Abdurrachim, Desiree; Nabben, Miranda; Hoerr, Verena; Kuhlmann, Michael T; Bovenkamp, Philipp; Ciapaite, Jolita; Geraets, Ilvy M E; Coumans, Will; Luiken, Joost J F P; Glatz, Jan F C; Schäfers, Michael; Nicolay, Klaas; Faber, Cornelius; Hermann, Sven; Prompers, Jeanine J
2017-08-01
Heart failure is associated with altered myocardial substrate metabolism and impaired cardiac energetics. Comorbidities like diabetes may influence the metabolic adaptations during heart failure development. We quantified to what extent changes in substrate preference, lipid accumulation, and energy status predict the longitudinal development of hypertrophy and failure in the non-diabetic and the diabetic heart. Transverse aortic constriction (TAC) was performed in non-diabetic (db/+) and diabetic (db/db) mice to induce pressure overload. Magnetic resonance imaging, 31P magnetic resonance spectroscopy (MRS), 1H MRS, and 18F-fluorodeoxyglucose-positron emission tomography (PET) were applied to measure cardiac function, energy status, lipid content, and glucose uptake, respectively. In vivo measurements were complemented with ex vivo techniques of high-resolution respirometry, proteomics, and western blotting to elucidate the underlying molecular pathways. In non-diabetic mice, TAC induced progressive cardiac hypertrophy and dysfunction, which correlated with increased protein kinase D-1 (PKD1) phosphorylation and increased glucose uptake. These changes in glucose utilization preceded a reduction in cardiac energy status. At baseline, compared with non-diabetic mice, diabetic mice showed normal cardiac function, higher lipid content and mitochondrial capacity for fatty acid oxidation, and lower PKD1 phosphorylation, glucose uptake, and energetics. Interestingly, TAC affected cardiac function only mildly in diabetic mice, which was accompanied by normalization of phosphorylated PKD1, glucose uptake, and cardiac energy status. The cardiac metabolic adaptations in diabetic mice seem to prevent the heart from failing upon pressure overload, suggesting that restoring the balance between glucose and fatty acid utilization is beneficial for cardiac function. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledee, Dolena; Smith, Lincoln; Bruce, Margaret
Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.« less
Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; ...
2015-08-12
Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.« less
McMillin, Shawna L.; Schmidt, Denise L.; Kahn, Barbara B.
2017-01-01
GLUT4 is necessary for acute insulin- and contraction-induced skeletal muscle glucose uptake, but its role in chronic muscle loading (overload)-induced glucose uptake is unknown. Our goal was to determine whether GLUT4 is required for overload-induced glucose uptake. Overload was induced in mouse plantaris muscle by unilateral synergist ablation. After 5 days, muscle weights and ex vivo [3H]-2-deoxy-d-glucose uptake were assessed. Overload-induced muscle glucose uptake and hypertrophic growth were not impaired in muscle-specific GLUT4 knockout mice, demonstrating that GLUT4 is not necessary for these processes. To assess which transporters mediate overload-induced glucose uptake, chemical inhibitors were used. The facilitative GLUT inhibitor cytochalasin B, but not the sodium-dependent glucose cotransport inhibitor phloridzin, prevented overload-induced uptake demonstrating that GLUTs mediate this effect. To assess which GLUT, hexose competition experiments were performed. Overload-induced [3H]-2-deoxy-d-glucose uptake was not inhibited by d-fructose, demonstrating that the fructose-transporting GLUT2, GLUT5, GLUT8, and GLUT12 do not mediate this effect. To assess additional GLUTs, immunoblots were performed. Overload increased GLUT1, GLUT3, GLUT6, and GLUT10 protein levels twofold to fivefold. Collectively, these results demonstrate that GLUT4 is not necessary for overload-induced muscle glucose uptake or hypertrophic growth and suggest that GLUT1, GLUT3, GLUT6, and/or GLUT10 mediate overload-induced glucose uptake. PMID:28279980
McMillin, Shawna L; Schmidt, Denise L; Kahn, Barbara B; Witczak, Carol A
2017-06-01
GLUT4 is necessary for acute insulin- and contraction-induced skeletal muscle glucose uptake, but its role in chronic muscle loading (overload)-induced glucose uptake is unknown. Our goal was to determine whether GLUT4 is required for overload-induced glucose uptake. Overload was induced in mouse plantaris muscle by unilateral synergist ablation. After 5 days, muscle weights and ex vivo [ 3 H]-2-deoxy-d-glucose uptake were assessed. Overload-induced muscle glucose uptake and hypertrophic growth were not impaired in muscle-specific GLUT4 knockout mice, demonstrating that GLUT4 is not necessary for these processes. To assess which transporters mediate overload-induced glucose uptake, chemical inhibitors were used. The facilitative GLUT inhibitor cytochalasin B, but not the sodium-dependent glucose cotransport inhibitor phloridzin, prevented overload-induced uptake demonstrating that GLUTs mediate this effect. To assess which GLUT, hexose competition experiments were performed. Overload-induced [ 3 H]-2-deoxy-d-glucose uptake was not inhibited by d-fructose, demonstrating that the fructose-transporting GLUT2, GLUT5, GLUT8, and GLUT12 do not mediate this effect. To assess additional GLUTs, immunoblots were performed. Overload increased GLUT1, GLUT3, GLUT6, and GLUT10 protein levels twofold to fivefold. Collectively, these results demonstrate that GLUT4 is not necessary for overload-induced muscle glucose uptake or hypertrophic growth and suggest that GLUT1, GLUT3, GLUT6, and/or GLUT10 mediate overload-induced glucose uptake. © 2017 by the American Diabetes Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledee, Dolena R.; Smith, Lincoln; Kajimoto, Masaki
Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of glycolytic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected FVB mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketones and unlabeled glucose and insulin. Western blots were used to evaluate metabolic enzymes. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (presumably glucose) contribution. Myc inactivation (MycKO-TAC) inhibited these metabolic changes. Hypertrophy in general increased protein levels of PKM2; however this change was not linked to Myc status. Protein post-translation modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. In conclusion, Myc regulates substrate utilization during early pressure overload hypertrophy. Our results show that the metabolic switch during hypertrophy is not necessary to maintain cardiac function, but it may be important mechanism to promote cardiomyocyte growth. Myc also regulates protein O-GlcNAcylation during hypertrophy.« less
Clonazepam increases in vivo striatal extracellular glucose in diabetic rats after glucose overload.
Gomez, Rosane; Barros, Helena M T
2003-12-01
Hyperglycemia modulates brain function, including neuronal excitability, neurotransmitter release and behavioral changes. There may be connections between the GABAergic system, glucose sensing neurons and glucose in the neuronal environment that shed light on the mechanism by which GABA(A) agents influence depressive behavior in diabetic rats submitted to the forced swimming test. We aimed to investigate whether clonazepam (CNZ), a GABA(A) receptor positive modulator, modifies in vivo striatal extracellular glucose levels in diabetic rats under fasting condition or after oral glucose overload. Streptozotocin diabetic and nondiabetic rats were submitted to in vivo striatal microdialysis. Perfusate samples were collected at baseline, during fasting and following administration of CNZ (0.25 mg/kg) and oral glucose overload. Blood glucose and striatal extracellular glucose were measured simultaneously at several time points. Fasting striatal glucose levels were higher in diabetic than in nondiabetic rats and the differences between these animals were maintained after glucose overload. The increases in extracellular striatal glucose after glucose overload were around 40% and blood to brain transference was decreased in diabetics. CNZ treatment paradoxically increased striatal glucose after glucose overload in diabetic rats, which may mark the dysfunction in brain glucose homeostasis.
No effect of sex steroids on compensatory muscle hypertrophy
NASA Technical Reports Server (NTRS)
Max, S. R.; Rance, N. E.
1984-01-01
The effects of orchiectomy and/or subcutaneously implanted testosterone propionate (TP) on the hypertrophic response of rat plantaris muscles to functional overload (induced by bilateral removal of gastrocnemius and soleus muscles) are investigated experimentally. Muscle wet weight, metabolic substrate oxidation, and cytosolic androgen-receptor binding are measured, and the results are presented in tables. Eight weeks after surgery, the plantaris muscle weight as a percentage of body weight is found to be about twice that in rats without muscle overload, regardless of the sex-hormone status. Overloading causes decreased ability to oxidize glucose and pyruvate, decreased succinate dehydrogenase specific activity, and no change in the ability to oxidize beta-hydroxybutyrate or in androgen-receptor binding. The oxidative response is unaffected by orchiectomy or TP or both. It is argued that the actions of sex hormones and functional overload are not synergistic.
Long-term effect of dietary overload lithium on the glucose metabolism in broiler chickens.
