refine technological devices which leverage the host of unique benefits which these materials possess. In the past few years, this burgeoning field has heavily moved towards combining layers of various materials into novel heterostructures. These heterostructures are an exciting area of research because of the plethora of exciting possibilities and results which arise due to the large number of heterostructure combinations and configurations. Particularly, the research into the optical properties of these layered materials and their heterostructures under confinement provides another exciting avenue for developing optoelectric devices. In this dissertation, I present work on the synthesis of Bi2Se 3 nanostructures via chemical vapor deposition (CVD) and the study of the optical properties of these nanostructures and their heterostructures with MoS2. The bulk of the current published work on Bi2Se 3 has focused on the exotic topological properties of its surface states, both interesting fundamental physics purposes as well as for studying avenues for spintronics. In contrast, the work presented here focuses on studying the optical properties of Bi2Se3 nanostructures and how these properties evolve when subjected to confinement. Specifically, the absorbance of singlecrystal Bi2Se3 with sizes tailored down to a few nanometers in diameter and a few quintuple layers (QLs) in thickness. We find a dramatically large bandgap, Eg ≥ 2.5 eV, in the smallest particles which is much higher than that seen in 1QL measurements taken with ARPES. Additionally, utilizing photoluminescence (PL) measurements of CVD-grown Bi 2Se3 nanoplates with few QL thickness and effective diameters in the tens of nanometers, Bi2Se3 nanoplatelets show a strong PL response with photon energies, Eph, in the ˜2.1-2.3 eV region. Annealing of these samples at 200?C for 4 hours increases the PL intensity by a factor of 2.4 to 3 for nanoscale Bi2Se3. Furthermore, this work investigates the synthesis of the novel Bi2Se3-MoS 2 heterocrystal that arises from epitaxial growth of Bi2Se 3 on MoS2 substrates. These heterocrystals consist of n layers of Bi2Se3 perfectly rotationally-aligned epitaxially with the monolayer MoS2 substrate. Investigation into these heterocystals produced results which include 100% PL-suppression of the MoS2 PL response, precisely tunable band-gap ranging from 1.1eV ? 0.75 eV, and a spectacular wide-band enhancement of photo-absorption over nearly the entire solar spectral wavelengths. Finally, a simple laser-treatment appears to dramatically reverse these changes, attributed to breakdown of the rotational congruency between the MoS2 and Bi2Se3 layers. These heterocrystals have immense potentials for novel physics and applications in nanoelectronics, optoelectronics and energy sciences at the atomically-thin scale.
Three-dimensional Architecture Enabled by Strained Two-dimensional Material Heterojunction.
Lou, Shuai; Liu, Yin; Yang, Fuyi; Lin, Shuren; Zhang, Ruopeng; Deng, Yang; Wang, Michael; Tom, Kyle B; Zhou, Fei; Ding, Hong; Bustillo, Karen C; Wang, Xi; Yan, Shancheng; Scott, Mary; Minor, Andrew; Yao, Jie
2018-03-14
Engineering the structure of materials endows them with novel physical properties across a wide range of length scales. With high in-plane stiffness and strength, but low flexural rigidity, two-dimensional (2D) materials are excellent building blocks for nanostructure engineering. They can be easily bent and folded to build three-dimensional (3D) architectures. Taking advantage of the large lattice mismatch between the constituents, we demonstrate a 3D heterogeneous architecture combining a basal Bi 2 Se 3 nanoplate and wavelike Bi 2 Te 3 edges buckling up and down forming periodic ripples. Unlike 2D heterostructures directly grown on substrates, the solution-based synthesis allows the heterostructures to be free from substrate influence during the formation process. The balance between bending and in-plane strain energies gives rise to controllable rippling of the material. Our experimental results show clear evidence that the wavelengths and amplitudes of the ripples are dependent on both the widths and thicknesses of the rippled material, matching well with continuum mechanics analysis. The rippled Bi 2 Se 3 /Bi 2 Te 3 heterojunction broadens the horizon for the application of 2D materials heterojunction and the design and fabrication of 3D architectures based on them, which could provide a platform to enable nanoscale structure generation and associated photonic/electronic properties manipulation for optoelectronic and electromechanic applications.
Naturally formed ultrathin V2O5 heteroepitaxial layer on VO2/sapphire(001) film
NASA Astrophysics Data System (ADS)
Littlejohn, Aaron J.; Yang, Yunbo; Lu, Zonghuan; Shin, Eunsung; Pan, KuanChang; Subramanyam, Guru; Vasilyev, Vladimir; Leedy, Kevin; Quach, Tony; Lu, Toh-Ming; Wang, Gwo-Ching
2017-10-01
Vanadium dioxide (VO2) and vanadium pentoxide (V2O5) thin films change their properties in response to external stimuli such as photons, temperature, electric field and magnetic field and have applications in electronics, optical devices, and sensors. Due to the multiple valence states of V and non-stoichiometry in thin films, it is challenging to grow epitaxial, single-phase V-oxide on a substrate, or a heterostructure of two epitaxial V-oxides. We report the formation of a heterostructure consisting of a few nm thick ultrathin V2O5 epitaxial layer on pulsed laser deposited tens of nm thick epitaxial VO2 thin films grown on single crystal Al2O3(001) substrates without post annealing of the VO2 film. The simultaneous observation of the ultrathin epitaxial V2O5 layer and VO2 epitaxial film is only possible by our unique reflection high energy electron diffraction pole figure analysis. The out-of-plane and in-plane epitaxial relationships are V2O5[100]||VO2[010]||Al2O3[001] and V2O5[03 2 bar ]||VO2[100]||Al2O3[1 1 bar 0], respectively. The existence of the V2O5 layer on the surface of the VO2 film is also supported by X-ray photoelectron spectroscopy and Raman spectroscopy.
Interdiffusion-driven synthesis of tetragonal chromium (III) oxide on BaTi O3
NASA Astrophysics Data System (ADS)
Asa, M.; Vinai, G.; Hart, J. L.; Autieri, C.; Rinaldi, C.; Torelli, P.; Panaccione, G.; Taheri, M. L.; Picozzi, S.; Cantoni, M.
2018-03-01
Interfaces play a crucial role in the study of novel phenomena emerging at heterostructures comprising metals and functional oxides. For this reason, attention should be paid to the interface chemistry, which can favor the interdiffusion of atomic species and, under certain conditions, lead to the formation of radically different compounds with respect to the original constituents. In this work, we consider Cr/BaTi O3 heterostructures grown on SrTi O3 (100) substrates. Chromium thin films (1-2 nm thickness) are deposited by molecular beam epitaxy on the BaTi O3 layer, and subsequently annealed in vacuum at temperatures ranging from 473 to 773 K. A disordered metallic layer is detected for annealing temperatures up to 573 K, whereas, at higher temperatures, we observe a progressive oxidation of chromium, which we relate to the thermally activated migration of oxygen from the substrate. The chromium oxidation state is +3 and the film shows a defective rocksalt structure, which grows lattice matched on the underlying BaTi O3 layer. One out of every three atoms of chromium is missing, producing an uncommon tetragonal phase with C r2O3 stoichiometry. Despite the structural difference with respect to the ordinary corundum α-C r2O3 phase, we demonstrate both experimentally and theoretically that the electronic properties of the two phases are, to a large extent, equivalent.
Theory of proximity-induced exchange coupling in graphene on hBN/(Co, Ni)
NASA Astrophysics Data System (ADS)
Zollner, Klaus; Gmitra, Martin; Frank, Tobias; Fabian, Jaroslav
2016-10-01
Graphene, being essentially a surface, can borrow some properties of an insulating substrate (such as exchange or spin-orbit couplings) while still preserving a great degree of autonomy of its electronic structure. Such derived properties are commonly labeled as proximity. Here we perform systematic first-principles calculations of the proximity exchange coupling, induced by cobalt (Co) and nickel (Ni) in graphene, via a few (up to three) layers of hexagonal boron nitride (hBN). We find that the induced spin splitting of the graphene bands is of the order of 10 meV for a monolayer of hBN, decreasing in magnitude but alternating in sign by adding each new insulating layer. We find that the proximity exchange can be giant if there is a resonant d level of the transition metal close to the Dirac point. Our calculations suggest that this effect could be present in Co heterostructures, in which a d level strongly hybridizes with the valence-band orbitals of graphene. Since this hybridization is spin dependent, the proximity spin splitting is unusually large, about 10 meV even for two layers of hBN. An external electric field can change the offset of the graphene and transition-metal orbitals and can lead to a reversal of the sign of the exchange parameter. This we predict to happen for the case of two monolayers of hBN, enabling electrical control of proximity spin polarization (but also spin injection) in graphene/hBN/Co structures. Nickel-based heterostructures show weaker proximity effects than cobalt heterostructures. We introduce two phenomenological models to describe the first-principles data. The minimal model comprises the graphene (effective) pz orbitals and can be used to study transport in graphene with proximity exchange, while the pz-d model also includes hybridization with d orbitals, which is important to capture the giant proximity exchange. Crucial to both models is the pseudospin-dependent exchange coupling, needed to describe the different spin splittings of the valence and conduction bands.
Optical properties of uniaxially strained graphene on transition metal dichalcogenide substrate
NASA Astrophysics Data System (ADS)
Goswami, Partha
2018-05-01
The uniaxially strained graphene monolayer on transition metal dichalcogenide (GrTMD) substrate, constituting a van der Waals heterostructure (vdWH), is found to possess unusual intra-band plasmon dispersion (ω ˜ q2/3) with stronger incarceration compared to that of a standalone, doped graphene for finite doping in the long wavelength limit. The intra-band absorbance of GrTMD is found to be an increasing (decreasing) function of the strain field (frequency) at a given frequency (strain field). It is also observed that whereas the strain field is responsible for the valley polarization, a Rashba coupling-dependent pseudo Zeeman term arising due to the interplay of substrate-induced interactions is found to bring about the spin degeneracy lifting and the gate voltage tunable spin polarization. The latter turns out to be inversely proportional to the square root of the carrier concentration.
Microstructure and dielectric parameters of epitaxial SrRuO3/BaTiO3/SrRuO3 heterostructures
NASA Astrophysics Data System (ADS)
Boikov, Yu. A.; Claeson, T.
2001-05-01
Epitaxial films of ferroelectric barium titanate are desirable in a number of applications but their properties are inferior to those of bulk material. Relations between microstructure and dielectric properties may give better understanding of limitations. Trilayer heterostructures SrRuO3/BaTiO3/SrRuO3 were grown by laser ablation on (100)LaAlO3 and (100)MgO substrates. The BaTiO3 layer was granular in structure. When grown on (100)SrRuO3/(100)LaAlO3, it was preferentially a-axis oriented due to tensile mechanical stress. Using (100)MgO as a substrate, on the other hand, produced a mixture of about equal value of a-axis and c-axis oriented grains of BaTiO3. The dielectric permittivity, ɛ, of the BaTiO3 layer was almost twice as large, at T>200 K and f=100 kHz, for the LaAlO3 substrate as compared to the MgO one. Its maximum value (ɛ/ɛ0≈6200) depended on temperature of growth, grain size, and electric field and compares well with optimal values commonly used for ceramic material. The maximum in the ɛ(T) shifted from about 370 to 320 K when the grain size in the BaTiO3 film decreased from 100 to 40 nm. At T<300 K, hysteresis loops in polarization versus electric field were roughly symmetric. The BaTiO3 films grown on (100)SrRuO3/(100)MgO exhibit the largest remnant polarizations and coercive fields in the temperature range 100-380 K.
Anisotropic nanomaterials: Synthesis, optical and magnetic properties, and applications
NASA Astrophysics Data System (ADS)
Banholzer, Matthew John
As nanoscience and nanotechnology mature, anisotropic metal nanostructures are emerging in a variety of contexts as valuable class of nanostructures due to their distinctive attributes. With unique properties ranging from optical to magnetic and beyond, these structures are useful in many new applications. Chapter two discusses the nanodisk code: a linear array of metal disk pairs that serve as surface-enhanced Raman scattering substrates. These multiplexing structures employ a binary encoding scheme, perform better than previous nanowires designs (in the context of SERS) and are useful for both convert encoding and tagging of substrates (based both on spatial disk position and spectroscopic response) as well as biomolecule detection (e.g. DNA). Chapter three describes the development of improved, silver-based nanodisk code structures. Work was undertaken to generate structures with high yield and reproducibility and to reoptimize the geometry of each disk pair for maximum Raman enhancement. The improved silver structures exhibit greater enhancement than Au structures (leading to lower DNA detection limits), convey additional flexibility, and enable trinary encoding schemes where far more unique structures can be created. Chapter four considers the effect of roughness on the plasmonic properties of nanorod structures and introduces a novel method to smooth the end-surfaces of nanorods structures. The smoothing technique is based upon a two-step process relying upon diffusion control during nanowires growth and selective oxidation after each step of synthesis is complete. Empirical and theoretical work show that smoothed nanostructures have superior and controllable optical properties. Chapter five concerns silica-encapsulated gold nanoprisms. This encapsulation allows these highly sensitive prisms to remain stable and protected in solution, enabling their use as class-leading sensors. Theoretical study complements the empirical work, exploring the effect of encapsulation on the SPR of these structures. Chapter six focuses on the magnetic properties of Au-Ni heterostructures. In addition to demonstration of nanoconfinement effects based upon the anisotropy of the nanorods/nanodisk structure, the magnetic coupling of rod-disk heterostructures is examined. Subsequent investigations suggest that the magnetic behavior of disks can be influenced by nearby rod segments, leading to the creation of a three-state spin system that may prove useful in device applications.
NASA Astrophysics Data System (ADS)
Zhang, Qingyun; Schwingenschlögl, Udo
2018-04-01
Using first-principles calculations, we investigate the electronic properties of the two-dimensional Ga X /MX 2 (M = Mo, W; X = S, Se, Te) heterostructures. Orbital hybridization between Ga X and MX 2 is found to result in Rashba splitting at the valence-band edge around the Γ point, which grows for increasing strength of the spin-orbit coupling in the p orbitals of the chalcogenide atoms. The location of the valence-band maximum in the Brillouin zone can be tuned by strain and application of an out-of-plane electric field. The coexistence of Rashba splitting (in-plane spin direction) and band splitting at the K and K' valleys (out-of-plane spin direction) makes Ga X /MX 2 heterostructures interesting for spintronics and valleytronics. They are promising candidates for two-dimensional spin-field-effect transistors and spin-valley Hall effect devices. Our findings shed light on the spin-valley coupling in van der Waals heterostructures.
He, Qing Lin; Lai, Ying Hoi; Lu, Yao; Law, Kam Tuen; Sou, Iam Keong
2013-01-01
We present a study of the surface reactivity of a Pd/Bi2Te3 thin film heterostructure. The topological surface states from Bi2Te3, being delocalized and robust owing to their topological natures, were found to act as an effective electron bath that significantly enhances the surface reactivity of palladium in the presence of two oxidizing agents, oxygen and tellurium respectively, which is consistent with a theoretical calculation. The surface reactivity of the adsorbed tellurium on this heterostructure is also intensified possibly benefitted from the effective transfer of the bath electrons. A partially inserted iron ferromagnetic layer at the interface of this heterostructure was found to play two competing roles arising from the higher-lying d-band center of the Pd/Fe bilayer and the interaction between the ferromagnetism and the surface spin texture of Bi2Te3 on the surface reactivity and their characteristics also demonstrate that the electron bath effect is long-lasting against accumulated thickness of adsorbates. PMID:23970163
Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei
2017-08-01
Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/ N , N '-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.
Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Wang, Laiyuan; Wu, Dequn
2017-01-01
Nonvolatile organic field‐effect transistor (OFET) memory devices based on pentacene/N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n‐type P13 embedded in p‐type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well‐like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge‐trapping property of the poly(4‐vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high‐performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory. PMID:28852619
Han, Hyeon; Kim, Donghoon; Chu, Kanghyun; Park, Jucheol; Nam, Sang Yeol; Heo, Seungyang; Yang, Chan-Ho; Jang, Hyun Myung
2018-01-17
Ferroelectric photovoltaics (FPVs) are being extensively investigated by virtue of switchable photovoltaic responses and anomalously high photovoltages of ∼10 4 V. However, FPVs suffer from extremely low photocurrents due to their wide band gaps (E g ). Here, we present a promising FPV based on hexagonal YbFeO 3 (h-YbFO) thin-film heterostructure by exploiting its narrow E g . More importantly, we demonstrate enhanced FPV effects by suitably exploiting the substrate-induced film strain in these h-YbFO-based photovoltaics. A compressive-strained h-YbFO/Pt/MgO heterojunction device shows ∼3 times enhanced photovoltaic efficiency than that of a tensile-strained h-YbFO/Pt/Al 2 O 3 device. We have shown that the enhanced photovoltaic efficiency mainly stems from the enhanced photon absorption over a wide range of the photon energy, coupled with the enhanced polarization under a compressive strain. Density functional theory studies indicate that the compressive strain reduces E g substantially and enhances the strength of d-d transitions. This study will set a new standard for determining substrates toward thin-film photovoltaics and optoelectronic devices.
NASA Astrophysics Data System (ADS)
Lin, Guangyang; Yi, Xiaohui; Li, Cheng; Chen, Ningli; Zhang, Lu; Chen, Songyan; Huang, Wei; Wang, Jianyuan; Xiong, Xihuan; Sun, Jiaming
2016-10-01
A lateral p-Si0.05Ge0.95/i-Ge/n-Si0.05Ge0.95 heterojunction light emitting diode on a silicon-on-insulator (SOI) substrate was proposed, which is profitable to achieve higher luminous extraction compared to vertical junctions. Due to the high carrier injection ratio of heterostructures and optical reflection at the SiO2/Si interface of the SOI, strong room temperature electroluminescence (EL) at around 1600 nm from the direct bandgap of i-Ge with 0.30% tensile strain was observed. The EL peak intensity of the lateral heterojunction is enhanced by ˜4 folds with a larger peak energy than that of the vertical Ge p-i-n homojunction, suggesting that the light emitting efficiency of the lateral heterojunction is effectively improved. The EL peak intensity of the lateral heterojunction, which increases quadratically with injection current density, becomes stronger for diodes with a wider i-Ge region. The CMOS compatible fabrication process of the lateral heterojunctions paves the way for the integration of the light source with the Ge metal-oxide-semiconductor field-effect-transistor.
Vertical-cavity in-plane heterostructures: Physics and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug, E-mail: ilch@fotonik.dtu.dk
2015-11-02
We show that in-plane (lateral) heterostructures realized in vertical cavities with high contrast grating reflectors can be used to significantly modify the anisotropic dispersion curvature, also interpreted as the photon effective mass. This design freedom enables exotic configurations of heterostructures and many interesting applications. The effects of the anisotropic photon effective mass on the mode confinement, mode spacing, and transverse modes are investigated. As a possible application, the method of boosting the speed of diode lasers by engineering the photon-photon resonance is discussed. Based on this platform, we propose a system of two laterally coupled cavities, which shows the breakingmore » of parity-time symmetry in vertical cavity structures.« less
Giant magnetoelectric effect in pure manganite-manganite heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Sanjukta; Pankaj, Ravindra; Yarlagadda, Sudhakar
2017-11-01
Obtaining strong magnetoelectric couplings in bulk materials and heterostructures is an ongoing challenge. We demonstrate that manganite heterostructures of the form (Insulator) /(LaMnO3)(n)/Interface/(CaMnO3)(n)/(Insulator) show strong multiferroicity in magnetic manganites where ferroelectric polarization is realized by charges leaking from LaMnO3 to CaMnO3 due to repulsion. Here, an effective nearest-neighbor electron-electron (electron-hole) repulsion (attraction) is generated by cooperative electron-phonon interaction. Double exchange, when a particle virtually hops to its unoccupied neighboring site and back, produces magnetic polarons that polarize antiferromagnetic regions. Thus a striking giant magnetoelectric effect ensues when an external electrical field enhances the electron leakage across the interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, Nitin, E-mail: nchopra@eng.ua.edu; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487; Shi, Wenwu
2014-10-15
Nanoscale heterostructures composed of standing copper oxide nanowires decorated with Au nanoparticles and shells of titania and indium tin oxide were fabricated. The fabrication process involved surfactant-free and wet-chemical nucleation of gold nanoparticles on copper oxide nanowires followed by a line-of-sight sputtering of titania or indium tin oxide. The heterostructures were characterized using high resolution electron microscopy, diffraction, and energy dispersive spectroscopy. The interfaces, morphologies, crystallinity, phases, and chemical compositions were analyzed. The process of direct nucleation of gold nanoparticles on copper oxide nanoparticles resulted in low energy interface with aligned lattice for both the components. Coatings of polycrystalline titaniamore » or amorphous indium tin oxide were deposited on standing copper oxide nanowire–gold nanoparticle heterostructures. Self-shadowing effect due to standing nanowire heterostructures was observed for line-of-sight sputter deposition of titania or indium tin oxide coatings. Finally, the heterostructures were studied using Raman spectroscopy and ultraviolet–visible spectroscopy, including band gap energy analysis. Tailing in the band gap energy at longer wavelengths (or lower energies) was observed for the nanowire heterostructures. - Highlights: • Heterostructures comprised of CuO nanowires coated with Au nanoparticles. • Au nanoparticles exhibited nearly flat and low energy interface with nanowire. • Heterostructures were further sputter-coated with oxide shell of TiO{sub 2} or ITO. • The process resulted in coating of polycrystalline TiO{sub 2} and amorphous ITO shell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotani, Junji, E-mail: kotani.junji-01@jp.fujitsu.com; Yamada, Atsushi; Ishiguro, Tetsuro
2016-04-11
This paper reports on the electrical characterization of Ni/Au Schottky diodes fabricated on InAlN high-electron-mobility transistor (HEMT) structures grown on low dislocation density free-standing GaN substrates. InAlN HEMT structures were grown on sapphire and GaN substrates by metal-organic vapor phase epitaxy, and the effects of threading dislocation density on the leakage characteristics of Ni/Au Schottky diodes were investigated. Threading dislocation densities were determined to be 1.8 × 10{sup 4 }cm{sup −2} and 1.2 × 10{sup 9 }cm{sup −2} by the cathodoluminescence measurement for the HEMT structures grown on GaN and sapphire substrates, respectively. Leakage characteristics of Ni/Au Schottky diodes were compared between the two samples, andmore » a reduction of the leakage current of about three to four orders of magnitude was observed in the forward bias region. For the high reverse bias region, however, no significant improvement was confirmed. We believe that the leakage current in the low bias region is governed by a dislocation-related Frenkel–Poole emission, and the leakage current in the high reverse bias region originates from field emission due to the large internal electric field in the InAlN barrier layer. Our results demonstrated that the reduction of dislocation density is effective in reducing leakage current in the low bias region. At the same time, it was also revealed that another approach will be needed, for instance, band modulation by impurity doping and insertion of insulating layers beneath the gate electrodes for a substantial reduction of the gate leakage current.« less
NASA Technical Reports Server (NTRS)
Yeh, N. C.; Samoilov, A. V.; Veasquez, R. P.; Li, Y.
1998-01-01
The effect of spin-polarized currents on the critical current densities of cuprate superconductors is investigated in perovskite ferromagnet-insulator-superconductor heterostructures with a pulsed current technique.
NASA Astrophysics Data System (ADS)
Pokatilov, E. P.; Nika, D. L.; Askerov, A. S.; Zincenco, N. D.; Balandin, A. A.
2007-12-01
nanometer scale thickness by taking into account multiple quantized electron subbands and the confined optical phonon dispersion. It was shown that the inter-subband electronic transitions play an important role in limiting the electron mobility in the heterostructures when the energy separation between one of the size-quantized excited electron subbands and the Fermi energy becomes comparable to the optical phonon energy. The latter leads to the oscillatory dependence of the electron mobility on the thickness of the heterostructure conduction channel layer. This effect is observable at room temperature and over a wide range of the carrier densities. The developed formalism and calculation procedure are readily applicable to other material systems. The described effect can be used for fine-tuning the confined electron and phonon states in the nanoscale heterostructures in order to achieve performance enhancement of the nanoscale electronic and optoelectronic devices.
Barrier inhomogeneities at vertically stacked graphene-based heterostructures.
Lin, Yen-Fu; Li, Wenwu; Li, Song-Lin; Xu, Yong; Aparecido-Ferreira, Alex; Komatsu, Katsuyoshi; Sun, Huabin; Nakaharai, Shu; Tsukagoshi, Kazuhito
2014-01-21
The integration of graphene and other atomically flat, two-dimensional materials has attracted much interest and been materialized very recently. An in-depth understanding of transport mechanisms in such heterostructures is essential. In this study, vertically stacked graphene-based heterostructure transistors were manufactured to elucidate the mechanism of electron injection at the interface. The temperature dependence of the electrical characteristics was investigated from 300 to 90 K. In a careful analysis of current-voltage characteristics, an unusual decrease in the effective Schottky barrier height and increase in the ideality factor were observed with decreasing temperature. A model of thermionic emission with a Gaussian distribution of barriers was able to precisely interpret the conduction mechanism. Furthermore, mapping of the effective Schottky barrier height is unmasked as a function of temperature and gate voltage. The results offer significant insight for the development of future layer-integration technology based on graphene-based heterostructures.
Electron scattering times in ZnO based polar heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falson, J., E-mail: j.falson@fkf.mpg.de; Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561; Max Planck Institute for Solid State Research, D-70569 Stuttgart
2015-08-24
The remarkable historic advances experienced in condensed matter physics have been enabled through the continued exploration and proliferation of increasingly richer and cleaner material systems. In this work, we report on the scattering times of charge carriers confined in state-of-the-art MgZnO/ZnO heterostructures displaying electron mobilities in excess of 10{sup 6} cm{sup 2}/V s. Through an examination of low field quantum oscillations, we obtain the effective mass of charge carriers, along with the transport and quantum scattering times. These times compare favorably with high mobility AlGaAs/GaAs heterostructures, suggesting the quality of MgZnO/ZnO heterostructures now rivals that of traditional semiconductors.
NASA Astrophysics Data System (ADS)
Xie, Jinlei; Yang, Yefeng; He, Haiping; Cheng, Ding; Mao, Minmin; Jiang, Qinxu; Song, Lixin; Xiong, Jie
2015-11-01
Heterostructured semiconductor nanostructures have provoked great interest in the areas of energy, environment and catalysis. Herein, we report a novel hierarchical Ag3PO4/TiO2 heterostructure consisting of nearly spherical Ag3PO4 particles firmly coupled on the surface of TiO2 nanofibers (NFs). The construction of Ag3PO4/TiO2 heterostructure with tailored morphologies, compositions and optical properties was simply achieved via a facile and green synthetic strategy involving the electrospinning and solution-based processes. Owing to the synergetic effects of the components, the resulting hybrid heterostructures exhibited much improved visible light photocatalytic performance, which could degrade the RhB dye completely in 7.5 min. In addition, the coupling of Ag3PO4 particles with UV-light-sensitive TiO2 NFs enabled full utilization of solar energy and less consumption of noble metals, significantly appealing for their practical use in new energy sources and environmental issues. The developed synthetic strategy was considered to be applicable for the rational design and construction of other heterostructured catalysts.
2013-01-01
GaN wires are grown on a Si (111) substrate by metal organic vapour-phase epitaxy on a thin deposited AlN blanket and through a thin SiNx layer formed spontaneously at the AlN/Si interface. N-doped wires are used as templates for the growth of core-shell InGaN/GaN multiple quantum wells coated by a p-doped shell. Standing single-wire heterostructures are connected using a metallic tip and a Si substrate backside contact, and the electroluminescence at room temperature and forward bias is demonstrated at 420 nm. This result points out the feasibility of lower cost nitride-based wires for light-emitting diode applications. PMID:23391377
Superconducting Ga/GaSe layers grown by van der Waals epitaxy
NASA Astrophysics Data System (ADS)
Desrat, W.; Moret, M.; Briot, O.; Ngo, T.-H.; Piot, B. A.; Jabakhanji, B.; Gil, B.
2018-04-01
We report on the growth of GaSe films by molecular beam epitaxy on both (111)B GaAs and sapphire substrates. X-ray diffraction reveals the perfect crystallinity of GaSe with the c-axis normal to the substrate surface. The samples grown under Ga rich conditions possess an additional gallium film on top of the monochalcogenide layer. This metallic film shows two normal-to-superconducting transitions which are detected at T c ≈ 1.1 K and 6.0 K. They correspond likely to the β and α-phases of gallium in the form of bulk and droplets respectively. Our results demonstrate that van der Waals epitaxy can lead to future high quality hybrid superconductor/monochalcogenide heterostructures.
Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures.
Hu, Xiaohui; Kou, Liangzhi; Sun, Litao
2016-08-16
The direct band gap of monolayer semiconducting transition-metal dichalcogenides (STMDs) enables a host of new optical and electrical properties. However, bilayer STMDs are indirect band gap semiconductors, which limits its applicability for high-efficiency optoelectronic devices. Here, we report that the direct band gap can be achieved in bilayer MoSe2-WSe2 lateral heterostructures by alternating stacking orders. Specifically, when Se atoms from opposite layers are stacked directly on top of each other, AA and A'B stacked heterostructures show weaker interlayer coupling, larger interlayer distance and direct band gap. Whereas, when Se atoms from opposite layers are staggered, AA', AB and AB' stacked heterostructures exhibit stronger interlayer coupling, shorter interlayer distance and indirect band gap. Thus, the direct/indirect band gap can be controllable in bilayer MoSe2-WSe2 lateral heterostructures. In addition, the calculated sliding barriers indicate that the stacking orders of bilayer MoSe2-WSe2 lateral heterostructures can be easily formed by sliding one layer with respect to the other. The novel direct band gap in bilayer MoSe2-WSe2 lateral heterostructures provides possible application for high-efficiency optoelectronic devices. The results also show that the stacking order is an effective strategy to induce and tune the band gap of layered STMDs.
Hattori, Yoshiaki; Taniguchi, Takashi; Watanabe, Kenji; Nagashio, Kosuke
2018-04-11
Hexagonal boron nitride (h-BN) is an important insulating substrate for two-dimensional (2D) heterostructure devices and possesses high dielectric strength comparable to SiO 2 . Here, we report two clear differences in their physical properties. The first one is the occurrence of Fermi level pinning at the metal/h-BN interface, unlike that at the metal/SiO 2 interface. The second one is that the carrier of Fowler-Nordheim (F-N) tunneling through h-BN is a hole, which is opposite to an electron in the case of SiO 2 . These unique characteristics are verified by I- V measurements in the graphene/h-BN/metal heterostructure device with the aid of a numerical simulation, where the barrier height of graphene can be modulated by a back gate voltage owing to its low density of states. Furthermore, from a systematic investigation using a variety of metals, it is confirmed that the hole F-N tunneling current is a general characteristic because the Fermi levels of metals are pinned in the small energy range around ∼3.5 eV from the top of the conduction band of h-BN, with a pinning factor of 0.30. The accurate energy band alignment at the h-BN/metal interface provides practical knowledge for 2D heterostructure devices.
Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang
2015-11-13
2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices.
Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.; ...
