NASA Astrophysics Data System (ADS)
Mallela, Jennie
2018-03-01
The continued health and function of tropical coral reefs is highly dependent on the ability of reef-building organisms to build large, complex, three-dimensional structures that continue to accrete and evolve over time. The recent deterioration of reef health globally, including loss of coral cover, has resulted in significant declines in architectural complexity at a large, reef-scape scale. Interestingly, the fine-scale role of micro-structure in initiating and facilitating future reef development and calcium carbonate production has largely been overlooked. In this study, experimental substrates with and without micro-ridges were deployed in the lagoon at One Tree Island for 34 months. This study assessed how the presence or absence of micro-ridges promoted recruitment by key reef-building sclerobionts (corals and encrusters) and their subsequent development at micro (mm) and macro (cm) scales. Experimental plates were examined after 11 and 34 months to assess whether long-term successional and calcification processes on different micro-topographies led to convergent or divergent communities over time. Sclerobionts were most prevalent in micro-grooves when they were available. Interestingly, in shallow lagoon reef sites characterised by shoals of small parrotfish and low urchin abundance, flat substrates were also successfully recruited to. Mean rates of carbonate production were 374 ± 154 (SD) g CaCO3 m-2 yr-1 within the lagoon. Substrates with micro-ridges were characterised by significantly greater rates of carbonate production than smooth substrates. The orientation of the substrate and period of immersion also significantly impacted rates of carbonate production, with CaCO3 on cryptic tiles increasing by 28% between 11 and 34 months. In contrast, rates on exposed tiles declined by 35% over the same time. In conclusion, even at sites characterised by small-sized parrotfish and low urchin density, micro-topography is an important settlement niche clearly favouring sclerobiont early life-history processes and subsequent carbonate production.
Microtopography recreation benefits ecosystem restoration
Wei Wei; Liding Chen; Lei Yang; F. Fred Samadani; Ge Sun
2012-01-01
Within the context of global warming and accelerated human activities, the surrounding environments of many terrestrial ecosystems worldwide have become increasingly deteriorated, such that finding suitable methods and effective environmental technology to confront climate change and prevent land degradation is critical to the health and sustainability of the earth. In...
NASA Astrophysics Data System (ADS)
Buffin-Belanger, T. K.; Rice, S. P.; Reid, I.; Lancaster, J.
2009-12-01
Fluvial habitats can be described from a series of physical variables but to adequately address the habitat quality it becomes necessary to develop an understanding that combines the physical variables with the behaviour of the inhabitating organisms. The hypothesis of flow refugia provide a rational that can explain the persistence of macroinvertebrate communities in gravel-bed rivers when spates occur. The movement behaviour of macroinvertebrates is a key element to the flow refugia hypothesis, but little is known about how local near-bed turbulence and bed microtopography may affect macroinvertebrate movements. We reproduced natural gravel-bed substrates with contrasting gravel bed textures in a large flume where we were able to document the movement behaviour of the cased caddisfly Potamophylax latipennis for a specific discharge. The crawling paths and drift events of animals were analysed from video recordings. Characteristics of movements differ from one substrate to another. The crawling speed is higher for the small grain-size substrates but the mean travel distance remains approximately the same between substrates. For each substrate, the animals tended to follow consistent paths across the surface. The number of drift events and mean distance drifted is higher for the small grain-size substrate. ADV measurements close to the boundary allow detailed characterisation of near-bed hydraulic variables, including : skewness coefficients, TKE, UV correlation coefficients and integral time scales from autocorrelation analysis. For these variables, the vertical patterns of turbulence parameters are similar between the substrates but the amplitude of the average values and standard errors vary significantly. The spatial distribution of this variability is considered in relation to the crawling paths. It appears that the animals tend to crawl within areas of the substrate where low flow velocities and low turbulent kinetic energies are found, while sites that insects avoided were characterised by higher elevations, velocities and turbulence.
Surface microtopography modulates sealing zone development in osteoclasts cultured on bone
Addadi, Lia; Geiger, Benjamin
2017-01-01
Bone homeostasis is continuously regulated by the coordinated action of bone-resorbing osteoclasts and bone-forming osteoblasts. Imbalance between these two cell populations leads to pathological bone diseases such as osteoporosis and osteopetrosis. Osteoclast functionality relies on the formation of sealing zone (SZ) rings that define the resorption lacuna. It is commonly assumed that the structure and dynamic properties of the SZ depend on the physical and chemical properties of the substrate. Considering the unique complex structure of native bone, elucidation of the relevant parameters affecting SZ formation and stability is challenging. In this study, we examined in detail the dynamic response of the SZ to the microtopography of devitalized bone surfaces, taken from the same area in cattle femur. We show that there is a significant enrichment in large and stable SZs (diameter larger than 14 µm; lifespan of hours) in cells cultured on rough bone surfaces, compared with small and fast turning over SZ rings (diameter below 7 µm; lifespan approx. 7 min) formed on smooth bone surfaces. Based on these results, we propose that the surface roughness of the physiologically relevant substrate of osteoclasts, namely bone, affects primarily the local stability of growing SZs. PMID:28202594
Engineered microtopographies and surface chemistries direct cell attachment and function
NASA Astrophysics Data System (ADS)
Magin, Chelsea Marie
Harrison, in 1914, first recognized that cells respond to physicochemical cues such as substratum topography when he observed that fibroblasts elongated while cultured on spider silk. Recently, techniques developed in the micro-electronics industry have been used to create molds for producing microscaled topographies with various shapes and spatial arrangements. Although these patterning techniques are well-established, very little is known about the mechanisms underlying cell sensing and response to microtopographies. In this work cellular micro-environments with varying surface topographies and chemistries were evaluated with marine organisms and mammalian cells to investigate cellular sensing and response. Biofouling---the accumulation of micro-organisms, plants, and animals on submerged surfaces---is an environmental and economic concern. Engineered topographies, replicated in polydimethylsiloxane elastomer (PDMSe) and functionalized poly(ethylene glycol)-dimethacrylate (PEGDMA) hydrogels, were evaluated for inhibition of marine fouling organism attachment. Microtopographies replicated in PDMSe inhibited attachment of the marine bacterium, Cobetia marina up to 99% versus smooth. The average normalized attachment densities of cells of C. marina and zoospores of the green algae Ulva on PDMSe topographies scaled inversely with the Engineered Roughness Index (ERIII), a representation of surface energy. Attachment densities of Ulva from four assays and C. marina from two growth phases to PDMSe surfaces scaled inversely with one equation: ERI II multiplied by the Reynolds number of the organism (Re) (R 2 = 0.77). The same microtopographies created in PDMSe reduced the initial attachment density and attachment strength of cells of the diatoms Navicula incerta and Seminavis robusta compared to smooth PDMSe. The average normalized attachment density of Navicula after exposure to shear stress (48 Pa) was correlated with the contact area between the diatom and a topographically modified surface (R2=0.82). Functionalized PEGDMA hydrogels significantly reduced attachment and attachment strength of Navicula and C. marina. These hydrogels also reduced attachment of zoospores of Ulva compared to PDMSe. Attachment of Ulva to microtopographies in PDMSe and PEGDMA-co-HEMA negatively correlated with ERIII*Re (R2 = 0.94 and R2 = 0.99, respectively). Incorporating a surface energy term into this equation created a correlation between the attachment densities of cells from two evolutionarily diverse groups on substrates of two surface chemistries with an equation that describes the various microtopographies and surface chemistries in terms of surface energy (R2 = 0.80). The current Attachment Model can now be used to design engineered antifouling surface microtopographies and chemistries that inhibit the attachment of organisms from three evoluntionarily diverse groups. Hydrogels based on PEGDMA were also chosen as a substratum material for mammalian cell culture. Capturing endothelial progenitor cells (EPCs) and inducing differentiation into the endothelial cell (EC) phenotype is the ideal way to re-endothelialize a small-diameter vascular graft. Substratum elasticity has been reported to direct stem cell differentiation into specific lineages. Functionalized PEGDMA hydrogels provided good compliance, high fidelity of topographic features and sites for surface modification with biomolecules. Fibronectin grafting and topography both increased EC attachment. This combination of adjustable elasticity, surface chemistry and topography has the potential to promote the capture and differentiation of EPCs into a confluent EC monolayer. Engineered microtopographies replicated in PDMSe directed elongation and alignment of human coronary artery endothelial cells (HCAECs) and human coronary artery smooth muscle cells (HCASMCs) compared to smooth surfaces. Engineered cellular micro-environments were created with specific surface energies defined by chemistry and topography to successfully direct cell attachment and function.
Formation of tussocks by sedges: effects of hydroperiod and nutrients.
Lawrence, Beth A; Zedler, Joy B
2011-07-01
Tussock formation is a global phenomenon that enhances microtopography and increases biodiversity by adding structure to ecological communities, but little is known about tussock development in relation to environmental factors. To further efforts to restore wetland microtopography and associated functions, we investigated Carex stricta tussock size in relation to elevation (a proxy for water depth) at a range of sites in southern Wisconsin, USA, and tested the effect of five hydroperiods and N+P addition (15 g N/m2 + 0.37 g P/m2) on tussock formation during a three-year mesocosm experiment. Wet meadows dominated by C. stricta averaged 4.9 tussocks/m2, with a mean volume of 1160 cm3 and height of 15 cm. Within sites, taller tussocks occurred at lower elevations, suggesting a structural adaptation to anoxic conditions. In our mesocosm experiment, C. stricta accelerated tussock formation when inundated, and it increased overall productivity with N + P addition. Within two growing seasons, continuous inundation (+18 cm) in the mesocosms led to tussocks that were nearly as tall as in our field survey (mean height in mesocosms, 10 +/- 1.3 cm; maximum, 17 cm). Plants grown with constant low water (-18 cm) only formed short mounds (mean height = 2 +/- 0.4 cm). After three growing seasons, the volume of the largest tussocks (3274 +/- 376 cm3, grown with +18 cm water depth and N + P addition) was 12 times that of the smallest (275 +/- 38 cm3, grown with -18 cm water depth and no N + P). Though tussock composition varied among hydroperiods, tussocks were predominantly organic (74-94% of dry mass) and composed of leaf bases (46-59%), fine roots (10-31%), and duff (5-13%). Only the plants subjected to high water levels produced the vertically oriented rhizomes and ascending shoot bases that were prevalent in field-collected tussocks. Under continuous or periodic inundation, tussocks achieved similar heights and accumulated similar levels of organic matter (range: 163-394 g C/m2), and we conclude that these hydroperiods can accelerate tussock formation. Thus, C. stricta has high utility for restoring wetland microtopography and associated functions, including carbon accumulation.
Choi, Jungyill; Harvey, Judson W.
2014-01-01
Surface water flow controls water velocities, water depths, and residence times, and influences sediment and nutrient transport and other ecological processes in shallow aquatic systems. Flow through wetlands is substantially influenced by drag on vegetation stems but is also affected by microtopography. Our goal was to use microtopography data directly in a widely used wetland model while retaining the advantages of the model’s one-dimensional structure. The base simulation with no explicit treatment of microtopography only performed well for a period of high water when vegetation dominated flow resistance. Extended simulations using microtopography can improve the fit to low-water conditions substantially. The best fit simulation had a flow conductance parameter that decreased in value by 70 % during dry season such that mcrotopographic features blocked 40 % of the cross sectional width for flow. Modeled surface water became ponded and flow ceased when 85 % of the cross sectional width became blocked by microtopographic features. We conclude that vegetation drag dominates wetland flow resistance at higher water levels and microtopography dominates at low water levels with the threshold delineated by the top of microtopographic features. Our results support the practicality of predicting flow on floodplains using relatively easily measured physical and biological variables.
Effects of capillarity and microtopography on wetland specific yield
Sumner, D.M.
2007-01-01
Hydrologic models aid in describing water flows and levels in wetlands. Frequently, these models use a specific yield conceptualization to relate water flows to water level changes. Traditionally, a simple conceptualization of specific yield is used, composed of two constant values for above- and below-surface water levels and neglecting the effects of soil capillarity and land surface microtopography. The effects of capiltarity and microtopography on specific yield were evaluated at three wetland sites in the Florida Everglades. The effect of capillarity on specific yield was incorporated based on the fillable pore space within a soil moisture profile at hydrostatic equilibrium with the water table. The effect of microtopography was based on areal averaging of topographically varying values of specific yield. The results indicate that a more physically-based conceptualization of specific yield incorporating capillary and microtopographic considerations can be substantially different from the traditional two-part conceptualization, and from simpler conceptualizations incorporating only capillarity or only microtopography. For the sites considered, traditional estimates of specific yield could under- or overestimate the more physically based estimates by a factor of two or more. The results suggest that consideration of both capillarity and microtopography is important to the formulation of specific yield in physically based hydrologic models of wetlands. ?? 2007, The Society of Wetland Scientists.
Unusual Microtopography on an Apollo 12 Soil Grain
NASA Technical Reports Server (NTRS)
Thomas-Keprta, K. L.; Keprta, N. T.; Clemett, S. J.; Berger, E. L.; Rahman, Z.; McKay, D. S.; Gibson, E. K.; Wentworth, S. J.
2014-01-01
We have observed the presence of a previously undescribed microtopography in several regions on the surface of a lunar grain from Apollo regolith sample 12070,29. This microtopography consists of flattened triangular prisms, henceforth referred to as denticles, set in an orderly arrangement. We propose three possible processes to describe the presence of these structures: (1) radiation; (2) aqueous activity; or (3) impact. Radiation—the surface of the Earth’s moon is subject to energetic ion and photon irradiation which can produce a multitude of morphological effects on grain surfaces including erosion/sputtering, vesicle formation, and amorphization of crystalline phases. Under certain conditions surface erosion can result in the formation of well-ordered nanostructures including mounds, dots, wave-shaped, rippled or corrugated features typically <10s nm in size and organized into pattered arrays. However larger pyramid-shaped features up to approx. 300 nm at the base, similar in shape to lunar denticles, were produced on Cu substrates ex-posed to ion beam sputtering.. Aqueous alteration—recent reports of purported water on the Moon imply the possibility of brief, limited exposure of surface materials to aqueous fluids. Aqueous corrosion of silicates can result in the formation of crystallographically controlled denticulated features, up to 10s of micron at the base, arranged in a patterned formation. Impact—the surface of the moon is impacted by meteorites, particularly by micron-size particles, resulting in the formation of a variety of crater types. While it is difficult to envision a scenario in which a patterned array could be formed by impact, fracturing along planes of crystallographic structural weakness due to external stress could explain these features.
NASA Astrophysics Data System (ADS)
Li, J.; Washington-Allen, R. A.; Okin, G. S.
2010-12-01
Aeolian processes play important roles in microtopography and associated soil-plant interactions in arid and semiarid landscapes. Most previous research has focused on scales larger than plant-interspaces and the dynamics of “fertile islands” associated with individual shrubs. Arid and semiarid ecosystems are notoriously heterogeneous in both microtopography and soil nutrients, and investigations of soil topography and plant-soil interactions at much finer scales (e.g., a few millimeters) are difficult using traditional point based sampling methods. Terrestrial laser scanners (TLS) are novel tools for which techniques can be developed to accurately characterize micro-scale topography with a spot diameter of 4.5 mm, and 2 mm ranging accuracy at 50 kHz. In this study, we employed a portable TLS (a Leica ScanStation 2) to digitally capture the 3-dimensional soil microtopography in a Chihuahuan desert grassland located in southern New Mexico. Soil surface on this site had been exposed to enhanced wind erosion since the spring of 2004. A control plot, located adjacent to the wind erosion plot, was also scanned to provide soil microtopography bench mark. A nearest neighbor interpolation was used on the elevation point clouds to yield bare ground, vegetation, and combined digital surface models for both plots. Additionally, measures of height and foliage diversity, vegetation and bare ground cover, and surface roughness were calculated. The results from this field study clearly demonstrate that TLS can provide insights on changes in microtopography affected by aeolian processes. Moreover, within the known distribution of soil nutrients, the 3D surface model of the soil microtopography provided unprecedented detail on the distribution of “mini” fertile islands associated with topography that were not revealed by studies at plant-interspace scale.
Larval Settlement: The Role of Surface Topography for Sessile Coral Reef Invertebrates
Whalan, Steve; Abdul Wahab, Muhammad A.; Sprungala, Susanne; Poole, Andrew J.; de Nys, Rocky
2015-01-01
For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates. PMID:25671562
Larval settlement: the role of surface topography for sessile coral reef invertebrates.
Whalan, Steve; Wahab, Muhammad A Abdul; Sprungala, Susanne; Poole, Andrew J; de Nys, Rocky
2015-01-01
For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates.
NASA Astrophysics Data System (ADS)
Schönke, M.; Feldens, P.; Wilken, D.; Papenmeier, S.; Heinrich, C.; von Deimling, J. Schneider; Held, P.; Krastel, S.
2017-06-01
This study presents a new in situ method to explore the impact of macrofauna on seafloor microtopography and corresponding microroughness based on underwater laser line scanning. The local microtopography was determined with mm-level accuracy at three stations colonised by the tubeworm Lanice conchilega offshore of the island of Sylt in the German Bight (south-eastern North Sea), covering approximately 0.5 m2 each. Ground truthing was done using underwater video data. Two stations were populated by tubeworm colonies of different population densities, and one station had a hydrodynamically rippled seafloor. Tubeworms caused an increased skewness of the microtopography height distribution and an increased root mean square roughness at short spatial wavelengths compared with hydrodynamic bedforms. Spectral analysis of the 2D Fourier transformed microtopography showed that the roughness magnitude increased at spatial wavelengths between 0.020 and 0.003 m independently of the tubeworm density. This effect was not detected by commonly used 1D roughness profiles but required consideration of the complete spectrum. Overall, the results reveal that new indicator variables for benthic organisms may be developed based on microtopographic data. An example demonstrates the use of local slope and skewness to detect tubeworms in the measured digital elevation model.
Evaluation of structure from motion for soil microtopography measurement
USDA-ARS?s Scientific Manuscript database
Recent developments in low cost structure from motion (SFM) technologies offer new opportunities for geoscientists to acquire high resolution soil microtopography data at a fraction of the cost of conventional techniques. However, these new methodologies often lack easily accessible error metrics an...
EFFECTS OF INTENSE, SHORT DURATION GRAZING ON MICROTOPOGRAPHY IN A CHIHUAHUAN DESERT GRASSLAND
Microtopography describes variations in soil surface elevation (nim or cm) for a scale of a few meters of horizontal distance, Small-scale (few centimeters) changes in vegetation communities synchronized with the elevation differences were observed in drained marsh (Zedler & Zedl...
SOIL MICROTOPOGRAPHY ON GRAZING GRADIENTS IN CHIHUAHUAN DESERT GRASSLANDS
We tested the hypothesis that one of the significant impacts of livestock in the creation of
piospheres centered on water points is the loss of soil microtopography. The size, height, and spatial distribution of micromounds and surrounding depressions were measured by a modi...
MICROTOPOGRAPHY AND GRAZING IN DESERT RANGE LAND: A LESSON IN STATISTICS VERSUS REALITY IN THE FIELD
This presentation summarizes two experiments on the effects of grazing on soil microtopography in a Chihuahuan Desert rangeland. In the first experiment, we measured the effect of three consecutive years of short duration <48 hours per year) intense grazing (20--40 yearling cows ...
EFFECTS OF INTENSE, SHORT-DURATION GRAZING ON MICROTOPOGRAPHY IN A CHIHUAHUAN DESERT GRASSLAND
We measured the effects of short-term intense grazing by domestic cattle on the microtopography of a black-grama grass (Bouteloua eriopoda) dominated desert grassland. Plots were grazed during winter or summer for 24-36 hours by 20-40 yearlings in 1995 and 1996. Soil microtopogra...
Leaf fall, humus depth, and soil frost in a northern hardwood forest
George Hart; Raymond E. Leonard; Robert S. Pierce
1962-01-01
In the mound-and-depression microtopography of the northern hardwood forest, leaves are blown off the mounds and collect in the depressions. This influence of microtopography on leaf accumulation is responsible for much of the variation in humus depth; and this, in turn, affects the formation and depth of soil frost.
USDA-ARS?s Scientific Manuscript database
Soil microtopography or soil roughness is a property of critical importance in many earth surface processes but is often difficult to measure. Advances in computer vision technologies have made image-based 3D depiction of the soil surface or Structure-from-Motion (SfM) available to many scientists ...
NASA Astrophysics Data System (ADS)
Liu, Ruhai; Zhang, Yanyan; Wang, Yan; Zhao, Jin; Shan, Huayao
2018-02-01
Wetlands often show different small-scale topography, such as riffle, habitat island, deep water, shallow water zone and dry zone. Core soils in different micro topographical landforms of Nandagang and Beidagang wetlands in North China were sampled for THg and MeHg to analyze the influence of microtopography. Results showed that THg content in surface soil (<2 cm) was little higher than that at depth 2-4 cm of all stations. There were several peaks in the profile, which reflected mercury pollution in past. High THg content in undisturbed natural wetland soil implied accumulation of mercury. Harvest of plant, drained water decreased the accumulation of mercury in wetlands. Water level caused by microtopography affected the production of MeHg. Depth of the highest MeHg content decreased from N1, N2, N6, N3 to N4 following the increase of water level. Plant type and coverage also affected the vertical distribution of MeHg. More detailed profiles of MeHg, organic matter and total phosphorus in different sites show strong differences in soil chemistry, suggesting a complex interplay among hydrology, biogeochemistry and microtopography.
Iversen, C. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Latimer, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Burnham, A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Brice, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Childs, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Vander Stel, H. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A
2017-01-01
This data set consists of observations of plant-available nutrients assessed using ion-exchange resin capsules incubated serially in aerobic and anaerobic peat layers beginning in 2013 in the SPRUCE experimental plots at four depths in hummock microtopography and two depths in hollow microtopography. Data will be periodically added to until the conclusion of the SPRUCE experiment.
NASA Astrophysics Data System (ADS)
Miao, Guofang; Noormets, Asko; Domec, Jean-Christophe; Trettin, Carl C.; McNulty, Steve G.; Sun, Ge; King, John S.
2013-12-01
and environmental pressures on wetland hydrology may trigger changes in carbon (C) cycling, potentially exposing vast amounts of soil C to rapid decomposition. We measured soil CO2 efflux (Rs) continuously from 2009 to 2010 in a lower coastal plain forested wetland in North Carolina, U.S., to characterize its main environmental drivers. To understand and quantify the spatial variation due to microtopography and associated differences in hydrology, measurements were conducted at three microsites along a microtopographic gradient. The seasonal hysteresis in Rs differed by microtopographic location and was caused by the transitions between flooded and nonflooded conditions. Because flooded Rs was small, we reported Rs dynamics mainly during nonflooded periods. A nested model, modified from conventional Q10 (temperature sensitivity) model with dynamic parameters, provided a significantly better simulation on the observed variation of Rs. The model performed better with daily data, indicating that soil temperature (Ts) and water table depth (WTD) were the primary drivers for seasonal variation. The diel variation of Rs was high and independent of Ts and WTD, which both had small diel variations, suggesting the likely association with plant activity. Overall, the site-average soil CO2 efflux was approximately 960-1103 g C m-2 yr-1 in 2010, of which 93% was released during nonflooded periods. Our study indicates that Rs is highly linked to hydroperiod and microtopography in forested wetlands and droughts in wetlands will accelerate soil C loss.
NASA Astrophysics Data System (ADS)
Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph K.
2017-11-01
We investigate nocturnal flow dynamics and temperature behaviour near the surface of a 170-m long gentle slope in a mid-range mountain valley. In contrast to many existing studies focusing on locations with significant topographic variations, gentle slopes cover a greater spatial extent of the Earth's surface. Air temperatures were measured using the high-resolution distributed-temperature-sensing method within a two-dimensional fibre-optic array in the lowest metre above the surface. The main objectives are to characterize the spatio-temporal patterns in the near-surface temperature and flow dynamics, and quantify their responses to the microtopography and land cover. For the duration of the experiment, including even clear-sky nights with weak winds and strong radiative forcing, the classical cold-air drainage predicted by theory could not be detected. In contrast, we show that the airflow for the two dominant flow modes originates non-locally. The most abundant flow mode is characterized by vertically-decoupled layers featuring a near-surface flow perpendicular to the slope and strong stable stratification, which contradicts the expectation of a gravity-driven downslope flow of locally produced cold air. Differences in microtopography and land cover clearly affect spatio-temporal temperature perturbations. The second most abundant flow mode is characterized by strong mixing, leading to vertical coupling with airflow directed down the local slope. Here variations of microtopography and land cover lead to negligible near-surface temperature perturbations. We conclude that spatio-temporal temperature perturbations, but not flow dynamics, can be predicted by microtopography, which complicates the prediction of advective-heat components and the existence and dynamics of cold-air pools in gently sloped terrain in the absence of observations.
Wetland Microtopographic Structure is Revealed with Terrestrial Laser Scanning
NASA Astrophysics Data System (ADS)
Diamond, J.; Stovall, A. E.; Mclaughlin, D. L.; Slesak, R.
2017-12-01
Wetland microtopographic structure and its function has been the subject of research for decades, and several investigations suggest that microtopography is generated by autogenic ecohydrologic processes. But due to the difficulty of capturing the true spatial variability of wetland microtopography, many of the hypotheses for self-organization have remained elusive to test. We employ a novel method of Terrestrial Laser Scanning (TLS) that reveals an unprecedented high-resolution (<0.5 cm) glimpse at the true spatial structure of wetland microtopography in 10 black ash (Fraxinus nigra) stands of northern Minnesota, USA. Here we present the first efforts to synthesize this information and show that TLS provides a good representation of real microtopographic structure, where TLS accurately measured hummock height, but occlusion of low points led to a slight negative bias. We further show that TLS can accurately locate microtopographic high points (hummocks), as well as estimate their height and area. Using these new data, we estimate distributions in both microtopographic elevation and hummock area in each wetland and relate these to monitored hydrologic regime; in doing so, we test hypotheses linking emergent microtopographic patterns to putative hydrologic controls. Finally, we discuss future efforts to enumerate consequent influences of microtopography on wetland systems (soil properties and vegetation composition).
Control of cell nucleus shapes via micropillar patterns.
Pan, Zhen; Yan, Ce; Peng, Rong; Zhao, Yingchun; He, Yao; Ding, Jiandong
2012-02-01
We herein report a material technique to control the shapes of cell nuclei by the design of the microtopography of substrates to which the cells adhere. Poly(D,L-lactide-co-glycolide) (PLGA) micropillars or micropits of a series of height or depth were fabricated, and some surprising self deformation of the nuclei of bone marrow stromal cells (BMSCs) was found in the case of micropillars with a sufficient height. Despite severe nucleus deformation, BMSCs kept the ability of proliferation and differentiation. We further demonstrated that the shapes of cell nuclei could be regulated by the appropriate micropillar patterns. Besides circular and elliptoid shapes, some unusual nucleus shapes of BMSCs have been achieved, such as square, cross, dumbbell, and asymmetric sphere-protrusion. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Wang, Hui; Lai, Yue-Kun; Zheng, Ru-Yue; Bian, Ye; Zhang, Ke-Qin; Lin, Chang-Jian
2015-01-01
Biological performance of artificial implant materials is closely related to their surface characteristics, such as microtopography, and composition. Therefore, convenient fabrication of artificial implant materials with a cell-friendly surface structure and suitable composition was of great significance for current tissue engineering. In this work, titanate materials with a nanotubular structure were successfully fabricated through a simple chemical treatment. Immersion test in a simulated body fluid and in vitro cell culture were used to evaluate the biological performance of the treated samples. The results demonstrate that the titanate layer with a nanotubular structure on Ti substrates can promote the apatite-inducing ability remarkably and greatly enhance cellular responses. This highlights the potential of such titanate biomaterials with the special nanoscale structure and effective surface composition for biomedical applications such as bone implants. PMID:26089665
Characterization of microtopography and its influence on vegetation patterns in created wetlands
Moser, K.; Ahn, C.; Noe, G.
2007-01-01
Created wetlands are increasingly used to mitigate wetland loss. Thus, identifying wetland creation methods that enhance ecosystem development might increase the likelihood of mitigation success. Noting that the microtopographic variation found in natural wetland settings may not commonly be found in created wetlands, this study explores relationships between induced microtopography, hydrology, and plant species richness/ diversity in non-tidal freshwater wetlands, comparing results from two created wetland complexes with those from a mature reference wetland complex in northern Virginia. Elevation, steel rod oxidation depth, and species cover were measured along replicate multiscale (0.5 m-, 1 m-, 2 m-, and 4 m-diameter) tangentially conjoined circular transects in each wetland. Microtopography was surveyed using a total station and results used to derive three roughness indices: tortuosity, limiting slope, and limiting elevation difference. Steel rod oxidation depth was used to estimate water table depth, with data collected four times during the growing season for each study site. Plant species cover was estimated visually in 0.2 m2 plots surveyed at peak growth and used to assess species richness, diversity, and wetland prevalence index. Differences in each attribute were examined among disked and non-disked created wetlands and compared to a natural wetland as a reference. Disked and non-disked created wetlands differed in microtopography, both in terms of limiting elevation difference and tortuosity. However, both were within the range of microtopography encompassed by natural wetlands. Disked wetlands supported higher plant diversity and species richness than either natural or non-disked wetlands, as well as greater within-site species assemblage variability than non-disked wetlands. Irrespective of creation method, plant diversity in created wetlands was correlated with tortuosity and limiting elevation difference, similar to correlations observed for natural wetlands. Vegetation was more hydrophytic at disked sites than at non-disked sites, and of equivalent wetland indicator status to natural sites, even though all sites appeared comparable in terms of hydrology. Results suggest that disking may enhance vegetation community development, thus better supporting the goals of wetland mitigation. ?? 2007, The Society of Wetland Scientists.
Mozumder, Mohammad Sayem; Zhu, Jesse; Perinpanayagam, Hiran
2011-06-01
Novel polymeric powder coatings (PPC) were prepared by ultrafine powder coating technology and shown to support human mesenchymal cell attachment and growth. PPC surfaces enriched with nano-TiO(2) (nTiO(2)) showed enhanced cellular responses, and were compared to commercially pure titanium (cpTi). After cell attachment and growth, osteogenic differentiation and bone matrix formation ensures osseointegration for implantable biomaterials. Therefore, the objective of this study was to determine if mesenchymal cells grown on PPC could undergo osteogenic differentiation by inducing Runx2 and bone matrix proteins, and then initiate mineralization. Atomic force microscopy revealed intricate three-dimensional micro-topographies, and the measures of nano-roughness and porosity were similar for all PPC surfaces. Scanning electron microscopy showed that the cells attached and spread out over all of the surfaces. After 1 week in osteogenic media, RT-PCR analysis showed the induction of Runx2, the up-regulation of type I collagen, and the initial detection of alkaline phosphatase and bone sialoprotein. After 4 weeks, Alizarin Red staining showed mineral deposition. However, cell spreading and osteogenic differentiation were significantly (P < 0.05) higher on the cpTi controls than on the PPC surfaces. Furthermore, spreading and differentiation were consistently higher on the titanium-enriched PPC-2, -3 and -4 than on the titanium-free PPC-1. Therefore, despite the presence of complex micro-topographies and nano-features, titanium-enrichment enhanced the cellular response, and pure titanium still provided the best substrate. These findings confirm the cytocompatibility of these novel polymeric coatings and suggest that titanium-enrichment and nTiO(2) additives may enhance their performance.
Knebel, H.J.; Folger, D.W.
1976-01-01
New seismic-reflection data show that large sand waves near the head of Wilmington Canyon on the Atlantic Outer Continental Shelf have a spacing of 100-650 m and a relief of 2-9 m. The bedforms trend northwest and are asymmetrical, the steeper slopes being toward the south or west. Vibracore sediments indicate that the waves apparently have formed on a substrate of relict nearshore sediments. Although the age of the original bedforms is unknown, the asymmetry is consistent with the dominant westerly to southerly drift in this area which has been determined by other methods; the asymmetry, therefore, is probably modern. Observations in the sand-wave area from a submersible during August 1975, revealed weak bottom currents, sediment bioturbation, unrippled microtopography, and lack of scour. Thus, the asymmetry may be maintained by periodic water motion, possibly associated with storms or perhaps with flow in the canyon head. ?? 1976.
Trampoline Effect: Observations and Modeling
NASA Astrophysics Data System (ADS)
Guyer, R.; Larmat, C. S.; Ulrich, T. J.
2009-12-01
The Iwate-Miyagi earthquake at site IWTH25 (14 June 2008) had large, asymmetric at surface vertical accelerations prompting the sobriquet trampoline effect (Aoi et. al. 2008). In addition the surface acceleration record showed long-short waiting time correlations and vertical-horizontal acceleration correlations. A lumped element model, deduced from the equations of continuum elasticity, is employed to describe the behavior at this site in terms of a surface layer and substrate. Important ingredients in the model are the nonlinear vertical coupling between the surface layer and the substrate and the nonlinear horizontal frictional coupling between the surface layer and the substrate. The model produces results in qualitative accord with observations: acceleration asymmetry, Fourier spectrum, waiting time correlations and vertical acceleration-horizontal acceleration correlations. [We gratefully acknowledge the support of the U. S. Department of Energy through the LANL/LDRD Program for this work].
An interactive survey panel regarding the effects of mice (Microtus spec.) on a young ecosystem
NASA Astrophysics Data System (ADS)
Zaplata, Markus; Maurer, Thomas; Boldt-Burisch, Katja; Schaaf, Wolfgang; Hinz, Christoph
2015-04-01
Apparent disturbance caused by soil megafauna took place for the very first time in 2014, after nine years of spontaneous vegetative succession of the constructed watershed Chicken Creek catchment (6 ha). This watershed was designed to investigate the initial phase of soil and ecosystem development under natural conditions including the detailed study of hydrologic processes and water-substrate-plant-atmosphere interactions. In autumn 2014, we recorded the primarily common vole (Microtus arvalis Pallas) activities (calamity), which altered the microtopography of the substrate surface: We counted mouse holes and diggings (for storage organs) at the same spatial units (permanent plots, >100 # of 5 m × 5 m) where we monitor the vegetation since the onset of the catchment. We are hence capable of analysing the effect of abundant vegetarian mice and biogenic macropores, e.g. on the occurrence and performance of the more than 150 vascular plant species present by comparing the respective coverage in 2013 (the pre-mice year) versus 2014, with or without accounting for the confounding effect of succession. Additionally elaborated insight on the 3-D architecture of the mice underground corridors and the nesting places (in situ) enables to extrapolate mass and volume of the moved substrate and the number of the nests of mice for the whole catchment. We report these results, anticipating a return service: Here, we ask for your expectation regarding the significance of the mice-made disturbance on the vegetation of the young ecosystem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad Jan; Ethan Coon; Scott Painter
This Modeling Archive is in support of an NGEE Arctic manuscript under review. A new subgrid model was implemented in the Advanced Terrestrial Simulator (ATS) to capture micro-topography effects on surface flow. A comparison of the fine-scale simulations on seven individual ice-wedge polygons and a cluster of polygons was made between the results of the subgrid model and no-subgrid model. Our finding confirms that the effects of small-scale spatial heterogeneities can be captured in the coarsened models. The dataset contains meshes, inputfiles, subgrid parameters used in the simulations. Python scripts for post-processing and files for geometric analyses are also included.
Bedford, D.R.; Small, E.E.
2008-01-01
Spatial patterns of soil properties are linked to patchy vegetation in arid and semi-arid landscapes. The patterns of soil properties are generally assumed to be linked to the ecohydrological functioning of patchy dryland vegetation ecosystems. We studied the effects of vegetation canopy, its spatial pattern, and landforms on soil properties affecting overland flow and infiltration in shrublands at the Sevilleta National Wildlife Refuge/LTER in central New Mexico, USA. We studied the patterns of microtopography and saturated conductivity (Ksat), and generally found it to be affected by vegetation canopy and pattern, as well as landform type. On gently sloping alluvial fans, both microtopography and Ksat are high under vegetation canopy and decay with distance from plant center. On steeper hillslope landforms, only microtopography was significantly higher under vegetation canopy, while there was no significant difference in Ksat between vegetation and interspaces. Using geostatistics, we found that the spatial pattern of soil properties was determined by the spatial pattern of vegetation. Most importantly, the effects of vegetation were present in the unvegetated interspaces 2-4 times the extent of vegetation canopy, on the order of 2-3??m. Our results have implications for the understanding the ecohydrologic function of semi-arid ecosystems as well as the parameterization of hydrologic models. ?? 2007 Elsevier B.V. All rights reserved.
Luo, Jian; Zheng, Zicheng; Li, Tingxuan; He, Shuqin
2018-02-22
This study investigated the variation characteristics of micro-topography during successive erosive stages of water erosion: splash erosion (SpE), sheet erosion (ShE), and rill erosion (RE). Micro-topography was quantified using surface elevation change, soil roughness (SR) and multifractal model. Results showed that the area of soil surface elevation decay increased gradually with the development of water erosion. With rainfall, the combined effects of the detachment by raindrop impact and the transport of runoff decreased SR, whereas rill erosion contributed to increase SR. With the increase in slope gradient, soil erosion area gradually decreased at the splash erosion stage. By contrast, soil erosion area initially decreased and then increased at the sheet and rill erosion stages. The width of the D q spectra (ΔD) values increased at the splash erosion stage and then decreased at the sheet and rill erosion stages on the 10° slope, opposite to that on the 15° slope. The ΔD values decreased with the evolution of water erosive stages on the 20° slope. The slope had an enhancing effect on the evolution of water erosion. In this study, we clarified the essence of micro-topography and laid a theoretical foundation for further understanding diverse hydrological processes.
Accelerating oxygen reduction on Pt monolayer via substrate compression
NASA Astrophysics Data System (ADS)
Zhang, Xilin; Chen, Yue; Yang, Zongxian; Lu, Zhansheng
2017-11-01
Many methods have been proposed to accelerate the oxygen reduction and save the dosage of Pt. Here, we report a promising way in fulfilling these purposes by applying substrate strain on the supported Pt monolayer. The compressive strain would modify the geometric and electronic structures of tungsten carbide (WC) substrate, changing the interaction nature between substrate and Pt monolayer and resulting in a downward shift of the d-band center of surface Pt atoms. The activity of Pt monolayer on the compressed WC is further evaluated from the kinetics of the dissociation and protonation of O2. The dissociation barrier of O2 is increased and the hydrogenation barrier of O atom is decreased, indicating that the recovery of the catalytically active sites is accelerated and the deactivation by oxygen poison is alleviated. The present study provides an effective way in tuning the activity of Pt-based catalysts by applying the substrate strain.
Microtopography enhances nitrogen cycling and removal in created mitigation wetlands
Wolf, K.L.; Ahn, C.; Noe, G.B.
2011-01-01
Natural wetlands often have a heterogeneous soil surface topography, or microtopography (MT), that creates microsites of variable hydrology, vegetation, and soil biogeochemistry. Created mitigation wetlands are designed to mimic natural wetlands in structure and function, and recent mitigation projects have incorporated MT as one way to attain this goal. Microtopography may influence nitrogen (N) cycling in wetlands by providing adjacent areas of aerobic and anaerobic conditions and by increasing carbon storage, which together facilitate N cycling and removal. This study investigated three created wetlands in the Virginia Piedmont that incorporated disking-induced MT during construction. One site had paired disked and undisked plots, allowing an evaluation of the effects of this design feature on N flux rates. Microtopography was measured using conventional survey equipment along a 1-m circular transect and was described using two indices: tortuosity (T), describing soil surface roughness and relief, and limiting elevation difference (LD), describing soil surface relief. Ammonification, nitrification, and net N mineralization were determined with in situ incubation of modified ion-exchange resin cores and denitrification potential was determined using denitrification enzyme assay (DEA). Results demonstrated that disked plots had significantly greater LD than undisked plots one year after construction. Autogenic sources of MT (e.g. tussock-forming vegetation) in concert with variable hydrology and sedimentation maintained and in some cases enhanced MT in study wetlands. Tortuosity and LD values remained the same in one wetland when compared over a two-year period, suggesting a dynamic equilibrium of MT-forming and -eroding processes at play. Microtopography values also increased when comparing the original induced MT of a one-year old wetland with MT of older created wetlands (five and eight years old) with disking-induced MT, indicating that MT can increase by natural processes over time. When examined along a hydrologic gradient, LD increased with proximity to an overflow point as a result of differential sediment deposition and erosion during flood events. Nitrification increased with T and denitrification potential increased with LD, indicating that microtopographic heterogeneity enhances coupled N fluxes. The resulting N flux patterns may be explained by the increase in oxygen availability elicited by greater T (enhancing nitrification) and by the adjacent zones of aerobic and anaerobic conditions elicited by greater LD (enhancing coupled nitrification and denitrification potential). Findings of this study support the incorporation of MT into the design and regulatory evaluation of created wetlands in order to enhance N cycling and removal. ?? 2011.
Micro environmental sensing device
Polosky, Marc A.; Lukens, Laurance L.
2006-05-02
A microelectromechanical (MEM) acceleration switch is disclosed which includes a proof mass flexibly connected to a substrate, with the proof mass being moveable in a direction substantially perpendicular to the substrate in response to a sensed acceleration. An electrode on the proof mass contacts one or more electrodes located below the proof mass to provide a switch closure in response to the sensed acceleration. Electrical latching of the switch in the closed position is possible with an optional latching electrode. The MEM acceleration switch, which has applications for use as an environmental sensing device, can be fabricated using micromachining.
Shi, X. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Thornton, P. E. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Ricciuto, D. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Mao, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Sebestyen, S. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Griffiths, N. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Bisht, G. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2016-09-01
Here we provide model code, inputs, outputs and evaluation datasets for a new configuration of the Community Land Model (CLM) for SPRUCE, which includes a fully prognostic water table calculation for SPRUCE. Our structural and process changes to CLM focus on modifications needed to represent the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of SPRUCE and other peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE).
Biophysical regulation of epigenetic state and cell reprogramming
NASA Astrophysics Data System (ADS)
Downing, Timothy L.; Soto, Jennifer; Morez, Constant; Houssin, Timothee; Fritz, Ashley; Yuan, Falei; Chu, Julia; Patel, Shyam; Schaffer, David V.; Li, Song
2013-12-01
Biochemical factors can help reprogram somatic cells into pluripotent stem cells, yet the role of biophysical factors during reprogramming is unknown. Here, we show that biophysical cues, in the form of parallel microgrooves on the surface of cell-adhesive substrates, can replace the effects of small-molecule epigenetic modifiers and significantly improve reprogramming efficiency. The mechanism relies on the mechanomodulation of the cells’ epigenetic state. Specifically, decreased histone deacetylase activity and upregulation of the expression of WD repeat domain 5 (WDR5)—a subunit of H3 methyltranferase—by microgrooved surfaces lead to increased histone H3 acetylation and methylation. We also show that microtopography promotes a mesenchymal-to-epithelial transition in adult fibroblasts. Nanofibrous scaffolds with aligned fibre orientation produce effects similar to those produced by microgrooves, suggesting that changes in cell morphology may be responsible for modulation of the epigenetic state. These findings have important implications in cell biology and in the optimization of biomaterials for cell-engineering applications.
Painter, Scott L.; Coon, Ethan T.; Atchley, Adam L.; ...
2016-08-11
The need to understand potential climate impacts and feedbacks in Arctic regions has prompted recent interest in modeling of permafrost dynamics in a warming climate. A new fine-scale integrated surface/subsurface thermal hydrology modeling capability is described and demonstrated in proof-of-concept simulations. The new modeling capability combines a surface energy balance model with recently developed three-dimensional subsurface thermal hydrology models and new models for nonisothermal surface water flows and snow distribution in the microtopography. Surface water flows are modeled using the diffusion wave equation extended to include energy transport and phase change of ponded water. Variation of snow depth in themore » microtopography, physically the result of wind scour, is also modeled heuristically with a diffusion wave equation. The multiple surface and subsurface processes are implemented by leveraging highly parallel community software. Fully integrated thermal hydrology simulations on the tilted open book catchment, an important test case for integrated surface/subsurface flow modeling, are presented. Fine-scale 100-year projections of the integrated permafrost thermal hydrological system on an ice wedge polygon at Barrow Alaska in a warming climate are also presented. Finally, these simulations demonstrate the feasibility of microtopography-resolving, process-rich simulations as a tool to help understand possible future evolution of the carbon-rich Arctic tundra in a warming climate.« less
Dusty-Plasma Particle Accelerator
NASA Technical Reports Server (NTRS)
Foster, John E.
2005-01-01
A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the initiation of a low-current, high-voltage cathode spot. Plasma pressure associated with the cathode spot as well as the large voltage drop at the cathode spot accelerates the charged particles toward the substrate. The ultimate kinetic energy attained by particles exiting the particle holder depends in part on the magnitude of the cathode spot sheath potential difference, which is proportional to the magnitude of the voltage pulse, and the on the electric charge on the dust. The magnitude of the voltage pulse can be controlled directly, whereas the particle s electric charge can be controlled indirectly by controlling the operating parameters of the plasma apparatus.
NASA Astrophysics Data System (ADS)
Themistocleous, K.; Agapiou, A.; Papadavid, G.; Christoforou, M.; Hadjimitsis, D. G.
2015-10-01
This paper focuses on the use of Unmanned Aerial Vehicles (UAVs) over the study area of Pissouri in Cyprus to document the sloping landscapes of the area. The study area has been affected by overgrazing, which has led to shifts in the vegetation patterns and changing microtopography of the soil. The UAV images were used to generate digital elevation models (DEMs) to examine the changes in microtopography. Next to that orthophotos were used to detect changes in vegetation patterns. The combined data of the digital elevation models and the orthophotos will be used to detect the occurrence of catastrophic shifts and mechanisms for desertification in the study area due to overgrazing. This study is part of the "CASCADE- Catastrophic shifts in dryland" project.
NASA Technical Reports Server (NTRS)
Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Lemkin, Mark A. (Inventor); Roessig, Allen W. (Inventor)
2001-01-01
A microfabricated vibratory rate gyroscope to measure rotation includes two proof-masses mounted in a suspension system anchored to a substrate. The suspension has two principal modes of compliance, one of which is driven into oscillation. The driven oscillation combined with rotation of the substrate about an axis perpendicular to the substrate results in Coriolis acceleration along the other mode of compliance, the sense-mode. The sense-mode is designed to respond to Coriolis accelerationwhile suppressing the response to translational acceleration. This is accomplished using one or more rigid levers connecting the two proof-masses. The lever allows the proof-masses to move in opposite directions in response to Coriolis acceleration. The invention includes a means for canceling errors, termed quadrature error, due to imperfections in implementation of the sensor. Quadrature-error cancellation utilizes electrostatic forces to cancel out undesired sense-axis motion in phase with drive-mode position.
NASA Astrophysics Data System (ADS)
Caviedes-Voullième, Daniel; Domin, Andrea; Hinz, Christoph
2017-04-01
The quantitative description and prediction of hydrological response of hillslopes or hillslope-scale catchments to rainfall events is becoming evermore relevant. At the hillslope scale, the onset of runoff and the overall rainfall-runoff transformation are controlled by multiple interacting small-scale processes, that, when acting together produce a response described in terms of hydrological variables well-defined at the catchment and hillslope scales. We hypothesize that small scale features such microtopography of the land surface will will govern large scale signatures of temporal runoff evolution. This can be tested directly by numerical modelling of well-defined surface geometries and adequate process description. It requires a modelling approach consistent with fundamental fluid mechanics, well-designed numerical methods, and computational efficiency. In this work, an idealized rectangular domain representing a hillslope with an idealized 2D sinusoidal microtopography is studied by simulating surface water redistribution by means of a 2D diffusive-wave (zero-inertia) shallow water model. By studying more than 500 surfaces and performing extensive sensitivity analysis forced by a single rainfall pulse, the dependency of characteristic hydrological responses to microtopographical properties was assessed. Despite of the simplicity of periodic surface and the rain event, results indicate complex surface flow dynamics during the onset of runoff observed at the macro and micro scales. Macro scale regimes were defined in terms of characteristics hydrograph shapes and those were related to surface geometry. The reference regime was defined for smooth topography and consisted of a simple hydrograph with smoothly rising and falling limbs with an intermediate steady state. In constrast, rough surface geometry yields stepwise rising limbs and shorter steady states. Furthermore, the increase in total infiltration over the whole domain relative to the smooth reference case shows a strong non-linear dependency on slope and the ratio of the characteristic wavelength and amplitude of microtopography. The coupled analysis of spatial and hydrological results also suggests that the hydrological behaviour can be explained by the spatiotemporal variations triggered by surface connectivity. This study significantly extents previous work on 1D domains, as our results reveal complexities that require 2D representation of the runoff processes.
Simulating effects of microtopography on wetland specific yield and hydroperiod
Summer, David M.; Wang, Xixi
2011-01-01
Specific yield and hydroperiod have proven to be useful parameters in hydrologic analysis of wetlands. Specific yield is a critical parameter to quantitatively relate hydrologic fluxes (e.g., rainfall, evapotranspiration, and runoff) and water level changes. Hydroperiod measures the temporal variability and frequency of land-surface inundation. Conventionally, hydrologic analyses used these concepts without considering the effects of land surface microtopography and assumed a smoothly-varying land surface. However, these microtopographic effects could result in small-scale variations in land surface inundation and water depth above or below the land surface, which in turn affect ecologic and hydrologic processes of wetlands. The objective of this chapter is to develop a physically-based approach for estimating specific yield and hydroperiod that enables the consideration of microtopographic features of wetlands, and to illustrate the approach at sites in the Florida Everglades. The results indicate that the physically-based approach can better capture the variations of specific yield with water level, in particular when the water level falls between the minimum and maximum land surface elevations. The suggested approach for hydroperiod computation predicted that the wetlands might be completely dry or completely wet much less frequently than suggested by the conventional approach neglecting microtopography. One reasonable generalization may be that the hydroperiod approaches presented in this chapter can be a more accurate prediction tool for water resources management to meet the specific hydroperiod threshold as required by a species of plant or animal of interest.
Eddy-current-damped microelectromechanical switch
Christenson, Todd R.; Polosky, Marc A.
2007-10-30
A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).
Eddy-current-damped microelectromechanical switch
Christenson, Todd R [Albuquerque, NM; Polosky, Marc A [Tijeras, NM
2009-12-15
A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).
Naish-Byfield, S; Riley, P A
1998-04-01
When 2,5,6-trimethyl-4-hydroxyanisole is used as substrate for mushroom tyrosinase the oxidation rate is slow and the kinetics do not exhibit an initial acceleration (lag period), in contrast to the kinetics of oxidation of the parent compound, 4-hydroxyanisole. This finding is interpreted as evidence that the acceleration of oxidation of 4-hydroxyanisole is indirectly contingent on a reductive nucleophile addition to the orthoquinone product of the monohydric phenol, which is prevented by ring methylation. Such a view is consistent with the proposal that the lag-phase characteristic of the kinetics of monohydric phenol oxidation by tyrosinase is due to the activation of previously inactive enzyme by electron donation from an orthodiphenol substrate formed from the orthoquinone oxidation product.
Copper cladding on polymer surfaces by ionization-assisted deposition
NASA Astrophysics Data System (ADS)
Kohno, Tomoki; Tanaka, Kuniaki; Usui, Hiroaki
2018-03-01
Copper thin films were prepared on poly(ethylene terephthalate) (PET) and polyimide (PI) substrates by an ionization-assisted vapor deposition method. The films had a polycrystalline structure, and their crystallite size decreased with increasing ion acceleration voltage V a. Ion acceleration was effective in reducing the surface roughness of the films. Cross-sectional transmission electron microscopy revealed that the copper/polymer interface showed increased corrugation with increasing V a. The increase in V a also induced the chemical modification of polymer chains of the PET substrate, but the PI substrate underwent smaller modification after ion bombardment. Most importantly, the adhesion strength between the copper film and the PET substrate increased with increasing V a. It was concluded that ionization-assisted deposition is a promising technique for preparing metal clad layers on flexible polymer substrates.
Pegalajar-Jurado, Adoracion; Easton, Christopher D; Crawford, Russell J; McArthur, Sally L
2015-03-26
Billions of dollars are spent annually worldwide to combat the adverse effects of bacterial attachment and biofilm formation in industries as varied as maritime, food, and health. While advances in the fabrication of antifouling surfaces have been reported recently, a number of the essential aspects responsible for the formation of biofilms remain unresolved, including the important initial stages of bacterial attachment to a substrate surface. The reduction of bacterial attachment to surfaces is a key concept in the prevention or minimization of biofilm formation. The chemical and physical characteristics of both the substrate and bacteria are important in understanding the attachment process, but substrate modification is likely the most practical route to enable the extent of bacterial attachment taking place to be effectively controlled. The microtopography and chemistry of the surface are known to influence bacterial attachment. The role of surface chemistry versus nanotopography and their interplay, however, remain unclear. Most methods used for imparting nanotopographical patterns onto a surface also induce changes in the surface chemistry and vice versa. In this study, the authors combine colloidal lithography and plasma polymerization to fabricate homogeneous, reproducible, and periodic nanotopographies with a controllable surface chemistry. The attachment of Escherichia coli bacteria onto carboxyl (plasma polymerized acrylic acid, ppAAc) and hydrocarbon (plasma polymerized octadiene, ppOct) rich plasma polymer films on either flat or colloidal array surfaces revealed that the surface chemistry plays a critical role in bacterial attachment, whereas the effect of surface nanotopography on the bacterial attachment appears to be more difficult to define. This platform represents a promising approach to allow a greater understanding of the role that surface chemistry and nanotopography play on bacterial attachment and the subsequent biofouling of the surface.
[Corrosion resistant properties of different anodized microtopographies on titanium surfaces].
Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian
2015-12-01
To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.
The influence of microtopography on soil nutrients in created mitigation wetlands
Moser, K.F.; Ahn, C.; Noe, G.B.
2009-01-01
This study explores the relationship between microtopography and soil nutrients (and trace elements), comparing results for created and reference wetlands in Virginia, and examining the effects of disking during wetland creation. Replicate multiscale tangentially conjoined circular transects were used to quantify microtopography both in terms of elevation and by two microtopographic indices. Corresponding soil samples were analyzed for moisture content, total C and N, KCl-extractable NH4-N and NO3-N, and Mehlich-3 extractable P, Ca, Mg, K, Al, Fe, and Mn. Means and variances of soil nutrient/element concentrations were compared between created and natural wetlands and between disked and nondisked created wetlands. Natural sites had higher and more variable soil moisture, higher extractable P and Fe, lower Mn than created wetlands, and comparatively high variability in nutrient concentrations. Disked sites had higher soil moisture, NH4-N, Fe, and Mn than did nondisked sites. Consistently low variances (Levene test for inequality) suggested that nondisked sites had minimal nutrient heterogeneity. Across sites, low P availability was inferred by the molar ratio (Mehlich-3 [P/(Al + Fe)] < 0.06); strong intercorrelations among total C, total N, and extractable Fe, Al, and P suggested that humic-metal-P complexes may be important for P retention and availability. Correlations between nutrient/element concentrations and microtopographic indices suggested increased Mn and decreased K and Al availability with increased surface roughness. Disking appears to enhance water and nutrient retention, as well as nutrient heterogeneity otherwise absent from created wetlands, thus potentially promoting ecosystem development. ?? 2008 Society for Ecological Restoration International.
Sankey, Joel B.; Ravi, Sujith; Wallace, Cynthia S.A.; Webb, Robert H.; Huxman, Travis E.
2012-01-01
Woody plant encroachment, a worldwide phenomenon, is a major driver of land degradation in desert grasslands. Woody plant encroachment by shrub functional types ultimately leads to the formation of a patchy landscape with fertile shrub patches interspaced with nutrient-depleted bare soil patches. This is considered to be an irreversible process of land and soil degradation. Recent studies have indicated that in the early stages of shrub encroachment, when there is sufficient herbaceous connectivity, fires (prescribed or natural) might provide some reversibility to the shrub encroachment process by negatively affecting shrub demography and homogenizing soil resources across patches within weeks to months after burning. A comprehensive understanding of longer term changes in microtopography and spatial patterning of soil properties following fire in shrub-encroached grasslands is desirable. Here, we investigate the changes in microtopography with LiDAR (light detection and ranging), vegetation recovery, and spatial pattering of soil properties in replicated burned, clipped, and control areas in a shrub-grass transition zone in the northern Chihuahuan Desert four years after prescribed fire or clipping. Results indicate a greater homogeneity in soil, microtopography, and vegetation patterning on burned relative to clipped and control treatments. Findings provide further evidence that disturbance by prescribed fire may allow for reversal of the shrub encroachment process, if the event occurs in the early stages of the vegetation shift. Improved understanding of longer-term effects of fire and associated changes in soil patterning can inform the use and role of fire in the context of changing disturbance regimes and climate.
NASA Astrophysics Data System (ADS)
Palosaari, Jaakko; Leinonen, Mikko; Juuti, Jari; Jantunen, Heli
2018-06-01
In this research four piezoelectric bimorph type cantilevers for energy harvesting were manufactured, measured and analyzed to study the effects of substrate layer thickness on energy harvesting efficiency and durability under different accelerations. The cantilevers had the same dimensions of the piezoelectric ceramic components, but had different thicknesses of the steel substrate (no steel, 30 μm, 50 μm and 75 μm). The cantilevers were tuned to the same resonance frequency with different sizes of tip mass (2.13 g, 3.84 g, 4.17 g and 5.08 g). The energy harvester voltage outputs were then measured across an electrical load near to the resonance frequency (∼40 Hz) with sinusoidal vibrations under different accelerations. The stress exhibited by the four cantilevers was compared and analyzed and their durability was tested with accelerations up to 2.5 g-forces.
Laminated magnet field coil sheath
Skaritka, J.R.
1987-05-15
A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.
An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome.
Worden, Evan J; Dong, Ken C; Martin, Andreas
2017-09-07
Poly-ubiquitin chains direct protein substrates to the 26S proteasome, where they are removed by the deubiquitinase Rpn11 during ATP-dependent substrate degradation. Rapid deubiquitination is required for efficient degradation but must be restricted to committed substrates that are engaged with the ATPase motor to prevent premature ubiquitin chain removal and substrate escape. Here we reveal the ubiquitin-bound structure of Rpn11 from S. cerevisiae and the mechanisms for mechanochemical coupling of substrate degradation and deubiquitination. Ubiquitin binding induces a conformational switch of Rpn11's Insert-1 loop from an inactive closed state to an active β hairpin. This switch is rate-limiting for deubiquitination and strongly accelerated by mechanical substrate translocation into the AAA+ motor. Deubiquitination by Rpn11 and ubiquitin unfolding by the ATPases are in direct competition. The AAA+ motor-driven acceleration of Rpn11 is therefore important to ensure that poly-ubiquitin chains are removed only from committed substrates and fast enough to prevent their co-degradation. Copyright © 2017 Elsevier Inc. All rights reserved.
Cation Radical Accelerated Nucleophilic Aromatic Substitution via Organic Photoredox Catalysis.
Tay, Nicholas E S; Nicewicz, David A
2017-11-15
Nucleophilic aromatic substitution (S N Ar) is a direct method for arene functionalization; however, it can be hampered by low reactivity of arene substrates and their availability. Herein we describe a cation radical-accelerated nucleophilic aromatic substitution using methoxy- and benzyloxy-groups as nucleofuges. In particular, lignin-derived aromatics containing guaiacol and veratrole motifs were competent substrates for functionalization. We also demonstrate an example of site-selective substitutive oxygenation with trifluoroethanol to afford the desired trifluoromethylaryl ether.
Inertial sensing microelectromechanical (MEM) safe-arm device
Roesler, Alexander W [Tijeras, NM; Wooden, Susan M [Sandia Park, NM
2009-05-12
Microelectromechanical (MEM) safe-arm devices comprise a substrate upon which a sense mass, that can contain an energetic material, is constrained to move along a pathway defined by a track disposed on the surface of the substrate. The pathway has a first end comprising a "safe" position and a second end comprising an "armed" position, whereat the second end the sense mass can be aligned proximal to energetic materials comprising the explosive train, within an explosive component. The sense mass can be confined in the safe position by a first latch, operable to release the sense mass by an acceleration acting in a direction substantially normal to the surface of the substrate. A second acceleration, acting in a direction substantially parallel to the surface of the substrate, can cause the sense mass to traverse the pathway from the safe position to the armed position.
Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces
NASA Astrophysics Data System (ADS)
Epstein, Alexander K.; Hong, Donggyoon; Kim, Philseok; Aizenberg, Joanna
2013-09-01
Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1-100 mm s-1), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to ˜ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and ˜ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than ˜ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of ˜ 1 μm. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments.
Compact ion accelerator source
Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali
2014-04-29
An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.
Zhang, Qing; Dong, Hua; Li, Yuli; Zhu, Ye; Zeng, Lei; Gao, Huichang; Yuan, Bo; Chen, Xiaofeng; Mao, Chuanbin
2015-10-21
Surface topography can affect cell adhesion, morphology, polarity, cytoskeleton organization, and osteogenesis. However, little is known about the effect of topography on the fracture healing in repairing nonunion and large bone defects. Microgrooved topography on the surface of bone implants may promote cell migration into the fracture gap to accelerate fracture healing. To prove this hypothesis, we used an in vitro fracture (wound) healing assay on the microgrooved polycaprolactone substrates to study the effect of microgroove widths and depths on the osteoblast-like cell (MG-63) migration and the subsequent healing. We found that the microgrooved substrates promoted MG-63 cells to migrate collectively into the wound gap, which serves as a fracture model, along the grooves and ridges as compared with the flat substrates. Moreover, the groove widths did not show obvious influence on the wound healing whereas the smaller groove depths tended to favor the collective cell migration and thus subsequent healing. The microgrooved substrates accelerated the wound healing by facilitating the collective cell migration into the wound gaps but not by promoting the cell proliferation. Furthermore, microgrooves were also found to promote the migration of human mesenchymal stem cells (hMSCs) to heal the fracture model. Though osteogenic differentiation of hMSCs was not improved on the microgrooved substrate, collagen I and minerals deposited by hMSCs were organized in a way similar to those in the extracellular matrix of natural bone. These findings suggest the necessity in using microgrooved implants in enhancing fracture healing in bone repair.