Bai, Shiping; Pan, Shuqin; Zhang, Keying; Ding, Xuemei; Wang, Jianping; Zeng, Qiufeng; Xuan, Yue; Su, Zuowei
2017-09-01
Lithium, like insulin, activates glycogen synthase and stimulates glucose transport in rat adipocytes. To investigate the effect of dietary overload lithium on glucose metabolism in broiler chickens, one-day-old chicks were fed a basal diet supplemented with 0 (control) or 100mg lithium/kg (overload lithium) for 35days. Compared to controls, glucose disappearance rates were lower (p=0.035) 15-120min after glucose gavage, and blood glucose concentrations were lower (p=0.038) 30min after insulin injection in overload lithium broilers. Overload lithium decreased (p<0.05) glycogen and glucose-6-phosphate concentrations in liver, but increased (p<0.05) their concentrations in pectoralis major. Overload lithium increased (p<0.05) mRNA expression of glucose transporter (GLUT) 3 and GLUT9 in liver, and GLUT1, GLUT3, GLUT8, and GLUT9 in pectoralis major, but decreased (p<0.05) cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in liver and mitochondrial PEPCK in pectoralis major. These results suggest that dietary overload lithium decreases glucose tolerance and gluconeogenesis, but increases insulin sensitivity and glucose transport in broiler chickens. Copyright © 2017 Elsevier B.V. All rights reserved.
Metabolic Inflexibility: When Mitochondrial Indecision Leads to Metabolic Gridlock
Muoio, Deborah M.
2016-01-01
Normal energy metabolism is characterized by periodic shifts in glucose and fat oxidation, as the mitochondrial machinery responsible for carbon combustion switches freely between alternative fuels according to physiological and nutritional circumstances. These transitions in fuel choice are orchestrated by an intricate network of metabolic and cell signaling events that enable exquisite crosstalk and cooperation between competing substrates to maintain energy and glucose homeostasis. By contrast, obesity-related cardiometabolic diseases are increasingly recognized as disorders of metabolic inflexibility, in which nutrient overload and heightened substrate competition result in mitochondrial indecision, impaired fuel switching, and energy dysregulation. This Perspective offers a speculative view on the molecular origins and pathophysiological consequences of metabolic inflexibility. PMID:25480291
Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock.
Muoio, Deborah M
2014-12-04
Normal energy metabolism is characterized by periodic shifts in glucose and fat oxidation, as the mitochondrial machinery responsible for carbon combustion switches freely between alternative fuels according to physiological and nutritional circumstances. These transitions in fuel choice are orchestrated by an intricate network of metabolic and cell signaling events that enable exquisite crosstalk and cooperation between competing substrates to maintain energy and glucose homeostasis. By contrast, obesity-related cardiometabolic diseases are increasingly recognized as disorders of metabolic inflexibility, in which nutrient overload and heightened substrate competition result in mitochondrial indecision, impaired fuel switching, and energy dysregulation. This Perspective offers a speculative view on the molecular origins and pathophysiological consequences of metabolic inflexibility. Copyright © 2014 Elsevier Inc. All rights reserved.
Microglia energy metabolism in metabolic disorder.
Kalsbeek, Martin J T; Mulder, Laurie; Yi, Chun-Xia
2016-12-15
Microglia are the resident macrophages of the CNS, and are in charge of maintaining a healthy microenvironment to ensure neuronal survival. Microglia carry out a non-stop patrol of the CNS, make contact with neurons and look for abnormalities, all of which requires a vast amount of energy. This non-signaling energy demand increases after activation by pathogens, neuronal damage or other kinds of stimulation. Of the three major energy substrates - glucose, fatty acids and glutamine - glucose is crucial for microglia survival and several glucose transporters are expressed to supply sufficient glucose influx. Fatty acids are another source of energy for microglia and have also been shown to strongly influence microglial immune activity. Glutamine, although possibly suitable for use as an energy substrate by microglia, has been shown to have neurotoxic effects when overloaded. Microglial fuel metabolism might be associated with microglial reactivity under different pathophysiological conditions and a microglial fuel switch may thus be the underlying cause of hypothalamic dysregulation, which is associated with obesity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Nabeebaccus, Adam A.; Zoccarato, Anna; Hafstad, Anne D.; Santos, Celio X.C.; Brewer, Alison C.; Zhang, Min; Beretta, Matteo; West, James A.; Eykyn, Thomas R.; Shah, Ajay M.
2017-01-01
Cardiac hypertrophic remodeling during chronic hemodynamic stress is associated with a switch in preferred energy substrate from fatty acids to glucose, usually considered to be energetically favorable. The mechanistic interrelationship between altered energy metabolism, remodeling, and function remains unclear. The ROS-generating NADPH oxidase-4 (Nox4) is upregulated in the overloaded heart, where it ameliorates adverse remodeling. Here, we show that Nox4 redirects glucose metabolism away from oxidation but increases fatty acid oxidation, thereby maintaining cardiac energetics during acute or chronic stresses. The changes in glucose and fatty acid metabolism are interlinked via a Nox4-ATF4–dependent increase in the hexosamine biosynthetic pathway, which mediates the attachment of O-linked N-acetylglucosamine (O-GlcNAcylation) to the fatty acid transporter CD36 and enhances fatty acid utilization. These data uncover a potentially novel redox pathway that regulates protein O-GlcNAcylation and reprograms cardiac substrate metabolism to favorably modify adaptation to chronic stress. Our results also suggest that increased fatty acid oxidation in the chronically stressed heart may be beneficial. PMID:29263294
Omar, Mohamed A; Wang, Lianguo; Clanachan, Alexander S
2010-06-01
Glycogen synthase kinase-3 (GSK-3) is a multi-functional kinase that regulates signalling pathways affecting glycogen metabolism, protein synthesis, mitosis, and apoptosis. GSK-3 inhibition limits cardiac ischaemia-reperfusion (IR) injury, but mechanisms are not clearly defined. This study tested the hypothesis that acute GSK-3 inhibition stimulates glycogen synthesis, repartitions glucose away from glycolysis, reduces proton (H+) production from glucose metabolism, and attenuates intracellular Ca2+ (Ca2+(i)) overload. In isolated perfused working rat hearts subjected to global ischaemia and reperfusion, the selective GSK-3 inhibitor, SB-216763 (SB, 3 micromol/L), when added either prior to ischaemia or at the onset of reperfusion, improved recovery of left-ventricular (LV) work. SB increased glycogen synthesis during reperfusion while glycolysis and H+ production were reduced. Rates of glucose and palmitate oxidation were improved by SB. Measurement of Ca2+(i) concentration by rapid acquisition indo-1 fluorescence imaging showed that SB, when added either prior to ischaemia or at the onset of reperfusion, reduced diastolic Ca2+(i) overload during reperfusion. In aerobic hearts depleted of glycogen by substrate-free perfusion to a level similar to that measured at the onset of reperfusion, SB accelerated glycogen synthesis and reduced glycolysis and H+ production independent of changes in LV work. Our study indicates that reduction in H+ production by GSK-3 inhibition is an early and upstream event that lessens Ca2+(i) overload during ischaemia and early reperfusion independent of LV work which enhances the recovery of post-ischaemic LV function and that may ultimately contribute to previously observed reductions in cell death and infarction.
Kaimoto, Satoshi; Hoshino, Atsushi; Ariyoshi, Makoto; Okawa, Yoshifumi; Tateishi, Shuhei; Ono, Kazunori; Uchihashi, Motoki; Fukai, Kuniyoshi; Iwai-Kanai, Eri; Matoba, Satoaki
2017-02-01
Failing heart loses its metabolic flexibility, relying increasingly on glucose as its preferential substrate and decreasing fatty acid oxidation (FAO). Peroxisome proliferator-activated receptor α (PPAR-α) is a key regulator of this substrate shift. However, its role during heart failure is complex and remains unclear. Recent studies reported that heart failure develops in the heart of myosin heavy chain-PPAR-α transgenic mice in a manner similar to that of diabetic cardiomyopathy, whereas cardiac dysfunction is enhanced in PPAR-α knockout mice in response to chronic pressure overload. We created a pressure-overload heart failure model in mice through transverse aortic constriction (TAC) and activated PPAR-α during heart failure using an inducible transgenic model. After 8 wk of TAC, left ventricular (LV) function had decreased with the reduction of PPAR-α expression in wild-type mice. We examined the effect of PPAR-α induction during heart failure using the Tet-Off system. Eight weeks after the TAC operation, LV construction was preserved significantly by PPAR-α induction with an increase in PPAR-α-targeted genes related to fatty acid metabolism. The increase of expression of fibrosis-related genes was significantly attenuated by PPAR-α induction. Metabolic rates measured by isolated heart perfusions showed a reduction in FAO and glucose oxidation in TAC hearts, but the rate of FAO preserved significantly owing to the induction of PPAR-α. Myocardial high-energy phosphates were significantly preserved by PPAR-α induction. These results suggest that PPAR-α activation during pressure-overloaded heart failure improved myocardial function and energetics. Thus activating PPAR-α and modulation of FAO could be a promising therapeutic strategy for heart failure. NEW & NOTEWORTHY The present study demonstrates the role of PPAR-α activation in the early stage of heart failure using an inducible transgenic mouse model. Induction of PPAR-α preserved heart function, and myocardial energetics. Activating PPAR-α and modulation of fatty acid oxidation could be a promising therapeutic strategy for heart failure. Copyright © 2017 the American Physiological Society.
Iron metabolism and the polycystic ovary syndrome.