2017-08-23
Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less
NASA Astrophysics Data System (ADS)
Zhang, Guoqiang; Tateno, Kouta; Sogawa, Tetsuomi; Gotoh, Hideki
2018-04-01
We report diameter-tailored luminescence in telecom band of InP/InAs multi-heterostructure nanowires with continuously-modulated diameter from microscale to nanoscale. By using the self-catalyzed vapor-solid-liquid approach, we tune the indium particle size, and consequently the InP/InAs nanowire diameter, during growth by modulating the flow rate of the indium source material. This technique allows a high degree of continuous tuning in a wide scale from microscale to nanoscale. Hence it offers an original way to bridge the gap between microscale-featured photolithographic and nanoscale-featured nanolithographic processes and to incorporate InAs quantum disks with tunable diameters into a single InP/InAs quantum heterostructure nanowire. We realized site-defined nanowires with nanoscale diameters initiated from site-defined microscale-diameter particles made with a conventional photolithographic process. The luminescence wavelength from InAs quantum disks is directly connected to the nanowire diameter, by which the strain in the InAs quantum disks is tailored. This work provides new opportunities in the fabrication and design of nanowire devices that extends beyond what is achievable with the current technologies and enables the nanowire shape to be engineered thus offering the potential to broaden the application range of nanowire devices.
Zhang, Guoqiang; Tateno, Kouta; Sogawa, Tetsuomi; Gotoh, Hideki
2018-04-02
We report diameter-tailored luminescence in telecom band of InP/InAs multi-heterostructure nanowires with continuously-modulated diameter from microscale to nanoscale. By using the self-catalyzed vapor-solid-liquid approach, we tune the indium particle size, and consequently the InP/InAs nanowire diameter, during growth by modulating the flow rate of the indium source material. This technique allows a high degree of continuous tuning in a wide scale from microscale to nanoscale. Hence it offers an original way to bridge the gap between microscale-featured photolithographic and nanoscale-featured nanolithographic processes and to incorporate InAs quantum disks with tunable diameters into a single InP/InAs quantum heterostructure nanowire. We realized site-defined nanowires with nanoscale diameters initiated from site-defined microscale-diameter particles made with a conventional photolithographic process. The luminescence wavelength from InAs quantum disks is directly connected to the nanowire diameter, by which the strain in the InAs quantum disks is tailored. This work provides new opportunities in the fabrication and design of nanowire devices that extends beyond what is achievable with the current technologies and enables the nanowire shape to be engineered thus offering the potential to broaden the application range of nanowire devices.
NASA Astrophysics Data System (ADS)
Fuchs, C.; Beyer, A.; Volz, K.; Stolz, W.
2017-04-01
The growth of high quality (GaIn)As/Ga(AsSb)/(GaIn)As "W"-quantum well heterostructures is discussed with respect to their application in 1300 nm laser devices. The structures are grown using metal organic vapor phase epitaxy and characterized using high-resolution X-ray diffraction, scanning transmission electron microscopy and photoluminescence measurements. The agreement between experimental high-resolution X-ray diffraction patterns and full dynamical simulations is verified for these structurally challenging heterostructures. Scanning transmission electron microscopy is used to demonstrate that the structure consists of well-defined quantum wells and forms the basis for future improvements of the optoelectronic quality of this materials system. By altering the group-V gas phase ratio, it is possible to cover a large spectral range between 1200 nm and 1470 nm using a growth temperature of 550 °C and a V/III ratio of 7.5. A comparison of a sample with a photoluminescence emission wavelength at 1360 nm with single quantum well material reference samples proves the type-II character of the emission. A further optimization of these structures for application in 1300 nm lasers by applying different V/III ratios yields a stable behavior of the photoluminescence intensity using a growth temperature of 550 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.
Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mynbaev, K. D., E-mail: mynkad@mail.ioffe.ru; Bazhenov, N. L.; Semakova, A. A.
The electroluminescence of InAs/InAsSbP and InAsSb/InAsSbP LED heterostructures grown on InAs substrates is studied in the temperature range T = 4.2–300 K. At low temperatures (T = 4.2–100 K), stimulated emission is observed for the InAs/InAsSbP and InAsSb/InAsSbP heterostructures with an optical cavity formed normal to the growth plane at wavelengths of, respectively, 3.03 and 3.55 μm. The emission becomes spontaneous at T > 70 K due to the resonant “switch-on” of the CHHS Auger recombination process in which the energy of a recombining electron–hole pair is transferred to a hole, with hole transition to the spin–orbit-split band. It remainsmore » spontaneous up to room temperature because of the influence exerted by other Auger processes. The results obtained show that InAs/InAs(Sb)/InAsSbP structures are promising for the fabrication of vertically emitting mid-IR lasers.« less
Touch-mode capacitive pressure sensor with graphene-polymer heterostructure membrane
NASA Astrophysics Data System (ADS)
Berger, Christian; Phillips, Rory; Pasternak, Iwona; Sobieski, Jan; Strupinski, Wlodek; Vijayaraghavan, Aravind
2018-01-01
We describe the fabrication and characterisation of a touch-mode capacitive pressure sensor (TMCPS) with a robust design that comprises a graphene-polymer heterostructure film, laminated onto the silicon dioxide surface of a silicon wafer, incorporating a SU-8 spacer grid structure. The spacer grid structure allows the flexible graphene-polymer film to be partially suspended above the substrate, such that a pressure on the membrane results in a reproducible deflection, even after exposing the membrane to pressures over 10 times the operating range. Sensors show reproducible pressure transduction in water submersion at varying depths under static and dynamic loading. The measured capacitance change in response to pressure is in good agreement with an analytical model of clamped plates in touch mode. The device shows a pressure sensitivity of 27.1 +/- 0.5 fF Pa-1 over a pressure range of 0.5 kPa-8.5 kPa. In addition, we demonstrate the operation of this device as a force-touch sensor in air.
Growth of quaternary InAlGaN barrier with ultrathin thickness for HEMT application
NASA Astrophysics Data System (ADS)
Li, Zhonghui; Li, Chuanhao; Peng, Daqing; Zhang, Dongguo; Dong, Xun; Pan, Lei; Luo, Weike; Li, Liang; Yang, Qiankun
2018-06-01
Quaternary InAlGaN barriers with thickness of 7 nm for HEMT application were grown on 3-inch semi-insulating 4H-SiC substrates by metal organic chemical vapor deposition (MOCVD). Focused on growth mechanism of the InAlGaN barrier, the surface morphology and characteristics of InAlGaN/AlN/GaN heterostructures were studied with different growth parameters, including the temperature, Al/Ga ratio and chamber pressure. Among the as-grown samples, high electron mobility is consistent with smooth surface morphology, while high crystalline quality of the quaternary barrier is confirmed by measurements of Photoluminescence (PL) and Mercury-probe Capacity-Voltage (C-V). The recommended heterostructures without SiN passivation is characterized by mobility of 1720 cm2/(V·s), 2DEG density of 1.71*1013 cm-2, sheet resistance of about 210 Ω/□ with a smooth surface morphology and moderate tensile state, specially applied for microwave devices.
NASA Technical Reports Server (NTRS)
Bachmann, Klaus J.
1995-01-01
A workshop on the control of stoichiometry in epitaxial semiconductor structures was held on August 21-26, 1995 in the hotel Stutenhaus at Vesser in Germany. The secluded location of the workshop in the forest of Thuringia and its informal style stimulated extensive private discussions among the participants and promoted new contacts between young scientists from Eastern and Western Europe and the USA. Topics addressed by the presentations were interactions of precursors to heteroepitaxy and doping with the substrate surface, the control of interfacial properties under the conditions of heteroepitaxy for selected materials systems, methods of characterization of interfaces and native point defects in semiconductor heterostructures and an in depth evaluation of the present status of the control and characterization of the point defect chemistry for one specific semiconductor (ZnGeP2), including studies of both heterostructures and bulk single crystals. The selected examples of presentations and comments given here represent individual choices - made by the author to highlight major points of the discussions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Binzhi; Chopdekar, Rajesh V.; N'Diaye, Alpha T.
The impact of interfacial electronic reconstruction on the magnetic characteristics of La0.7Sr0.3CoO3 (LSCO)/La0.7Sr0.3MnO3 (LSMO) superlattices was investigated as a function of layer thickness using a combination of soft x-ray magnetic spectroscopy and bulk magnetometry. We found that the magnetic properties of the LSCO layers are impacted by two competing electronic interactions occurring at the LSCO/substrate and LSMO/LSCO interfaces. For thin LSCO layers (< 5 nm), the heterostructures exist in a highly coupled state where the chemically distinct layers behave as a single magnetic compound with magnetically active Co2+ ions. As the LSCO thickness increases, a high coercivity LSCO layer developsmore » which biases a low coercivity layer, which is composed not only of the LSMO layer, but also an interfacial LSCO layer. These results suggest a new route to tune the magnetic properties of transition metal oxide heterostructures through careful control of the interface structure.« less
Structural differences between superconducting and non-superconducting CaCuO2/SrTiO3 interfaces
NASA Astrophysics Data System (ADS)
Zarotti, Francesca; Di Castro, Daniele; Felici, Roberto; Balestrino, Giuseppe
2018-06-01
A study of the interface structure of superconducting and non-superconducting CaCuO2/SrTiO3 heterostructures grown on NdGaO3(110) substrates is reported. Using the combination of high resolution x-ray reflectivity and surface diffraction, the crystallographic structure of superconducting and non-superconducting samples has been investigated. The analysis has demonstrated the excellent sharpness of the CaCuO2/SrTiO3 interface (roughness smaller than one perovskite unit cell). Furthermore, we were able to discriminate between the superconducting and the non-superconducting phase. In the former case, we found an increase of the spacing between the topmost Ca plane of CaCuO2 block and the first TiO2 plane of the overlaying STO block, relative to the non-superconducting case. These results are in agreement with the model that foresees a strong oxygen incorporation in the interface Ca plane in the superconducting heterostructures.
Kong, Biao; Selomulya, Cordelia; Zheng, Gengfeng; Zhao, Dongyuan
2015-11-21
Prussian blue (PB), the oldest synthetic coordination compound, is a classic and fascinating transition metal coordination material. Prussian blue is based on a three-dimensional (3-D) cubic polymeric porous network consisting of alternating ferric and ferrous ions, which provides facile assembly as well as precise interaction with active sites at functional interfaces. A fundamental understanding of the assembly mechanism of PB hetero-interfaces is essential to enable the full potential applications of PB crystals, including chemical sensing, catalysis, gas storage, drug delivery and electronic displays. Developing controlled assembly methods towards functionally integrated hetero-interfaces with adjustable sizes and morphology of PB crystals is necessary. A key point in the functional interface and device integration of PB nanocrystals is the fabrication of hetero-interfaces in a well-defined and oriented fashion on given substrates. This review will bring together these key aspects of the hetero-interfaces of PB nanocrystals, ranging from structure and properties, interfacial assembly strategies, to integrated hetero-structures for diverse sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Zhibin; Hao Jianhua
2012-09-01
We have epitaxially deposited ferroelectric Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) thin films grown on GaAs substrate via SrTiO{sub 3} buffer layer by laser molecular beam epitaxy. Structural characteristics of the heterostructure were measured by various techniques. The in-plane dielectric properties of the heteroepitaxial structure under different applying frequency were investigated from -190 to 90 Degree-Sign C, indicating Curie temperature of the BST film to be around 52 Degree-Sign C. At room temperature, the dielectric constant of the heterostructure under moderate dc bias field can be tuned by more than 30% and K factor used for frequency agile materials is foundmore » to be close to 8. Our results offer the possibility to combine frequency agile electronics of ferroelectric titanate with the high-performance microwave capabilities of GaAs for room temperature tunable device application.« less
NASA Astrophysics Data System (ADS)
Uchida, Takayuki; Jinno, Riena; Takemoto, Shu; Kaneko, Kentaro; Fujita, Shizuo
2018-04-01
The band alignment at an α-Ga2O3/α-(Al x Ga1‑ x )2O3 heterointerface, with different Al compositions (x), grown on a c-plane sapphire substrate was evaluated by X-ray photoelectron spectroscopy. The experimental results show that the heterointerface has the type-I band discontinuity with the valence band offsets of 0.090, 0.12, and 0.14 eV, and the conduction band offsets of 0.34, 0.79, and 1.87 eV, for x values of 0.1, 0.4, and 0.8, respectively. The small band offset for the valence band is attributed to the fact that the valence band of oxides is constituted by the localized O 2p level, which is dominated by the nature of oxygen atoms. The type-I band discontinuity is desirable for a variety of heterostructure devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Horacio Coy; Ma, Yujing; Chaghi, Redhouane
2016-05-09
Growth of transition metal dichalcogenide heterostructures by molecular beam epitaxy (MBE) promises synthesis of artificial van der Waals materials with controllable layer compositions and separations. Here, we show that MBE growth of 2H-MoTe{sub 2} monolayers on MoS{sub 2} substrates results in a high density of mirror-twins within the films. The grain boundaries are tellurium deficient, suggesting that Te-deficiency during growth causes their formation. Scanning tunneling microscopy and spectroscopy reveal that the grain boundaries arrange in a pseudo periodic “wagon wheel” pattern with only ∼2.6 nm repetition length. Defect states from these domain boundaries fill the band gap and thus give themore » monolayer an almost metallic property. The band gap states pin the Fermi-level in MoTe{sub 2} and thus determine the band-alignment in the MoTe{sub 2}/MoS{sub 2} interface.« less
Single-Crystalline SrRuO 3 Nanomembranes: A Platform for Flexible Oxide Electronics
Paskiewicz, Deborah M.; Sichel-Tissot, Rebecca; Karapetrova, Evguenia; ...
2016-12-11
The field of oxide electronics has benefited from the wide spectrum of functionalities available to the ABO 3 perovskites, and researchers are now employing defect engineering in single crystalline heterostructures to tailor properties. However, bulk oxide single crystals are not conducive to many types of applications, particularly those requiring mechanical flexibility. Here, we demonstrate the realization of an all-oxide, single-crystalline nanomembrane heterostructure. With a surface-to-volume ratio of 2 × 10 7 , the nanomembranes are fully flexible and can be readily transferred to other materials for handling purposes or for new materials integration schemes. Using in situ synchrotron X-ray scattering,more » we find that the nanomembranes can bond to other host substrates near room temperature and demonstrate coupling between surface reactivity and electromechanical properties in ferroelectric nanomembrane systems. Finally, the synthesis technique described here represents a significant advancement in materials integration and provides a new platform for the development of flexible oxide electronics.« less
NASA Astrophysics Data System (ADS)
Luo, Zhipeng; Pei, Ling; Li, Meiya; Zhu, Yongdan; Xie, Shuai; Cheng, Xiangyang; Liu, Jiaxian; Ding, Huaqi; Xiong, Rui
2018-04-01
A Co0.03Zn0.97O (CZO) thin film was epitaxially grown on a Nb doped (001) SrTiO3 (NSTO) single-crystal substrate by pulsed laser deposition to form a Pt/CZO/NSTO heterostructure. This device exhibits stable bipolar resistive switching, well retention and endurance, multilevel memories, and a resistance ratio of high resistance state (HRS)/low resistance state (LRS) up to 7 × 105. Under the illumination of a 405 nm laser, the HRS of the device showed distinct photoelectricity with an open-circuit voltage of 0.5 V. A stronger ferromagnetism was observed at the HRS than at the LRS. The above phenomenon is attributable to the accumulation and migration of oxygen vacancies at the interface of CZO/NSTO. Our results demonstrated a pathway towards making multifunctional devices that simultaneously exhibit resistive switching, photoelectricity, and ferromagnetism.
NASA Astrophysics Data System (ADS)
Gladysiewicz, M.; Janicki, L.; Misiewicz, J.; Sobanska, M.; Klosek, K.; Zytkiewicz, Z. R.; Kudrawiec, R.