Eutrophication is a common problem facing urban estuaries and may stimulate changes in microtopography, plant communities, and microbial processes that drive greenhouse gas (GHG) fluxes. Since coastal wetlands are known to sequester abundant carbon and GHGs relative to terrestri...
USDA-ARS?s Scientific Manuscript database
In arid and semi-arid rangeland environments, an accurate understanding of runoff generation and sediment transport processes is key to developing effective management actions and addressing ecosystem response to changes. Yet, many primary processes (namely sheet and splash and concentrated flow ero...
Multiple Beam Interferometry in Elementary Teaching
ERIC Educational Resources Information Center
Tolansky, S.
1970-01-01
Discusses a relatively simple technique for demonstrating multiple beam interferometry. The technique can be applied to measuring (1) radii of curvature of lenses, (2) surface finish of glass, and (3) differential phase change on reflection. Microtopographies, modulated fringe systems and opaque objects may also be observed by this technique.…
Thermally driven self-healing using copper nanofiber heater
NASA Astrophysics Data System (ADS)
Lee, Min Wook; Jo, Hong Seok; Yoon, Sam S.; Yarin, Alexander L.
2017-07-01
Nano-textured transparent heaters made of copper nanofibers (CuNFs) are used to facilitate accelerated self-healing of bromobutyl rubber (BIIR). The heater and BIIR layer are separately deposited on each side of a transparent flexible polyethylene terephthalate (PET) substrate. A pre-notched crack on the BIIR layer was bridged due to heating facilitated by CuNFs. In the corrosion test, a cracked BIIR layer covered a steel substrate. An accelerated self-healing of the crack due to the transparent copper nanofiber heater facilitated an anti-corrosion protective effect of the BIIR layer.
Accelerator-based method of producing isotopes
Nolen, Jr., Jerry A.; Gomes, Itacil C.
2015-11-03
The invention provides a method using accelerators to produce radio-isotopes in high quantities. The method comprises: supplying a "core" of low-enrichment fissile material arranged in a spherical array of LEU combined with water moderator. The array is surrounded by substrates which serve as multipliers and moderators as well as neutron shielding substrates. A flux of neutrons enters the low-enrichment fissile material and causes fissions therein for a time sufficient to generate desired quantities of isotopes from the fissile material. The radio-isotopes are extracted from said fissile material by chemical processing or other means.
Conversion of fullerenes to diamond
Gruen, Dieter M.
1993-01-01
A method of forming synthetic diamond on a substrate is disclosed. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond thickness on the substrate.
Conversion of fullerenes to diamond
Gruen, Dieter M.
1994-01-01
A method of forming synthetic diamond on a substrate. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond film thickness on the substrate.
Tan, Li Hui; Sykes, Peter H; Alkaisi, Maan M; Evans, John J
2017-02-14
Topographical features of cells at nanometre resolution were fabricated in polystyrene. The study investigated the effect of physical topography on the response of cancer cells to the common anticancer drugs, paclitaxel and doxorubicin. Human endometrial cancer cells (Ishikawa) were incubated on substrates containing cell-like features that had been fabricated using our bioimprint methodology to create moulds of cells with positive (convex) and negative (concave) topography. Control cultures were performed on flat substrates. Effects of the drugs on caspase-3 expression, proliferating nuclear antigen (PCNA) expression, cell number and vascular endothelial growth factor (VEGF) secretion were determined. Results revealed that the topography influenced the cell responses in a drug-dependent manner i.e. paclitaxel effects were sensitive to topography differently to those of doxorubicin. In addition, function signalling pathways were sensitive to the detailed topography i.e. positive imprint and negative imprint induced distinct response patterns. The results in this study show for the first time that a culture surface with cell-like topography, that has both nano- and micro-resolution, influences endometrial cancer cell responses to chemotherapy drugs. The effects are dependent on the topography and also on the chemotherapy drug. In particular, the platforms described have potential to provide substrates with high physical relevancy on which to undertake preclinical testing of new drugs. The method also allows for use of different cell types to provide cell-specific topography. The results imply that physical architecture of the cancer cell environment may be a suitable prospective target to enhance clinical activity of traditional drugs. Additionally or alternatively we provide compelling support for the notion that understanding the physical component of the nano- and micro-environment may encourage a redirection of drug development. Further, our observation that the cells distinguish between the different cell-like topographies (positive and negative bioimprints) indicates that a realistic topography is advantageous as growth platforms in experiment design.
The importance of pH and sand substrate in the revegetation of saline non-waterlogged peat fields.
Montemayor, Marilou B; Price, Jonathan; Rochefort, Line
2015-11-01
A partially peat-extracted coastal bog contaminated by seawater was barren and required revegetation as a wetland. Peat fields were rectangular in shape, cambered in cross-section profile, and separated by drainage ditches. Common to all peat fields were symmetrical patterns in micro-topography with slopes between differences in elevation. Saline non-waterlogged slopes of ∼5% occurred as a symmetrical pair on each side of the crest of the cambered profile, at one end of each peat field. Three rows were laid across this slope (Top, Middle, and Bottom rows) and transplanted with naturally-growing plant species with their sand substrate, in three experiments, and grown for a year. In the Spartina pectinata experiment, bare root stem sections were also planted. Another experiment was conducted to determine changes in the characteristics of a volume of sand when incubated in saline peat fields. We found the salinity of peat increased with moisture downslope, and pH decreased with increase in salinity. S. pectinata grew best when planted with its sand substrate compared with bare root stem section, and when planted in Bottom rows. Juncus balticus had excellent growth in all rows. Unexpectedly, Festuca rubra that was inconspicuous beneath the J. balticus canopy in the natural donor site grew densely within the J. balticus sods. Agrostis stolonifera grew well but seemed to show intolerance to the surrounding acidic peat by curling up its stolons. The pH of the incubated sand volume was much higher than the surrounding peat. These studies suggest that recognition of plant niches and pH manipulation are important in the revegetation of disturbed Sphagnum peatlands that are found abundantly in the northern hemisphere. Results are also relevant to the reclamation of other disturbed lands. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ligand-accelerated enantioselective methylene C(sp3)-H bond activation.
Chen, Gang; Gong, Wei; Zhuang, Zhe; Andrä, Michal S; Chen, Yan-Qiao; Hong, Xin; Yang, Yun-Fang; Liu, Tao; Houk, K N; Yu, Jin-Quan
2016-09-02
Effective differentiation of prochiral carbon-hydrogen (C-H) bonds on a single methylene carbon via asymmetric metal insertion remains a challenge. Here, we report the discovery of chiral acetyl-protected aminoethyl quinoline ligands that enable asymmetric palladium insertion into prochiral C-H bonds on a single methylene carbon center. We apply these palladium complexes to catalytic enantioselective functionalization of β-methylene C-H bonds in aliphatic amides. Using bidentate ligands to accelerate C-H activation of otherwise unreactive monodentate substrates is crucial for outcompeting the background reaction driven by substrate-directed cyclopalladation, thereby avoiding erosion of enantioselectivity. The potential of ligand acceleration in C-H activation is also demonstrated by enantioselective β-C-H arylation of simple carboxylic acids without installing directing groups. Copyright © 2016, American Association for the Advancement of Science.
Microelectromechanical inertial sensor
Okandan, Murat [Edgewood, NM; Nielson, Gregory N [Albuquerque, NM
2012-06-26
A microelectromechanical (MEM) inertial sensor is disclosed which can be used to sense a linear acceleration, or a Coriolis acceleration due to an angular rotation rate, or both. The MEM inertial sensor has a proof mass which is supported on a bridge extending across an opening through a substrate, with the proof mass being balanced on the bridge by a pivot, or suspended from the bridge by the pivot. The proof mass can be oscillated in a tangential direction in the plane of the substrate, with any out-of-plane movement of the proof mass in response to a sensed acceleration being optically detected using transmission gratings located about an outer edge of the proof mass to generate a diffracted light pattern which changes with the out-of-plane movement of the proof mass.
USDA-ARS?s Scientific Manuscript database
Soil surface roughness is commonly identified as one of the dominant factors governing runoff and interrill erosion. Yet, because of difficulties in acquiring the data, most studies pay little attention to soil surface roughness. This is particularly true for soil erosion models which commonly don't...
Modeling of two-dimensional overland flow in a vegetative filter
Matthew J. Helmers; Dean E. Eisenhauer; Thomas G. Franti; Michael G. Dosskey
2002-01-01
Water transports sediment and other pollutants through vegetative filters. It is often assumed that the overland flow is uniformly distributed across the vegetative filter, but this research indicates otherwise. The objective of this study was to model the two-dimensional overland water flow through a vegetative filter, accounting for variation in microtopography,...
Evaluating the SWAT model for a low-gradient forested watershed in coastal South Carolina
D.M. Amatya; M.K. Jha.
2011-01-01
Modeling the hydrology of low�]gradient forested watersheds on shallow, poorly drained soils of the coastal plain is a challenging task due to complexities in watershed delineation, microtopography, evapotranspiration, runoff generation processes and pathways including flooding and submergence caused by tropical storms, and complexity of vegetation species....
Zhao, Longshan; Wu, Faqi
2015-01-01
In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (v m) and ponding time of depression (t p), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (l i) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (v i) was derived from the upstream flow accumulation area using v m. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of l i/v i) and t p. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs. PMID:26103635
Zhao, Longshan; Wu, Faqi
2015-01-01
In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (vm) and ponding time of depression (tp), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (li) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (vi) was derived from the upstream flow accumulation area using vm. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of li/vi) and tp. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs.
NASA Astrophysics Data System (ADS)
Heikoop, J. M.; Arendt, C. A.; Newman, B. D.; Charsley-Groffman, L.; Perkins, G.; Wilson, C. J.; Wullschleger, S.
2017-12-01
Under the auspices of the Next Generation Ecosystem Experiment - Arctic, we have been studying hydrogeochemical signals in Alaskan tundra ecosystems underlain by continuous permafrost (Barrow Environmental Observatory (BEO)) and discontinuous permafrost (Seward Peninsula). The Barrow site comprises largely saturated tundra associated with the low gradient Arctic Coastal Plain. Polygonal microtopography, however, can result in slightly raised areas that are unsaturated. In these areas we have previously demonstrated production and accumulation of nitrate, which, based on nitrate isotopic analysis, derives from microbial degradation. Our Seward Peninsula site is located in a much steeper and generally well-drained watershed. In lower-gradient areas at the top and bottom of the watershed, however, the tundra is generally saturated, likely because of the presence of underlying discontinuous permafrost inhibiting infiltration. These settings also contain microtopographic features, though in the form of degraded peat plateaus surrounded by wet graminoid sag ponds. Despite being very different microtopographic features in a very different setting with distinct vegetation, qualitatively similar nitrate accumulation patterns as seen in polygonal terrain were observed. The highest nitrate pore water concentration observed in an unsaturated peat plateau was approximately 5 mg/L, whereas subsurface pore water concentrations in surrounding sag ponds were generally below the limit of detection. Nitrate isotopes indicate this nitrate results from microbial mineralization and nitrification based on comparison to the nitrate isotopic composition of reduced nitrogen sources in the environment and the oxygen isotope composition of site pore water. Nitrate concentrations were most similar to those found in low-center polygon rims and flat-centered polygon centers at the BEO, but were significantly lower than the maximum concentrations seen in the highest and driest polygonal features, the centers of high-centered polygons. Combined, these results suggest that moisture content is a significant control on nitrate production and accumulation in tundra ecosystems and that unsaturated microtopography represents hot spots for microbial decomposition.
Microtopographic control on the ground thermal regime in ice wedge polygons
NASA Astrophysics Data System (ADS)
Abolt, Charles J.; Young, Michael H.; Atchley, Adam L.; Harp, Dylan R.
2018-06-01
The goal of this research is to constrain the influence of ice wedge polygon microtopography on near-surface ground temperatures. Ice wedge polygon microtopography is prone to rapid deformation in a changing climate, and cracking in the ice wedge depends on thermal conditions at the top of the permafrost; therefore, feedbacks between microtopography and ground temperature can shed light on the potential for future ice wedge cracking in the Arctic. We first report on a year of sub-daily ground temperature observations at 5 depths and 9 locations throughout a cluster of low-centered polygons near Prudhoe Bay, Alaska, and demonstrate that the rims become the coldest zone of the polygon during winter, due to thinner snowpack. We then calibrate a polygon-scale numerical model of coupled thermal and hydrologic processes against this dataset, achieving an RMSE of less than 1.1 °C between observed and simulated ground temperature. Finally, we conduct a sensitivity analysis of the model by systematically manipulating the height of the rims and the depth of the troughs and tracking the effects on ice wedge temperature. The results indicate that winter temperatures in the ice wedge are sensitive to both rim height and trough depth, but more sensitive to rim height. Rims act as preferential outlets of subsurface heat; increasing rim size decreases winter temperatures in the ice wedge. Deeper troughs lead to increased snow entrapment, promoting insulation of the ice wedge. The potential for ice wedge cracking is therefore reduced if rims are destroyed or if troughs subside, due to warmer conditions in the ice wedge. These findings can help explain the origins of secondary ice wedges in modern and ancient polygons. The findings also imply that the potential for re-establishing rims in modern thermokarst-affected terrain will be limited by reduced cracking activity in the ice wedges, even if regional air temperatures stabilize.
Formation of β-FeSi 2 thin films by partially ionized vapor deposition
NASA Astrophysics Data System (ADS)
Harada, Noriyuki; Takai, Hiroshi
2003-05-01
The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.
Carbohydrate metabolism of the perfused rat liver
Ross, B. D.; Hems, R.; Freedland, R. A.; Krebs, H. A.
1967-01-01
1. The rates of gluconeogenesis from most substrates tested in the perfused livers of well-fed rats were about half of those obtained in the livers of starved rats. There was no difference for glycerol. 2. A diet low in carbohydrate increased the rates of gluconeogenesis from some substrates but not from all. In general the effects of a low-carbohydrate diet on rat liver are less marked than those on rat kidney cortex. 3. Glycogen was deposited in the livers of starved rats when the perfusion medium contained about 10mm-glucose. The shedding of glucose from the glycogen stores by the well-fed liver was greatly diminished by 10mm-glucose and stopped by 13·3mm-glucose. Livers of well-fed rats that were depleted of their glycogen stores by treatment with phlorrhizin and glucagon synthesized glycogen from glucose. 4. When two gluconeogenic substrates were added to the perfusion medium additive effects occurred only when glycerol was one of the substrates. Lactate and glycerol gave more than additive effects owing to an increased rate of glucose formation from glycerol. 5. Pyruvate also accelerated the conversion of glycerol into glucose, and the accelerating effect of lactate can be attributed to a rapid formation of pyruvate from lactate. 6. Butyrate and oleate at 2mm, which alone are not gluconeogenic, increased the rate of gluconeogenesis from lactate. 7. The acceleration of gluconeogenesis from lactate by glucagon was also found when gluconeogenesis from lactate was stimulated by butyrate and oleate. This finding is not compatible with the view that the primary action of glucagon in promoting gluconeogenesis is an acceleration of lipolysis. 8. The rate of gluconeogenesis from pyruvate at 10mm was only 70% of that at 5mm. This `inhibition' was abolished by oleate or glucagon. PMID:5584023
Swelling and Contraction of Corn Mitochondria 1
Stoner, C. D.; Hanson, J. B.
1966-01-01
A survey has been made of the properties of corn mitochondria in swelling and contraction. The mitochondria swell spontaneously in KCl but not in sucrose. Aged mitochondria will swell rapidly in sucrose if treated with citrate or EDTA. Swelling does not impair oxidative phosphorylation if bovine serum albumin is present. Contraction can be maintained or initiated with ATP + Mg or an oxidizable substrate, contraction being more rapid with the substrate. Magnesium is not required for substrate powered contraction. Contraction powered by ATP is accompanied by the release of phosphate. Oligomycin inhibits both ATP-powered contraction and the release of phosphate. However, it does not affect substrate-powered contraction. Substrate powered contraction is inhibited by electron-transport inhibitors. The uncoupler, carbonyl cyanide m-chlorophenyl hydrazone, accelerates swelling and inhibits both ATP-and substrate-powered contraction. However, the concentrations required are well in excess of those required to produce uncoupling and to accelerate adenosine triphosphatase; the concentrations required inhibit respiration in a phosphorylating medium. Phosphate is a very effective inhibitor of succinate-powered contraction. Neither oligomycin nor Mg affects the phosphate inhibition. Phosphate is less inhibitory with the ATP-powered contraction. The results are discussed in terms of a hypothesis that contraction is associated with a nonphosphorylated high energy intermediate of oxidative phosphorylation. Images PMID:16656248
RhoA-Mediated Functions in C3H10T1/2 Osteoprogenitors Are Substrate Topography Dependent.
Ogino, Yoichiro; Liang, Ruiwei; Mendonça, Daniela B S; Mendonça, Gustavo; Nagasawa, Masako; Koyano, Kiyoshi; Cooper, Lyndon F
2016-03-01
Surface topography broadly influences cellular responses. Adherent cell activities are regulated, in part, by RhoA, a member of the Rho-family of GTPases. In this study, we evaluated the influence of surface topography on RhoA activity and associated cellular functions. The murine mesenchymal stem cell line C3H10T1/2 cells (osteoprogenitor cells) were cultured on titanium substrates with smooth topography (S), microtopography (M), and nanotopography (N) to evaluate the effect of surface topography on RhoA-mediated functions (cell spreading, adhesion, migration, and osteogenic differentiation). The influence of RhoA activity in the context of surface topography was also elucidated using RhoA pharmacologic inhibitor. Following adhesion, M and N adherent cells developed multiple projections, while S adherent cells had flattened and widespread morphology. RhoA inhibitor induced remarkable longer and thinner cytoplasmic projections on all surfaces. Cell adhesion and osteogenic differentiation was topography dependent with S < M and N surfaces. RhoA inhibition increased adhesion on S and M surfaces, but not N surfaces. Cell migration in a wound healing assay was greater on S versus M versus N surfaces and RhoA inhibitor increased S adherent cell migration, but not N adherent cell migration. RhoA inhibitor enhanced osteogenic differentiation in S adherent cells, but not M or N adherent cells. RhoA activity was surface topography roughness dependent (S < M, N). RhoA activity and -mediated functions are influenced by surface topography. Smooth surface adherent cells appear highly sensitive to RhoA function, while nano-scale topography adherent cell may utilize alternative cellular signaling pathway(s) to influence adherent cellular functions regardless of RhoA activity. © 2015 Wiley Periodicals, Inc.
Influence of microtopography on soil chemistry and understory riparian vegetation
Irene M. Unger; Rose-Marie Muzika
2008-01-01
The success of riparian forest restoration efforts depends in part on an understanding of the relationship between soil characteristics and vegetation patterns and how these change with site conditions. To examine these relationships for floodplains in northern Missouri, we chose three unchannelized streams as study areas. A sampling grid was established at two plots...
Streamflow response from an ombrotrophic mire
E.S. Verry; K.N. Brooks; P.K. Barten
1988-01-01
Streamflow response to a rainstorm exceeding a 100-year return interval is documented in relation to the peat profile and microtopography. The water tab1e:discharge relation is corrected for specific yield and found to closely parallel the stage:discharge relationship for a level reservoir for flows up to a 25-year return interval. A faster water table:discharge...
Representing northern peatland microtopography and hydrology within the Community Land Model
X. Shi; P.E. Thornton; D.M. Ricciuto; P J. Hanson; J. Mao; Stephen Sebestyen; N.A. Griffiths; G. Bisht
2015-01-01
Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth...
Controlled Acceleration and Inhibition of Bergman Cyclization by Metal Chlorides
NASA Astrophysics Data System (ADS)
Warner, Benjamin P.; Millar, Susan P.; Broene, Richard D.; Buchwald, Stephen L.
1995-08-01
The Bergman cyclization has been the subject of renewed interest with the discovery of naturally occurring enediyne-based antitumor agents that cleave DNA by means of an aromatic diradical. These natural substrates have a means to trigger this cycloaromatization process. Control of this reaction by substrate modification would allow aromatic diradicals to be generated selectively. In the studies presented here it is disclosed that the Bergman cyclization of 1,2-bis(diphenyl phosphinoethynyl)benzene was accelerated by a factor of >30,000 by the addition of palladium(II) chloride or platinum(II) chloride and was inhibited by the addition of mercury(II) chloride.
Tritium target manufacturing for use in accelerators
NASA Astrophysics Data System (ADS)
Bach, P.; Monnin, C.; Van Rompay, M.; Ballanger, A.
2001-07-01
As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium target on copper substrate, and going to more sophisticated devices. A wide range of possible uses is covered, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets for higher lifetimes, or large size rotating targets for accelerators used in boron neutron therapy. Activity of targets lies in the 1 to 1000 Curie, diameter of targets being up to 30 cm. Special targets are also considered, including surface layer targets for lowering tritium desorption under irradiation, or those made from different kinds of occluders such as titanium, zirconium, erbium, scandium, with different substrates. It is then possible to optimize either neutron output, or lifetime and stability, or thermal behavior.
Impacts of tracked vehicles on sediment from a desert soil
Erek H. Fuchs; Karl M. Wood; Tim L. Jones; Brent Racher
2003-01-01
Off-road military vehicle traffic is a major consideration in the management of military lands. The objective of this study was to determine the impacts of military tracked M1A1 heavy combat tank vehicles on sediment loss from runoff, surface plant cover, and surface microtopography in a desert military training environment. A randomized block design was used which had...
Heidi M. Anderson; Margeret R. Gale; Martin F. Jurgensen; Carl C. Trettin
2007-01-01
Forested wetlands are important ecosystems valued for their indigenous plant communities, spatial heterogeneity, wildlife habitat, water quality, and timber resources. When harvested for timber, plant composition in these wetlands may change due to alteration in microsite habitats. Harvest severity also may affect plant composition. In this study, a mineral conifer...
Response of two semiarid grasslands to a second fire application
Carleton S. White; Rosemary L. Pendleton; Burton K. Pendleton
2006-01-01
Prescribed fire was used in two semiarid grasslands to reduce shrub cover, promote grass production, and reduce erosional loss that represents a potential nonÂpoint-source of sediment to degrade water quality. This study measured transported soil sediment, dynamics in soil surface microtopography, cover of the woody shrub, grass, and bare ground cover classes, and soil...
NASA Technical Reports Server (NTRS)
Green, James; Jelinsky, Sharon; Bowyer, Stuart; Malina, Roger F.
1988-01-01
The paper presents comparative measurements of surface roughness on prepared samples. These measurements have been made with both Talystep profilometers and WYKO interferometers. In addition, the scattering distribution from these samples was measured at extreme ultraviolet wavelengths. The utility of the WYKO interferometer and Talystep device for specifying extreme ultraviolet mirror surface quality is discussed.
Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line.
Le, Bach Q; Vasilevich, Aliaksei; Vermeulen, Steven; Hulshof, Frits; Stamatialis, Dimitrios F; van Blitterswijk, Clemens A; de Boer, Jan
2017-05-01
Chemical and mechanical cues are well-established influencers of in vitro chondrogenic differentiation of ATDC5 cells. Here, we investigate the role of topographical cues in this differentiation process, a study not been explored before. Previously, using a library of surface micro-topographies we found some distinct patterns that induced alkaline phosphatase (ALP) production in human mesenchymal stromal cells. ALP is also a marker for hypertrophy, the end stage of chondrogenic differentiation preceding bone formation. Thus, we hypothesized that these patterns could influence end-stage chondrogenic differentiation of ATDC5 cells. In this study, we randomly selected seven topographies among the ALP influencing hits. Cells grown on these surfaces displayed varying nuclear shape and actin filament structure. When stimulated with insulin-transferrin-selenium (ITS) medium, nodule formation occurred and in some cases showed alignment to the topographical patterns. Gene expression analysis of cells growing on topographical surfaces in the presence of ITS medium revealed a downregulation of early markers and upregulation of late markers of chondrogenic differentiation compared to cells grown on a flat surface. In conclusion, we demonstrated that surface topography in addition to other cues can promote hypertrophic differentiation suitable for bone tissue engineering.
Ecosystem structure and function in the SPRUCE chambers at fine resolution
NASA Astrophysics Data System (ADS)
Glenn, N. F.; Graham, J.; Spaete, L.; Hanson, P. J.
2017-12-01
The Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE; operated by DOE's Oak Ridge National Laboratory) aims to assess biological and ecological responses in a peat bog to a range of increased temperatures and the presence of elevated atmospheric CO2 concentrations. We are using terrestrial laser scanning (TLS) to monitor vegetation productivity and hummock-hollow structure at cm-scale in the SPRUCE plots to complement in-situ measurements of gross and net primary production. The hummock-hollow peatland microtopography is associated with fluctuating water levels and sphagnum mosses, and ultimately controls C and methane cycling. We estimate tree growth by calculating increases in tree height and canopy voxel volume between years with the TLS data. Microtopography is also characterized over time with TLS but by using gridded cells to classify regions into hummocks or hollows. Spectroscopy to quantify water content in the sphagnum is used to further classify these microtopographic regions. As multiple years of data collection occur, we will couple our fine-scale remote sensing measurements with in-situ measurements of CO2 and CH4 flux measures to capture species-specific productivity responses to warming and increased CO2.
Fang, Fang; Ni, Bing-Jie; Yu, Han-Qing
2009-06-01
In this study, weighted non-linear least-squares analysis and accelerating genetic algorithm are integrated to estimate the kinetic parameters of substrate consumption and storage product formation of activated sludge. A storage product formation equation is developed and used to construct the objective function for the determination of its production kinetics. The weighted least-squares analysis is employed to calculate the differences in the storage product concentration between the model predictions and the experimental data as the sum of squared weighted errors. The kinetic parameters for the substrate consumption and the storage product formation are estimated to be the maximum heterotrophic growth rate of 0.121/h, the yield coefficient of 0.44 mg CODX/mg CODS (COD, chemical oxygen demand) and the substrate half saturation constant of 16.9 mg/L, respectively, by minimizing the objective function using a real-coding-based accelerating genetic algorithm. Also, the fraction of substrate electrons diverted to the storage product formation is estimated to be 0.43 mg CODSTO/mg CODS. The validity of our approach is confirmed by the results of independent tests and the kinetic parameter values reported in literature, suggesting that this approach could be useful to evaluate the product formation kinetics of mixed cultures like activated sludge. More importantly, as this integrated approach could estimate the kinetic parameters rapidly and accurately, it could be applied to other biological processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens
We present experimental results on a tape-drive based plasma mirror which could be used for a compact coupling of a laser beam into a staged laser driven electron accelerator. This novel kind of plasma mirror is suitable for high repetition rates and for high number of laser shots. In order to design a compact, staged laser plasma based accelerator or collider [1], the coupling of the laser beam into the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found whichmore » realizes this in-coupling within a few centimeters (cf. Fig 1). The fluence of the laser pulse several centimeters away from the acceleration stage (focus) exceeds the damage threshold of any available mirror coating. Therefore, in reference [2] a plasma mirror was suggested for this purpose. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage. Plasma mirrors composed of antireflection coated glass substrates are usually used to improve the temporal laser contrast of laser pulses by several orders of magnitudes [3,4]. This is particularly important for laser interaction with solid matter, such as ion acceleration [5,6] and high harmonic generation on surfaces [7]. Therefore, the laser pulse is weekly focused onto a substrate. The main pulse generates a plasma and is reflected at the critical surface, whereas the low intensity pre-pulse (mainly the Amplified Spontaneous Emission pedestal) will be transmitted through the substrate before the mirror has been triggered. Several publications [3,4] demonstrate a conservation of the spatial beam quality and a reflectivity of about 70 %. The drawback of this technique is the limited repetition rate since for every shot a fresh surface has to be provided. In the past years several novel approaches for high repetition rate plasma mirrors have been developed [2, 8]. Nevertheless, for the staged accelerator scheme a second important requirement has to be considered. Since the electron beam has to propagate through the mirror, the thickness of the substrate has to be as thin as possible to reduce the distortion of the electron beam. A tape of only several micrometer thickness can overcome these disadvantages. It can be used with a sufficient repetition rate while it allows the electron beam to propagate through with a minimum of scattering.« less
NASA Astrophysics Data System (ADS)
Al Akhrass, S.; Reiter, G.; Hou, S. Y.; Yang, M. H.; Chang, Y. L.; Chang, F. C.; Wang, C. F.; Yang, A. C.-M.
2008-05-01
A nonmonotonic, two-stage dewetting behavior was observed for spin coated thin viscoelastic polymer films on soft elastic substrates. At times shorter than the relaxation time of the polymer (t<τrep), dewetting generated deep trenches in the soft rubbery substrate which, in turn, almost stopped dewetting. At later stages (t≫τrep), dewetting accelerated, accompanied by an unstable rim. However, holes nucleated at t<τrep showed only this second-stage behavior. Our observations are attributed to large elastic deformations in the substrate caused by transient residual stresses within the film.
Compact ion source neutron generator
Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe
2015-10-13
A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.
NASA Astrophysics Data System (ADS)
Yi, Zhiran; Yang, Bin; Li, Guimiao; Liu, Jingquan; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng
2017-07-01
This letter presents a high performance bimorph piezoelectric MEMS harvester with bulk PZT thick films on both sides of a flexible thin beryllium-bronze substrate via bonding and thinning technologies. The upper and lower PZT layers are thinned down to about 53 μm and 76 μm, respectively, and a commercial beryllium bronze with the thickness of about 50 μm is used as the substrate. The effective volume of this device is 30.6 mm3. The harvester with a tungsten proof mass generated the close-circuit peak-to-peak voltage of 53.1 V, the output power of 0.979 mW, and the power density of 31.99 mW/cm3 with the matching load resistance of 360 kΩ at the applied acceleration amplitude of 3.5 g and the applied frequency of 77.2 Hz. Meanwhile, in order to evaluate the stability, the device was measured continuously under applied acceleration amplitudes of 1.0 g and 3.5 g for one hour and demonstrated a good stability. Then, the harvester was utilized to light up LEDs and about twenty-one serial LEDs were lighted up at resonance under an applied acceleration amplitude of 3.0 g.
Gabardo, Sabrina; Pereira, Gabriela Feix; Rech, Rosane; Ayub, Marco Antônio Záchia
2015-09-01
We investigated the kinetics of whey bioconversion into ethanol by Kluyveromyces marxianus in continuous bioreactors using the "accelerostat technique" (A-stat). Cultivations using free and Ca-alginate immobilized cells were evaluated using two different acceleration rates (a). The kinetic profiles of these systems were modeled using four different unstructured models, differing in the expressions for the specific growth (μ) and substrate consumption rates (r s), taking into account substrate limitation and product inhibition. Experimental data showed that the dilution rate (D) directly affected cell physiology and metabolism. The specific growth rate followed the dilution rate (μ≈D) for the lowest acceleration rate (a = 0.0015 h(-2)), condition in which the highest ethanol yield (0.52 g g(-1)) was obtained. The highest acceleration rate (a = 0.00667 h(-2)) led to a lower ethanol yield (0.40 g g(-1)) in the system where free cells were used, whereas with immobilized cells ethanol yields increased by 23 % (0.49 g g(-1)). Among the evaluated models, Monod and Levenspiel combined with Ghose and Tyagi models were found to be more appropriate for describing the kinetics of whey bioconversion into ethanol. These results may be useful in scaling up the process for ethanol production from whey.
Substrate utilization/insulin resistance in sepsis/trauma.
Wolfe, R R
1997-12-01
Endogenous substrate metabolism is markedly altered in critically ill patients. Glucose production is elevated not only in the post-absorptive state, but the normal suppressive effect of exogenous glucose and glucose production is greatly diminished. In the post-absorptive state, glucose clearance is generally elevated, potentially causing hypoglycaemia in extreme cases. Somewhat paradoxically, the ability of insulin to stimulate glucose uptake is diminished, so that hyperglycaemia is often evident during nutritional intake. Lipolysis, the breakdown of peripheral fat, is accelerated, meaning that free fatty acids are released into plasma at a rate far exceeding their oxidation. Some of the excess fatty acids are re-esterified in the liver, leading to accelerated hepatic triglyceride formation. A large increase in hepatic triglyceride stores can ensue if the rate of excretion of triglycerides in very low density lipoproteins is not accelerated commensurately with the increased triglyceride production. Indirect calorimetry measurements support the notion that the large increase in availability of fatty acids may lead to a greater reliance on fatty acids as energy substrates. Nonetheless, carbohydrates should be the predominant source of non-protein calories, because the accompanying insulin response effectively enhances protein synthesis. There is already ample fat available via endogenous lipolysis, and more fat given exogenously provides little further benefit.
Chelsea M. Curtis; W. Michael Aust; John R. Seiler; Brian D. Strahm
2015-01-01
Forest mitigation sites may have poor survival and growth of planted trees due to poor drainage, compacted soils, and lack of microtopography. The effects of five replications of five forestry mechanical site preparation techniques (Flat, Rip, Bed, Pit, and Mound), four regeneration sources (Direct seed, Bare root, Tubelings, and Gallon), and three planting aids (None...
Guofang Miao; Asko Noormets; Jean-Christophe Domec; Montserrat Fuentes; Carl C. Trettin; Ge Sun; Steve G. McNulty; John S. King
2017-01-01
Wetlands store a disproportionately large fraction of organic carbon relative to their areal coverage, and thus play an important role in global climate mitigation. As destabilization of these stores through land use or en- vironmental change represents a signi fi cant climate feedback, it is important to understand the functional regulation of respiratory processes...
Substrate-Influenced Thermo-Mechanical Fatigue of Copper Metallizations: Limits of Stoney’s Equation
Bigl, Stephan; Wurster, Stefan; Cordill, Megan J.
2017-01-01
Rapid progress in the reduction of substrate thickness for silicon-based microelectronics leads to a significant reduction of the device bending stiffness and the need to address its implication for the thermo-mechanical fatigue behavior of metallization layers. Results on 5 µm thick Cu films reveal a strong substrate thickness-dependent microstructural evolution. Substrates with hs = 323 and 220 µm showed that the Cu microstructure exhibits accelerated grain growth and surface roughening. Moreover, curvature-strain data indicates that Stoney’s simplified curvature-stress relation is not valid for thin substrates with regard to the expected strains, but can be addressed using more sophisticated plate bending theories. PMID:29120407
NASA Astrophysics Data System (ADS)
Rowland, J. C.; Shelef, E.; Sutfin, N. A.; Piliouras, A.; Andresen, C. G.; Wilson, C. J.
2017-12-01
Movement and storage rates of soil and carbon along permafrost-dominated hillslopes may vary dramatically from long-term steady creeping, at centimeters per year, to rapid gullying, land sliding, and active layer detachments of meter to decimeter sized portions of hillslopes. The rate and drivers of hillslope soil processes may have strong feedbacks on microtopography and hydrology that in turn strongly influence vegetation dynamics and biogeochemistry within watersheds. We observed evidence of both steady soil creep and more catastrophic soil erosion processes occurring across three small watersheds in the southern Seward Peninsula, AK. In these watersheds, we inferred active soil creep processes from the occurrence of solifluction lobes with partially buried shrubs and tilted survey benchmarks on slopes lacking lobes. More dramatic and rapid erosion of soils was evidenced by active layer detachments, extensional cracks in the tundra vegetation, gullying, and both small- and large-scale soil failure scarps. The margins and heads of valley hollows exhibited failure scars up to 4m in height. The spatial distribution of actively eroding areas suggests that some portions of hilllslopes may be more susceptible to rapid erosion. Coring of hillslope soils suggests a possible association between more actively eroding areas and the presence of an ice-rich layer (> 50%) at depths of approximately 90 cm down to the inferred top of bedrock at depths at 170 to 200 cm. We observed that the surface of these hillslope regions appears to have greater microtopographic roughness with a more chaotic and "lumpy" surface than portions of the hillslope were no massive ice layers were encountered. We hypothesize that the extensional cracking and chaotic surface roughness may arise from small-scale soil failures triggered when the seasonal thaw depth intersects the ice-rich layer. It may be possible to identify hillslope regions underlain by ice-rich layers with greater susceptibility for localized erosion and deformation based on a quantitative characterization of the hillslope microtopography. Using drone-based LiDAR topographic data to be acquired in late summer of 2017, we will quantitatively explore the relationship between microtopography and hillslope ice-content.
NASA Astrophysics Data System (ADS)
Lim, J. W.; Mimura, K.; Isshiki, M.
2005-02-01
Cu films were deposited on Si(100) substrates by applying a negative substrate bias voltage using the non-mass-separated ion beam deposition method. Glow-discharge mass spectrometry was used to determine the impurity concentrations of the deposited Cu films and the 6N Cu target. It was found that the Cu film deposited at the substrate bias voltage of -50 V showed lower impurity contents than the Cu film deposited without the substrate bias voltage, although both the Cu films were contaminated during the deposition. The purification effect might result from the following reasons: (i) the Penning ionization and an ionization mechanism proposed in the present study, (ii) a difference in the kinetic energy of accelerated Cu+ ions toward the substrate with/without the negative substrate bias voltage.
Cleaning techniques for applied-B ion diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuneo, M.E.; Menge, P.R.; Hanson, D.L.
Measurements and theoretical considerations indicate that the lithium-fluoride (LiF) lithium ion source operates by electron-assisted field-desorption, and provides a pure lithium beam for 10--20 ns. Evidence on both the SABRE (1 TW) and PBFA-II (20 TW) accelerators indicates that the lithium beam is replaced by a beam of protons, and carbon resulting from electron thermal desorption of hydrocarbon surface and bulk contamination with subsequent avalanche ionization. Appearance of contaminant ions in the beam is accompanied by rapid impedance collapse, possibly resulting from loss of magnetic insulation in the rapidly expanding and ionizing, neutral layer. Electrode surface and source substrate cleaningmore » techniques are being developed on the SABRE accelerator to reduce beam contamination, plasma formation, and impedance collapse. We have increased lithium current density a factor of 3 and lithium energy a factor of 5 through a combination of in-situ surface and substrate coatings, impermeable substrate coatings, and field profile modifications.« less
Deposition on disordered substrates with precursor layer diffusion
NASA Astrophysics Data System (ADS)
Filipe, J. A. N.; Rodgers, G. J.; Tavassoli, Z.
1998-09-01
Recently we introduced a one-dimensional accelerated random sequential adsorption process as a model for chemisorption with precursor layer diffusion. In this paper we consider this deposition process on disordered or impure substrates. The problem is solved exactly on both the lattice and continuum and for various impurity distributions. The results are compared with those from the standard random sequential adsorption model.
Goggins, Sean; Marsh, Barrie J; Lubben, Anneke T; Frost, Christopher G
2015-08-01
Signal transduction and signal amplification are both important mechanisms used within biological signalling pathways. Inspired by this process, we have developed a signal amplification methodology that utilises the selectivity and high activity of enzymes in combination with the robustness and generality of an organometallic catalyst, achieving a hybrid biological and synthetic catalyst cascade. A proligand enzyme substrate was designed to selectively self-immolate in the presence of the enzyme to release a ligand that can bind to a metal pre-catalyst and accelerate the rate of a transfer hydrogenation reaction. Enzyme-triggered catalytic signal amplification was then applied to a range of catalyst substrates demonstrating that signal amplification and signal transduction can both be achieved through this methodology.
Iversen, Colleen M.; Childs, Joanne; Norby, Richard J.; ...
2017-03-30
Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. Here, we aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat microtopography, and changes in environmental conditions across the growing season and throughout the peat profile. We quantified fine-root peak standing crop and growth using non-destructive minirhizotron technology over a two-year period, focusing on the dominant woody species in the bog: Picea mariana, Larix laricina, Rhododendron groenlandicum, and Chamaedaphne calyculata. The fine roots ofmore » trees and shrubs were concentrated in raised hummock microtopography, with more tree roots associated with greater tree densities and a unimodal peak in shrub roots at intermediate tree densities. Fine-root growth tended to be seasonally dynamic, but shallowly distributed, in a thin layer of nutrient-poor, aerobic peat above the growing season water table level. Finally, the dynamics and distribution of fine roots in this forested ombrotrophic bog varied across space and time in response to biological, edaphic, and climatic conditions, and we expect these relationships to be sensitive to projected environmental changes in northern peatlands.« less
Spatial models reveal the microclimatic buffering capacity of old-growth forests
Frey, Sarah J. K.; Hadley, Adam S.; Johnson, Sherri L.; Schulze, Mark; Jones, Julia A.; Betts, Matthew G.
2016-01-01
Climate change is predicted to cause widespread declines in biodiversity, but these predictions are derived from coarse-resolution climate models applied at global scales. Such models lack the capacity to incorporate microclimate variability, which is critical to biodiversity microrefugia. In forested montane regions, microclimate is thought to be influenced by combined effects of elevation, microtopography, and vegetation, but their relative effects at fine spatial scales are poorly known. We used boosted regression trees to model the spatial distribution of fine-scale, under-canopy air temperatures in mountainous terrain. Spatial models predicted observed independent test data well (r = 0.87). As expected, elevation strongly predicted temperatures, but vegetation and microtopography also exerted critical effects. Old-growth vegetation characteristics, measured using LiDAR (light detection and ranging), appeared to have an insulating effect; maximum spring monthly temperatures decreased by 2.5°C across the observed gradient in old-growth structure. These cooling effects across a gradient in forest structure are of similar magnitude to 50-year forecasts of the Intergovernmental Panel on Climate Change and therefore have the potential to mitigate climate warming at local scales. Management strategies to conserve old-growth characteristics and to curb current rates of primary forest loss could maintain microrefugia, enhancing biodiversity persistence in mountainous systems under climate warming. PMID:27152339
Green, A C; Hughes, M C B; McBride, P; Fourtanier, A
2011-02-01
Precise factors associated with premature skin aging, or photoaging, in the general population are unknown. To examine the risk factors for photoaging in a Queensland community. A cross-sectional study of 1,400 randomly selected residents aged 20-54 years, using casts of the back of the hand (surface microtopography) and dermatological assessment of photoaging. 83% of the participants had premature skin aging, worsening after the age of 30. Severe neck wrinkling was 3 times more likely in men and some 4 times more likely in fair-skinned people (odds ratio, OR=3.86, 95% confidence interval, CI=2.40-6.23). Red hair and mainly outdoor work or leisure raised the odds of microtopographic photoaging. Current smoking was strongly associated with facial comedones and telangiectasia, and among current smokers, the microtopography grade was significantly associated with moderate and heavy smoking measured by pack-years of exposure, with OR=3.18 (95% CI=1.38-7.35) in the heaviest (>20 pack-years) smoking category compared with 1-7 pack-years. Premature skin aging is common in the subtropics, more severe in men and the fair-skinned. It is associated with high sun exposure during leisure or work, and moderate to heavy smoking, and therefore is preventable. Copyright © 2010 S. Karger AG, Basel.
Ramaglia, L; Capece, G; Di Spigna, G; Bruno, M P; Buonocore, N; Postiglione, L
2013-01-01
The aim of the present study was to evaluate in vitro the biological behavior of human gingival fibroblasts cultured on two different titanium surfaces. Titanium test disks were prepared with a machined, relatively smooth (S) surface or a rough surface (O) obtained by a double acid etching procedure. Primary cultures of human gingival fibroblasts were plated on the experimental titanium disks and cultured up to 14 days. Titanium disk surfaces were analysed by scanning electron microscopy (SEM). Cell proliferation and a quantitative analysis by ELISA in situ of ECM components as CoI, FN and TN were performed. Results have shown different effects of titanium surface microtopography on cell expression and differentiation. At 96 hours of culture on experimental surfaces human gingival fibroblasts displayed a favourable cell attachment and proliferation on both surfaces although showing some differences. Both the relatively smooth and the etched surfaces interacted actively with in vitro cultures of human gingival fibroblasts, promoting cell proliferation and differentiation. Results suggested that the microtopography of a double acid-etched rough surface may induce a greater Co I and FN production, thus conditioning in vivo the biological behaviour of human gingival fibroblasts during the process of peri-implant soft tissue healing.
Advanced in-production hotspot prediction and monitoring with micro-topography
NASA Astrophysics Data System (ADS)
Fanton, P.; Hasan, T.; Lakcher, A.; Le-Gratiet, B.; Prentice, C.; Simiz, J.-G.; La Greca, R.; Depre, L.; Hunsche, S.
2017-03-01
At 28nm technology node and below, hot spot prediction and process window control across production wafers have become increasingly critical to prevent hotspots from becoming yield-limiting defects. We previously established proof of concept for a systematic approach to identify the most critical pattern locations, i.e. hotspots, in a reticle layout by computational lithography and combining process window characteristics of these patterns with across-wafer process variation data to predict where hotspots may become yield impacting defects [1,2]. The current paper establishes the impact of micro-topography on a 28nm metal layer, and its correlation with hotspot best focus variations across a production chip layout. Detailed topography measurements are obtained from an offline tool, and pattern-dependent best focus (BF) shifts are determined from litho simulations that include mask-3D effects. We also establish hotspot metrology and defect verification by SEM image contour extraction and contour analysis. This enables detection of catastrophic defects as well as quantitative characterization of pattern variability, i.e. local and global CD uniformity, across a wafer to establish hotspot defect and variability maps. Finally, we combine defect prediction and verification capabilities for process monitoring by on-product, guided hotspot metrology, i.e. with sampling locations being determined from the defect prediction model and achieved prediction accuracy (capture rate) around 75%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iversen, Colleen M.; Childs, Joanne; Norby, Richard J.
Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. Here, we aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat microtopography, and changes in environmental conditions across the growing season and throughout the peat profile. We quantified fine-root peak standing crop and growth using non-destructive minirhizotron technology over a two-year period, focusing on the dominant woody species in the bog: Picea mariana, Larix laricina, Rhododendron groenlandicum, and Chamaedaphne calyculata. The fine roots ofmore » trees and shrubs were concentrated in raised hummock microtopography, with more tree roots associated with greater tree densities and a unimodal peak in shrub roots at intermediate tree densities. Fine-root growth tended to be seasonally dynamic, but shallowly distributed, in a thin layer of nutrient-poor, aerobic peat above the growing season water table level. Finally, the dynamics and distribution of fine roots in this forested ombrotrophic bog varied across space and time in response to biological, edaphic, and climatic conditions, and we expect these relationships to be sensitive to projected environmental changes in northern peatlands.« less
Spatial models reveal the microclimatic buffering capacity of old-growth forests.
Frey, Sarah J K; Hadley, Adam S; Johnson, Sherri L; Schulze, Mark; Jones, Julia A; Betts, Matthew G
2016-04-01
Climate change is predicted to cause widespread declines in biodiversity, but these predictions are derived from coarse-resolution climate models applied at global scales. Such models lack the capacity to incorporate microclimate variability, which is critical to biodiversity microrefugia. In forested montane regions, microclimate is thought to be influenced by combined effects of elevation, microtopography, and vegetation, but their relative effects at fine spatial scales are poorly known. We used boosted regression trees to model the spatial distribution of fine-scale, under-canopy air temperatures in mountainous terrain. Spatial models predicted observed independent test data well (r = 0.87). As expected, elevation strongly predicted temperatures, but vegetation and microtopography also exerted critical effects. Old-growth vegetation characteristics, measured using LiDAR (light detection and ranging), appeared to have an insulating effect; maximum spring monthly temperatures decreased by 2.5°C across the observed gradient in old-growth structure. These cooling effects across a gradient in forest structure are of similar magnitude to 50-year forecasts of the Intergovernmental Panel on Climate Change and therefore have the potential to mitigate climate warming at local scales. Management strategies to conserve old-growth characteristics and to curb current rates of primary forest loss could maintain microrefugia, enhancing biodiversity persistence in mountainous systems under climate warming.
NASA Astrophysics Data System (ADS)
Brown, Delilah A.; Morgan, Sean; Peldzinski, Vera; Brüning, Ralf
2017-11-01
Copper films for printed circuit board applications have to be fine-grained to achieve even filling of vias. Electroplated Cu films on roll annealed Cu substrates may have unacceptably large epitaxial crystals. Here galvanic films were plated on oriented single-crystal Cu substrates from an additive-free electrolyte, as well as DC plating and pulse reverse (PR) plating with additives. The distribution of crystallite orientations was mapped with XRD and compared with the microstructure determined by SEM. For the additive-free bath on [1 1 1] and [1 0 0] oriented surfaces a gradual transition from epitaxial to polycrystalline is seen, while films on [1 1 0] substrates are persistently epitaxial. Without bath additives, twinning is the main mechanism for the transition to polycrystalline texture. For DC plating, additives (carriers, accelerators and levelers) promote fine-grained films with isotropic grain orientations, with films on [1 1 0] substrates being partially isotropic. Plating with carriers and accelerators (no leveler) yields films with many distinct crystallite orientations. These orientations result from up to five steps of recursive twinning. PR plating produces isotropic films with no or very few twins (〈1 1 1〉 and 〈1 0 0〉 substrates, respectively), while on 〈1 1 0〉 oriented surfaces the deposits are about 20% epitaxial.
Active bialkali photocathodes on free-standing graphene substrates
Yamaguchi, Hisato; Liu, Fangze; DeFazio, Jeffrey; ...
2017-06-01
Here, the hexagonal structure of graphene gives rise to the property of gas impermeability, motivating its investigation for a new application: protection of semiconductor photocathodes in electron accelerators. These materials are extremely susceptible to degradation in efficiency through multiple mechanisms related to contamination from the local imperfect vacuum environment of the host photoinjector. Few-layer graphene has been predicted to permit a modified photoemission response of protected photocathode surfaces, and recent experiments of single-layer graphene on copper have begun to confirm these predictions for single crystal metallic photocathodes. Unlike metallic photoemitters, the integration of an ultra-thin graphene barrier film with conventionalmore » semiconductor photocathode growth processes is not straightforward. A first step toward addressing this challenge is the growth and characterization of technologically relevant, high quantum efficiency bialkali photocathodes on ultra-thin free-standing graphene substrates. Photocathode growth on free-standing graphene provides the opportunity to integrate these two materials and study their interaction. Specifically, spectral response features and photoemission stability of cathodes grown on graphene substrates are compared to those deposited on established substrates. In addition, we observed an increase of work function for the graphene encapsulated bialkali photocathode surfaces, which is predicted by our calculations. The results provide a unique demonstration of bialkali photocathodes on free-standing substrates, and indicate promise towards our goal of fabricating high-performance graphene encapsulated photocathodes with enhanced lifetime for accelerator applications.« less
Active bialkali photocathodes on free-standing graphene substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, Hisato; Liu, Fangze; DeFazio, Jeffrey
Here, the hexagonal structure of graphene gives rise to the property of gas impermeability, motivating its investigation for a new application: protection of semiconductor photocathodes in electron accelerators. These materials are extremely susceptible to degradation in efficiency through multiple mechanisms related to contamination from the local imperfect vacuum environment of the host photoinjector. Few-layer graphene has been predicted to permit a modified photoemission response of protected photocathode surfaces, and recent experiments of single-layer graphene on copper have begun to confirm these predictions for single crystal metallic photocathodes. Unlike metallic photoemitters, the integration of an ultra-thin graphene barrier film with conventionalmore » semiconductor photocathode growth processes is not straightforward. A first step toward addressing this challenge is the growth and characterization of technologically relevant, high quantum efficiency bialkali photocathodes on ultra-thin free-standing graphene substrates. Photocathode growth on free-standing graphene provides the opportunity to integrate these two materials and study their interaction. Specifically, spectral response features and photoemission stability of cathodes grown on graphene substrates are compared to those deposited on established substrates. In addition, we observed an increase of work function for the graphene encapsulated bialkali photocathode surfaces, which is predicted by our calculations. The results provide a unique demonstration of bialkali photocathodes on free-standing substrates, and indicate promise towards our goal of fabricating high-performance graphene encapsulated photocathodes with enhanced lifetime for accelerator applications.« less
Disturbance metrics predict a wetland Vegetation Index of Biotic Integrity
Stapanian, Martin A.; Mack, John; Adams, Jean V.; Gara, Brian; Micacchion, Mick
2013-01-01
Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas in the USA. Knowledge of the best predictors of VIBIs would enable management agencies to make better decisions regarding mitigation site selection and performance monitoring criteria. We use a novel statistical technique to develop predictive models for an established index of wetland vegetation integrity (Ohio VIBI), using as independent variables 20 indices and metrics of habitat quality, wetland disturbance, and buffer area land use from 149 wetlands in Ohio, USA. For emergent and forest wetlands, predictive models explained 61% and 54% of the variability, respectively, in Ohio VIBI scores. In both cases the most important predictor of Ohio VIBI score was a metric that assessed habitat alteration and development in the wetland. Of secondary importance as a predictor was a metric that assessed microtopography, interspersion, and quality of vegetation communities in the wetland. Metrics and indices assessing disturbance and land use of the buffer area were generally poor predictors of Ohio VIBI scores. Our results suggest that vegetation integrity of emergent and forest wetlands could be most directly enhanced by minimizing substrate and habitat disturbance within the wetland. Such efforts could include reducing or eliminating any practices that disturb the soil profile, such as nutrient enrichment from adjacent farm land, mowing, grazing, or cutting or removing woody plants.
Plasma/Neutral-Beam Etching Apparatus
NASA Technical Reports Server (NTRS)
Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert
1989-01-01
Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.
Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L
2003-05-13
Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate constants in the initial intermediate formed during acylation (EAP, where EA is the acyl enzyme and P is the alcohol leaving group cleaved from the ester substrate) may be constrained such that the leaving group P must dissociate before hydrolytic deacylation can occur.
NASA Astrophysics Data System (ADS)
Werther, Tobias; Wahlefeld, Stefan; Salewski, Johannes; Kuhlmann, Uwe; Zebger, Ingo; Hildebrandt, Peter; Dobbek, Holger
2017-07-01
How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme-substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the Michaelis complex of the flavoenzyme xenobiotic reductase A with the reactive reduced cofactor bound to its substrates by X-ray crystallography and resonance Raman spectroscopy and compare it to the non-reactive oxidized Michaelis complex mimics. We find that substrates bind in different orientations to the oxidized and reduced flavin, in both cases flattening its structure. But only authentic Michaelis complexes display an unexpected rich vibrational band pattern uncovering a strong donor-acceptor complex between reduced flavin and substrate. This interaction likely activates the catalytic ground state of the reduced flavin, accelerating the reaction within a compressed cofactor-substrate complex.
Werther, Tobias; Wahlefeld, Stefan; Salewski, Johannes; Kuhlmann, Uwe; Zebger, Ingo; Hildebrandt, Peter; Dobbek, Holger
2017-01-01
How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme–substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the Michaelis complex of the flavoenzyme xenobiotic reductase A with the reactive reduced cofactor bound to its substrates by X-ray crystallography and resonance Raman spectroscopy and compare it to the non-reactive oxidized Michaelis complex mimics. We find that substrates bind in different orientations to the oxidized and reduced flavin, in both cases flattening its structure. But only authentic Michaelis complexes display an unexpected rich vibrational band pattern uncovering a strong donor–acceptor complex between reduced flavin and substrate. This interaction likely activates the catalytic ground state of the reduced flavin, accelerating the reaction within a compressed cofactor–substrate complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iversen, C. M.; Ontl, T. A.; Brice, D. J.
This data set consists of observations of plant-available nutrients assessed using ion-exchange resin capsules incubated serially in aerobic and anaerobic peat layers beginning in 2011. Data were collected from 2011 to 2012 (prior to the construction of the SPRUCE experimental plots) at the southern end of the S1 Bog at three depths in hollow microtopography only.
NASA Astrophysics Data System (ADS)
Bubier, J. L.; Arnkil, S.; Humphreys, E.; Juutinen, S.; Larmola, T.; Moore, T. R.
2015-12-01
Atmospheric nitrogen (N) deposition has led to nutrient enrichment in wetlands globally, affecting plant community composition, carbon (C) cycling, and microbial dynamics. Nutrient-limited boreal bogs are long-term sinks of carbon dioxide (CO2), but sources of methane (CH4), an important greenhouse gas. We fertilized Mer Bleue Bog, a Sphagnum moss and evergreen shrub-dominated ombrotrophic bog near Ottawa, Ontario, for 10-15 years with N as NO3 and NH4 at 5, 10 and 20 times ambient N deposition (0.6-0.8 g N m-2 y-1), with and without phosphorus (P) and potassium (K). Treatments were applied to triplicate plots (3 x 3 m) from May - August 2000-2015 and control plots received distilled water. We measured net ecosystem CO2 exchange (NEE), ecosystem photosynthesis and respiration, and CH4 flux with climate-controlled chambers; leaf-level CO2 exchange and biochemistry; substrate-induced respiration, CH4 production and consumption potentials with laboratory incubations; plant species composition and abundance; and microclimate (peat temperature, moisture, light interception). After 15 years, we have found that NEE has decreased, and CH4 emissions have increased, in the highest nutrient treatments owing to changes in vegetation, microtopography, and peat characteristics. Vegetation changes include a loss of Sphagnum moss and introduction of new deciduous species. Simulated atmospheric N deposition has not benefitted the photosynthetic apparatus of the dominant evergreen shrubs, but resulted in higher foliar respiration, contributing to a weaker ecosystem CO2 sink. Loss of moss has led to wetter near-surface substrate, higher rates of decomposition and CH4 emission, and a shift in microbial communities. Thus, elevated atmospheric deposition of nutrients may endanger C storage in peatlands through a complex suite of feedbacks and interactions among vegetation, microclimate, and microbial communities.
NASA Astrophysics Data System (ADS)
Ye, Ziran; Wang, Ke; Lu, Chenxi; Jin, Ying; Sui, Chenghua; Yan, Bo; Gao, Fan; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Sun, Guofang; Xu, Fengyun; Ye, Gaoxiang
2018-03-01
We develop a theoretical model that interprets the growth mechanism of zinc (Zn) crystal nanorods on a liquid substrate by thermal evaporation. During deposition, Zn atoms diffuse randomly on an isotropic and quasi-free sustained substrate, the nucleation of the atoms results in the primary nanorod (or seed crystal) growth. Subsequently, a characteristic one-dimensional atomic aggregation is proposed, which leads to the accelerating growth of the crystal nanorod along its preferential growth direction until the growth terminates. The theoretical results are in good agreement with the experimental findings.
Using mm-scale seafloor roughness to improve monitoring of macrobenthos by remote sensing
NASA Astrophysics Data System (ADS)
Feldens, Peter; Schönke, Mischa; Wilken, Dennis; Papenmeier, Svenja
2017-04-01
In this study, we determine seafloor roughness at mm-scales by laser line-scanning to improve the remote marine habitat monitoring of macrobenthic organisms. Towards this purpose, a new autonomous lander system has been developed. Remote sensing of the seafloor is required to obtain a comprehensive view of the marine environment. It allows for analyzing spatiotemporal dynamics, monitoring of natural seabed variations, and evaluating possible anthropogenic impacts, all being crucial in regard to marine spatial planning as well as the sustainable and economic use of the sea. One aspect of ongoing remote sensing research is the identification of marine life, including both fauna and flora. The monitoring of seafloor fauna - including benthic communities - is mainly done using optical imaging systems and sample retrieval. The identification of new remote sensing indicator variables characteristic for the physical nature of the respective habitat would allow an improved spatial monitoring. A poorly investigated indicator variable is mm-scale seafloor microtopography and -roughness, which can be measured by laser line scanning and in turn strongly affects acoustic scatter. Two field campaigns have been conducted offshore Sylt Island in 2015 and 2016 to measure the microtopography of seafloor covered by sand masons, blue mussels, and oysters and to collect multi-frequency acoustic data. The acoustic data and topography of the blue mussel and oyster fields are currently being analyzed. The mm-scale microtopography of sand mason covered seafloor were transformed into the frequency domain and the average of the magnitude at different spatial wavelengths was used as a measure of roughness. The presence of sand masons causes a measurable difference in roughness magnitude at spatial wavelengths between 0.02 m and 0.0036 m, with the magnitude depending on sand mason abundance. This effect was not detected by commonly used 1D roughness profiles but required consideration of the complete spectrum. The influenced spatial wavelengths correspond to acoustic frequencies of 75 kHz and 400 kHz that are common for acoustic monitoring purposes. The available results indicate that the development of habitat-specific indicator variables, e.g. related to the abundance of sand masons or mussels, is possible and that remote sensing may assist the monitoring of benthic habitats in the future.
Topics in electrochemical degradation of photovoltaic modules
NASA Technical Reports Server (NTRS)
Mon, G. R.
1984-01-01
Electrochemical degradation of photovoltaic modules was examined. It is found that the extent of electrochemical damage is dependent on the integrated leakage current. The PV electrochemical degradation mechanisms in the two polarities are different: (1) degradation rates in the two polarities are of the same order of magnitude; (2) center tapped grounded arrays are a preferred system configuration to minimize electrochemical degradation. The use of thicker pottant layers and polymer substrate films to reduce equilibrium leakage current values is suggested. A metallized substrate layer, if used, should be isolated from the pottant and the frame by polyester layers, and EVA modules appear to be consistent with 30 year life allocation levels for electrochemical damage. Temperature acceleration factors are well behaved and moderately well understood; humidity acceleration factors vary radically with module construction and materials and require additional research.
NASA Astrophysics Data System (ADS)
Meenan, B. J.; Brown, N. M. D.; Wilson, J. W.