Escobar-Morreale, Héctor F
2012-10-01
The polycystic ovary syndrome (PCOS) is associated with insulin resistance and abnormal glucose tolerance. Iron overload may lead also to insulin resistance and diabetes. Serum ferritin levels are increased in PCOS, especially when glucose tolerance is abnormal, suggesting mild iron overload. Factors contributing to potential iron overload in PCOS include the iron sparing effect of chronic menstrual dysfunction, insulin resistance, and a decrease in hepcidin leading to increased iron absorption. Enhancement of erythropoiesis by androgen excess is unlikely, because soluble transferrin receptor levels are not increased in PCOS. Future venues of research should address the long-term effects of PCOS treatment on iron overload and, conversely, the possible effects of iron lowering strategies on the glucose tolerance of patients with PCOS. Copyright © 2012 Elsevier Ltd. All rights reserved.
Koppe, Tiago; Patchen, Bonnie; Cheng, Aaron; Bhasin, Manoj; Vulpe, Chris; Schwartz, Robert E.; Moreno‐Navarrete, Jose Maria; Fernandez‐Real, Jose Manuel
2017-01-01
Iron overload causes the generation of reactive oxygen species that can lead to lasting damage to the liver and other organs. The goal of this study was to identify genes that modify the toxicity of iron overload. We studied the effect of iron overload on the hepatic transcriptional and metabolomic profile in mouse models using a dietary model of iron overload and a genetic model, the hemojuvelin knockout mouse. We then evaluated the correlation of nicotinamide N‐methyltransferase (NNMT) expression with body iron stores in human patients and the effect of NNMT knockdown on gene expression and viability in primary mouse hepatocytes. We found that iron overload induced significant changes in the expression of genes and metabolites involved in glucose and nicotinamide metabolism and that NNMT, an enzyme that methylates nicotinamide and regulates hepatic glucose and cholesterol metabolism, is one of the most strongly down‐regulated genes in the liver in both genetic and dietary iron overload. We found that hepatic NNMT expression is inversely correlated with serum ferritin levels and serum transferrin saturation in patients who are obese, suggesting that body iron stores regulate human liver NNMT expression. Furthermore, we demonstrated that adenoviral knockdown of NNMT in primary mouse hepatocytes exacerbates iron‐induced hepatocyte toxicity and increases expression of transcriptional markers of oxidative and endoplasmic reticulum stress, while overexpression of NNMT partially reversed these effects. Conclusion: Iron overload alters glucose and nicotinamide transcriptional and metabolic pathways in mouse hepatocytes and decreases NNMT expression, while NNMT deficiency worsens the toxic effect of iron overload. For these reasons, NNMT may be a drug target for the prevention of iron‐induced hepatotoxicity. (Hepatology Communications 2017;1:803–815) PMID:29404495
Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; Kajimoto, Masaki; Isern, Nancy; Portman, Michael A.; Olson, Aaron K.
2015-01-01
Hypertrophic stimuli cause transcription of the proto-oncogene c-Myc (Myc). Prior work showed that myocardial knockout of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we assessed the interplay between Myc, substrate oxidation and cardiac function during early pressure overload hypertrophy. Mice with cardiac specific, inducible Myc knockout (MycKO-TAC) and non-transgenic littermates (Cont-TAC) were subjected to transverse aortic constriction (TAC; n = 7/group). Additional groups underwent sham surgery (Cont-Sham and MycKO-Sham, n = 5 per group). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. In sham hearts, Myc knockout did not affect cardiac function or substrate preferences for the citric acid cycle. However, Myc knockout altered fractional contributions during TAC. The unlabeled fractional contribution increased in MycKO-TAC versus Cont-TAC, whereas ketone and free fatty acid fractional contributions decreased. Additionally, protein posttranslational modifications by O-GlcNAc were significantly greater in Cont-TAC versus both Cont-Sham and MycKO-TAC. In conclusion, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy, which may regulate Myc-induced metabolic changes. PMID:26266538
Transition from metabolic adaptation to maladaptation of the heart in obesity: role of apelin.
Alfarano, C; Foussal, C; Lairez, O; Calise, D; Attané, C; Anesia, R; Daviaud, D; Wanecq, E; Parini, A; Valet, P; Kunduzova, O
2015-02-01
Impaired energy metabolism is the defining characteristic of obesity-related heart failure. The adipocyte-derived peptide apelin has a role in the regulation of cardiovascular and metabolic homeostasis and may contribute to the link between obesity, energy metabolism and cardiac function. Here we investigate the role of apelin in the transition from metabolic adaptation to maladaptation of the heart in obese state. Adult male C57BL/6J, apelin knock-out (KO) or wild-type mice were fed a high-fat diet (HFD) for 18 weeks. To induce heart failure, mice were subjected to pressure overload after 18 weeks of HFD. Long-term effects of apelin on fatty acid (FA) oxidation, glucose metabolism, cardiac function and mitochondrial changes were evaluated in HFD-fed mice after 4 weeks of pressure overload. Cardiomyocytes from HFD-fed mice were isolated for analysis of metabolic responses. In HFD-fed mice, pressure overload-induced transition from hypertrophy to heart failure is associated with reduced FA utilization (P<0.05), accelerated glucose oxidation (P<0.05) and mitochondrial damage. Treatment of HFD-fed mice with apelin for 4 weeks prevented pressure overload-induced decline in FA metabolism (P<0.05) and mitochondrial defects. Furthermore, apelin treatment lowered fasting plasma glucose (P<0.01), improved glucose tolerance (P<0.05) and preserved cardiac function (P<0.05) in HFD-fed mice subjected to pressure overload. In apelin KO HFD-fed mice, spontaneous cardiac dysfunction is associated with reduced FA oxidation (P<0.001) and increased glucose oxidation (P<0.05). In isolated cardiomyocytes, apelin stimulated FA oxidation in a dose-dependent manner and this effect was prevented by small interfering RNA sirtuin 3 knockdown. These data suggest that obesity-related decline in cardiac function is associated with defective myocardial energy metabolism and mitochondrial abnormalities. Furthermore, our work points for therapeutic potential of apelin to prevent myocardial metabolic abnormalities in heart failure paired with obesity.
Gray, Joshua P.; Zayasbazan Burgos, Delaine; Yuan, Tao; Seeram, Navindra; Rebar, Rebecca; Follmer, Rebecca
2015-01-01
Thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone) is a major bioactive component of Nigella sativa, a plant used in traditional medicine to treat a variety of symptoms, including elevated blood glucose levels in type 2 diabetic patients. Normalization of elevated blood glucose depends on both glucose disposal by peripheral tissues and glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. We employed clonal β-cells and rodent islets to investigate the effects of thymoquinone (TQ) and Nigella sativa extracts (NSEs) on GSIS and cataplerotic metabolic pathways implicated in the regulation of GSIS. TQ and NSE regulated NAD(P)H/NAD(P)+ ratios via a quinone-dependent redox cycling mechanism. TQ content was positively correlated with the degree of redox cycling activity of NSE extracts, suggesting that TQ is a major component engaged in mediating NSE-dependent redox cycling. Both acute and chronic exposure to TQ and NSE enhanced GSIS and were associated with the ability of TQ and NSE to increase the ATP/ADP ratio. Furthermore, TQ ameliorated the impairment of GSIS following chronic exposure of β-cells to glucose overload. This protective action was associated with the TQ-dependent normalization of chronic accumulation of malonyl-CoA, elevation of acetyl-CoA carboxylase (ACC), fatty acid synthase, and fatty acid-binding proteins following chronic glucose overload. Together, these data suggest that TQ modulates the β-cell redox circuitry and enhances the sensitivity of β-cell metabolic pathways to glucose and GSIS under normal conditions as well as under hyperglycemia. This action is associated with the ability of TQ to regulate carbohydrate-to-lipid flux via downregulation of ACC and malonyl-CoA. PMID:26786775
Prion protein modulates glucose homeostasis by altering intracellular iron.
Ashok, Ajay; Singh, Neena
2018-04-26
The prion protein (PrP C ), a mainly neuronal protein, is known to modulate glucose homeostasis in mouse models. We explored the underlying mechanism in mouse models and the human pancreatic β-cell line 1.1B4. We report expression of PrP C on mouse pancreatic β-cells, where it promoted uptake of iron through divalent-metal-transporters. Accordingly, pancreatic iron stores in PrP knockout mice (PrP -/- ) were significantly lower than wild type (PrP +/+ ) controls. Silencing of PrP C in 1.1B4 cells resulted in significant depletion of intracellular (IC) iron, and remarkably, upregulation of glucose transporter GLUT2 and insulin. Iron overloading, on the other hand, resulted in downregulation of GLUT2 and insulin in a PrP C -dependent manner. Similar observations were noted in the brain, liver, and neuroretina of iron overloaded PrP +/+ but not PrP -/- mice, indicating PrP C -mediated modulation of insulin and glucose homeostasis through iron. Peripheral challenge with glucose and insulin revealed blunting of the response in iron-overloaded PrP +/+ relative to PrP -/- mice, suggesting that PrP C -mediated modulation of IC iron influences both secretion and sensitivity of peripheral organs to insulin. These observations have implications for Alzheimer's disease and diabetic retinopathy, known complications of type-2-diabetes associated with brain and ocular iron-dyshomeostasis.