2016-09-01
Polarization engineering of GaN-based heterostructures opens a way to develop advanced transistor heterostructures, although measurement of the electric field in such heterostructures is not a simple task. In this work, contactless electroreflectance (CER) spectroscopy has been applied to measure the electric field in GaN-based heterostructures. For a set of GaN(d = 0, 5, 15, and 30 nm)/AlGaN(20 nm)/GaN(buffer) heterostructures a decrease of electric field in the GaN(cap) layer from 0.66 MV cm-1 to 0.27 MV cm-1 and an increase of the electric field in the AlGaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 have been observed with the increase in the GaN(cap) thickness from 5-30 nm. For a set of GaN(20 nm)/AlGaN(d = 10, 20, 30, and 40 nm)/GaN(buffer) heterostructures a decrease of the electric field in the AlGaN layer from 1.77 MV cm-1 to 0.64 MV cm-1 and an increase of the electric field in the GaN layer from 0.57 MV cm-1 to 0.99 MV cm-1 were observed with the increase in the AlGaN thickness from 10-40 nm. To determine the distribution of the electric field in these heterostructures the Schrödinger and Poisson equations are solved in a self-consistent manner and matched with experimental data. It is shown that the built-in electric field in the GaN(cap) and AlGaN layers obtained from measurements does not reach values of electric field resulting only from polarization effects. The measured electric fields are smaller due to a screening of polarization effects by free carriers, which are inhomogeneously distributed across the heterostructure and accumulate at interfaces. The results clearly demonstrate that CER measurements supported by theoretical calculations are able to determine the electric field distribution in GaN-based heterostructures quantitatively, which is very important for polarization engineering in this material system.
NASA Astrophysics Data System (ADS)
George, Chandramohan; Genovese, Alessandro; Qiao, Fen; Korobchevskaya, Kseniya; Comin, Alberto; Falqui, Andrea; Marras, Sergio; Roig, Anna; Zhang, Yang; Krahne, Roman; Manna, Liberato
2011-11-01
We report here a simple synthetic route to Au-FexOy heterostructures in which spinel ferrite (FexOy) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-FexOy interface), while the magnetic properties of the Au-FexOy heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-FexOy heterostructures the electrical conductivity appeared to be mediated by the Au domains.We report here a simple synthetic route to Au-FexOy heterostructures in which spinel ferrite (FexOy) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-FexOy interface), while the magnetic properties of the Au-FexOy heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-FexOy heterostructures the electrical conductivity appeared to be mediated by the Au domains. Electronic supplementary information (ESI) available: TEM/HRTEM images of (i) aliquots at the earliest stages of the growth of Au-FexOy HSs; (ii) Au-FexOy HSs synthesized at low DDAB concentrations; (iii) spherical iron oxide nanocrystals synthesized under the same conditions as the HSs, but in the absence of Au seeds; (iv) Au-FexOy urchin like nanostructures, also after attempts to leach out Au; (v) Au-FexOy HSs after treatment with hydrazine; (vi) FexOy HSs after Au leaching from Au-FexOy HSs; additional optical absorption spectra; additional I-V curves, also from films made of Au-FexOy dumbbells; and additional SEM images; vii) X-ray diffraction (XRD) pattern of a sample of Au-FexOy HSs. See DOI: 10.1039/c1nr10768b
Zn1-xCdxSe/ZnSe multiple quantum well photomodulators
NASA Astrophysics Data System (ADS)
Tang, Jiuyao; Kawakami, Yoichi; Fujita, Shizuo; Fujita, Shigeo
1996-10-01
ZnCdSe/ZnSe multiple quantum well (MQW) transmission and reflection photomodulators operating at room temperature were fabricated employing quantum-confined Stark effect on the exciton absorption. Samples were grown on p-type GaAs substrates by MBE with an i-Zn0.87Cd0.13Se/ZnSe MQW heterostructure sandwiched by a ZnSe p-n junction. The transmission modulator was constructed with a Zn0.87Cd0.13Se/ZnSe MQW glued onto a piece of ITO film-covered glass with silver paste and epoxy. To avoid absorption in GaAs substrates, a window with a diameter of about 2 mm was opened using a selective etch. For the reflective use an Al mirror was deposited on the glass back surface, the device then operates in reflection with the light to be modulated making a double pass through the active quantum well region, thereby increasing the modulation amplitude. Measurement results are given in this paper for transmission, reflection, differential transmission, differential absorption, and differential reflection as a function of the incident photon wavelength and the applied field.
Anyebe, Ezekiel A.; Sandall, I.; Jin, Z. M.; Sanchez, Ana M.; Rajpalke, Mohana K.; Veal, Timothy D.; Cao, Y. C.; Li, H. D.; Harvey, R.; Zhuang, Q. D.
2017-01-01
The recent discovery of flexible graphene monolayers has triggered extensive research interest for the development of III-V/graphene functional hybrid heterostructures. In order to fully exploit their enormous potential in device applications, it is essential to optimize epitaxial growth for the precise control of nanowire geometry and density. Herein, we present a comprehensive growth study of InAs nanowires on graphitic substrates by molecular beam epitaxy. Vertically well-aligned and thin InAs nanowires with high yield were obtained in a narrow growth temperature window of 420–450 °C within a restricted domain of growth rate and V/III flux ratio. The graphitic substrates enable high nanowire growth rates, which is favourable for cost-effective device fabrication. A relatively low density of defects was observed. We have also demonstrated InAs-NWs/graphite heterojunction devices exhibiting rectifying behaviour. Room temperature photovoltaic response with a cut-off wavelength of 3.4 μm was demonstrated. This elucidates a promising route towards the monolithic integration of InAs nanowires with graphite for flexible and functional hybrid devices. PMID:28393845
Li, Yang; Ngo, Anh T.; DiLullo, Andrew; ...
2017-10-16
An unusually large spin-coupling of almost 100% is found in vertically stacked molecular hetrostructures composed of cobalt-porphyrin based magnetic molecules adsorbed on semiconducting armchair graphene nanoribbon on a Au(111) surface. Although the graphene nanoribbons are electronically decoupled from the gold substrate due to their band gaps and weak adsorption, they enable spin coupling between the magnetic moment of the molecule and the electrons from the substrate exhibiting a Kondo resonance. Surprisingly, the Kondo temperatures corresponding to three adsorption sites of the molecules on Au(111) surface are reproduced on the molecules adsorb on the graphene nanoribbons although the molecules are locatedmore » 7.5 Å away from the surface. This finding suggests that the molecules on graphene nanoribbons experience almost the same environment for spin-electron interactions as the ones directly adsorb on Au(111). This puzzling effect is further confirmed by density functional theory calculations that reveal no spin electron interactions if the molecule is left at the same height from the Au(111) surface without the graphene nanoribbon in between.« less
Long-range stripe nanodomains in epitaxial (110) BiFeO 3 thin films on (100) NdGaO 3 substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Yogesh; Agarwal, Radhe; Phatak, Charudatta
Here, we report the observation of ferroelectric and ferroelastic nanodomains in (110)-oriented BiFeO 3 (BFO) thin films epitaxially grown on low symmetric (100) NdGaO 3 (NGO) substrate. We observed long range ordering of ferroelectric 109° stripe nanodomains separated by periodic vertical domain walls in as-grown 130 nm thick BFO films. The effect of La 0.67Sr 0.33CoO 3 (LSCO) conducting interlayer on domain configurations in BFO/NGO film was also observed with relatively short range-ordering of stripe domains due to the modified electrostatic boundary conditions in BFO/LSCO/NGO film. Additional studies on B-site doping of Nb ions in BFO films showed change inmore » the domain structures due to doping induced change in lattice anisotropy while maintaining the stripe domain morphology with 109° domain wall. Finally, this long-range array of ferroelectric and ferroelastic domains can be useful for optoelectronic devices and ferroelastic templates for strain coupled artificial magnetoelectric heterostructures.« less
Long-range stripe nanodomains in epitaxial (110) BiFeO 3 thin films on (100) NdGaO 3 substrate
Sharma, Yogesh; Agarwal, Radhe; Phatak, Charudatta; ...
2017-07-07
Here, we report the observation of ferroelectric and ferroelastic nanodomains in (110)-oriented BiFeO 3 (BFO) thin films epitaxially grown on low symmetric (100) NdGaO 3 (NGO) substrate. We observed long range ordering of ferroelectric 109° stripe nanodomains separated by periodic vertical domain walls in as-grown 130 nm thick BFO films. The effect of La 0.67Sr 0.33CoO 3 (LSCO) conducting interlayer on domain configurations in BFO/NGO film was also observed with relatively short range-ordering of stripe domains due to the modified electrostatic boundary conditions in BFO/LSCO/NGO film. Additional studies on B-site doping of Nb ions in BFO films showed change inmore » the domain structures due to doping induced change in lattice anisotropy while maintaining the stripe domain morphology with 109° domain wall. Finally, this long-range array of ferroelectric and ferroelastic domains can be useful for optoelectronic devices and ferroelastic templates for strain coupled artificial magnetoelectric heterostructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Ngo, Anh T.; DiLullo, Andrew
An unusually large spin-coupling of almost 100% is found in vertically stacked molecular hetrostructures composed of cobalt-porphyrin based magnetic molecules adsorbed on semiconducting armchair graphene nanoribbon on a Au(111) surface. Although the graphene nanoribbons are electronically decoupled from the gold substrate due to their band gaps and weak adsorption, they enable spin coupling between the magnetic moment of the molecule and the electrons from the substrate exhibiting a Kondo resonance. Surprisingly, the Kondo temperatures corresponding to three adsorption sites of the molecules on Au(111) surface are reproduced on the molecules adsorb on the graphene nanoribbons although the molecules are locatedmore » 7.5 Å away from the surface. This finding suggests that the molecules on graphene nanoribbons experience almost the same environment for spin-electron interactions as the ones directly adsorb on Au(111). This puzzling effect is further confirmed by density functional theory calculations that reveal no spin electron interactions if the molecule is left at the same height from the Au(111) surface without the graphene nanoribbon in between.« less
Opoku, Francis; Kuben Govender, Krishna; van Sittert, Cornelia Gertina Catharina Elizabeth; Poomani Govender, Penny
2017-10-25
In the 21st century, the growing demand of global energy is one of the key challenges. The photocatalytic generation of hydrogen has attracted extensive attention to discuss the increasing global demand for sustainable and clean energy. However, hydrogen evolution reactions normally use the economically expensive rare noble metals and the processes remain a challenge. Herein, low-cost BiNbO 4 /MWO 4 (010) heterostructures are studied for the first time to check their suitability towards photocatalytic hydrogen production. A theoretical study with the aid of density functional theory (DFT) is used to investigate the synergistic effect, ionisation energy, electron affinities, charge transfer, electronic properties and the underlying mechanism for hydrogen generation of BiNbO 4 /MWO 4 (010) heterostructures. The experimental band gaps of bulk ZnWO 4 , CdWO 4 and BiNbO 4 are well reproduced using the DFT+U method. The calculated band edge position shows a type-II staggered band alignment and the charge transfer between BiNbO 4 and MWO 4 monolayers results in a large interfacial built-in potential, which will favour the separation of charge carriers in the heterostructures. The effective mass of the photoinduced holes is higher compared to the electrons, making the heterostructures useful in hydrogen production. The relatively low ionisation energy and electron affinity for the heterostructures compared to the monolayers make them ideal for photocatalysis applications due to their small energy barrier for the injection of electrons and creation of holes. The BiNbO 4 /MWO 4 (010) heterostructures are more suitable for photocatalytic hydrogen production due to their strong reducing power relative to the H + /H 2 O potential. This study sheds light on the less known BiNbO 4 /ZnWO 4 (010) heterostructures and the fully explored electronic and optical properties will pave way for future photocatalytic water splitting applications.
NASA Astrophysics Data System (ADS)
Lei, Xiang; Yu, Ke
2018-04-01
A purposeful modulation of physical properties of material via change external conditions has long captured people's interest and can provide many opportunities to improve the specific performance of electronic devices. In this work, a comprehensive first-principles survey was performed to elucidate that the bandgap and electronic properties of WSe2sbnd MoS2 heterostructure exhibited unusual response to exterior strain and electric field in comparison with pristine structures. It demonstrates that the WSe2sbnd MoS2 is a typical type-II heterostructure, and thus the electron-hole pairs can be effectively spatially separated. The external effects can trigger the electronic phase transition from semiconducting to metallic state, which originates from the internal electric evolution induced energy-level shift. Interestingly, the applied strain shows no direction-depended character for the modulation of bandgap of WSe2sbnd MoS2 heterostructure, while it exists in the electric field tuning processes and strongly depends on the direction of the electric field. Our findings elucidate the tunable electronic property of bilayer WSe2sbnd MoS2 heterostructure, and would provide a valuable reference to design the electronic nanodevices.
Transfer matrix approach to electron transport in monolayer MoS2/MoO x heterostructures
NASA Astrophysics Data System (ADS)
Li, Gen
2018-05-01
Oxygen plasma treatment can introduce oxidation into monolayer MoS2 to transfer MoS2 into MoO x , causing the formation of MoS2/MoO x heterostructures. We find the MoS2/MoO x heterostructures have the similar geometry compared with GaAs/Ga1‑x Al x As semiconductor superlattice. Thus, We employ the established transfer matrix method to analyse the electron transport in the MoS2/MoO x heterostructures with double-well and step-well geometries. We also considere the coupling between transverse and longitudinal kinetic energy because the electron effective mass changes spatially in the MoS2/MoO x heterostructures. We find the resonant peaks show red shift with the increasing of transverse momentum, which is similar to the previous work studying the transverse-momentum-dependent transmission in GaAs/Ga1‑x Al x As double-barrier structure. We find electric field can enhance the magnitude of peaks and intensify the coupling between longitudinal and transverse momentums. Moreover, higher bias is applied to optimize resonant tunnelling condition to show negative differential effect can be observed in the MoS2/MoO x system.
Mesoscopic Elastic Distortions in GaAs Quantum Dot Heterostructures.
Pateras, Anastasios; Park, Joonkyu; Ahn, Youngjun; Tilka, Jack A; Holt, Martin V; Reichl, Christian; Wegscheider, Werner; Baart, Timothy A; Dehollain, Juan Pablo; Mukhopadhyay, Uditendu; Vandersypen, Lieven M K; Evans, Paul G
2018-05-09
Quantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definition of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices. Understanding and controlling these distortions present a significant challenge in quantum device development. We report synchrotron X-ray nanodiffraction measurements combined with dynamical X-ray diffraction modeling that reveal lattice tilts with a depth-averaged value up to 0.04° and strain on the order of 10 -4 in the two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. Elastic distortions in GaAs/AlGaAs heterostructures modify the potential energy landscape in the 2DEG due to the generation of a deformation potential and an electric field through the piezoelectric effect. The stress induced by metal electrodes directly impacts the ability to control the positions of the potential minima where quantum dots form and the coupling between neighboring quantum dots.
NASA Astrophysics Data System (ADS)
Lazarenko, A. A.; Berezovskaya, T. N.; Denisov, D. V.; Sobolev, M. S.; Pirogov, E. V.; Nikitina, E. V.
2017-11-01
This article discusses the process of preparation of a silicon surface for subsequent growth of dilute nitride alloys by molecular-beam epitaxy. The method of preparation of Si (100) and Si (111) substrates was developed. This method provides reproducible high-quality silicon surface for molecular-beam epitaxy of Si-GaP heterostructures. As a result, it managed to reduce the eviction oxide temperature below 800 °C, which is an important parameter for the MBE technology.
NASA Technical Reports Server (NTRS)
Wei, J. Y. T.; Yeh, N. C.; Vasquez, R. P.
1998-01-01
Scanning tunneling spectroscopy was performed at 4.2K on epitaxial thin-film heterostructures comprising YBa2Cu3O7 and La0.7Ca0.3MnO3, to study the microscopic effects of spin-polarized quasiparticle injection from the half-metallic ferromagnetic manganite on the high-Tc cuprate superconductor.
Enhanced magnetocaloric effect material
Lewis, Laura J. H.
2006-07-18
A magnetocaloric effect heterostructure having a core layer of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, and a constricting material layer coated on at least one surface of the magnetocaloric material core layer. The constricting material layer may enhance the magnetocaloric effect by restriction of volume changes of the core layer during application of a magnetic field to the heterostructure. A magnetocaloric effect heterostructure powder comprising a plurality of core particles of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, wherein each of the core particles is encapsulated within a coating of a constricting material is also disclosed. A method for enhancing the magnetocaloric effect within a giant magnetocaloric material including the step of coating a surface of the magnetocaloric material with a constricting material is disclosed.