1994-03-01
A PdCl 2/SnCl 2 metallisation catalyst system, of the type used to activate non-conducting surfaces for electroless metal deposition, has been characterised by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The substrate is a barium titanate (BaTiO 3)-based electroactive ceramic of the type used in the fabrication of multilayer ceramic capacitors (MLCC). The treatment of the substrate surface with the PdCl 2/SnCl 2 "sensitiser" solution leads to the adsorption of catalytically inactive compounds of palladium and tin. Subsequent treatment of this surface with an "accelerator" solution removes excess oxides, hydroxides and salts of tin thereby leaving the active catalyst species, Pd xSn y, on the surface. Such sites, on exposure to the appropriete electroless plating bath, are then responsible for the metal deposition. In this study, the chemical state and relative quantities of the various surface species present after each of the processing stages have been determined by XPS. The surface roughness of the substrate results in less of the tin compounds present thereon being removed on washing the catalysed surface in the accelerator solution than normally reported for such systems, thereby affecting the measured Pd: Sn ratio. SEM studies show that the accelerator solution treatment generates crystalline areas, which may be a result of coagulation of the Pd xSn y particles present, in the otherwise amorphous catalyst coating.
Vernon, Stephen P.; Ceglio, Natale M.
2000-01-01
The invention is a method for the production of axially symmetric, graded and ungraded thickness thin film and multilayer coatings that avoids the use of apertures or masks to tailor the deposition profile. A motional averaging scheme permits the deposition of uniform thickness coatings independent of the substrate radius. Coating uniformity results from an exact cancellation of substrate radius dependent terms, which occurs when the substrate moves at constant velocity. If the substrate is allowed to accelerate over the source, arbitrary coating profiles can be generated through appropriate selection and control of the substrate center of mass equation of motion. The radial symmetry of the coating profile is an artifact produced by orbiting the substrate about its center of mass; other distributions are obtained by selecting another rotation axis. Consequently there is a direct mapping between the coating thickness and substrate equation of motion which can be used to tailor the coating profile without the use of masks and apertures.
NASA Astrophysics Data System (ADS)
Asner, Gregory P.; Anderson, Christopher B.; Martin, Roberta E.; Tupayachi, Raul; Knapp, David E.; Sinca, Felipe
2015-07-01
Tropical forest functional diversity, which is a measure of the diversity of organismal interactions with the environment, is poorly understood despite its importance for linking evolutionary biology to ecosystem biogeochemistry. Functional diversity is reflected in functional traits such as the concentrations of different compounds in leaves or the density of leaf mass, which are related to plant activities such as plant defence, nutrient cycling, or growth. In the Amazonian lowlands, river movement and microtopography control nutrient mobility, which may influence functional trait distributions. Here we use airborne laser-guided imaging spectroscopy to develop maps of 16 forest canopy traits, throughout four large landscapes that harbour three common forest community types on the Madre de Dios and Tambopata rivers in southwestern Amazonia. Our maps, which are based on quantitative chemometric analysis of forest canopies with visible-to-near infrared (400-2,500 nm) spectroscopy, reveal substantial variation in canopy traits and their distributions within and among forested landscapes. Forest canopy trait distributions are arranged in a nested pattern, with location along rivers controlling trait variation between different landscapes, and microtopography controlling trait variation within landscapes. We suggest that processes of nutrient deposition and depletion drive increasing phosphorus limitation, and a corresponding increase in plant defence, in an eastward direction from the base of the Andes into the Amazon Basin.
NASA Astrophysics Data System (ADS)
Zhen, Wang
2017-07-01
Flotation and adsorption performance of sodium oleate(NaOl)on powellite and fluorapatite were investigated in this work through micro-flotation tests, work of adhesion calculations, molecular dynamics simulation, micro-topography studies and FTIR measurements. The micro-flotation results show a similar flotation behaviors of powellite and fluorapatite under alkaline conditions, but a considerable difference in mineral recoveries in the pH range 2-7, which demonstrates the possibilities for separating powillite from fluorapatite under acidic conditions. The great difference in mineral recovery displays a good accordance with the obvious difference in the work of adhesion of powellite and fluorapatite at NaOl dosage range of 40-80 mg/L, obtained from flotation and contact angle measurements, respectively. The more negative interaction energy (ΔE) between NaOl and powellite/water interface from molecular dynamics simulation reveals a more easily adsorption of NaOl onto powellite than onto fluorapatite, which excellently matches with the results of flotation and work of adhesion. The results of micro-topography study shows that the adsorption of NaOl on powellite is mainly ascribed to the chemisorption of oleate ions with Ca2+ on powellite lattice or the precipitation of calcium dioleate agglomerates on powellite surface when it was in the solution without or with Ca2+, respectively. The FTIR measurements further confirm the chemisorption of oleate ions with Ca2+ active sites on powellite surface.
Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.
2015-01-01
High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25–30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018 W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048
NASA Astrophysics Data System (ADS)
Hambley, Graham; Hill, Timothy; Saunders, Matthew; Arn Teh, Yit
2016-04-01
Unmanaged peatlands represent an important long-term C sink and thus play an important part of the global C cycle. Despite covering only 12 % of the UK land area, peatlands are estimated to store approximately 20 times more carbon than the UK's forests, which cover 13% of the land area. The Flow Country of Northern Scotland is the largest area of contiguous blanket bog in the UK, and one of the biggest in Europe, covering an area in excess of 4000 km2 and plays a key role in mediating regional atmospheric exchanges of greenhouse gases (GHGs) such as carbon dioxide (CO2), and water vapour (H2O). However, these peatlands underwent significant afforestation in the 1980s, when over 670 km2 of blanket bog were drained and planted with Sitka spruce (Picea sitchensis) and Lodgepole pine (Pinus contorta). This resulted in modifications to hydrology, micro-topography, vegetation and soil properties all of which are known to influence the production, emission and sequestration of key GHGs. Since the late 1990s restoration work has been carried out to remove forest plantations and raise water tables, by drain blocking, to encourage the recolonisation of Sphagnum species and restore ecosystem functioning. Here, we report findings of NEE and its constituent fluxes, GPP and Reco, from a study investigating the impacts of restoration on C dynamics over a chronosequence of restored peatlands. The research explored the role of environmental variables and microtopography in modulating land-atmosphere exchanges, using a multi-scale sampling approach that incorporated eddy covariance measurements with dynamic flux chambers. Key age classes sampled included an undrained peatland; an older restored peatland (17 years old); and a more recently restored site (12 years old). The oldest restored site showed the strongest uptake of C, with an annual assimilation rate of 858 g C m-2 yr-1 compared to assimilation rates of 501g C m-2 yr-1 and 575g C m-2 yr-1 from the younger restored site and undrained sites, respectively. Although the oldest restored site had the highest assimilation rate, it was also associated with the highest Reco rate (846 g C m-2 yr-1), while the younger restoration site had a smaller Reco rate of 581 g C m-2 yr-1. The lowest Reco rates were observed at the undrained site (461 g C m-2 yr-1). Observed differences in these rates are driven by differences in temperature and soil moisture content associated with man-made microtopography. Thus, although peatland restoration in this region actively increases CO2 assimilation it also enhances Reco due to the presence of man-made microtopographic features. Although restoration results in peatland ecosystem functioning beginning to return to these sites after 17 years, these data suggest that more aggressive restoration practices (e.g. re-levelling of the soil surface to restore the original peatland microtopography) are required to reinstate C flux rates that are comparable to unmanaged peatlands. Further longer-term observational data are also required to better model and predict the recovery trajectory of these restored ecosystems at multi-decadal timescales, and in order to produce more robust ecosystem carbon budgets.
NASA Astrophysics Data System (ADS)
Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.
2015-12-01
Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The transported crystals hint at some significant differences in roughness morphology, but they do provide evidence that crystals grown in air/water mixtures and with minimal substrate influence also exhibit mesoscopic roughness with similarity to that observed in ESEM-grown crystals.
Laminated magnet field coil sheath
Skaritka, John R.
1987-12-01
a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.
Leung, Ka-Ngo
2005-08-02
A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.
Specificity in transition state binding: the Pauling model revisited.
Amyes, Tina L; Richard, John P
2013-03-26
Linus Pauling proposed that the large rate accelerations for enzymes are caused by the high specificity of the protein catalyst for binding the reaction transition state. The observation that stable analogues of the transition states for enzymatic reactions often act as tight-binding inhibitors provided early support for this simple and elegant proposal. We review experimental results that support the proposal that Pauling's model provides a satisfactory explanation for the rate accelerations for many heterolytic enzymatic reactions through high-energy reaction intermediates, such as proton transfer and decarboxylation. Specificity in transition state binding is obtained when the total intrinsic binding energy of the substrate is significantly larger than the binding energy observed at the Michaelis complex. The results of recent studies that aimed to characterize the specificity in binding of the enolate oxygen at the transition state for the 1,3-isomerization reaction catalyzed by ketosteroid isomerase are reviewed. Interactions between pig heart succinyl-coenzyme A:3-oxoacid coenzyme A transferase (SCOT) and the nonreacting portions of coenzyme A (CoA) are responsible for a rate increase of 3 × 10(12)-fold, which is close to the estimated total 5 × 10(13)-fold enzymatic rate acceleration. Studies that partition the interactions between SCOT and CoA into their contributing parts are reviewed. Interactions of the protein with the substrate phosphodianion group provide an ~12 kcal/mol stabilization of the transition state for the reactions catalyzed by triosephosphate isomerase, orotidine 5'-monophosphate decarboxylase, and α-glycerol phosphate dehydrogenase. The interactions of these enzymes with the substrate piece phosphite dianion provide a 6-8 kcal/mol stabilization of the transition state for reaction of the appropriate truncated substrate. Enzyme activation by phosphite dianion reflects the higher dianion affinity for binding to the enzyme-transition state complex compared with that of the free enzyme. Evidence is presented that supports a model in which the binding energy of the phosphite dianion piece, or the phosphodianion group of the whole substrate, is utilized to drive an enzyme conformational change from an inactive open form E(O) to an active closed form E(C), by closure of a phosphodianion gripper loop. Members of the enolase and haloalkanoic acid dehalogenase superfamilies use variable capping domains to interact with nonreacting portions of the substrate and sequester the substrate from interaction with bulk solvent. Interactions of this capping domain with the phenyl group of mandelate have been shown to activate mandelate racemase for catalysis of deprotonation of α-carbonyl carbon. We propose that an important function of these capping domains is to utilize the binding interactions with nonreacting portions of the substrate to activate the enzyme for catalysis.
Specificity in Transition State Binding: The Pauling Model Revisited
Amyes, Tina L.; Richard, John P.
2013-01-01
Linus Pauling proposed that the large rate accelerations for enzymes are due to the high specificity of the protein catalyst for binding the reaction transition state. The observation that stable analogs of the transition states for enzymatic reactions often act as tight-binding binding inhibitors provided early support for this simple and elegant proposal. We review experimental results which support the proposal that Pauling’s model provides a satisfactory explanation for the rate accelerations for many heterolytic enzymatic reactions through high energy reaction intermediates, such as proton transfer and decarboxylation. Specificity in transition state binding is obtained when the total intrinsic binding energy of the substrate is significantly larger than the binding energy observed at the Michaelis complex. The results of recent studies to characterize the specificity in binding of the enolate oxygen at the transition state for the 1,3-isomerization reaction catalyzed by ketosteroid isomerase are reviewed. Interactions between pig heart succinyl-CoA:3-oxoacid coenzyme A transferase (SCOT) and the nonreacting portions of CoA are responsible for a rate increase of 3 × 1012-fold, which is close to the estimated total 5 × 1013-fold enzymatic rate acceleration. Studies that partition the interactions between SCOT and CoA into their contributing parts are reviewed. Interactions of the protein with the substrate phosphodianion group provide a ca. 12 kcal/mol stabilization of the transition state for the reactions catalyzed by triosephosphate isomerase, orotidine 5′-monophosphate decarboxylase and α-glycerol phosphate dehydrogenase. The interactions of these enzymes with the substrate piece phosphite dianion provide a 6 – 8 kcal/mol stabilization of the transition state for reaction of the appropriate truncated substrate. Enzyme activation by phosphite dianion reflects the higher dianion affinity for binding to the enzyme-transition state complex compared with the free enzyme. Evidence is presented that supports a model in which the binding energy of the phosphite dianion piece, or the phosphodianion group of the whole substrate, is utilized to drive an enzyme conformational change from an inactive open form EO to an active closed form EC, by closure of a phosphodianion gripper loop. Members of the enolase and haloalkanoic acid dehalogenase superfamilies use variable capping domains to interact with nonreacting portions of the substrate and sequester the substrate from interaction with bulk solvent. Interactions of this capping domain with the phenyl group of mandelate have been shown to activate mandelate racemase for catalysis of deprotonation of α-carbonyl carbon. We propose that an important function of these capping domains is to utilize the binding interactions with nonreacting portions of the substrate to activate the enzyme for catalysis. PMID:23327224
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Gaynor; McKeon, Tom
Enhanced reductive dechlorination (ERD) has rapidly become a remedy of choice for use on chlorinated solvent contamination when site conditions allow. With this approach, solutions of an organic substrate are injected into the affected aquifer to stimulate biological growth and the resultant production of reducing conditions in the target zone. Under the reducing conditions, hydrogen is produced and ultimately replaces chlorine atoms on the contaminant molecule causing sequential dechlorination. Under suitable conditions the process continues until the parent hydrocarbon precursor is produced, such as the complete dechlorination of trichloroethylene (TCE) to ethene. The process is optimized by use of amore » substrate that maximizes hydrogen production per unit cost. When natural biota are not present to promote the desired degradation, inoculates can be added with the substrate. The in-situ method both reduces cost and accelerates cleanup. Successful applications have been extended from the most common chlorinated compounds perchloroethylene (PCE) and TCE and related products of degradation, to perchlorate, and even explosives such as RDX and trinitrotoluene on which nitrates are attacked in lieu of chloride. In recent work, the process has been further improved through use of beverage industry wastewaters that are available at little or no cost. With material cost removed from the equation, applications can maximize the substrate loading without significantly increasing total cost. The extra substrate loading both accelerates reaction rates and extends the period of time over which reducing conditions are maintained. In some cases, the presence of other organic matter in addition to simple sugars provides for longer performance times of individual injections, thereby working in a fashion similar to emulsified vegetable oil. The paper discusses results of applications at three different sites contaminated with chlorinated ethylenes. The applications have included wastewaters of both natural fruit juices and corn syrup solutions from carbonated beverages. Cost implications include both the reduced cost of substrate and the cost avoidance of needing to pay for treatment of the wastewater. (authors)« less
Nitridation of silicon by nitrogen neutral beam
NASA Astrophysics Data System (ADS)
Hara, Yasuhiro; Shimizu, Tomohiro; Shingubara, Shoso
2016-02-01
Silicon nitridation was investigated at room temperature using a nitrogen neutral beam (NB) extracted at acceleration voltages of less than 100 V. X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of a Si3N4 layer on a Si (1 0 0) substrate when the acceleration voltage was higher than 20 V. The XPS depth profile indicated that nitrogen diffused to a depth of 36 nm for acceleration voltages of 60 V and higher. The thickness of the silicon nitrided layer increased with the acceleration voltages from 20 V to 60 V. Cross-sectional transmission electron microscopy (TEM) analysis indicated a Si3N4 layer thickness of 3.1 nm was obtained at an acceleration voltage of 100 V. Moreover, it was proved that the nitrided silicon layer formed by the nitrogen NB at room temperature was effective as the passivation film in the wet etching process.
Paraelectric gas flow accelerator
NASA Technical Reports Server (NTRS)
Sherman, Daniel M. (Inventor); Wilkinson, Stephen P. (Inventor); Roth, J. Reece (Inventor)
2001-01-01
A substrate is configured with first and second sets of electrodes, where the second set of electrodes is positioned asymmetrically between the first set of electrodes. When a RF voltage is applied to the electrodes sufficient to generate a discharge plasma (e.g., a one-atmosphere uniform glow discharge plasma) in the gas adjacent to the substrate, the asymmetry in the electrode configuration results in force being applied to the active species in the plasma and in turn to the neutral background gas. Depending on the relative orientation of the electrodes to the gas, the present invention can be used to accelerate or decelerate the gas. The present invention has many potential applications, including increasing or decreasing aerodynamic drag or turbulence, and controlling the flow of active and/or neutral species for such uses as flow separation, altering heat flow, plasma cleaning, sterilization, deposition, etching, or alteration in wettability, printability, and/or adhesion.
Performance and Reliability of Bonded Interfaces for High-Temperature Packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paret, Paul P
2017-08-02
Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (>200 degrees C). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. Mechanical characterization tests that result in stress-strain curves and accelerated tests that produce cycles-to-failure result will be conducted. Also, we present a finite element method (FEM) modeling methodologymore » that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. A fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed.« less
NASA Astrophysics Data System (ADS)
Lim, Jae-Won; Mimura, Kouji; Isshiki, Minoru
2004-12-01
Glow discharge mass spectrometry (GDMS) was used to analyze a Ta target and Ta films for trace impurities. The Ta films were deposited on Si (100) substrate at substrate bias voltages of 0 V and -125 V using a non-mass separated ion beam deposition system. Although both Ta films were contaminated by impurities during the deposition, the Ta film deposited at a substrate bias voltage of -125 V showed lower impurity content than the Ta film deposited without the substrate bias voltage, which means that applying a negative bias voltage to the substrate decreased the total concentration of impurities. Furthermore, the concentration change of individual impurities in the Ta film is related to their ionization ratio in the argon discharge plasma. Considering the effect of the ionization potential of an individual impurity on the ionization ratio, purification by applying a negative bias voltage to the substrate results from Penning ionization and an ionization mechanism proposed in this study, as well as from the difference between the kinetic energies of Ta neutral atoms and Ta+ ions accelerated toward the substrate with/without a negative substrate bias voltage.
NASA Astrophysics Data System (ADS)
Kudo, M.; Aimoto, K.; Sunagawa, Y.; Kato, N.; Aoyagi, S.; Iida, S.; Sanada, N.
2008-12-01
The usefulness of the usage of cluster primary ion source together with an Ag substrate and detection of Ag cationized molecular ions was studied from the standpoint to realize high sensitivity TOF-SIMS analysis of organic materials. Although secondary ions from polymer thin films on a Si substrate can be detected in a higher sensitivity with Au 3+ cluster primary ion compared with Ga + ion bombardment, it was clearly observed that the secondary ion intensities from samples on an Ag substrate showed quite a different tendency from that on Si. When monoatomic primary ions, e.g., Au + and Ga +, were used for the measurement of the sample on an Ag substrate, [M+Ag] + ions (M corresponds to polyethylene glycol molecule) were detected in a high sensitivity. On the contrary, when Au 3+ was used, no intensity enhancement of [M+Ag] + ions was observed. The acceleration energy dependence of the detected secondary ions implies the different ionization mechanisms on the different substrates.
ZERODUR 4-m blank surviving up to 20 g acceleration
NASA Astrophysics Data System (ADS)
Westerhoff, Thomas; Werner, Thomas; Gehindy, Thorsten
2017-09-01
The glass ceramic ZERODUR developed as astronomical telescope mirror substrate material has been widely used in many telescopes due to its excellent small coefficient of thermal expansion. Many large and medium sized mirror substrate blanks have been delivered in the almost 50 years of ZERODUR business so far. Packaging and transportation of mirror substrates of 4 to 8 m in diameter with a weight between 3 and 20 tons requires special attention and sophisticated skills to successful deliver the blanks to their destination at polishing shops all over the world. Typically, a combination of road and sea transport needs to be organized. The requirements on the transport container are depending on the transport route and may vary from destination to destination. In any case the container needs to be able to sufficiently support the multi ton ZERODUR blank to avoid breaking under gravity. Additionally, the configuration needs to be able to absorb shocks happening during transport and loading between truck trailer and ship. For insurance reasons the transport container is always equipped with a GPS trackable shock recorder allowing to download the recorded accelerations on the container and the blank throughout the entire journey. This paper reports on the event of a 4 m class ZERODUR blank exposed to shocks up to 20 g during transport. The event will be discussed in detail together with lessons learned to avoid such events for future transports. Additionally, the 20 g acceleration will be discussed in respect to the data on bending strength for ZERODUR ground surfaces reported in numerous papers by Peter Hartmann et.al. in the last couple of years.
Motion of a drop driven by substrate vibrations
NASA Astrophysics Data System (ADS)
Brunet, P.; Eggers, J.; Deegan, R. D.
2009-01-01
We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wet by the drop. Frequency of vibrations ranges from 30 to 200 Hz, and above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up/down symmetry-breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements.
Agarwal, A K
1976-12-15
Trehalase from the salivary glands and the midgut of Sesamia inferens showed optimum activity at pH 5.8, and at temperatures of 50 and 60 degrees C respectively. The increase in the incubation period, enzyme concentration, and substrate concentration respectively increased the end-product, the hydrolysis, and the rate of hydrolysis of the substrate. Dialysis did not affect, tryptophan accelerated, and other amino acids and end-product inhibited the enzyme activity.
How sedge meadow soils, microtopography, and vegetation respond to sedimentation
Werner, K.J.; Zedler, Joy B.
2002-01-01
The expansion of urban and agricultural activities in watersheds of the Midwestern USA facilitates the conversion of species-rich sedge meadows to stands of Phalaris arundinacea and Typha spp. We document the role of sediment accumulation in this process based on field surveys of three sedge meadows dominated by Carex stricta, their adjacent Phalaris or Typha stands, and transitions from Carex to these invasive species. The complex microtopography of Carex tussocks facilitates the occurrence of other native species. Tussock surface area and species richness were positively correlated in two marshes (r2 = 0.57 and 0.41); on average, a 33-cm-tall tussock supported 7.6 species. Phalaris also grew in tussock form in wetter areas but did not support native species. We found an average of 10.5 Carex tussocks per 10-m transect, but only 3.5 Phalaris tussocks. Microtopographic relief, determined with a high-precision GPS, measured 11% greater in Carex meadows than Phalaris stands. Inflowing sediments reduced microtopographic variation and surface area for native species. We calculated a loss of one species per 1000 cm2 of lost tussock surface area, and loss of 1.2 species for every 10-cm addition of sediment over the sedge meadow surface. Alluvium overlying the sedge meadow soil had a smaller proportion of organic matter content and higher dry bulk density than the buried histic materials. We conclude that sedimentation contributes to the loss of native species in remnant wetlands. ?? 2002, The Society of Wetland Scientists.
NASA Astrophysics Data System (ADS)
Lovitt, J.; Rahman, M. M.; Saraswati, S.; McDermid, G. J.; Strack, M.; Xu, B.
2018-03-01
Peatlands are globally significant stores of soil carbon, where local methane (CH4) emissions are strongly linked to water table position and microtopography. Historically, these factors have been difficult to measure in the field, constraining our capacity to observe local patterns of variability. In this paper, we show how remote sensing surveys conducted from unmanned aerial vehicle (UAV) platforms can be used to map microtopography and depth to water over large areas with good accuracy, paving the way for spatially explicit estimates of CH4 emissions. This approach enabled us to observe—for the first time—the effects of low-impact seismic lines (LIS; petroleum exploration corridors) on surface morphology and CH4 emissions in a treed-bog ecosystem in northern Alberta, Canada. Through compaction, LIS lines were found to flatten the observed range in microtopographic elevation by 46 cm and decrease mean depth to water by 15.4 cm, compared to surrounding undisturbed conditions. These alterations are projected to increase CH4 emissions by 20-120% relative to undisturbed areas in our study area, which translates to a total rise of 0.011-0.027 kg CH4 day-1 per linear kilometer of LIS ( 2 m wide). The 16 km of LIS present at our 61 ha study site were predicted to boost CH4 emissions by 20-70 kg between May and September 2016.
Tunable Microfibers Suppress Fibrotic Encapsulation via Inhibition of TGFβ Signaling
Allen, Jessica; Ryu, Jubin; Maggi, Alessandro; Flores, Bianca; Greer, Julia R.
2016-01-01
Fibrotic encapsulation limits the efficacy and lifetime of implantable biomedical devices. Microtopography has shown promise in the regulation of myofibroblast differentiation, a key driver of fibrotic encapsulation. However, existing studies have not systematically isolated the requisite geometric parameters for suppression of myofibroblast differentiation via microtopography, and there has not been in vivo validation of this technology to date. To address these issues, a novel lamination method was developed to afford more control over topography dimensions. Specifically, in this study we focus on fiber length and its effect on myofibroblast differentiation. Fibroblasts cultured on films with microfibers exceeding 16 μm in length lost the characteristic morphology associated with myofibroblast differentiation, while shorter microfibers of 6 μm length failed to produce this phenotype. This increase in length corresponded to a 50% decrease in fiber stiffness, which acts as a mechanical cue to influence myofibroblast differentiation. Longer microfiber films suppressed expression of myofibroblast-specific genes (αSMA, Col1α2, and Col3α1) and TGFβ signaling components (TGFβ1, TβR2, and Smad3). About 16 μm long microfiber films subcutaneously implanted in a mouse wound-healing model generated a substantially thinner fibrotic capsule and less deposition of collagen in the wound bed. Together, these results identify a critical feature length threshold for microscale topography-mediated repression of fibrotic encapsulation. This study also demonstrates a simple and powerful strategy to improve surface biocompatibility and reduce fibrotic encapsulation around implanted materials. PMID:26507808
Staging of RF-accelerating Units in a MEMS-based Ion Accelerator
NASA Astrophysics Data System (ADS)
Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.
Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.
Staging of RF-accelerating Units in a MEMS-based Ion Accelerator
Persaud, A.; Seidl, P. A.; Ji, Q.; ...
2017-10-26
Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less
Staging of RF-accelerating Units in a MEMS-based Ion Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persaud, A.; Seidl, P. A.; Ji, Q.
Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less
NASA Astrophysics Data System (ADS)
Song, Meirong; Liu, Yuru; Cui, Shumin; Liu, Long; Yang, Min
2013-10-01
An aluminum foil with a rough surface was first prepared by anodic treatment in a neutral aqueous solution with the help of pitting corrosion of chlorides. First, the hydrophobic Al surface (contact angle around 79°) became superhydrophilic (contact angle smaller than 5°) after the anodizing process. Secondly, the superhydrophilic Al surface became superhydrophobic (contact angle larger than 150°) after being modified by oleic acid. Finally, the icing property of superhydrophilic, untreated, and superhydrophobic Al foils were investigated in a refrigerated cabinet at -12 °C. The mean total times to freeze a water droplet (6 μL) on the three foils were 17 s, 158 s and 1604 s, respectively. Thus, the superhydrophilic surface accelerates the icing process, while the superhydrophobic surface delays the process. The main reason for this transition might mainly result from the difference of the contact area of the water droplet with Al substrate: the increase in contact area with Al substrate will accelerate the heat conduct process, as well as the icing process; the decrease in contact area with Al substrate will delay the heat conduct process, as well as the icing process. Compared to the untreated Al foil, the contact area of the water droplet with the Al substrate was higher on superhydrophilic surface and smaller on the superhydrophobic surface, which led to the difference of the heat transfer time as well as the icing time.
Sharifi, Fereshteh; Irani, Shiva; Zandi, Mojgan; Soleimani, Masoud; Atyabi, Seyed Mohammad
2016-12-01
One of the determinant factors for successful bioengineering is to achieve appropriate nano-topography and three-dimensional substrate. In this research, polycaprolactone (PCL) nano-fibrous mat with different roughness modified with O 2 plasma was fabricated via electrospinning. The purpose of this study was to evaluate the effect of plasma modification along with surface nano-topography of mats on the quality of human fibroblast (HDFs) and osteoblast cells (OSTs)-substrate interaction. Surface properties were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, Fourier-transformation infrared spectroscopy. We evaluated mechanical properties of fabricated mats by tensile test. The viability and proliferation of HDFs and OSTs on the substrates were followed by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT). Mineralization of the substrate was determined by alizarin red staining method and calcium content of OSTs was determined by calcium content kit. Cells morphology was studied by SEM analysis. The results revealed that the plasma-treated electrospun nano-fibrous substrate with higher roughness was an excellent designed substrate. A bioactive topography for stimulating proliferation of HDFs and OSTs is to accelerate the latter's differentiation time. Therefore, the PCL substrate with high density and major nano-topography were considered as a bio-functional and elegant bio-substrate for tissue regeneration applications.
Němeček, Jan; Steinová, Jana; Špánek, Roman; Pluhař, Tomáš; Pokorný, Petr; Najmanová, Petra; Knytl, Vladislav; Černík, Miroslav
2018-05-01
In situ bioremediation (ISB) using reductive dechlorination is a widely accepted but relatively slow approach compared to other technologies for the treatment of groundwater contaminated by chlorinated ethenes (CVOCs). Due to the known positive kinetic effect on microbial metabolism, thermal enhancement may be a viable means of accelerating ISB. We tested thermally enhanced ISB in aquifers situated in sandy saprolite and underlying fractured granite. The system comprised pumping, heating and subsequent injection of contaminated groundwater aiming at an aquifer temperature of 20-30°C. A fermentable substrate (whey) was injected in separate batches. The test was monitored using hydrochemical and molecular tools (qPCR and NGS). The addition of the substrate and increase in temperature resulted in a rapid increase in the abundance of reductive dechlorinators (e.g., Dehalococcoides mccartyi, Dehalobacter sp. and functional genes vcrA and bvcA) and a strong increase in CVOC degradation. On day 34, the CVOC concentrations decreased by 87% to 96% in groundwater from the wells most affected by the heating and substrate. On day 103, the CVOC concentrations were below the LOQ resulting in degradation half-lives of 5 to 6days. Neither an increase in biomarkers nor a distinct decrease in the CVOC concentrations was observed in a deep well affected by the heating but not by the substrate. NGS analysis detected Chloroflexi dechlorinating genera (Dehalogenimonas and GIF9 and MSBL5 clades) and other genera capable of anaerobic metabolic degradation of CVOCs. Of these, bacteria of the genera Acetobacterium, Desulfomonile, Geobacter, Sulfurospirillum, Methanosarcina and Methanobacterium were stimulated by the substrate and heating. In contrast, groundwater from the deep well (affected by heating only) hosted representatives of aerobic metabolic and aerobic cometabolic CVOC degraders. The test results document that heating of the treated aquifer significantly accelerated the treatment process but only in the case of an abundant substrate. Copyright © 2017. Published by Elsevier B.V.
Low Temperature Metal Coating Method Final Report CRADA No. TSB-1155-95
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Sang-Wook; Gabel, Howard
A new metal coating method, cidled KEM (kinetic energy metal.lization), demonstrated in the laboratory by lnovati, utilized fast-moving solid particIes entrained in a gas that are caused to fiow through a nozzIe to effect particle deposition on metal surfaces at room temperature conditions. This method (US Patent 5,795,626) was an attractive and viabIe alternative to the currentIy available high-temperature coating methods avaiIabIe. Since it differs significantly from existing metal coating technologies, a brief description of the method is incIuded here. The proposed method, KEM, achieves cohesive and adhesive metallurgical bonding through the high-speed coUision of powder with a substrate andmore » the subsequent discharge of electrical charge at the substrate. Such coating is effected by entraining metal powder in a gas and accelerating this mixture through a supersonic nozzle. The gas/powder is directed towards the substrate to be coated. Collisions occur, initiaIly between the powder and the substrate, and, as the first Iayer of the coating forms, between the powder and the coating. During these collisions the powder is rapidly deformed, causing the exposure of fresh (oxide free) active metal surface. When these’active surfaces contact one another, they agglomerate and form true metaIIurgicaI bonds. The resultant coating has Iow porosity and high adhesive and cohesive strength. The formation of metaIIurgicaI bonds is potentiated by the discharge of electrical energy. This electrical energy is the result of triboeIectric charging of the particIes during acceleration and transit to the nozzIe. An advantage of the method is that it does not raise the temperature of the powder being appLiedor that of the substrate. Consequently, materials sensitive to high temperature may be applied without changing Me properties of the materkd or substrate.« less
Particle Bonding Mechanism in Cold Gas Dynamic Spray: A Three-Dimensional Approach
NASA Astrophysics Data System (ADS)
Zhu, Lin; Jen, Tien-Chien; Pan, Yen-Ting; Chen, Hong-Sheng
2017-12-01
Cold gas dynamic spray (CGDS) is a surface coating process that uses highly accelerated particles to form the surface coating. In the CGDS process, metal particles with a diameter of 1-50 µm are carried by a gas stream at high pressure (typically 20-30 atm) through a de Laval-type nozzle to achieve supersonic velocity upon impact onto the substrate. Typically, the impact velocity ranges between 300 and 1200 m/s in the CGDS process. When the particle is accelerated to its critical velocity, which is defined as the minimum in-flight velocity at which it can deposit on the substrate, adiabatic shear instabilities will occur. Herein, to ascertain the critical velocities of different particle sizes on the bonding efficiency in CGDS process, three-dimensional numerical simulations of single particle deposition process were performed. In the CGDS process, one of the most important parameters which determine the bonding strength with the substrate is particle impact temperature. It is hypothesized that the particle will bond to the substrate when the particle's impacting velocity surpasses the critical velocity, at which the interface can achieve 60% of the melting temperature of the particle material (Ref 1, 2). Therefore, critical velocity should be a main parameter on the coating quality. Note that the particle critical velocity is determined not only by its size, but also by its material properties. This study numerically investigates the critical velocity for the particle deposition process in CGDS. In the present numerical analysis, copper (Cu) was chosen as particle material and aluminum (Al) as substrate material. The impacting velocities were selected between 300 and 800 m/s increasing in steps of 100 m/s. The simulation result reveals temporal and spatial interfacial temperature distribution and deformation between particle(s) and substrate. Finally, a comparison is carried out between the computed results and experimental data.
Mello, S L A; Codeço, C F S; Magnani, B F; Sant'Anna, M M
2016-06-01
We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up to 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.
NASA Astrophysics Data System (ADS)
Mello, S. L. A.; Codeço, C. F. S.; Magnani, B. F.; Sant'Anna, M. M.
2016-06-01
We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up to 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.
The research of axial corrosion fatigue on 10Ni3CrMoV steel
NASA Astrophysics Data System (ADS)
Xie, Xing; Yi, Hong; Xu, Jian; Xie, Kun
2017-09-01
Fatigue life had been studied with 10CrNi3MoV steel at different load ratios and in different environmental medias. The microstructure and micro-topography had been observed and analyzed by means of SEM, EDS and TEM. Our findings indicated that, the fatigue life of 10Ni3CrMoV steel in seawater was shorter than in air, the difference in longevity was larger with the decreasing of axis stress. Corrosion pits had a great influence on corrosion fatigue life.
NASA Astrophysics Data System (ADS)
Jiang, Xieqiang; Wan, Jie; Han, Haoxu; Wang, Yiping; Li, Kang; Wang, Qingjun
2018-09-01
Ordered nanoball matrix fluorocarbon polymer layers were produced with two different fluorocarbon polymers on an anodized aluminum oxide (AAO) surface. These treated surfaces each exhibited hydrophobicity or superhydrophobicity. The dynamic behavior of a droplet sliding down these surfaces was captured by high-speed photography under simulated weather conditions including at room temperature (25 °C) and low temperature (5 °C) with various relative humidities (30%-80%). By analyzing the trajectory of a marker in the captured video frame-by-frame, we distinguished the slipping and rolling behaviors and analyzed the internal fluidity by calculating the ratio of these two motions. Both the pore diameters of the substrate matrix and the environmental conditions play a dominant role in the resultant sliding acceleration of a water droplet. At room temperature (25 °C) and 30% relative humidity, the sliding acceleration of the droplet on the fluoropolymer layer decreased by 0.5 m·s-2 -0.6 m·s-2 as the pore diameters of the underlying AAO substrates increased. The sliding acceleration underwent a 25%-50% decrease under extreme environmental conditions (5 °C and 80% RH). These phenomena proved that a wetting transition from the Cassie-Baxter model to the Wenzel model can partially occur under various weather conditions.
Wu, Tongbo; Yang, Yufei; Chen, Wei; Wang, Jiayu; Yang, Ziyu; Wang, Shenlin; Xiao, Xianjin; Li, Mengyuan; Zhao, Meiping
2018-04-06
Lambda exonuclease (λ exo) plays an important role in the resection of DNA ends for DNA repair. Currently, it is also a widely used enzymatic tool in genetic engineering, DNA-binding protein mapping, nanopore sequencing and biosensing. Herein, we disclose two noncanonical properties of this enzyme and suggest a previously undescribed hydrophobic interaction model between λ exo and DNA substrates. We demonstrate that the length of the free portion of the substrate strand in the dsDNA plays an essential role in the initiation of digestion reactions by λ exo. A dsDNA with a 5' non-phosphorylated, two-nucleotide-protruding end can be digested by λ exo with very high efficiency. Moreover, we show that when a conjugated structure is covalently attached to an internal base of the dsDNA, the presence of a single mismatched base pair at the 5' side of the modified base may significantly accelerate the process of digestion by λ exo. A detailed comparison study revealed additional π-π stacking interactions between the attached label and the amino acid residues of the enzyme. These new findings not only broaden our knowledge of the enzyme but will also be very useful for research on DNA repair and in vitro processing of nucleic acids.
Features of Wear-Resistant Cast Iron Coating Formation During Plasma-Powder Surfacing
NASA Astrophysics Data System (ADS)
Vdovin, K. N.; Emelyushin, A. N.; Nefed'ev, S. P.
2017-09-01
The structure of coatings deposited on steel 45 by plasma-powder surfacing of white wear-resistant cast iron is studied. The effects of surfacing regime and additional production effects on the welding bath during surfacing produced by current modulation, accelerated cooling of the deposited beads by blowing with air, and accelerated cooling of the substrate with running water on the structure, are determined. A new composition is suggested for powder material for depositing wear-resistant and corrosion-resistant coatings on a carbon steel by the plasma-powder process.
NASA Technical Reports Server (NTRS)
Kolyer, J. M.; Mann, N. R.
1978-01-01
Inherent weatherability is controlled by the three weather factors common to all exposure sites: insolation, temperature, and humidity. Emphasis was focused on the transparent encapsulant portion of miniature solar cell arrays by eliminating weathering effects on the substrate and circuitry (which are also parts of the encapsulant system). The most extensive data were for yellowing, which were measured conveniently and precisely. Considerable data also were obtained on tensile strength. Changes in these two properties after outdoor exposure were predicted very well from accelerated exposure data.
Karami, M Amin; Bilgen, Onur; Inman, Daniel J; Friswell, Michael I
2011-07-01
This research presents an experimental and theoretical energy harvesting characterization of beam-like, uniform cross-section, unimorph structures employing single-crystal piezoelectrics. Different piezoelectric materials, substrates, and configurations are examined to identify the best design configuration for lightweight energy harvesting devices for low-power applications. Three types of piezoelectrics (singlecrystal PMN-PZT, polycrystalline PZT-5A, and PZT-5H-type monolithic ceramics) are evaluated in a unimorph cantilevered beam configuration. The devices have been excited by harmonic base acceleration. All of the experimental characteristics have been used to validate an exact electromechanical model of the harvester. The study shows the optimum choice of substrate material for single-crystal piezoelectric energy harvesting. Comparison of energy scavengers with stainless steel substrates reveals that single-crystal harvesters produce superior power compared with polycrystalline devices. To further optimize the power harvesting, we study the relation between the thickness of the substrate and the power output for different substrate materials. The relation between power and substrate thickness profoundly varies among different substrate materials. The variation is understood by examining the change of mechanical transmissibility and the variations of the coupling figure of merit of the harvesters with thickness ratio. The investigation identifies the optimal thickness of the substrate for different substrate materials. The study also shows that the densities of the substrates and their mechanical damping coefficients have significant effects on the power output.
NASA Astrophysics Data System (ADS)
Kromer, R.; Danlos, Y.; Costil, S.
2018-04-01
Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle-substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications.
Collective acceleration of ions in picosecond pinched electron beams
NASA Astrophysics Data System (ADS)
Baryshnikov, V. I.; Paperny, V. L.; Shipayev, I. V.
2017-10-01
Сharacteristics of intense electron-ion beams emitted by a high-voltage (280 kV) electron accelerator with a pulse duration of 200 ps and current 5 kA are studied. The capture phenomena and the subsequent collective acceleration of multi charged ions of the cathode material by the electric field of the electron beam are observed. It is shown that the electron-ion beam diameter does not exceed 30 µm therein in the case of lighter ions, and the decay of the pinched beam occurs at a shorter distance from the cathode. It is established that the ions of the cathode material Tin+ captured by the electron beam are accelerated up to an energy of ⩽10 MeV, and the ion fluence reaches 1017 ion cm-2 in the pulse. These ions are effectively embedded into the lattice sites of the irradiated substrate (sapphire crystal), forming the luminescent areas of the micron scale.
Thomas, James R; Gedeon, Patrick C; Grant, Barry J; Madura, Jeffry D
2012-07-03
Monoamine transporters (MATs) function by coupling ion gradients to the transport of dopamine, norepinephrine, or serotonin. Despite their importance in regulating neurotransmission, the exact conformational mechanism by which MATs function remains elusive. To this end, we have performed seven 250 ns accelerated molecular dynamics simulations of the leucine transporter, a model for neurotransmitter MATs. By varying the presence of binding-pocket leucine substrate and sodium ions, we have sampled plausible conformational states representative of the substrate transport cycle. The resulting trajectories were analyzed using principal component analysis of transmembrane helices 1b and 6a. This analysis revealed seven unique structures: two of the obtained conformations are similar to the currently published crystallographic structures, one conformation is similar to a proposed open inward structure, and four conformations represent novel structures of potential importance to the transport cycle. Further analysis reveals that the presence of binding-pocket sodium ions is necessary to stabilize the locked-occluded and open-inward conformations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Literature survey on oxidations and fatigue lives at elevated temperatures
NASA Technical Reports Server (NTRS)
Liu, H. W.; Oshida, Y.
1984-01-01
Nickel-base superalloys are the most complex and the most widely used for high temperature applications such as aircraft engine components. The desirable properties of nickel-base superalloys at high temperatures are tensile strength, thermomechanical fatigue resistance, low thermal expansion, as well as oxidation resistance. At elevated temperature, fatigue cracks are often initiated by grain boundary oxidation, and fatigue cracks often propagate along grain boundaries, where the oxidation rate is higher. Oxidation takes place at the interface between metal and gas. Properties of the metal substrate, the gaseous environment, as well as the oxides formed all interact to make the oxidation behavior of nickel-base superalloys extremely complicated. The important topics include general oxidation, selective oxidation, internal oxidation, grain boundary oxidation, multilayer oxide structure, accelerated oxidation under stress, stress-generation during oxidation, composition and substrate microstructural changes due to prolonged oxidation, fatigue crack initiation at oxidized grain boundaries and the oxidation accelerated fatigue crack propagation along grain boundaries.
Cleavage of an amide bond by a ribozyme
NASA Technical Reports Server (NTRS)
Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)
1995-01-01
A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.
Deposition of diamond-like films by ECR microwave plasma
NASA Technical Reports Server (NTRS)
Shing, Yuh-Han (Inventor); Pool, Frederick S. (Inventor)
1995-01-01
Hard amorphous hydrogenated carbon, diamond-like films are deposited using an electron cyclotron resonance microwave plasma with a separate radio frequency power bias applied to a substrate stage. The electron cyclotron resonance microwave plasma yields low deposition pressure and creates ion species otherwise unavailable. A magnetic mirror configuration extracts special ion species from a plasma chamber. Different levels of the radio frequency power bias accelerate the ion species of the ECR plasma impinging on a substrate to form different diamond-like films. During the deposition process, a sample stage is maintained at an ambient temperature of less than 100.degree. C. No external heating is applied to the sample stage. The deposition process enables diamond-like films to be deposited on heat-sensitive substrates.
Bensinger, Dennis; Neumann, Theresa; Scholz, Christoph; Voss, Constantin; Knorr, Sabine; Kuckelkorn, Ulrike; Hamacher, Kay; Kloetzel, Peter-Michael; Schmidt, Boris
2016-07-15
The ubiquitin/proteasome system is the major protein degradation pathway in eukaryotes with several key catalytic cores. Targeting the β5 subunit with small-molecule inhibitors is an established therapeutic strategy for hematologic cancers. Herein, we report a mouse-trap-like conformational change that influences molecular recognition depending on the substitution pattern of a bound ligand. Variation of the size of P1 residues from the highly β5-selective proteasome inhibitor BSc2118 allows for discrimination between inhibitory strength and substrate conversion. We found that increasing molecular size strengthens inhibition, whereas decreasing P1 size accelerates substrate conversion. Evaluation of substrate hydrolysis after silencing of β5 activity reveals significant residual activity for large residues exclusively. Thus, classification of the β5 subunit as chymotrypsin-like and the use of the standard tyrosine-containing substrate should be reconsidered.
Chen, Hong-Ming; Armstrong, Zachary; Hallam, Steven J; Withers, Stephen G
2016-02-08
Screening of large enzyme libraries such as those derived from metagenomic sources requires sensitive substrates. Fluorogenic glycosides typically offer the best sensitivity but typically must be used in a stopped format to generate good signal. Use of fluorescent phenols of pKa < 7, such as halogenated coumarins, allows direct screening at neutral pH. The synthesis and characterisation of a set of nine different glycosides of 6-chloro-4-methylumbelliferone are described. The use of these substrates in a pooled format for screening of expressed metagenomic libraries yielded a "hit rate" of 1 in 60. Hits were then readily deconvoluted with the individual substrates in a single plate to identify specific activities within each clone. The use of such a collection of substrates greatly accelerates the screening process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration
NASA Astrophysics Data System (ADS)
Masugata, Katsumi; Shimizu, Yuichro; Fujioka, Yuhki; Kitamura, Iwao; Tanoue, Hisao; Arai, Kazuo
2004-12-01
To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named "bipolar pulse accelerator" was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density ≈25 A/cm2, duration ≈1.5 μs was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240 kV, duration 100 ns to the drift tube. Pulsed ion beam of current density ≈40 A/cm2, duration ≈50 ns was obtained at 41 mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness ≈500 nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.
2016-01-01
Mangrove crabs influence ecosystem processes through bioturbation and/or litter feeding. In Brazilian mangroves, the abundant and commercially important crab Ucides cordatus is the main faunal modifier of microtopography establishing up to 2 m deep burrows. They process more than 70% of the leaf litter and propagule production, thus promoting microbial degradation of detritus and benefiting microbe-feeding fiddler crabs. The accelerated nutrient turn-over and increased sediment oxygenation mediated by U. cordatus may enhance mangrove tree growth. Such positive feed-back loop was tested in North Brazil through a one year crab removal experiment simulating increased harvesting rates in a mature Rhizophora mangle forest. Investigated response parameters were sediment salinity, organic matter content, CO2 efflux rates of the surface sediment, and reduction potential. We also determined stipule fall of the mangrove tree R. mangle as a proxy for tree growth. Three treatments were applied to twelve experimental plots (13 m × 13 m each): crab removal, disturbance control and control. Within one year, the number of U. cordatus burrows inside the four removal plots decreased on average to 52% of the initial number. Despite this distinct reduction in burrow density of this large bioturbator, none of the measured parameters differed between treatments. Instead, most parameters were clearly influenced by seasonal changes in precipitation. Hence, in the studied R. mangle forest, abiotic factors seem to be more important drivers of ecosystem processes than factors mediated by U. cordatus, at least within the studied timespan of one year. PMID:27907093
Pülmanns, Nathalie; Mehlig, Ulf; Nordhaus, Inga; Saint-Paul, Ulrich; Diele, Karen
2016-01-01
Mangrove crabs influence ecosystem processes through bioturbation and/or litter feeding. In Brazilian mangroves, the abundant and commercially important crab Ucides cordatus is the main faunal modifier of microtopography establishing up to 2 m deep burrows. They process more than 70% of the leaf litter and propagule production, thus promoting microbial degradation of detritus and benefiting microbe-feeding fiddler crabs. The accelerated nutrient turn-over and increased sediment oxygenation mediated by U. cordatus may enhance mangrove tree growth. Such positive feed-back loop was tested in North Brazil through a one year crab removal experiment simulating increased harvesting rates in a mature Rhizophora mangle forest. Investigated response parameters were sediment salinity, organic matter content, CO2 efflux rates of the surface sediment, and reduction potential. We also determined stipule fall of the mangrove tree R. mangle as a proxy for tree growth. Three treatments were applied to twelve experimental plots (13 m × 13 m each): crab removal, disturbance control and control. Within one year, the number of U. cordatus burrows inside the four removal plots decreased on average to 52% of the initial number. Despite this distinct reduction in burrow density of this large bioturbator, none of the measured parameters differed between treatments. Instead, most parameters were clearly influenced by seasonal changes in precipitation. Hence, in the studied R. mangle forest, abiotic factors seem to be more important drivers of ecosystem processes than factors mediated by U. cordatus, at least within the studied timespan of one year.
High mobility La-doped BaSnO3 on non-perovskite MgO substrate
NASA Astrophysics Data System (ADS)
Kim, Youjung; Shin, Juyeon; Kim, Young Mo; Char, Kookrin
(Ba,La)SnO3 is a transparent perovskite oxide with high electron mobility and excellent oxygen stability. Field effect device with (Ba,La)SnO3 channel was reported to show good output characteristics on STO substrate. Here, we fabricated (Ba,La)SnO3\\ films and field effect devices with (Ba,La)SnO3 channel on non-perovskite MgO substrates, which are available in large size wafers. X-ray diffraction and transmission electron microscope (TEM) images of (Ba,La)SnO3\\ films on MgO substrates show that the films are epitaxial with many threading dislocations. (Ba,La)SnO3 exhibits the high mobility with 97.2 cm2/Vs at 2 % La doping on top of 150 nm thick BaSnO3 buffer layer. Excellent carrier modulation was observed in field effect devices. FET performances on MgO substrates are slightly better than those on SrTiO3 substrates in spite of the higher dislocation density on MgO than on SrTiO3 substrates. These high mobility BaSnO3 thin films and transistors on MgO substrates will accelerate development for applications in high temperature and high power electronics. Samsung Science and Technology Foundation.
UVB exposure does not accelerate rates of litter decomposition in a semiarid riparian ecosystem
USDA-ARS?s Scientific Manuscript database
Aboveground litter decomposition is controlled mainly by substrate quality and climate factors across terrestrial ecosystems, but photodegradation from exposure to high-intensity ultraviolet-B (UVB) radiation may also be important in arid and semi-arid environments. We investigated the interactive e...
15 CFR 990.53 - Restoration selection-developing restoration alternatives.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., including a natural recovery alternative. (2) Natural recovery. Trustees must consider a natural recovery... comprised of actions to directly restore the natural resources and services to baseline on an accelerated... allow recovery or restoration of the injured natural resources (e.g., replacing substrate or vegetation...
15 CFR 990.53 - Restoration selection-developing restoration alternatives.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., including a natural recovery alternative. (2) Natural recovery. Trustees must consider a natural recovery... comprised of actions to directly restore the natural resources and services to baseline on an accelerated... allow recovery or restoration of the injured natural resources (e.g., replacing substrate or vegetation...
15 CFR 990.53 - Restoration selection-developing restoration alternatives.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., including a natural recovery alternative. (2) Natural recovery. Trustees must consider a natural recovery... comprised of actions to directly restore the natural resources and services to baseline on an accelerated... allow recovery or restoration of the injured natural resources (e.g., replacing substrate or vegetation...
Warming accelerates decomposition of decades-old carbon in forest soils
Hopkins, F. M.; Torn, M. S.; Trumbore, S. E.
2012-06-11
Global climate carbon-cycle models predict acceleration of soil organic carbon losses to the atmosphere with warming, but the size of this feedback is poorly known. The temperature sensitivity of soil carbon decomposition is commonly determined by measuring changes in the rate of carbon dioxide (CO 2) production under controlled laboratory conditions. We added measurements of carbon isotopes in respired CO 2 to constrain the age of carbon substrates contributing to the temperature response of decomposition for surface soils from two temperate forest sites with very different overall rates of carbon cycling. Roughly one-third of the carbon respired at any temperaturemore » was fixed from the atmosphere more than 10 y ago, and the mean age of respired carbon reflected a mixture of substrates of varying ages. Consistent with global ecosystem model predictions, the temperature sensitivity of the carbon fixed more than a decade ago was the same as the temperature sensitivity for carbon fixed less than 10 y ago. However, we also observed an overall increase in the mean age of carbon respired at higher temperatures, even correcting for potential substrate limitation effects. The combination of several age constraints from carbon isotopes showed that warming had a similar effect on respiration of decades-old and younger (<10 y) carbon but a greater effect on decomposition of substrates of intermediate (between 7 and 13 y) age. Our results highlight the vulnerability of soil carbon to warming that is years-to-decades old, which makes up a large fraction of total soil carbon in forest soils globally.« less
Warming accelerates decomposition of decades-old carbon in forest soils.
Hopkins, Francesca M; Torn, Margaret S; Trumbore, Susan E
2012-06-26
Global climate carbon-cycle models predict acceleration of soil organic carbon losses to the atmosphere with warming, but the size of this feedback is poorly known. The temperature sensitivity of soil carbon decomposition is commonly determined by measuring changes in the rate of carbon dioxide (CO(2)) production under controlled laboratory conditions. We added measurements of carbon isotopes in respired CO(2) to constrain the age of carbon substrates contributing to the temperature response of decomposition for surface soils from two temperate forest sites with very different overall rates of carbon cycling. Roughly one-third of the carbon respired at any temperature was fixed from the atmosphere more than 10 y ago, and the mean age of respired carbon reflected a mixture of substrates of varying ages. Consistent with global ecosystem model predictions, the temperature sensitivity of the carbon fixed more than a decade ago was the same as the temperature sensitivity for carbon fixed less than 10 y ago. However, we also observed an overall increase in the mean age of carbon respired at higher temperatures, even correcting for potential substrate limitation effects. The combination of several age constraints from carbon isotopes showed that warming had a similar effect on respiration of decades-old and younger (<10 y) carbon but a greater effect on decomposition of substrates of intermediate (between 7 and 13 y) age. Our results highlight the vulnerability of soil carbon to warming that is years-to-decades old, which makes up a large fraction of total soil carbon in forest soils globally.
Effect of Macrogeometry on the Surface Topography of Dental Implants.
Naves, Marina Melo; Menezes, Helder Henrique Machado; Magalhães, Denildo; Ferreira, Jessica Afonso; Ribeiro, Sara Ferreira; de Mello, José Daniel Biasoli; Costa, Henara Lillian
2015-01-01
Because the microtopography of titanium implants influences the biomaterial-tissue interaction, surface microtexturing treatments are frequently used for dental implants. However, surface treatment alone may not determine the final microtopography of a dental implant, which can also be influenced by the implant macrogeometry. This work analyzed the effects on surface roughness parameters of the same treatment applied by the same manufacturer to implants with differing macro-designs. Three groups of titanium implants with different macro-designs were investigated using laser interferometry and scanning electron microscopy. Relevant surface roughness parameters were calculated for different regions of each implant. Two flat disks (treated and untreated) were also investigated for comparison. The tops of the threads and the nonthreaded regions of all implants had very similar roughness parameters, independent of the geometry of the implant, which were also very similar to those of flat disks treated with the same process. In contrast, the flanks and valleys of the threads presented larger irregularities (Sa) with higher slopes (Sdq) and larger developed surface areas (Sdr) on all implants, particularly for implants with threads with smaller heights. The flanks and valleys displayed stronger textures (Str), particularly on the implants with threads with larger internal angles. Parameters associated with the height of the irregularities (Sa), the slope of the asperities (Sdq), the presence of a surface texture (Str), and the developed surface area of the irregularities (Sdr) were significantly affected by the macrogeometry of the implants. Flat disks subjected to the same surface treatment as dental implants reproduced only the surface topography of the flat regions of the implants.
NASA Astrophysics Data System (ADS)
Hou, T.; Filley, T. R.; Berry, T.; Singh, S.; Hughes, M.; Tong, Y.; Papanicolaou, T.; Wacha, K.; Wilson, C. G.; Chaubey, I.
2017-12-01
The dynamics of raindrop-induced breakdown of soil aggregates, a critical factor in the initial process of surface erosion and lateral redistribution of soil, are strongly tied to land use intensity. What is unclear however is the relative control of rain and mechanical disturbance on the development of landscape-level heterogeneity in surface soil geochemistry. We used artificial rainfall simulated experiments including an aggregate stability test and time course rainfall-erosional test to evaluate the role of management intensity and micro-topography on the geochemistry of raindrop-liberated/mobilized particles from landscapes in southeastern Iowa. Comparing restored prairie, conservation tillage, and conventional tillage sites we found, and with a trend toward increasing tillage intensity, a decrease in aggregate stability and raindrop-liberated particles that were lower in organic carbon, nitrogen, and plant-derived biopolymers, while containing higher proportions of microbially-processed nitrogen than the raindrop stable aggregates. Time evolution of the geochemistry (e.g. elemental, stable isotope, and biopolymer composition) of transported soil particles exhibited distinct patterns based upon both position of the hillslope and oriented soil roughness. Additionally, in the restored prairie, raindrop liberated particles had identical geochemical composition to the raindrop stable aggregates. Our results demonstrate that agricultural sites under intensive tillage have not only a greater potential to liberate and mobilize soil particles during storms, but the mobilized particles will have a distinct chemical character based on tillage intensity, hillslope position and oriented roughness thus lead to a greater potential for landscape level heterogeneity in surface and buried soil chemistry upon mobilization and burial.
NASA Astrophysics Data System (ADS)
Stuurman, C. M.; Holt, J.; Levy, J.
2016-12-01
On Earth and Mars, debris-covered glaciers (DCGs) often exhibit arcuate ridges transverse to the flow direction. Additionally, there exists some evidence linking internal structure (which is controlled in part by climate) in DCGs with surface microtopography. A better understanding of the relationship between englacial debris bands, compressional stresses, and debris-covered glacier microtopography will augment understanding of formational environments and mechanisms for terrestrial and martian DCGs. In order to better understand relationships between DCG surface morphology and internal debris bands, we combine field observations with finite-element modeling techniques to relate internal structure of DCGs to their surface morphologies. A geophysical survey including time-domain electromagnetic and ground-penetrating radar techniques of the Galena Creek Rock Glacier, WY was conducted over two field seasons in 2015/2016. Geomorphic analysis by surface observation and photogrammetry, including examination of a cirque-based thermokarst, was used to guide and complement geophysical sounding methods. Very clean ice below a 1 m thick layer of debris was directly observed on the walls of a 40 m diameter thermokarst pond near the accumulation zone. An englacial debris band 0.7 m thick dipping 30o intersected the wall of the pond. Transverse ridges occur at varying ridge-to-ridge wavelengths at different locations on the glacier. The GPR data supports the idea that surface ridges correlate with the intersection of debris layers and the surface. Modelling evidence is consistent with the observation of ridges at debris-layer/surface intersections, with compressional stresses buckling ice up-stream of the debris band.
Dorrestein, Pieter C; Blackhall, Jonathan; Straight, Paul D; Fischbach, Michael A; Garneau-Tsodikova, Sylvie; Edwards, Daniel J; McLaughlin, Shaun; Lin, Myat; Gerwick, William H; Kolter, Roberto; Walsh, Christopher T; Kelleher, Neil L
2006-02-14
For screening a pool of potential substrates that load carrier domains found in nonribosomal peptide synthetases, large molecule mass spectrometry is shown to be a new, unbiased assay. Combining the high resolving power of Fourier transform mass spectrometry with the ability of adenylation domains to select their own substrates, the mass change that takes place upon formation of a covalent intermediate thus identifies the substrate. This assay has an advantage over traditional radiochemical assays in that many substrates, the substrate pool, can be screened simultaneously. Using proteins on the nikkomycin, clorobiocin, coumermycin A1, yersiniabactin, pyochelin, and enterobactin biosynthetic pathways as proof of principle, preferred substrates are readily identified from substrate pools. Furthermore, this assay can be used to provide insight into the timing of tailoring events of biosynthetic pathways as demonstrated using the bromination reaction found on the jamaicamide biosynthetic pathway. Finally, this assay can provide insight into the role and function of orphan gene clusters for which the encoded natural product is unknown. This is demonstrated by identifying the substrates for two NRPS modules from the pksN and pksJ genes that are found on an orphan NRPS/PKS hybrid cluster from Bacillus subtilis. This new assay format is especially timely for activity screening in an era when new types of thiotemplate assembly lines that defy classification are being discovered at an accelerating rate.
Triangular Graphene Grain Growth on Cube-Textured Cu Substrates
2011-01-01
rate of CuOx decreases with decreasing H 2 partial pressure. [ 32 ] According to the Cu-O phase diagram, [ 33 ] the eutectic temperature of Cu-CuO and...accelerating voltage of 2 KeV. The electron backscatter diffraction patterns (EBSP) were used to examine recrystallization and grain orientation of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junginger, Tobias; Abidi, S. H.; Maffett, R. D.
Here, the performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry H entry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μSR) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing atmore » 1400°C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure H entry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.« less
NASA Astrophysics Data System (ADS)
Iwamatsu, Masao
2017-10-01
The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids on a flat and a spherical rough and textured substrate is theoretically studied in the capillary-controlled spreading regime. A droplet whose scale is much larger than that of the roughness of substrate is considered. The equilibrium contact angle on a rough substrate is modeled by the Wenzel and the Cassie-Baxter model. Only the viscous energy dissipation within the droplet volume is considered, and that within the texture of substrate by imbibition is neglected. Then, the energy balance approach is adopted to derive the evolution equation of the contact angle. When the equilibrium contact angle vanishes, the relaxation of dynamic contact angle θ of a droplet obeys a power-law decay θ ˜t-α except for the Newtonian and the non-Newtonian shear-thinning liquid of the Wenzel model on a spherical substrate. The spreading exponent α of the non-Newtonian shear-thickening liquid of the Wenzel model on a spherical substrate is larger than others. The relaxation of the Newtonian liquid of the Wenzel model on a spherical substrate is even faster showing the exponential relaxation. The relaxation of the non-Newtonian shear-thinning liquid of Wenzel model on a spherical substrate is fastest and finishes within a finite time. Thus, the topography (roughness) and the topology (flat to spherical) of substrate accelerate the spreading of droplet.
An artificial transport metabolon facilitates improved substrate utilization in yeast.