Kumar, Sandeep; Kain, Vasundhara; Sitasawad, Sandhya L
2012-07-01
Cardiac cell apoptosis is the initiating factor of cardiac complications especially diabetic cardiomyopathy. Mitochondria are susceptible to the damaging effects of elevated glucose condition. Calcium overload and oxidative insult are the two mutually non-exclusive phenomena suggested to cause cardiac dysfunction. Here, we examined the effect of high-glucose induced calcium overload in calpain-1 mediated cardiac apoptosis in an in vitro setting. H9c2, rat ventricular myoblast cell line was treated with elevated glucose condition and the cellular consequences were studied. Intracellular calcium trafficking, ROS generation, calpain-1 activation and caspase-12 and caspase-9 pathway were studied using flow cytometry, confocal microscopy and Western blot analysis. High-glucose treatment resulted in increased intracellular calcium ([Ca2+]i) which was mobilized to the mitochondria. Concomitant intra-mitochondrial calcium ([Ca2+]m) increase resulted in enhanced reactive oxygen and nitrogen species generation. These events led to mitochondrial dysfunction and apoptosis. Cardiomyocyte death exhibited several classical markers of apoptosis, including activation of caspases, appearance of annexin V on the outer plasma membrane, increased population of cells with sub-G0/G1 DNA content and nuclear condensation. Key findings include elucidation of cell signaling mechanism of high-glucose induced calcium-dependent cysteine protease calpain-1 activation, which triggers non-conventional caspases as alternate mode of cell death. This information increases the understanding of cardiac cell death under hyperglycemic condition and can possibly be extended for designing new therapeutic strategies for diabetic cardiomyopathy. The novel findings of the study reveal that high glucose induces apoptosis by both mitochondria-dependent and independent pathways via concomitant rise in intracellular calcium. Copyright © 2012 Elsevier B.V. All rights reserved.
Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming.
Choi, Kevin; Weber, Jean-Michel
2016-03-15
This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg(-1)·min(-1) and boost glucose disposal to 40.1 ± 13 μmol·kg(-1)·min(-1). These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise. Copyright © 2016 the American Physiological Society.
Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming
Choi, Kevin
2015-01-01
This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg−1·min−1 and boost glucose disposal to 40.1 ± 13 μmol·kg−1·min−1. These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise. PMID:26719305
Early alterations in soleus GLUT-4, glucose transport, and glycogen in voluntary running rats
NASA Technical Reports Server (NTRS)
Henriksen, Erik J.; Halseth, Amy E.
1994-01-01
Voluntary wheel running (WR) by juvenile female rats was used as a noninterventional model of soleus muscle functional overload to study the regulation of insulin-stimulated glucose transport activity by the glucose transporter (GLUT-4 isoform) protein level and glycogen concentration. Soleus total protein content was significantly greater (+18%;P greater than 0.05) than in age-matched controls after 1 wk of WR, and this hypertrophic response continued in weeks 2-4 (+24-32%). GLUT-4 protein was 39% greater than in controls in 1-wk WR soleus, and this adaptation was accompanied by a similar increase in in vitro insulin-stimulated glucose transport activity(+29%). After 2 and 4 wk of WR, however, insulin-stimulated glucose transport activity had returned to control levels, despite a continued elevation (+25-28%) of GLUT-4 protein. At these two time points, glycogen concentration was significantly enhanced in WR soleus (+21-42%), which coincided with significant reductions in glycogen synthase activity ratios (-23 to-41%). These results indicate that, in this model of soleus muscle functional overload, the GLUT-4 protein level may initially regulate insulin-stimulated glucose transport activity in the absence of changes in other modifying factors. However,this regulation of glucose transport activity by GLUT-4 protein may be subsequently overridden by elevated glycogen concentration.
Glycolytic overload and the genesis of breast cancer.
Robson, J R
1984-03-01
It is suggested that the development of breast cancer is due to overloading of the glycolytic pathways. An excess of substrates or an excessive delivery rate of substrates to the Krebs Cycle is believed to result in the formation of acetyl CoA. Feedback mechanisms controlling the conversion of acetyl CoA to cholesterol may be overcome; the resulting high concentration of cholesterol induces the formation of pregnenolone which may then be converted into androgens, estrogens and progesterone. These steroids are in addition to those produced by gonads and adrenal glands. Glycolytic overload is also associated with an increase in fat stores which have been shown to be the site of interconversion of sex hormones. Excess sex hormones or abnormal sex hormones are believed to be the cause of breast cancer. The hypothesis presented links glycolytic overload with clinical biochemical phenomena and explains some of the anomalies observed in breast cancer experience in different ethnic groups. Changes in dietary habits during the history of man resulting in " gorging " and the consumption of highly refined sugars are possible causes of glycolytic overload. So, also, is impaired thermogenesis due to Brown Fat deficits in certain ethnic groups.
Hecker, Peter A.; Lionetti, Vincenzo; Ribeiro, Rogerio F.; Rastogi, Sharad; Brown, Bethany H.; O’Connell, Kelly A.; Cox, James W.; Shekar, Kadambari C.; Gamble, Dionna; Sabbah, Hani N.; Leopold, Jane A.; Gupte, Sachin A.; Recchia, Fabio A.; Stanley, William C.
2013-01-01
Background Glucose 6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency in the world. In failing hearts, G6PD is upregulated and generates NADPH that is used by the glutathione pathway to remove reactive oxygen species (ROS), but also as a substrate by ROS-generating enzymes. Therefore, G6PD deficiency might prevent heart failure by decreasing NADPH and ROS production. Methods and Results This hypothesis was evaluated in a mouse model of human G6PD deficiency (G6PDX mice, ~40% normal activity). Myocardial infarction with 3 months followup resulted in LV dilation and dysfunction in both WT and G6PDX mice, but significantly greater end diastolic volume and wall thinning in G6PDX mice. Similarly, pressure overload induced by transverse aortic constriction (TAC) for 6 weeks caused greater LV dilation in G6PDX mice than WT. We further stressed TAC mice by feeding a high fructose diet to increase flux through G6PD and ROS production, and again observed worse LV remodeling and a lower ejection fraction in G6PDX than WT mice. Tissue content of lipid peroxidation products was increased in G6PDX mice in response to infarction and aconitase activity was decreased with TAC, suggesting that G6PD deficiency increases myocardial oxidative stress and subsequent damage. Conclusions Contrary to our hypothesis, G6PD deficiency increased redox stress in response to infarction or pressure overload. However, we found only a modest acceleration of LV remodeling, suggesting that, in individuals with G6PD deficiency and concurrent hypertension or myocardial infarction, the risk for developing heart failure is higher, but limited by compensatory mechanisms. PMID:23170010
Coen, Paul M.; DiStefano, Giovanna; Chacon, Alexander C.; Helbling, Nicole L.; Desimone, Marisa E.; Stafanovic-Racic, Maja; Hames, Kazanna C.; Despines, Alex A.; Toledo, Frederico G. S.; Goodpaster, Bret H.
2014-01-01
We hypothesized that acute lipid-induced insulin resistance would be attenuated in high-oxidative muscle of lean trained (LT) endurance athletes due to their enhanced metabolic flexibility and mitochondrial capacity. Lean sedentary (LS), obese sedentary (OS), and LT participants completed two hyperinsulinemic euglycemic clamp studies with and without (glycerol control) the coinfusion of Intralipid. Metabolic flexibility was measured by indirect calorimetry as the oxidation of fatty acids and glucose during fasted and insulin-stimulated conditions, the latter with and without lipid oversupply. Muscle biopsies were obtained for mitochondrial and insulin-signaling studies. During hyperinsulinemia without lipid, glucose infusion rate (GIR) was lowest in OS due to lower rates of nonoxidative glucose disposal (NOGD), whereas state 4 respiration was increased in all groups. Lipid infusion reduced GIR similarly in all subjects and reduced state 4 respiration. However, in LT subjects, fat oxidation was higher with lipid oversupply, and although glucose oxidation was reduced, NOGD was better preserved compared with LS and OS subjects. Mitochondrial performance was positively associated with better NOGD and insulin sensitivity in both conditions. We conclude that enhanced mitochondrial performance with exercise is related to better metabolic flexibility and insulin sensitivity in response to lipid overload. PMID:25352435
Kohara, Akiko; Machida, Masanao; Setoguchi, Yuko; Ito, Ryouichi; Sugitani, Masanori; Maruki-Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko; Omi, Naomi; Takemasa, Tohru
2017-01-01
Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. In Study 1, 6-week-old ICR male mice were divided into 4 groups: sham-operated control, sham-operated EMIQ, overload-operated control, and overload-operated EMIQ groups. In Study 2, mice were divided into 3 groups: overload-operated whey control, overload-operated whey/EMIQ (low dose), and overload-operated whey/EMIQ (high dose) groups. The functional overload of the plantaris muscle was induced by ablation of the synergist (gastrocnemius and soleus) muscles. EMIQ and whey protein were administered with food. Three weeks after the operation, the cross-sectional area and minimal fiber diameter of the plantaris muscle fibers were measured. In Study 1, functional overload increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ supplementation significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle in both the sham-operated and overload-operated groups. In Study 2, EMIQ supplementation combined with whey protein administration significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ, even when administered as an addition to whey protein supplementation, significantly intensified the fiber hypertrophy of the plantaris muscle in functionally overloaded mice. EMIQ supplementation also induced fiber hypertrophy of the plantaris in sham-operated mice.