NASA Astrophysics Data System (ADS)
Wang, Liyang; Tian, Guohui; Chen, Yajie; Xiao, Yuting; Fu, Honggang
2016-04-01
In this study, a ZnO/ZnSe nanonail array was prepared via a two-step sequential hydrothermal synthetic route. In this synthetic process, the ZnO nanorod array was first grown on a fluorine-doped tin oxide (FTO) substrate using a seed-mediated growth approach via the hydrothermal process. Then, the ZnO nanonail array was obtained via in situ growth of ZnSe nano caps onto the ZnO nanorod array via a hydrothermal process in the presence of a Se source. The surface morphology and amount of ZnSe grown on the surface of the ZnO nanorods can be regulated by varying the reaction time and reactant concentration. Compared with pure ZnO nanorods, this unique nanonail array heterostructure exhibits enhanced visible light absorption. The transient photocurrent condition, in combination with steady-state and time-resolved photoluminescence spectroscopy, reveals that the ZnO/ZnSe nanonail array electrode has the highest charge separation rate, highest electron injection efficiency, and highest chemical stability. The photocurrent density of the ZnO/ZnSe nanonail array heterostructure reaches 1.01 mA cm-2 at an applied potential of 0.1 V (vs. Ag/AgCl), which is much higher than that of the ZnO/ZnSe nanorod array (0.71 mA cm-2), the pristine ZnO nanorod array (0.39 mA cm-2), and the ZnSe electrode (0.21 mA cm-2), indicating its significant visible light driven activities for photoelectrochemical water oxidation. This unique morphology of nail-capped nanorods might be important for providing better insight into the correlation between heterostructure and photoelectrochemical activity.In this study, a ZnO/ZnSe nanonail array was prepared via a two-step sequential hydrothermal synthetic route. In this synthetic process, the ZnO nanorod array was first grown on a fluorine-doped tin oxide (FTO) substrate using a seed-mediated growth approach via the hydrothermal process. Then, the ZnO nanonail array was obtained via in situ growth of ZnSe nano caps onto the ZnO nanorod array via a hydrothermal process in the presence of a Se source. The surface morphology and amount of ZnSe grown on the surface of the ZnO nanorods can be regulated by varying the reaction time and reactant concentration. Compared with pure ZnO nanorods, this unique nanonail array heterostructure exhibits enhanced visible light absorption. The transient photocurrent condition, in combination with steady-state and time-resolved photoluminescence spectroscopy, reveals that the ZnO/ZnSe nanonail array electrode has the highest charge separation rate, highest electron injection efficiency, and highest chemical stability. The photocurrent density of the ZnO/ZnSe nanonail array heterostructure reaches 1.01 mA cm-2 at an applied potential of 0.1 V (vs. Ag/AgCl), which is much higher than that of the ZnO/ZnSe nanorod array (0.71 mA cm-2), the pristine ZnO nanorod array (0.39 mA cm-2), and the ZnSe electrode (0.21 mA cm-2), indicating its significant visible light driven activities for photoelectrochemical water oxidation. This unique morphology of nail-capped nanorods might be important for providing better insight into the correlation between heterostructure and photoelectrochemical activity. Electronic supplementary information (ESI) available: SEM, EDS, XPS and photocurrent test. See DOI: 10.1039/c6nr01969b
Wang, Rui; Lu, Fen; Fan, Wei Jun; Liu, Chong Yang; Loh, Ter-Hoe; Nguyen, Hoai Son; Narayanan, Balasubramanian
2007-01-01
Si/Si0.66Ge0.34coupled quantum well (CQW) structures with different barrier thickness of 40, 4 and 2 nm were grown on Si substrates using an ultra high vacuum chemical vapor deposition (UHV-CVD) system. The samples were characterized using high resolution x-ray diffraction (HRXRD), cross-sectional transmission electron microscopy (XTEM) and photoluminescence (PL) spectroscopy. Blue shift in PL peak energy due to interwell coupling was observed in the CQWs following increase in the Si barrier thickness. The Si/SiGe heterostructure growth process and theoretical band structure model was validated by comparing the energy of the no-phonon peak calculated by the 6 + 2-bandk·pmethod with experimental PL data. Close agreement between theoretical calculations and experimental data was obtained.
Fabrication and investigation of photosensitive MoOx/n-CdTe heterojunctions
NASA Astrophysics Data System (ADS)
Solovan, M. M.; Gavaleshko, N. M.; Brus, V. V.; Mostovyi, A. I.; Maryanchuk, P. D.; Tresso, E.
2016-10-01
MoOx/n-CdTe photosensitive heterostructures were prepared by the deposition of molybdenum oxide thin films onto n-type single-crystal CdTe substrates by DC reactive magnetron sputtering. The obtained heterojunctions possessed sharply defined rectifying properties with the rectification ration RR ˜ 106. The temperature dependences of the height of the potential barrier and series resistance of the MoOx/CdTe heterojunctions were investigated. The dominating current transport mechanisms through the heterojunctions were determined at forward and reverse biases. The analysis of capacitance-voltage (C-V) characteristics, measured at different frequencies of the small amplitude AC signal and corrected by the effect of the series resistance, provided evidence of the presence of electrically charged interface states, which significantly affect the measured capacitance.
Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dauber, Jan; Stampfer, Christoph; Peter Grünberg Institute
2015-05-11
The encapsulation of graphene in hexagonal boron nitride provides graphene on substrate with excellent material quality. Here, we present the fabrication and characterization of Hall sensor elements based on graphene boron nitride heterostructures, where we gain from high mobility and low charge carrier density at room temperature. We show a detailed device characterization including Hall effect measurements under vacuum and ambient conditions. We achieve a current- and voltage-related sensitivity of up to 5700 V/AT and 3 V/VT, respectively, outpacing state-of-the-art silicon and III/V Hall sensor devices. Finally, we extract a magnetic resolution limited by low frequency electric noise of less than 50more » nT/√(Hz) making our graphene sensors highly interesting for industrial applications.« less
NASA Astrophysics Data System (ADS)
Li, Junxue; Yu, Guoqiang; Tang, Chi; Liu, Yizhou; Shi, Zhong; Liu, Yawen; Navabi, Aryan; Aldosary, Mohammed; Shao, Qiming; Wang, Kang L.; Lake, Roger; Shi, Jing
2017-06-01
Electrical currents in a magnetic-insulator/heavy-metal heterostructure can induce two simultaneous effects, namely, spin Hall magnetoresistance (SMR) on the heavy-metal side and spin-orbit torques (SOTs) on the magnetic-insulator side. Within the framework of a pure spin current model based on the bulk spin Hall effect (SHE), the ratio of the spin Hall-induced anomalous Hall effect (SH-AHE) to SMR should be equal to the ratio of the fieldlike torque (FLT) to the dampinglike torque (DLT). We perform a quantitative study of SMR, SH-AHE, and SOTs in a series of thulium iron garnet/platinum or T m3F e5O12/Pt heterostructures with different T m3F e5O12 thicknesses, where T m3F e5O12 is a ferrimagnetic insulator with perpendicular magnetic anisotropy. We find the ratio between the measured effective fields of FLT and DLT is at least two times larger than the ratio of the SH-AHE to SMR. In addition, the bulk SHE model grossly underestimates the spin-torque efficiency of FLT. Our results reveal deficiencies of the bulk SHE model and also address the importance of interfacial effects such as the Rashba and magnetic proximity effects in magnetic-insulator/heavy-metal heterostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, G. Y., E-mail: guoying-gao@mail.hust.edu.cn; Yao, K. L., E-mail: klyao@mail.hust.edu.cn
2014-11-03
Recently, ferromagnetic zinc-blende Mn{sub 1−x}Cr{sub x}S thin films (above x = 0.5) were fabricated experimentally on ZnSe substrate, which confirmed the previous theoretical prediction of half-metallic ferromagnetism in zinc-blende CrS. Here, we theoretically reveal that both Cr- and S-terminated (001) surfaces of the CrS thin films retain the half-metallicity. The CrS/ZnSe(001) heterogeneous junction exhibits excellent spin filtering and spin diode effects, which are explained by the calculated band structure and transmission spectra. The perfect spin transport properties indicate the potential applications of half-metallic CrS in spintronic devices. All computational results are obtained by using the density functional theory combined with nonequilibrium Green'smore » function.« less
Atomic-scaled characterization of graphene PN junctions
NASA Astrophysics Data System (ADS)
Zhou, Xiaodong; Wang, Dennis; Dadgar, Ali; Agnihotri, Pratik; Lee, Ji Ung; Reuter, Mark C.; Ross, Frances M.; Pasupathy, Abhay N.
Graphene p-n junctions are essential devices for studying relativistic Klein tunneling and the Veselago lensing effect in graphene. We have successfully fabricated graphene p-n junctions using both lithographically pre-patterned substrates and the stacking of vertical heterostructures. We then use our 4-probe STM system to characterize the junctions. The ability to carry out scanning electron microscopy (SEM) in our STM instrument is essential for us to locate and measure the junction interface. We obtain both the topography and dI/dV spectra at the junction area, from which we track the shift of the graphene chemical potential with position across the junction interface. This allows us to directly measure the spatial width and roughness of the junction and its potential barrier height. We will compare the junction properties of devices fabricated by the aforementioned two methods and discuss their effects on the performance as a Veselago lens.
Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures.
Myoung, Nojoon; Seo, Kyungchul; Lee, Seung Joo; Ihm, G
2013-08-27
Vertical graphene heterostructures have been introduced as an alternative architecture for electronic devices by using quantum tunneling. Here, we present that the current on/off ratio of vertical graphene field-effect transistors is enhanced by using an armchair graphene nanoribbon as an electrode. Moreover, we report spin-dependent tunneling current of the graphene/MoS2 heterostructures. When an atomically thin MoS2 layer sandwiched between graphene electrodes becomes magnetic, Dirac fermions with different spins feel different heights of the tunnel barrier, leading to spin-dependent tunneling. Our finding will develop the present graphene heterostructures for electronic devices by improving the device performance and by adding the possibility of spintronics based on graphene.
2D lateral heterostructures of group-III monochalcogenide: Potential photovoltaic applications
NASA Astrophysics Data System (ADS)
Cheng, Kai; Guo, Yu; Han, Nannan; Jiang, Xue; Zhang, Junfeng; Ahuja, Rajeev; Su, Yan; Zhao, Jijun
2018-04-01
Solar photovoltaics provides a practical and sustainable solution to the increasing global energy demand. Using first-principles calculations, we investigate the energetics and electronic properties of two-dimensional lateral heterostructures by group-III monochalcogenides and explore their potential applications in photovoltaics. The band structures and formation energies from supercell calculations demonstrate that these heterostructures retain semiconducting behavior and might be synthesized in laboratory using the chemical vapor deposition technique. According to the computed band offsets, most of the heterojunctions belong to type II band alignment, which can prevent the recombination of electron-hole pairs. Besides, the electronic properties of these lateral heterostructures can be effectively tailored by the number of layers, leading to a high theoretical power conversion efficiency over 20%.
Fan, Kaimin; Tang, Jing; Wu, Shiyun; Yang, Chengfu; Hao, Jiabo
2016-12-21
The adsorption and diffusion behaviors of lithium (Li) in a graphene/blue-phosphorus (G/BP) heterostructure have been investigated using a first principles method based on density functional theory (DFT). The effect of an external electric field on the adsorption and diffusion behaviors has also been investigated. The results show that the adsorption energy of Li on the graphene side of the G/BP heterostructure is higher than that on monolayer graphene, and Li adsorption on the BP side of the G/BP/Li system is slightly stronger than that on monolayer BP (BP/Li). The adsorption energy of Li reaches 2.47 eV, however, the energy barriers of Li diffusion decrease in the interlayer of the G/BP heterostructure. The results mentioned above suggest that the rate performance of the G/BP heterostructure is better than that of monolayer graphene. Furthermore, the adsorption energies of Li atoms in the three different most stable sites, i.e., H G , T P and H 1 sites, increase by about 0.49 eV, 0.26 eV, and 0.13 eV, respectively, as the electric field intensity reaches 0.6 V Å -1 . The diffusion energy barrier is significantly decreased by an external electric field. It is demonstrated that the external electric field can not only enhance the adsorption but can also modulate the diffusion barriers of Li atoms in the G/BP heterostructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yachao; Zhou, Xiaowei; Xu, Shengrui
Pulsed metal organic chemical vapor deposition (P-MOCVD) is introduced into the growth of high quality InGaN channel heterostructures. The effects of InGaN channel growth temperature on the structural and transport properties of the heterostructures are investigated in detail. High resolution x-ray diffraction (HRXRD) and Photoluminescence (PL) spectra indicate that the quality of InGaN channel strongly depends on the growth temperature. Meanwhile, the atomic force microscopy (AFM) results show that the interface morphology between the InGaN channel and the barrier layer also relies on the growth temperature. Since the variation of material properties of InGaN channel has a significant influence onmore » the electrical properties of InAlN/InGaN heterostructures, the optimal transport properties can be achieved by adjusting the growth temperature. A very high two dimension electron gas (2DEG) density of 1.92 × 10{sup 13} cm{sup −2} and Hall electron mobility of 1025 cm{sup 2}/(V⋅s) at room temperature are obtained at the optimal growth temperature around 740 °C. The excellent transport properties in our work indicate that the heterostructure with InGaN channel is a promising candidate for the microwave power devices, and the results in this paper will be instructive for further study of the InGaN channel heterostructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Apurba, E-mail: apurba.chakraborty86@gmail.com; Biswas, Dhrubes; Advanced Technology Development Centre, IIT Kharagpur, Kharagpur 721302
2015-02-23
Frequency dependent conductance measurement is carried out to observe the trapping effect in AlGaN/InGaN/GaN double heterostructure and compared that with conventional AlGaN/GaN single heterostructure. It is found that the AlGaN/InGaN/GaN diode structure does not show any trapping effect, whereas single heterostructure AlGaN/GaN diode suffers from two kinds of trap energy states in near depletion to higher negative voltage bias region. This conductance behaviour of AlGaN/InGaN/GaN heterostructure is owing to more Fermi energy level shift from trap energy states at AlGaN/InGaN junction compare to single AlGaN/GaN heterostructure and eliminates the trapping effects. Analysis yielded interface trap energy state in AlGaN/GaN ismore » to be with time constant of (33.8–76.5) μs and trap density of (2.38–0.656) × 10{sup 12 }eV{sup −1} cm{sup −2} in −3.2 to −4.8 V bias region, whereas for AlGaN/InGaN/GaN structure no interface energy states are found and the extracted surface trap energy concentrations and time constants are (5.87–4.39) ×10{sup 10} eV{sup −1} cm{sup −2} and (17.8–11.3) μs, respectively, in bias range of −0.8–0.0 V.« less
NASA Astrophysics Data System (ADS)
Zhao, Yipeng; Yu, Wangbing; Ouyang, Gang
2018-01-01
2D transition metal dichalcogenide (TMDC)-based heterostructures exhibit several fascinating properties that can address the emerging market of energy conversion and storage devices. Current achievements show that the vertical stacked TMDC heterostructures can form type II band alignment and possess significant optoelectronic properties. However, a detailed analytical understanding of how to quantify the band alignment and band offset as well as the optimized power conversion efficiency (PCE) is still lacking. Herein, we propose an analytical model to exhibit the PCEs of TMDC van der Waals (vdW) heterostructures and explore the intrinsic mechanism of photovoltaic conversion based on the detailed balance principle and atomic-bond-relaxation correlation mechanism. We find that the PCE of monolayer MoS2/WSe2 can be up to 1.70%, and that of the MoS2/WSe2 vdW heterostructures increases with thickness, owing to increasing optical absorption. Moreover, the results are validated by comparing them with the available evidence, providing realistic efficiency targets and design principles. Highlights • Both electronic and optoelectronic models are developed for vertical stacked MoS2/WSe2 heterostructures. • The underlying mechanism on size effect of electronic and optoelectronic properties for vertical stacked MoS2/WSe2 heterostructures is clarified. • The macroscopically measurable quantities and the microscopical bond identities are connected.