Thomik, Thomas; Wittig, Ilka; Choe, Jun-Yong; Boles, Eckhard; Oreb, Mislav
2017-11-01
Efficient substrate utilization is the first and most important prerequisite for economically viable production of biofuels and chemicals by microbial cell factories. However, production rates and yields are often compromised by low transport rates of substrates across biological membranes and their diversion to competing pathways. This is especially true when common chassis organisms are engineered to utilize nonphysiological feedstocks. Here, we addressed this problem by constructing an artificial complex between an endogenous sugar transporter and a heterologous xylose isomerase in Saccharomyces cerevisiae. Direct feeding of the enzyme through the transporter resulted in acceleration of xylose consumption and substantially diminished production of xylitol as an undesired side product, with a concomitant increase in the production of ethanol. This underlying principle could also likely be implemented in other biotechnological applications.
Junction-based field emission structure for field emission display
Dinh, Long N.; Balooch, Mehdi; McLean, II, William; Schildbach, Marcus A.
2002-01-01
A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.
Charging of particles on a surface
NASA Astrophysics Data System (ADS)
Heijmans, Lucas; Nijdam, Sander
2016-09-01
This contribution focusses on the seemingly easy problem of the charging of micrometer sized particles on a substrate in a plasma. This seems trivial, because much is known about both the charging of surfaces near a plasma and of particles in the plasma bulk. The problem, however, becomes much more complicated when the particle is on the substrate surface. The charging currents to the particle are then highly altered by the substrate plasma sheath. Currently there is no consensus in literature about the resulting particle charge. We shall present both experimental measurements and numerical simulations of the charge on these particles. The experimental results are acquired by measuring the particle acceleration in an external electric field. For the simulations we have used our specially developed model. We shall compare these results to other estimates found in literature.
NASA Astrophysics Data System (ADS)
Li, Y.; Chen, J.; Xing, Y.; Song, J.
2017-03-01
The microscale inorganic light-emitting diodes (μ-ILEDs) create novel opportunities in biointegrated applications such as wound healing acceleration and optogenetics. Analytical expressions, validated by finite element analysis, are obtained for the temperature increase of a rectangular μ-ILED device on an orthotropic substrate, which could offer an appealing advantage in controlling the heat flow direction to achieve the goal in thermal management. The influences of various parameters (e.g., thermal conductivities of orthotropic substrate, loading parameters) on the temperature increase of the μ-ILED are investigated based on the obtained closed-form solutions. These results provide a novel route to control the temperature distribution in the μ-ILED system and provide easily interpretable guidelines to minimize the adverse thermal effects.
Review of SERS Substrates for Chemical Sensing
Mosier-Boss, Pamela A.
2017-01-01
The SERS effect was initially discovered in the 1970s. Early research focused on understanding the phenomenon and increasing enhancement to achieve single molecule detection. From the mid-1980s to early 1990s, research started to move away from obtaining a fundamental understanding of the phenomenon to the exploration of analytical applications. At the same time, significant developments occurred in the field of photonics that led to the advent of inexpensive, robust, compact, field-deployable Raman systems. The 1990s also saw rapid development in nanoscience. This convergence of technologies (photonics and nanoscience) has led to accelerated development of SERS substrates to detect a wide range of chemical and biological analytes. It would be a monumental task to discuss all the different kinds of SERS substrates that have been explored. Likewise, it would be impossible to discuss the use of SERS for both chemical and biological detection. Instead, a review of the most common metallic (Ag, Cu, and Au) SERS substrates for chemical detection only is discussed, as well as SERS substrates that are commercially available. Other issues with SERS for chemical detection have been selectivity, reversibility, and reusability of the substrates. How these issues have been addressed is also discussed in this review. PMID:28594385
Dense blocks of energetic ions driven by multi-petawatt lasers
Weng, S. M.; Liu, M.; Sheng, Z. M.; Murakami, M.; Chen, M.; Yu, L. L.; Zhang, J.
2016-01-01
Laser-driven ion accelerators have the advantages of compact size, high density, and short bunch duration over conventional accelerators. Nevertheless, it is still challenging to simultaneously enhance the yield and quality of laser-driven ion beams for practical applications. Here we propose a scheme to address this challenge via the use of emerging multi-petawatt lasers and a density-modulated target. The density-modulated target permits its ions to be uniformly accelerated as a dense block by laser radiation pressure. In addition, the beam quality of the accelerated ions is remarkably improved by embedding the target in a thick enough substrate, which suppresses hot electron refluxing and thus alleviates plasma heating. Particle-in-cell simulations demonstrate that almost all ions in a solid-density plasma of a few microns can be uniformly accelerated to about 25% of the speed of light by a laser pulse at an intensity around 1022 W/cm2. The resulting dense block of energetic ions may drive fusion ignition and more generally create matter with unprecedented high energy density. PMID:26924793
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mello, S. L. A., E-mail: smello@ufv.br; Codeço, C. F. S.; Magnani, B. F.
2016-06-15
We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up tomore » 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.« less
Tyrosine phosphorylation switching of a G protein.
Li, Bo; Tunc-Ozdemir, Meral; Urano, Daisuke; Jia, Haiyan; Werth, Emily G; Mowrey, David D; Hicks, Leslie M; Dokholyan, Nikolay V; Torres, Matthew P; Jones, Alan M
2018-03-30
Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr 166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr 166 -dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr 166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr 166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr 166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching." © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Yang, Yufei; Chen, Wei; Wang, Jiayu; Yang, Ziyu; Wang, Shenlin; Xiao, Xianjin; Li, Mengyuan
2018-01-01
Abstract Lambda exonuclease (λ exo) plays an important role in the resection of DNA ends for DNA repair. Currently, it is also a widely used enzymatic tool in genetic engineering, DNA-binding protein mapping, nanopore sequencing and biosensing. Herein, we disclose two noncanonical properties of this enzyme and suggest a previously undescribed hydrophobic interaction model between λ exo and DNA substrates. We demonstrate that the length of the free portion of the substrate strand in the dsDNA plays an essential role in the initiation of digestion reactions by λ exo. A dsDNA with a 5′ non-phosphorylated, two-nucleotide-protruding end can be digested by λ exo with very high efficiency. Moreover, we show that when a conjugated structure is covalently attached to an internal base of the dsDNA, the presence of a single mismatched base pair at the 5′ side of the modified base may significantly accelerate the process of digestion by λ exo. A detailed comparison study revealed additional π–π stacking interactions between the attached label and the amino acid residues of the enzyme. These new findings not only broaden our knowledge of the enzyme but will also be very useful for research on DNA repair and in vitro processing of nucleic acids. PMID:29490081
NASA Astrophysics Data System (ADS)
Surmenev, Roman A.; Surmeneva, Maria A.; Grubova, Irina Yu.; Chernozem, Roman V.; Krause, Bärbel; Baumbach, Tilo; Loza, Kateryna; Epple, Matthias
2017-08-01
A pure hydroxyapatite (HA) target was used to prepare the biocompatible coating of HA on the surface of a polytetrafluorethylene (PTFE) substrate, which was placed on the same substrate holder with technically pure titanium (Ti) in the single deposition runs by radio-frequency (RF) magnetron sputtering. The XPS, XRD and FTIR analyses of the obtained surfaces showed that for all substrates, instead of the HA coating deposition, the coating of a mixture of calcium carbonate and calcium fluoride was grown. According to SEM investigations, the surface of PTFE was etched, and the surface topography of uncoated Ti was preserved after the depositions. The FTIR results reveal no phosphate bonds; only calcium tracks were observed in the EDX-spectra on the surface of the coated PTFE substrates. Phosphate oxide (V), which originated from the target, could be removed using a vacuum pump system, or no phosphate-containing bonds could be formed on the substrate surface because of the severe substrate bombardment process, which prevented the HA coating deposition. The observed results may be connected with the surface re-sputtering effect of the growing film by high-energy negatively charged ions (most probably oxygen or fluorine), which are accelerated in the cathode dark sheath.
Rampello, Anthony J; Glynn, Steven E
2017-03-24
The i-AAA protease is a component of the mitochondrial quality control machinery that regulates respiration, mitochondrial dynamics, and protein import. The protease is required to select specific substrates for degradation from among the diverse complement of proteins present in mitochondria, yet the rules that govern this selection are unclear. Here, we reconstruct the yeast i-AAA protease, Yme1p, to examine the in vitro degradation of two intermembrane space chaperone subunits, Tim9 and Tim10. Yme1p degrades Tim10 more rapidly than Tim9 despite high sequence and structural similarity, and loss of Tim10 is accelerated by the disruption of conserved disulfide bonds within the substrate. An unstructured N-terminal region of Tim10 is necessary and sufficient to target the substrate to the protease through recognition of a short phenylalanine-rich motif, and the presence of similar motifs in other small Tim proteins predicts robust degradation by the protease. Together, these results identify the first specific degron sequence within a native i-AAA protease substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ebner, Jacqueline H; Labatut, Rodrigo A; Lodge, Jeffrey S; Williamson, Anahita A; Trabold, Thomas A
2016-06-01
Anaerobic digestion of commercial food waste is a promising alternative to landfilling commercial food waste. This study characterized 11 types of commercial food wastes and 12 co-digestion blends. Bio-methane potential, biodegradable fraction, and apparent first-order hydrolysis rate coefficients were reported based upon biochemical methane potential (BMP) assays. Food waste bio-methane potentials ranged from 165 to 496 mL CH4/g VS. Substrates high in lipids or readily degradable carbohydrates showed the highest methane production. Average bio-methane potential observed for co-digested substrates was -5% to +20% that of the bio-methane potential of the individual substrates weighted by VS content. Apparent hydrolysis rate coefficients ranged from 0.19d(-1) to 0.65d(-1). Co-digested substrates showed an accelerated apparent hydrolysis rate relative to the weighted average of individual substrate rates. These results provide a database of key bio-digestion parameters to advance modeling and utilization of commercial food waste in anaerobic digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.
The AXAF technology program: The optical flats tests
NASA Technical Reports Server (NTRS)
Williams, A. C.; Harper, J. D.; Reily, J. C.; Weisskopf, M. C.; Wyman, C. L.; Zombeck, M.
1984-01-01
The results of a technology program aimed at determining the limits of surface polishing for reflecting X-ray telescopes is presented. This program is part of the major task of developing the Advanced X-ray Astrophysical Facility (AXAF). By studying the optical properties of state-of-the-art polished flat surfaces, conclusions were drawn as to the potential capability of AXAF. Surface microtopography of the flats as well as their figure are studied by X-ray, visual, and mechanical techniques. These techniques and their results are described. The employed polishing techniques are more than adequate for the specifications of the AXAF mirrors.
Iversen, C. M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Childs, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Norby, R. J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Garrett, A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Martin, A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Spence, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Ontl, T. A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
2017-01-01
This data set reports fine-root peak growth and standing crop measurements from a forested, ombrotrophic bog as determined using non-destructive minirhizotron technology. Minirhizotron images were collected throughout the growing seasons of 2011 and 2012 at the southern and northern ends of the S1 bog across gradients of tree density in paired hummock and hollow microtopography. The dominant woody species in the bog, and focus of the investigation, were trees Picea mariana and Larix laricina, and ericaceous shrubs Rhododendron groenlandicum and Chamaedaphne calyculata.
An instrument system for long-term sediment transport studies on the continental shelf
Butman, Bradford; Folger, David W.
1979-01-01
A bottom-mounted instrument system has been designed and built to monitor processes of bottom sediment movement on the continental shelf. The system measures bottom current speed and direction, pressure, temperature, and light transmission and photographs the bottom. The system can be deployed for periods of 2–6 months to monitor intermitent processes of sediment movement such as storms and to assess seasonal variability. Deployments of the system on the U.S. east coast continental shelf show sediment resuspension and changes in bottom microtopography due to surface waves, tidal currents, and storms.
Connections between transport in events and transport at landscape-structuring timescales
NASA Astrophysics Data System (ADS)
Harman, C. J.; Lohse, K. A.; Troch, P. A.; Sivapalan, M.
2012-12-01
Complex spatial and temporal variability can arise in the critical zone when feedbacks occur at multiple time scales between transported materials and the landscape and soils through which it is transported. This is clearly illustrated where geomorphic transport processes, soil development, and vegetation interact in semi-arid shrublands. Here we use soil and terrain data and a numerical model of overland flow on semi-arid hillslopes to show that microtopography can generate spatial variations in the dominance of transport processes operating at different timescales, with consequences for the direction of resource redistribution between functional units within these ecosystems. Conceptual and numerical models of the redistribution of mineral, organic and water have mostly been developed on low-gradient alluvial fans and pediments. These have focused on the fluvial transport of resources from the inter-spaces between shrub canopies to the areas below the canopy in those few storm events that generate significant run-off. These processes are believed to produce a mosaic of resource islands in which biota are concentrated. We investigated the spatial distribution of soil properties (including organic matter and soil hydraulic properties), vegetation, and microtopography on two steeper hillslopes of contrasting lithology (one granite, one schist) in the Sonoran desert foothills of the Catalina Mountains. Three hypotheses were developed through iteration between fieldwork and data analysis. These tested whether there were significant differences in soil composition and hydraulic properties below- and between-canopy, whether the surface soil organic matter was directly associated with above-ground biomass, and whether soil organic matter distributions measured along transects below shrubs showed downslope asymmetries indicative of the processes that create them. Data from these sites were used in a numerical model to investigate how these structures could be related to the population of runoff events and processes that generate them. The results suggest that over the long term, slope-dependent transport processes (such as rainsplash, bioturbation and trampling) seem to play an important role in these steeper hillslopes in inverting the flow of resources. Over many storm and inter-storm periods, soil organic matter is transported downslope in plumes extending at least two canopy radii downslope from below woody-shrub canopies into the inter-space. This pattern was particularly evident where microtopography and soil properties create micro-sites protected from fluvial transport. While many of the patterns observed are similar to those from more stable geomorphic surfaces, the results suggest that long-term downslope transport processes in sloping terrain can disrupt the autogenic processes that reinforce the redistribution of resources under shrubs. This result has important implications for our understanding of the relationship between ecosystem function and landscape-scale transport in these environments.
NASA Astrophysics Data System (ADS)
Martin, Y. E.; Johnson, E. A.; Chaikina, O.
2013-10-01
During the cycle of forest disturbance, regeneration, and maturity, tree mortality leading to topple is a regular occurrence. When tree topple occurs relatively soon after mortality and if the tree has attained some threshold diameter at breast height (dbh) at the time of death, then notable amounts of soil may be upheaved along with the root wad. This upheaval may result in sediment transfers and soil production. A combination of field evidence and numerical modeling is used herein to gain insights regarding the temporal dynamics of tree topple, associated root throw processes, and pit-mound microtopography. Results from our model of tree population dynamics demonstrate temporal patterns in root throw processes in subalpine forests of the Canadian Rockies, a region in which forests are affected largely by wildfire disturbance. As the forest regenerates after disturbance, the new cohort of trees has to reach a critical dbh before significant root plate upheaval can occur; in the subalpine forests of the Canadian Rockies, this may take up to ~ 102 years. Once trees begin to reach this critical dbh for root plate upheaval, a period of sporadic root throw arises that is caused by mortality of trees during competition. In due course, another wildfire will occur on the landscape and a period of much increased root throw activity then takes place for the next several decades; tree sizes and, therefore, the amount of sediment disturbance will be greater the longer the time period since the previous fire. Results of previous root throw studies covering a number of regional settings are used to guide an exercise in diffusion modeling with the aim of defining a range of reasonable diffusion coefficients for pit-mound degradation; the most appropriate values to fit the field data ranged from 0.01 m2 y- 1 to 0.1 m2 y- 1. A similar exercise is then undertaken that is guided by our field observations in subalpine forests of the Canadian Rockies. For these forests, the most appropriate range of diffusion coefficients is in the range 0.001 m2 y- 1 to 0.01 m2 y- 1. Finally, the model of tree population dynamics is combined with the model of pit-mound degradation to demonstrate the integration of these combined processes on the appearance of pit-mound microtopography and soil bioturbation in subalpine forests of the Canadian Rockies. We conclude that the appearance of notable pit-mound microtopography is limited to very specific time periods and is not visible for much of the time. Most of the hillslope plot is affected by root throw during the 1000-year model run time.
Liou, Yen-Chen Maggie; Yang, Jyisy; Fasasi, Ayuba; Griffiths, Peter R
2011-05-01
The catalytic activity of silver nanoparticles (AgNPs) on a germanium substrate is reported. Para-nitrothiophenol (pNTP) that had been adsorbed on this substrate is converted to p-aminothiophenol (pATP) under very mild reaction conditions, such as simply soaking in water. The AgNPs may be formed either by physical vapor deposition or by electroless deposition from a solution of silver nitrate. Analogous reactions were not observed on copper nanoparticles on germanium or AgNPs on silicon or zinc selenide even though very slow conversion of pNTP to pATP was observed with Au nanoparticles (AuNPs) on Ge under controlled reaction conditions. The effects of factors that could influence the catalytic reaction were examined; these included the particle size of the AgNPs, reaction temperature, concentration and chemical nature of other ions present in the solution, the pH of the water, and the nature of the substrate. The reaction rate was approximately independent of the particle size for AgNPs between 50 and 150 nm in diameter. Increasing the temperature accelerates the reaction significantly; at temperatures above 40 °C, the adsorbed pNTP is completely converted by water within five minutes. Not surprisingly, the reaction rate was increased as the pH of the solution was decreased, as the reduction of each nitro group to an amino group requires six protons. The presence of Br(-) and I(-) ions accelerated the reaction to the point that even at 4 °C, the conversion of the nitro group was still observable, while solutions containing chloride ions had to be heated to 40 °C before their effect became apparent. Apparently, Br(-) and I(-) ions remove the oxide layer from the surface of the germanium substrate, facilitating transfer of electrons from the germanium to the nitro group of the pNTP.
Guo, Rongrong; Zhang, Shasha; Xiao, Miao; Qian, Fuping; He, Zuhong; Li, Dan; Zhang, Xiaoli; Li, Huawei; Yang, Xiaowei; Wang, Ming; Chai, Renjie; Tang, Mingliang
2016-11-01
In order to govern cell-specific behaviors in tissue engineering for neural repair and regeneration, a better understanding of material-cell interactions, especially the bioelectric functions, is extremely important. Graphene has been reported to be a potential candidate for use as a scaffold and neural interfacing material. However, the bioelectric evolvement of cell membranes on these conductive graphene substrates remains largely uninvestigated. In this study, we used a neural stem cell (NSC) model to explore the possible changes in membrane bioelectric properties - including resting membrane potentials and action potentials - and cell behaviors on graphene films under both proliferation and differentiation conditions. We used a combination of single-cell electrophysiological recordings and traditional cell biology techniques. Graphene did not affect the basic membrane electrical parameters (capacitance and input resistance), but resting membrane potentials of cells on graphene substrates were more strongly negative under both proliferation and differentiation conditions. Also, NSCs and their progeny on graphene substrates exhibited increased firing of action potentials during development compared to controls. However, graphene only slightly affected the electric characterizations of mature NSC progeny. The modulation of passive and active bioelectric properties on the graphene substrate was accompanied by enhanced NSC differentiation. Furthermore, spine density, synapse proteins expressions and synaptic activity were all increased in graphene group. Modeling of the electric field on conductive graphene substrates suggests that the electric field produced by the electronegative cell membrane is much higher on graphene substrates than that on control, and this might explain the observed changes of bioelectric development by graphene coupling. Our results indicate that graphene is able to accelerate NSC maturation during development, especially with regard to bioelectric evolvement. Our findings provide a fundamental understanding of the role of conductive materials in tuning the membrane bioelectric properties in a graphene model and pave the way for future studies on the development of methods and materials for manipulating membrane properties in a controllable way for NSC-based therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gastric emptying and orocaecal transit time of meals containing lactulose or inulin in men.
Clegg, Miriam; Shafat, Amir
2010-08-01
The H(2) breath test is ideal for orocaecal transit time (OCTT) measurement, as it is non-invasive and inexpensive. Indigestible substrates added to a test meal are metabolised by the colonic bacteria, resulting in the production of H(2) which is detected in end-exhalation breath. However, the substrates themselves can alter the transit times in the gastrointestinal tract. The aim of the present study is to compare OCTT and gastric emptying (GE) when lactulose in liquid (L-L), solid lactulose (L-S) and solid inulin (IN-S) are added to a test meal, and subsequently, to examine if inulin alters GE. Firstly, ten male volunteers were tested on three occasions. Volunteers ate a pancake breakfast containing 100 mg of (13)C-octanoic acid and either 12 g of L-L, 12 g of L-S or 12 g of IN-S in a randomised order. Secondly, seven male volunteers were tested twice with meals containing either 12 g of IN-S or no substrate (NO-S). L-L induced the shortest OCTT (85.3 (sd 42.8) min) compared with L-S (162.4 (sd 62.6) min) and inulin (292.4 (sd 66.7) min; P = 0.007). GE half-time and lag phase (L-L: 61 (sd 9); L-S: 57 (sd 10); IN-S: 52 (sd 10) min; P = 0.005) were also affected, with L-L being the slowest. Thirdly, inulin reduced GE lag and latency phases (P < 0.05) compared with NO-S. Lactulose accelerates OCTT but delays GE compared with inulin. Inulin accelerates the onset of stomach emptying, but it has no effect on GE half-time. For these reasons, inulin is the preferred substrate for the H(2) breath test.
Djukic, Ika; Zehetner, Franz; Watzinger, Andrea; Horacek, Micha; Gerzabek, Martin H
2013-01-01
Litter decomposition represents one of the largest fluxes in the global terrestrial carbon cycle. The aim of this study was to improve our understanding of the factors governing decomposition in alpine ecosystems and how their responses to changing environmental conditions change over time. Our study area stretches over an elevation gradient of 1000 m on the Hochschwab massif in the Northern Limestone Alps of Austria. We used high-to-low elevation soil translocation to simulate the combined effects of changing climatic conditions, shifting vegetation zones, and altered snow cover regimes. In original and translocated soils, we conducted in situ decomposition experiments with maize litter and studied carbon turnover dynamics as well as temporal response patterns of the pathways of carbon during microbial decomposition over a 2-year incubation period. A simulated mean annual soil warming (through down-slope translocation) of 1.5 and 2.7 °C, respectively, resulted in a significantly accelerated turnover of added maize carbon. Changes in substrate quantity and quality in the course of the decomposition appeared to have less influence on the microbial community composition and its substrate utilization than the prevailing environmental/site conditions, to which the microbial community adapted quickly upon change. In general, microbial community composition and function significantly affected substrate decomposition rates only in the later stage of decomposition when the differentiation in substrate use among the microbial groups became more evident. Our study demonstrated that rising temperatures in alpine ecosystems may accelerate decomposition of litter carbon and also lead to a rapid adaptation of the microbial communities to the new environmental conditions. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Lutter, Christoph; Nothhaft, Matthias; Rzany, Alexander; Garlichs, Christoph D; Cicha, Iwona
2015-01-01
In coronary artery disease, highly stenosed arteries are frequently treated by stent implantation, which thereafter necessitates a dual-antiplatelet therapy (DAPT) in order to prevent stent-thrombosis. We hypothesized that specific patterns of microstructures on stents can accelerate endothelialisation thereby reducing their thrombogenicity and the DAPT duration. Differently designed, 2-5 μm high elevations or hollows were lithographically etched on silicon plates, subsequently coated with silicon carbide. Smooth silicon plates and bare metal substrates were used as controls. To assess attachment and growth of human umbilical vein endothelial cells under static or flow conditions, actin cytoskeleton was visualised with green phalloidin. Endothelial migration was assessed in a modified barrier assay. To investigate surface thrombogenicity, platelets were incubated on the structured surfaces in static and flow conditions, and visualised with fluorescein-conjugated P-selectin antibody. Images were taken with incident-light fluorescent microscope for non-transparent objects. Compared to smooth surface, flat cubic elevations (5 μm edge length) improved endothelial cell attachment and growth under static and dynamic conditions, whereas smaller, spiky structures (2 μm edge length) had a negative influence on endothelialisation. Endothelial cell migration was fastest on flat cubic elevations, hollows, and smooth surfaces, whereas spiky structures and bare metal had a negative effect on endothelial migration. Thrombogenicity assays under static and flow conditions showed that platelet adhesion was reduced on the flat elevations and the smooth surface, as compared to the spiky structures, the hollow design and the bare metal substrates. Surface microstructures strongly influence endothelialisation of substrates. Designing stents with surface topography which accelerates endothelialisation and reduces thrombogenicity may be of clinical benefit by improving the safety profile of coronary interventions.
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1981-01-01
Encapsulant materials and processes for the production of cost-effective, long-life solar cell modules were investigated. The following areas were explored: (1) soil resistant surface treatment; (2) corrosion protecting coatings from mild steel substrates; (3) primers for bonding module interfaces; and (4) RS/4 accelerated aging of candidate encapsulation compounds
USDA-ARS?s Scientific Manuscript database
One of the most critical stages of conversion of agricultural waste biomass into biofuels employs hydrolysis reactions between highly specific enzymes and matching substrates (e.g. corn stover cellulose with cellulase) that produce soluble sugars, which then could be converted into ethanol. Despite ...
NASA Astrophysics Data System (ADS)
Forsythe, J. G.; Weber, A. L.
2017-07-01
We report a new process for robust peptide bond synthesis in the pH 6–10 range that involves dry-down heating of amino acids in the presence of glycerol and bicarbonate (substrates: L-alanine, L-2-aminobutyric acid, β-alanine, isoserine).
Durable soy-based adhesive dispersions
James M. Wescott; Amy Traska; Charles R. Frihart; Linda Lorenz
2005-01-01
An important aspect of any adhesive bond is that the bond maintains its integrity during its end use. Epoxies form highly durable bonds with many substrates but are usually not considered capable of forming completely durable bonds with wood by standard accelerated tests. However, epoxies are sold for wood boat construction, and some data have indicated that epoxies...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori
2013-04-19
In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was lessmore » than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.« less
Notch-modifying xylosyltransferase-substrate complexes support an SNi-like retaining mechanism
Yu, Hongjun; Takeuchi, Megumi; LeBarron, Jamie; Kantharia, Joshua; London, Erwin; Bakker, Hans; Haltiwanger, Robert S.; Li, Huilin; Takeuchi, Hideyuki
2015-01-01
A major remaining question in glycobiology is how a glycosyltransferase (GT) that retains the anomeric linkage of a sugar catalyzes the reaction. Xylosideα1–3 Xylosyltransferase (XXYLT1) is a retaining GT that regulates Notch receptor activation by adding xylose to the Notch extracellular domain. Here, using natural acceptor and donor substrates and active Mus musculus XXYLT1, we report a series of crystallographic snapshots along the reaction, including an unprecedented natural and competent Michaelis reaction complex for retaining enzymes. These structures strongly support the SNi-like reaction as the retaining mechanism for XXYLT1. Unexpectedly the Epidermal Growth Factor-like repeat acceptor substrate undergoes a large conformational change upon binding to the active site, providing a structural basis for substrate specificity. Our improved understanding of this retaining enzyme will accelerate the design of retaining GT inhibitors that can modulate Notch activity in pathological situations where dysregulation of Notch is known to cause cancer or developmental disorders. PMID:26414444
NASA Astrophysics Data System (ADS)
Junginger, T.; Abidi, S. H.; Maffett, R. D.; Buck, T.; Dehn, M. H.; Gheidi, S.; Kiefl, R.; Kolb, P.; Storey, D.; Thoeng, E.; Wasserman, W.; Laxdal, R. E.
2018-03-01
The performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry Hentry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μ SR ) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing at 1400 °C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure Hentry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.
Experiments and simulation of the growth of droplets on a surface (breath figures)
NASA Astrophysics Data System (ADS)
Fritter, Daniela; Knobler, Charles M.; Beysens, Daniel A.
1991-03-01
Detailed experiments are reported of the growth of droplets when water vapor condenses from a saturated carrier gas onto a hydrophobic plane substrate. We have investigated the effects of the carrier-gas flow velocity, the nature of the gas, the experimental geometry, and heat transfer through the substrate. Individual drops grow according to a power law with exponent μ=1/3. At high flow velocities, the temperature of the substrate can rise significantly, which lowers the condensation rate and leads to lower apparent growth-law exponents. A self-similar regime is reached when droplets interact by coalescences. The coalescences continuously rescale the pattern, produce spatial correlations between the droplets, and accelerate the growth, leading to a power law with an exponent μ0=3μ. The experiments are compared to predictions of scaling laws and to simulations.
Hösel, Markus; Angmo, Dechan; Søndergaard, Roar R.; dos Reis Benatto, Gisele A.; Carlé, Jon E.; Jørgensen, Mikkel
2014-01-01
The fabrication of substrates and superstrates prepared by scalable roll‐to‐roll methods is reviewed. The substrates and superstrates that act as the flexible carrier for the processing of functional organic electronic devices are an essential component, and proposals are made about how the general availability of various forms of these materials is needed to accelerate the development of the field of organic electronics. The initial development of the replacement of indium‐tin‐oxide (ITO) for the flexible carrier materials is described and a description of how roll‐to‐roll processing development led to simplification from an initially complex make‐up to higher performing materials through a more simple process is also presented. This process intensification through process simplification is viewed as a central strategy for upscaling, increasing throughput, performance, and cost reduction. PMID:27980893
Deng, Yongcui; Cui, Xiaoyong; Hernández, Marcela; Dumont, Marc G
2014-01-01
The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo) on the Qinghai-Tibetan Plateau, the world's highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance), Actinobacteria (17.3%) and Bacteroidetes (11%) had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1-10%). In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales). Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta) and methanotrophs (mainly Methylocystis) compared with the other two wetlands. Principal coordinate analysis (PCoA) indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of the Qinghai-Tibetan Plateau provide a valuable background for further studies on biogeochemical processes in this distinct ecosystem.
Deng, Yongcui; Cui, Xiaoyong; Hernández, Marcela; Dumont, Marc G.
2014-01-01
The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo) on the Qinghai-Tibetan Plateau, the world’s highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance), Actinobacteria (17.3%) and Bacteroidetes (11%) had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1–10%). In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales). Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta) and methanotrophs (mainly Methylocystis) compared with the other two wetlands. Principal coordinate analysis (PCoA) indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of the Qinghai-Tibetan Plateau provide a valuable background for further studies on biogeochemical processes in this distinct ecosystem. PMID:25078273
Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping
NASA Astrophysics Data System (ADS)
Rapinel, Sébastien; Hubert-Moy, Laurence; Clément, Bernard
2015-05-01
Although wetlands play a key role in controlling flooding and nonpoint source pollution, sequestering carbon and providing an abundance of ecological services, the inventory and characterization of wetland habitats are most often limited to small areas. This explains why the understanding of their ecological functioning is still insufficient for a reliable functional assessment on areas larger than a few hectares. While LiDAR data and multispectral Earth Observation (EO) images are often used separately to map wetland habitats, their combined use is currently being assessed for different habitat types. The aim of this study is to evaluate the combination of multispectral and multiseasonal imagery and LiDAR data to precisely map the distribution of wetland habitats. The image classification was performed combining an object-based approach and decision-tree modeling. Four multispectral images with high (SPOT-5) and very high spatial resolution (Quickbird, KOMPSAT-2, aerial photographs) were classified separately. Another classification was then applied integrating summer and winter multispectral image data and three layers derived from LiDAR data: vegetation height, microtopography and intensity return. The comparison of classification results shows that some habitats are better identified on the winter image and others on the summer image (overall accuracies = 58.5 and 57.6%). They also point out that classification accuracy is highly improved (overall accuracy = 86.5%) when combining LiDAR data and multispectral images. Moreover, this study highlights the advantage of integrating vegetation height, microtopography and intensity parameters in the classification process. This article demonstrates that information provided by the synergetic use of multispectral images and LiDAR data can help in wetland functional assessment
Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China
NASA Astrophysics Data System (ADS)
Yang, Lei; Wei, Wei; Chen, Liding; Mo, Baoru
2012-12-01
SummarySoil moisture is an effective water source for plant growth in the semi-arid Loess Plateau of China. Characterizing the response of deep soil moisture to land use and afforestation is important for the sustainability of vegetation restoration in this region. In this paper, the dynamics of soil moisture were quantified to evaluate the effect of land use on soil moisture at a depth of 2 m. Specifically, the gravimetric soil moisture content was measured in the soil layer between 0 and 8 m for five land use types in the Longtan catchment of the western Loess Plateau. The land use types included traditional farmland, native grassland, and lands converted from traditional farmland (pasture grassland, shrubland and forestland). Results indicate that the deep soil moisture content decreased more than 35% after land use conversion, and a soil moisture deficit appeared in all types of land with introduced vegetation. The introduced vegetation decreased the soil moisture content to levels lower than the reference value representing no human impact in the entire 0-8 m soil profile. No significant differences appeared between different land use types and introduced vegetation covers, especially in deeper soil layers, regardless of which plant species were introduced. High planting density was found to be the main reason for the severe deficit of soil moisture. Landscape management activities such as tillage activities, micro-topography reconstruction, and fallowed farmland affected soil moisture in both shallow and deep soil layers. Tillage and micro-topography reconstruction can be used as effective countermeasures to reduce the soil moisture deficit due to their ability to increase soil moisture content. For sustainable vegetation restoration in a vulnerable semi-arid region, the plant density should be optimized with local soil moisture conditions and appropriate landscape management practices.
NASA Technical Reports Server (NTRS)
Gamon, John A.; Huemmrich, K. Fred; Stone, Robert S.; Tweedie, Craig E.
2015-01-01
In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone.
On the Representation of Subgrid Microtopography Effects in Process-based Hydrologic Models
NASA Astrophysics Data System (ADS)
Jan, A.; Painter, S. L.; Coon, E. T.
2017-12-01
Increased availability of high-resolution digital elevation are enabling process-based hydrologic modeling on finer and finer scales. However, spatial variability in surface elevation (microtopography) exists below the scale of a typical hyper-resolution grid cell and has the potential to play a significant role in water retention, runoff, and surface/subsurface interactions. Though the concept of microtopographic features (depressions, obstructions) and the associated implications on flow and discharge are well established, representing those effects in watershed-scale integrated surface/subsurface hydrology models remains a challenge. Using the complex and coupled hydrologic environment of the Arctic polygonal tundra as an example, we study the effects of submeter topography and present a subgrid model parameterized by small-scale spatial heterogeneities for use in hyper-resolution models with polygons at a scale of 15-20 meters forming the surface cells. The subgrid model alters the flow and storage terms in the diffusion wave equation for surface flow. We compare our results against sub-meter scale simulations (acts as a benchmark for our simulations) and hyper-resolution models without the subgrid representation. The initiation of runoff in the fine-scale simulations is delayed and the recession curve is slowed relative to simulated runoff using the hyper-resolution model with no subgrid representation. Our subgrid modeling approach improves the representation of runoff and water retention relative to models that ignore subgrid topography. We evaluate different strategies for parameterizing subgrid model and present a classification-based method to efficiently move forward to larger landscapes. This work was supported by the Interoperable Design of Extreme-scale Application Software (IDEAS) project and the Next-Generation Ecosystem Experiments-Arctic (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science.
NASA Astrophysics Data System (ADS)
Iwahana, G.; Wilson, C.; Newman, B. D.; Heikoop, J. M.; Busey, R.
2017-12-01
Wetlands associated with ice-wedge polygons are commonly distributed across the Arctic Coastal Plain of northern Alaska, a region underlain by continuous permafrost. Micro-topography of the ice-wedge polygons controls local hydrology, and the micro-topography could be altered due to factors such like surface vegetation, wetness, freeze-thaw cycles, and permafrost degradation/aggradation under climate change. Understanding status of the wetlands in the near future is important because it determines biogeochemical cycle, which drives release of greenhouse gases from the ground. However, transitional regime of the ice-wedge polygons under the changing climate is not fully understood. In this study, we analyzed geochemistry of water extracted from frozen soil cores sampled down to about 1m depth in 2014 March at NGEE-Arctic sites in the Barrow Environmental Observatory. The cores were sampled from troughs/rims/centers of five different low-centered or flat-centered polygons. The frozen cores are divided into 5-10cm cores for each location, thawed in sealed plastic bags, and then extracted water was stored in vials. Comparison between the profiles of geochemistry indicated connection of soil water in the active layer at different location in a polygon, while it revealed that distinctly different water has been stored in permafrost layer at troughs/rims/centers of some polygons. Profiles of volumetric water content (VWC) showed clear signals of freeze-up desiccation in the middle of saturated active layers as low VWC anomalies at most sampling points. Water in the active layer and near-surface permafrost was classified into four categories: ice wedge / fresh meteoric / transitional / highly fractionated water. The overall results suggested prolonged separation of water in the active layer at the center of low-centered polygons without lateral connection in water path in the past.
Liu, Yutong; Ma, Yifan; Zhang, Jing; Xie, Qing; Wang, Zi; Yu, Shuang; Yuan, Yuan; Liu, Changsheng
2017-09-13
The β-TCP scaffold has been widely used as a bone graft substitute, but the traditional PMMA molding method-induced undesirable mechanical strength and poor interconnectivity still have not been addressed until now. In this study, a MBG-based PU foam templating method was developed to fabricate β-TCP scaffolds with desirable microtopography. The MBG gel, as both binder and modifier, prepared by a modified sol-gel method with controlled viscosity is incorporated with β-TCP powder and thereafter is impregnated into PU foam. The resultant hybrid scaffolds exhibited interconnected macropores (200-500 μm) and distinctive micropores (0.2-1.5 μm), especially for the TCP/25MBG (with 25 wt % content MBG). As expected, the compression strength of β-TCP/MBG composite scaffolds was enhanced with increasing MBG content, and TCP/50MBG (with 50 wt % content MBG) exhibited almost 100-fold enhancement compared to the pure β-TCP. Intriguingly, the cell affinity and osteogenic capacity of rBMSCs were also dramatically improved the best on TCP/25MBG. Further investigation found that the subtle, grainy-like microtopography, not the chemical composition, of the TCP/25MBG favored the adsorption of Fn and expression of integrin α5β1 and further facilitated FA formation and the expression of p-FAK, following activation of the MAPK/ERK signaling pathway and ultimately upregulated expression of osteogenic genes. Further in vivo experiments confirmed the promoted osteogenesis of TCP/25MBG in vivo. The results suggest that such a novel MBG-based PU foam templating method offers new guidance to construct hierarchically porous scaffolds, and the prepared MBG-modified β-TCP scaffold will have great potential for future use in bone tissue regeneration.
Mechanisms That Generate Resource Pulses in a Fluctuating Wetland
Botson, Bryan A.; Gawlik, Dale E.; Trexler, Joel C.
2016-01-01
Animals living in patchy environments may depend on resource pulses to meet the high energetic demands of breeding. We developed two primary a priori hypotheses to examine relationships between three categories of wading bird prey biomass and covariates hypothesized to affect the concentration of aquatic fauna, a pulsed resource for breeding wading bird populations during the dry season. The fish concentration hypothesis proposed that local-scale processes concentrate wet-season fish biomass into patches in the dry season, whereas the fish production hypothesis states that the amount of dry-season fish biomass reflects fish biomass production during the preceding wet season. We sampled prey in drying pools at 405 sites throughout the Florida Everglades between December and May from 2006–2010 to test these hypotheses. The models that explained variation in dry-season fish biomass included water-level recession rate, wet-season biomass, microtopography, submerged vegetation, and the interaction between wet-season biomass and recession rate. Crayfish (Procambarus spp.) biomass was positively associated with wet-season crayfish biomass, moderate water depth, dense submerged aquatic vegetation, thin flocculent layer and a short interval of time since the last dry-down. Grass shrimp (Palaemonetes paludosus) biomass increased with increasing rates of water level recession, supporting our impression that shrimp, like fish, form seasonal concentrations. Strong support for wet-season fish and crayfish biomass in the top models confirmed the importance of wet-season standing stock to concentrations of fish and crayfish the following dry season. Additionally, the importance of recession rate and microtopography showed that local scale abiotic factors transformed fish production into the high quality foraging patches on which apex predators depended. PMID:27448023
Controls of Parent Material and Topography on Soil Carbon Storage in the Critical Zone
NASA Astrophysics Data System (ADS)
Patton, N. R.; Seyfried, M. S.; Lohse, K. A.; Link, T. E.
2014-12-01
Semi-arid environments make up a large percentage of the world's terrestrial ecosystems, and climate is a major factor influencing soil carbon storage and release. However, the roles of local controls such as parent material, aspect and microtopography have received less attention and are important for consideration in soil carbon modeling. The purpose of this study is to understand the role that parent material, aspect and micro-topography play in storage and release of soil carbon along an elevation gradient in a semi-arid climate. Johnston Draw (JD) is a first order watershed within the Reynolds Creek Critical Zone Observatory in southwestern Idaho with underlining late cretaceous, granitic Idaho batholith bedrock. Upper Sheep Creek (USC) is a first order watershed consisting of basalt. Both watersheds were chosen for this project due to similar size, aspect, elevation, vegetation and for the contrast in parent material. Two transects, totaling approximately nine soil pits, were excavated on both the north and south facing slopes of each watershed running parallel to the water channel. Soil carbon was generally higher in basalt compared to the granite parent material in pits with similar aspect, elevation and vegetation. Preliminary data using soil organic matter (SOM) as a proxy for organic carbon (OC) and soil water dynamics showed that percent OC declines markedly with elevation in JD and soil depth at lower elevations and is more homogenous throughout the profile moving up elevation (1646 meters 4.3-9.7%; 1707 meters 6.87-3.83%). Similarly, aspect controls patterns of SOM at depth more strongly at lower elevations. Findings from our study suggest that parent material and topography may play as important roles in semi-arid ecosystems as climate factors in controlling soil carbon storage.
Highly dispersible diamond nanoparticles for pretreatment of diamond films on Si substrate
NASA Astrophysics Data System (ADS)
Zhao, Shenjie; Huang, Jian; Zhou, Xinyu; Ren, Bing; Tang, Ke; Xi, Yifan; Wang, Lin; Wang, Linjun; Lu, Yicheng
2018-03-01
High quality diamond film on Si substrate was synthesized by coating diamond nanoparticles prepared by polyglycerol grafting (ND-PG) dispersion as pre-treatment method. Transmission electron microscope indicates that ND-PG is much more dispersible than untreated nanoparticles in organic solvents. The surface morphology was characterized by scanning electron microscope while atomic force microscope was conducted to measure the surface roughness. Microstructure properties were carried out by Raman spectroscopy and X-ray diffraction. The results revealed an increase in nucleation density, an acceleration of growth rate and an improvement of film crystalline quality by using spin-coating ND-PG pretreatment.
Isotopic and Geochemical Fingerprinting of a Polygonal Arctic Ecosystem
NASA Astrophysics Data System (ADS)
Throckmorton, H.; Heikoop, J. M.; Newman, B. D.; Wilson, C. J.; Wullschleger, S. D.
2015-12-01
Arctic tundra contain large C stocks and may be an important source of CO2 and CH4 over the next century due to a rapidly changing climate, degrading permafrost, and redistribution of water across high latitude landscapes. This presentation synthesizes geochemical and isotopic data and examines vertical and lateral factors and processes critical to predicting the C, N, and water balance of tundra ecosystems. Stable water isotope analyses (delta 2H and delta 18O) indicate that summer rain is the dominant source for active layer groundwater, with melting seasonal ice contributing to deeper pore waters in late summer. Microtopography and water table effects on geochemistry were apparent from a comprehensive spatial examination of active layer biogeochemistry, showing a number of significant differences in the concentrations of cations and anions for high- vs. low-centered polygons, microtopographic features (polygonal centers vs. troughs), and with depth. Results have implications for future nutrient availability with projected permafrost degradation and landscape evolution, suggesting greater availability of limiting nutrients (sulfate, phosphate, and nitrate) where polygons undergo a shift from low- to high-centered. Nitrate isotopes (delta 15N and delta 18O) indicated a predominantly microbial source for nitrate in high centered polygons active layers. However, atmospheric nitrate was preserved in permafrost, and may serve as a potential indicator of permafrost degradation. Additionally, results suggest that older, deeper C sources may be promoting a shift in methanogenic pathway, from predominantly acetoclastic to hydrogenotrophic. This mechanistic shift is attributed to the source and quality of available organic substrate. Overall, results showed substantial lateral and vertical variability in biogeochemical, biogeophysical, and hydrological processes across microtopographic- to landscape scales that needs to be accounted for in fine and intermediate scale models.
Hulshof, Frits; Schophuizen, Carolien; Mihajlovic, Milos; van Blitterswijk, Clemens; Masereeuw, Rosalinde; de Boer, Jan; Stamatialis, Dimitrios
2018-02-01
Increasing incidence of renal pathology in the western world calls for innovative research for the development of cell-based therapies such as a bioartificial kidney (BAK) device. To fulfil the multitude of kidney functions, the core component of the BAK is a living membrane consisting of a tight kidney cell monolayer with preserved functional organic ion transporters cultured on a polymeric membrane surface. This membrane, on one side, is in contact with blood and therefore should have excellent blood compatibility, whereas the other side should facilitate functional monolayer formation. This work investigated the effect of membrane chemistry and surface topography on kidney epithelial cells to improve the formation of a functional monolayer. To achieve this, microtopographies were fabricated with high resolution and reproducibility on polystyrene films and on polyethersulfone-polyvinyl pyrrolidone (PES-PVP) porous membranes. A conditionally immortalized proximal tubule epithelial cell line (ciPTEC) was cultured on both, and subsequently, the cell morphology and monolayer formation were assessed. Our results showed that L-dopamine coating of the PES-PVP was sufficient to support ciPTEC monolayer formation. The polystyrene topographies with large features were able to align the cells in various patterns without significantly disruption of monolayer formation; however, the PES-PVP topographies with large features disrupted the monolayer. In contrast, the PES-PVP membranes with small features and with large spacing supported well the ciPTEC monolayer formation. In addition, the topographical PES-PVP membranes were compatible as a substrate membrane to measure organic cation transporter activity in Transwell® systems. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Enzymatic mechanisms of soil-carbon response to temperature on Mt. Kilimanjaro
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatskiy, Sergey; Kuzyakov, Yakov
2016-04-01
Short-term acceleration of soil organic matter (SOM) decomposition by increasing temperature contradicts the acclimation observed in long-term studies. We used the unique altitudinal gradient (from colline tropical zone to subalpine zone) on Mt. Kilimanjaro to demonstrate the mechanisms of short- and long-term acclimation of extra- and intracellular enzymes that decompose polymers (cellulose, chitin, phytate) and oxidize monomers (14C-glucose). Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation
Effect of Vanadium and Sodium Compounds on Accelerated Oxidation of Nickel-Base Alloys.
The product of the reaction between V2O5 and the substrates is dependent upon the alloying elements present in the alloy. In the absence of alloying...reaction appears to be a glass . The study is related to corrosion inhibitions in vanadium containing fuels in gas turbines. (Modified author abstract)
2013-01-01
Arylsulfinyl groups direct the metal-free, regiospecific, nucleophilic ortho-allylation of pyrroles and pyrazoles. Mechanistic studies support the intermediacy of allylsulfonium salts that undergo facile thio-Claisen rearrangement onto the heterocyclic ring, giving products of coupling. The strategy has been adapted to allow regiospecific propargylation of the heterocyclic substrates. PMID:23855635
USDA-ARS?s Scientific Manuscript database
One of the most critical stages of conversion of plant biomass into biofuels employs hydrolysis reactions between highly specific enzymes and matching substrates (e.g. corn stover cellulose with cellulase) that produce soluble sugars, which then could be converted into ethanol. Important benefits of...
Are epoxy-wood bonds durable enough?
Charles R. Frihart
2005-01-01
An important aspect of any adhesive bond is that the bond maintains its integrity during its end use. Epoxies form highly durable bonds with many substrates but are usually not considered capable of forming completely durable bonds with wood by standard accelerated tests. However, epoxies are sold for wood boat construction, and some data have indicated that epoxies...
Impurity measurements in semiconductor materials using trace element accelerator mass spectrometry
NASA Astrophysics Data System (ADS)
McDaniel, F. D.; Datar, S. A.; Nigam, M.; Ravi Prasad, G. V.
2002-05-01
Accelerator mass spectrometry (AMS) is commonly used to determine the abundance ratios of long-lived isotopes such as 10B, 14C, 36Cl, 129I, etc. to their stable counterparts at levels as low as 10 -16. Secondary ion mass spectrometry (SIMS) is routinely used to determine impurity levels in materials by depth profiling techniques. Trace-element accelerator mass spectrometry (TEAMS) is a combination of AMS and SIMS, presently being used at the University of North Texas, for high-sensitivity (ppb) impurity analyses of stable isotopes in semiconductor materials. The molecular break-up characteristics of AMS are used with TEAMS to remove the molecular interferences present in SIMS. Measurements made with different substrate/impurity combinations demonstrate that TEAMS has higher sensitivity for many elements than other techniques such as SIMS and can assist with materials characterization issues. For example, measurements of implanted As in the presence of Ge in Ge xSi 1- x/Si is difficult with SIMS because of molecular interferences from 74GeH, 29Si 30Si 16O, etc. With TEAMS, the molecular interferences are removed and higher sensitivities are obtained. Measured substrates include Si, SiGe, CoSi 2, GaAs and GaN. Measured impurities include B, N, F, Mg, P, Cl, Cr, Fe, Ni, Co, Cu, Zn, Ge, As, Se, Mo, Sn and Sb. A number of measurements will be presented to illustrate the range and power of TEAMS.
NASA Astrophysics Data System (ADS)
de Luna, Martina Salzano; Buonocore, Giovanna; Di Carlo, Gabriella; Giuliani, Chiara; Ingo, Gabriel M.; Lavorgna, Marino
2016-05-01
Protective coatings based on polymers synthesized from renewable sources (chitosan or an amorphous vinyl alcohol based polymer) have been prepared for the protection of bronze artifacts from corrosion. Besides acting as an effective barrier against corrosive species present in the environment, the efficiency of the coatings has been improved by adding corrosion inhibitor compounds (benzotriazole or mercaptobenzothiazole) to the formulations. The liquid medium of the formulations has been carefully selected looking at maximizing the wettability on the bronze substrate and optimizing the solvent evaporation rate. The minimum amount of inhibitor compounds has been optimized by performing accelerated corrosion tests on coated bronze substrates. The inhibitors have been directly dissolved in the coating-forming solutions and/or introduced by means of nanocarriers, which allow to control the release kinetics. The free dissolved inhibitor molecules immediately provide a sufficient protection against corrosion. On the other hand, the inhibitor molecules contained in the nanocarriers serve as long-term reservoir, which can be activated by external corrosion-related stimuli in case of particularly severe conditions. Particular attention has been paid to other features which affect the coating performances. Specifically, the adhesion of the protective polymer layer to the bronze substrate has been assessed, as well as its permeability properties and transparency, the latter being a fundamental feature of protective coating for cultural heritages. Finally, the protective efficiency of the produced smart coatings has been assessed through accelerated corrosion tests.
NASA Astrophysics Data System (ADS)
Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan; Yang, Guoguang
2016-08-01
The ultrahigh static displacement-acceleration sensitivity of a mechanical sensing chip is essential primarily for an ultrasensitive accelerometer. In this paper, an optimal design to implement to a single-axis MOEMS accelerometer consisting of a grating interferometry cavity and a micromachined sensing chip is presented. The micromachined sensing chip is composed of a proof mass along with its mechanical cantilever suspension and substrate. The dimensional parameters of the sensing chip, including the length, width, thickness and position of the cantilevers are evaluated and optimized both analytically and by finite-element-method (FEM) simulation to yield an unprecedented acceleration-displacement sensitivity. Compared with one of the most sensitive single-axis MOEMS accelerometers reported in the literature, the optimal mechanical design can yield a profound sensitivity improvement with an equal footprint area, specifically, 200% improvement in displacement-acceleration sensitivity with moderate resonant frequency and dynamic range. The modified design was microfabricated, packaged with the grating interferometry cavity and tested. The experimental results demonstrate that the MOEMS accelerometer with modified design can achieve the acceleration-displacement sensitivity of about 150μm/g and acceleration sensitivity of greater than 1500V/g, which validates the effectiveness of the optimal design.
Optimization of Cold Spray Deposition of High-Density Polyethylene Powders
NASA Astrophysics Data System (ADS)
Bush, Trenton B.; Khalkhali, Zahra; Champagne, Victor; Schmidt, David P.; Rothstein, Jonathan P.
2017-10-01
When a solid, ductile particle impacts a substrate at sufficient velocity, the resulting heat, pressure and plastic deformation can produce bonding between the particle and the substrate. The use of a cool supersonic gas flow to accelerate these solid particles is known as cold spray deposition. The cold spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting potential material properties possible with polymeric particles. In this work, a combined computational and experimental study was employed to study the cold spray deposition of high-density polyethylene powders over a wide range of particle temperatures and impact velocities. Cold spray deposition of polyethylene powders was demonstrated across a range broad range of substrate materials including several different polymer substrates with different moduli, glass and aluminum. A material-dependent window of successful deposition was determined for each substrate as a function of particle temperature and impact velocity. Additionally, a study of deposition efficiency revealed the optimal process parameters for high-density polyethylene powder deposition which yielded a deposition efficiency close to 10% and provided insights into the physical mechanics responsible for bonding while highlighting paths toward future process improvements.
Feng, You; Maity, Ranjan; Whitelegge, Julian P.; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T.; Bedford, Mark T.; Masson, Jean-Yves; Clarke, Steven G.
2013-01-01
The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7. PMID:24247247
Feng, You; Maity, Ranjan; Whitelegge, Julian P; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T; Bedford, Mark T; Masson, Jean-Yves; Clarke, Steven G
2013-12-27
The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7.
Wu, Tsung-Hsien; Li, Chia-Hui; Tang, Ming-Jer; Liang, Jen-I; Chen, Chia-Hsin; Yeh, Ming-Long
2013-10-01
The epithelial to mesenchymal transition (EMT) involves several physiological and pathological phenomena and endows cells with invasive and migratory properties. However, the effects of substrate stiffness and topography on the migration of cells before or after transforming growth factor-β1 (TGF-β1)-induced EMT (tEMT) are unknown. Herein, we seed control or tEMT NMuMG cells on the 2D patterns consisted of 1 μm or 5 μm line-widths and groove or cone patterns on either 2 MPa (1.96 ± 0.48 MPa) or 4 MPa (3.70 ± 0.74 MPa) polydimethylsiloxane (PDMS) substrates. After tEMT, the increased expression of α-SMA with vinculin in focal adhesion (FA) sites led to an acceleration of tEMT cell motility. On the 2 MPa substrate, the most influenced substrate was the 1 μm, cone-patterned substrate, where the tEMT cells' motility decelerated by 0.13 μm/min (36% slower than the cells on groove pattern). However, on the 5 μm, groove-patterned substrate, where the tEMT cells demonstrated the most rapid motility relative to the control cells, with an increment of 0.18 μm/min (100%). Among the different physical cues from substrate, the cone pattern could impede the migration speed of tEMT cells. Furthermore, we recommend the groove-patterned with a 5 μm line-width substrate as a useful tool to differentiate control and tEMT cells by migration speed.
NASA Astrophysics Data System (ADS)
Xie, Xing; Yi, Hong; Xu, Jian; Gen, Liming; Chen, Luyun
2017-09-01
Fatigue initiation life has been studied with 10CrNi5MoV steel for use in ocean engineering at different load ratios and in different environmental media. The microstructure and micro-topography have been observed and analyzed by means of SEM, EDS and EBSD. Our findings indicate that, the initiation life of 10Ni5CrMoV steel in seawater is shorter than that in air, and the difference in longevity is larger with the increasing of load ratio. Corrosion pits had a great influence on initial corrosion fatigue life.
Optical microtopographic inspection of asphalt pavement surfaces
NASA Astrophysics Data System (ADS)
Costa, Manuel F. M.; Freitas, E. F.; Torres, H.; Cerezo, V.
2017-08-01
Microtopographic and rugometric characterization of surfaces is routinely and effectively performed non-invasively by a number of different optical methods. Rough surfaces are also inspected using optical profilometers and microtopographer. The characterization of road asphalt pavement surfaces produced in different ways and compositions is fundamental for economical and safety reasons. Having complex structures, including topographically with different ranges of form error and roughness, the inspection of asphalt pavement surfaces is difficult to perform non-invasively. In this communication we will report on the optical non-contact rugometric characterization of the surface of different types of road pavements performed at the Microtopography Laboratory of the Physics Department of the University of Minho.
Remote sensing sensors and applications in environmental resources mapping and modeling
Melesse, Assefa M.; Weng, Qihao; Thenkabail, Prasad S.; Senay, Gabriel B.
2007-01-01
The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.
SPRUCE S1 Bog Sphagnum CO2 Flux Measurements and Partitioning into Re and GPP
Walker, A. P. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Carter, K. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Nettles, W. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Philips, J. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Sebestyen, S. D. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Weston, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2015-06-01
This data set provides (1) the results of in-situ Sphagnum-peat hourly net ecosystem exchange (NEE) measured using a LICOR 8100 gas exchange system and (2) the component fluxes -- gross primary production (GPP) and ecosystem respiration (Re), derived using empirical regressions.NEE measurements were made from 6 June to 6 November 2014 and 20 March to 10 May 2015. Three 8100 chambers per dominant species (S. magellanicum or S. fallax) were placed in the S1 Bog in relatively open ground where there was no obvious hummock-hollow microtopography. The 8100 chambers were not located in the SPRUCE experimental enclosures.
The use of UAVs for monitoring land degradation
NASA Astrophysics Data System (ADS)
Themistocleous, Kyriacos
2017-10-01
Land degradation is one of the causes of desertification of drylands in the Mediterranean. UAVs can be used to monitor and document the various variables that cause desertification in drylands, including overgrazing, aridity, vegetation loss, etc. This paper examines the use of UAVs and accompanying sensors to monitor overgrazing, vegetation stress and aridity in the study area. UAV images can be used to generate digital elevation models (DEMs) to examine the changes in microtopography as well as ortho-photos were used to detect changes in vegetation patterns. The combined data of the digital elevation models and the orthophotos can be used to identify the mechanisms for desertification in the study area.
Wang, Ying; Sun, Jie; Yang, Qingran; Lu, Wenbo; Li, Yan; Dong, Jian; Qian, Weiping
2015-11-21
The developed method for monitoring GST, an important drug metabolic enzyme, could greatly facilitate researches on relative biological fields. In this work, we have developed a SERS technique to monitor the absorbance behaviour of 6-mercaptopurine (6-MP) and its glutathione-S-transferase (GST)-accelerated glutathione (GSH)-triggered release behaviour on the surface of gold nanoflowers (GNFs), using the GNFs as excellent SERS substrates. The SERS signal was used as an indicator of absorbance or release of 6-MP on the gold surface. We found that GST can accelerate GSH-triggered release behaviour of 6-MP from the gold surface. We speculated that GST catalyzes nucleophilic GSH to competitively bind with the electrophilic substance 6-MP. Experimental results have proved that the presented SERS protocol can be utilized as an effective tool for accessing the release of anticancer drugs.
Junginger, Tobias; Abidi, S. H.; Maffett, R. D.; ...
2018-03-16
Here, the performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry H entry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μSR) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing atmore » 1400°C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure H entry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.« less
Application of pyroelectric crystal and ionic liquid to the production of metal compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imashuku, Susumu; Imanishi, Akira; Kawai, Jun
2013-04-19
Zinc fluoride (ZnF{sub 2}) was deposited on a silicon substrate by changing temperature of a pyroelectric crystal of LiTaO{sub 3} on which ionic liquid (EMI-Tf{sub 2}N) containing zinc ions was dripped at 1 Pa. ZnF{sub 2} was also obtained by bombarding argon ions on EMI-Tf{sub 2}N containing zinc ions. From these results, it is concluded that EMI-Tf{sub 2}N containing zinc ions on the LiTaO{sub 3} crystal was evaporated on the silicon substrate by changing temperature of the LiTaO{sub 3} crystal in vacuum and that the evaporated EMI-Tf{sub 2}N containing metal zinc ions was decomposed to ZnF{sub 2} by the bombardmentmore » of electrons accelerated by the electric field between the LiTaO{sub 3} crystal and the silicon substrate.« less
Vacuum Arc Vapor Deposition Method and Apparatus for Applying Identification Symbols to Substrates
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor); Roxby, Donald L. (Inventor); Weeks, Jack L. (Inventor)
2002-01-01
An apparatus for applying permanent markings onto products using a Vacuum Arc Vapor Deposition (VAVD) marker by accelerating atoms or molecules from a vaporization source onto a substrate to form human and/or machine-readable part identification marking that can be detected optically or via a sensing device like x-ray, thermal imaging, ultrasound, magneto-optic, micro-power impulse radar, capacitance, or other similar sensing means. The apparatus includes a housing with a nozzle having a marking end. A chamber having an electrode, a vacuum port and a charge is located within the housing. The charge is activated by the electrode in a vacuum environment and deposited onto a substrate at the marking end of the nozzle. The apparatus may be a hand-held device or be disconnected from the handle and mounted to a robot or fixed station.
Superhydrophobicity enhancement through substrate flexibility
NASA Astrophysics Data System (ADS)
Vasileiou, Thomas; Gerber, Julia; Prautzsch, Jana; Schutzius, Thomas; Poulikakos, Dimos
2017-11-01
Inspired by manifestations in nature, micro/nanoengineering superhydrophobic surfaces has been the focus of much work. Generally, hydrophobicity is increased through the combined effects of surface texturing and chemistry; being durable, rigid substrate materials are the norm. However, many natural and technical materials are flexible, and the resulting effect on hydrophobicity has been largely unexplored. Here, we show that the rational tuning of flexibility can work collaboratively with the surface micro/nanotexture to enhance liquid repellency performance, defined by impalement and breakup resistance, contact time reduction, and restitution coefficient increase. Reduction in substrate stiffness and areal density imparts immediate acceleration and intrinsic responsiveness to impacting droplets, mitigating the collision and lowering the impalement probability by 60 % without the need for active actuation. We demonstrate the above discoveries with materials ranging from thin steel or polymer sheets to butterfly wings. Partial support of the Swiss National Science Foundation under Grant 162565 and the European Research Council under Advanced Grant 669908 (INTICE) is acknowledged.