Yassin, Mohamed A; Soliman, Ashraf; De Sanctis, Vincenzo; Hmissi, Saloua M; Abdulla, Mohammad Aj; Ekeibed, Yeslem; Ismail, Omer; Nashwan, Abdulqadir; Soliman, Dina; Almusharaf, Mohammed; Hussein, Redwa
2018-04-03
Patients with hematologic malignancies undergoing chemotherapy and requiring blood transfusion usually have an elevated serum ferritin. These findings have led to the suggestion that iron overload is common and may have deleterious effects in these patients. However, the relationship between serum ferritin and parenchymal iron overload in such patients is unknown. Therefore, we measured the liver iron content (LIC) by the FerriScan® method and investigated the liver function and some endocrine tests in 27 patients with acute leukemia (AL) or myelodysplastic syndromes (MDS). Using FerriScan® method, the normal mean LIC levels are: 4.3 ± 2.9 mg Fe/g dry weight (d.w.). In our patients, the mean serum ferritin level was 1965 ± 2428 ng/mL. In our patients, the mean total iron in the blood received by them was 7177 ± 5009 mg. In 6 out of 27 patients LIC was > 7 mg Fe/g d.w. and in 11/27 serum ferritin was > 1000 ng/ml. Measuring fasting blood glucose revealed 3/27 with diabetes mellitus and 4/27 with impaired fasting glucose (IFG). All patients had normal serum concentrations of calcium, parathormone (PTH), free thyroxine (FT4) and thyrotropin (TSH). Four patients had elevated serum alanine transferase (ALT). LIC was correlated significantly with ferritin level (r = 0.5666; P < 0.001) and the cumulative amount of iron in the transfused blood (r = 0.523; P <0.001). LIC was correlated significantly with ALT (r = 0.277; P = 0.04) and fasting blood glucose (FBG) was correlated significantly with the amount of iron transfused (r = 0.52, p < 0.01) and ALT level (r = 0.44; P< 0.01). The age of patients did not correlate with LIC, FBG or ALT. In conclusions, these results contribute to our understanding of the prevalence of dysglycemia and hepatic dysfunction in relation to parenchymal iron overload in patients with hematologic malignancies undergoing chemotherapy and requiring blood transfusions.
Hohnholt, Michaela C; Andersen, Vibe H; Bak, Lasse K; Waagepetersen, Helle S
2017-01-01
Synaptosomes prepared from various aged and gene modified experimental animals constitute a valuable model system to study pre-synaptic mechanisms. Synaptosomes were isolated from whole brain and the XFe96 extracellular flux analyzer (Seahorse Bioscience) was used to study mitochondrial respiration and glycolytic rate in presence of different substrates. Mitochondrial function was tested by sequentially exposure of the synaptosomes to the ATP synthase inhibitor, oligomycin, the uncoupler FCCP (carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone) and the electron transport chain inhibitors rotenone and antimycin A. The synaptosomes exhibited intense respiratory activity using glucose as substrate. The FCCP-dependent respiration was significantly higher with 10 mM glucose compared to 1 mM glucose. Synaptosomes also readily used pyruvate as substrate, which elevated basal respiration, activity-dependent respiration induced by veratridine and the respiratory response to uncoupling compared to that obtained with glucose as substrate. Also lactate was used as substrate by synaptosomes but in contrast to pyruvate, mitochondrial lactate mediated respiration was comparable to respiration using glucose as substrate. Synaptosomal respiration using glutamate and glutamine as substrates was significantly higher compared to basal respiration, whereas oligomycin-dependent and FCCP-induced respiration was lower compared to the responses obtained in the presence of glucose as substrate. We provide evidence that synaptosomes are able to use besides glucose and pyruvate also the substrates lactate, glutamate and glutamine to support their basal respiration. Veratridine was found to increase respiration supported by glucose, pyruvate, lactate and glutamine and FCCP was found to increase respiration supported by glucose, pyruvate and lactate. This was not the case when glutamate was the only energy substrate.
Capraro, Jessica; Magni, Chiara; Scarafoni, Alessio; Caramanico, Rosita; Rossi, Filippo; Morlacchini, Mauro; Duranti, Marcello
2014-02-01
The supplementation of foods with biologically active compounds can be a powerful approach for improving diet and well being. In this study we separately included in pasta matrices a concentrate of γ-conglutin, a glucose-lowering protein from Lupinus albus seeds, an isolate of the other main lupin storage proteins and ovalbumin, at a ratio corresponding to 125 mg of pure protein in 100 g of pasta. With these products we fed rats made hyperglycaemic, for 3 weeks. Among the most relevant changes measured in body and blood parameters were: (i) a significant reduction in food intake of rats fed γ-conglutin concentrate supplemented pasta and a significant limitation in the body weight increase in rats fed α, β and δ-conglutin isolate supplemented pasta, while the food conversion indices were unchanged; (ii) a reduction in glycaemia upon glucose overload trial, especially in the γ-conglutin concentrate supplemented pasta fed animals, at a dose of 45 mg per kg body weight. The correlations among the measured parameters are discussed. Overall, the results evidence the potentiality of supplementing traditional foods with exogenous nutraceutical seed proteins to control body weight gain and glycaemia.
Pre-diabetes Modifiable Risk Factors
... for example, if you are a highly trained athlete or if you are underweight.) Eating healthy foods in the right amounts Diets that include high levels of sugar, starches and fats often overload the body with more glucose than ...
Dhahri, Wahiba; Drolet, Marie-Claude; Roussel, Elise; Couet, Jacques; Arsenault, Marie
2014-09-24
The composition of a diet can influence myocardial metabolism and development of left ventricular hypertrophy (LVH). The impact of a high-fat diet in chronic left ventricular volume overload (VO) causing eccentric LVH is unknown. This study examined the effects of chronic ingestion of a high-fat diet in rats with chronic VO caused by severe aortic valve regurgitation (AR) on LVH, function and on myocardial energetics and survival. Male Wistar rats were divided in four groups: Shams on control or high-fat (HF) diet (15 rats/group) and AR rats fed with the same diets (ARC (n = 56) and ARHF (n = 32)). HF diet was started one week before AR induction and the protocol was stopped 30 weeks later. As expected, AR caused significant LV dilation and hypertrophy and this was exacerbated in the ARHF group. Moreover, survival in the ARHF group was significantly decreased compared the ARC group. Although the sham animals on HF also developed significant obesity compared to those on control diet, this was not associated with heart hypertrophy. The HF diet in AR rats partially countered the expected shift in myocardial energy substrate preference usually observed in heart hypertrophy (from fatty acids towards glucose). Systolic function was decreased in AR rats but HF diet had no impact on this parameter. The response to HF diet of different fatty acid oxidation markers as well as the increase in glucose transporter-4 translocation to the plasma membrane compared to ARC was blunted in AR animals compared to those on control diet. HF diet for 30 weeks decreased survival of AR rats and worsened eccentric hypertrophy without affecting systolic function. The expected adaptation of myocardial energetics to volume-overload left ventricle hypertrophy in AR animals seemed to be impaired by the high-fat diet suggesting less metabolic flexibility.