Enhanced monolayer MoS2/InP heterostructure solar cells by graphene quantum dots
NASA Astrophysics Data System (ADS)
Wang, Peng; Lin, Shisheng; Ding, Guqiao; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Xu, Sen; Lu, Yanghua; Xu, Wenli; Zheng, Zheyang
2016-04-01
We demonstrate significantly improved photovoltaic response of monolayer molybdenum disulfide (MoS2)/indium phosphide (InP) van der Waals heterostructure induced by graphene quantum dots (GQDs). Raman and photoluminescence measurements indicate that effective charge transfer takes place between GQDs and MoS2, which results in n-type doping of MoS2. The doping effect increases the barrier height at the MoS2/InP heterojunction, thus the averaged power conversion efficiency of MoS2/InP solar cells is improved from 2.1% to 4.1%. The light induced doping by GQD provides a feasible way for developing more efficient MoS2 based heterostructure solar cells.
Thiolated graphene - a new platform for anchoring CdSe quantum dots for hybrid heterostructures
NASA Astrophysics Data System (ADS)
Debgupta, Joyashish; Pillai, Vijayamohanan K.
2013-04-01
Effective organization of small CdSe quantum dots on graphene sheets has been achieved by a simple solution exchange with thiol terminated graphene prepared by diazonium salt chemistry. This generic methodology of CdSe QD attachment to any graphene surface has remarkable implications in designing hybrid heterostructures.Effective organization of small CdSe quantum dots on graphene sheets has been achieved by a simple solution exchange with thiol terminated graphene prepared by diazonium salt chemistry. This generic methodology of CdSe QD attachment to any graphene surface has remarkable implications in designing hybrid heterostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00363a
Effect of rare earth metal on the spin-orbit torque in magnetic heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueda, Kohei; Pai, Chi-Feng; Tan, Aik Jun
2016-06-06
We report the effect of the rare earth metal Gd on current-induced spin-orbit torques (SOTs) in perpendicularly magnetized Pt/Co/Gd heterostructures, characterized using harmonic measurements and spin-torque ferromagnetic resonance (ST-FMR). By varying the Gd metal layer thickness from 0 nm to 8 nm, harmonic measurements reveal a significant enhancement of the effective fields generated from the Slonczewski-like and field-like torques. ST-FMR measurements confirm an enhanced effective spin Hall angle and show a corresponding increase in the magnetic damping constant with increasing Gd thickness. These results suggest that Gd plays an active role in generating SOTs in these heterostructures. Our finding may lead tomore » spin-orbitronics device application such as non-volatile magnetic random access memory, based on rare earth metals.« less
Garcia, Jose H; Cummings, Aron W; Roche, Stephan
2017-08-09
We report on a theoretical study of the spin Hall Effect (SHE) and weak antilocalization (WAL) in graphene/transition metal dichalcogenide (TMDC) heterostructures, computed through efficient real-space quantum transport methods, and using realistic tight-binding models parametrized from ab initio calculations. The graphene/WS 2 system is found to maximize spin proximity effects compared to graphene on MoS 2 , WSe 2 , or MoSe 2 with a crucial role played by disorder, given the disappearance of SHE signals in the presence of strong intervalley scattering. Notably, we found that stronger WAL effects are concomitant with weaker charge-to-spin conversion efficiency. For further experimental studies of graphene/TMDC heterostructures, our findings provide guidelines for reaching the upper limit of spin current formation and for fully harvesting the potential of two-dimensional materials for spintronic applications.
Quantitative first-principles theory of interface absorption in multilayer heterostructures
Hachtel, Jordan A.; Sachan, Ritesh; Mishra, Rohan; ...
2015-09-03
The unique chemical bonds and electronic states of interfaces result in optical properties that are different from those of the constituting bulk materials. In the nanoscale regime, the interface effects can be dominant and impact the optical response of devices. Using density functional theory (DFT), the interface effects can be calculated, but DFT is computationally limited to small systems. In this paper, we describe a method to combine DFT with macroscopic methodologies to extract the interface effect on absorption in a consistent and quantifiable manner. The extracted interface effects are an independent parameter and can be applied to more complicatedmore » systems. Finally, we demonstrate, using NiSi 2/Si heterostructures, that by varying the relative volume fractions of interface and bulk, we can tune the spectral range of the heterostructure absorption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsatsulnikov, A. F., E-mail: andrew@beam.ioffe.ru; Lundin, V. W.; Zavarin, E. E.
The effect of the layer thickness and composition in AlGaN/AlN/GaN and InAlN/AlN/GaN transistor heterostructures with a two-dimensional electron gas on their electrical and the static parameters of test transistors fabricated from such heterostructures are experimentally and theoretically studied. It is shown that the use of an InAlN barrier layer instead of AlGaN results in a more than twofold increase in the carrier concentration in the channel, which leads to a corresponding increase in the saturation current. In situ dielectric-coating deposition on the InAlN/AlN/GaN heterostructure surface during growth process allows an increase in the maximum saturation current and breakdown voltages whilemore » retaining high transconductance.« less
Malashchonak, Mikalai V; Korolik, Olga V; Streltsov, Еugene А; Kulak, Anatoly I
2015-01-01
Summary The photoelectrochemical properties of nanoheterostructures based on the wide band gap oxide substrates (ZnO, TiO2, In2O3) and CdS nanoparticles deposited by the successive ionic layer adsorption and reaction (SILAR) method have been studied as a function of the CdS deposition cycle number (N). The incident photon-to-current conversion efficiency (IPCE) passes through a maximum with the increase of N, which is ascribed to the competition between the increase in optical absorption and photocarrier recombination. The maximal IPCE values for the In2O3/CdS and ZnO/CdS heterostructures are attained at N ≈ 20, whereas for TiO2/CdS, the appropriate N value is an order of magnitude higher. The photocurrent and Raman spectroscopy studies of CdS nanoparticles revealed the occurrence of the quantum confinement effect, demonstrating the most rapid weakening with the increase of N in ZnO/CdS heterostructures. The structural disorder of CdS nanoparticles was characterized by the Urbach energy (E U), spectral width of the CdS longitudinal optical (LO) phonon band and the relative intensity of the surface optical (SO) phonon band in the Raman spectra. Maximal values of E U (100–120 meV) correspond to СdS nanoparticles on a In2O3 surface, correlating with the fact that the CdS LO band spectral width and intensity ratio for the CdS SO and LO bands are maximal for In2O3/CdS films. A notable variation in the degree of disorder of CdS nanoparticles is observed only in the initial stages of CdS growth (several tens of deposition cycles), indicating the preservation of the nanocrystalline state of CdS over a wide range of SILAR cycles. PMID:26734517
Malashchonak, Mikalai V; Mazanik, Alexander V; Korolik, Olga V; Streltsov, Еugene А; Kulak, Anatoly I
2015-01-01
The photoelectrochemical properties of nanoheterostructures based on the wide band gap oxide substrates (ZnO, TiO2, In2O3) and CdS nanoparticles deposited by the successive ionic layer adsorption and reaction (SILAR) method have been studied as a function of the CdS deposition cycle number (N). The incident photon-to-current conversion efficiency (IPCE) passes through a maximum with the increase of N, which is ascribed to the competition between the increase in optical absorption and photocarrier recombination. The maximal IPCE values for the In2O3/CdS and ZnO/CdS heterostructures are attained at N ≈ 20, whereas for TiO2/CdS, the appropriate N value is an order of magnitude higher. The photocurrent and Raman spectroscopy studies of CdS nanoparticles revealed the occurrence of the quantum confinement effect, demonstrating the most rapid weakening with the increase of N in ZnO/CdS heterostructures. The structural disorder of CdS nanoparticles was characterized by the Urbach energy (E U), spectral width of the CdS longitudinal optical (LO) phonon band and the relative intensity of the surface optical (SO) phonon band in the Raman spectra. Maximal values of E U (100-120 meV) correspond to СdS nanoparticles on a In2O3 surface, correlating with the fact that the CdS LO band spectral width and intensity ratio for the CdS SO and LO bands are maximal for In2O3/CdS films. A notable variation in the degree of disorder of CdS nanoparticles is observed only in the initial stages of CdS growth (several tens of deposition cycles), indicating the preservation of the nanocrystalline state of CdS over a wide range of SILAR cycles.
Hydrodynamic pumping of a quantum Fermi liquid in a semiconductor heterostructure
NASA Astrophysics Data System (ADS)
Heremans, J. J.; Kantha, D.; Chen, H.; Govorov, A. O.
2003-03-01
We present experimental results for a pumping mechanism observed in mesoscopic structures patterned on two-dimensional electron systems in GaAs/AlGaAs heterostructures. The experiments are performed at low temperatures, in the ballistic regime. The effect is observed as a voltage or current signal corresponding to carrier extraction from sub-micron sized apertures, when these apertures are swept by a beam of ballistic electrons. The carrier extraction, phenomenologically reminiscent of the Bernoulli pumping effect in classical fluids, has been observed in various geometries. We ascertained linearity between measured voltage and injected current in all experiments, thereby excluding rectification effects. The linear response, however, points to a fundamental difference from the Bernoulli effect in classical liquids, where the response is nonlinear and quadratic in terms of the velocity. The temperature dependence of the effect will also be presented. We thank M. Shayegan (Princeton University) for the heterostructure growth, and acknowledge support from NSF DMR-0094055.
AlN/GaN heterostructures for normally-off transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravlev, K. S., E-mail: zhur@isp.nsc.ru; Malin, T. V.; Mansurov, V. G.
The structure of AlN/GaN heterostructures with an ultrathin AlN barrier is calculated for normally-off transistors. The molecular-beam epitaxy technology of in situ passivated SiN/AlN/GaN heterostructures with a two-dimensional electron gas is developed. Normally-off transistors with a maximum current density of ~1 A/mm, a saturation voltage of 1 V, a transconductance of 350 mS/mm, and a breakdown voltage of more than 60 V are demonstrated. Gate lag and drain lag effects are almost lacking in these transistors.
Nanoheteroepitaxy of gallium arsenide on strain-compliant silicon-germanium nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Hock-Chun; Gong, Xiao; Yeo, Yee-Chia
Heterogeneous integration of high-quality GaAs on Si-based substrates using a selective migration-enhanced epitaxy (MEE) of GaAs on strain-compliant SiGe nanowires was demonstrated for the first time. The physics of compliance in nanoscale heterostructures was captured and studied using finite-element simulation. It is shown that nanostructures can provide additional substrate compliance for strain relief and therefore contribute to the formation of defect-free GaAs on SiGe. Extensive characterization using scanning electron microscopy and cross-sectional transmission electron microscopy was performed to illustrate the successful growth of GaAs on SiGe nanowire. Raman and Auger electron spectroscopy measurements further confirmed the quality of the GaAsmore » grown and the high growth selectivity of the MEE process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Kepeng; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang; Schmid, Herbert
2014-03-01
Epitaxial CeO{sub 2} films with different thickness were grown on Y{sub 2}O{sub 3} stabilised Zirconia substrates. Reduction of cerium ions at the interface between CeO{sub 2} films and yttria stabilised zirconia substrates is demonstrated using aberration-corrected scanning transmission electron microscopy combined with electron energy-loss spectroscopy. It is revealed that most of the Ce ions were reduced from Ce{sup 4+} to Ce{sup 3+} at the interface region with a decay of several nanometers. Several possibilities of charge compensations are discussed. Irrespective of the details, such local non-stoichiometries are crucial not only for understanding charge transport in such hetero-structures but also formore » understanding ceria catalytic properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkhomenko, Ya. A.; Ivanov, E. V.; Moiseev, K. D., E-mail: mkd@iropt2.ioffe.rssi.ru
2013-11-15
The electrical and electroluminescence properties of a single narrow-gap heterostructure based on a p-n junction in indium arsenide, containing a single layer of InSb quantum dots in the InAs matrix, are studied. The presence of quantum dots has a significant effect on the shape of the reverse branch of the current-voltage characteristic of the heterostructure. Under reverse bias, the room-temperature electroluminescence spectra of the heterostructure with quantum dots, in addition to a negative-luminescence band with a maximum at the wavelength {lambda} = 3.5 {mu}m, contained a positive-luminescence emission band at 3.8 {mu}m, caused by radiative transitions involving localized states ofmore » quantum dots at the type-II InSb/InAs heterointerface.« less
NASA Astrophysics Data System (ADS)
Li, J. X.; Yu, G. Q.; Tang, C.; Wang, K. L.; Shi, J.
Spin-orbit torque (SOT) has been demonstrated to be efficient to manipulate the magnetization in heavy-metal/ferromagnetic metal (HM/FMM) heterostructures. In HM/magnetic insulator (MI) heterostructures, charge currents do not flow in MI, but pure spin currents generated by the spin Hall effect in HM can enter the MI layer to cause magnetization dynamics. Here we report SOT-induced magnetization switching in Tm3Fe5O12/Pt heterostructures, where Tm3Fe5O12 (TmIG) is a MI grown by pulsed laser deposition with perpendicular magnetic anisotropy. The anomalous Hall signal in Pt is used as a probe to detect the magnetization switching. Effective magnetic fields due to the damping-like and field-like torques are extracted using a harmonic Hall detection method. The experiments are carried out in heterostructures with different TmIG film thicknesses. Both the switching and harmonic measurements indicate a more efficient SOT generation in HM/MI than in HM/FMM heterostructures. Our comprehensive experimental study and detailed analysis will be presented. This work was supported as part of the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award No. SC0012670.
Yunus, Rozan Mohamad; Endo, Hiroko; Tsuji, Masaharu; Ago, Hiroki
2015-10-14
Heterostructures of two-dimensional (2D) layered materials have attracted growing interest due to their unique properties and possible applications in electronics, photonics, and energy. Reduction of the dimensionality from 2D to one-dimensional (1D), such as graphene nanoribbons (GNRs), is also interesting due to the electron confinement effect and unique edge effects. Here, we demonstrate a bottom-up approach to grow vertical heterostructures of MoS2 and GNRs by a two-step chemical vapor deposition (CVD) method. Single-layer GNRs were first grown by ambient pressure CVD on an epitaxial Cu(100) film, followed by the second CVD process to grow MoS2 over the GNRs. The MoS2 layer was found to grow preferentially on the GNR surface, while the coverage could be further tuned by adjusting the growth conditions. The MoS2/GNR nanostructures show clear photosensitivity to visible light with an optical response much higher than that of a 2D MoS2/graphene heterostructure. The ability to grow a novel 1D heterostructure of layered materials by a bottom-up CVD approach will open up a new avenue to expand the dimensionality of the material synthesis and applications.
New Quantum Wire Field Effect Transistor
2001-06-01
based on V-groove GaAs/AlGaAs heterostructure grown metal organic chemical- vapour -deposition. Electron transport in one-dimensional (1D) systems has... vapour -deposition (MOCVD). This technique produces very long QWR’s in heterostructures with hard wall confinement and large mini band separation. To
Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures
NASA Astrophysics Data System (ADS)
Zhou, Ziyao; Yang, Qu; Liu, Ming; Zhang, Zhiguo; Zhang, Xinyang; Sun, Dazhi; Nan, Tianxiang; Sun, Nianxiang; Chen, Xing
2015-04-01
Antiferroelectric (AFE) materials with adjacent dipoles oriented in antiparallel directions have a double polarization hysteresis loops. An electric field (E-field)-induced AFE-ferroelectric (FE) phase transition takes place in such materials, leading to a large lattice strain and energy change. The high dielectric constant and the distinct phase transition in AFE materials provide great opportunities for the realization of energy storage devices like super-capacitors and energy conversion devices such as AFE MEMS applications. Lots of work has been done in this field since 60-70 s. Recently, the strain tuning of the spin, charge and orbital orderings and their interactions in complex oxides and multiferroic heterostructures have received great attention. In these systems, a single control parameter of lattice strain is used to control lattice-spin, lattice-phonon, and lattice-charge interactions and tailor properties or create a transition between distinct magnetic/electronic phases. Due to the large strain/stress arising from the phase transition, AFE materials are great candidates for integrating with ferromagnetic (FM) materials to realize in situ manipulation of magnetism and lattice-ordered parameters by voltage. In this paper, we introduce the AFE material and it's applications shortly and then review the recent progress in AFEs based on multiferroic heterostructures. These new multiferroic materials could pave a new way towards next generation light, compact, fast and energy efficient voltage tunable RF/microwave, spintronic and memory devices promising approaches to in situ manipulation of lattice-coupled order parameters is to grow epitaxial oxide films on FE/ferroelastic substrates.