LEC GaAs for integrated circuit applications
NASA Technical Reports Server (NTRS)
Kirkpatrick, C. G.; Chen, R. T.; Homes, D. E.; Asbeck, P. M.; Elliott, K. R.; Fairman, R. D.; Oliver, J. D.
1984-01-01
Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development.
Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)
1996-01-01
A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.
Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)
1997-01-01
A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.
Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets
Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.
2017-01-01
Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations. PMID:28218247
Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets
NASA Astrophysics Data System (ADS)
Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.
2017-02-01
Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.
Human Neural Cell-Based Biosensor
2010-06-11
stabilizer valproic acid, regulates neurite outgrowth through JNK and the substrate paxillin in N1E - 115 neuroblastoma cells. Exp Cell Res, 313 (9): p...developed methods for directed dopaminergic differentiation using defined medium conditions – all towards the goal of accelerating neuronal... differentiation for biosensor development. Moreover, we have begun an exploration of fluorescence-based assays as a new direction for ‘sensor element’ development
Dennis W. Hallema; Jonathan A. Lafond; Yann Périard; Silvio J. Gumiere; Ge Sun; Jean Caron
2015-01-01
Organic soils are an excellent substrate for commercial lettuce (Lactuca sativa L.) farming; however, drainage accelerates oxidation of the surface layer and reduces the water holding capacity, which is often lethal for crops that are sensitive to water stress. In this case study, we analyzed 942 peat samples from a large cultivated peatland complex...
Greenough, Lucia; Schermerhorn, Kelly M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E.; Gardner, Andrew F.
2016-01-01
Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3′-5′ exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. PMID:26365239
Dislocations Accelerate Oxygen Ion Diffusion in La 0.8Sr 0.2MnO 3 Epitaxial Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navickas, Edvinas; Chen, Yan; Lu, Qiyang
Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO 3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO 3 and SrTiO 3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced bymore » dislocations, especially in the LSM films on LaAlO 3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO 3. In conclusion, the diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk.« less
Dislocations Accelerate Oxygen Ion Diffusion in La0.8Sr0.2MnO3 Epitaxial Thin Films
2017-01-01
Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO3 and SrTiO3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced by dislocations, especially in the LSM films on LaAlO3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO3. The diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk. PMID:28981249
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, Somayeh, E-mail: somaye.mohammadi32@aut.ac.ir; Shariatpanahi, Homeira; Taromi, Faramarz Afshar
Highlights: • FGNP was combined with TPP to obtain a hybrid nano-particle. • TEM image showed uniform distribution of the hybrid nanoparticles in epoxy coating. • FGNP is a substrate for linking of TPP anions by hydrogen bonding. • FGNP as an accelerator, provides rapid iron phosphate passive film formation. • The hybrid nano-particle can provide long-term corrosion protection. - Abstract: Functionalized graphite nano-platelets (FGNP) were combined with tripolyphosphate (TPP) to gain a hybrid nano-particle (FGNP-TPP) with homogenous dispersion in epoxy, resulting in an excellent anti-corrosion coating for carbon steel substrate. Characterization analyses of the hybrid nano-particle were performed bymore » FT-IR, SEM, XRD and TEM. TPP was linked to FGNP nano-particles by hydrogen bondings. Different epoxy coatings formulated with 1 wt.% of FGNP, FGNP-TPP and TPP were evaluated. Electrochemical investigations, salt spray and pull-off tests showed that the hybrid nano-particle can provide long-term corrosion protection compared to FGNP and TPP due to synergistic effect between FGNP as an accelerator and TPP as a corrosion inhibitor to produce a uniform and stable iron-phosphate passive film with high surface coverage.« less
Dislocations Accelerate Oxygen Ion Diffusion in La 0.8Sr 0.2MnO 3 Epitaxial Thin Films
Navickas, Edvinas; Chen, Yan; Lu, Qiyang; ...
2017-10-05
Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO 3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO 3 and SrTiO 3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced bymore » dislocations, especially in the LSM films on LaAlO 3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO 3. In conclusion, the diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk.« less
2015-01-01
In neural interface platforms, cultures are often carried out on a flat, open, rigid, and opaque substrate, posing challenges to reflecting the native microenvironment of the brain and precise engagement with neurons. Here we present a neuron cell culturing platform that consists of arrays of ordered microtubes (2.7–4.4 μm in diameter), formed by strain-induced self-rolled-up nanomembrane (s-RUM) technology using ultrathin (<40 nm) silicon nitride (SiNx) film on transparent substrates. These microtubes demonstrated robust physical confinement and unprecedented guidance effect toward outgrowth of primary cortical neurons, with a coaxially confined configuration resembling that of myelin sheaths. The dynamic neural growth inside the microtube, evaluated with continuous live-cell imaging, showed a marked increase (20×) of the growth rate inside the microtube compared to regions outside the microtubes. We attribute the dramatic accelerating effect and precise guiding of the microtube array to three-dimensional (3D) adhesion and electrostatic interaction with the SiNx microtubes, respectively. This work has clear implications toward building intelligent synthetic neural circuits by arranging the size, site, and patterns of the microtube array, for potential treatment of neurological disorders. PMID:25329686
Yeast Pif1 Accelerates Annealing of Complementary DNA Strands
2015-01-01
Pif1 is a helicase involved in the maintenance of nuclear and mitochondrial genomes in eukaryotes. Here we report a new activity of Saccharomyces cerevisiae Pif1, annealing of complementary DNA strands. We identified preferred substrates for annealing as those that generate a duplex product with a single-stranded overhang relative to a blunt end duplex. Importantly, we show that Pif1 can anneal DNA in the presence of ATP and Mg2+. Pif1-mediated annealing also occurs in the presence of single-stranded DNA binding proteins. Additionally, we show that partial duplex substrates with 3′-single-stranded overhangs such as those generated during double-strand break repair can be annealed by Pif1. PMID:25393406
Yeast Pif1 accelerates annealing of complementary DNA strands.
Ramanagoudr-Bhojappa, Ramanagouda; Byrd, Alicia K; Dahl, Christopher; Raney, Kevin D
2014-12-09
Pif1 is a helicase involved in the maintenance of nuclear and mitochondrial genomes in eukaryotes. Here we report a new activity of Saccharomyces cerevisiae Pif1, annealing of complementary DNA strands. We identified preferred substrates for annealing as those that generate a duplex product with a single-stranded overhang relative to a blunt end duplex. Importantly, we show that Pif1 can anneal DNA in the presence of ATP and Mg(2+). Pif1-mediated annealing also occurs in the presence of single-stranded DNA binding proteins. Additionally, we show that partial duplex substrates with 3'-single-stranded overhangs such as those generated during double-strand break repair can be annealed by Pif1.
Simulation Studies of the Dielectric Grating as an Accelerating and Focusing Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soong, Ken; Peralta, E.A.; Byer, R.L.
A grating-based design is a promising candidate for a laser-driven dielectric accelerator. Through simulations, we show the merits of a readily fabricated grating structure as an accelerating component. Additionally, we show that with a small design perturbation, the accelerating component can be converted into a focusing structure. The understanding of these two components is critical in the successful development of any complete accelerator. The concept of accelerating electrons with the tremendous electric fields found in lasers has been proposed for decades. However, until recently the realization of such an accelerator was not technologically feasible. Recent advances in the semiconductor industry,more » as well as advances in laser technology, have now made laser-driven dielectric accelerators imminent. The grating-based accelerator is one proposed design for a dielectric laser-driven accelerator. This design, which was introduced by Plettner, consists of a pair of opposing transparent binary gratings, illustrated in Fig. 1. The teeth of the gratings serve as a phase mask, ensuring a phase synchronicity between the electromagnetic field and the moving particles. The current grating accelerator design has the drive laser incident perpendicular to the substrate, which poses a laser-structure alignment complication. The next iteration of grating structure fabrication seeks to monolithically create an array of grating structures by etching the grating's vacuum channel into a fused silica wafer. With this method it is possible to have the drive laser confined to the plane of the wafer, thus ensuring alignment of the laser-and-structure, the two grating halves, and subsequent accelerator components. There has been previous work using 2-dimensional finite difference time domain (2D-FDTD) calculations to evaluate the performance of the grating accelerator structure. However, this work approximates the grating as an infinite structure and does not accurately model a realizable structure. In this paper, we will present a 3-dimensional frequency-domain simulation of both the infinite and the finite grating accelerator structure. Additionally, we will present a new scheme for a focusing structure based on a perturbation of the accelerating structure. We will present simulations of this proposed focusing structure and quantify the quality of the focusing fields.« less
Fenoy, Encarnación; Casas, J Jesús; Díaz-López, Manuel; Rubio, Juan; Guil-Guerrero, J Luís; Moyano-López, Francisco J
2016-11-01
Abiotic factors, substrate chemistry and decomposers community composition are primary drivers of leaf litter decomposition. In soil, much of the variation in litter decomposition is explained by climate and substrate chemistry, but with a significant contribution of the specialisation of decomposer communities to degrade specific substrates (home-field advantage, HFA). In streams, however, HFA effects on litter decomposition have not been explicitly tested. We evaluated responses of microbial decomposition and β-glucosidase activity to abiotic factors, substrate and decomposer assemblages, using a reciprocal litter transplant experiment: 'ecosystem type' (mountain vs lowland streams) × 'litter chemistry' (alder vs reed). Temperature, pH and ionic concentration were higher in lowland streams. Decomposition for both species was faster in lowland streams. Decomposition of reed was more accelerated in lowland compared with mountain streams than that of alder, suggesting higher temperature sensitivity of decomposition in reed. Q10 (5°C-15°C) values of β-glucosidase activity were over 2. The alkaline pH and high ionic concentration of lowland streams depleted enzyme activity. We found similar relationships of decomposition or enzyme activity with abiotic factors for both species, suggesting limited support to the HFA hypothesis. Overall, our results suggest a prime role of temperature interacting with substrate chemistry on litter decomposition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Johnson, Scooter D.; Kub, Fritz J.; Eddy, Charles R.
2013-06-01
The deposition of nano-crystalline ZnS/diamond composite protective coatings on silicon, sapphire, and ZnS substrates, as a preliminary step to coating infrared transparent ZnS substrates from powder mixtures by the aerosol deposition method is presented. Advantages of the aerosol deposition method include the ability to form dense, nanocrystalline lms up to hundreds of microns thick at room temperature and at a high deposition rate on a variety of substrates. Deposition is achieved by creating a pressure gradient that accelerates micrometer- scale particles in an aerosol to high velocity. Upon impact with the target substrate the particles fracture and embed. Continued deposition forms the thick compacted lm. Deposition from an aerosolized mixture of ZnS and diamond powders onto all targets results in linear trend from apparent sputter erosion of the substrate at 100% diamond to formation of a lm with increasing fractions of ZnS. The crossover from abrasion to lm formation on sapphire occurs above about 50% ZnS and a mixture of 90% ZnS and 10% diamond forms a well-adhered lm of about 0.7 μm thickness at a rate of 0.14 μm/min. Resulting lms are characterized by scanning electron microscopy, pro lometry, infrared transmission spectroscopy, and x-ray photoemission spectroscopy. These initial lms mark progress toward the future goal of coating ZnS substrates for abrasion resistance.
Diamond growth on copper rods from polymer composite nanofibres
NASA Astrophysics Data System (ADS)
Varga, M.; Potocky, S.; Tesarek, P.; Babchenko, O.; Davydova, M.; Kromka, A.
2014-09-01
The potential uses of diamond films can be found in a diverse range of industrial applications. However, deposition of diamond films onto some foreign materials is still not a simple task. Here we present the growth of adherent diamond films on copper rods with the focus on substrate pre-treatment by polyvinyl alcohol composite nanofibres. The primary role of the polymer fibres substantially act as a carbon source which enhances the diamond nucleation and accelerates a homogenous CVD growth. Diamond growth was carried out in pulsed linear antenna microwave chemical vapour deposition system, which is characterized by cold plasma due to larger distance of hot plasma region from the substrate, at various gas compositions. The large distance between plasma source and the substrate holder also allows the uniform deposition of diamond on a large number of substrates with complex geometry (3D objects) as well as for the vertically positioned substrates. Moreover, the inhomogeneity in diamond film thickness deposited on vertically positioned substrates was suppressed by using polyvinyl alcohol nanofibre textile. Combination of PVA polymer fibres use together with this unique deposition system leads to a successful overcoating of the copper rods by continuous diamond film without the film cracking or delamination. We propose that the sequence of plasma-chemical reactions enhances the transformation of certain number of carbon atoms into the sp3-bonded form which further are stabilized by atomic hydrogen coming from plasma.
Wu, Wei; Liu, Li; Dai, Zhigao; Liu, Juhua; Yang, Shuanglei; Zhou, Li; Xiao, Xiangheng; Jiang, Changzhong; Roy, Vellaisamy A.L.
2015-01-01
Ideal SERS substrates for sensing applications should exhibit strong signal enhancement, generate a reproducible and uniform response, and should be able to fabricate in large-scale and low-cost. Herein, we demonstrate low-cost, highly sensitive, disposable and reproducible SERS substrates by means of screen printing Ag nanoparticles (NPs) on a plastic PET (Polyethylene terephthalate) substrates. While there are many complex methods for the fabrication of SERS substrates, screen printing is suitable for large-area fabrication and overcomes the uneven radial distribution. Using as-printed Ag substrates as the SERS platform, detection of various commonly known chemicals have been done. The SERS detection limit of Rhodamine 6G (R6G) is higher than the concentration of 1 × 10−10 M. The relative standard deviation (RSD) value for 784 points on the detection of R6G and Malachite green (MG) is less than 20% revealing a homogeneous SERS distribution and high reproducibility. Moreover, melamine (MA) is detected in fresh liquid-milk without additional pretreatment, which may accelerate the application of rapid on-line detection of MA in liquid milk. Our screen printing method highlights the use of large-scale printing strategies for the fabrication of well-defined functional nanostructures with applications well beyond the field of SERS sensing. PMID:25974125
Singh, Appu Kumar; Ekka, Mary Krishna; Kaushik, Abhishek; Pandya, Vaibhav; Singh, Ravi P; Banerjee, Shrijita; Mittal, Monica; Singh, Vijay; Kumaran, S
2017-09-19
By classical competitive antagonism, a substrate and competitive inhibitor must bind mutually exclusively to the active site. The competitive inhibition of O-acetyl serine sulfhydrylase (OASS) by the C-terminus of serine acetyltransferase (SAT) presents a paradox, because the C-terminus of SAT binds to the active site of OASS with an affinity that is 4-6 log-fold (10 4 -10 6 ) greater than that of the substrate. Therefore, we employed multiple approaches to understand how the substrate gains access to the OASS active site under physiological conditions. Single-molecule and ensemble approaches showed that the active site-bound high-affinity competitive inhibitor is actively dissociated by the substrate, which is not consistent with classical views of competitive antagonism. We employed fast-flow kinetic approaches to demonstrate that substrate-mediated dissociation of full length SAT-OASS (cysteine regulatory complex) follows a noncanonical "facilitated dissociation" mechanism. To understand the mechanism by which the substrate induces inhibitor dissociation, we resolved the crystal structures of enzyme·inhibitor·substrate ternary complexes. Crystal structures reveal a competitive allosteric binding mechanism in which the substrate intrudes into the inhibitor-bound active site and disengages the inhibitor before occupying the site vacated by the inhibitor. In summary, here we reveal a new type of competitive allosteric binding mechanism by which one of the competitive antagonists facilitates the dissociation of the other. Together, our results indicate that "competitive allostery" is the general feature of noncanonical "facilitated/accelerated dissociation" mechanisms. Further understanding of the mechanistic framework of "competitive allosteric" mechanism may allow us to design a new family of "competitive allosteric drugs/small molecules" that will have improved selectivity and specificity as compared to their competitive and allosteric counterparts.
NASA Astrophysics Data System (ADS)
Corseuil, Henry Xavier; Gomez, Diego E.; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J. J.
2015-03-01
A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation.
Corseuil, Henry Xavier; Gomez, Diego E; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J J
2015-03-01
A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation. Copyright © 2014 Elsevier B.V. All rights reserved.
Specificity of hammerhead ribozyme cleavage.
Hertel, K J; Herschlag, D; Uhlenbeck, O C
1996-01-01
To be effective in gene inactivation, the hammerhead ribozyme must cleave a complementary RNA target without deleterious effects from cleaving non-target RNAs that contain mismatches and shorter stretches of complementarity. The specificity of hammerhead cleavage was evaluated using HH16, a well-characterized ribozyme designed to cleave a target of 17 residues. Under standard reaction conditions, HH16 is unable to discriminate between its full-length substrate and 3'-truncated substrates, even when six fewer base pairs are formed between HH16 and the substrate. This striking lack of specificity arises because all the substrates bind to the ribozyme with sufficient affinity so that cleavage occurs before their affinity differences are manifested. In contrast, HH16 does exhibit high specificity towards certain 3'-truncated versions of altered substrates that either also contain a single base mismatch or are shortened at the 5' end. In addition, the specificity of HH16 is improved in the presence of p7 nucleocapsid protein from human immunodeficiency virus (HIV)-1, which accelerates the association and dissociation of RNA helices. These results support the view that the hammerhead has an intrinsic ability to discriminate against incorrect bases, but emphasizes that the high specificity is only observed in a certain range of helix lengths. Images PMID:8670879
Utilizing a Dynamical Description of IspH to Aid in the Development of Novel Antimicrobial Drugs
Blachly, Patrick G.; de Oliveira, César A. F.; Williams, Sarah L.; McCammon, J. Andrew
2013-01-01
The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4]2+ IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings – both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts. PMID:24367248
Improvements in Ionized Cluster-Beam Deposition
NASA Technical Reports Server (NTRS)
Fitzgerald, D. J.; Compton, L. E.; Pawlik, E. V.
1986-01-01
Lower temperatures result in higher purity and fewer equipment problems. In cluster-beam deposition, clusters of atoms formed by adiabatic expansion nozzle and with proper nozzle design, expanding vapor cools sufficiently to become supersaturated and form clusters of material deposited. Clusters are ionized and accelerated in electric field and then impacted on substrate where films form. Improved cluster-beam technique useful for deposition of refractory metals.
Microwave-assisted Stille-coupling of steroidal substrates.
Skoda-Földes, Rita; Pfeiffer, Péter; Horváth, Judit; Tuba, Zoltán; Kollár, László
2002-07-01
Steroidal dienes were synthesised by Stille-coupling of the corresponding alkenyl iodides with vinyltributyltin under microwave irradiation in a domestic microwave oven in drastically reduced reaction times. Rate acceleration was observed also in the one-pot Stille-coupling-Diels-Alder reaction of 17-iodo-5alpha-androst-16-ene. Stereoselectivity of cycloaddition was slightly improved with diethyl maleate as the dienophile, compared to that achieved with thermal heating.
Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling
Melesse, Assefa M.; Weng, Qihao; S.Thenkabail, Prasad; Senay, Gabriel B.
2007-01-01
The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling. PMID:28903290
Cooperative growth phenomena in silicon/germanium low-temperature epitaxy
NASA Astrophysics Data System (ADS)
Meyerson, Bernard S.; Uram, Kevin J.; LeGoues, Francoise K.
1988-12-01
A series of Si:Ge alloys and structures has been prepared by ultrahigh-vacuum chemical vapor deposition. Alloys of composition 0≤Ge/Si≤0.20 are readily deposited at T=550 °C. Commensurate, defect-free strained layers are deposited up to a critical thickness, whereupon the accumulated stress in the films is accommodated by the formation of dislocation networks in the substrate wafers. A cooperative growth phenomenon is observed where the addition of 10% germane to the gaseous deposition source accelerates silane's heterogeneous reaction rate by a factor of 25. A model is proposed where Ge acts as a desorption center for mobile hydrogen adatoms on the Si[100] surface, accelerating heterogeneous silane pyrolysis by the enhanced availability of chemisorption sites.
Ko, Jaewon
2017-01-01
Social behavior encompasses a number of distinctive and complex constructs that form the core elements of human imitative culture, mainly represented as either affiliative or antagonistic interactions with conspecifics. Traditionally considered in the realm of psychology, social behavior research has benefited from recent advancements in neuroscience that have accelerated identification of the neural systems, circuits, causative genes and molecular mechanisms that underlie distinct social cognitive traits. In this review article, I summarize recent findings regarding the neuroanatomical substrates of key social behaviors, focusing on results from experiments conducted in rodent models. In particular, I will review the role of the medial prefrontal cortex (mPFC) and downstream subcortical structures in controlling social behavior, and discuss pertinent future research perspectives.
Ko, Jaewon
2017-01-01
Social behavior encompasses a number of distinctive and complex constructs that form the core elements of human imitative culture, mainly represented as either affiliative or antagonistic interactions with conspecifics. Traditionally considered in the realm of psychology, social behavior research has benefited from recent advancements in neuroscience that have accelerated identification of the neural systems, circuits, causative genes and molecular mechanisms that underlie distinct social cognitive traits. In this review article, I summarize recent findings regarding the neuroanatomical substrates of key social behaviors, focusing on results from experiments conducted in rodent models. In particular, I will review the role of the medial prefrontal cortex (mPFC) and downstream subcortical structures in controlling social behavior, and discuss pertinent future research perspectives. PMID:28659766
Lithography with MeV Energy Ions for Biomedical Applications: Accelerator Considerations
NASA Astrophysics Data System (ADS)
Sangyuenyongpipat, S.; Whitlow, H. J.; Nakagawa, S. T.; Yoshida, E.
2009-03-01
MeV ion beam lithographies are very powerful techniques for 3D direct writing in positive or negtive photoresist materials. Nanometer-scale rough structures, or clear areas with straight vertical sidewalls as thin as a few 10's of nm in a resist of a few nm to 100 μm thickness can be made. These capabilities are particularly useful for lithography in cellular- and sub-cellular level biomedical research and technology applications. It can be used for tailor making special structures such as optical waveguides, biosensors, DNA sorters, spotting plates, systems for DNA, protein and cell separation, special cell-growth substrates and microfluidic lab-on-a-chip devices. Furthermore MeV ion beam lithography can be used for rapid prototyping, and also making master stamps and moulds for mass production by hot embossing and nanoimprint lithography. The accelerator requirements for three different high energy ion beam lithography techniques are overviewed. We consider the special requirements placed on the accelerator and how this is achieved for a commercial proton beam writing tool.
RF critical field measurement of MgB2 thin films coated on Nb
NASA Astrophysics Data System (ADS)
Tajima, T.; Eremeev, G.; Zou, G.; Dolgashev, V.; Martin, D.; Nantista, C.; Tantawi, S.; Yoneda, C.; Moeckly, B. H.; Campisi, I.
2010-06-01
Niobium (Nb) Superconducting RF (SRF) cavities have been used or will be used for a number of particle accelerators. The fundamental limit of the accelerating gradient has been thought to be around 50 MV/m due to its RF critical magnetic field of around 200 mT. This limit will prevent new projects requiring higher gradient and compact accelerators from considering SRF structures. There is a theory, however, that promises to overcome this limitation by coating thin (less than the penetration depth) superconductors on Nb. We initiated measurements of critical magnetic fields of Nb coated with various thin film superconductors, starting with MgB2 films deposited using reactive evaporation technique, with the goal to apply this coating to SRF cavities. This paper will present first test results of the RF critical magnetic field of a system consisting of a 10 nm B and a 100 nm MgB2 films deposited on a chemically polished 2-inch single grain Nb substrate.
Wang, Jian-Wei; Cao, Zhen-Dong; Fu, Shi-Jian
2016-10-01
To investigate the effect of acceleration rates on the constant acceleration test speed (U cat) and to compare U cat with the critical swimming speed (U crit) in Chinese bream (Parabramis pekinensis), the U cat test at acceleration rates of 0.05, 0.1, 0.2, 0.4 and 0.8 cm s(-2) and the U crit test in juvenile fish at 20 °C in either normoxia (>90 % saturation oxygen tension) or hypoxia (30 % saturation) were compared. The lactate concentration ([lactate]) of white muscle, liver and plasma and the glycogen concentration ([glycogen]) of white muscle and liver were also measured to identify whether tissue substrate depletion or tissue lactate accumulation correlated with exhaustion. The U cat decreased with the acceleration rate, and there was no significant difference between U crit and U cat at lower acceleration rates. Hypoxia resulted in lower U cat and U crit, and the difference increased with decreased acceleration rates of the U cat test, possibly due to the increased contribution of aerobic components in U crit or U cat at low acceleration rates. Hypoxia elicited a significant decrease in muscle [glycogen] and an increase in muscle and liver [lactate] in resting fish. All post-exercise fish had similar muscle [lactate], suggesting that tissue lactate accumulation may correlate with exercise exhaustion. Unlike hypoxia, exercise induced an increase in muscle [lactate] and a significant increase in plasma [lactate], which were worthy of further investigation. The similar swimming speed and biochemical indicators after exercise in the U crit and U cat groups at low acceleration rates suggested that U cat can be an alternative for the more frequently adopted protocols in U crit in Chinese bream and possibly in other cyprinid fish species.
A review on the applications of microbial electrolysis cells in anaerobic digestion.
Yu, Zhengsheng; Leng, Xiaoyun; Zhao, Shuai; Ji, Jing; Zhou, Tuoyu; Khan, Aman; Kakde, Apurva; Liu, Pu; Li, Xiangkai
2018-05-01
Anaerobic digestion (AD) has been widely used for biogas or biofuel generation from waste treatment. Because a low production rate and instability of AD occur frequently, various technologies have been applied to improvement of AD. Microbial electrolysis cells (MECs), an emerging technology, can convert organic matter into hydrogen, methane, and other value-added products. Recent studies showed that application of MEC to AD (MEC-AD) can accelerate degradation of a substrate (including recalcitrant compounds) and alter AD microbial community by enriching exoelectrogens and methanogens thus increasing biogas production. With stable microbial communities established, improvement of MEC-AD for methane production was achieved. MEC-AD process can be monitored in real-time by detecting electric signals, which linearly correlate with substrate concentrations. This review attempts to evaluate interactions among the decomposition of substrates, MEC-AD system, and the microbial community. This analysis should provide useful insights into the improvement of methane production and the performance of MEC-AD. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Riera, Enrique; Blanco, Alfonso; García, José; Benedito, José; Mulet, Antonio; Gallego-Juárez, Juan A.; Blasco, Miguel
2010-01-01
Oil is an important component of almonds and other vegetable substrates that can show an influence on human health. In this work the development and validation of an innovative, robust, stable, reliable and efficient ultrasonic system at pilot scale to assist supercritical CO2 extraction of oils from different substrates is presented. In the extraction procedure ultrasonic energy represents an efficient way of producing deep agitation enhancing mass transfer processes because of some mechanisms (radiation pressure, streaming, agitation, high amplitude vibrations, etc.). A previous work to this research pointed out the feasibility of integrating an ultrasonic field inside a supercritical extractor without losing a significant volume fraction. This pioneer method enabled to accelerate mass transfer and then, improving supercritical extraction times. To commercially develop the new procedure fulfilling industrial requirements, a new configuration device has been designed, implemented, tested and successfully validated for supercritical fluid extraction of oil from different vegetable substrates.
Polyethylene-Carbon Nanotube Composite Film Deposited by Cold Spray Technique
NASA Astrophysics Data System (ADS)
Ata, Nobuhisa; Ohtake, Naoto; Akasaka, Hiroki
2017-10-01
Carbon nanotubes (CNTs) are high-performance materials because of their superior electrical conductivity, thermal conductivity, and self-lubrication, and they have been studied for application to polymer composite materials as fillers. However, the methods of fabricating polymer composites with CNTs, such as injection molding, are too complicated for industrial applications. We propose a simple cold spray (CS) technique to obtain a polymer composite of polyethylene (PE) and CNTs. The composite films were deposited by CS on polypropylene and nano-porous structured aluminum substrates. The maximum thickness of the composite film was approximately 1 mm. Peaks at G and D bands were observed in the Raman spectra of the films. Scanning electron microscopy images of the film surface revealed that PE particles were melted by the acceleration gas and CNTs were attached with melted PE. The PE particles solidified after contact with the substrate. These results indicate that PE-CNT composite films were successfully deposited on polypropylene and nano-porous structured aluminum substrates by CS.
Modeling the Influence of Injection Modes on the Evolution of Solution Sprays in a Plasma Jet
NASA Astrophysics Data System (ADS)
Shan, Y.; Coyle, T. W.; Mostaghimi, J.
2010-01-01
Solution precursor plasma spraying (SPPS) is a novel technology with great potential for depositing finely structured ceramic coatings with nano- and sub-micrometric features. The solution is injected into the plasma jet either as a liquid stream or gas atomized droplets. Solution droplets or the stream interact with the plasma jet and break up into fine droplets. The solvent vaporizes very fast as the droplets travel downstream. Solid particles are finally formed, and the particle are heated up and accelerated to the substrate to generate the coating. The deposition process and the properties of coatings obtained are extremely sensitive to the process parameters, such as torch operating conditions, injection modes, injection parameters, and substrate temperatures. This article numerically investigates the effect of injection modes, a liquid stream injection and a gas-blast injection, on the size distribution of injected droplets. The particle/droplet size, temperature, and position distributions on the substrate are predicted for different injection modes.
Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells
NASA Astrophysics Data System (ADS)
Sun, Yubing; Yong, Koh Meng Aw; Villa-Diaz, Luis G.; Zhang, Xiaoli; Chen, Weiqiang; Philson, Renee; Weng, Shinuo; Xu, Haoxing; Krebsbach, Paul H.; Fu, Jianping
2014-06-01
Our understanding of the intrinsic mechanosensitive properties of human pluripotent stem cells (hPSCs), in particular the effects that the physical microenvironment has on their differentiation, remains elusive. Here, we show that neural induction and caudalization of hPSCs can be accelerated by using a synthetic microengineered substrate system consisting of poly(dimethylsiloxane) micropost arrays (PMAs) with tunable mechanical rigidities. The purity and yield of functional motor neurons derived from hPSCs within 23 days of culture using soft PMAs were improved more than fourfold and tenfold, respectively, compared with coverslips or rigid PMAs. Mechanistic studies revealed a multi-targeted mechanotransductive process involving Smad phosphorylation and nucleocytoplasmic shuttling, regulated by rigidity-dependent Hippo/YAP activities and actomyosin cytoskeleton integrity and contractility. Our findings suggest that substrate rigidity is an important biophysical cue influencing neural induction and subtype specification, and that microengineered substrates can thus serve as a promising platform for large-scale culture of hPSCs.
Kim, Sujin; Bae, Sang-Jeong; Hahn, Ji-Sook
2016-04-07
Spatial organization of metabolic enzymes allows substrate channeling, which accelerates processing of intermediates. Here, we investigated the effect of substrate channeling on the flux partitioning at a metabolic branch point, focusing on pyruvate metabolism in Saccharomyces cerevisiae. As a platform strain for the channeling of pyruvate flux, PYK1-Coh-Myc strain was constructed in which PYK1 gene encoding pyruvate kinase is tagged with cohesin domain. By using high-affinity cohesin-dockerin interaction, the pyruvate-forming enzyme Pyk1 was tethered to heterologous pyruvate-converting enzymes, lactate dehydrogenase and α-acetolactate synthase, to produce lactic acid and 2,3-butanediol, respectively. Pyruvate flux was successfully redirected toward desired pathways, with a concomitant decrease in ethanol production even without genetic attenuation of the ethanol-producing pathway. This pyruvate channeling strategy led to an improvement of 2,3-butanediol production by 38%, while showing a limitation in improving lactic acid production due to a reduced activity of lactate dehydrogenase by dockerin tagging.
Notch-modifying xylosyltransferase structures support an S Ni-like retaining mechanism
Yu, Hongjun; Li, Huilin; Takeuchi, Megumi; ...
2015-09-28
A major question remaining in glycobiology is how a glycosyltransferase (GT) that retains the anomeric linkage of a sugar catalyzes the reaction. Xyloside α-1,3-xylosyltransferase (XXYLT1) is a retaining GT that regulates Notch receptor activation by adding xylose to the Notch extracellular domain. Here, using natural acceptor and donor substrates and active Mus musculus XXYLT1, we report a series of crystallographic snapshots along the reaction, including an unprecedented natural and competent Michaelis reaction complex for retaining enzymes. These structures strongly support the SNi-like reaction as the retaining mechanism for XXYLT1. Unexpectedly, the epidermal growth factor–like repeat acceptor substrate undergoes a largemore » conformational change upon binding to the active site, providing a structural basis for substrate specificity. As a result, our improved understanding of this retaining enzyme will accelerate the design of retaining GT inhibitors that can modulate Notch activity in pathological situations in which Notch dysregulation is known to cause cancer or developmental disorders.« less
Notch-modifying xylosyltransferase structures support an S Ni-like retaining mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hongjun; Li, Huilin; Takeuchi, Megumi
A major question remaining in glycobiology is how a glycosyltransferase (GT) that retains the anomeric linkage of a sugar catalyzes the reaction. Xyloside α-1,3-xylosyltransferase (XXYLT1) is a retaining GT that regulates Notch receptor activation by adding xylose to the Notch extracellular domain. Here, using natural acceptor and donor substrates and active Mus musculus XXYLT1, we report a series of crystallographic snapshots along the reaction, including an unprecedented natural and competent Michaelis reaction complex for retaining enzymes. These structures strongly support the SNi-like reaction as the retaining mechanism for XXYLT1. Unexpectedly, the epidermal growth factor–like repeat acceptor substrate undergoes a largemore » conformational change upon binding to the active site, providing a structural basis for substrate specificity. As a result, our improved understanding of this retaining enzyme will accelerate the design of retaining GT inhibitors that can modulate Notch activity in pathological situations in which Notch dysregulation is known to cause cancer or developmental disorders.« less
Depth Profiles of Mg, Si, and Zn Implants in GaN by Trace Element Accelerator Mass Spectrometry
NASA Astrophysics Data System (ADS)
Ravi Prasad, G. V.; Pelicon, P.; Mitchell, L. J.; McDaniel, F. D.
2003-08-01
GaN is one of the most promising electronic materials for applications requiring high-power, high frequencies, or high-temperatures as well as opto-electronics in the blue to ultraviolet spectral region. We have recently measured depth profiles of Mg, Si, and Zn implants in GaN substrates by the TEAMS particle counting method for both matrix and trace elements, using a gas ionization chamber. Trace Element Accelerator Mass Spectrometry (TEAMS) is a combination of Secondary Ion Mass Spectrometry (SIMS) and Accelerator Mass Spectrometry (AMS) to measure trace elements at ppb levels. Negative ions from a SIMS like source are injected into a tandem accelerator. Molecular interferences inherent with the SIMS method are eliminated in the TEAMS method. Negative ion currents are extremely low with GaN as neither gallium nor nitrogen readily forms negative ions making the depth profile measurements more difficult. The energies of the measured ions are in the range of 4-8 MeV. A careful selection of mass/charge ratios of the detected ions combined with energy-loss behavior of the ions in the ionization chamber eliminated molecular interferences.
How UV photolysis accelerates the biodegradation and mineralization of sulfadiazine (SD).
Pan, Shihui; Yan, Ning; Liu, Xinyue; Wang, Wenbing; Zhang, Yongming; Liu, Rui; Rittmann, Bruce E
2014-11-01
Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively. The main organic products from photolysis were 2-aminopyrimidine (2-AP), p-aminobenzenesulfonic acid (ABS), and aniline (An), and an SD-photolysis pathway could be identified using C, N, and S balances. Adding An or ABS (but not 2-AP) into the SD solution during biodegradation experiments (no UV photolysis) gave SD removal and mineralization rates similar to intimately coupled photolysis and biodegradation. An SD biodegradation pathway, based on a diverse set of the experimental results, explains how the mineralization of ABS and An (but not 2-AP) provided internal electron carriers that accelerated the initial mono-oxygenation reactions of SD biodegradation. Thus, multiple lines of evidence support that the mechanism by which intimately coupled photolysis and biodegradation accelerated SD removal and mineralization was through producing co-substrates whose oxidation produced electron equivalents that stimulated the initial mono-oxygenation reactions for SD biodegradation.
OpenFOAM Modeling of Particle Heating and Acceleration in Cold Spraying
NASA Astrophysics Data System (ADS)
Leitz, K.-H.; O'Sullivan, M.; Plankensteiner, A.; Kestler, H.; Sigl, L. S.
2018-01-01
In cold spraying, a powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities and temperatures that are sufficient to obtain cohesion of the particles to a substrate. The deposition efficiency of the particles is significantly determined by their velocity and temperature. Particle velocity correlates with the amount of kinetic energy that is converted to plastic deformation and thermal heating. The initial particle temperature significantly influences the mechanical properties of the particle. Velocity and temperature of the particles have nonlinear dependence on the pressure and temperature of the gas at the nozzle entrance. In this contribution, a simulation model based on the reactingParcelFoam solver of OpenFOAM is presented and applied for an analysis of particle velocity and temperature in the cold spray nozzle. The model combines a compressible description of the gas flow in the nozzle with a Lagrangian particle tracking. The predictions of the simulation model are verified based on an analytical description of the gas flow, the particle acceleration and heating in the nozzle. Based on experimental data, the drag model according to Plessis and Masliyah is identified to be best suited for OpenFOAM modeling particle heating and acceleration in cold spraying.
Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng
2015-02-14
Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C-C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C-C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C-C bonding over C-Cu bonding, which results in C-C dimer pair formation near the surface. The dramatically different C-C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.
Banerjee, Rupa; Jayaraj, Gopal Gunanathan; Peter, Joshua Jebakumar; Kumar, Vignesh; Mapa, Koyeli
2016-08-01
DnaK or Hsp70 of Escherichia coli is a master regulator of the bacterial proteostasis network. Allosteric communication between the two functional domains of DnaK, the N-terminal nucleotide-binding domain (NBD) and the C-terminal substrate- or peptide-binding domain (SBD) regulate its activity. X-ray crystallography and NMR studies have provided snapshots of distinct conformations of Hsp70 proteins in various physiological states; however, the conformational heterogeneity and dynamics of allostery-driven Hsp70 activity remains underexplored. In this work, we employed single-molecule Förster resonance energy transfer (sm-FRET) measurements to capture distinct intradomain conformational states of a region within the DnaK-SBD known as the lid. Our data conclusively demonstrate prominent conformational heterogeneity of the DnaK lid in ADP-bound states; in contrast, the ATP-bound open conformations are homogeneous. Interestingly, a nonhydrolysable ATP analogue, AMP-PNP, imparts heterogeneity to the lid conformations mimicking the ADP-bound state. The cochaperone DnaJ confers ADP-like heterogeneous lid conformations to DnaK, although the presence of the cochaperone accelerates the substrate-binding rate by a hitherto unknown mechanism. Irrespective of the presence of DnaJ, binding of a peptide substrate to the DnaK-SBD leads to prominent lid closure. Lid closure is only partial upon binding to molten globule-like authentic cellular substrates, probably to accommodate non-native substrate proteins of varied structures. © 2016 Federation of European Biochemical Societies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Jitendra; Collier, Nathan; Bisht, Gautam
Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. Here, we present an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world fieldmore » sites, utilizing the best available data to characterize and parameterize the models. We also develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture – without recourse to model calibration – several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Moreover, areas of significant disagreement between model results and observations highlight the importance of field-based observations of soil thermal and hydraulic properties for modeling-based studies of permafrost thermal dynamics, and provide motivation and guidance for future observations that will help address model and data gaps affecting our current understanding of the system.« less
Representing northern peatland microtopography and hydrology within the Community Land Model
Shi, Xiaoying; Thornton, Peter E.; Ricciuto, Daniel M.; ...
2015-11-12
Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to representmore » the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. Furthermore, the new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.« less
Representing northern peatland microtopography and hydrology within the Community Land Model
Shi, X.; Thornton, P. E.; Ricciuto, D. M.; ...
2015-02-20
Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to representmore » the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts significant hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. The new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.« less
Flamant, Quentin; Caravaca, Carlos; Meille, Sylvain; Gremillard, Laurent; Chevalier, Jérôme; Biotteau-Deheuvels, Katia; Kuntz, Meinhard; Chandrawati, Rona; Herrmann, Inge K; Spicer, Christopher D; Stevens, Molly M; Anglada, Marc
2016-12-01
Due to their outstanding mechanical properties and excellent biocompatibility, zirconia-toughened alumina (ZTA) ceramics have become the gold standard in orthopedics for the fabrication of ceramic bearing components over the last decade. However, ZTA is bioinert, which hampers its implantation in direct contact with bone. Furthermore, periprosthetic joint infections are now the leading cause of failure for joint arthroplasty prostheses. To address both issues, an improved surface design is required: a controlled micro- and nano-roughness can promote osseointegration and limit bacterial adhesion whereas surface porosity allows loading and delivery of antibacterial compounds. In this work, we developed an integrated strategy aiming to provide both osseointegrative and antibacterial properties to ZTA surfaces. The micro-topography was controlled by injection molding. Meanwhile a novel process involving the selective dissolution of zirconia (selective etching) was used to produce nano-roughness and interconnected nanoporosity. Potential utilization of the porosity for loading and delivery of antibiotic molecules was demonstrated, and the impact of selective etching on mechanical properties and hydrothermal stability was shown to be limited. The combination of injection molding and selective etching thus appears promising for fabricating a new generation of ZTA components implantable in direct contact with bone. Zirconia-toughened alumina (ZTA) is the current gold standard for the fabrication of orthopedic ceramic components. In the present work, we propose an innovative strategy to provide both osseointegrative and antibacterial properties to ZTA surfaces: we demonstrate that injection molding allows a flexible design of surface micro-topography and can be combined with selective etching, a novel process that induces nano-roughness and surface interconnected porosity without the need for coating, avoiding reliability issues. These surface modifications have the potential to improve osseointegration. Furthermore, our results show that the porosity can be used for drug delivery and suggest that the etched surface could reduce bacterial adhesion. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Yang, Liyou; Chen, Liangfan
1998-03-24
Attractive multi-junction solar cells and single junction solar cells with excellent conversion efficiency can be produced with a microcrystalline tunnel junction, microcrystalline recombination junction or one or more microcrystalline doped layers by special plasma deposition processes which includes plasma etching with only hydrogen or other specified etchants to enhance microcrystalline growth followed by microcrystalline. nucleation with a doped hydrogen-diluted feedstock.
Greenough, Lucia; Schermerhorn, Kelly M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E; Gardner, Andrew F
2016-01-29
Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3'-5' exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ligand-accelerated non-directed C-H functionalization of arenes.
Wang, Peng; Verma, Pritha; Xia, Guoqin; Shi, Jun; Qiao, Jennifer X; Tao, Shiwei; Cheng, Peter T W; Poss, Michael A; Farmer, Marcus E; Yeung, Kap-Sun; Yu, Jin-Quan
2017-11-22
The directed activation of carbon-hydrogen bonds (C-H) is important in the development of synthetically useful reactions, owing to the proximity-induced reactivity and selectivity that is enabled by coordinating functional groups. Palladium-catalysed non-directed C-H activation could potentially enable further useful reactions, because it can reach more distant sites and be applied to substrates that do not contain appropriate directing groups; however, its development has faced substantial challenges associated with the lack of sufficiently active palladium catalysts. Currently used palladium catalysts are reactive only with electron-rich arenes, unless an excess of arene is used, which limits synthetic applications. Here we report a 2-pyridone ligand that binds to palladium and accelerates non-directed C-H functionalization with arene as the limiting reagent. This protocol is compatible with a broad range of aromatic substrates and we demonstrate direct functionalization of advanced synthetic intermediates, drug molecules and natural products that cannot be used in excessive quantities. We also developed C-H olefination and carboxylation protocols, demonstrating the applicability of our methodology to other transformations. The site selectivity in these transformations is governed by a combination of steric and electronic effects, with the pyridone ligand enhancing the influence of sterics on the selectivity, thus providing complementary selectivity to directed C-H functionalization.
Ligand-accelerated non-directed C-H functionalization of arenes
NASA Astrophysics Data System (ADS)
Wang, Peng; Verma, Pritha; Xia, Guoqin; Shi, Jun; Qiao, Jennifer X.; Tao, Shiwei; Cheng, Peter T. W.; Poss, Michael A.; Farmer, Marcus E.; Yeung, Kap-Sun; Yu, Jin-Quan
2017-11-01
The directed activation of carbon-hydrogen bonds (C-H) is important in the development of synthetically useful reactions, owing to the proximity-induced reactivity and selectivity that is enabled by coordinating functional groups. Palladium-catalysed non-directed C-H activation could potentially enable further useful reactions, because it can reach more distant sites and be applied to substrates that do not contain appropriate directing groups; however, its development has faced substantial challenges associated with the lack of sufficiently active palladium catalysts. Currently used palladium catalysts are reactive only with electron-rich arenes, unless an excess of arene is used, which limits synthetic applications. Here we report a 2-pyridone ligand that binds to palladium and accelerates non-directed C-H functionalization with arene as the limiting reagent. This protocol is compatible with a broad range of aromatic substrates and we demonstrate direct functionalization of advanced synthetic intermediates, drug molecules and natural products that cannot be used in excessive quantities. We also developed C-H olefination and carboxylation protocols, demonstrating the applicability of our methodology to other transformations. The site selectivity in these transformations is governed by a combination of steric and electronic effects, with the pyridone ligand enhancing the influence of sterics on the selectivity, thus providing complementary selectivity to directed C-H functionalization.
Power density measurements to optimize AC plasma jet operation in blood coagulation.
Ahmed, Kamal M; Eldeighdye, Shaimaa M; Allam, Tarek M; Hassanin, Walaa F
2018-06-14
In this paper, the plasma power density and corresponding plasma dose of a low-cost air non-thermal plasma jet (ANPJ) device are estimated at different axial distances from the nozzle. This estimation is achieved by measuring the voltage and current at the substrate using diagnostic techniques that can be easily made in laboratory; thin wire and dielectric probe, respectively. This device uses a compressed air as input gas instead of the relatively-expensive, large-sized and heavy weighed tanks of Ar or He gases. The calculated plasma dose is found to be very low and allows the presented device to be used in biomedical applications (especially blood coagulation). While plasma active species and charged-particles are found to be the most effective on blood coagulation formation, both air flow and UV, individually, do not have any effect. Moreover, optimal conditions for accelerating blood coagulation are studied. Results showed that, the power density at the substrate is shown to be decreased with increasing the distance from the nozzle. In addition, both distances from nozzle and air flow rate play an important role in accelerating blood coagulation process. Finally, this device is efficient, small-sized, safe enough, of low cost and, hence, has its chances to be wide spread as a first aid and in ambulance.
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.
2006-01-01
Electron beam freeform fabrication (EBF3) is a new layer-additive process that has been developed for near-net shape fabrication of complex structures. EBF3 uses an electron beam to create a molten pool on the surface of a substrate. Wire is fed into the molten pool and the part translated with respect to the beam to build up a 3-dimensional structure one layer at a time. Unlike many other freeform fabrication processes, the energy coupling of the electron beam is extremely well suited to processing of aluminum alloys. The layer-additive nature of the EBF3 process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.
Elevated Colonization of Microborers at a Volcanically Acidified Coral Reef
Enochs, Ian C.; Manzello, Derek P.; Tribollet, Aline; Valentino, Lauren; Kolodziej, Graham; Donham, Emily M.; Fitchett, Mark D.; Carlton, Renee; Price, Nichole N.
2016-01-01
Experiments have demonstrated that ocean acidification (OA) conditions projected to occur by the end of the century will slow the calcification of numerous coral species and accelerate the biological erosion of reef habitats (bioerosion). Microborers, which bore holes less than 100 μm diameter, are one of the most pervasive agents of bioerosion and are present throughout all calcium carbonate substrates within the reef environment. The response of diverse reef functional groups to OA is known from real-world ecosystems, but to date our understanding of the relationship between ocean pH and carbonate dissolution by microborers is limited to controlled laboratory experiments. Here we examine the settlement of microborers to pure mineral calcium carbonate substrates (calcite) along a natural pH gradient at a volcanically acidified reef at Maug, Commonwealth of the Northern Mariana Islands (CNMI). Colonization of pioneer microborers was higher in the lower pH waters near the vent field. Depth of microborer penetration was highly variable both among and within sites (4.2–195.5 μm) over the short duration of the study (3 mo.) and no clear relationship to increasing CO2 was observed. Calculated rates of biogenic dissolution, however, were highest at the two sites closer to the vent and were not significantly different from each other. These data represent the first evidence of OA-enhancement of microboring flora colonization in newly available substrates and provide further evidence that microborers, especially bioeroding chlorophytes, respond positively to low pH. The accelerated breakdown and dissolution of reef framework structures with OA will likely lead to declines in structural complexity and integrity, as well as possible loss of essential habitat. PMID:27467570
Elevated Colonization of Microborers at a Volcanically Acidified Coral Reef.
Enochs, Ian C; Manzello, Derek P; Tribollet, Aline; Valentino, Lauren; Kolodziej, Graham; Donham, Emily M; Fitchett, Mark D; Carlton, Renee; Price, Nichole N
2016-01-01
Experiments have demonstrated that ocean acidification (OA) conditions projected to occur by the end of the century will slow the calcification of numerous coral species and accelerate the biological erosion of reef habitats (bioerosion). Microborers, which bore holes less than 100 μm diameter, are one of the most pervasive agents of bioerosion and are present throughout all calcium carbonate substrates within the reef environment. The response of diverse reef functional groups to OA is known from real-world ecosystems, but to date our understanding of the relationship between ocean pH and carbonate dissolution by microborers is limited to controlled laboratory experiments. Here we examine the settlement of microborers to pure mineral calcium carbonate substrates (calcite) along a natural pH gradient at a volcanically acidified reef at Maug, Commonwealth of the Northern Mariana Islands (CNMI). Colonization of pioneer microborers was higher in the lower pH waters near the vent field. Depth of microborer penetration was highly variable both among and within sites (4.2-195.5 μm) over the short duration of the study (3 mo.) and no clear relationship to increasing CO2 was observed. Calculated rates of biogenic dissolution, however, were highest at the two sites closer to the vent and were not significantly different from each other. These data represent the first evidence of OA-enhancement of microboring flora colonization in newly available substrates and provide further evidence that microborers, especially bioeroding chlorophytes, respond positively to low pH. The accelerated breakdown and dissolution of reef framework structures with OA will likely lead to declines in structural complexity and integrity, as well as possible loss of essential habitat.
Burghoorn, Marieke; Roosen-Melsen, Dorrit; de Riet, Joris; Sabik, Sami; Vroon, Zeger; Yakimets, Iryna; Buskens, Pascal
2013-01-01
Anti-reflective coatings (ARCs) are used to lower the reflection of light on the surface of a substrate. Here, we demonstrate that the two main drawbacks of moth eye-structured ARCs—i.e., the lack of suitable coating materials and a process for large area, high volume applications—can be largely eliminated, paving the way for cost-efficient and large-scale production of durable moth eye-structured ARCs on polymer substrates. We prepared moth eye coatings on polymethylmethacrylate (PMMA) and polycarbonate using wafer-by-wafer step-and-flash nano-imprint lithography (NIL). The reduction in reflection in the visible field achieved with these coatings was 3.5% and 4.0%, respectively. The adhesion of the coating to both substrates was good. The moth eye coating on PMMA demonstrated good performance in three prototypical accelerated ageing tests. The pencil hardness of the moth eye coatings on both substrates was <4B, which is less than required for most applications and needs further optimization. Additionally, we developed a roll-to-roll UV NIL pilot scale process and produced moth eye coatings on polyethylene terephthalate (PET) at line speeds up to two meters per minute. The resulting coatings showed a good replication of the moth eye structures and, consequently, a lowering in reflection of the coated PET of 3.0%. PMID:28788301
Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40.
Yang, Haijuan; Jiang, Xiaolu; Li, Buren; Yang, Hyo J; Miller, Meredith; Yang, Angela; Dhar, Ankita; Pavletich, Nikola P
2017-12-21
The mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and metabolism in response to nutrients, energy levels, and growth factors. It contains the atypical kinase mTOR and the RAPTOR subunit that binds to the Tor signalling sequence (TOS) motif of substrates and regulators. mTORC1 is activated by the small GTPase RHEB (Ras homologue enriched in brain) and inhibited by PRAS40. Here we present the 3.0 ångström cryo-electron microscopy structure of mTORC1 and the 3.4 ångström structure of activated RHEB-mTORC1. RHEB binds to mTOR distally from the kinase active site, yet causes a global conformational change that allosterically realigns active-site residues, accelerating catalysis. Cancer-associated hyperactivating mutations map to structural elements that maintain the inactive state, and we provide biochemical evidence that they mimic RHEB relieving auto-inhibition. We also present crystal structures of RAPTOR-TOS motif complexes that define the determinants of TOS recognition, of an mTOR FKBP12-rapamycin-binding (FRB) domain-substrate complex that establishes a second substrate-recruitment mechanism, and of a truncated mTOR-PRAS40 complex that reveals PRAS40 inhibits both substrate-recruitment sites. These findings help explain how mTORC1 selects its substrates, how its kinase activity is controlled, and how it is activated by cancer-associated mutations.
NASA Technical Reports Server (NTRS)
Kolyer, J. M.
1978-01-01
An important principle is that encapsulants should be tested in a total array system allowing realistic interaction of components. Therefore, micromodule test specimens were fabricated with a variety of encapsulants, substrates, and types of circuitry. One common failure mode was corrosion of circuitry and solar cell metallization due to moisture penetration. Another was darkening and/or opacification of encapsulant. A test program plan was proposed. It includes multicondition accelerated exposure. Another method was hyperaccelerated photochemical exposure using a solar concentrator. It simulates 20 year of sunlight exposure in a short period of one to two weeks. The study was beneficial in identifying some cost effective encapsulants and array designs.
Competition for electrons between mono-oxygenations of pyridine and 2-hydroxypyridine.
Yang, Chao; Tang, Yingxia; Xu, Hua; Yan, Ning; Li, Naiyu; Zhang, Yongming; Rittmann, Bruce E
2018-05-21
Pyridine and its heterocyclic derivatives are widely encountered in industrial wastewaters, and they are relatively recalcitrant to biodegradation. Pyridine biodegradation is initiated by two mono-oxygenation reactions that compete for intracellular electron donor (2H). In our experiments, UV photolysis of pyridine generated succinate, whose oxidation augmented the intracellular electron donor and accelerated pyridine biodegradation and mineralization. The first mono-oxygenation reaction always was faster than the second one, because electrons provided by intracellular electron donors were preferentially utilized by the first mono-oxygenase; this was true even when the concentration of 2HP was greater than the concentration of pyridine. In addition, the first mono-oxygenation had faster kinetics because it had higher affinity for its substrate (pyridine), along with less substrate self-inhibition.
Dornan, Peter K.; Kou, Kevin G. M.; Houk, K. N.; Dong, Vy M.
2014-01-01
A dynamic kinetic resolution (DKR) of allylic sulfoxides has been demonstrated by combining the Mislow [2,3]-sigmatropic rearrangement with catalytic asymmetric hydrogenation. The efficiency of our DKR was optimized by using low pressures of hydrogen gas to decrease the rate of hydrogenation relative to the rate of sigmatropic rearrangement. Kinetic studies reveal that the rhodium complex acts as a dual-role catalyst and accelerates the substrate racemization while catalyzing olefin hydrogenation. Scrambling experiments and theoretical modeling support a novel mode of sulfoxide racemization which occurs via a rhodium π-allyl intermediate in polar solvents. In non-polar solvents, however, the substrate racemization is primarily uncatalyzed. Computational studies suggest that the sulfoxide binds to rhodium via O–coordination throughout the catalytic cycle for hydrogenation. PMID:24350903
The friction coefficient evolution of a MoS2/WC multi-layer coating system during sliding wear
NASA Astrophysics Data System (ADS)
Chan, T. Y.; Hu, Y.; Gharbi, Mohammad M.; Politis, D. J.; Wang, L.
2016-08-01
This paper discusses the evolution of friction coefficient for the multi-layered Molybdenum Disulphide (MoS2) and WC coated substrate during sliding against Aluminium AA 6082 material. A soft MoS2 coating was prepared over a hard WC coated G3500 cast iron tool substrate and underwent friction test using a pin-on-disc tribometer. The lifetime of the coating was reduced with increasing load while the Aluminium debris accumulated on the WC hard coating surfaces, accelerated the breakdown of the coatings. The lifetime of the coating was represented by the friction coefficient and the sliding distance before MoS2 coating breakdown and was found to be affected by the load applied and the wear mechanism.
Microstructured snow targets for high energy quasi-monoenergetic proton acceleration
NASA Astrophysics Data System (ADS)
Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Baspaly, A.; Pomerantz, I.; Abricht, F.; Branzel, J.; Priebe, G.; Steinke, S.; Andreev, A.; Schnuerer, M.; Sandner, W.; Gordon, D.; Sprangle, P.; Ledingham, K. W. D.; Zigler, A.
2013-05-01
Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications 1-8. One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10-10. Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13 but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system18.
Roberts, Christopher C; Chang, Chia-En A
2016-08-25
We present the second-generation GeomBD Brownian dynamics software for determining interenzyme intermediate transfer rates and substrate association rates in biomolecular complexes. Substrate and intermediate association rates for a series of enzymes or biomolecules can be compared between the freely diffusing disorganized configuration and various colocalized or complexed arrangements for kinetic investigation of enhanced intermediate transfer. In addition, enzyme engineering techniques, such as synthetic protein conjugation, can be computationally modeled and analyzed to better understand changes in substrate association relative to native enzymes. Tools are provided to determine nonspecific ligand-receptor association residence times, and to visualize common sites of nonspecific association of substrates on receptor surfaces. To demonstrate features of the software, interenzyme intermediate substrate transfer rate constants are calculated and compared for all-atom models of DNA origami scaffold-bound bienzyme systems of glucose oxidase and horseradish peroxidase. Also, a DNA conjugated horseradish peroxidase enzyme was analyzed for its propensity to increase substrate association rates and substrate local residence times relative to the unmodified enzyme. We also demonstrate the rapid determination and visualization of common sites of nonspecific ligand-receptor association by using HIV-1 protease and an inhibitor, XK263. GeomBD2 accelerates simulations by precomputing van der Waals potential energy grids and electrostatic potential grid maps, and has a flexible and extensible support for all-atom and coarse-grained force fields. Simulation software is written in C++ and utilizes modern parallelization techniques for potential grid preparation and Brownian dynamics simulation processes. Analysis scripts, written in the Python scripting language, are provided for quantitative simulation analysis. GeomBD2 is applicable to the fields of biophysics, bioengineering, and enzymology in both predictive and explanatory roles.
Biomechanical implications of walking with indigenous footwear
Willems, Catherine; Stassijns, Gaetane; Cornelis, Wim; D'Août, Kristiaan
2017-01-01
Abstract Objectives This study investigates biomechanical implications of walking with indigenous “Kolhapuri” footwear compared to barefoot walking among a population of South Indians. Materials and methods Ten healthy adults from South India walked barefoot and indigenously shod at voluntary speed on an artificial substrate. The experiment was repeated outside, on a natural substrate. Data were collected from (1) a heel‐mounted 3D‐accelerometer recording peak impact at heel contact, (2) an ankle‐mounted 3D‐goniometer (plantar/dorsiflexion and inversion/eversion), and (3) sEMG electrodes at the m. tibialis anterior and the m. gastrocnemius medialis. Results Data show that the effect of indigenous footwear on the measured variables, compared to barefoot walking, is relatively small and consistent between substrates (even though subjects walked faster on the natural substrate). Walking barefoot, compared to shod walking yields higher impact accelerations, but the differences are small and only significant for the artificial substrate. The main rotations of the ankle joint are mostly similar between conditions. Only the shod condition shows a faster ankle rotation over the rapid eversion motion on the natural substrate. Maximal dorsiflexion in late stance differs between the footwear conditions on an artificial substrate, with the shod condition involving a less dorsiflexed ankle, and the plantar flexion at toe‐off is more extreme when shod. Overall the activity pattern of the external foot muscles is similar. Discussion The indigenous footwear studied (Kolhapuri) seems to alter foot biomechanics only in a subtle way. While offering some degree of protection, walking in this type of footwear resembles barefoot gait and this type of indigenous footwear might be considered “minimal”. PMID:28101944
Biomechanical implications of walking with indigenous footwear.
Willems, Catherine; Stassijns, Gaetane; Cornelis, Wim; D'Août, Kristiaan
2017-04-01
This study investigates biomechanical implications of walking with indigenous "Kolhapuri" footwear compared to barefoot walking among a population of South Indians. Ten healthy adults from South India walked barefoot and indigenously shod at voluntary speed on an artificial substrate. The experiment was repeated outside, on a natural substrate. Data were collected from (1) a heel-mounted 3D-accelerometer recording peak impact at heel contact, (2) an ankle-mounted 3D-goniometer (plantar/dorsiflexion and inversion/eversion), and (3) sEMG electrodes at the m. tibialis anterior and the m. gastrocnemius medialis. Data show that the effect of indigenous footwear on the measured variables, compared to barefoot walking, is relatively small and consistent between substrates (even though subjects walked faster on the natural substrate). Walking barefoot, compared to shod walking yields higher impact accelerations, but the differences are small and only significant for the artificial substrate. The main rotations of the ankle joint are mostly similar between conditions. Only the shod condition shows a faster ankle rotation over the rapid eversion motion on the natural substrate. Maximal dorsiflexion in late stance differs between the footwear conditions on an artificial substrate, with the shod condition involving a less dorsiflexed ankle, and the plantar flexion at toe-off is more extreme when shod. Overall the activity pattern of the external foot muscles is similar. The indigenous footwear studied (Kolhapuri) seems to alter foot biomechanics only in a subtle way. While offering some degree of protection, walking in this type of footwear resembles barefoot gait and this type of indigenous footwear might be considered "minimal". © 2017 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.