Giordani, Morenna Alana; Collicchio, Thiago Carvalho Mamede; Ascêncio, Sergio Donizeti; Martins, Domingos Tabajara de Oliveira; Balogun, Sikiru Olaitan; Bieski, Isanete Geraldini Costa; da Silva, Leilane Aparecida; Colodel, Edson Moleta; de Souza, Roberto Lopes; de Souza, Damiana Luiza Pereira; de França, Suélem Aparecida; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda
2015-03-13
Cedrela odorata L. (Meliaceae) is a native plant of the Amazon region and its inner stem bark is used in the treatment of diabetes in the form of maceration in Brazilian popular medicine. Until now, there is no scientific study on this activity. The present study was aimed at evaluating the anti-hyperglycemic activity, anti-diabetic, toxicity, antioxidant and potential mechanism of action of hydroethanolic extract of the inner stem bark of Cedrela odorata. The inner stem bark extract of Cedrela odorata was prepared by maceration in 70% ethanol for 7 days to obtain hydroethanolic extract of Cedrela odorata (HeECo). The preliminary phytochemical analysis was performed according to procedures described in the literature. Selected secondary metabolites detected were quantified by high performance liquid chromatography (HPLC). Acute toxicity of HeECo was investigated in male and female mice with oral administration of graded doses of HeECo from 10 to 5000 mg/kg. Subchronic oral toxicity study was done by oral administration of HeECo (500 mg/kg) and vehicle for 30 days to both sexes of Wistar rats. Clinical observations and toxicological related parameters were determined. Blood was collected for biochemical and hematological analyses, while histological examinations were performed on selected organs. Anti-hiperglycemic and antidiabetic effects were evaluated in streptozotocin-induced diabetic rats. In acute evaluation, the animals received pretreatment with 250 and 500 mg/kg of HeECo, before carbohydrate overload. For subchronic effect, the antidiabetic activity of HeECo was evaluated using the same doses for 21 days. At the end of the treatments, the levels of triacylglycerols, malondialdehyde, total antioxidant status, superoxide dismutase and glutathione peroxidase activities were evaluated in the plasma. The extract showed low acute toxicity. HeECo exhibited inhibitory activity against α-glucosidase and caused a lowering in the peak levels of blood glucose in animals that received glucose overload by 36.7% and 24.1% in the area under the glucose curve (AUC). When the overload was sucrose, HeECo reduced the blood glucose level by 44.4% without affecting AUC. Treatment with HeECo of the blood glucose of the diabetic animals for 21 days did not lead to improvement in weight gain and regularization of the blood glucose level, but reduced the triacylglycerol and malondialdehyde levels by 36.6% and 48.1%, respectively. The activity of the antioxidant enzymes, superoxide dismutase and glutathione peroxidase were significantly increased when compared to diabetic control rats. HPLC analysis showed the presence of polyphenols, such as gallic acid, (-)- gallocatechin and (+)- catechin, the latter is present in higher quantity. Collectively, these data showed that HeECo could blunt the postprandial glycemic surge in rats; possibly through inhibition of alpha-glucosidase and positive modulation of antioxidant enzymes. Our findings confirmed the anti-hiperglycemic activity of HeECo in STZ- diabetic rats. Cedrela odorata is effective in diminishing glucose levels in vitro and in vivo and in ameliorating oxidative damage that occurs in diabetes and/or due to hyperglycemia in rats. According to our results, the efficacy of Cedrela odorata preparation could be due to the presence of active principles with different mode of actions at the molecular level, including α-glycosidases and glucose transporter inhibitors and antioxidant property. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Fox, R E; Hopkins, I B; Cabacungan, E T; Tildon, J T
1996-07-01
Glucose has been thought to be the primary substrate for energy metabolism in the developing lung; however, alternate substrates are used for energy metabolism in other organs. To examine the role of alternate substrates in the lung, we measured rates of oxidation of glutamine, glucose, lactate, and 3-hydroxybutyrate in type II pneumocytes isolated from d 19 fetal rat lungs by measuring the production of 14CO2 from labeled substrates. Glutamine had a rate of 24.36 +/- 4.51 nmol 14CO2 produced/ h/mg of protein (mean +/- SEM), whereas lactate had a significantly higher rate, 40.29 +/- 4.42. 3-Hydroxybutyrate had a rate of 14.91 +/- 1.93. The rate of glucose oxidation was 2.13 +/- 0.36, significantly lower than that of glutamine. To examine the interactions of substrates normally found in the intracellular milieu, we measured the effect of unlabeled substrates as competitors on labeled substrate. This identifies multiple metabolic compartments of energy metabolism. Glucose, but not lactate, inhibited the oxidation of glutamine, suggesting a compartmentation of tricarboxylic acid cycle activity, rather than simple dilution by glucose. Glucose and lactate had reciprocal inhibition. Our data suggest at least two separate compartments in the type II cells for substrate oxidation, one for glutamine metabolism and a second for glucose metabolism. In summary, we have documented that glutamine and other alternate substrates are oxidized preferentially over glucose for energy metabolism in the d 19 fetal rat lung type II pneumocyte. In addition, we have delineated some of the compartmentation that occurs within the developing type II cell, which may determine how these substrates are used.
He, Xi; Bi, Xue-Yuan; Lu, Xing-Zhu; Zhao, Ming; Yu, Xiao-Jiang; Sun, Lei; Xu, Man; Wier, W Gil; Zang, Wei-Jin
2015-07-01
We explored the role of endoplasmic reticulum (ER)-mitochondria Ca(2+) cross talk involving voltage-dependent anion channel-1 (VDAC1)/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 in endothelial cells during hypoxia/reoxygenation (H/R), and investigated the protective effects of acetylcholine. Acetylcholine treatment during reoxygenation prevented intracellular and mitochondrial Ca(2+) increases and alleviated ER Ca(2+) depletion during H/R in human umbilical vein endothelial cells. Consequently, acetylcholine enhanced mitochondrial membrane potential and inhibited proapoptotic cascades, thereby reducing cell death and preserving endothelial ultrastructure. This effect was likely mediated by the type-3 muscarinic acetylcholine receptor and the phosphatidylinositol 3-kinase/Akt pathway. In addition, interactions among members of the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex were increased after H/R and were associated with mitochondrial Ca(2+) overload and cell death. Inhibition of the partner of the Ca(2+) channeling complex (VDAC1 siRNA) or a reduction in ER-mitochondria tethering (mitofusin 2 siRNA) prevented the increased protein interaction within the complex and reduced mitochondrial Ca(2+) accumulation and subsequent endothelial cell death after H/R. Intriguingly, acetylcholine could modulate ER-mitochondria Ca(2+) cross talk by inhibiting the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 expression. Phosphatidylinositol 3-kinase siRNA diminished acetylcholine-mediated inhibition of mitochondrial Ca(2+) overload and VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex formation induced by H/R. Our data suggest that ER-mitochondria interplay plays an important role in reperfusion injury in the endothelium and may be a novel molecular target for endothelial protection. Acetylcholine attenuates both intracellular and mitochondrial Ca(2+) overload and protects endothelial cells from H/R injury, presumably by disrupting the ER-mitochondria interaction. © 2015 American Heart Association, Inc.
NASA Technical Reports Server (NTRS)
Max, S. R.; Rance, N.
1983-01-01
The effects of sex steroids on muscle weight and oxidative capacity of rat planaris muscles subjected to functional overload by removal of synergistic muscles were investigated. Ten weeks after bilateral synergist removal, plantaris muscles were significantly hypertrophic compared with unoperated controls. After this period, the ability of the muscles to oxide three substrates of oxidative metabolism was assessed. Experimental procedures are discussed and results are presented herein. Results suggest a lack of beneficial effect of sex hormone status on the process of hypertrophy and on biochemical changes in overloaded muscle. Such findings are not consistent with the idea of synergistic effects of sex steroids and muscle usage.
Koves, Timothy R; Ussher, John R; Noland, Robert C; Slentz, Dorothy; Mosedale, Merrie; Ilkayeva, Olga; Bain, James; Stevens, Robert; Dyck, Jason R B; Newgard, Christopher B; Lopaschuk, Gary D; Muoio, Deborah M
2008-01-01
Previous studies have suggested that insulin resistance develops secondary to diminished fat oxidation and resultant accumulation of cytosolic lipid molecules that impair insulin signaling. Contrary to this model, the present study used targeted metabolomics to find that obesity-related insulin resistance in skeletal muscle is characterized by excessive beta-oxidation, impaired switching to carbohydrate substrate during the fasted-to-fed transition, and coincident depletion of organic acid intermediates of the tricarboxylic acid cycle. In cultured myotubes, lipid-induced insulin resistance was prevented by manipulations that restrict fatty acid uptake into mitochondria. These results were recapitulated in mice lacking malonyl-CoA decarboxylase (MCD), an enzyme that promotes mitochondrial beta-oxidation by relieving malonyl-CoA-mediated inhibition of carnitine palmitoyltransferase 1. Thus, mcd(-/-) mice exhibit reduced rates of fat catabolism and resist diet-induced glucose intolerance despite high intramuscular levels of long-chain acyl-CoAs. These findings reveal a strong connection between skeletal muscle insulin resistance and lipid-induced mitochondrial stress.
Biswas, Raktim; Ahn, Jin Chul; Moon, Jeong Hwan; Kim, Jungbin; Choi, Young-Hoon; Park, So Young; Chung, Phil-Sang
2018-05-09
The overall goal is to study the effect of low-level laser therapy (LLLT) on membrane distribution of major water channel protein aquaporin 5 (AQP5) in salivary gland during hyperglycemia. Par C10 cells treated with high glucose (50 mM) showed a reduced membrane distribution of AQP5. The functional expression of AQP5 was downregulated due to intracellular Ca 2+ overload and ER stress. This reduction in AQP5 expression impairs water permeability and therefore results in hypo-salivation. A reduced salivary flow was also observed in streptozotocin (STZ)-induced diabetic mice model and the expression of AQP5 and phospho-AQP5 was downregulated. Low-level laser treatment with 850 nm (30 mW, 10 min = 18 J/cm 2 ) reduced ER stress and recovered AQP5 membrane distribution via serine phosphorylation in the cells. In the STZ-induced diabetic mouse, LLLT with 850 nm (60 J/cm 2 ) increased salivary flow and upregulated of AQP5 and p-AQP5. ER stress was also reduced via downregulation of caspase 12 and CHOP. In silico analysis confirmed that the serine 156 is one of the most favorable phosphorylation sites of AQP5 and may contribute to the stability of the protein. Therefore, this study suggests high glucose inhibits phosphorylation-dependent AQP5 membrane distribution. High glucose induces intracellular Ca 2+ overload and ER stress that disrupt AQP5 functional expression. Low-level laser therapy with 850 nm improves salivary function by increasing AQP5 membrane distribution in hyperglycemia-induced hyposalivation. Copyright © 2018. Published by Elsevier B.V.