NASA Astrophysics Data System (ADS)
Sankaran, Kamatchi Jothiramalingam; Hoang, Duc Quang; Kunuku, Srinivasu; Korneychuk, Svetlana; Turner, Stuart; Pobedinskas, Paulius; Drijkoningen, Sien; van Bael, Marlies K.; D' Haen, Jan; Verbeeck, Johan; Leou, Keh-Chyang; Lin, I.-Nan; Haenen, Ken
2016-07-01
Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/μm, a high FEE current density of 1.48 mA/cm2 and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/μm with 0.21 mA/cm2 FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.
Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang
2015-01-01
2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices. PMID:26563573
NASA Astrophysics Data System (ADS)
Chavez, Andres C.; Kundu, Auni A.; Lynch, Christopher S.; Carman, Gregory P.
2018-03-01
Strain-mediated multiferroic heterostructures relying on fast 180° precessional magnetic switching have been proposed as a pathway for energy efficient and high density memory/logic devices. However, proper device performance requires precisely timed high frequency ( GHz) voltage pulses dependent on the magnetization dynamics of the structure. In turn, the dynamic response of the device is greatly influenced by the device geometry, strain amplitude, and strain rate. Hence, we study the effects of increasing the voltage amplitude and application rate on the in-plane magnetization dynamics of a single-domain CoFeB ellipse (100 nm x 80 nm x 6 nm) on a 500 nm thick PZT substrate in addition to studying defects in the geometry. Both a coupled micromagnetics, electrostatics and elastodynamics finite element model and a conventional micromagnetics software was used to study the strain-induced magnetic response of the CoFeB ellipse. Both models predict increased 90° magnetic reorientation speed with increased strain amplitude and rate. However, the fully-coupled model predicts slower reorientation and incoherency in comparison to the uncoupled model. This occurs because the fully-coupled model can capture the expected strain gradients of a fabricated device while the micromagnetics model can only represent uniform strain states. Additional studies which introduce geometric defects result in faster precessional motion under the same strain amplitude and rate. This is attributed to localized changes in the magnetization that influence neighboring regions via exchange and demagnetization effects. The results of these studies can help design better devices that will be less sensitive to defects and voltage applications for future strain-mediated multiferroic devices.
Oxide Heteroepitaxy for Flexible Optoelectronics.
Bitla, Yugandhar; Chen, Ching; Lee, Hsien-Chang; Do, Thi Hien; Ma, Chun-Hao; Qui, Le Van; Huang, Chun-Wei; Wu, Wen-Wei; Chang, Li; Chiu, Po-Wen; Chu, Ying-Hao
2016-11-30
The emerging technological demands for flexible and transparent electronic devices have compelled researchers to look beyond the current silicon-based electronics. However, fabrication of devices on conventional flexible substrates with superior performance are constrained by the trade-off between processing temperature and device performance. Here, we propose an alternative strategy to circumvent this issue via the heteroepitaxial growth of transparent conducting oxides (TCO) on the flexible mica substrate with performance comparable to that of their rigid counterparts. With the examples of ITO and AZO as a case study, a strong emphasis is laid upon the growth of flexible yet epitaxial TCO relying muscovite's superior properties compared to those of conventional flexible substrates and its compatibility with the present fabrication methods. Besides excellent optoelectro-mechanical properties, an additional functionality of high-temperature stability, normally lacking in the current state-of-the-art transparent flexitronics, is provided by these heterostructures. These epitaxial TCO electrodes with good chemical and thermal stabilities as well as mechanical durability can significantly contribute to the field of flexible, light-weight, and portable smart electronics.
Evolutionary selection growth of two-dimensional materials on polycrystalline substrates
NASA Astrophysics Data System (ADS)
Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj; Unocic, Raymond R.; Rack, Philip D.; Baddorf, Arthur P.; Ivanov, Ilia N.; Lavrik, Nickolay V.; List, Frederick; Gupta, Nitant; Bets, Ksenia V.; Yakobson, Boris I.; Smirnov, Sergei N.
2018-03-01
There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice1 in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection2 approach, which is now realized in 2D geometry. The method relies on `self-selection' of the fastest-growing domain orientation, which eventually overwhelms the slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h-1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, X. Q.; Takahashi, T.; Matsuhata, H.
2013-12-02
We investigate the role of an ultra-thin AlN/GaN superlattice interlayer (SL-IL) on the strain engineering of the GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy. It is found that micro-cracks limitted only at the SL-IL position are naturally generated. These micro-cracks play an important role in relaxing the tensile strain caused by the difference of the coefficient of thermal expansion between GaN and Si and keeping the residual strain in the crack-free GaN epilayers resulted from the SL-IL during the growth. The mechanism understanding of the strain modulation by the SL-IL in the GaN epilayersmore » grown on Si substrates makes it possible to design new heterostructures of III-nitrides for optic and electronic device applications.« less
NASA Astrophysics Data System (ADS)
Shen, X. Q.; Takahashi, T.; Rong, X.; Chen, G.; Wang, X. Q.; Shen, B.; Matsuhata, H.; Ide, T.; Shimizu, M.
2013-12-01
We investigate the role of an ultra-thin AlN/GaN superlattice interlayer (SL-IL) on the strain engineering of the GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy. It is found that micro-cracks limitted only at the SL-IL position are naturally generated. These micro-cracks play an important role in relaxing the tensile strain caused by the difference of the coefficient of thermal expansion between GaN and Si and keeping the residual strain in the crack-free GaN epilayers resulted from the SL-IL during the growth. The mechanism understanding of the strain modulation by the SL-IL in the GaN epilayers grown on Si substrates makes it possible to design new heterostructures of III-nitrides for optic and electronic device applications.
Substrate-induced interfacial plasmonics for photovoltaic conversion
Li, Xinxi; Jia, Chuancheng; Ma, Bangjun; Wang, Wei; Fang, Zheyu; Zhang, Guoqing; Guo, Xuefeng
2015-01-01
Surface plasmon resonance (SPR) is widely used as light trapping schemes in solar cells, because it can concentrate light fields surrounding metal nanostructures and realize light management at the nanoscale. SPR in photovoltaics generally occurs at the metal/dielectric interfaces. A well-defined interface is therefore required to elucidate interfacial SPR processes. Here, we designed a photovoltaic device (PVD) with an atomically flat TiO2 dielectric/dye/graphene/metal nanoparticle (NP) interface for quantitatively studying the SPR enhancement of the photovoltaic conversion. Theoretical and experimental results indicated that the graphene monolayer was transparent to the electromagnetic field. This transparency led to significant substrate-induced plasmonic hybridization at the heterostructure interface. Combined with interparticle plasmonic coupling, the substrate-induced plasmonics concentrated light at the interface and enhanced the photo-excitation of dyes, thus improving the photoelectric conversion. Such a mechanistic understanding of interfacial plasmonic enhancement will further promote the development of efficient plasmon-enhanced solar cells and composite photocatalysts. PMID:26412576
Cu2O-directed in situ growth of Au nanoparticles inside HKUST-1 nanocages.
Liu, Yongxin; Liu, Ting; Tian, Long; Zhang, Linlin; Yao, Lili; Tan, Taixing; Xu, Jin; Han, Xiaohui; Liu, Dan; Wang, Cheng
2016-12-07
Controllable integration of metal nanoparticles (MNPs) and metal-organic frameworks (MOFs) is attracting considerable attention as the obtained composite materials always show synergistic effects in applications of catalysis, delivery, as well as sensing. Herein, a Cu 2 O-directed in situ growth strategy was developed to integrate Au nanoparticles and HKUST-1. In this strategy, Cu 2 O@HKUST-1 core-shell heterostructures, HKUST-1 nanocages, Cu 2 O@Au@HKUST-1 sandwich core-shell heterostructures and Au@HKUST-1 balls-in-cage heterostructures were successfully synthesized. Cu 2 O@HKUST-1 core-shell heterostructures were synthesized by soaking Cu 2 O nanocrystals in benzene-1,3,5-tricarboxylic acid solution. The well-defined Cu 2 O@HKUST-1 core-shell heterostructures were demonstrated to be dominated by the ratio of Cu 2+ cations to btc 3- ligands in solution during the period of HKUST-1 formation. Cu 2 O@Au@HKUST-1 sandwich core-shell or Au@HKUST-1 balls-in-cage heterostructures were obtained by impregnating HAuCl 4 into Cu 2 O@HKUST-1 core-shell heterostructures. Due to the porosity of HKUST-1 and reducibility of Cu 2 O, HAuCl 4 could pass through the HKUST-1 shell and be reduced by the Cu 2 O core in situ forming Au nanoparticles. Finally, CO oxidation reaction at high temperatures was carried out to assess the catalytic functionality of the obtained composite heterostructures. This strategy can circumvent some drawbacks of the existing approaches for integrating MNPs and MOFs, such as nonselective deposition of MNPs at the outer surface of the MOF matrices, extreme treatment conditions and additional surface modifications.
Shi, Wenwu; Chopra, Nitin
2012-10-24
Fabrication of oxide nanowire heterostructures with controlled morphology, interface, and phase purity is critical for high-efficiency and low-cost photocatalysis. Here, we have studied the formation of copper oxide-cobalt nanowire heterostructures by sputtering and subsequent air annealing to result in cobalt oxide (Co(3)O(4))-coated CuO nanowires. This approach allowed fabrication of standing nanowire heterostructures with tunable compositions and morphologies. The vertically standing CuO nanowires were synthesized in a thermal growth method. The shell growth kinetics of Co and Co(3)O(4) on CuO nanowires, morphological evolution of the shell, and nanowire self-shadowing effects were found to be strongly dependent on sputtering duration, air-annealing conditions, and alignment of CuO nanowires. Finite element method (FEM) analysis indicated that alignment and stiffness of CuO-Co nanowire heterostructures greatly influenced the nanomechanical aspects such as von Mises equivalent stress distribution and bending of nanowire heterostructures during the Co deposition process. This fundamental knowledge was critical for the morphological control of Co and Co(3)O(4) on CuO nanowires with desired interfaces and a uniform coating. Band gap energies and phenol photodegradation capability of CuO-Co(3)O(4) nanowire heterostructures were studied as a function of Co(3)O(4) morphology. Multiple absorption edges and band gap tailings were observed for these heterostructures, indicating photoactivity from visible to UV range. A polycrystalline Co(3)O(4) shell on CuO nanowires showed the best photodegradation performance (efficiency ~50-90%) in a low-powered UV or visible light illumination with a sacrificial agent (H(2)O(2)). An anomalously high efficiency (~67.5%) observed under visible light without sacrificial agent for CuO nanowires coated with thin (∼5.6 nm) Co(3)O(4) shell and nanoparticles was especially interesting. Such photoactive heterostructures demonstrate unique sacrificial agent-free, robust, and efficient photocatalysts promising for organic decontamination and environmental remediation.
NASA Astrophysics Data System (ADS)
Wang, Biao; Kuang, Anlong; Luo, Xukai; Wang, Guangzhao; Yuan, Hongkuan; Chen, Hong
2018-05-01
Two-dimensional (2D) gallium sulfide (GaS), hexagonal boron nitride (h-BN) and graphitic carbon nitride (g-C3N4) have been fabricated and expected to be promising photocatalysts under ultraviolet irradiation. Here, we employ hybrid density functional calculations to explore the potential of the 2D GaS-based heterojunctions GaS/h-BN (g-C3N4) for the design of efficient water redox photocatalysts. Both heterostructures can be formed via van der Waals (vdW) interaction and are direct bandgap semiconductors, whose bandgaps are reduced comparing with isolated GaS, h-BN or g-C3N4 monolayers and whose bandedges straddle water redox potentials. Furthermore, the optical absorption of GaS/h-BN (g-C3N4) heterostructures is observably enhanced in the ultraviolet-visible (UV-vis) light range. The electron-hole pairs in GaS/h-BN (g-C3N4) heterostructures are completely separated from different layers. In addition, the in-plane biaxial strain can effectively modulate the electronic properties of GaS/h-BN (g-C3N4) heterostructures. Thus the GaS/h-BN (g-C3N4) heterostructures are anticipated to be promising candidates for photocatalytic water splitting to produce hydrogen.
Chen, Mengxiao; Pan, Caofeng; Zhang, Taiping; Li, Xiaoyi; Liang, Renrong; Wang, Zhong Lin
2016-06-28
Based on white light emission at silicon (Si)/ZnO hetrerojunction, a pressure-sensitive Si/ZnO nanowires heterostructure matrix light emitting diode (LED) array is developed. The light emission intensity of a single heterostructure LED is tuned by external strain: when the applied stress keeps increasing, the emission intensity first increases and then decreases with a maximum value at a compressive strain of 0.15-0.2%. This result is attributed to the piezo-phototronic effect, which can efficiently modulate the LED emission intensity by utilizing the strain-induced piezo-polarization charges. It could tune the energy band diagrams at the junction area and regulate the optoelectronic processes such as charge carriers generation, separation, recombination, and transport. This study achieves tuning silicon based devices through piezo-phototronic effect.
NASA Astrophysics Data System (ADS)
Wójcik, I.; Stareev, G.; Barcz, A.; Domański, M.
1988-11-01
Multilayer CrPtCr/NiAu metallization was deposited by sputtering in a magnetron on the p-type side of GaAs in a pulsed laser heterostructure. Heat treatment at 490 °C for 3 min produced a reliable ohmic contact with a specific resistance of 10- 6-10- 5 Ω · cm2, depending on the substrate doping. Secondary-ion mass spectroscopy and Rutherford backscattering methods were used to study the mechanism of formation of a contact.
NASA Astrophysics Data System (ADS)
Mostovyi, Andrii I.; Solovan, Mykhailo M.; Brus, Viktor V.; Pullerits, Toǧnu; Maryanchuk, Pavlo D.
2018-01-01
MoOx/n-CdTe photosensitive heterostructures were prepared by the deposition of molybdenum oxide thin films onto three different n-type CdTe substrates (ρ1=0.4 Ωṡcm, ρ2=10 Ωṡcm, ρ3=40 Ωṡcm) by DC reactive magnetron sputtering. The height of the potential barrier and series resistance of the MoOx/CdTe heterojunctions were investigated. The dominating current transport mechanisms through the heterojunctions were determined at forward and reverse biases.
NASA Astrophysics Data System (ADS)
Jiang, Yuyu; Lin, Xiao; Low, Tony; Zhang, Baile; Chen, Hongsheng
2018-05-01
A fundamental building block in nano-photonics is the ability to directionally excite highly squeezed optical mode dynamically, particularly with an electrical bias. Such capabilities would enable the active manipulation of light propagation for information processing and transfer. However, when the optical source is built-in, it remains challenging to steer the excitation directionality in a flexible way. Here, we reveal a novel mechanism for tunable directional excitation of highly squeezed polaritons in graphene-hexagonal boron nitride (hBN) heterostructures. The effect relies on controlling the sign of the group velocity of the coupled plasmon-phonon polaritons, which can be flipped by simply tuning the chemical potential of graphene (through electrostatic gating) in the heterostructures. Graphene-hBN heterostructure thus present a promising platform toward nano-photonic circuits and nano-devices with electrically reconfigurable functionalities.