Electrokinetic acceleration of DNA hybridization in microsystems.
Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen
2015-06-01
In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Shuo; Chang, Jiali; Liu, Wei; Pan, Yiran; Cui, Kangping; Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Wu, Qing; Qiu, Yong; Huang, Xia
2018-06-12
Based on the new syntrophic methanogenesis route via direct interspecies electron transfer (DIET), a novel bioaugmentation method by adding exoelectrogenic Geobacter species to accelerate methanogenesis was developed in this study. Geobacter sulfurreducens PCA, type exoelectrogenic strain of Geobacter species was chosen for the research. To clarify the effect of G. sulfurreducens on methanogenesis, batch tests of CH 4 production were carried out. Acetate, the most typical precursor of methanogenesis was chosen as the substrate of batch tests. Amendment of G. sulfurreducens accelerated CH 4 production remarkably. The lag phase of CH 4 production was shortened, and the maximum CH 4 production rate was increased by 78%. Fluorescence in situ hybridization showed that G. sulfurreducens closely gathered with methanogens. For the archaeal communities, the high-throughput sequencing results demonstrated that Methanosaetaceae and Methanobacteriaceae were potential bioaugmented methanogens. We speculated that the accelerated methanogenesis by adding G. sulfurreducens may result from the syntrophic association between G. sulfurreducens and methanogens affiliated with Methanosaetaceae and Methanobacteriaceae. This research provides a new route to enhance methanogenesis through the utilization of G. sulfurreducens. Through this study, the role of Geobacter in the anaerobic engineering and carbon cycling of nature should be paid more attention. Copyright © 2018. Published by Elsevier B.V.
Powering a leadless pacemaker using a PiezoMEMS energy harvester
NASA Astrophysics Data System (ADS)
Jackson, Nathan; Olszewski, Oskar; O'Murchu, Cian; Mathewson, Alan
2017-06-01
MEMS based vibrational energy harvesting devices have been a highly researched topic over the past decade. The application targeted in this paper focuses on a leadless pacemaker that will be implanted in the right ventricle of the heart. A leadless pacemaker requires the same functionality as a normal pacemaker, but with significantly reduced volume. The reduced volume limits the space for a battery; therefore an energy harvesting device is required. This paper compares varying the dimensions of a linear MEMS based piezoelectric energy harvester that can harvest energy from the mechanical vibrations of the heart due to shock induced vibration. Typical MEMS linear energy harvesting devices operate at high frequency (<50 Hz) with low acceleration (< 1g). The force generated from the heart acts as a series of impulses as opposed to traditional sinusoidal vibration force with high acceleration (1-4 g). Therefore the design of a MEMS harvester that is based on shock-induced vibration is necessary. PiezoMEMS energy harvesting devices consisting of a silicon substrate and mass with aluminium nitride piezoelectric material were developed and characterized using acceleration forces that mimic the heartbeat. Peak powers of up to 25μW were obtained at 1 g acceleration with a powder density of approximately 1.5 mW cm-3.
NASA Astrophysics Data System (ADS)
Schleifer, E.; Bruner, N.; Eisenmann, S.; Botton, M.; Pikuz, S. A., Jr.; Faenov, A. Y.; Gordon, D.; Zigler, A.
2011-05-01
Compact sources of high energy protons (50-500MeV) are expected to be key technology in a wide range of scientific applications 1-8. Particularly promising is the target normal sheah acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Enhancing the energy of generated protons using compact laser sources is very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13. Here we report on the first generation of 5.5-7.5MeV protons by modest laser intensities (4.5 × 1017 W/cm2) interacting with H2O nano-wires (snow) deposited on a Sapphire substrate. In this setup, the plasma near the tip of the nano-wire is subject to locally enhanced laser intensity with high spatial gradients, and confined charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. Nano-wire engineered targets will relax the demand of peak energy from laser based sources.
NASA Astrophysics Data System (ADS)
Liu, Fei; Li, Bin; Sun, Junying; Li, Hongwei; Wang, Bing; Zhang, Shailin
2012-03-01
We report here a new method of titanium surface modification through ammonia (NH3) plasma immersion ion implantation (PIII) technique and its effect on the cellular behaviors of MC3T3-E1 osteoblastic cells. The NH3 PIII-treated titanium substrates (NH3-Ti) were characterized by X-ray photoelectron (XPS), which showed that NH3-Ti had a nitrogen-rich surface. However, there was no significant difference between the surface morphology of NH3-Ti and unmodified Ti. When MC3T3-E1 cells were cultured on NH3-Ti substrates, it was found that cell proliferation was accelerated at 4 and 7 days of culture. Meanwhile, cell differentiation was evaluated using type I collagen (COL I), osteocalcin (OC) and bone sialoprotein (BSP) as differentiation markers. It was found that expression of COL I and OC genes was up-regulated on NH3-Ti substrates. However, no significant difference was found in BSP gene expression between NH3-Ti and unmodified Ti substrates. Therefore, findings from this study indicate that surface modification of titanium through NH3 PIII favors osteoblastic proliferation and differentiation and as a result, it may be used to improve the biocompatibility of Ti implants in vivo.
NASA Astrophysics Data System (ADS)
Elsaß, M.; Frommherz, M.; Oechsner, M.
2018-02-01
In this work, interdiffusion between two nickel-based superalloys and two MCrAlY bond coats is investigated. The MCrAlY bond coats were applied using two different spraying processes, high velocity oxygen fuel spraying (HVOF) and low-pressure plasma spraying. Of primary interest is the evolution of Kirkendall porosity, which can form at the interface between substrate and bond coat and depends largely on the chemical compositions of the coating and substrate. Experimental evidence further suggested that the formation of Kirkendall porosity depends on the coating deposition process. Formation of porosity at the interface causes a degradation of the bonding strength between substrate and coating. After coating deposition, the samples were annealed at 1050 °C for up to 2000 h. Microstructural and compositional analyses were performed to determine and evaluate the Kirkendall porosity. The results reveal a strong influence of both the coating deposition process and the chemical compositions. The amount of Kirkendall porosity formed, as well as the location of appearance, is largely influenced by the coating deposition process. In general, samples with bond coats applied by means of HVOF show accelerated element diffusion. It is hypothesized that recrystallization of the substrate material is a main root cause for these observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flemish, Joseph; Soer, Wouter
2015-11-30
Patterned sapphire substrate (PSS) technology has proven to be an effective approach to improve efficacy and reduce cost of light-emitting diodes (LEDs). The volume emission from the transparent substrate leads to high package efficiency, while the simple and robust architecture of PSS-based LEDs enables low cost. PSS substrates have gained wide use in mid-power LEDs over the past years. In this project, Lumileds has developed and industrialized PSS and epitaxy technology for high- power flip-chip LEDs to bring these benefits to a broader range of applications and accelerate the adoption of energy-efficient solid-state lighting (SSL). PSS geometries were designed formore » highly efficient light extraction in a flip-chip architecture and high-volume manufacturability, and corresponding sapphire patterning and epitaxy manufacturing processes were integrally developed. Concurrently, device and package architectures were developed to take advantage of the PSS flip-chip die in different types of products that meet application needs. The developed PSS and epitaxy technology has been fully implemented in manufacturing at Lumileds’ San Jose, CA location, and incorporated in illumination-grade LED products that have been successfully introduced to the market, including LUXEON Q and LUXEON FlipChip White.« less
Matthews, Mike B; Kearns, Stuart L; Buse, Ben
2018-04-01
The accuracy to which Cu and Al coatings can be determined, and the effect this has on the quantification of the substrate, is investigated. Cu and Al coatings of nominally 5, 10, 15, and 20 nm were sputter coated onto polished Bi using two configurations of coater: One with the film thickness monitor (FTM) sensor colocated with the samples, and one where the sensor is located to one side. The FTM thicknesses are compared against those calculated from measured Cu Lα and Al Kα k-ratios using PENEPMA, GMRFilm, and DTSA-II. Selected samples were also cross-sectioned using focused ion beam. Both systems produced repeatable coatings, the thickest coating being approximately four times the thinnest coating. The side-located FTM sensor indicated thicknesses less than half those of the software modeled results, propagating on to 70% errors in substrate quantification at 5 kV. The colocated FTM sensor produced errors in film thickness and substrate quantification of 10-20%. Over the range of film thicknesses and accelerating voltages modeled both the substrate and coating k-ratios can be approximated by linear trends as functions of film thickness. The Al films were found to have a reduced density of ~2 g/cm2.
Devés, R; Krupka, R M
1987-01-01
The properties of the choline transport system are fundamentally altered in saline solution containing 5 mM imidazole buffer instead of 5 mM phosphate: (i) The system no longer exhibits accelerated exchange. (ii) Choline in the external compartment fails to increase the rate of inactivation of the carrier by N-ethylmaleimide. (iii) Depending on the relative concentrations of choline and imidazole, transport may be activated or inhibited. The maximum rates are increased more than fivefold by imidazole, but at moderate substrate concentrations activation is observed with low concentrations of imidazole and inhibition with high concentrations. (iv) The imidazole effect is asymmetric, there being a greater tendency to activate exit than entry. All this behavior is predicted by the carrier model if imidazole is a substrate of the choline carrier having a high maximum transport rate but a relatively low affinity, and if imidazole rapidly enters the cell by simple diffusion, so that it can add to carrier sites on both sides of the membrane. Addition at the cis side inhibits, and at the trans side activates. According to the carrier model, asymmetry is a necessary consequence of the potassium ion gradient in red cells, potassium ion being another substrate of the choline system.
NASA Astrophysics Data System (ADS)
Bao, Lei; Liu, Jingxiao; Shi, Fei; Jiang, Yanyan; Liu, Guishan
2014-01-01
In order to prevent the low temperature degradation and improve the bioactivity of zirconia ceramic implants, TiO2 and Si-doped octacalcium phosphate composite coating was prepared on zirconia substrate. The preventive effect on low temperature degradation and surface morphology of the TiO2 layer were studied. Meanwhile, the structure and property changes of the bioactive coating after doping Si were discussed. The results indicate that the dense TiO2 layer, in spite of some microcracks, inhibited the direct contact of the water vapor with the sample's surface and thus prevented the low temperature degradation of zirconia substrates. The acceleration aging test shows that the ratio of the monoclinic phase transition decreased from 10% for the original zirconia substrate to 4% for the TiO2-coated substrate. As to the Si-doped octacalcium phosphate coating prepared by biomimetic method, the main phase composition of the coating was octacalcium phosphate. The morphology of the coating was lamellar-like, and the surface was uniform and continuous with no cracks being observed. It is suggested that Si was added into the coating both through substituting for PO43- and doping as NaSiO3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sopcak, T., E-mail: tsopcak@imr.saske.sk; Medvecky, L.; Giretova, M.
The composite cement mixtures were prepared by mixing brushite (B) with, the amorphous hydrated calcium silicate phosphate (CSPH) or annealed calcium silicate phosphate (CSP composed of Si-saturated hydroxyapatite, wollastonite and silica) phases and water as liquid component. The contents of the silicate-phosphate phase in composites were 10.30 and 50 wt%. The significant effect of both the Ca/P ratio and different solubility of calcium silicate phosphate component in starting cement systems on setting time and phase composition of the final composite cements was demonstrated. The compressive strength of the set cements increased with the filler addition and the highest value (~more » 48 MPa) exhibited the 50CSP/B cement composite. The final setting times of the composite cements decreased with the CSPH addition from about 25 to 17 min in 50CSHP/B and setting time of CSP/B composites was around 30 min. The higher content of silica in cements caused the precipitation of fine hydroxyapatite particles in the form of nanoneedles or thin plates perpendicularly oriented to sample surface. The analysis of in vitro cement cytotoxicity demonstrated the strong reduction in cytotoxicity of 10CSPH/B composite with time of cultivation (a low cytotoxicity after 9 days of culture) contrary to cements with higher calcium silicate-phosphate content. These results were attributed to the different surface topography of composite substrates and possible stimulation of cell proliferation by the slow continuously release of ions from 10CSPH/B cement. - Highlights: • Ca/P ratio and solubility of calcium silicate-phosphate components affect the self-setting properties of cements. • Strong relationship between the composite in vitro cytotoxicity and surface microtopography was demonstrated. • Plate-like morphology of coarser particles allowed cells to better adhere and proliferate as compared with nanoneedles.« less
Surface Micromachined Silicon Carbide Accelerometers for Gas Turbine Applications
NASA Technical Reports Server (NTRS)
DeAnna, Russell G.
1998-01-01
A finite-element analysis of possible silicon carbide (SIC) folded-beam, lateral-resonating accelerometers is presented. Results include stiffness coefficients, acceleration sensitivities, resonant frequency versus temperature, and proof-mass displacements due to centripetal acceleration of a blade-mounted sensor. The surface micromachined devices, which are similar to the Analog Devices Inc., (Norwood, MA) air-bag crash detector, are etched from 2-pm thick, 3C-SiC films grown at 1600 K using atmospheric pressure chemical vapor deposition (APCVD). The substrate is a 500 gm-thick, (100) silicon wafer. Polysilicon or silicon dioxide is used as a sacrificial layer. The finite element analysis includes temperature-dependent properties, shape change due to volume expansion, and thermal stress caused by differential thermal expansion of the materials. The finite-element results are compared to experimental results for a SiC device of similar, but not identical, geometry. Along with changes in mechanical design, blade-mounted sensors would require on-chip circuitry to cancel displacements due to centripetal acceleration and improve sensitivity and bandwidth. These findings may result in better accelerometer designs for this application.
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.
2006-01-01
The layer-additive nature of the electron beam freeform fabrication (EBF3) process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.
Kopilevich, Sivil; Müller, Achim; Weinstock, Ira A
2015-10-14
Using the hydrolysis of epoxides in water as a model reaction, the effect of multiple active sites on Michaelis-Menten compliant rate accelerations in a porous capsule is demonstrated. The capsule is a water-soluble Ih-symmetry Keplerate-type complex of the form, [{Mo(VI)6O21(H2O)6}12{Mo(V)2O4(L)}30](42-), in which 12 pentagonal "ligands," {(Mo(VI))Mo(VI)5O21(H2O)6}(6-), are coordinated to 30 dimolybdenum sites, {Mo(V)2O4L}(1+) (L = an endohedrally coordinated η(2)-bound carboxylate anion), resulting in 20 Mo9O9 pores. When "up-regulated" by removal of ca. one-third of the blocking ligands, L, an equal number of dimolybdenum sites are activated, and the newly freed-up space allows for encapsulation of nearly twice as many substrate guests, leading to a larger effective molarity (amplification), and an increase in the rate acceleration (k(cat)/k(uncat)) from 16,000 to an enzyme-like value of 182,800.
Oligomerization of a molecular chaperone modulates its activity
Kawagoe, Soichiro; Ishimori, Koichiro
2018-01-01
Molecular chaperones alter the folding properties of cellular proteins via mechanisms that are not well understood. Here, we show that Trigger Factor (TF), an ATP-independent chaperone, exerts strikingly contrasting effects on the folding of non-native proteins as it transitions between a monomeric and a dimeric state. We used NMR spectroscopy to determine the atomic resolution structure of the 100 kDa dimeric TF. The structural data show that some of the substrate-binding sites are buried in the dimeric interface, explaining the lower affinity for protein substrates of the dimeric compared to the monomeric TF. Surprisingly, the dimeric TF associates faster with proteins and it exhibits stronger anti-aggregation and holdase activity than the monomeric TF. The structural data show that the dimer assembles in a way that substrate-binding sites in the two subunits form a large contiguous surface inside a cavity, thus accounting for the observed accelerated association with unfolded proteins. Our results demonstrate how the activity of a chaperone can be modulated to provide distinct functional outcomes in the cell. PMID:29714686
Lee, Austin W H; Gates, Byron D
2016-07-26
We demonstrate the method of a rapid covalent modification of silicon oxide surfaces with alcohol-containing compounds with assistance by microwave reactions. Alcohol-containing compounds are prevalent reagents in the laboratory, which are also relatively easy to handle because of their stability against exposure to atmospheric moisture. The condensation of these alcohols with the surfaces of silicon oxides is often hindered by slow reaction kinetics. Microwave radiation effectively accelerates this condensation reaction by heating the substrates and/or solvents. A variety of substrates were modified in this demonstration, such as silicon oxide films of various thicknesses, glass substrates such as microscope slides (soda lime), and quartz. The monolayers prepared through this strategy demonstrated the successful formation of covalent surface modifications of silicon oxides with water contact angles of up to 110° and typical hysteresis values of 2° or less. An evaluation of the hydrolytic stability of these monolayers demonstrated their excellent stability under acidic conditions. The techniques introduced in this article were successfully applied to tune the surface chemistry of silicon oxides to achieve hydrophobic, oleophobic, and/or charged surfaces.
Action of the Hsp70 chaperone system observed with single proteins
NASA Astrophysics Data System (ADS)
Nunes, João M.; Mayer-Hartl, Manajit; Hartl, F. Ulrich; Müller, Daniel J.
2015-02-01
In Escherichia coli, the binding of non-native protein substrates to the Hsp70 chaperone DnaK is mediated by the co-chaperone DnaJ. DnaJ accelerates ATP hydrolysis on DnaK, by closing the peptide-binding cleft of DnaK. GrpE catalysed nucleotide exchange and ATP re-binding then lead to substrate release from DnaK, allowing folding. Here we refold immunoglobulin 27 (I27) to better understand how DnaJ-DnaK-GrpE chaperones cooperate. When DnaJ is present, I27 is less likely to misfold and more likely to fold, whereas the unfolded state remains unaffected. Thus, the ‘holdase’ DnaJ shows foldase behaviour. Misfolding of I27 is fully abrogated when DnaJ cooperates with DnaK, which stabilizes the unfolded state and increases the probability of folding. Addition of GrpE shifts the unfolded fraction of I27 to pre-chaperone levels. These insights reveal synergistic mechanisms within the evolutionary highly conserved Hsp70 system that prevent substrates from misfolding and promote their productive transition to the native state.
Exfoliated YBCO filaments for second-generation superconducting cable
NASA Astrophysics Data System (ADS)
Solovyov, Vyacheslav; Farrell, Paul
2017-01-01
The second-generation high temperature superconductor (2G HTS) wire is the most promising conductor for high-field magnets such as accelerator dipoles and compact fusion devices. The key element of the wire is a thin Y1Ba2Cu3O7 (YBCO) layer deposited on a flexible metal substrate. The substrate, which becomes incorporated in the 2G conductor, reduces the electrical and mechanical performance of the wire. This is a process that exfoliates the YBCO layer from the substrate while retaining the critical current density of the superconductor. Ten-centimeter long coupons of exfoliated YBCO layers were manufactured, and detailed structural, electrical, and mechanical characterization were reported. After exfoliation, the YBCO layer was supported by a 75 μm thick stainless steel foil, which makes for a compact, mechanically stronger, and inexpensive conductor. The critical current density of the filaments was measured at both 77 K and 4.2 K. The exfoliated YBCO retained 90% of the original critical current. Similarly, tests in an external magnetic field at 4.2 K confirmed that the pinning strength of the YBCO layer was also retained following exfoliation.
Plasmaless cleaning process of silicon surface using chlorine trifluoride
NASA Astrophysics Data System (ADS)
Saito, Yoji; Yamaoka, Osamu; Yoshida, Akira
1990-03-01
Plasmaless etching using ClF3 gas around room temperature has been investigated for the silicon substrates with the various thicknesses of native oxide. The native oxide can be removed with ClF3 gas. A specular surface is obtained by ultraviolet light irradiation which remarkably accelerates the removal of the native oxide without changing the etch rate of silicon. The etched surface is analyzed with Auger electron measurement, indicating the existence of Cl atoms on it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martz, Joseph Christopher; Spearing, Dane Robert; Labouriau, Andrea
Microclad is a composite material consisting of a thin copper coating applied on a single side over a Kapton substrate. Kapton is the commercial designator for polyimide supplied by DuPont. Microclad is a key material in detonator manufacture and function. Detonators which utilize Microclad function when a large current applied through a thin bridge etched into the copper produces a plasma, accelerating a Kapton flyer into an explosive (PETN) pellet. The geometry and properties of the Microclad are a critical element of this process.
Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Sun, Han; Shen, Qiuting; Li, Xiang; Chen, Hong
2015-04-15
Adding alkyl polyglucose (APG) into an anaerobic treatment system of waste activated sludge (WAS) was reported to remarkably improve the production of short-chain fatty acids (SCFAs), especially propionic acid via simultaneously accelerating solubilization and hydrolysis, enhancing acidification, inhibiting methanogenesis and balancing carbon to nitrogen (C/N) ratio of substrate. Not only the production of SCFAs, especially propionic acid, was significantly improved by APG, but also the feasible operation time was shortened. The SCFAs yield at 0.3 g APG per gram of total suspended solids (TSS) within 4 d was 2988 ± 60 mg chemical oxygen demand (COD) per liter, much higher than that those from sole WAS or sole WAS plus sole APG. The corresponding yield of propionic acid was 1312 ± 25 mg COD/L, 7.9-fold of sole WAS. Mechanism investigation showed that during anaerobic treatment of WAS in the presence of APG both the solubilization and hydrolysis were accelerated and the acidification was enhanced, while the methanogenesis was inhibited. Moreover, the activities of key enzymes involved in WAS hydrolysis and acidification were improved through the adjustment of C/N ratio of substrates with APG. The abundance of microorganisms responsible for organic compounds hydrolysis and SCFAs production was also observed to be greatly enhanced with APG via 454 high-throughput pyrosequencing analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dutta, Sajal Kanti; Chakraborty, Saikat
2016-01-01
Hemicelluloses are the earth’s second most abundant structural polymers, found in lignocellulosic biomass. Efficient enzymatic depolymerization of xylans by cleaving their β-(1 → 4)-glycosidic bonds to produce soluble sugars is instrumental to the cost-effective production of liquid biofuels. Here we show that the multi-scale two-phase process of enzymatic hydrolysis of amorphous hemicelluloses is dominated by its smallest scale–the pores. In the crucial first five hours, two to fourfold swelling of the xylan particles allow the enzymes to enter the pores and undergo rapid non-equilibrium adsorption on the pore surface before they hydrolyze the solid polymers, albeit non-competitively inhibited by the products xylose and xylobiose. Rapid pore-scale reactive dissolution increases the solid carbohydrate’s porosity to 80–90%. This tightly coupled experimental and theoretical study quantifies the complex temporal dynamics of the transport and reaction processes coupled across scales and phases to show that this unique pore-scale phenomenon can be exploited to accelerate the depolymerization of hemicelluloses to monomeric sugars in the first 5–6 h. We find that an ‘optimal substrate loading’ of 5 mg/ml (above which substrate inhibition sets in) accelerates non-equilibrium enzyme adsorption and solid hemicellulose depolymerization at the pore-scale, which contributes three-quarters of the soluble sugars produced for bio-alcohol fermentation. PMID:27905534
Cleaning techniques for intense ion beam sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menge, P.R.; Cuneo, M.E.; Bailey, J.E.
Generation of high power lithium ion beams on the SABRE (1TW) and PBFA-X (20 TW) accelerators have been limited by the parallel acceleration of contaminant ions. during the beam pulse lithium is replaced by protons and carbon ions. This replacement is accompanied by rapid impedance decay of the diode. The contaminant hydrogen and carbon is believed to originate from impurity molecules on the surface and in the bulk of the lithium ion source and its substrate material. Cleaning techniques designed to remove hydrocarbons from the ion source have been employed with some success in test stand experiments and on SABRE.more » The test stand experiments have shown that a lithium fluoride (LiF) ion source film can accrue dozens of hydrocarbon monolayers on its surface while sitting in vacuum. Application of 13.5 MHz RF discharge cleaning with 90% Ar/10% O{sub 2} can significantly reduce the surface hydrocarbon layers on the LiF film. On SABRE, combinations of RF discharge cleaning, anode heating, layering gold between the source film (LiF) and its substrate, and cryogenic cathode cooling produced an increase by a factor of 1.5--2 in the quantity of high energy lithium in the ion beam. A corresponding decrease in protons and carbon ions was also observed. Cleaning experiments on PBFA-X are underway. New designs of contamination resistant films and Li ion sources are currently being investigated.« less
NASA Astrophysics Data System (ADS)
Dutta, Sajal Kanti; Chakraborty, Saikat
2016-12-01
Hemicelluloses are the earth’s second most abundant structural polymers, found in lignocellulosic biomass. Efficient enzymatic depolymerization of xylans by cleaving their β-(1 → 4)-glycosidic bonds to produce soluble sugars is instrumental to the cost-effective production of liquid biofuels. Here we show that the multi-scale two-phase process of enzymatic hydrolysis of amorphous hemicelluloses is dominated by its smallest scale-the pores. In the crucial first five hours, two to fourfold swelling of the xylan particles allow the enzymes to enter the pores and undergo rapid non-equilibrium adsorption on the pore surface before they hydrolyze the solid polymers, albeit non-competitively inhibited by the products xylose and xylobiose. Rapid pore-scale reactive dissolution increases the solid carbohydrate’s porosity to 80-90%. This tightly coupled experimental and theoretical study quantifies the complex temporal dynamics of the transport and reaction processes coupled across scales and phases to show that this unique pore-scale phenomenon can be exploited to accelerate the depolymerization of hemicelluloses to monomeric sugars in the first 5-6 h. We find that an ‘optimal substrate loading’ of 5 mg/ml (above which substrate inhibition sets in) accelerates non-equilibrium enzyme adsorption and solid hemicellulose depolymerization at the pore-scale, which contributes three-quarters of the soluble sugars produced for bio-alcohol fermentation.
Pratter, Sarah M; Light, Kenneth M; Solomon, Edward I; Straganz, Grit D
2014-07-02
Mononuclear nonheme Fe(II) (MNH) and α-ketoglutarate (α-KG) dependent halogenases activate O2 to perform oxidative halogenations of activated and nonactivated carbon centers. While the mechanism of halide incorporation into a substrate has been investigated, the mechanism by which halogenases prevent oxidations in the absence of chloride is still obscure. Here, we characterize the impact of chloride on the metal center coordination and reactivity of the fatty acyl-halogenase HctB. Stopped-flow kinetic studies show that the oxidative transformation of the Fe(II)-α-KG-enzyme complex is >200-fold accelerated by saturating concentrations of chloride in both the absence and presence of a covalently bound substrate. By contrast, the presence of substrate, which generally brings about O2 activation at enzymatic MNH centers, only has an ∼10-fold effect in the absence of chloride. Circular dichroism (CD) and magnetic CD (MCD) studies demonstrate that chloride binding triggers changes in the metal center ligation: chloride binding induces the proper binding of the substrate as shown by variable-temperature, variable-field (VTVH) MCD studies of non-α-KG-containing forms and the conversion from six-coordinate (6C) to 5C/6C mixtures when α-KG is bound. In the presence of substrate, a site with square pyramidal five-coordinate (5C) geometry is observed, which is required for O2 activation at enzymatic MNH centers. In the absence of substrate an unusual trigonal bipyramidal site is formed, which accounts for the observed slow, uncoupled reactivity. Molecular dynamics simulations suggest that the binding of chloride to the metal center of HctB leads to a conformational change in the enzyme that makes the active site more accessible to the substrate and thus facilitates the formation of the catalytically competent enzyme-substrate complex. Results are discussed in relation to other MNH dependent halogenases.
Improved plaque materials for aerospace nickel-cadmium cells
NASA Technical Reports Server (NTRS)
Luksha, E.; Gordy, D. J.
1971-01-01
Improved cadmium electrode substrates with precisely controlled microstructures for possible use in aerospace nickel-cadmium cells were prepared. The preparative technique was a powder metallurgical process in which a fugitive pore-former and a nickel powder were blended, then isostatically compacted, and subsequently sintered. Cadmium electrodes prepared from such substrates were cycle tested using an accelerated tortuous test regime. It was discovered that plaques of 60% or 80% porosity prepared with a 25 micron pore-former were better than state-of-the-art electrodes in terms of efficienty and/or mechanical strength. The 60% structures were particularly outstanding in this respect in that they had efficiencies only 5-10 percentage points lower than state-of-the-art electrodes and vastly superior mechanical properties. This added strength was observed to eliminate cracking and physical degradation of the electrodes during processing and cycling. The cadmium electrodes prepared from the 80% porous substrates proved to be the best electrodes made during the course of the work from the point of view of highest efficiency. Three-point bend tests were used to measure mechanical properties of the plaques produced and also as a general characterization tool. In addition, the BET surface areas of selected specimens was determined. The SEM was used for judging microscopic uniformity and quantitatively determining the induced pore size and various other fine structures in the substrates. The technique of X-ray radiography was used to follow the bulk uniformity of the substrates at various stages of their processing.
"Immortal" liquid film formed by colliding bubble at oscillating solid substrates
NASA Astrophysics Data System (ADS)
Zawala, Jan
2016-05-01
This paper presents an experimental study of the behavior of an ascending air bubble (equivalent radius 0.74 mm) colliding with a solid substrate. The substrate is either motionless or oscillating with a precisely adjusted acceleration, slightly higher than gravity. It is shown that the stability of the liquid film formed between the striking bubble and the solid surface depends not only on the hydrophobic/hydrophilic properties of the solid but also on the energetic interrelations in the system. The results indicate that the rupture of the bubble and its attachment at a smooth hydrophobic solid surface are related to the viscous dissipation of energy, leading to a gradual decrease in the bubble deformation, and in consequence in the radius of the formed separating liquid film. When the film radius is small enough, the bubble ruptures and attaches to the hydrophobic solid surface. Moreover, it is shown that when the bubble deformations are forced to be constant, by applying properly adjusted oscillations of the solid substrate (energy supply conditions), bubble rupture can be prevented and a constant bubble bouncing is observed, irrespective of the hydrophobic/hydrophilic properties of the solid substrate. Under such energy supply conditions, the liquid film can be considered "immortal." The numerical calculations performed for the respective system, in which constant kinetic energy is induced, confirm that the liquid film can persist indefinitely owing to its constant radius, which is too large to reach the critical thickness for rupture during the collision time.
[Effect of the nonspecific biogenic stimulators pentoxyl and mumie on metabolic processes].
Shvetskiĭ, A G; Vorob'eva, L M
1978-01-01
Unspecific biogenic stimulants (pentoxyl and mummie) accelerated metabolism of nucleic acids and protein in rat liver tissue. After the treatment with the stimulants the rate of lipolysis exceeded that of lipogenesis. Increase in content of lactate was similar if glycogen and glucose-6-phosphate were used as substrates of glycolysis, but it was stimulated 2-3-fold, when glucose was used; the phenomenon appears to be due to activation of hexokinase. As shown by polarographic measurements mitochondrial respiration was increased in all the metabolic states, but increased doses caused an inhibition of phosphorylation apparently due to functional overstrain of mitochondria. Increased doses of the stimulants accelerated also some other metabolic processes studied, but the effects were not dose-dependent. Pentoxyl and mummie apparently increased processes of protein and nuclei acid metabolism and stimulated the energy-providing reactions.
Strong polarization-dependent terahertz modulation of aligned Ag nanowires on Si substrate.
Lee, Gyuseok; Maeng, Inhee; Kang, Chul; Oh, Myoung-Kyu; Kee, Chul-Sik
2018-05-14
Optically tunable, strong polarization-dependent transmission of terahertz pulses through aligned Ag nanowires on a Si substrate is demonstrated. Terahertz pulses primarily pass through the Ag nanowires and the transmittance is weakly dependent on the angle between the direction of polarization of the terahertz pulse and the direction of nanowire alignment. However, the transmission of a terahertz pulse through optically excited materials strongly depends on the polarization direction. The extinction ratio increases as the power of the pumping laser increases. The enhanced polarization dependency is explained by the redistribution of photocarriers, which accelerates the sintering effect along the direction of alignment of the Ag nanowires. The photocarrier redistribution effect is examined by the enhancement of terahertz emission from the sample. Oblique metal nanowires on Si could be utilized for designing optically tunable terahertz polarization modulators.
The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process
NASA Astrophysics Data System (ADS)
Rahmati, Saeed; Ghaei, Abbas
2014-02-01
Cold spray is a coating deposition method in which the solid particles are accelerated to the substrate using a low temperature supersonic gas flow. Many numerical studies have been carried out in the literature in order to study this process in more depth. Despite the inability of Johnson-Cook plasticity model in prediction of material behavior at high strain rates, it is the model that has been frequently used in simulation of cold spray. Therefore, this research was devoted to compare the performance of different material models in the simulation of cold spray process. Six different material models, appropriate for high strain-rate plasticity, were employed in finite element simulation of cold spray process for copper. The results showed that the material model had a considerable effect on the predicted deformed shapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, R.; Ebersberger, B.; Kupfer, C.
SnAg solder bump is one bump type which is used to replace eutectic SnPb bumps. In this work tests have been done to characterize the reliability properties of this bump type. Electromigration (EM) tests, which were accelerated by high current and high temperature and high temperature storage (HTS) tests were performed. It was found that the reliability properties are sensitive to the material combinations in the interconnect stack. The interconnect stack includes substrate pad, pad finish, bump, underbump metallization (UBM) and the chip pad. Therefore separate test groups for SnAg bumps on Cu substrate pads with organic solderability preservative (OSP)more » finish and the identical bumps on pads with Ni/Au finish were used. In this paper the reliability test results and the corresponding failure analysis are presented. Some explanations about the differences in formation of intermetallic compounds (IMCs) are given.« less
J.C. Rowland; D.R. Harp; C.J. Wilson; A.L. Atchley; V.E. Romanovsky; E.T. Coon; S.L. Painter
2016-02-02
This Modeling Archive is in support of an NGEE Arctic publication available at doi:10.5194/tc-10-341-2016. This dataset contains an ensemble of thermal-hydro soil parameters including porosity, thermal conductivity, thermal conductivity shape parameters, and residual saturation of peat and mineral soil. The ensemble was generated using a Null-Space Monte Carlo analysis of parameter uncertainty based on a calibration to soil temperatures collected at the Barrow Environmental Observatory site by the NGEE team. The micro-topography of ice wedge polygons present at the site is included in the analysis using three 1D column models to represent polygon center, rim and trough features. The Arctic Terrestrial Simulator (ATS) was used in the calibration to model multiphase thermal and hydrological processes in the subsurface.
Early Detection of Skin Cancer by Microtopography
NASA Astrophysics Data System (ADS)
del Carmen López-Pacheco, María; Acevedo-Martínez, Claudia; Pereira da Cunha Martins Costa, Manuel Filipe; Domínguez-Cherit, Judith; Pichardo, Patricia; Pérez-Zapata, Aura Judith; Ramón-Gallegos, Eva
2004-09-01
The objective of this work was to determine the ruggedness of the skin with benign and malignant lesions. Latex impressions were taken from lesions of skin's patients and were analyzed by the MICROTOP 03.MFC inspection system. For the melanoma lesion it was observed that the average rugosity of this tumor was increased 67% compared with the rugosity of healthy skin. These measures allow us to distinguish significantly from other tumors, as it is the case of the basal cell carcinoma (49%), and benign lesions as the epidermoid cyst (37%) and the seborrhea keratosis (4%). It was observed a direct relation between the rugosity and the malignancy of the lesions. These results indicate that the rugosity is a characteristic that could be useful in the diagnosis of skin cancer.
Functional inks and printing of two-dimensional materials.
Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique
2018-05-08
Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.
Modelling of capillary-driven flow for closed paper-based microfluidic channels
NASA Astrophysics Data System (ADS)
Songok, Joel; Toivakka, Martti
2017-06-01
Paper-based microfluidics is an emerging field focused on creating inexpensive devices, with simple fabrication methods for applications in various fields including healthcare, environmental monitoring and veterinary medicine. Understanding the flow of liquid is important in achieving consistent operation of the devices. This paper proposes capillary models to predict flow in paper-based microfluidic channels, which include a flow accelerating hydrophobic top cover. The models, which consider both non-absorbing and absorbing substrates, are in good agreement with the experimental results.
Gandolfi, M G; Taddei, P; Siboni, F; Perrotti, V; Iezzi, G; Piattelli, A; Prati, C
2015-02-01
The creation of micro-textured dental implant surfaces possessing a stimulating activity represents a challenge in implant dentistry; particularly, the formation of a thin, biologically active, calcium-phosphate layer on their surface could help to strengthen the bond to the surrounding bone. The aim of the present study was to characterize in terms of macrostructure, micro-topography and reactivity in simulated body fluid (SBF), the surface of titanium (Ti) implants blasted with TiO2 particles, acid etched with hydrofluoric acid, and activated with Ca and Mg-containing nanoparticles. Sandblasted and acid-etched implants were analyzed by ESEM-EDX (environmental scanning electron microscope with energy dispersive X-ray system) to study the micromorphology of the surface and to perform elemental X-ray microanalysis (microchemical analyses) and element mapping. ESEM-EDX analyses were performed at time 0 and after a 28-day soaking period in SBF Hank's balanced salt solution (HBSS) following ISO 23317 (implants for surgery—in vitro evaluation for apatite-forming ability of implant materials). Microchemical analyses (weight % and atomic %) and element mapping were carried out to evaluate the relative element content, element distribution, and calcium/phosphorus (Ca/P) atomic ratio. Raman spectroscopy was used to assess the possible presence of impurities due to manufacturing and to investigate the phases formed upon HBSS soaking. Micro-morphological analyses showed a micro-textured, highly rough surface with microgrooves. Microchemical analyses showed compositional differences among the apical, middle, and distal thirds. The micro-Raman analyses of the as-received implant showed the presence of amorphous Ti oxide and traces of anatase, calcite, and a carbonaceous material derived from the decomposition of an organic component of lipidic nature (presumably used as lubricant). A uniform layer of Ca-poor calcium phosphates (CaPs) (Ca/P ratio <1.47) was observed after soaking in HBSS; the detection of the 961 cm⁻¹ Raman band confirms this finding. These implants showed a micro-textured surface supporting the formation of CaPs when immersed in SBF. These properties may likely favor bone anchorage and healing by stimulation of mineralizing cells.
Effects of spatial and temporal resolution on simulated feedbacks from polygonal tundra.
NASA Astrophysics Data System (ADS)
Coon, E.; Atchley, A. L.; Painter, S. L.; Karra, S.; Moulton, J. D.; Wilson, C. J.; Liljedahl, A.
2014-12-01
Earth system land models typically resolve permafrost regions at spatial resolutions grossly larger than the scales of topographic variation. This observation leads to two critical questions: How much error is introduced by this lack of resolution, and what is the effect of this approximation on other coupled components of the Earth system, notably the energy balance and carbon cycle? Here we use the Arctic Terrestrial Simulator (ATS) to run micro-topography resolving simulations of polygonal ground, driven by meteorological data from Barrow, AK, to address these questions. ATS couples surface and subsurface processes, including thermal hydrology, surface energy balance, and a snow model. Comparisons are made between one-dimensional "column model" simulations (similar to, for instance, CLM or other land models typically used in Earth System models) and higher-dimensional simulations which resolve micro-topography, allowing for distributed surface runoff, horizontal flow in the subsurface, and uneven snow distribution. Additionally, we drive models with meteorological data averaged over different time scales from daily to weekly moving windows. In each case, we compare fluxes important to the surface energy balance including albedo, latent and sensible heat fluxes, and land-to-atmosphere long-wave radiation. Results indicate that spatial topography variation and temporal variability are important in several ways. Snow distribution greatly affects the surface energy balance, fundamentally changing the partitioning of incoming solar radiation between the subsurface and the atmosphere. This has significant effects on soil moisture and temperature, with implications for vegetation and decomposition. Resolving temporal variability is especially important in spring, when early warm days can alter the onset of snowmelt by days to weeks. We show that high-resolution simulations are valuable in evaluating current land models, especially in areas of polygonal ground. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science. LA-UR-14-26227.
NASA Astrophysics Data System (ADS)
Gill, A. L.; Finzi, A.; Giasson, M. A.
2015-12-01
High latitude peatlands represent a major terrestrial carbon store sensitive to climate change, as well as a globally significant methane source. While elevated atmospheric carbon dioxide concentrations and warming temperatures may increase peat respiration and C losses to the atmosphere, reductions in peatland water tables associated with increased growing season evapotranspiration may alter the nature of trace gas emission and increase peat C losses as CO2 relative to methane (CH4). As CH4 is a greenhouse gas with twenty times the warming potential of CO2, it is critical to understand how surface fluxes of CO2 and CH4 will be influenced by factors associated with global climate change. We used automated soil respiration chambers to assess the influence of elevated atmospheric CO2 and whole ecosystem warming on peatland CH4 and CO2 fluxes at the SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) Experiment in northern Minnesota. Belowground warming treatments were initiated in July 2014 and whole ecosystem warming and elevated CO2 treatments began in August 2015. Here we report soil iCO2 and iCH4 flux responses to the first year of belowground warming and the first two months of whole ecosystem manipulation. We also leverage the spatial and temporal density of measurements across the twenty autochambers to assess how physical (i.e., plant species composition, microtopography) and environmental (i.e., peat temperature, water table position, oxygen availability) factors influence observed rates of CH4 and CO2 loss. We find that methane fluxes increased significantly across warming treatments following the first year of belowground warming, while belowground warming alone had little influence on soil CO2 fluxes. Peat microtopography strongly influenced trace gas emission rates, with higher CH4 fluxes in hollow locations and higher CO2 fluxes in hummock locations. While there was no difference in the isotopic composition of the methane fluxes between hollow and hummock locations, δ13CH4 was more depleted in the early and late growing season, indicating a transition from hydrogenotrophic to acetoclastic methanogenesis during periods of high photosynthetic input.
Kumar, Jitendra; Collier, Nathan; Bisht, Gautam; ...
2016-09-27
Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. Here, we present an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world fieldmore » sites, utilizing the best available data to characterize and parameterize the models. We also develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture – without recourse to model calibration – several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Moreover, areas of significant disagreement between model results and observations highlight the importance of field-based observations of soil thermal and hydraulic properties for modeling-based studies of permafrost thermal dynamics, and provide motivation and guidance for future observations that will help address model and data gaps affecting our current understanding of the system.« less
NASA Astrophysics Data System (ADS)
Bryant, Rob; Cheng, Shuying; Doerr, Stefan H.; Wright, Chris J.; Bayer, Julia V.; Williams, Rhodri P.
2010-05-01
Organic coatings on mineral particles will mask the physic-chemical properties of the underlying mineral surface. Surface images and force measurements obtained using atomic force microscopy (AFM) provide information about the nature of and variability in surfaces properties at the micro- to nano-scale. As AFM technology and data processing advance it is anticipated that a significant amount of information will be obtained simultaneously from individual contacts made at high frequency in non-contact or tapping mode operation. For present purposes the surfaces of model materials (smooth glass surfaces and acid-washed sand (AWS)) provide an indication of the dependency of the so-called AFM phase image on the topographic image (which is obtained synoptically). Pixel wise correlation of these images reveals how the modulation of an AFM probe is affected when topographic features are encountered. Adsorption of soil-derived humic acid (HA) or lecithin (LE), used here as an example for natural organic material, on these surfaces provides a soft and compliant, albeit partial, covering on the mineral which modifies the topography and the response of an AFM tip as it partially indents the soft regions (which contributes depth to the phase image). This produces a broadening on the data domain in the topographic/phase scatter diagram. Two dimensional classifications of these data, together with those obtained from sand particles drawn from water repellent and wettable soils, suggest that these large adsorbate molecules appear to have little preference to attach to particular topographic features or elevations. It appears that they may effectively remain on the surface at the point of initial contact. If organic adsorbates present a hydrophobic outer surface, then it seems possible that elevated features will not be immune from this and provide scope for a local, albeit, small contribution to the expression of super-hydrophobicity. It is therefore speculated here that the water repellency of a soil is the result of not only of particle surface chemistry and soil pore space geometry, but also of the micro-topography generated by organic material adsorbed on particle surfaces.
Gedeon, Patrick C; Thomas, James R; Madura, Jeffry D
2015-01-01
Molecular dynamics simulation provides a powerful and accurate method to model protein conformational change, yet timescale limitations often prevent direct assessment of the kinetic properties of interest. A large number of molecular dynamic steps are necessary for rare events to occur, which allow a system to overcome energy barriers and conformationally transition from one potential energy minimum to another. For many proteins, the energy landscape is further complicated by a multitude of potential energy wells, each separated by high free-energy barriers and each potentially representative of a functionally important protein conformation. To overcome these obstacles, accelerated molecular dynamics utilizes a robust bias potential function to simulate the transition between different potential energy minima. This straightforward approach more efficiently samples conformational space in comparison to classical molecular dynamics simulation, does not require advanced knowledge of the potential energy landscape and converges to the proper canonical distribution. Here, we review the theory behind accelerated molecular dynamics and discuss the approach in the context of modeling protein conformational change. As a practical example, we provide a detailed, step-by-step explanation of how to perform an accelerated molecular dynamics simulation using a model neurotransmitter transporter embedded in a lipid cell membrane. Changes in protein conformation of relevance to the substrate transport cycle are then examined using principle component analysis.
Richter, Nina; Breicha, Klaus; Hummel, Werner; Niefind, Karsten
2010-12-03
The NADP-dependent glycerol dehydrogenase (EC 1.1.1.72) from Gluconobacter oxydans is a member of family 11 of the aldo-keto reductase (AKR) enzyme superfamily; according to the systematic nomenclature within the AKR superfamily, the term AKR11B4 has been assigned to the enzyme. AKR11B4 is a biotechnologically attractive enzyme because of its broad substrate spectrum, combined with its distinctive regioselectivity and stereoselectivity. These features can be partially rationalized based on a 2-Å crystal structure of apo-AKR11B4, which we describe and interpret here against the functional complex structures of other members of family 11 of the AKR superfamily. The structure of AKR11B4 shows the AKR-typical (β/α)(8) TIM-barrel fold, with three loops and the C-terminal tail determining the particular enzymatic properties. In comparison to AKR11B1 (its closest AKR relative), AKR11B4 has a relatively broad binding cleft for the cosubstrate NADP/NADPH. In the crystalline environment, it is completely blocked by the C-terminal segment of a neighboring protomer. The structure reveals a conspicuous tryptophan residue (Trp23) that has to adopt an unconventional and strained side-chain conformation to permit cosubstrate binding. We predict and confirm by site-directed mutagenesis that Trp23 is an accelerator of (co)substrate turnover. Furthermore, we show that, simultaneously, this tryptophan residue is a critical determinant for substrate binding by the enzyme, while enantioselectivity is probably governed by a methionine residue within the C-terminal tail. We present structural reasons for these notions based on ternary complex models of AKR11B4, NADP, and either octanal, d-glyceraldehyde, or l-glyceraldehyde. Copyright © 2010 Elsevier Ltd. All rights reserved.
Feng, Wenting; Liang, Junyi; Hale, Lauren E.; ...
2017-06-09
Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon–climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long-term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming.more » Taking advantage of a 12-year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO 2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C-degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long-term warming accelerates the decomposition of SOC components with slow turnover rates and thus amplify the positive feedback to climate change.« less
Silberg, Jonathan J; Tapley, Tim L; Hoff, Kevin G; Vickery, Larry E
2004-12-24
The ATPase activity of HscA, a specialized hsp70 molecular chaperone from Escherichia coli, is regulated by the iron-sulfur cluster assembly protein IscU and the J-type co-chaperone HscB. IscU behaves as a substrate for HscA, and HscB enhances the binding of IscU to HscA. To better understand the mechanism by which HscB and IscU regulate HscA, we examined binding of HscB to the different conformational states of HscA and the effects of HscB and IscU on the kinetics of the individual steps of the HscA ATPase reaction cycle. Affinity sensor studies revealed that whereas IscU binds both ADP (R-state) and ATP (T-state) HscA complexes, HscB interacts only with an ATP-bound state. Studies of ATPase activity under single-turnover and rapid mixing conditions showed that both IscU and HscB interact with the low peptide affinity T-state of HscA (HscA++.ATP) and that both modestly accelerate (3-10-fold) the rate-determining steps in the HscA reaction cycle, k(hyd) and k(T-->R). When present together, IscU and HscB synergistically stimulate both k(hyd) (approximately = 500-fold) and k(T-->R) (approximately = 60-fold), leading to enhanced formation of the HscA.ADP-IscU complex (substrate capture). Following ADP/ATP exchange, IscU also stimulates k(R-->T) (approximately = 50-fold) and thereby accelerates the rate at which the low peptide affinity HscA++.ATP T-state is regenerated. Because HscA nucleotide exchange is fast, the overall rate of the chaperone cycle in vivo will be determined by the availability of the IscU-HscB substrate-co-chaperone complex.
Investigating Information Dynamics in Living Systems through the Structure and Function of Enzymes.
Gatenby, Robert; Frieden, B Roy
2016-01-01
Enzymes are proteins that accelerate intracellular chemical reactions often by factors of 105-1012s-1. We propose the structure and function of enzymes represent the thermodynamic expression of heritable information encoded in DNA with post-translational modifications that reflect intra- and extra-cellular environmental inputs. The 3 dimensional shape of the protein, determined by the genetically-specified amino acid sequence and post translational modifications, permits geometric interactions with substrate molecules traditionally described by the key-lock best fit model. Here we apply Kullback-Leibler (K-L) divergence as metric of this geometric "fit" and the information content of the interactions. When the K-L 'distance' between interspersed substrate pn and enzyme rn positions is minimized, the information state, reaction probability, and reaction rate are maximized. The latter obeys the Arrhenius equation, which we show can be derived from the geometrical principle of minimum K-L distance. The derivation is first limited to optimum substrate positions for fixed sets of enzyme positions. However, maximally improving the key/lock fit, called 'induced fit,' requires both sets of positions to be varied optimally. We demonstrate this permits and is maximally efficient if the key and lock particles pn, rn are quantum entangled because the level of entanglement obeys the same minimized value of the Kullback-Leibler distance that occurs when all pn ≈ rn. This implies interchanges pn ⇄ brn randomly taking place during a reaction successively improves key/lock fits, reducing the activation energy Ea and increasing the reaction rate k. Our results demonstrate the summation of heritable and environmental information that determines the enzyme spatial configuration, by decreasing the K-L divergence, is converted to thermodynamic work by reducing Ea and increasing k of intracellular reactions. Macroscopically, enzyme information increases the order in living systems, similar to the Maxwell demon gedanken, by selectively accelerating specific reaction thus generating both spatial and temporal concentration gradients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Wenting; Liang, Junyi; Hale, Lauren E.
Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon–climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long-term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming.more » Taking advantage of a 12-year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO 2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C-degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long-term warming accelerates the decomposition of SOC components with slow turnover rates and thus amplify the positive feedback to climate change.« less
Feng, Wenting; Liang, Junyi; Hale, Lauren E; Jung, Chang Gyo; Chen, Ji; Zhou, Jizhong; Xu, Minggang; Yuan, Mengting; Wu, Liyou; Bracho, Rosvel; Pegoraro, Elaine; Schuur, Edward A G; Luo, Yiqi
2017-11-01
Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon-climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long-term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming. Taking advantage of a 12-year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO 2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C-degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long-term warming accelerates the decomposition of SOC components with slow turnover rates and thus amplify the positive feedback to climate change. © 2017 John Wiley & Sons Ltd.
New evaporator station for the center for accelerator target science
NASA Astrophysics Data System (ADS)
Greene, John P.; Labib, Mina
2018-05-01
As part of an equipment grant provided by DOE-NP for the Center for Accelerator Target Science (CATS) initiative, the procurement of a new, electron beam, high-vacuum deposition system was identified as a priority to insure reliable and continued availability of high-purity targets. The apparatus is designed to contain TWO electron beam guns; a standard 4-pocket 270° geometry source as well as an electron bombardment source. The acquisition of this new system allows for the replacement of TWO outdated and aging vacuum evaporators. Also included is an additional thermal boat source, enhancing our capability within this deposition unit. Recommended specifications for this system included an automated, high-vacuum pumping station, a deposition chamber with a rotating and heated substrate holder for uniform coating capabilities and incorporating computer-controlled state-of-the-art thin film technologies. Design specifications, enhanced capabilities and the necessary mechanical modifications for our target work are discussed.
Non-destructive determination of thickness of the dielectric layers using EDX
NASA Astrophysics Data System (ADS)
Sokolov, S. A.; Kelm, E. A.; Milovanov, R. A.; Abdullaev, D. A.; Sidorov, L. N.
2016-12-01
In this work a non-destructive method for measuring the thickness of the dielectric layers consisting of silicon dioxide and silicon nitride has been developed using a scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS). Rising in accelerating voltage of electron beam leads to increasing in the depth of generation of the characteristic X-ray. If the ratio of the signal intensity of one of the substrate's elements to the noise equal to 3 suggests that the generation's depth of the characteristic X-ray coincides with the thickness of the overlying film. Dependence of the overlying film's thickness on the accelerating voltage can be plotted. Validation of the results was carried out by using the equation of Anderson-Hassler. The generation's volume of the characteristic X-Ray was simulated by CASINO program. The simulations results are in good agreement with experimental results for small thicknesses.
Lee, Young-Sam; Lee, Sujin; Demeler, Borries; Molineux, Ian J.; Johnson, Kenneth A.; Yin, Y. Whitney
2010-01-01
The accessory protein polymerase (pol) γB of the human mitochondrial DNA polymerase stimulates the synthetic activity of the catalytic subunit. pol γB functions by both accelerating the polymerization rate and enhancing polymerase-DNA interaction, thereby distinguishing itself from the accessory subunits of other DNA polymerases. The molecular basis for the unique functions of human pol γB lies in its dimeric structure, where the pol γB monomer proximal to pol γA in the holoenzyme strengthens the interaction with DNA, and the distal pol γB monomer accelerates the reaction rate. We further show that human pol γB exhibits a catalytic subunit- and substrate DNA-dependent dimerization. By duplicating the monomeric pol γB of lower eukaryotes, the dimeric mammalian proteins confer additional processivity to the holoenzyme polymerase. PMID:19858216
Fukuda, Yohta; Tse, Ka Man; Nakane, Takanori; Nakatsu, Toru; Suzuki, Mamoru; Sugahara, Michihiro; Inoue, Shigeyuki; Masuda, Tetsuya; Yumoto, Fumiaki; Matsugaki, Naohiro; Nango, Eriko; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Song, Changyong; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Murphy, Michael E P; Inoue, Tsuyoshi; Iwata, So; Mizohata, Eiichi
2016-03-15
Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme-substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.
Co-biodegradation of anthracene and naphthalene by the bacterium Acinetobacter johnsonii.
Jiang, Yan; Qi, Hui; Zhang, Xian M
2018-04-16
NAP (Naphthalene) and ANT (anthracene) usually co-exist in environment and possessed interactional effects on their biodegradation in environment. Presently, a strain of Acinetobacter johnsonii was employed to degrade NAP and ANT in single- and dual-substrate systems. NAP was utilized as prefer substrate by cells to accelerate ANT biodegradation. As much as 200 mg L -1 ANT could be entirely degraded with 1,500 mg L -1 NAP, which was beyond bacterial potential in single substrate system. Especially, the shortest biodegradation period (103 h) for ANT was observed with the presence of 50 mg L -1 NAP. By contrast, ANT showed strong inhibition on NAP degradation, while the peak biodegradation of 1,950 mg L -1 NAP with 50 mg L -1 ANT could still proceed. By introducing an inhibition constant parameter to fit the inhibition on cells, modeling indicated the substrate inhibition for NAP and ANT over the concentrations of 174 and 49 mg L -1 , respectively. Furthermore, enzyme assay revealed the pathway of meta fission in NAP biodegradation due to the appearance of catechol 2,3-dioxygenase activity, and low-level lipase excretion was also found in both NAP and ANT biodegradation, but hardly affect NAP and ANT biodegradation in the present study. To research the interplay of NAP and ANT is conducive to targeted decontamination.
Six networks on a universal neuromorphic computing substrate.
Pfeil, Thomas; Grübl, Andreas; Jeltsch, Sebastian; Müller, Eric; Müller, Paul; Petrovici, Mihai A; Schmuker, Michael; Brüderle, Daniel; Schemmel, Johannes; Meier, Karlheinz
2013-01-01
In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chen; Jiang, Miaomiao; Zhou, Junwei
2016-02-01
We report on green electroluminescence (EL) due to the intra-4f transitions of the trivalent terbium (Tb{sup 3+}) ions inherent in a Tb{sub 4}O{sub 7} film that is sandwiched between the ITO film and heavily phosphorous- or boron-doped silicon (n{sup +}-Si or p{sup +}-Si) substrate, thus forming the so-called metal-oxide-semiconductor (MOS) device. The onset voltage of such EL is below 10 V. From the current-voltage characteristic and voltage-dependent EL spectra of the aforementioned MOS device, it is derived that the Tb-related green EL results from the impact excitation of Tb{sup 3+} ions by the hot electrons (holes), which stem from the electric-fieldmore » acceleration of the electrons (holes) injected from the n{sup +}-Si (p{sup +}-Si) substrate via the trap-assisted tunneling mechanism.« less
Slow domain reconfiguration causes power-law kinetics in a two-state enzyme.
Grossman-Haham, Iris; Rosenblum, Gabriel; Namani, Trishool; Hofmann, Hagen
2018-01-16
Protein dynamics are typically captured well by rate equations that predict exponential decays for two-state reactions. Here, we describe a remarkable exception. The electron-transfer enzyme quiescin sulfhydryl oxidase (QSOX), a natural fusion of two functionally distinct domains, switches between open- and closed-domain arrangements with apparent power-law kinetics. Using single-molecule FRET experiments on time scales from nanoseconds to milliseconds, we show that the unusual open-close kinetics results from slow sampling of an ensemble of disordered domain orientations. While substrate accelerates the kinetics, thus suggesting a substrate-induced switch to an alternative free energy landscape of the enzyme, the power-law behavior is also preserved upon electron load. Our results show that the slow sampling of open conformers is caused by a variety of interdomain interactions that imply a rugged free energy landscape, thus providing a generic mechanism for dynamic disorder in multidomain enzymes.
Study of the effects of gaseous environments on the hot corrosion of superalloy materials
NASA Technical Reports Server (NTRS)
Smeggil, J. G.; Bornstein, N. S.
1980-01-01
The effect of the gaseous corrodent NaCl on the high temperature oxidation and sodium sulfate induced hot corrosion behavior of alumina formers, chromia formers, and the superalloy B-1900 was examined. Isothermal experiments were conducted at 900 C and 1050 C in air in the presence and absence of NaCl vapors. Microstructural changes in oxide morphology and increased rates of oxidation were observed when NaCl(g) was present. It is hypothesized that the accelerated rates of oxidation are the result of removal of aluminum from the scale substrate interface and the weakening of the scale substrate bonds. The aluminum removed was redeposited on the surfaces in the form of alumina whiskers. For the superalloy B-1900, alumina whiskers are also formed, and the alloy oxidizes at catastrophic rates. In the case of Ni-25Cr alloy, NaCl vapors interact with the scale depleting it of chromium.
Fabrication and radio frequency test of large-area MgB 2 films on niobium substrates
Ni, Zhimao; Guo, Xin; Welander, Paul B.; ...
2017-01-19
Magnesium diboride (MgB 2) is a promising candidate material for superconducting radio frequency (RF) cavities because of its higher transition temperature and critical field compared with niobium. To meet the demand of RF test devices, the fabrication of large-area MgB 2 films on metal substrates is needed. Here, in this work, high quality MgB 2 films with 50 mm diameter were fabricated on niobium by using an improved HPCVD system at Peking University, and RF tests were carried out at SLAC National Accelerator Laboratory. The transition temperature is approximately 39.6 K and the RF surface resistance is about 120 μΩmore » at 4 K and 11.4 GHz. Finally, the fabrication processes, surface morphology, DC superconducting properties and RF tests of these large-area MgB 2 films are presented.« less
Six Networks on a Universal Neuromorphic Computing Substrate
Pfeil, Thomas; Grübl, Andreas; Jeltsch, Sebastian; Müller, Eric; Müller, Paul; Petrovici, Mihai A.; Schmuker, Michael; Brüderle, Daniel; Schemmel, Johannes; Meier, Karlheinz
2013-01-01
In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality. PMID:23423583
Fabrication and radio frequency test of large-area MgB 2 films on niobium substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Zhimao; Guo, Xin; Welander, Paul B.
Magnesium diboride (MgB 2) is a promising candidate material for superconducting radio frequency (RF) cavities because of its higher transition temperature and critical field compared with niobium. To meet the demand of RF test devices, the fabrication of large-area MgB 2 films on metal substrates is needed. Here, in this work, high quality MgB 2 films with 50 mm diameter were fabricated on niobium by using an improved HPCVD system at Peking University, and RF tests were carried out at SLAC National Accelerator Laboratory. The transition temperature is approximately 39.6 K and the RF surface resistance is about 120 μΩmore » at 4 K and 11.4 GHz. Finally, the fabrication processes, surface morphology, DC superconducting properties and RF tests of these large-area MgB 2 films are presented.« less
Superhydrophobicity enhancement through substrate flexibility.
Vasileiou, Thomas; Gerber, Julia; Prautzsch, Jana; Schutzius, Thomas M; Poulikakos, Dimos
2016-11-22
Inspired by manifestations in nature, microengineering and nanoengineering of synthetic materials to achieve superhydrophobicity has been the focus of much work. Generally, hydrophobicity is enhanced through the combined effects of surface texturing and chemistry; being durable, rigid materials are the norm. However, many natural and technical surfaces are flexible, and the resulting effect on hydrophobicity has been largely ignored. Here, we show that the rational tuning of flexibility can work synergistically with the surface microtexture or nanotexture to enhance liquid repellency performance, characterized by impalement and breakup resistance, contact time reduction, and restitution coefficient increase. Reduction in substrate areal density and stiffness imparts immediate acceleration and intrinsic responsiveness to impacting droplets (∼350 × g), mitigating the collision and lowering the impalement probability by ∼60% without the need for active actuation. Furthermore, we exemplify the above discoveries with materials ranging from man-made (thin steel or polymer sheets) to nature-made (butterfly wings).