Icodextrin as salvage therapy in peritoneal dialysis patients with refractory fluid overload
Johnson, David Wayne; Arndt, Mary; O'Shea, Amanda; Watt, Rhonda; Hamilton, Jan; Vincent, Kaia
2001-01-01
Background Icodextrin is a high molecular weight, starch-derived glucose polymer, which is capable of inducing sustained ultrafiltration over prolonged (12–16 hour) peritoneal dialysis (PD) dwells. The aim of this study was to evaluate the ability of icodextrin to alleviate refractory, symptomatic fluid overload and prolong technique survival in PD patients. Methods A prospective, open-label, pre-test/post-test study was conducted in 17 PD patients (8 females/9 males, mean age 56.8 ± 2.9 years) who were on the verge of being transferred to haemodialysis because of symptomatic fluid retention that was refractory to fluid restriction, loop diuretic therapy, hypertonic glucose exchanges and dwell time optimisation. One icodextrin exchange (2.5 L 7.5%, 12-hour dwell) was substituted for a long-dwell glucose exchange each day. Results Icodextrin significantly increased peritoneal ultrafiltration (885 ± 210 ml to 1454 ± 215 ml, p < 0.05) and reduced mean arterial pressure (106 ± 4 to 96 ± 4 mmHg, p < 0.05), but did not affect weight, plasma albumin concentration, haemoglobin levels or dialysate:plasma creatinine ratio. Diabetic patients (n = 12) also experienced improved glycaemic control (haemoglobin Alc decreased from 8.9 ± 0.7% to 7.9 ± 0.7%, p < 0.05). Overall PD technique survival was prolonged by a mean of 11.6 months (95% CI 6.0–17.3 months). On multivariate Cox proportional hazards analysis, extension of technique survival by icodextrin was only significantly predicted by baseline net daily peritoneal ultrafiltration (adjusted HR 2.52, 95% CI 1.13–5.62, p < 0.05). Conclusions Icodextrin significantly improved peritoneal ultrafiltration and extended technique survival in PD patients with symptomatic fluid overload, especially those who had substantially impaired peritoneal ultrafiltration. PMID:11737871
Abate, Michele; Salini, Vincenzo; Andia, Isabel
Several epidemiological and clinical observations have definitely demonstrated that obesity has harmful effects on tendons. The pathogenesis of tendon damage is multi-factorial. In addition to overload, attributable to the increased body weight, which significantly affects load-bearing tendons, systemic factors play a relevant role. Several bioactive peptides (chemerin, leptin, adiponectin and others) are released by adipocytes, and influence tendon structure by means of negative activities on mesenchymal cells. The ensuing systemic state of chronic, sub-clinic, low-grade inflammation can damage tendon structure. Metabolic disorders (diabetes, impaired glucose tolerance, and dislipidemia), frequently associated with visceral adiposity, are concurrent pathogenetic factors. Indeed, high glucose levels increase the formation of Advanced Glycation End-products, which in turn form stable covalent cross-links within collagen fibers, modifying their structure and functionality.Sport activities, so useful for preventing important cardiovascular complications, may be detrimental for tendons if they are submitted to intense acute or chronic overload. Therefore, two caution rules are mandatory: first, to engage in personalized soft training program, and secondly to follow regular check-up for tendon pathology.
Effects of B Vitamins Overload on Plasma Insulin Level and Hydrogen Peroxide Generation in Rats.
Sun, Wuping; Zhai, Mingzhu; Zhou, Qian; Qian, Chengrui; Jiang, Changyu
2017-08-31
It has been reported that nicotinamide-overload induces oxidative stress associated with insulin resistance, the key feature of type 2 diabetes mellitus (T2DM). This study aimed to investigate the effects of B vitamins in T2DM. Glucose tolerance tests were carried out in adult Sprague-Dawley rats treated with or without cumulative doses of B vitamins. More specifically, insulin tolerance tests were also carried out in adult Sprague-Dawley rats treated with or without cumulative doses of Vitamin B3. We found that cumulative Vitamin B1 and Vitamin B3 administration significantly increased the plasma H₂O₂ levels associated with high insulin levels. Only Vitamin B3 reduced muscular and hepatic glycogen contents. Cumulative administration of nicotinic acid, another form of Vitamin B3, also significantly increased plasma insulin level and H₂O₂ generation. Moreover, cumulative administration of nicotinic acid or nicotinamide impaired glucose metabolism. This study suggested that excess Vitamin B1 and Vitamin B3 caused oxidative stress and insulin resistance.
Soares de Alencar Mota, Clécia; Ribeiro, Carla; de Araújo, Gustavo Gomes; de Araújo, Michel Barbosa; de Barros Manchado-Gobatto, Fúlvia; Voltarelli, Fabrício Azevedo; de Oliveira, Camila Aparecida Machado; Luciano, Eliete; de Mello, Maria Alice Rostom
2008-10-02
Ninety percent of cases of diabetes are of the slowly evolving non-insulin-dependent type, or Type 2 diabetes. Lack of exercise is regarded as one of the main causes of this disorder. In this study we analyzed the effects of physical exercise on glucose homeostasis in adult rats with type 2 diabetes induced by a neonatal injection of alloxan. Female Wistar rats aged 6 days were injected with either 250 mg/kg of body weight of alloxan or citrate buffer 0.01 M (controls). After weaning, half of the animals in each group were subjected to physical training adjusted to meet the aerobic-anaerobic metabolic transition by swimming 1 h/day for 5 days a week with weight overloads. The necessary overload used was set and periodically readjusted for each rat through effort tests based on the maximal lactate steady state procedure. When aged 28, 60, 90, and 120 days, the rats underwent glucose tolerance tests (GTT) and their peripheral insulin sensitivity was evaluated using the HOMA index. The area under the serum glucose curve obtained through GTT was always higher in alloxan-treated animals than in controls. A decrease in this area was observed in trained alloxan-treated rats at 90 and 120 days old compared with non-trained animals. At 90 days old the trained controls showed lower HOMA indices than the non-trained controls. Neonatal administration of alloxan induced a persistent glucose intolerance in all injected rats, which was successfully counteracted by physical training in the aerobic/anaerobic metabolic transition.
Rosa-Caldwell, Megan E; Brown, Jacob L; Lee, David E; Blackwell, Thomas A; Turner, Kyle W; Brown, Lemuel A; Perry, Richard A; Haynie, Wesley S; Washington, Tyrone A; Greene, Nicholas P
2017-09-01
What is the central question of this study? What are the individual and combined effects of muscle-specific peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) overexpression and physical activity during high-fat feeding on glucose and exercise tolerance? What is the main finding and its importance? Our main finding is that muscle-specific PGC-1α overexpression provides no protection against lipid-overload pathologies nor does it enhance exercise adaptations. Instead, physical activity, regardless of PGC-1α content, protects against high-fat diet-induced detriments. Activation of muscle autophagy was correlated with exercise protection, suggesting that autophagy might be a mediating factor for exercise-induced protection from lipid overload. The prevalence of glucose intolerance is alarmingly high. Efforts to promote mitochondrial biogenesis through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) to mitigate glucose intolerance have been controversial. However, physical activity remains a primary means to alleviate the condition. The aim of this study was to determine the combined effects of muscle-specific overexpression of PGC-1α and physical activity on glucose handling during diet-induced obesity. Wild-type (WT, ∼20) and PGC-1α muscle transgenic (MCK-PGC-1α, ∼20) mice were given a Western diet (WD) at 8 weeks age and allowed to consume food ab libitum throughout the study. At 12 weeks of age, all animals were divided into sedentary (SED) or voluntary wheel running (VWR) interventions. At 7, 11 and 15 weeks of age, animals underwent glucose tolerance tests (GTT) and graded exercise tests (GXT). At 16 weeks of age, tissues were collected. At 11 weeks, the MCK-PGC-1α animals had 50% greater glucose tolerance integrated area under the curve compared with WT. However, at 15 weeks, SED animals also had greater GTT integrated area under the curve compared with VWR, regardless of genotype; furthermore, SED animals demonstrated reduced exercise capacity compared with earlier time points, which was not seen in VWR animals. Voluntary distance run per day was correlated with GTT in VWR-WT, but not VWR-MCK-PGC-1α mice. Voluntary wheel running and genotype independently resulted in a greater LC3II/LC3I ratio, suggesting enhanced autophagosome formation, which was correlated with exercise-induced improvements in GTT. In conclusion, artificially increasing mitochondrial content does not protect from lipid-induced pathologies nor does it augment exercise adaptations. Physical activity ameliorates the effects of lipid overload-induced glucose intolerance, an effect that appears to be related to enhanced activation of autophagy. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Smith, Benjamin T; Knutsen, Jeffrey S; Davis, Robert H
2010-05-01
The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.
Ischemic preconditioning improves mitochondrial tolerance to experimental calcium overload.