NASA Astrophysics Data System (ADS)
Shin, Dong-Myeong; Kim, Kyujungg; Hong, Suck Won; Oh, Jin-Woo; Kim, Hyung Kook; Hwang, Yoon-Hwae
2016-09-01
Recently, the portable and wearable electronic devices, operated in the power range of microwatt to miliwatt, become available thank to the nanotechnology development and become an essential element for a comfortable life. Our recent research interest mainly focuses on the fabrication of piezoelectric nanogenerators based on smart nanomaterials such as zinc oxide novel nanostructure, M13 bacteriophage. In this talk, we present a simple strategy for fabricating the freestanding ZnO nanorods/graphene/ZnO nanorods double sided heterostructures. The characterization of the double sided heterostructures by using SEM, and Raman scattering spectroscopy reveals the key process and working mechanism of a formation of the heterostructure. The mechanism is discussed in detail in term of the decomposed seed layer and the vacancy defect of graphene. The approach consists of a facile one-step fabrication process and could achieve ZnO coverage with a higher number density than that of the epitaxial single heterostructure. The resulting improvement in the number density of nanorods has a direct beneficial effect on the double side heterostructured nanogenerator performance. The total output voltage and current density are improved up to 2 times compared to those of a single heterostructure due to the coupling of the piezoelectric effects from both upward and downward grown nanorods. The facile one-step fabrication process suggests that double sided heterostructures would improve the performance of electrical and optoelectrical device, such as touch pad, pressure sensor, biosensor and dye-sensitized solar cells. Further, ioinspired nanogenerators based on vertically aligned phage nanopillars are inceptively demonstrated. Vertically aligned phage nanopillars enable not only a high piezoelectric response but also a tuneable piezoelectricity. Piezoelectricity is also modulated by tuning of the protein's dipoles in each phage. The sufficient electrical power from phage nanopillars thus holds promise for the development of self-powered implantable and wearable electronics.
NASA Technical Reports Server (NTRS)
Choi, S. W.; Lucovsky, G.; Bachmann, Klaus J.
1993-01-01
Thin homoepitaxial films of gallium phosphide (GaP) were grown by remote plasma enhanced chemical vapor deposition utilizing in situ generated phosphine precursors. The GaP forming reaction is kinetically controlled with an activation energy of 0.65 eV. The increase of the growth rate with increasing radio frequency (rf) power between 20 and 100 W is due to the combined effects of increasingly complete excitation and the spatial extension of the glow discharge toward the substrate, however, the saturation of the growth rate at even higher rf power indicates the saturation of the generation rate of phosphine precursors at this condition. Slight interdiffusion of P into Si and Si into GaP is indicated from GaP/Si heterostructures grown under similar conditions as the GaP homojunctions.
NASA Technical Reports Server (NTRS)
Choi, S. W.; Lucovsky, G.; Bachmann, K. J.
1992-01-01
Thin homoepitaxial films of gallium phosphide (GaP) have been grown by remote plasma enhanced chemical vapor deposition utilizing in situ-generated phosphine precursors. The GaP forming reaction is kinetically controlled with an activation energy of 0.65 eV. The increase of the growth rate with increasing radio frequency (RF) power between 20 and 100 W is due to the combined effects of increasingly complete excitation and the spatial extension of the glow discharge toward the substrate; however, the saturation of the growth rate at even higher RF power indicates the saturation of the generation rate of phosphine precursors at this condition. Slight interdiffusion of P into Si and Si into GaP is indicated from GaP/Si heterostructures grown under similar conditions as the GaP homojunctions.
Layer-by-layer growth by pulsed laser deposition in the unit-cell limit.
NASA Astrophysics Data System (ADS)
Kareev, M.; Prosandeev, S.; Liu, J.; Ryan, P.; Freeland, J. W.; Chakhalian, J.
2009-03-01
Unlike conventional growth of complex oxide heterostructures, the ultimate unit cell limit imposes strict constrains for a multitude of parameters critical to layer-by-layer growth. Here we report on detailed analysis of far-from-equilibrium growth by interrupted pulsed laser deposition with application to RENiO3/LaAlO3 superlattices grown on a diverse set of substrates SrTiO3, NdGaO3, LSAT and LaAlO3. A combination of in-situ high-pressure RHEED and AFM along with extensive data obtained from synchrotron based XRD and resonant XAS allows us critically assess the meaning of RHEED intensity oscillation and the effect of a polar/non-polar interface on the heteroepitaxial growth. The role of defects formed during the initial stages of growth is also addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, J.; Nichols, J.; Connell, J. G.
2014-09-08
We have synthesized and investigated the heterointerfaces of KTaO{sub 3} (KTO) and GdScO{sub 3} (GSO), which are both polar complex-oxides along the pseudo-cubic [001] direction. Since their layers have the same, conflicting net charges at interfaces, i.e., KO(−1)/ScO{sub 2}(−1) or TaO{sub 2}(+1)/GdO(+1), forming the heterointerface of KTO/GSO should be forbidden due to strong Coulomb repulsion, the so-called polarity conflict. However, we have discovered that atomic reconstruction occurs at the heterointerfaces between KTO thin-films and GSO substrates, which effectively alleviates the polarity conflict without destroying the hetero-epitaxy. Our result demonstrates one of the important ways to create artificial heterostructures from polarmore » complex-oxides.« less
NASA Astrophysics Data System (ADS)
Shah, M. A. H.; Khan, M. K. R.; Tanveer Karim, A. M. M.; Rahman, M. M.; Kamruzzaman, M.
2018-01-01
Heterojunction diodes of n-ZnO/ p-Si (100) and n-ZnO:Al/ p-Si (100) were fabricated by spray pyrolysis technique. X-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and field emission scanning electron microscopy (FESEM) were used to characterize the as-prepared samples. The XRD pattern indicates the hexagonal wurzite structure of zinc oxide (ZnO) and Al-doped ZnO (AZO) thin films grown on Si (100) substrate. The compositional analysis by EDX indicates the presence of Al in the AZO structure. The FESEM image indicates the smooth and compact surface of the heterostructures. The current-voltage characteristics of the heterojunction confirm the rectifying diode behavior at different temperatures and illumination intensities. For low forward bias voltage, the ideality factors were determined to be 1.24 and 1.38 for un-doped and Al-doped heterostructures at room temperature (RT), respectively, which indicates the good diode characteristics. The capacitance-voltage response of the heterojunctions was studied for different oscillation frequencies. From the 1/ C 2- V plot, the junction built-in potentials were found 0.30 V and 0.40 V for un-doped and Al-doped junctions at RT, respectively. The differences in built-in potential for different heterojunctions indicate the different interface state densities of the junctions. From the RT photoluminescence (PL) spectrum of the n-ZnO/ p-Si (100) heterostructure, an intense main peak at near band edge (NBE) 378 nm (3.28 eV) and weak deep-level emissions (DLE) centered at 436 nm (2.84 eV) and 412 nm (3.00 eV) were observed. The NBE emission is attributed to the radiative recombination of the free and bound excitons and the DLE results from the radiative recombination through deep level defects.
Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN
NASA Astrophysics Data System (ADS)
Sun, Minglei; Chou, Jyh-Pin; Ren, Qingqiang; Zhao, Yiming; Yu, Jin; Tang, Wencheng
2017-04-01
Using first-principles calculations, we systematically investigated the electronic properties of graphene/g-GaN van der Waals (vdW) heterostructures. We discovered that the Dirac cone of graphene could be quite well preserved in the vdW heterostructures. Moreover, a transition from an n-type to p-type Schottky contact at the graphene/g-GaN interface was induced with a decreased interlayer distance from 4.5 to 2.5 Å. This relationship is expected to enable effective control of the Schottky barrier, which is an important development in the design of Schottky devices.
Temperature Dependence of Photoluminescence in InGaAs/InP Strained MQW Heterostructures
NASA Technical Reports Server (NTRS)
Raisky, O. Y.; Wang, W. B.; Alfano, R. R.; Reynolds, C. L., Jr.; Swaminathan, V.
1996-01-01
Multiple quantum well (MQW) InGaAsP/InP heterostructure systems have been drawn considerable research interest in recent years due to its suitability for long wavelength optoelectronic devices. The performance of such devices is strongly affected by peculiarities of recombination processes in the quantum wells (QW). The goal of this study was to investigate the effect of barrier width on the radiative recombination of carriers. In our study, the photoluminescence spectra from InGaAsP/lnP MQW double heterostructures have been measured in the 77-290 K temperature range with different excitation intensities.
Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe.
Gurevich, A S; Kochereshko, V P; Bleuse, J; Mariette, H; Waag, A; Akimoto, R
2011-09-07
The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.
Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe
NASA Astrophysics Data System (ADS)
Gurevich, A. S.; Kochereshko, V. P.; Bleuse, J.; Mariette, H.; Waag, A.; Akimoto, R.
2011-09-01
The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.
NASA Astrophysics Data System (ADS)
Amani, Matin; Burke, Robert A.; Proie, Robert M.; Dubey, Madan
2015-03-01
Two-dimensional materials, such as graphene and its analogues, have been investigated by numerous researchers for high performance flexible and conformal electronic systems, because they offer the ultimate level of thickness scaling, atomically smooth surfaces and high crystalline quality. Here, we use layer-by-layer transfer of large area molybdenum disulphide (MoS2) and graphene grown by chemical vapor deposition (CVD) to demonstrate electronics on flexible polyimide (PI) substrates. On the same PI substrate, we are able to simultaneously fabricate MoS2 based logic, non-volatile memory cells with graphene floating gates, photo-detectors and MoS2 transistors with tunable source and drain contacts. We are also able to demonstrate that these flexible heterostructure devices have very high electronic performance, comparable to four point measurements taken on SiO2 substrates, with on/off ratios >107 and field effect mobilities as high as 16.4 cm2 V-1 s-1. Additionally, the heterojunctions show high optoelectronic sensitivity and were operated as photodetectors with responsivities over 30 A W-1. Through local gating of the individual graphene/MoS2 contacts, we are able to tune the contact resistance over the range of 322-1210 Ω mm for each contact, by modulating the graphene work function. This leads to devices with tunable and multifunctional performance that can be implemented in a conformable platform.
Qin, Guoxuan; Zhang, Yibo; Lan, Kuibo; Li, Lingxia; Ma, Jianguo; Yu, Shihui
2018-04-18
A novel method of fabricating flexible thin-film transistor based on single-crystalline Si nanomembrane (SiNM) with high- k Nb 2 O 5 -Bi 2 O 3 -MgO (BMN) ceramic gate dielectric on a plastic substrate is demonstrated in this paper. SiNMs are successfully transferred to a flexible polyethylene terephthalate substrate, which has been plated with indium-tin-oxide (ITO) conductive layer and high- k BMN ceramic gate dielectric layer by room-temperature magnetron sputtering. The BMN ceramic gate dielectric layer demonstrates as high as ∼109 dielectric constant, with only dozens of pA current leakage. The Si-BMN-ITO heterostructure has only ∼nA leakage current at the applied voltage of 3 V. The transistor is shown to work at a high current on/off ratio of above 10 4 , and the threshold voltage is ∼1.3 V, with over 200 cm 2 /(V s) effective channel electron mobility. Bending tests have been conducted and show that the flexible transistors have good tolerance on mechanical bending strains. These characteristics indicate that the flexible single-crystalline SiNM transistors with BMN ceramics as gate dielectric have great potential for applications in high-performance integrated flexible circuit.
Amani, Matin; Burke, Robert A; Proie, Robert M; Dubey, Madan
2015-03-20
Two-dimensional materials, such as graphene and its analogues, have been investigated by numerous researchers for high performance flexible and conformal electronic systems, because they offer the ultimate level of thickness scaling, atomically smooth surfaces and high crystalline quality. Here, we use layer-by-layer transfer of large area molybdenum disulphide (MoS2) and graphene grown by chemical vapor deposition (CVD) to demonstrate electronics on flexible polyimide (PI) substrates. On the same PI substrate, we are able to simultaneously fabricate MoS2 based logic, non-volatile memory cells with graphene floating gates, photo-detectors and MoS2 transistors with tunable source and drain contacts. We are also able to demonstrate that these flexible heterostructure devices have very high electronic performance, comparable to four point measurements taken on SiO2 substrates, with on/off ratios >10(7) and field effect mobilities as high as 16.4 cm(2) V(-1) s(-1). Additionally, the heterojunctions show high optoelectronic sensitivity and were operated as photodetectors with responsivities over 30 A W(-1). Through local gating of the individual graphene/MoS2 contacts, we are able to tune the contact resistance over the range of 322-1210 Ω mm for each contact, by modulating the graphene work function. This leads to devices with tunable and multifunctional performance that can be implemented in a conformable platform.
Controllable Schottky barrier in GaSe/graphene heterostructure: the role of interface dipole
NASA Astrophysics Data System (ADS)
Si, Chen; Lin, Zuzhang; Zhou, Jian; Sun, Zhimei
2017-03-01
The discoveries of graphene and other related two-dimensional crystals have recently led to a new technology: van der Waals (vdW) heterostructures based on these atomically thin materials. Such a paradigm has been proved promising for a wide range of applications from nanoelectronics to optoelectronics and spintronics. Here, using first-principles calculations, we investigate the electronic structure and interface characteristics of a newly synthesized GaSe/graphene (GaSe/g) vdW heterostructure. We show that the intrinsic electronic properties of GaSe and graphene are both well preserved in the heterostructure, with a Schottky barrier formed at the GaSe/g interface. More interestingly, the band alignment between graphene and GaSe can be effectively modulated by tuning the interfacial distance or applying an external electric filed. This makes the Schottky barrier height (SBH) controllable, which is highly desirable in the electronic and optoelectronic devices based on vdW heterostructures. In particular, the tunability of the interface dipole and potential step is further uncovered to be the underlying mechanism that ensures this controllable tuning of SBH.
NASA Astrophysics Data System (ADS)
Toropov, A. A.; Shevchenko, E. A.; Shubina, T. V.; Jmerik, V. N.; Nechaev, D. V.; Evropeytsev, E. A.; Kaibyshev, V. Kh.; Pozina, G.; Rouvimov, S.; Ivanov, S. V.
2017-07-01
We present theoretical optimization of the design of a quantum well (QW) heterostructure based on AlGaN alloys, aimed at achievement of the maximum possible internal quantum efficiency of emission in the mid-ultraviolet spectral range below 300 nm at room temperature. A sample with optimized parameters was fabricated by plasma-assisted molecular beam epitaxy using the submonolayer digital alloying technique for QW formation. High-angle annular dark-field scanning transmission electron microscopy confirmed strong compositional disordering of the thus-fabricated QW, which presumably facilitates lateral localization of charge carriers in the QW plane. Stress evolution in the heterostructure was monitored in real time during growth using a multibeam optical stress sensor intended for measurements of substrate curvature. Time-resolved photoluminescence spectroscopy confirmed that radiative recombination in the fabricated sample dominated in the whole temperature range up to 300 K. This leads to record weak temperature-induced quenching of the QW emission intensity, which at 300 K does not exceed 20% of the low-temperature value.
NASA Astrophysics Data System (ADS)
Shariati, M.; Ghafouri, V.
2014-05-01
Indium Oxide quasi one-dimensional (1D) nanostructures known as nanowires and nanorods synthesis using the thermal evaporation method, has been articulated. To nucleate growth sites, substrate seeding promoted 1D nanostructures growth. The catalyst-mediated growth mechanism showed more favorable morphologies and physical properties in under vacuum conditions associated with bottom-up technique. Scanning electron microscopy (SEM) results showed that the Zn-doped 1D nanostructures had spherical caps. The X-ray diffraction (XRD) pattern and energy-dispersive X-ray (EDX) spectrum indicated that these caps intensively associated with ZnO. Therefore, it was reasonable that the vapor-liquid-solid mechanism (VLS) was responsible for the growth of the In2O3-ZnO heterostructure nanowires. This technique enhances optical and electrical properties in nanostructures. The photoluminescence (PL) analysis in Zn-doped In2O3 nanowires and nanorods shows that the intensity of the visible and UV-region emissions overwhelmingly increases and resistance measurement professes the improvement of linear conductance in VLS growth mechanism.