Jin, Zhinan; Johnson, Kenneth A.
2011-01-01
A nucleotide-induced change in DNA polymerase structure governs the kinetics of polymerization by high fidelity DNA polymerases. Mutation of a GAG hinge (G542A/G544A) in T7 DNA polymerase resulted in a 1000-fold slower rate of conformational change, which then limited the rate of correct nucleotide incorporation. Rates of misincorporation were comparable to that seen for wild-type enzyme so that the net effect of the mutation was a large decrease in fidelity. We demonstrate that a presumably modest change from glycine to alanine 20 Å from the active site can severely restrict the flexibility of the enzyme structure needed to recognize and incorporate correct substrates with high specificity. These results emphasize the importance of the substrate-induced conformational change in governing nucleotide selectivity by accelerating the incorporation of correct base pairs but not mismatches. PMID:20978284
Maximum screening fields of superconducting multilayer structures
Gurevich, Alex
2015-01-07
Here, it is shown that a multilayer comprised of alternating thin superconducting and insulating layers on a thick substrate can fully screen the applied magnetic field exceeding the superheating fields H s of both the superconducting layers and the substrate, the maximum Meissner field is achieved at an optimum multilayer thickness. For instance, a dirty layer of thickness ~0.1 μm at the Nb surface could increase H s ≃ 240 mT of a clean Nb up to H s ≃ 290 mT. Optimized multilayers of Nb 3Sn, NbN, some of the iron pnictides, or alloyed Nb deposited onto the surfacemore » of the Nb resonator cavities could potentially double the rf breakdown field, pushing the peak accelerating electric fields above 100 MV/m while protecting the cavity from dendritic thermomagnetic avalanches caused by local penetration of vortices.« less
Atomistic simulation of Al-graphene thin film growth on polycrystalline Al substrate
NASA Astrophysics Data System (ADS)
Zhang, Lan; Zhu, Yongchao; Li, Na; Rong, Yan; Xia, Huimin; Ma, Huizhong
2018-03-01
The growth of Al-Graphene composite coatings on polycrystalline Al substrate was investigated by using classical molecular dynamics (MD) simulations. Unlike the diffusion behaviors on single crystal surface, most of adatoms were easily bound by the steps on polycrystalline Al surface, owing to the local accelerated energy. Both Ehrlich-Schwoebel (ES) barriers and the steering effect backed up the volmer-weber growth mode, which was consistent with the dynamic growth process observed in the deposit. The morphology of composite coatings was significantly affected by graphene flakes. Enrichment of graphene flakes gave rise to an increase of the local thickness, and graphene flakes only existed in Al grain boundaries. The size of Al grains in the composite coating visibly decreased when compared with that in the pure Al coating. This grain refinement and the mechanical property can be reinforced by the increase of graphene flakes.
Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian
2017-11-10
Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Role of the α clamp in the protein translocation mechanism of anthrax toxin
Brown, Michael J.; Thoren, Katie L.; Krantz, Bryan A.
2015-01-01
Membrane-embedded molecular machines are utilized to move water-soluble proteins across these barriers. Anthrax toxin forms one such machine through the self-assembly of its three component proteins—protective antigen (PA), lethal factor (LF), and edema factor (EF). Upon endocytosis into host cells, acidification of the endosome induces PA to form a membrane-inserted channel, which unfolds LF and EF and translocates them into the host cytosol. Translocation is driven by the proton motive force, comprised of the chemical potential, the proton-gradient (ΔpH), and the membrane potential (ΔΨ). A crystal structure of the lethal toxin core complex revealed an “α clamp” structure that binds to substrate helices nonspecifically. Here we test the hypothesis that through the recognition of unfolding helical structure the α clamp can accelerate the rate of translocation. We produced a synthetic PA mutant in which an α helix was crosslinked into the α clamp to block its function. This synthetic construct impairs translocation by raising a yet uncharacterized translocation barrier shown to be much less force dependent than the known unfolding barrier. We also report that the α clamp more stably binds substrates that can form helices than those, such as polyproline, that cannot. Hence the α clamp recognizes substrates by a general shape-complementarity mechanism. Substrates that are incapable of forming compact secondary structure (due to the introduction of a polyproline track) are severely deficient for translocation. Therefore, the α clamp and its recognition of helical structure in the translocating substrate play key roles in the molecular mechanism of protein translocation. PMID:26344833
NASA Astrophysics Data System (ADS)
Chhina, H.; Campbell, S.; Kesler, O.
The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H 2SO 4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.
Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise.
Ridge, Justin T; Rodriguez, Antonio B; Joel Fodrie, F; Lindquist, Niels L; Brodeur, Michelle C; Coleman, Sara E; Grabowski, Jonathan H; Theuerkauf, Ethan J
2015-10-07
Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species' ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20-40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR.
Voroshilova, N N; Kazakova, T B
1983-04-01
This study showed that the minimum latent period (20 minutes) of the intracellular multiplication of dysentery bacteriophage S-9 in the population of S. sonnei substrate strain under the conditions of static heterogeneous surface batch cultivation was observed at the end of the lag phase and at the growth acceleration phase, in the first and second thirds of the exponential curve, while the maximum latent period (35-40 minutes) was observed at the stationary phase. The maximum yield of phage S-9 from one infected bacterial cell (628.3 +/- 116.8) was registered during the first third of the phase of the exponential growth of the bacterial population and the minimum yield (18.66 +/- 6.6), at the beginning of the lag phase. The significant direct correlation between the specific growth rate of the bacterial population and the yield of the phage from one infected bacterial cell at the end of the lag phase, at the growth acceleration and deceleration phases, as well as the significant inverse correlation between the yield of the phage and the time of the generation of the bacterial population at the growth acceleration phase were established.
Motor scaling by viewing distance of early visual motion signals during smooth pursuit
NASA Technical Reports Server (NTRS)
Zhou, Hui-Hui; Wei, Min; Angelaki, Dora E.
2002-01-01
The geometry of gaze stabilization during head translation requires eye movements to scale proportionally to the inverse of target distance. Such a scaling has indeed been demonstrated to exist for the translational vestibuloocular reflex (TVOR), as well as optic flow-selective translational visuomotor reflexes (e.g., ocular following, OFR). The similarities in this scaling by a neural estimate of target distance for both the TVOR and the OFR have been interpreted to suggest that the two reflexes share common premotor processing. Because the neural substrates of OFR are partly shared by those for the generation of pursuit eye movements, we wanted to know if the site of gain modulation for TVOR and OFR is also part of a major pathway for pursuit. Thus, in the present studies, we investigated in rhesus monkeys whether initial eye velocity and acceleration during the open-loop portion of step ramp pursuit scales with target distance. Specifically, with visual motion identical on the retina during tracking at different distances (12, 24, and 60 cm), we compared the first 80 ms of horizontal pursuit. We report that initial eye velocity and acceleration exhibits either no or a very small dependence on vergence angle that is at least an order of magnitude less than the corresponding dependence of the TVOR and OFR. The results suggest that the neural substrates for motor scaling by target distance remain largely distinct from the main pathway for pursuit.
Chang, E; Chang, W J; Wang, B C; Yang, C Y
1997-04-01
Plasma-sprayed hydroxyapatite (HA) coatings applied to metal substrates can induce a direct chemical bond with bone and hence achieve biological fixation of the implant. However, the poor bonding strength between HA and substrate has been of concern to orthopaedists. In this study, two submicrometre ZrO2 powders stabilized with both 3 and 8 mol% Y2O3 (TZ3Y and TZ8Y, respectively) were incorporated in a plasma-sprayed HA coating on Ti-6Al-4V substrate to investigate the change in phase, microstructure and bonding strength. The results show that ZrO2 composite coatings contain more unmelted particles and greater porosity. During plasma spraying, ZrO2 reacts with the CaO in HA to form CaZrO3 and accelerates HA decomposition to alpha-TCP and Ca4P2O9. Nevertheless, bonding strength increases with increase of ZrO2 content in the range 0 to 10 wt% studied. The higher Y2O3-containing TZ8Y apparently exerts a greater strengthening effect than the lower Y2O3-containing TZ3Y.
Anisimova, Margarita; Samardak, Aleksei; Ognev, Alexey
2015-01-01
Summary The paper presents a method for the high-resolution production of polymer nanopatterns with controllable geometrical parameters by means of a single-spot electron-beam lithography technique. The essence of the method entails the overexposure of a positive-tone resist, spin-coated onto a substrate where nanoscale spots are exposed to an electron beam with a dose greater than 0.1 pC per dot. A single-spot enables the fabrication of a nanoring, while a chain of spots placed at distance of 5–30 nm from each other allows the production of a polymer pattern of complex geometry of sub-10 nm resolution. We demonstrate that in addition to the naturally oxidized silicon substrates, gold-coated substrates can also successfully be used for the single-spot nanopattering technique. An explanation of the results related to the resist overexposure was demonstrated using Monte Carlo simulations. Our nanofabrication method significantly accelerates (up to 10 times) the fabrication rate as compared to conventional lithography on positive-tone resist. This technique can be potentially employed in the electronics industry for the production of nanoprinted lithography molds, etching masks, nanoelectronics, nanophotonics, NEMS and MEMS devices. PMID:25977869
Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces.
Kalpathy, Sreeram K; Francis, Lorraine F; Kumar, Satish
2013-10-15
A thin liquid film resting on a solid substrate that is heated or cooled from below experiences surface tension gradients, which lead to Marangoni flows. We explore the behavior of such a film on a chemically patterned substrate which drives film dewetting in order to determine how surface patterning and applied temperature gradients can be designed to influence the behavior of thin-film coatings. A nonlinear partial differential equation for the film height based on lubrication theory is solved numerically for a broad range of problem parameters. Uniform cooling of the substrate is found to significantly delay dewetting that is driven by wettability gradients. Uniform heating speeds up dewetting but can destroy the near-perfect templating imposed by the surface patterning. However, localized heating and cooling together can accelerate dewetting while maintaining templating quality. Localized heating and cooling can also be used to drive liquid onto areas that it would dewet from in the absence of heating. Overall, these results indicate that applied temperature gradients can significantly influence dewetting driven by surface patterning, and suggest strategies for the creation of spatially patterned thin-film coatings and flow control in microfluidic devices. Copyright © 2013 Elsevier Inc. All rights reserved.
Burschowsky, Daniel; van Eerde, André; Ökvist, Mats; Kienhöfer, Alexander; Kast, Peter; Hilvert, Donald; Krengel, Ute
2014-12-09
For more than half a century, transition state theory has provided a useful framework for understanding the origins of enzyme catalysis. As proposed by Pauling, enzymes accelerate chemical reactions by binding transition states tighter than substrates, thereby lowering the activation energy compared with that of the corresponding uncatalyzed process. This paradigm has been challenged for chorismate mutase (CM), a well-characterized metabolic enzyme that catalyzes the rearrangement of chorismate to prephenate. Calculations have predicted the decisive factor in CM catalysis to be ground state destabilization rather than transition state stabilization. Using X-ray crystallography, we show, in contrast, that a sluggish variant of Bacillus subtilis CM, in which a cationic active-site arginine was replaced by a neutral citrulline, is a poor catalyst even though it effectively preorganizes chorismate for the reaction. A series of high-resolution molecular snapshots of the reaction coordinate, including the apo enzyme, and complexes with substrate, transition state analog and product, demonstrate that an active site, which is only complementary in shape to a reactive substrate conformer, is insufficient for effective catalysis. Instead, as with other enzymes, electrostatic stabilization of the CM transition state appears to be crucial for achieving high reaction rates.
Wang, Xiaolei; Li, Yun; Lin, Jilong; Shan, Bin; Chen, Rong
2017-11-01
A spatial atomic layer deposition apparatus integrated with a modular injector and a linear motor has been designed. It consists of four parts: a precursor delivery manifold, a modular injector, a reaction zone, and a driving unit. An injector with multi-layer structured channels is designed to help improve precursor distribution homogeneity. During the back and forth movement of the substrate at high speed, the inertial impact caused by jerk and sudden changes of acceleration will degrade the film deposition quality. Such residual vibration caused by inertial impact will aggravate the fluctuation of the gap distance between the injector and the substrate in the deposition process. Thus, an S-curve motion profile is implemented to reduce the large inertial impact, and the maximum position error could be reduced by 84%. The microstructure of the film under the S-curve motion profile shows smaller root-mean-square and scanning voltage amplitude under an atomic force microscope, which verifies the effectiveness of the S-curve motion profile in reducing the residual vibration and stabilizing the gap distance between the injector and the substrate. The film deposition rate could reach 100 nm/min while maintaining good uniformity without obvious periodic patterns on the surface.
NASA Astrophysics Data System (ADS)
Wang, Xiaolei; Li, Yun; Lin, Jilong; Shan, Bin; Chen, Rong
2017-11-01
A spatial atomic layer deposition apparatus integrated with a modular injector and a linear motor has been designed. It consists of four parts: a precursor delivery manifold, a modular injector, a reaction zone, and a driving unit. An injector with multi-layer structured channels is designed to help improve precursor distribution homogeneity. During the back and forth movement of the substrate at high speed, the inertial impact caused by jerk and sudden changes of acceleration will degrade the film deposition quality. Such residual vibration caused by inertial impact will aggravate the fluctuation of the gap distance between the injector and the substrate in the deposition process. Thus, an S-curve motion profile is implemented to reduce the large inertial impact, and the maximum position error could be reduced by 84%. The microstructure of the film under the S-curve motion profile shows smaller root-mean-square and scanning voltage amplitude under an atomic force microscope, which verifies the effectiveness of the S-curve motion profile in reducing the residual vibration and stabilizing the gap distance between the injector and the substrate. The film deposition rate could reach 100 nm/min while maintaining good uniformity without obvious periodic patterns on the surface.
Faraday instability on patterned surfaces
NASA Astrophysics Data System (ADS)
Feng, Jie; Rubinstein, Gregory; Jacobi, Ian; Stone, Howard
2013-11-01
We show how micro-scale surface patterning can be used to control the onset of the Faraday instability in thin liquid films. It is well known that when a liquid film on a planar substrate is subject to sufficient vibrational accelerations, the free surface destabilizes, exhibiting a family of non-linear standing waves. This instability remains a canonical problem in the study of spontaneous pattern formation, but also has practical uses. For example, the surface waves induced by the Faraday instability have been studied as a means of enhanced damping for mechanical vibrations (Genevaux et al. 2009). Also the streaming within the unstable layer has been used as a method for distributing heterogeneous cell cultures on growth medium (Takagi et al. 2002). In each of these applications, the roughness of the substrate significantly affects the unstable flow field. We consider the effect of patterned substrates on the onset and behavior of the Faraday instability over a range of pattern geometries and feature heights where the liquid layer is thicker than the pattern height. Also, we describe a physical model for the influence of patterned roughness on the destabilization of a liquid layer in order to improve the design of practical systems which exploit the Faraday instability.
Large area nanoimprint by substrate conformal imprint lithography (SCIL)
NASA Astrophysics Data System (ADS)
Verschuuren, Marc A.; Megens, Mischa; Ni, Yongfeng; van Sprang, Hans; Polman, Albert
2017-06-01
Releasing the potential of advanced material properties by controlled structuring materials on sub-100-nm length scales for applications such as integrated circuits, nano-photonics, (bio-)sensors, lasers, optical security, etc. requires new technology to fabricate nano-patterns on large areas (from cm2 to 200 mm up to display sizes) in a cost-effective manner. Conventional high-end optical lithography such as stepper/scanners is highly capital intensive and not flexible towards substrate types. Nanoimprint has had the potential for over 20 years to bring a cost-effective, flexible method for large area nano-patterning. Over the last 3-4 years, nanoimprint has made great progress towards volume production. The main accelerator has been the switch from rigid- to wafer-scale soft stamps and tool improvements for step and repeat patterning. In this paper, we discuss substrate conformal imprint lithography (SCIL), which combines nanometer resolution, low patterns distortion, and overlay alignment, traditionally reserved for rigid stamps, with the flexibility and robustness of soft stamps. This was made possible by a combination of a new soft stamp material, an inorganic resist, combined with an innovative imprint method. Finally, a volume production solution will be presented, which can pattern up to 60 wafers per hour.
Yagi, Ichizo; Mikami, Kensuke; Okamura, Masayuki; Uosaki, Kohei
2013-07-22
The ultrafast dynamics of photogenerated electrons in multilayer assemblies of CdS nanoparticles prepared on quartz and indium-tin oxide (ITO) substrates were followed by femtosecond (fs) visible-pump/mid-IR probe spectroscopy. Based on the observation of the photoinduced transient absorption spectra in the broad mid-IR range at the multilayer assembly of CdS nanoparticles, the occupation and fast relaxation of higher electronic states (1P(e)) were clarified. As compared with the electron dynamics of isolated (dispersed in solution) nanoparticles, the decay of photoexcited electrons in the multilayer assembly was clearly accelerated probably due to both electron hopping and scattering during interparticle electron tunneling. By using an ITO electrode as a substrate, the effect of the electric field on the photoelectron dynamics in the multilayer assembly was also investigated in situ. Both the amplitude and lifetime of photoexcited electrons gradually reduced as the potential became more positive. This result was explained by considering the reduction of the interparticle tunneling probability and the increase in the electron-transfer rate from the CdS nanoparticle assembly to the ITO electrode. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An unattended device for high-voltage sampling and passive measurement of thoron decay products.
Gierl, Stefanie; Meisenberg, Oliver; Haninger, Thomas; Wielunski, Marek; Tschiersch, Jochen
2014-02-01
An integrating measurement device for the concentration of airborne thoron decay products was designed and calibrated. It is suitable for unattended use over up to several months also in inhabited dwellings. The device consists of a hemispheric capacitor with a wire mesh as the outer electrode on ground potential and the sampling substrates as the inner electrode on +7.0 kV. Negatively charged and neutral thoron decay products are accelerated to and deposited on the sampling substrates. As sampling substrates, CR39 solid-state nuclear track detectors are used in order to record the alpha decay of the sampled decay products. Nuclide discrimination is achieved by covering the detectors with aluminum foil of different thickness, which are penetrated only by alpha particles with sufficient energy. Devices of this type were calibrated against working level monitors in a thoron experimental house. The sensitivity was measured as 9.2 tracks per Bq/m(3) × d of thoron decay products. The devices were used over 8 weeks in several houses built of earthen material in southern Germany, where equilibrium equivalent concentrations of 1.4-9.9 Bq/m(3) of thoron decay products were measured.
Historical descriptions of some soils and landscapes of Texas
NASA Astrophysics Data System (ADS)
Schulze, Darrell G.
Europeans explorers, immigrants, and travelers have been crisscrossing Texas for almost 5 centuries, recording their observations of soils and landscapes through the lens of their own times. In the early 16th century, Cabeza de Vaca was struck by how the natives among whom he lived used soil as a part of their diet. In the 17th century, as a member of the La Salle expedition to Texas, Henri Joutel described the soils and landscapes he saw in considerable detail, perhaps with an eye to possible future French settlement. To 19th century immigrants, the soil was the source of their future wealth, but also, so they thought, of the source of the various illnesses that inflicted them. With their distinctive micro-topography and large cracks when dry, Vertisols have elicited some of the most interesting early descriptions of Texas soils.
NASA Astrophysics Data System (ADS)
Gagetti, Leonardo; Anzorena, Manuel Suarez; Bertolo, Alma; del Grosso, Mariela; Kreiner, Andrés J.
2017-12-01
Thin Be targets for neutron production through Be(d,n) are produced and characterized. We improved and characterized the substrate surface, specifically the roughness, in order to achieve homogeneous and stable deposits. Once well bonded deposits were obtained, some of them were irradiated with a 150 keV proton beam and with a 1.45 MeV deuteron beam. Both deposits, pristine and irradiated, were characterized by profilometry, X-ray diffraction, scanning electron microscopy and electron probe microanalyzer.
Ultrasonic disintegration of biosolids for improved biodegradation.
Nickel, Klaus; Neis, Uwe
2007-04-01
Biological cell lysis is known to be the rate-limiting step of anaerobic biosolids degradation. Shear forces generated by low frequency ultrasound can be used to disintegrate bacterial cells in sewage sludge. Thus, the quantity of dissolved organic substrate is increased. Consequently, the degradation rate and the biodegradability of organic biosolids mass are improved. Fundamental pilot-studies showed a significantly accelerated biosolids degradation with less digested sludge being produced and increased biogas production being attained. A full-scale ultrasound reactor system was developed for continuous operation under real life conditions on sewage treatment plants (STP).
Polarization controlled kinetics and composition of trivalent chromium coatings on aluminum.
Dardona, Sameh; Chen, Lei; Kryzman, Michael; Goberman, Daniel; Jaworowski, Mark
2011-08-15
Combined in situ spectroscopic ellipsometry and electrochemistry have been employed to monitor, in real-time, the formation of trivalent Cr conversion coatings on polished Al substrates at applied sample potentials. It is found that the formation kinetics and chemical composition of the film can be controlled by adjusting the anodic and cathodic reactions. The growth kinetics are accelerated at more positive anodic potentials or more negative cathodic potentials. At more negative potentials, the percentage of chromium in the coating is found to increase, while the zirconium percentage decreases.
Application of superconducting magnesium diboride (MGB2) in superconducting radio frequency cavities
NASA Astrophysics Data System (ADS)
Tan, Teng
The superconductivity in magnesium diboride (MgB2) was discovered in 2001. As a BCS superconductor, MgB2 has a record-high Tc of 39 K, high Jc of > 107 A/cm2 and no weak link behavior across the grain boundary. All these superior properties endorsed that MgB2 would have great potential in both power applications and electronic devices. In the past 15 years, MgB2 based power cables, microwave devices, and commercial MRI machines emerged and the next frontier are superconducting radio frequency (SRF) cavities. SRF cavities are one of the leading accelerator technologies. In SRF cavities, applied microwave power generates electrical fields that accelerate particle beams. Compared with other accelerator techniques, SRF cavity accelerators feature low loss, high acceleration gradients and the ability to accelerate continuous particle beams. However, current SRF cavities are made from high-purity bulk niobium and work at 2 K in superfluid helium. The construction and operational cost of SRF cavity accelerators are very expensive. The demand for SRF cavity accelerators has been growing rapidly in the past decade. Therefore, a lot of effort has been devoted to the enhancement of the performance and the reduction of cost of SRF cavities. In 2010, an acceleration gradient of over 50 MV/m has been reported for a Nb-based SRF cavity. The magnetic field at the inner surface of such a cavity is ~ 1700 Oe, which is close to the thermodynamic critical field of Nb. Therefore, new materials and technologies are required to raise the acceleration gradient of future SRF cavity accelerators. Among all the proposed approaches, using MgB2 thin films to coat the inner surface of SRF cavities is one of the promising tactics with the potential to raise both the acceleration gradient and the operation temperature of SRF cavity accelerators. In this work, I present my study on MgB2 thin films for their application in SRF cavities. C-epitaxial MgB2 thin films grown on SiC(0001) substrates showed Tc > 41 K and Jc > 107 A/cm2, which is superior to bulk MgB2 samples. Polycrystalline MgB2 thin films grown on metal substrates showed similar Tc and Jc compared with bulk samples, indicating MgB2 is suitable for coating a metal cavity. Large c-pitaxial MgB2 thin films were grown on 2-inch diameter c-sapphire wafers, showing our technique is capable of depositing large area samples. The lower critical field (Hc1) of MgB2 thin films was measured as well as it is know that bulk MgB2 has a small Hc1 and would suffer from vortex penetration at low magnetic fields. The penetrating magnetic vortices would result in loss in an applied RF field. However, due to the geometry barrier, thin film MgB2 would have a higher Hc1 than the bulk material. In my experiments, the Hc1 of MgB2 thin films increased with decreasing film thickness. At 5 K, a 100 nm epitaxial MgB2 thin film showed enhanced Hc1 ~ 1880 Oe, which is higher than Hc1 of Nb at 2 K. This showed that MgB2 coated SRF cavities have the potential to work at higher magnetic fields and higher temperature. Because the magnetic field distribution in the thin film Hc1 measurement is different from the magnetic field in a real SRF cavity, a few Nb ellipsoids were machined and coated with MgB2. The ellipsoid only has a magnetic field outside its surface and can serve as an inverse SRF cavity in the vortex penetration measurement. In the experiments, vortices penetrate into the bulk Nb ellipsoid at a magnetic field 400 Oe lower than the vortex penetration field of MgB2 coated Nb ellipsoids. This result confirmed our prediction that MgB2 coated SRF cavities could work at higher magnetic fields, thus producing higher acceleration gradients. In the last part of this thesis, I discussed how I used the dielectric resonator technique to measure the surface resistance (Rs) and Tc of MgB2 thin films. While the sensitivity of this technique was not high enough to lead to reliable Rs values, it can still serve for the determination of Tc for large area samples that are too bulky for other measurement systems.
Yi, Young-Joo; Manandhar, Gaurishankar; Sutovsky, Miriam; Jonáková, Vera; Park, Chang-Sik; Sutovsky, Peter
2010-03-01
The 26S proteoasome is a multi-subunit protease specific to ubiquitinated substrate proteins. It is composed of a 20S proteasomal core with substrate degradation activity, and a 19S regulatory complex that acts in substrate recognition, deubiquitination, priming and transport to the 20S core. Inhibition of proteolytic activities associated with the sperm acrosome-borne 20S core prevents fertilization in mammals, ascidians and echinoderms. Less is known about the function of the proteasomal 19S complex during fertilization. The present study examined the role of PSMD8, an essential non-ATPase subunit of the 19S complex, in sperm-ZP penetration during porcine fertilization in vitro (IVF). Immunofluorescence localized PSMD8 to the outer acrosomal membrane, acrosomal matrix and the inner acrosomal membrane. Colloidal gold transmission electron microscopy detected PSMD8 on the surface of vesicles in the acrosomal shroud, formed as a result of zona pellucida-induced acrosomal exocytosis. Contrary to the inhibition of fertilization by blocking of the 20S core activities, fertilization and polyspermy rates were increased by adding anti-PSMD8 antibody to fertilization medium. This observation is consistent with a possible role of PSMD8 in substrate deubiquitination, a process which when blocked, may actually accelerate substrate proteolysis by the 26S proteasome. Subunit PSMD8 co-immunoprecipitated with acrosomal surface-associated spermadhesin AQN1. This association indicates that the sperm acrosome-borne proteasomes become exposed onto the sperm surface following the acrosomal exocytosis. Since immunological blocking of subunit PSMD8 increases the rate of polyspermy during porcine fertilization, the activity of the 19S complex may be a rate-limiting factor contributing to anti-polyspermy defense during porcine fertilization. Copyright 2009. Published by Elsevier Ireland Ltd.
Liu, Dianfeng; Lian, Bin; Wang, Bin; Jiang, Guofang
2011-01-01
Background Earthworms are an ecosystem's engineers, contributing to a wide range of nutrient cycling and geochemical processes in the ecosystem. Their activities can increase rates of silicate mineral weathering. Their intestinal microbes usually are thought to be one of the key drivers of mineral degradation mediated by earthworms,but the diversities of the intestinal microorganisms which were relevant with mineral weathering are unclear. Methodology/Principal Findings In this report, we show earthworms' effect on silicate mineral weathering and the responses of bacterial communities in their gut and surrounding substrates after being fed with potassium-bearing rock powder (PBRP). Determination of water-soluble and HNO3-extractable elements indicated some elements such as Al, Fe and Ca were significantly released from mineral upon the digestion of earthworms. The microbial communities in earthworms' gut and the surrounding substrates were investigated by amplified ribosomal DNA restriction analysis (ARDRA) and the results showed a higher bacterial diversity in the guts of the earthworms fed with PBRP and the PBRP after being fed to earthworms. UPGMA dendrogram with unweighted UniFrac analysis, considering only taxa that are present, revealed that earthworms' gut and their surrounding substrate shared similar microbiota. UPGMA dendrogram with weighted UniFrac, considering the relative abundance of microbial lineages, showed the two samples from surrounding substrate and the two samples from earthworms' gut had similarity in microbial community, respectively. Conclusions/Significance Our results indicated earthworms can accelerate degradation of silicate mineral. Earthworms play an important role in ecosystem processe since they not only have some positive effects on soil structure, but also promote nutrient cycling of ecosystem by enhancing the weathering of minerals. PMID:22174903
Karas, Panagiotis; Metsoviti, Aria; Zisis, Vasileios; Ehaliotis, Constantinos; Omirou, Michalis; Papadopoulou, Evangelia S; Menkissoglou-Spiroudi, Urania; Manta, Stella; Komiotis, Dimitri; Karpouzas, Dimitrios G
2015-10-15
Wastewaters from the fruit-packaging industry constitute a serious point source contamination with pesticides. In the absence of effective depuration methods, they are discharged in municipal wastewater treatment plants or spread to land. Modified biobeds could be an applicable solution for their treatment. We studied the dissipation of thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA) and ethoxyquin (EQ), used by the fruit-packaging industry, in anaerobically digested sewage sludge, liquid aerobic sewage sludge and in various organic substrates (biobeds packing materials) composed of soil, straw and spend mushroom substrate (SMS) in various volumetric ratios. Pesticide sorption was also determined. TBZ and IMZ showed higher persistence especially in the anaerobically digested sewage sludge (DT50=32.3-257.6d), in contrast to OPP and DPA which were rapidly dissipated especially in liquid aerobic sewage sludge (DT50=1.3-9.3d). EQ was rapidly oxidized mainly to quinone imine (QI) which did not persist and dimethyl ethoxyquinoline (EQNL, minor metabolite) which persisted for longer. Sterilization of liquid aerobic sewage sludge inhibited pesticide decay verifying the microbial nature of pesticide dissipation. Organic substrates rich in SMS showed the highest dissipation capacity with TBZ and IMZ DT50s of ca. 28 d compared to DT50s of >50 d in the other substrates. TBZ and IMZ showed the highest sorption affinity, whereas OPP and DPA were weakly sorbed. Our findings suggest that current disposal practices could not guarantee an efficient depuration of effluents from the fruit-packaging industry, whereas SMS-rich biobed organic substrates show efficient depuration of effluents from the fruit-packaging industry via accelerated dissipation even of recalcitrant fungicides. Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular basis of P450 OleTJE: an investigation of substrate binding mechanism and major pathways
NASA Astrophysics Data System (ADS)
Du, Juan; Liu, Lin; Guo, Li Zhong; Yao, Xiao Jun; Yang, Jian Ming
2017-05-01
Cytochrome P450 OleTJE has attracted much attention for its ability to catalyze the decarboxylation of long chain fatty acids to generate alkenes, which are not only biofuel molecule, but also can be used broadly for making lubricants, polymers and detergents. In this study, the molecular basis of the binding mechanism of P450 OleTJE for arachidic acid, myristic acid, and caprylic acid was investigated by utilizing conventional molecular dynamics simulation and binding free energy calculations. Moreover, random acceleration molecular dynamics (RAMD) simulations were performed to uncover the most probable access/egress channels for different fatty acids. The predicted binding free energy shows an order of arachidic acid < myristic acid < caprylic acid. Key residues interacting with three substrates and residues specifically binding to one of them were identified. The RAMD results suggest the most likely channel for arachidic acid, myristic acid, and caprylic acid are 2e/2b, 2a and 2f/2a, respectively. It is suggested that the reaction is easier to carry out in myristic acid bound system than those in arachidic acid and caprylic acid bound system based on the distance of Hβ atom of substrate relative to P450 OleTJE Compound I states. This study provided novel insight to understand the substrate preference mechanism of P450 OleTJE and valuable information for rational enzyme design for short chain fatty acid decarboxylation.
Hybrid Physical Chemical Vapor Deposition of Magnesium Diboride Inside 3.9 GHz Mock Cavities
Lee, Namhoon; Withanage, Wenura K.; Tan, Teng; ...
2016-12-21
Magnesium diboride (MgB 2) is considered a candidate for the next generation superconducting radio frequency (SRF) cavities due to its higher critical temperature T c (40 K) and increased superheating field (H sh) compared to other conventional superconductors. These properties can lead to reduced BCS surface resistance (R BCS S) and residual resistance (R res), according to theoretical studies, and enhanced accelerating field (E acc) values. Here, we investigated the possibility of coating the inner surface of a 3.9 GHz SRF cavity with MgB 2 by using a hybrid physical-vapor deposition (HPCVD) system designed for this purpose. To simulate themore » actual 3.9 GHz SRF cavity, we also employed a stainless steel mock cavity for the study. The film qualities were characterized on small substrates that were placed at the selected positions within the cavity. MgB 2 films on stainless steel foils, niobium pieces, and SiC substrates showed transition temperatures in the range of 30-38 K with a c-axis-oriented crystallinity observed for films grown on SiC substrates. Dielectric resonator measurements at 18 GHz resulted in a quality factor of over 30 000 for the MgB 2 film grown on a SiC substrate. Furthermore, by employing the HPCVD technique, a uniform film was achieved across the cavity interior, demonstrating the feasibility of HPCVD for MgB 2 coatings for SRF cavities.« less
Sun, Hongyu; Mou, Yongchao; Li, Yi; Li, Xia; Chen, Zi; Duval, Kayla; Huang, Zhu; Dai, Ruiwu; Tang, Lijun; Tian, Fuzhou
2016-01-01
Stem cell-based therapy remains one of the promising approaches for cardiac repair and regeneration. However, its applications are restricted by the limited efficacy of cardiac differentiation. To address this issue, we examined whether carbon nanotubes (CNTs) would provide an instructive extracellular microenvironment to facilitate cardiogenesis in brown adipose-derived stem cells (BASCs) and to elucidate the underlying signaling pathways. In this study, we systematically investigated a series of cellular responses of BASCs due to the incorporation of CNTs into collagen (CNT-Col) substrates that promoted cell adhesion, spreading, and growth. Moreover, we found that CNT-Col substrates remarkably improved the efficiency of BASCs cardiogenesis by using fluorescence staining and quantitative real-time reverse transcription-polymerase chain reaction. Critically, CNTs in the substrates accelerated the maturation of BASCs-derived cardiomyocytes. Furthermore, the underlying mechanism for promotion of BASCs cardiac differentiation by CNTs was determined by immunostaining, quantitative real-time reverse transcription-polymerase chain reaction, and Western blotting assay. It is notable that β1-integrin-dependent TGF-β1 signaling pathway modulates the facilitative effect of CNTs in cardiac differentiation of BASCs. Therefore, it is an efficient approach to regulate cardiac differentiation of BASCs by the incorporation of CNTs into the native matrix. Importantly, our findings can not only facilitate the mechanistic understanding of molecular events initiating cardiac differentiation in stem cells, but also offer a potentially safer source for cardiac regenerative medicine. PMID:27660434
Tang, J. Y.; Riley, W. J.
2016-02-05
We present a generic flux limiter to account for mass limitations from an arbitrary number of substrates in a biogeochemical reaction network. The flux limiter is based on the observation that substrate (e.g., nitrogen, phosphorus) limitation in biogeochemical models can be represented as to ensure mass conservative and non-negative numerical solutions to the governing ordinary differential equations. Application of the flux limiter includes two steps: (1) formulation of the biogeochemical processes with a matrix of stoichiometric coefficients and (2) application of Liebig's law of the minimum using the dynamic stoichiometric relationship of the reactants. This approach contrasts with the ad hoc down-regulationmore » approaches that are implemented in many existing models (such as CLM4.5 and the ACME (Accelerated Climate Modeling for Energy) Land Model (ALM)) of carbon and nutrient interactions, which are error prone when adding new processes, even for experienced modelers. Through an example implementation with a CENTURY-like decomposition model that includes carbon, nitrogen, and phosphorus, we show that our approach (1) produced almost identical results to that from the ad hoc down-regulation approaches under non-limiting nutrient conditions, (2) properly resolved the negative solutions under substrate-limited conditions where the simple clipping approach failed, (3) successfully avoided the potential conceptual ambiguities that are implied by those ad hoc down-regulation approaches. We expect our approach will make future biogeochemical models easier to improve and more robust.« less
Hybrid Physical Chemical Vapor Deposition of Magnesium Diboride Inside 3.9 GHz Mock Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Namhoon; Withanage, Wenura K.; Tan, Teng
Magnesium diboride (MgB 2) is considered a candidate for the next generation superconducting radio frequency (SRF) cavities due to its higher critical temperature T c (40 K) and increased superheating field (H sh) compared to other conventional superconductors. These properties can lead to reduced BCS surface resistance (R BCS S) and residual resistance (R res), according to theoretical studies, and enhanced accelerating field (E acc) values. Here, we investigated the possibility of coating the inner surface of a 3.9 GHz SRF cavity with MgB 2 by using a hybrid physical-vapor deposition (HPCVD) system designed for this purpose. To simulate themore » actual 3.9 GHz SRF cavity, we also employed a stainless steel mock cavity for the study. The film qualities were characterized on small substrates that were placed at the selected positions within the cavity. MgB 2 films on stainless steel foils, niobium pieces, and SiC substrates showed transition temperatures in the range of 30-38 K with a c-axis-oriented crystallinity observed for films grown on SiC substrates. Dielectric resonator measurements at 18 GHz resulted in a quality factor of over 30 000 for the MgB 2 film grown on a SiC substrate. Furthermore, by employing the HPCVD technique, a uniform film was achieved across the cavity interior, demonstrating the feasibility of HPCVD for MgB 2 coatings for SRF cavities.« less
Agresti, Jeremy J.; Kelly, Bernard T.; Jäschke, Andres; Griffiths, Andrew D.
2005-01-01
In vitro compartmentalization (IVC) has previously been used to evolve protein enzymes. Here, we demonstrate how IVC can be applied to select RNA enzymes (ribozymes) for a property that has previously been unselectable: true intermolecular catalysis. Libraries containing 1011 ribozyme genes are compartmentalized in the aqueous droplets of a water-in-oil emulsion, such that most droplets contain no more than one gene, and transcribed in situ. By coencapsulating the gene, RNA, and the substrates/products of the catalyzed reaction, ribozymes can be selected for all enzymatic properties: substrate recognition, product formation, rate acceleration, and turnover. Here we exploit the complementarity of IVC with systematic evolution of ligands by exponential enrichment (SELEX), which allows selection of larger libraries (≥1015) and for very small rate accelerations (kcat/kuncat) but only selects for intramolecular single-turnover reactions. We selected ≈1014 random RNAs for Diels–Alderase activity with five rounds of SELEX, then six to nine rounds with IVC. All selected ribozymes catalyzed the Diels–Alder reaction in a truly bimolecular fashion and with multiple turnover. Nearly all ribozymes selected by using eleven rounds of SELEX alone contain a common catalytic motif. Selecting with SELEX then IVC gave ribozymes with significant sequence variations in this catalytic motif and ribozymes with completely novel motifs. Interestingly, the catalytic properties of all of the selected ribozymes were quite similar. The ribozymes are strongly product inhibited, consistent with the Diels–Alder transition state closely resembling the product. More efficient Diels–Alderases may need to catalyze a second reaction that transforms the product and prevents product inhibition. PMID:16260754
Clemente, Christofer J; Goetzke, Hanns Hagen; Bullock, James M R; Sutton, Gregory P; Burrows, Malcolm; Federle, Walter
2017-05-01
Many hemipteran bugs can jump explosively from plant substrates, which can be very smooth. We therefore analysed the jumping performance of froghoppers ( Philaenus spumarius, Aphrophoridae) and leafhoppers ( Aphrodes bicinctus/makarovi, Cicadellidae) taking off from smooth (glass) and rough (sandpaper, 30 µm asperity size) surfaces. On glass, the propulsive hind legs of Philaenus froghoppers slipped, resulting in uncontrolled jumps with a fast forward spin, a steeper angle and only a quarter of the velocity compared with jumps from rough surfaces. By contrast, Aphrodes leafhoppers took off without their propulsive hind legs slipping, and reached low take-off angles and high velocities on both substrates. This difference in jumping ability from smooth surfaces can be explained not only by the lower acceleration of the long-legged leafhoppers, but also by the presence of 2-9 soft pad-like structures (platellae) on their hind tarsi, which are absent in froghoppers. High-speed videos of jumping showed that platellae contact the surface briefly (approx. 3 ms) during the acceleration phase. Friction force measurements on individual hind tarsi on glass revealed that at low sliding speeds, both pushing and pulling forces were small, and insufficient to explain the recorded jumps. Only when the tarsi were pushed with higher velocities did the contact area of the platellae increase markedly, and high friction forces were produced, consistent with the observed jumps. Our findings show that leafhoppers have special adhesive footpads for jumping from smooth surfaces, which achieve firm grip and rapid control of attachment/detachment by combining anisotropic friction with velocity dependence. © 2017 The Authors.
Temperature limits trail following behaviour through pheromone decay in ants
NASA Astrophysics Data System (ADS)
van Oudenhove, Louise; Billoir, Elise; Boulay, Raphaël; Bernstein, Carlos; Cerdá, Xim
2011-12-01
In Mediterranean habitats, temperature affects both ant foraging behaviour and community structure. Many studies have shown that dominant species often forage at lower temperature than subordinates. Yet, the factors that constrain dominant species foraging activity in hot environments are still elusive. We used the dominant ant Tapinoma nigerrimum as a model species to test the hypothesis that high temperatures hinder trail following behaviour by accelerating pheromone degradation. First, field observations showed that high temperatures (> 30°C) reduce the foraging activity of T. nigerrimum independently of the daily and seasonal rhythms of this species. Second, we isolated the effect of high temperatures on pheromone trail efficacy from its effect on worker physiology. A marked substrate was heated during 10 min (five temperature treatments from 25°C to 60°C), cooled down to 25°C, and offered in a test choice to workers. At hot temperature treatments (>40°C), workers did not discriminate the previously marked substrate. High temperatures appeared therefore to accelerate pheromone degradation. Third, we assessed the pheromone decay dynamics by a mechanistic model fitted with Bayesian inference. The model predicted ant choice through the evolution of pheromone concentration on trails as a function of both temperature and time since pheromone deposition. Overall, our results highlighted that the effect of high temperatures on recruitment intensity was partly due to pheromone evaporation. In the Mediterranean ant communities, this might affect dominant species relying on chemical recruitment, more than subordinate ant species, less dependent on chemical communication and less sensitive to high temperatures.
Simple Fall Criteria for MEMS Sensors: Data Analysis and Sensor Concept
Ibrahim, Alwathiqbellah; Younis, Mohammad I.
2014-01-01
This paper presents a new and simple fall detection concept based on detailed experimental data of human falling and the activities of daily living (ADLs). Establishing appropriate fall algorithms compatible with MEMS sensors requires detailed data on falls and ADLs that indicate clearly the variations of the kinematics at the possible sensor node location on the human body, such as hip, head, and chest. Currently, there is a lack of data on the exact direction and magnitude of each acceleration component associated with these node locations. This is crucial for MEMS structures, which have inertia elements very close to the substrate and are capacitively biased, and hence, are very sensitive to the direction of motion whether it is toward or away from the substrate. This work presents detailed data of the acceleration components on various locations on the human body during various kinds of falls and ADLs. A two-degree-of-freedom model is used to help interpret the experimental data. An algorithm for fall detection based on MEMS switches is then established. A new sensing concept based on the algorithm is proposed. The concept is based on employing several inertia sensors, which are triggered simultaneously, as electrical switches connected in series, upon receiving a true fall signal. In the case of everyday life activities, some or no switches will be triggered resulting in an open circuit configuration, thereby preventing false positive. Lumped-parameter model is presented for the device and preliminary simulation results are presented illustrating the new device concept. PMID:25006997
Bullock, James M. R.
2017-01-01
Many hemipteran bugs can jump explosively from plant substrates, which can be very smooth. We therefore analysed the jumping performance of froghoppers (Philaenus spumarius, Aphrophoridae) and leafhoppers (Aphrodes bicinctus/makarovi, Cicadellidae) taking off from smooth (glass) and rough (sandpaper, 30 µm asperity size) surfaces. On glass, the propulsive hind legs of Philaenus froghoppers slipped, resulting in uncontrolled jumps with a fast forward spin, a steeper angle and only a quarter of the velocity compared with jumps from rough surfaces. By contrast, Aphrodes leafhoppers took off without their propulsive hind legs slipping, and reached low take-off angles and high velocities on both substrates. This difference in jumping ability from smooth surfaces can be explained not only by the lower acceleration of the long-legged leafhoppers, but also by the presence of 2–9 soft pad-like structures (platellae) on their hind tarsi, which are absent in froghoppers. High-speed videos of jumping showed that platellae contact the surface briefly (approx. 3 ms) during the acceleration phase. Friction force measurements on individual hind tarsi on glass revealed that at low sliding speeds, both pushing and pulling forces were small, and insufficient to explain the recorded jumps. Only when the tarsi were pushed with higher velocities did the contact area of the platellae increase markedly, and high friction forces were produced, consistent with the observed jumps. Our findings show that leafhoppers have special adhesive footpads for jumping from smooth surfaces, which achieve firm grip and rapid control of attachment/detachment by combining anisotropic friction with velocity dependence. PMID:28468924
Effect of surface finish on the failure mechanisms of flip-chip solder joints under electromigration
NASA Astrophysics Data System (ADS)
Lin, Y. L.; Lai, Y. S.; Tsai, C. M.; Kao, C. R.
2006-12-01
Two substrate surface finishes, Au/Ni and organic solderable preservative (OSP), were used to study the effect of the surface finish on the reliability of flip-chip solder joints under electromigration at 150°C ambient temperature. The solder used was eutectic PbSn, and the applied current density was 5×103 A/cm2 at the contact window of the chip. The under bump metallurgy (UBM) on the chip was sputtered Cu/Ni. It was found that the mean-time-to-failure (MTTF) of the OSP joints was six times better than that of the Au/Ni joints (3080 h vs. 500 h). Microstructure examinations uncovered that the combined effect of current crowding and the accompanying local Joule heating accelerated the local Ni UBM consumption near the point of electron entrance. Once Ni was depleted at a certain region, this region became nonconductive, and the flow of the electrons was diverted to the neighboring region. This neighboring region then became the place where electrons entered the joint, and the local Ni UBM consumption was accelerated. This process repeated itself, and the Ni-depleted region extended further on, creating an ever-larger nonconductive region. The solder joint eventually, failed when the nonconductive region became too large, making the effective current density very high. Accordingly, the key factor determining the MTTF was the Ni consumption rate. The joints with the OSP surface finish had a longer MTTF because Cu released from the substrate was able to reduce the Ni consumption rate.
NASA Technical Reports Server (NTRS)
Teague, E. C.; Vorburger, T. V.; Scire, F. E.; Baker, S. M.; Jensen, S. W.; Gloss, B. B.; Trahan, C.
1982-01-01
Current work by the National Bureau of Standards at the NASA National Transonic Facility (NTF) to evaluate the performance of stylus instruments for determining the topography of models under investigation is described along with instrumentation for characterization of the surface microtopography. Potential areas of surface effects are reviewed, and the need for finer surfaced models for the NTF high Reynolds number flows is stressed. Current stylus instruments have a radii as large as 25 microns, and three models with surface finishes of 4-6, 8-10, and 12-15 micro-in. rms surface finishes were fabricated for tests with a stylus with a tip radius of 1 micron and a 50 mg force. Work involving three-dimensional stylus profilometry is discussed in terms of stylus displacement being converted to digital signals, and the design of a light scattering instrument capable of measuring the surface finish on curved objects is presented.
Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990
NASA Astrophysics Data System (ADS)
Lorenzen, Manfred; Campbell, Duncan R.; Johnson, Craig W.
1991-03-01
Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner array for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.
Butman, Bradford; Bryden, Cynthia G.; Pfirman, Stephanie L.; Strahle, William J.; Noble, Marlene A.
1984-01-01
An instrument system that measures bottom current, temperature, light transmission, and pressure, and that photographs the bottom at 2- to 6-hour intervals has been developed to study sediment transport on the Atlantic Continental Shelf. Instruments have been deployed extensively along the United States East Coast Continental Shelf for periods of from 2 to 6 months to study the frequency, direction, and rate of bottom sediment movement, and the processes causing movement. The time-lapse photographs are used to (1) characterize the bottom benthic community and surface microtopography; (2) monitor changes in the bottom topography and near-bottom water column caused by currents and storms (for example, ripple generation and migration, sediment resuspension); and (3) monitor seasonal changes in the bottom benthic community and qualitative effects of this community on the bottom sediments.
Research of Adhesion Bonds Between Gas-Thermal Coating and Pre-Modified Base
NASA Astrophysics Data System (ADS)
Kovalevskaya, Z.; Zaitsev, K.; Klimenov, V.
2016-08-01
Nature of adhesive bonds between gas-thermal nickel alloy coating and carbon steel base was examined using laser profilometry, optical metallography, transmission and scanning electron microscopy. The steel surface was plastically pre-deformed by an ultrasonic tool. Proved that ultrasound pre-treatment modifies the steel surface. Increase of dislocation density and formation of sub micro-structure are base elements of surface modification. While using high-speed gas-flame, plasma and detonation modes of coatings, surface activation occurs and durable adhesion is formed. Ultrasonic pre-treatment of base material is effective when sprayed particles and base material interact through physical-chemical bond formation. Before applying high-speed gas flame and plasma sprayed coatings, authors recommend ultrasonic pretreatment, which creates periodic wavy topography with a stroke of 250 microns on the steel surface. Before applying detonation sprayed coatings, authors recommend ultrasound pretreatment that create modified surface with a uniform micro-topography.
Agrogenic degradation of soils in Krasnoyarsk forest-steppe
NASA Astrophysics Data System (ADS)
Shpedt, A. A.; Trubnikov, Yu. N.; Zharinova, N. Yu.
2017-10-01
Agrogenic degradation of soils in Krasnoyarsk forest-steppe was investigated. Paleocryogenic microtopography of microlows and microhighs in this area predetermined the formation of paragenetic soil series and variegated soil cover. Specific paleogeographic conditions, thin humus horizons and soil profiles, and long-term agricultural use of the land resulted in the formation of soils unstable to degradation processes and subjected to active wind and water erosion. Intensive mechanical soil disturbances during tillage and long-term incorporation of the underlying Late Pleistocene (Sartan) calcareous silty and clay loams into the upper soil horizons during tillage adversely affected the soil properties. We determined the contents of total and labile humus and easily decomposable organic matter and evaluated the degree of soil exhaustion. It was concluded that in the case of ignorance of the norms of land use and soil conservation practices, intense soil degradation would continue leading to complete destruction of the soil cover within large areas.
Preparation, characterization and antibacterial activity of oxidized κ-carrageenan.
Zhu, Mingjin; Ge, Liming; Lyu, Yongbo; Zi, Yaxin; Li, Xinying; Li, Defu; Mu, Changdao
2017-10-15
The oxidized κ-carrageenans with different oxidation levels were prepared through the hydrogen peroxide and copper sulfate redox system. The oxidation level of oxidized κ-carrageenan was successfully controlled by adjusting the dosage of hydrogen peroxide. The results showed that the microtopography of oxidized κ-carrageenan changed from rough granules to smooth flakes, mainly resulting from the easily melting property of oxidized κ-carrageenan induced by introduced carboxyl and aldehyde groups. Especially, the antibacterial activity of oxidized κ-carrageenans against Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) was systematically investigated. The results showed that the oxidized κ-carrageenan could damage the bacterial cell wall and cytoplasmic membrane and suppress the growth of both Gram-positive and Gram-negative bacteria. The oxidized κ-carrageenan possessed broad-spectrum antibacterial activity, which may be used as a new antibacterial agent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Measurement of surface microtopography
NASA Technical Reports Server (NTRS)
Wall, S. D.; Farr, T. G.; Muller, J.-P.; Lewis, P.; Leberl, F. W.
1991-01-01
Acquisition of ground truth data for use in microwave interaction modeling requires measurement of surface roughness sampled at intervals comparable to a fraction of the microwave wavelength and extensive enough to adequately represent the statistics of a surface unit. Sub-centimetric measurement accuracy is thus required over large areas, and existing techniques are usually inadequate. A technique is discussed for acquiring the necessary photogrammetric data using twin film cameras mounted on a helicopter. In an attempt to eliminate tedious data reduction, an automated technique was applied to the helicopter photographs, and results were compared to those produced by conventional stereogrammetry. Derived root-mean-square (RMS) roughness for the same stereo-pair was 7.5 cm for the automated technique versus 6.5 cm for the manual method. The principal source of error is probably due to vegetation in the scene, which affects the automated technique but is ignored by a human operator.
Single Crystals Grown Under Unconstrained Conditions
NASA Astrophysics Data System (ADS)
Sunagawa, Ichiro
Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).
Winter Waterbird Community Composition and Use at Created Wetlands in West Virginia, USA
Peters, Michael L.
2017-01-01
Information on nonbreeding waterbirds using created wetlands in the Central Appalachian region of the United States is limited. We compared waterbird communities of two managed wetlands, created in 2013 and 2001, in West Virginia. We observed 27 species of waterbirds. Species richness and diversity were generally similar between the wetlands, but species composition and use differed. Branta canadensis (Canada Geese), Anas strepera (Gadwall), Bucephala albeola (Buffleheads), Aythya affinis (Lesser Scaup), and Aythya collaris (Ring-Necked Ducks) used the older wetland most frequently. Disparities in species use were the highest in March. The older wetland differed from the younger in supporting species such as diving ducks, possibly due to differences in size, vegetation, water depth, and microtopography. However, the ability to provide habitat for waterbirds during the winter was determined to be comparable between wetlands, despite their age difference. PMID:28386513
Halder, Partha; Nasabi, Mahyar; Lopez, Francisco Javier Tovar; Jayasuriya, Niranjali; Bhattacharya, Satinath; Deighton, Margaret; Mitchell, Arnan; Bhuiyan, Muhammed Ali
2013-01-01
Biofouling, the unwanted growth of sessile microorganisms on submerged surfaces, presents a serious problem for underwater structures. While biofouling can be controlled to various degrees with different microstructure-based patterned surfaces, understanding of the underlying mechanism is still imprecise. Researchers have long speculated that microtopographies might influence near-surface microfluidic conditions, thus microhydrodynamically preventing the settlement of microorganisms. It is therefore very important to identify the microfluidic environment developed on patterned surfaces and its relation with the antifouling behaviour of those surfaces. This study considered the wall shear stress distribution pattern as a significant aspect of this microfluidic environment. In this study, patterned surfaces with microwell arrays were assessed experimentally with a real-time biofilm development monitoring system using a novel microchannel-based flow cell reactor. Finally, computational fluid dynamics simulations were carried out to show how the microfluidic conditions were affecting the initial settlement of microorganisms.
Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzen, M.; Campbell, D.R.; Johnson, C.W.
1991-01-01
Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner arraymore » for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.« less
Accelerating pathway evolution by increasing the gene dosage of chromosomal segments.
Tumen-Velasquez, Melissa; Johnson, Christopher W; Ahmed, Alaa; Dominick, Graham; Fulk, Emily M; Khanna, Payal; Lee, Sarah A; Schmidt, Alicia L; Linger, Jeffrey G; Eiteman, Mark A; Beckham, Gregg T; Neidle, Ellen L
2018-06-18
Experimental evolution is a critical tool in many disciplines, including metabolic engineering and synthetic biology. However, current methods rely on the chance occurrence of a key step that can dramatically accelerate evolution in natural systems, namely increased gene dosage. Our studies sought to induce the targeted amplification of chromosomal segments to facilitate rapid evolution. Since increased gene dosage confers novel phenotypes and genetic redundancy, we developed a method, Evolution by Amplification and Synthetic Biology (EASy), to create tandem arrays of chromosomal regions. In Acinetobacter baylyi , EASy was demonstrated on an important bioenergy problem, the catabolism of lignin-derived aromatic compounds. The initial focus on guaiacol (2-methoxyphenol), a common lignin degradation product, led to the discovery of Amycolatopsis genes ( gcoAB ) encoding a cytochrome P450 enzyme that converts guaiacol to catechol. However, chromosomal integration of gcoAB in Pseudomonas putida or A. baylyi did not enable guaiacol to be used as the sole carbon source despite catechol being a growth substrate. In ∼1,000 generations, EASy yielded alleles that in single chromosomal copy confer growth on guaiacol. Different variants emerged, including fusions between GcoA and CatA (catechol 1,2-dioxygenase). This study illustrates the power of harnessing chromosomal gene amplification to accelerate the evolution of desirable traits.
Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose
Ferreiro-González, Marta; Barbero, Gerardo F.; Palma, Miguel; Ayuso, Jesús; Álvarez, José A.; Barroso, Carmelo G.
2016-01-01
Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose) has been developed for the analysis of Ignitable Liquid Residues (ILRs). The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) were applied to the MS data (45–200 m/z) to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin) were used to ignite different substrates (wood, cotton, cork, paper and paperboard). A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses. PMID:27187407
Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise
Ridge, Justin T.; Rodriguez, Antonio B.; Joel Fodrie, F.; Lindquist, Niels L.; Brodeur, Michelle C.; Coleman, Sara E.; Grabowski, Jonathan H.; Theuerkauf, Ethan J.
2015-01-01
Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species’ ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20–40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR. PMID:26442712
Schaeren, Stefan; Jaquiéry, Claude; Wolf, Francine; Papadimitropoulos, Adam; Barbero, Andrea; Schultz-Thater, Elke; Heberer, Michael; Martin, Ivan
2010-03-15
In this study, we addressed whether Bone Sialoprotein (BSP) coating of various substrates could enhance the in vitro osteogenic differentiation and in vivo bone formation capacity of human Bone Marrow Stromal Cells (BMSC). Moreover, we tested whether synthetic polymer-based porous scaffolds, despite the absence of a mineral component, could support ectopic bone formation by human BMSC if coated with BSP. Adsorption of recombinant human BSP on tissue culture-treated polystyrene (TCTP), beta-tricalcium phosphate (Osteologic) or synthetic polymer (Polyactive) substrates was dose dependent, but did not consistently accelerate or enhance in vitro BMSC osteogenic differentiation, as assessed by the mRNA expression of osteoblast-related genes. Similarly, BSP coating of porous beta-tricalcium phosphate scaffolds (Skelite) did not improve the efficiency of bone tissue formation following loading with BMSC and ectopic implantation in nude mice. Finally, Polyactive foams seeded with BMSC did not form bone tissue in the same ectopic assay, even if coated with BSP. We conclude that BSP coating of a variety of substrates is not directly associated with an enhancement of osteoprogenitor cell differentiation in vitro or in vivo, and that presentation of BSP on polymeric materials is not sufficient to prime BMSC functional osteoblastic differentiation in vivo. (c) 2009 Wiley Periodicals, Inc.
Ion-beam assisted laser fabrication of sensing plasmonic nanostructures
Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey
2016-01-01
Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures. PMID:26776569
Radiation pressure of light pulses and conservation of linear momentum in dispersive media.
Scalora, Michael; D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; Centini, Marco; Sibilia, Concita; Haus, Joseph W
2006-05-01
We derive an expression for the Minkowski momentum under conditions of dispersive susceptibility and permeability, and compare it to the Abraham momentum in order to test the principle of conservation of linear momentum when matter is present. We investigate cases when an incident pulse interacts with a variety of structures, including thick substrates, resonant, free-standing, micron-sized multilayer stacks, and negative index materials. In general, we find that for media only a few wavelengths thick the Minkowski and Abraham momentum densities yield similar results. For more extended media, including substrates and Bragg mirrors embedded inside thick dielectric substrates, our calculations show dramatic differences between the Minkowski and Abraham momenta. Without exception, in all cases investigated the instantaneous Lorentz force exerted on the medium is consistent only with the rate of change of the Abraham momentum. As a practical example, we use our model to predict that electromagnetic momentum and energy buildup inside a multilayer stack can lead to widely tunable accelerations that may easily reach and exceed 10(10) m/s(2) for a mass of 10(-5) g. Our results suggest that the physics of the photonic band edge and other similar finite structures may be used as a testing ground for basic electromagnetic phenomena such as momentum transfer to macroscopic media.
Bioorthogonal chemistry: strategies and recent development
Ramil, Carlo P.; Lin, Qing
2013-01-01
The use of covalent chemistry to track biomolecules in their native environment—a focus of bioorthogonal chemistry—has received considerable interests recently among chemical biologists and organic chemists alike. To facilitate wider adoption of bioorthogonal chemistry in biomedical research, a central effort in the last few years has been focused on the optimization of a few known bioorthogonal reactions, particularly with respective to reaction kinetics improvement, novel genetic encoding systems, and fluorogenic reactions for bioimaging. During these optimizations, three strategies have emerged, including the use of ring strain for substrate activation in the cycloaddition reactions, the discovery of new ligands and privileged substrates for accelerated metal-catalysed reactions, and the design of substrates with pre-fluorophore structures for rapid “turn-on” fluorescence after selective bioorthogonal reactions. In addition, new bioorthogonal reactions based on either modified or completely unprecedented reactant pairs have been reported. Finally, increasing attention has been directed toward the development of mutually exclusive bioorthogonal reactions and their applications in multiple labeling of a biomolecule in cell culture. In this feature article, we wish to present the recent progress in bioorthogonal reactions through the selected examples that highlight the above-mentioned strategies. Considering increasing sophistication in bioorthogonal chemistry development, we strive to project several exciting opportunities where bioorthogonal chemistry can make a unique contribution to biology in near future. PMID:24145483
Structure of human O-GlcNAc transferase and its complex with a peptide substrate
Lazarus, Michael B.; Nam, Yunsun; Jiang, Jiaoyang; Sliz, Piotr; Walker, Suzanne
2010-01-01
O-GlcNAc transferase (OGT) is an essential mammalian enzyme that couples metabolic status to the regulation of a wide variety of cellular signaling pathways by acting as a nutrient sensor1. OGT catalyzes the transfer of N-acetyl-glucosamine from UDP-GlcNAc to serines and threonines of cytoplasmic, nuclear and mitochondrial proteins2,3, including numerous transcription factors4, tumor suppressors, kinases5, phosphatases1, and histone-modifying proteins6. Aberrant O-GlcNAcylation by OGT has been linked to insulin resistance7, diabetic complications8, cancer9 and neurodegenerative diseases including Alzheimer’s10. Despite the importance of OGT, the details of how it recognizes and glycosylates its protein substrates are largely unknown. We report here two crystal structures of human OGT, as a binary complex with UDP (2.8 A) and a ternary complex with UDP and a peptide substrate (1.95 A). The structures provide clues to the enzyme mechanism, show how OGT recognizes target peptide sequences, and reveal the fold of the unique domain between the two halves of the catalytic region. This information will accelerate the rational design of biological experiments to investigate OGT’s functions and the design of inhibitors for use as cellular probes and to assess its potential as a therapeutic target. PMID:21240259
Construction and evaluation of an ultrahigh-vacuum-compatible sputter deposition source
NASA Astrophysics Data System (ADS)
Lackner, Peter; Choi, Joong Il Jake; Diebold, Ulrike; Schmid, Michael
2017-10-01
A sputter deposition source for the use in ultrahigh vacuum (UHV) is described, and some properties of the source are analyzed. The operating principle is based on the design developed by Mayr et al. [Rev. Sci. Instrum. 84, 094103 (2013)], where electrons emitted from a filament ionize argon gas and the Ar+ ions are accelerated to the target. In contrast to the original design, two grids are used to direct a large fraction of the Ar+ ions to the target, and the source has a housing cooled by liquid nitrogen to reduce contaminations. The source has been used for the deposition of zirconium, a material that is difficult to evaporate in standard UHV evaporators. At an Ar pressure of 9 ×1 0-6 mbar in the UHV chamber and moderate emission current, a highly reproducible deposition rate of ≈1 ML in 250 s was achieved at the substrate (at a distance of ≈50 mm from the target). Higher deposition rates are easily possible. X-ray photoelectron spectroscopy shows a high purity of the deposited films. Depending on the grid voltages, the substrate gets mildly sputtered by Ar+ ions; in addition, the substrate is also reached by electrons from the negatively biased sputter target.
Suzuki, Nobukazu; Ito, Toshihiko; Hiroshima, Kai; Tokiwano, Tetsuo; Hashizume, Katsumi
2016-03-01
Formation of ethyl ferulate (EF) and ferulic acid (FA) under sake mash conditions was studied using feruloylated oligosaccharide (FO), prepared from rice grains, as the substrate for rice koji enzyme. EF and FA were produced from FO over six times faster than from alkyl ferulates however, under the same ethanol concentration, only small differences were observed between the EF/FA ratios when either FO or methyl ferulate were used as substrates. Esterification and hydrolysis of FO or methyl ferulate showed similar pH dependencies and similar EF/FA ratios for each substrate in all of the pH ranges tested. Ethanol concentration clearly affected the EF/FA ratio; the ratio increased as ethanol concentration increased. Formation of EF and FA in the sake mash simulated rice digest was accelerated by addition of exogenous FO. These results indicated that supply of FO to sake mash is a crucial step for EF and FA formation, and ethanol is an influencing factor in the EF/FA ratio. The rice koji enzyme reaction suggested that EF and FA are formed through a common feruloylated enzyme intermediate complex by transesterification or hydrolysis, and these reactions occur competitively. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Application of Coaxial Ion Gun for Film Generation and Ion Implantation
NASA Astrophysics Data System (ADS)
Takatsu, Mikio; Asai, Tomohiko; Kurumi, Satoshi; Suzuki, Kaoru; Hirose, Hideharu; Masutani, Shigeyuki
A magnetized coaxial plasma gun (MCPG) is here utilized for deposition on high-melting-point metals. MCPGs have hitherto been studied mostly in the context of nuclear fusion research, for particle and magnetic helicity injection and spheromak formation. During spheromak formation, the electrode materials are ionized and mixed into the plasmoid. In this study, this ablation process by gun-current sputtering is enhanced for metallic thin-film generation. In the proposed system geometry, only ionized materials are electromagnetically accelerated by the self-Lorentz force, with ionized operating gas as a magnetized thermal plasmoid, contributing to the thin-film deposition. This reduces the impurity and non-uniformity of the deposited thin-film. Furthermore, as the ions are accelerated in a parallel direction to the injection axis, vertical implantation of the ions into the substrate surface is achieved. To test a potential application of the developed system, experiments were conducted involving the formation of a buffer layer on hard ceramics, for use in dental materials.
Debler, Erik W.; Müller, Roger; Hilvert, Donald; Wilson, Ian A.
2009-01-01
Design of catalysts featuring multiple functional groups is a desirable, yet formidable goal. Antibody 13G5, which accelerates the cleavage of unactivated benzisoxazoles, is one of few artificial enzymes that harness an acid and a base to achieve efficient proton transfer. X-ray structures of the Fab-hapten complexes of wild-type 13G5 and active-site variants now afford detailed insights into its mechanism. The parent antibody preorganizes AspH35 and GluL34 to abstract a proton from substrate and to orient a water molecule for leaving group stabilization, respectively. Remodeling the environment of the hydrogen bond donor with a compensatory network of ordered waters, as seen in the GluL34 to alanine mutant, leads to an impressive 109-fold rate acceleration over the nonenzymatic reaction with acetate, illustrating the utility of buried water molecules in bifunctional catalysis. Generalization of these design principles may aid in creation of catalysts for other important chemical transformations. PMID:19846764
Inverse Leidenfrost effect: self-propelling drops on a bath
NASA Astrophysics Data System (ADS)
Gauthier, Anais; van der Meer, Devaraj; Lohse, Detlef; Physics of Fluids Team
2017-11-01
When deposited on very hot solid, volatile drops can levitate over a cushion of vapor, in the so-called Leidenfrost state. This phenomenon can also be observed on a hot bath and similarly to the solid case, drops are very mobile due to the absence of contact with the substrate that sustains them. We discuss here a situation of ``inverse Leidenfrost effect'' where room-temperature drops levitate on a liquid nitrogen pool - the vapor is generated here by the bath sustaining the relatively hot drop. We show that the drop's movement is not random: the liquid goes across the bath in straight lines, a pattern only disrupted by elastic bouncing on the edges. In addition, the drops are initially self-propelled; first at rest, they accelerate for a few seconds and reach velocities of the order of a few cm/s, before slowing down. We investigate experimentally the parameters that affect their successive acceleration and deceleration, such as the size and nature of the drops and we discuss the origin of this pattern.
Vestibular nuclei and cerebellum put visual gravitational motion in context.
Miller, William L; Maffei, Vincenzo; Bosco, Gianfranco; Iosa, Marco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco
2008-04-01
Animal survival in the forest, and human success on the sports field, often depend on the ability to seize a target on the fly. All bodies fall at the same rate in the gravitational field, but the corresponding retinal motion varies with apparent viewing distance. How then does the brain predict time-to-collision under gravity? A perspective context from natural or pictorial settings might afford accurate predictions of gravity's effects via the recovery of an environmental reference from the scene structure. We report that embedding motion in a pictorial scene facilitates interception of gravitational acceleration over unnatural acceleration, whereas a blank scene eliminates such bias. Functional magnetic resonance imaging (fMRI) revealed blood-oxygen-level-dependent correlates of these visual context effects on gravitational motion processing in the vestibular nuclei and posterior cerebellar vermis. Our results suggest an early stage of integration of high-level visual analysis with gravity-related motion information, which may represent the substrate for perceptual constancy of ubiquitous gravitational motion.
Debler, Erik W; Müller, Roger; Hilvert, Donald; Wilson, Ian A
2009-11-03
Design of catalysts featuring multiple functional groups is a desirable, yet formidable goal. Antibody 13G5, which accelerates the cleavage of unactivated benzisoxazoles, is one of few artificial enzymes that harness an acid and a base to achieve efficient proton transfer. X-ray structures of the Fab-hapten complexes of wild-type 13G5 and active-site variants now afford detailed insights into its mechanism. The parent antibody preorganizes Asp(H35) and Glu(L34) to abstract a proton from substrate and to orient a water molecule for leaving group stabilization, respectively. Remodeling the environment of the hydrogen bond donor with a compensatory network of ordered waters, as seen in the Glu(L34) to alanine mutant, leads to an impressive 10(9)-fold rate acceleration over the nonenzymatic reaction with acetate, illustrating the utility of buried water molecules in bifunctional catalysis. Generalization of these design principles may aid in creation of catalysts for other important chemical transformations.
Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing
Huguenin-Dezot, Nicolas; Liang, Alexandria D.; Schmied, Wolfgang H.; Rogerson, Daniel T.; Chin, Jason W.
2017-01-01
The phosphorylation of threonine residues in proteins regulates diverse processes in eukaryotic cells, and thousands of threonine phosphorylations have been identified. An understanding of how threonine phosphorylation regulates biological function will be accelerated by general methods to bio-synthesize defined phospho-proteins. Here we address limitations in current methods for discovering aminoacyl-tRNA synthetase/tRNA pairs for incorporating non-natural amino acids into proteins, by combining parallel positive selections with deep sequencing and statistical analysis, to create a rapid approach for directly discovering aminoacyl-tRNA synthetase/tRNA pairs that selectively incorporate non-natural substrates. Our approach is scalable and enables the direct discovery of aminoacyl-tRNA synthetase/tRNA pairs with mutually orthogonal substrate specificity. We biosynthesize phosphothreonine in cells, and use our new selection approach to discover a phosphothreonyl-tRNA synthetase/tRNACUA pair. By combining these advances we create an entirely biosynthetic route to incorporating phosphothreonine in proteins and biosynthesize several phosphoproteins; enabling phosphoprotein structure determination and synthetic protein kinase activation. PMID:28553966
Bioleaching of multiple metals from contaminated sediment by moderate thermophiles.
Gan, Min; Jie, Shiqi; Li, Mingming; Zhu, Jianyu; Liu, Xinxing
2015-08-15
A moderately thermophilic consortium was applied in bioleaching multiple metals from contaminated sediment. The consortium got higher acidification and metals soubilization efficiency than that of the pure strains. The synergistic effect of the thermophilic consortium accelerated substrates utilization. The utilization of substrate started with sulfur in the early stage, and then the pH declined, giving rise to making use of the pyrite. Community dynamic showed that A. caldus was the predominant bacteria during the whole bioleaching process while the abundance of S. thermotolerans increased together with pyrite utilization. Solubilization efficiency of Zn, Cu, Mn and Cd reached 98%, 94%, 95%, and 89% respectively, while As, Hg, Pb was only 45%, 34%, 22%. Logistic model was used to simulate the bioleaching process, whose fitting degree was higher than 90%. Correlation analysis revealed that metal leaching was mainly an acid solubilization process. Fraction analysis revealed that metals decreased in mobility and bioavailability. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Peng; Zheng, Gaige
2018-04-01
The efficiency of graphene-based optoelectronic devices is typically limited by the poor absolute absorption of light. A hybrid structure of monolayer graphene with cylindrical titanium dioxide (TiO2) array and aluminum oxide (Al2O3) spacer layer on aluminum (Al) substrate has been proposed to enhance the absorption for two-dimensional (2D) materials. By combining dielectric array with metal substrate, the structure achieves multiple absorption peaks with near unity absorbance at near-infrared wavelengths due to the resonant effect of dielectric array. Completed monolayer graphene is utilized in the design without any demand of manufacture process to form the periodic patterns. Further analysis indicates that the near-field enhancement induced by surface modes gives rise to the high absorption. This favorable field enhancement and tunability of absorption not only open up new approaches to accelerate the light-graphene interaction, but also show great potential for practical applications in high-performance optoelectronic devices, such as modulators and sensors.
Gohel, V; Duan, G; Maisuria, V B
2013-01-01
This study evaluated the conventional jet cooking liquefaction process followed by simultaneous saccharification and fermentation (SSF) at 30% and 35% dry solids (DS) concentration of Indian sorghum feedstock for ethanol production, with addition of acid fungal protease or urea. To evaluate the efficacy of thermostable α-amylase in liquefaction at 30% and 35% DS concentration of Indian sorghum, liquefact solubility, higher dextrins, and fermentable sugars were analyzed at the end of the process. The liquefact was further subjected to SSF using yeast. In comparison with urea, addition of an acid fungal protease during SSF process was observed to accelerate yeast growth (μ), substrate consumption (Q(s)), ultimately ethanol yield based on substrate (Y(p/s)) and ethanol productivity based on fermentation time (Q(p)). The fermentation efficiency and ethanol recovery were determined for both concentrations of Indian sorghum and found to be increased with use of acid fungal protease in SSF process. Copyright © 2013 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Kakinuma, Hiroaki; Mohri, Mikio; Tsuruoka, Taiji
1994-01-01
We have investigated phosphorus doping using an electron cyclotron resonance (ECR) plasma, for application to the poly-Si driving circuits of liquid crystal displays or image sensors. The PH3/He was ionized and accelerated to poly-Si and c-Si substrates with a self bias of -220 V. The P concentration, as detected by secondary ion mass spectroscopy (SIMS), is ˜5×1021 cm-3 at the surface, which decayed to ˜1017 cm-3 within 50 100 nm depth. The surface is found to be etched during doping. The etching is restored by adding a small amount of SiH4 and the sheet resistance R s decreases. The optimized as-irradiated R s is ˜ 1× 105 Ω/\\Box and 1.7× 102 Ω/\\Box for poly-Si and (110) c-Si, respectively. The dependence of R s on the substrates and the anomalous diffusion constants derived from SIMS are also discussed.
NASA Astrophysics Data System (ADS)
Shan, Yanguang; Coyle, Thomas W.; Mostaghimi, Javad
2007-12-01
Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature, and position distribution on the substrate are predicted.
Environmentally Friendly Corrosion Preventative Compounds for Ground Support Structures
NASA Technical Reports Server (NTRS)
Montgomery Eliza L.; Calle, Luz, Marina; Curran, Jerome P.; Kolody, Mark R.
2013-01-01
The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.
Jones, Christopher G.; Mills, Bernice E.; Nishimoto, Ryan K.; ...
2017-10-25
A simple procedure has been developed to create palladium (Pd) films on the surface of several common polymers used in commercial fused deposition modeling (FDM) and stereolithography (SLA) based three-dimensional (3D) printing by an electroless deposition process. The procedure can be performed at room temperature, with equipment less expensive than many 3D printers, and occurs rapidly enough to achieve full coverage of the film within a few minutes. 3D substrates composed of dense logpile or cubic lattices with part sizes in the mm to cm range, and feature sizes as small as 150 μm were designed and printed using commerciallymore » available 3D printers. The deposition procedure was successfully adapted to show full coverage in the lattice substrates. As a result, the ability to design, print, and metallize highly ordered three-dimensional microscale structures could accelerate development of a range of optimized chemical and mechanical engineering systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Christopher G.; Mills, Bernice E.; Nishimoto, Ryan K.
A simple procedure has been developed to create palladium (Pd) films on the surface of several common polymers used in commercial fused deposition modeling (FDM) and stereolithography (SLA) based three-dimensional (3D) printing by an electroless deposition process. The procedure can be performed at room temperature, with equipment less expensive than many 3D printers, and occurs rapidly enough to achieve full coverage of the film within a few minutes. 3D substrates composed of dense logpile or cubic lattices with part sizes in the mm to cm range, and feature sizes as small as 150 μm were designed and printed using commerciallymore » available 3D printers. The deposition procedure was successfully adapted to show full coverage in the lattice substrates. As a result, the ability to design, print, and metallize highly ordered three-dimensional microscale structures could accelerate development of a range of optimized chemical and mechanical engineering systems.« less
Di Martino, Giovanni Paolo; Masetti, Matteo; Cavalli, Andrea; Recanatini, Maurizio
2014-11-01
The peptidyl-proyl isomerase Pin1 plays a key role in the regulation of phospho(p)-Ser/Thr-Pro proteins, acting as a molecular timer of the cell cycle. After recognition of these motifs, Pin1 catalyzes the rapid cis-trans isomerization of proline amide bonds of substrates, contributing to maintain the equilibrium between the two conformations. Although a great interest has arisen on this enzyme, its catalytic mechanism has long been debated. Here, the cis-trans isomerization of a model peptide system was investigated by means of umbrella sampling simulations in the Pin1-bound and unbound states. We obtained free energy barriers consistent with experimental data, and identified several enzymatic features directly linked to the acceleration of the prolyl bond isomerization. In particular, an enhanced autocatalysis, the stabilization of perturbed ground state conformations, and the substrate binding in a procatalytic conformation were found as main contributions to explain the lowering of the isomerization free energy barrier. © 2014 Wiley Periodicals, Inc.
Silicon Satellites: Picosats, Nanosats, and Microsats
NASA Technical Reports Server (NTRS)
Janson, Siegfried W.
1995-01-01
Silicon, the most abundant solid element in the Earth's lithosphere, is a useful material for spacecraft construction. Silicon is stronger than stainless steel, has a thermal conductivity about half that of aluminum, is transparent to much of the infrared radiation spectrum, and can form a stable oxide. These unique properties enable silicon to become most of the mass of a satellite, it can simultaneously function as structure, heat transfer system, radiation shield, optics, and semiconductor substrate. Semiconductor batch-fabrication techniques can produce low-power digital circuits, low-power analog circuits, silicon-based radio frequency circuits, and micro-electromechanical systems (MEMS) such as thrusters and acceleration sensors on silicon substrates. By exploiting these fabrication techniques, it is possible to produce highly-integrated satellites for a number of applications. This paper analyzes the limitations of silicon satellites due to size. Picosatellites (approximately 1 gram mass), nanosatellites (about 1 kg mass), and highly capable microsatellites (about 10 kg mass) can perform various missions with lifetimes of a few days to greater than a decade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paret, Paul P; DeVoto, Douglas J; Narumanchi, Sreekant V
Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (less than 200 degrees Celcius). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. We present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. Amore » fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed. In this paper, we outline the procedures for obtaining the J-integral/thermal cycle values in a computational model and report on the possible advantage of using these values as modeling parameters in a predictive lifetime model.« less
Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang
2017-07-29
We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm² through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42-70 kV voltage by digital switching control between emitter and ground electrode.
NASA Astrophysics Data System (ADS)
Savostikov, V. M.; Potekaev, A. I.; Tabachenko, A. N.
2011-12-01
Using a technological system proposed by the authors, a combined process is developed for formation of stratified-gradient surface layers and multicomponent coatings. It is implemented under the conditions of a combined serial-parallel operation of a hot-cathode gas plasma generator and a duomagnetron with two targets and two electric-arc evaporators. The extended functional potential is ensured by using advanced multi-element and multi-phase cathode targets made of borides, carbides, silicides, and sulfides of metals produced by the SHS-process followed by their immediate compaction. The variations in composition, structure, and physicomechanical properties in the cross-section of the stratified-gradient surface layers and coating is provided by a predetermined alternating replacement of the sputtered cathode targets of the plasma sources, the plasma flow intensity ratios, and variation in the particle energy incident on the substrate, which is determined by the accelerating voltage on the substrate.
Artificial dirt: microfluidic substrates for nematode neurobiology and behavior.
Lockery, S R; Lawton, K J; Doll, J C; Faumont, S; Coulthard, S M; Thiele, T R; Chronis, N; McCormick, K E; Goodman, M B; Pruitt, B L
2008-06-01
With a nervous system of only 302 neurons, the free-living nematode Caenorhabditis elegans is a powerful experimental organism for neurobiology. However, the laboratory substrate commonly used in C. elegans research, a planar agarose surface, fails to reflect the complexity of this organism's natural environment, complicates stimulus delivery, and is incompatible with high-resolution optophysiology experiments. Here we present a new class of microfluidic devices for C. elegans neurobiology and behavior: agarose-free, micron-scale chambers and channels that allow the animals to crawl as they would on agarose. One such device mimics a moist soil matrix and facilitates rapid delivery of fluid-borne stimuli. A second device consists of sinusoidal channels that can be used to regulate the waveform and trajectory of crawling worms. Both devices are thin and transparent, rendering them compatible with high-resolution microscope objectives for neuronal imaging and optical recording. Together, the new devices are likely to accelerate studies of the neuronal basis of behavior in C. elegans.
Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang
2017-01-01
We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm2 through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42–70 kV voltage by digital switching control between emitter and ground electrode. PMID:28773237
Environmentally friendly corrosion preventive compounds for ground support structures
NASA Astrophysics Data System (ADS)
Montgomery, Eliza; Curran, Jerome; Calle, Luz Marina; Kolody, Mark
The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based corrosion preventive compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.
Corrosion behaviour of friction-bit-joined and weld-bonded AA7075-T6/galvannealed DP980
Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; ...
2016-12-22
Joining of aluminium alloys 7075-T6 and galvannealed dual phase 980 steel was achieved by friction bit joining (FBJ) and weld-bonding (FBJ + adhesive) processes. Accelerated laboratory-scale corrosion tests were performed on both FBJ only and weld-bonded specimens to study joint strength under a corrosive environment. Static lap shear tests showed that both FBJ only and weld-bonded cases generally retained more than 80% of the joint strength of non-corroded specimens at the end of corrosion testing. The presence of Zn/Fe coating on the steel substrate resulted in improved corrosion resistance for FBJ specimens, compared to joints produced with bare steel. Finally,more » an optical microscopy was used for cross-sectional analysis of corroded specimens. Some corrosion on the joining bit was observed near the bit head. However, the joining bit was still intact on the steel substrate, indicating that the primary bond was sound.« less
NASA Astrophysics Data System (ADS)
Caliari, Steven R.; Perepelyuk, Maryna; Cosgrove, Brian D.; Tsai, Shannon J.; Lee, Gi Yun; Mauck, Robert L.; Wells, Rebecca G.; Burdick, Jason A.
2016-02-01
Tissue fibrosis contributes to nearly half of all deaths in the developed world and is characterized by progressive matrix stiffening. Despite this, nearly all in vitro disease models are mechanically static. Here, we used visible light-mediated stiffening hydrogels to investigate cell mechanotransduction in a disease-relevant system. Primary hepatic stellate cell-seeded hydrogels stiffened in situ at later time points (following a recovery phase post-isolation) displayed accelerated signaling kinetics of both early (Yes-associated protein/Transcriptional coactivator with PDZ-binding motif, YAP/TAZ) and late (alpha-smooth muscle actin, α-SMA) markers of myofibroblast differentiation, resulting in a time course similar to observed in vivo activation dynamics. We further validated this system by showing that α-SMA inhibition following substrate stiffening resulted in attenuated stellate cell activation, with reduced YAP/TAZ nuclear shuttling and traction force generation. Together, these data suggest that stiffening hydrogels may be more faithful models for studying myofibroblast activation than static substrates and could inform the development of disease therapeutics.
Corrosion behaviour of friction-bit-joined and weld-bonded AA7075-T6/galvannealed DP980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu
Joining of aluminium alloys 7075-T6 and galvannealed dual phase 980 steel was achieved by friction bit joining (FBJ) and weld-bonding (FBJ + adhesive) processes. Accelerated laboratory-scale corrosion tests were performed on both FBJ only and weld-bonded specimens to study joint strength under a corrosive environment. Static lap shear tests showed that both FBJ only and weld-bonded cases generally retained more than 80% of the joint strength of non-corroded specimens at the end of corrosion testing. The presence of Zn/Fe coating on the steel substrate resulted in improved corrosion resistance for FBJ specimens, compared to joints produced with bare steel. Finally,more » an optical microscopy was used for cross-sectional analysis of corroded specimens. Some corrosion on the joining bit was observed near the bit head. However, the joining bit was still intact on the steel substrate, indicating that the primary bond was sound.« less
Wax removal for accelerated cotton scouring with alkaline pectinase.
Agrawal, Pramod B; Nierstrasz, Vincent A; Klug-Santner, Barbara G; Gübitz, Georg M; Lenting, Herman B M; Warmoeskerken, Marijn M C G
2007-03-01
A rational approach has been applied to design a new environmentally acceptable and industrially viable enzymatic scouring process. Owing to the substrate specificity, the selection of enzymes depends on the structure and composition of the substrate, i.e. cotton fibre. The structure and composition of the outer layers of cotton fibre has been established on the basis of thorough literature study, which identifies wax and pectin removal to be the key steps for successful scouring process. Three main issues are discussed here, i.e. benchmarking of the existing alkaline scouring process, an evaluation of several selected acidic and alkaline pectinases for scouring, and the effect of wax removal treatment on pectinase performance. It has been found that the pectinolytic capability of alkaline pectinases on cotton pectin is nearly 75% higher than that of acidic pectinases. It is concluded that an efficient wax removal prior to pectinase treatment indeed results in improved performance in terms of hydrophilicity and pectin removal. To evaluate the hydrophilicity, the structural contact angle (theta) was measured using an auto-porosimeter.
Predator-prey pursuit-evasion games in structurally complex environments.
Morice, Sylvie; Pincebourde, Sylvain; Darboux, Frédéric; Kaiser, Wilfried; Casas, Jérôme
2013-11-01
Pursuit and evasion behaviors in many predator-prey encounters occur in a geometrically structured environment. The physical structures in the environment impose strong constraints on the perception and behavioral responses of both antagonists. Nevertheless, no experimental or theoretical study has tackled the issue of quantifying the role of the habitat's architecture on the joint trajectories during a predator-prey encounter. In this study, we report the influence of microtopography of forest leaf litter on the pursuit-evasion trajectories of wolf spiders Pardosa sp. attacking the wood cricket Nemobius sylvestris. Fourteen intact leaf litter samples of 1 m × 0.5 m were extracted from an oak-beech forest floor in summer and winter, with later samples having the most recently fallen leaves. Elevation was mapped at a spatial resolution of 0.5 mm using a laser scanner. Litter structuring patterns were identified by height transects and experimental semi-variograms. Detailed analysis of all visible leaf-fragments of one sample enabled us to relate the observed statistical patterns to the underlying geometry of individual elements. Video recording of pursuit-evasion sequences in arenas with flat paper or leaf litter enabled us to estimate attack and fleeing distances as a function of substrate. The compaction index, the length of contiguous flat surfaces, and the experimental variograms showed that the leaf litter was smoother in summer than in winter. Thus, weathering as well as biotic activities compacted and flattened the litter over time. We found good agreement between the size of the structuring unit of leaf litter and the distance over which attack and escape behaviors both were initiated (both ∼3 cm). There was a four-fold topographical effect on pursuit-escape sequences; compared with a flat surface, leaf litter (1) greatly reduced the likelihood of launching a pursuit, (2) reduced pursuit and escape distances by half, (3) put prey and predator on par in terms of pursuit and escape distances, and (4) reduced the likelihood of secondary pursuits, after initial escape of the prey, to nearly zero. Thus, geometry of the habitat strongly modulates the rules of pursuit-evasion in predator-prey interactions in the wild.
NASA Astrophysics Data System (ADS)
Hanson, P. J.; Chanton, J.; Iversen, C. M.; McFarlane, K. J.; Tfaily, M. M.; Xu, X.
2013-12-01
An ombrotrophic Picea-Sphagnum peatland located on the Marcell Experimental Forest in northern Minnesota is being prepared for experimental manipulations to evaluate carbon cycle responses to warming and elevated CO2. Pretreatment characterization of the peatland, which has a mean peat depth of ~3 meters, showed that belowground carbon (C) stocks were greater than 2200 MgC ha-1. This is easily 10× greater than the combined above- and belowground C stocks found in typical eastern deciduous forests. Carbon has accumulated under saturated, cool to cold conditions since the last glaciers receded some 10,000 years ago. Mean bulk-14C assessments show a modern C signature and decadal turnover time for peat in the raised hummock topography, as well as in the oxic acrotelm layer which extends to a depth of 30-cm below hollow microtopography. Deeper peat layers (below 30-cm depth) have C ages ranging from 1000- to 2000 years for relatively shallow layers, to between 7000 and 8000 years at 2.5 m depth. In contrast, the 14C signatures of dissolved inorganic C (DIC) and dissolved organic C (DOC), which reflect the substrates consumed by microbes, were relatively modern, even at depths of up to 2 meters. The modern 14C signatures indicate that microbial respiration at depth is fueled by surface inputs of DOC. Furthermore, the contrast in δ14C between solid-phase peat and DOC at deeper peat depths will allow researchers to quantify the effects of warming and elevated CO2 on the fate of peat stored in this ombrotrophic peatland for millennia. It is unclear whether C accumulation in peatlands will continue under warmer conditions associated with atmospheric and climatic change. Modeled projections for net peat C turnover throughout the peat profile will be discussed in the context of the planned warming manipulations. Initial hypotheses suggest that peat accumulation may be sustained for low levels of warming, but shift to a pattern of net carbon release as both CO2 and CH4 for warmer future climates.
Treatment effects on performance of N-fixing lichens in disturbed crusts of the Colorado Plateau
Davidson, Diane W.; Bowker, Mathew; George, Dylan; Phillips, Susan L.; Belnap, Jayne
2002-01-01
Biological soil crusts arrest soil erosion and supply nitrogen to arid ecosystems. To understand their recovery from disturbance, we studied performances of Collema spp. lichens relative to four experimental treatments plus microtopography of soil pedicels, oriented north-northwest to south-southeast in crusts. At sites in Needles (NDLS) and Island in the Sky (ISKY) districts of Canyonlands National Park, lichens were transplanted to NNW, SSE, ENE, WSW, and TOP pedicel faces and exposed to a full-factorial, randomized block experiment with four treatments: nutrient addition (P and K), soil stabilization with polyacrylamide resin (PAM), added cyanobacterial fiber, and biweekly watering.After 14.5 mo (NDLS) and 24 mo (ISKY), both visual rankings of lichen condition and measures of chlorophyll fluorescence were generally higher at ISKY than on more fertile but less stable soils at NDLS. On ENE and NNW pedicel faces, both these values and nitrogenase activity (NDLS only) exceeded corresponding values on WSW and SSE faces. Treatment effects were site specific and largely negative at NDLS; both nutrient and cyanobacterial addition led to poorer lichen condition, and added nutrients led to reduced fluorescence. Responses to nutrients may have been mediated partly by disturbance of unstable soils and by competition with cyanobacteria.In a separate experiment investigating recruitment responses to adding fungal spores or Nostoc cells, rates of Collema establishment responded significantly to the former but not the latter. Low establishment overall suggests that natural recruitment may occur mainly from iscidia or thallus fragments, not spores.Measured simultaneously on artificial soil pedicels at NDLS and ISKY, both deposition and erosion declined at NDLS across the four pedicel microaspects as: WSW > SSE > NNW > ENE (or ENE > NNW), during fall and spring trials. Patterns were similar at ISKY, but WSW ≈ SSE for spring deposition, and deposition did not differ by microaspect in fall. Greater deposition at ISKY, despite higher abundance of cyanobacteria, may be explained by stronger wind velocities.Together, microtopographic differences in erosion, microclimate, and nutrient regimes help explain variable lichen performance, but microtopography influenced lichen performance more consistently than did any treatment. Demonstrated effects of pedicel development in crust recovery concur with prior surveys showing greatest microbial biomass and/or cover on ENE and NNW exposures at various spatial scales.
TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium
Iwasa, Fuminori; Tsukimura, Naoki; Sugita, Yoshihiko; Kanuru, Rajita Kodali; Kubo, Katsutoshi; Hasnain, Hafiz; Att, Wael; Ogawa, Takahiro
2011-01-01
Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO2 nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow–derived osteoblasts were cultured on fresh disks (immediately after UV treatment), 3-day-old disks (disks stored for 3 days after UV treatment), and 7-day- old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%–50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano- hybrid surfaces became hydrorepellent, while the micropit surfaces remained hydrophilic. The sustained bioactivity levels of the micro-nano-hybrid surfaces were nullified by treating these surfaces with Cl−anions. A thin TiO2 coating on the micropit surface without the formation of nanonodules did not result in the prevention or alleviation of the time-dependent decrease in biological activity. In conclusion, the micro-nano-hybrid titanium surfaces may slow the rate of time-dependent degradation of titanium bioactivity after UV photofunctionalization compared with titanium surfaces with microtopography alone. This antibiological aging effect was largely regulated by its sustained electropositivity uniquely conferred in TiO2 nanonodules, and was independent of the degree of hydrophilicity. These results demonstrate the potential usefulness of these hybrid surfaces to effectively utilize the benefits of UV photofunctionalization and provide a model to explore the mechanisms underlying antibiological aging properties. PMID:21760728
TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium.
Iwasa, Fuminori; Tsukimura, Naoki; Sugita, Yoshihiko; Kanuru, Rajita Kodali; Kubo, Katsutoshi; Hasnain, Hafiz; Att, Wael; Ogawa, Takahiro
2011-01-01
Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO(2) nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow-derived osteoblasts were cultured on fresh disks (immediately after UV treatment), 3-day-old disks (disks stored for 3 days after UV treatment), and 7-day- old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%-50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano- hybrid surfaces became hydrorepellent, while the micropit surfaces remained hydrophilic. The sustained bioactivity levels of the micro-nano-hybrid surfaces were nullified by treating these surfaces with Cl(-)anions. A thin TiO(2) coating on the micropit surface without the formation of nanonodules did not result in the prevention or alleviation of the time-dependent decrease in biological activity. In conclusion, the micro-nano-hybrid titanium surfaces may slow the rate of time-dependent degradation of titanium bioactivity after UV photofunctionalization compared with titanium surfaces with microtopography alone. This antibiological aging effect was largely regulated by its sustained electropositivity uniquely conferred in TiO(2) nanonodules, and was independent of the degree of hydrophilicity. These results demonstrate the potential usefulness of these hybrid surfaces to effectively utilize the benefits of UV photofunctionalization and provide a model to explore the mechanisms underlying antibiological aging properties.
NASA Astrophysics Data System (ADS)
Deák, Balázs; Valkó, Orsolya; Török, Péter; Tóthmérész, Béla
2017-04-01
Land use changes of past centuries resulted in a considerable loss and isolation of grassland habitats worldwide which also led to a serious loss in ecosystem functions. In intensively used agricultural landscapes remnants of natural flora persisted only in small habitat islands embedded in a hostile matrix, which are inadequate for arable farming or construction. In the steppe zone of Eurasia burial mounds, so-called kurgans, have a great potential to preserve the natural flora and habitats and act as local biodiversity hotspots. Their special micro-topography and historical origin makes kurgans characteristic landscape elements of the steppe region. These features also result in a specific soil development and micro-climate, which makes kurgans especially adequate habitats for several steppe specialist plant species. Furthermore, they are proper objects for studying the effects of present and past human disturbances on the vegetation of semi-natural habitats. Exploration of the main factors driving biodiversity in isolated habitat fragments is crucial for understanding the ecological processes shaping their vegetation and for designing effective strategies for their protection. We surveyed the vegetation of 44 isolated kurgans in East-Hungary and studied the effects of habitat area, slope, recent disturbance, past destruction and the level of woody encroachment on the species richness and cover of grassland specialist and weedy species. We used model selection techniques and linear models for testing relevant factors affecting specialist species in grassland fragments. We found that the biodiversity conservation potential of kurgans is supported by their steep slopes, which provide adequate habitat conditions and micro-climate for steppic specialist plant species. By harbouring several grassland specialist species, kurgans have a great potential for preserving the natural species pool of even considerably altered agricultural landscapes, and can mitigate the negative consequences of landscape-level human disturbances. Our results suggest that specialist species are threatened both by recent disturbances and encroachment of alien woody species, especially black locust. Factors supporting specialist species suppressed weedy species by providing unfavourable environmental conditions and putting them at a competitive disadvantage. We identified that woody encroachment and current disturbances affect the vast majority of kurgans, posing a serious threat to grassland specialist species. Thus, there is an urgent need to integrate active conservation measures into the current passive protection of kurgans.
Inland notches micromorphology
NASA Astrophysics Data System (ADS)
Brook, Anna; Ben-Binyamin, Atzmon; Shtober-Zisu, Nurit
2017-04-01
Inland notches are well known phenomenon in Israel and can be found mostly along the mountainous backbone, developed in hard limestone or dolomite rocks within the Mediterranean climate zone and up to the desert fringe. LiDAR technology presents an opportunity to study the fine scale rock surface within the notch and its texture patterns. De-trending of the LiDAR reconstructed DEM to a local trend, surface roughness, was achieved by fitting a normalized surface to all measured ground points within the roughness neighborhood. Micro-topography plays an important role for modelling geomorphology dynamics, resulting in improved estimates for micro stream lines network and topographic erosion as well as mineral accumulation or deposition. Clearly, dissolution occurs whenever rock and solvent meet; thus water and moisture's crucial role in the decay of carbonate rocks results in texture and roughness variability. Study aims is to generate high resolution normalized DEM models using a terrestrial LiDAR, redefining the texture and roughness within the notch while assessing weathering processes caused by water. Plan curvature is the second derivative of slope taken perpendicular to its direction. It influences convergence and divergence of flow and it emphasizes the ridges and valleys across the surface. Concaved classified areas were tested against all planar curvature areas to distinguish them as unique areas based on their texture co-occurrence measures (GLCM). Overall negative curvature pixels show poor separability, in both TD and JM separation tests, while classes of curvature degree describe a positive trend showing medium and high concavity as unique areas. Study aims to link classified areas as the basic micro infrastructure for water flow, potential runoff flow and further accumulation of minerals. On the other hand, positive values of Plan curvature present the convexity of rock surface to imply diverging flow, thus describing the watershed line within the micro-topography. GLCM texture measure map distinct areas within the notch. Middle section of the notch has uniform texture neighborhood with relatively low mean elevation values (high values for homogeneity and energy). Bottom cavity of notch reveals a more chaotic texture, highlighting the spatial disorder with relatively high mean values. Entropy calculates how random the roughness values are, and as such, high values of this measure, at the cavity's bottom, suggest a potentially rapid erosion or disposition dynamics.
NASA Astrophysics Data System (ADS)
Brach, Marcin; Chormański, Jarosław
2014-05-01
The exact determination of water storage capacity in river valley is an important issue for hydrologists, ecologist and flood modellers. In case of natural river valley, the dense and complexity vegetation of the natural ecosystems can influence the proper identification of the water storage. Methods considered to be sufficient in other cases (urbanized, agricultural) may not produce correct results. Sedge communities in natural river valleys form characteristic tussocks, built from the species roots, other organic material and silt or mud. They are formed due to partial flooding during the inundation, so the plants can survive in hard, anaerobic conditions. They can growth even up to 0.5 meters, which is not so visible due to very dense vegetation in the valleys. These tussocks form a microtopography or a river valley. Currently, the most commonly used technology to register the terrain topography is an Airborne Laser Scanning (ALS), but in the case of the tussocks and the dense vegetation it generates high errors on elevation in the areas of the sedges (Carex appropinquata). This study concerns the Upper Biebrza Valley which is located in the northeastern Poland. For purpose of our work we used Terrestrial Laser Scanner (TLS) technology to determine microtopography of selected fields. Before measurements, the green part of the sedge was cut in selected measurements fields. It make possible to register only tussocks shape. Next, step was collection of the airborne ALS data of the valley with density of 8 points/sq m. The experimental field was divided on two sub-fields: one was cut and scanned using TLS before ALS collection, while the second after. Data collected as ALS and the TLS were then compared. The accuracy of the ALS data depends on the land cover of an area, while TLS accuracy is around 2 millimeters (when georeferenced it depends on the accuracy of reference points - in our case it was made using GPS RTK which gave us accuracy of few centimeters). The analysis shown that differences between ALS measurements and TLS on leaf free area is on average of 5 centimeters, while on areas which were not mowed it grows up to 0,5 m. Thanks to this studies we were able to determine water storage possibilities of valley while considering the tussocks shape.
Thin film coating process using an inductively coupled plasma
Kniseley, Richard N.; Schmidt, Frederick A.; Merkle, Brian D.
1990-01-30
Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.
Discovery of an α-Amino C–H Arylation Reaction Using the Strategy of Accelerated Serendipity
McNally, Andrew; Prier, Christopher K.; MacMillan, David W. C.
2012-01-01
Serendipity has long been a welcome yet elusive phenomenon in the advancement of chemistry. We sought to exploit serendipity as a means of rapidly identifying unanticipated chemical transformations. By using a high-throughput, automated workflow and evaluating a large number of random reactions, we have discovered a photoredox-catalyzed C–H arylation reaction for the construction of benzylic amines, an important structural motif within pharmaceutical compounds that is not readily accessed via simple substrates. The mechanism directly couples tertiary amines with cyanoaromatics by using mild and operationally trivial conditions. PMID:22116882
Investigation of test methods, material properties and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1985-01-01
The historical development of ethylene vinyl acetate (EVA) is presented, including the functional requirements, polymer selection, curing, stabilization, production and module processing. The construction and use of a new method for the accelerated aging of polymers is detailed. The method more closely resembles the conditions that may be encountered in actual module field exposure and additionally may permit service life to be predicted accurately. The use of hardboard as a low cost candidate substrate material is studied. The performance of surface antisoiling treatments useful for imparting a self cleaning property to modules is updated.
NASA Astrophysics Data System (ADS)
Timár, G.; Székely, B.; Zámolyi, A.; Houseman, G.; Stuart, G.; Grasemann, B.; Dombrádi, E.; Galsa, A.; Spahic, D.; Draganits, E.
2009-04-01
The area around the Lake Neudsiedlersee (Lake Fertő in Hungarian) was analysed to understand its neotectonic activity and gather possible explanations of the features of the topography and microtopography. The area consists of two, considerably different parts in terms of topography and geomorphology. The western and north-western shores of the lake are connected to the Leitha Mts., a low ridge (its relative height is about 300 meters) that connects the Alpine orogen in the SW with the Carpathians to NE bounded by active strike-slip faulting. In this part of the area, several outcrops were investigated, of which the one at St. Margarethen was systematically measured by multielectric sounding and GPR, and an other one at St. Georgen, north of Eisenstadt, was used for auxiliary data gathering. The eastern and southern shores, belonging to the Pannonian Basin, are mostly flatlands, parts of the Little Hungarian Plain with extremely low relief and no real natural drainage. The small variations of the surface altitude (less than ten meters), referred to as microtopography here, are due to elongated ridges and extremely shallow perennial or temporal playa lakes. In order to understand better the subsurface structure, a multimethod approach has been applied. Geophysical survey methods (vertical electric sounding, land seismics, gravity measurements) were carried out to describe the layer structure of this area, especially a zone, north of Illmitz, connected to interesting elements of microtopography. The identification of microtopographic features were carried out using high resolution digital elevation datasets, derived from Aerial Laser Scannings (ALS). Seismic measurements were carried out also in the lake itself to understand the structural geological settings of the lake bottom to the depth of ca. 50 meters. All of these measurements were made in the framework of a common student fieldwork of the Eötvös University, the University of Leeds and the University of Vienna. Fault lines that can be interpreted active in neotectonic point of view were found below the lake by water seismic. These faults displaced young sediments as well. Similar patterns were found at the outcrop of St. Margarethen near to the western shore of the lake and were followed underground by the geophysics. However, in the eastern shore the geophysics showed no sign of active tectonics in the upper fifty meters of the sediment. Changes in physical characteristics (resistivity, wave propagation velocity) were mapped in 3D and were connected to the ALS microtopographic features. The material of the small elevated zones occurred to be gravel and coarse sand and the basement of this layer was a low-resistivity clay. Previously these structures were interpreted as large-scale deformations bands; this solution is still feasible in the light of the results. A further possible interpretation of this structure is that the topographic undulations are connected to the former alluvial fan of the Paleo-Danube River, sedimented from north. ELTE-Leeds-UniWien Workgroup team: M. Al-Dakheel, H. Al-Nasser, M. Al-Shaks, M. Bolton, D. Cornwall, A. Deák, S. Devlin, M. Diel, Á. Domján, P. Dövényi, J. Elgenes, U. Exner, N. Foks, Z. Hámori, M. Hashim, F. Horváth, L. Jackson, T. Katona, K. Kelevitz, A. Kelly, E. Király, M. Kóbor, G. Kocsis, A. Kovács, G. Kovács, I. Kudó, P. Lőrinczy, E. Marinov, J. Mound, L. Pál, D. Palotás, T. Roome, Zs. Sári, G. Surányi, É. Szántó, V. Szabó, G. Taller, A. Weedon, V. Werovszky
Korff, Wyatt L; McHenry, Matthew J
2011-01-01
Running performance depends on a mechanical interaction between the feet of an animal and the substrate. This interaction may differ between two species of sand lizard from the Mojave Desert that have different locomotor morphologies and habitat distributions. Uma scorparia possesses toe fringes and inhabits dunes, whereas the closely related Callisaurus draconoides lacks fringes and is found on dune and wash habitats. The present study evaluated whether these distribution patterns are related to differential locomotor performance on the fine sand of the dunes and the course sand of the wash habitat. We measured the kinematics of sprinting and characterized differences in grain size distribution and surface strength of the soil in both habitats. Although wash sand had a surface strength (15.4±6.2 kPa) that was more than three times that of dune sand (4.7±2.1 kPa), both species ran with similar sprinting performance on the two types of soil. The broadly distributed C. draconoides ran with a slightly (22%) faster maximum speed (2.2±0.2 m s(-1)) than the dune-dwelling U. scorparia (1.8±0.2 m s(-1)) on dune sand, but not on wash sand. Furthermore, there were no significant differences in maximum acceleration or the time to attain maximum speed between species or between substrates. These results suggest that differences in habitat distribution between these species are not related to locomotor performance and that sprinting ability is dominated neither by environmental differences in substrate nor the presence of toe fringes.
Iskandar, Maria Emil; Aslani, Arash; Tian, Qiaomu
2016-01-01
This article reports the deposition and characterization of nanostructured calcium phosphate (nCaP) on magnesium–yttrium alloy substrates and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The nCaP coatings were deposited on magnesium and magnesium–yttrium alloy substrates using proprietary transonic particle acceleration process for the dual purposes of modulating substrate degradation and BMSC adhesion. Surface morphology and feature size were analyzed using scanning electron microscopy and quantitative image analysis tools. Surface elemental compositions and phases were analyzed using energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. The deposited nCaP coatings showed a homogeneous particulate surface with the dominant feature size of 200–500 nm in the long axis and 100–300 nm in the short axis, and a Ca/P atomic ratio of 1.5–1.6. Hydroxyapatite was the major phase identified in the nCaP coatings. The modulatory effects of nCaP coatings on the sample degradation and BMSC behaviors were dependent on the substrate composition and surface conditions. The direct culture of BMSCs in vitro indicated that multiple factors, including surface composition and topography, and the degradation-induced changes in media composition, influenced cell adhesion directly on the sample surface, and indirect adhesion surrounding the sample in the same culture. The alkaline pH, the indicator of Mg degradation, played a role in BMSC adhesion and morphology, but not the sole factor. Additional studies are necessary to elucidate BMSC responses to each contributing factor. PMID:25917827
Hovey, Raymond; Lentes, Sabine; Ehrenreich, Armin; Salmon, Kirsty; Saba, Karla; Gottschalk, Gerhard; Gunsalus, Robert P; Deppenmeier, Uwe
2005-05-01
Methansarcina mazei Gö1 DNA arrays were constructed and used to evaluate the genomic expression patterns of cells grown on either of two alternative methanogenic substrates, acetate or methanol, as sole carbon and energy source. Analysis of differential transcription across the genome revealed two functionally grouped sets of genes that parallel the central biochemical pathways in, and reflect many known features of, acetate and methanol metabolism. These include the acetate-induced genes encoding acetate activating enzymes, acetyl-CoA synthase/CO dehydrogenase, and carbonic anhydrase. Interestingly, additional genes expressed at significantly higher levels during growth on acetate included two energy-conserving complexes (the Ech hydrogenase, and the A1A0-type ATP synthase). Many previously unknown features included the induction by acetate of genes coding for ferredoxins and flavoproteins, an aldehyde:ferredoxin oxidoreductase, enzymes for the synthesis of aromatic amino acids, and components of iron, cobalt and oligopeptide uptake systems. In contrast, methanol-grown cells exhibited elevated expression of genes assigned to the methylotrophic pathway of methanogenesis. Expression of genes for components of the translation apparatus was also elevated in cells grown in the methanol medium relative to acetate, and was correlated with the faster growth rate observed on the former substrate. These experiments provide the first comprehensive insight into substrate-dependent gene expression in a methanogenic archaeon. This genome-wide approach, coupled with the complementary molecular and biochemical tools, should greatly accelerate the exploration of Methanosarcina cell physiology, given the present modest level of our knowledge of these large archaeal genomes.
Karahan, H Enis; Birer, Özgür; Karakuş, Kerem; Yıldırım, Cansu
2016-07-01
Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD. Copyright © 2016 Elsevier B.V. All rights reserved.
Iskandar, Maria Emil; Aslani, Arash; Tian, Qiaomu; Liu, Huinan
2015-05-01
This article reports the deposition and characterization of nanostructured calcium phosphate (nCaP) on magnesium-yttrium alloy substrates and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The nCaP coatings were deposited on magnesium and magnesium-yttrium alloy substrates using proprietary transonic particle acceleration process for the dual purposes of modulating substrate degradation and BMSC adhesion. Surface morphology and feature size were analyzed using scanning electron microscopy and quantitative image analysis tools. Surface elemental compositions and phases were analyzed using energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. The deposited nCaP coatings showed a homogeneous particulate surface with the dominant feature size of 200-500 nm in the long axis and 100-300 nm in the short axis, and a Ca/P atomic ratio of 1.5-1.6. Hydroxyapatite was the major phase identified in the nCaP coatings. The modulatory effects of nCaP coatings on the sample degradation and BMSC behaviors were dependent on the substrate composition and surface conditions. The direct culture of BMSCs in vitro indicated that multiple factors, including surface composition and topography, and the degradation-induced changes in media composition, influenced cell adhesion directly on the sample surface, and indirect adhesion surrounding the sample in the same culture. The alkaline pH, the indicator of Mg degradation, played a role in BMSC adhesion and morphology, but not the sole factor. Additional studies are necessary to elucidate BMSC responses to each contributing factor.
Divergence of seafloor elevation and sea level rise in coral reef ecosystems
Yates, Kimberly K.; Zawada, David G.; Smiley, Nathan A.; Tiling-Range, Ginger
2017-01-01
Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves, and erosion. Projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. Here, we provide a comprehensive assessment of the combined effect of all of the processes affecting seafloor accretion and erosion by measuring changes in seafloor elevation and volume for five coral reef ecosystems in the Atlantic, Pacific, and Caribbean over the last several decades. Regional-scale mean elevation and volume losses were observed at all five study sites and in 77 % of the 60 individual habitats that we examined across all study sites. Mean seafloor elevation losses for whole coral reef ecosystems in our study ranged from −0.09 to −0.8 m, corresponding to net volume losses ranging from 3.4 × 106 to 80.5 × 106 m3 for all study sites. Erosion of both coral-dominated substrate and non-coral substrate suggests that the current rate of carbonate production is no longer sufficient to support net accretion of coral reefs or adjacent habitats. We show that regional-scale loss of seafloor elevation and volume has accelerated the rate of relative sea level rise in these regions. Current water depths have increased to levels not predicted until near the year 2100, placing these ecosystems and nearby communities at elevated and accelerating risk to coastal hazards. Our results set a new baseline for projecting future impacts to coastal communities resulting from degradation of coral reef systems and associated losses of natural and socioeconomic resources.
Divergence of seafloor elevation and sea level rise in coral reef ecosystems
NASA Astrophysics Data System (ADS)
Yates, Kimberly K.; Zawada, David G.; Smiley, Nathan A.; Tiling-Range, Ginger
2017-04-01
Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves, and erosion. Projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. Here, we provide a comprehensive assessment of the combined effect of all of the processes affecting seafloor accretion and erosion by measuring changes in seafloor elevation and volume for five coral reef ecosystems in the Atlantic, Pacific, and Caribbean over the last several decades. Regional-scale mean elevation and volume losses were observed at all five study sites and in 77 % of the 60 individual habitats that we examined across all study sites. Mean seafloor elevation losses for whole coral reef ecosystems in our study ranged from -0.09 to -0.8 m, corresponding to net volume losses ranging from 3.4 × 106 to 80.5 × 106 m3 for all study sites. Erosion of both coral-dominated substrate and non-coral substrate suggests that the current rate of carbonate production is no longer sufficient to support net accretion of coral reefs or adjacent habitats. We show that regional-scale loss of seafloor elevation and volume has accelerated the rate of relative sea level rise in these regions. Current water depths have increased to levels not predicted until near the year 2100, placing these ecosystems and nearby communities at elevated and accelerating risk to coastal hazards. Our results set a new baseline for projecting future impacts to coastal communities resulting from degradation of coral reef systems and associated losses of natural and socioeconomic resources.
Sun, Shishuo; Tan, Pengcheng; Huang, Xiaoheng; Zhang, Wei; Kong, Chen; Ren, Fangfang; Su, Xiong
2018-02-16
Both the magnitude and duration of insulin signaling are important in executing its cellular functions. Insulin-induced degradation of insulin receptor substrate 1 (IRS1) represents a key negative feedback loop that restricts insulin signaling. Moreover, high concentrations of fatty acids (FAs) and glucose involved in the etiology of obesity-associated insulin resistance also contribute to the regulation of IRS1 degradation. The scavenger receptor CD36 binds many lipid ligands, and its contribution to insulin resistance has been extensively studied, but the exact regulation of insulin sensitivity by CD36 is highly controversial. Herein, we found that CD36 knockdown in C2C12 myotubes accelerated insulin-stimulated Akt activation, but the activated signaling was sustained for a much shorter period of time as compared with WT cells, leading to exacerbated insulin-induced insulin resistance. This was likely due to enhanced insulin-induced IRS1 degradation after CD36 knockdown. Overexpression of WT CD36, but not a ubiquitination-defective CD36 mutant, delayed IRS1 degradation. We also found that CD36 functioned through ubiquitination-dependent binding to IRS1 and inhibiting its interaction with cullin 7, a key component of the multisubunit cullin-RING E3 ubiquitin ligase complex. Moreover, dissociation of the Src family kinase Fyn from CD36 by free FAs or Fyn knockdown/inhibition accelerated insulin-induced IRS1 degradation, likely due to disrupted IRS1 interaction with CD36 and thus enhanced binding to cullin 7. In summary, we identified a CD36-dependent FA-sensing pathway that plays an important role in negative feedback regulation of insulin activation and may open up strategies for preventing or managing type 2 diabetes mellitus. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Bonke, Erik; Siebels, Ilka; Zwicker, Klaus; Dröse, Stefan
2016-10-01
Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn 2+ ions induce hydrogen peroxide (H 2 O 2 ) production from the ubiquinone binding site of mitochondrial complex II (II Q ) and generally enhance H 2 O 2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H 2 O 2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn 2+ and different respiratory chain inhibitors led to a dynamically increasing H 2 O 2 emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn 2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca 2+ increased the rate of H 2 O 2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H 2 O 2 emission: stimulating its production from distinct sites (e.g. site II Q ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xinjin; Meng, Qiang; Liu, Qi
2013-09-01
We investigated the effects of JBP485 (an anti-inflammatory dipeptide and a substrate of OAT) on regulation of the expression and function of renal Oat1 and Oat3, which can accelerate the excretion of accumulated uremic toxins (e.g. indoxyl sulfate) in the kidney to improve gentamicin-induced ARF in rats. JBP485 caused a significant decrease in the accumulation of endogenous substances (creatinine, blood urea nitrogen and indoxyl sulfate) in vivo, an increase in the excretion of exogenous compounds (lisinopril and inulin) into urine, and up-regulation of the expressions of renal Oat1 and Oat3 in the kidney tissues and slices via substrate induction. Tomore » determine the effect of JBP485 on the accelerated excretion of uremic toxins mediated by Oat1 and Oat3, the mRNA and protein expression levels of renal basolateral Oats were assessed by quantitative real-time PCR, western blot, immunohistochemical analysis and an immunofluorescence method. Gentamicin down-regulated the expression of Oats mRNA and protein in rat kidney, and these effects were reversed after administration of JBP485. In addition, JBP485 caused a significant decrease in MPO and MDA levels in the kidney, and improved the pathological condition of rat kidney. These results indicated that JBP485 improved acute renal failure by increasing the expression and function of Oat1 and Oat3, and by decreasing overoxidation of the kidney in gentamicin-induced ARF rats. - Highlights: • JBP485 could up-regulate function and expression of Oat1 and Oat3 in kidney. • Effects of JBP485 on ARF are mediated by stimulating excretion of uremic toxins. • JBP485 protected against gentamicin-induced ARF by decreasing MPO and MDA.« less
OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity.
Huang, Jiexue; Cai, Maohong; Long, Qizhang; Liu, Linglong; Lin, Qiuyun; Jiang, Ling; Chen, Saihua; Wan, Jianmin
2014-08-01
Rice production and seed storage are confronted with grain deterioration and loss of seed viability. Some members of the lipoxygenase (LOX) family function in degradation of storage lipids during the seed germination, but little is known about their influence on seed longevity during storage. We characterized the role of rice OsLOX2 gene in seed germination and longevity via over-expression and knock-down approaches. Abundant expression of OsLOX2 was detected in panicles, roots, and stems, but not in leaves. Moreover, OsLOX2 was highly induced during germination. OsLOX2 protein, located in the cytoplasm, showed a wide range of temperature adaptation (20-50 °C) and a substrate preference to linoleic acid. Lines over-expressing OsLOX2 showed accelerated seed germination under normal condition and lower seed viability after accelerated aging. RNA interference (RNAi) of OsLOX2 caused delayed germination and enhanced seed longevity. RNAi lines with strongly repressed OsLOX2 activity completely lost the capability of germination after accelerated aging. More lipid hydroperoxide were found in OE15 than the control, but less in RNAi lines than in the WT Nipponbare. Therefore, OsLOX2 acts in opposite directions during seed germination and longevity during storage. Appropriate repression of the OsLOX2 gene may delay the aging process during the storage without compromising germination under normal conditions.
Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pluth, Michael; Bergman, Robert; Raymond, Kenneth
2009-04-10
Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expandingmore » to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization of protonated guests was translated into chemical catalysis by taking advantage of the potential for accelerating reactions that take place via positively charged transition states, which could be potentially stabilized by encapsulation. Orthoformates, generally stable in neutral or basic solution, were found to be suitable substrates for catalytic hydrolysis by the assembly. Orthoformates small enough to undergo encapsulation were readily hydrolyzed by the assembly in basic solution, with rate acceleration factors up to 3900 compared with those of the corresponding uncatalyzed reactions. Furthering the analogy to enzymes that obey Michaelis-Menten kinetics, we observed competitive inhibition with the inhibitor NPr{sub 4}{sup +}, thereby confirming that the interior cavity of the assembly was the active site for catalysis. Mechanistic studies revealed that the assembly is required for catalysis and that the rate-limiting step of the reaction involves proton transfer from hydronium to the encapsulated substrate. Encapsulation in the assembly changes the orthoformate hydrolysis from an A-1 mechanism (in which decomposition of the protonated substrate is the rate-limiting step) to an A-S{sub E}2 mechanism (in which proton transfer is the rate-limiting step). The study of hydrolysis in the assembly was next extended to acetals, which were also catalytically hydrolyzed by the assembly in basic solution. Acetal hydrolysis changed from the A-1 mechanism in solution to an A-2 mechanism inside the assembly, where attack of water on the protonated substrate is rate limiting. This work provides rare examples of assembly-catalyzed reactions that proceed with substantial rate accelerations despite the absence of functional groups in the cavity and with mechanisms fully elucidated by quantitative kinetic studies.« less
NASA Astrophysics Data System (ADS)
Lázár, István; Kalmár, József; Peter, Anca; Szilágyi, Anett; Győri, Enikő; Ditrói, Tamás; Fábián, István
2015-11-01
Titania-silica composite aerogels with 16-29% Ti-content by the mass were synthesized by the sol-gel method from different Ti-precursors, and calcined at 500 °C. These aerogels are highly amorphous as no crystalline TiO2 phase can be detected in them by X-ray diffraction methods, and show the dominating presence of either mesopores or macropores. The incorporation of Ti into the silica structure is shown by the appearance of characteristic IR transitions of Sisbnd Osbnd Ti vibrations. The characteristic band-gap energies of the different aerogels are estimated to be between 3.6 and 3.9 eV from UV reflection spectra. Band-gap energy decreases with decreasing pore-size. When suspended in solution, even these highly amorphous aerogels accelerate the photodegradation of salicylic acid and methylene blue compared to simple photolysis. Kinetic experiments were conducted under illumination, and also in the dark to study the adsorption of the substrates onto the suspended aerogels. We assume that the fast in situ adsorption of the organic substrates mask the suspended aerogel particles from UV photons, which reduces the rate of photocatalysis. We managed to mathematically separate the parallel processes of photocatalysis and adsorption, and develop a simple kinetic model to describe the reaction system.
NASA Astrophysics Data System (ADS)
Tang, Chien-Jen; Ye, Jia-Ming; Yang, Yueh-Ting; He, Ju-Liang
2016-05-01
Electrochromic devices (ECDs) have been applied in smart windows to control the transmission of sunlight in green buildings, saving up to 40-50% electricity consumption and ultimately reducing carbon dioxide emissions. However, the high manufacturing costs and difficulty of transportation of conventional massive large area ECDs has limited widespread applications. A unique design replacing the glass substrate commonly used in the ECD windows with inexpensive, light-weight and flexible polymeric substrate materials would accelerate EC adoption allowing them to be supplemented for regular windows without altering window construction. In this study, an ITO/WO3/Nb2O5/NiVOχ/ITO all-solid-state monolithic ECD with an effective area of 24 cm × 18 cm is successfully integrated on a PET substrate by using magnetron sputter deposition. The electrochromic performance and bending durability of the resultant material are also investigated. The experimental results indicate that the ultimate response times for the prepared ECD is 6 s for coloring at an applied voltage of -3 V and 5 s for bleaching at an applied voltage of +3 V, respectively. The optical transmittances for the bleached and colored state at a wavelength of 633 nm are 53% and 11%, respectively. The prepared ECD can sustain over 8000 repeated coloring and bleaching cycles, as well as tolerate a bending radius of curvature of 7.5 cm.