Crestanello, Juan A; Doliba, Nicolai M; Babsky, Andriy M; Doliba, Natalia M; Niibori, Koki; Whitman, Glenn J R; Osbakken, Mary D
2002-04-01
Ca(2+) overload leads to mitochondrial uncoupling, decreased ATP synthesis, and myocardial dysfunction. Pharmacologically opening of mitochondrial K(ATP) channels decreases mitochondrial Ca(2+) uptake, improving mitochondrial function during Ca(2+) overload. Ischemic preconditioning (IPC), by activating mitochondrial K(ATP) channels, may attenuate mitochondrial Ca(2+) overload and improve mitochondrial function during reperfusion. The purpose of these experiments was to study the effect of IPC (1) on mitochondrial function and (2) on mitochondrial tolerance to experimental Ca(2+) overload. Rat hearts (n = 6/group) were subjected to (a) 30 min of equilibration, 25 min of ischemia, and 30 min of reperfusion (Control) or (b) two 5-min episodes of ischemic preconditioning, 25 min of ischemia, and 30 min of reperfusion (IPC). Developed pressure (DP) was measured. Heart mitochondria were isolated at end-Equilibration (end-EQ) and at end-Reperfusion (end-RP). Mitochondrial respiratory function (state 2, oxygen consumption with substrate only; state 3, oxygen consumption stimulated by ADP; state 4, oxygen consumption after cessation of ADP phosphorylation; respiratory control index (RCI, state 3/state 4); rate of oxidative phosphorylation (ADP/Deltat), and ADP:O ratio) was measured with polarography using alpha-ketoglutarate as a substrate in the presence of different Ca(2+) concentrations (0 to 5 x 10(-7) M) to simulate Ca(2+) overload. IPC improved DP at end-RP. IPC did not improve preischemic mitochondrial respiratory function or preischemic mitochondrial response to Ca(2+) loading. IPC improved state 3, ADP/Deltat, and RCI during RP. Low Ca(2+) levels (0.5 and 1 x 10(-7) M) stimulated mitochondrial function in both groups predominantly in IPC. The Control group showed evidence of mitochondrial uncoupling at lower Ca(2+) concentrations (1 x 10(-7) M). IPC preserved state 3 at high Ca(2+) concentrations. The cardioprotective effect of IPC results, in part, from preserving mitochondrial function during reperfusion and increasing mitochondrial tolerance to Ca(2+) loading at end-RP. Activation of mitochondrial K(ATP) channels by IPC and their improvement in Ca(2+) homeostasis during RP may be the mechanism underlying this protection.
Lactate is a preferential oxidative energy substrate over glucose for neurons in culture.
Bouzier-Sore, Anne-Karine; Voisin, Pierre; Canioni, Paul; Magistretti, Pierre J; Pellerin, Luc
2003-11-01
The authors investigated concomitant lactate and glucose metabolism in primary neuronal cultures using 13C- and 1H-NMR spectroscopy. Neurons were incubated in a medium containing either [1-13C]glucose and different unlabeled lactate concentrations, or unlabeled glucose and different [3-13C]lactate concentrations. Overall, 13C-NMR spectra of cellular extracts showed that more 13C was incorporated into glutamate when lactate was the enriched substrate. Glutamate 13C-enrichment was also found to be much higher in lactate-labeled than in glucose-labeled conditions. When glucose and lactate concentrations were identical (5.5 mmol/L), relative contributions of glucose and lactate to neuronal oxidative metabolism amounted to 21% and 79%, respectively. Results clearly indicate that when neurons are in the presence of both glucose and lactate, they preferentially use lactate as their main oxidative substrate.
What is metabolic syndrome, and why are children getting it?
Weiss, Ram; Bremer, Andrew A; Lustig, Robert H
2013-01-01
Metabolic syndrome comprises a cluster of cardiovascular risk factors (hypertension, altered glucose metabolism, dyslipidemia, and abdominal obesity) that occur in obese children. However, metabolic syndrome can also occur in lean individuals, suggesting that obesity is a marker for the syndrome, not a cause. Metabolic syndrome is difficult to define, due to its nonuniform classification and reliance on hard cutoffs in the evaluation of disorders with non-Gaussian distributions. Defining the syndrome is even more difficult in children, owing to racial and pubertal differences and lack of cardiovascular events. Lipid partitioning among specific fat depots is associated with insulin resistance, which can lead to mitochondrial overload and dysfunctional subcellular energy use and drive the various elements of metabolic syndrome. Multiple environmental factors, in particular a typical Western diet, drive mitochondrial overload, while other changes in Western society, such as stress and sleep deprivation, increase insulin resistance and the propensity for food intake. These culminate in an adverse biochemical phenotype, including development of altered glucose metabolism and early atherogenesis during childhood and early adulthood. PMID:23356701
Biofiltration of paint solvent mixtures in two reactor types: overloading by polar components.
Paca, Jan; Halecky, Martin; Misiaczek, Ondrej; Kozliak, Evguenii I; Jones, Kim
2012-01-01
Steady-state performances of a trickle bed reactor (TBR) and a biofilter (BF) in loading experiments with increasing inlet concentrations of polar solvents, acetone, methyl ethyl ketone, methyl isobutyl ketone and n-butyl acetate, were investigated, along with the system's dynamic responses. Throughout the entire experimentation time, a constant loading rate of aromatic components of 4 g(c)·m(-3)·h(-1) was maintained to observe the interactions between the polar substrates and aromatic hydrocarbons. Under low combined substrate loadings, the BF outperformed TBR not only in the removal of aromatic hydrocarbons but also in the removal of polar substrates. However, increasing the loading rate of polar components above the threshold value of 31-36 g(c)·m(-3)·h(-1) resulted in a steep and significant drop in the removal efficiencies of both polar (except for butyl acetate) and hydrophobic components, which was more pronounced in the BF; so the relative TBR/BF efficiency became reversed under such overloading conditions. A step-drop of the overall OL(POLAR) (combined loading by polar air pollutants) from overloading values to 7 g(c)·m(-3)·h(-1) resulted in an increase of all pollutant removal efficiencies, although in TBR the recovery was preceded by lag periods lasting between 5 min (methyl ethyl ketone) to 3.7 h (acetone). The occurrence of lag periods in the TBR recovery was, in part, due to the saturation of mineral medium with water-soluble polar solvents, particularly, acetone. The observed bioreactor behavior was consistent with the biological steps being rate-limiting.
Yücel, G; Yeşilkaya, A; Aksu, T A; Yeğin, A; Alicigüzel, Y
1997-01-01
Erythrocytes and hemolysates from 10 normal and 10 glucose-6-phosphate dehydrogenase-deficient individuals were incubated with cumene hydroperoxide, and free radical-induced lipid peroxidation was monitored by chemiluminescence. Chemiluminescence intensities in erythrocytes of normal and deficient subjects were similar in the presence or absence of glucose-6-phosphate dehydrogenase substrates. Hemolysates of normal and deficient subjects also showed similar chemiluminescence in the absence of substrates. However, with the addition of substrates to the incubation medium, deficient hemolysates reached maximum chemiluminescence intensity within a shorter period, and maximum values were higher than in normal hemolysates. We believe this offers a new means of detection of glucose-6-phosphate dehydrogenase-deficient patients.
Eades, Susan C; Stokes, Ashley M; Johnson, Philip J; LeBlanc, Casey J; Ganjam, Venkataseshu K; Buff, Preston R; Moore, Rustin M
2007-01-01
To quantify changes in endothelium-derived factors and relate those changes to various aspects of digital hemodynamics during the prodromal stages of carbohydrate overload (CHO)-induced laminitis in horses. 20 adult horses without abnormalities of the digit. Digital and jugular venous blood samples were collected at 1-hour intervals (for assessment of endothelin-1 [ET-1] immunoreactivity and measurement of glucose, insulin, and nitric oxide [NO] concentrations) or 4-hour intervals (CBC and platelet-neutrophil aggregate assessment) for 8 hours or 16 hours after induction of CHO-associated laminitis in horses treated with an ET-1 antagonist. Effects of treatment, collection site, and time and the random effects of horse on each variable were analyzed by use of a repeated-measures model. Where treatment and collection site had no significant effect, data were combined. Compared with baseline values, CHO resulted in changes in several variables, including a significant increase from baseline in digital blood ET-like immunoreactivity at 11 hours; digital blood ET-like immunoreactivity was significantly greater than that in jugular venous blood at 8, 9, 11, and 12 hours. Digital and jugular venous blood concentrations of glucose increased from baseline significantly at 3, 4, and 5 hours; insulin concentration increased significantly at 5 hours; and the number of platelet-neutrophil aggregates increased significantly at 12 hours. In horses, concurrent increases in venous blood ET-1 immunoreactivity, insulin and glucose concentrations, and platelet-neutrophil aggregates support a role of endothelial dysfunction in the pathogenesis of CHO-induced laminitis.
Mountfort, D O; Asher, R A
1983-01-01
Neocallimastix frontalis PN-1 utilized the soluble sugars D-glucose, D-cellobiose, D-fructose, maltose, sucrose, and D-xylose for growth. L-Arabinose, D-galactose, D-mannose, and D-xylitol did not support growth of the fungus. Paired substrate test systems were used to determine whether any two sugars were utilized simultaneously or sequentially. Of the paired monosaccharides tested, glucose was found to be preferentially utilized compared with fructose and xylose. The disaccharides cellobiose and sucrose were preferentially utilized compared with fructose and glucose, respectively, an cellobiose was also the preferred substrate compared with xylose. Xylose was the preferred substrate compared with maltose. In further incubations, the fungus was grown on the substrate utilized last in the two-substrate tests. After moderate growth was attained, the preferred substrate was added to the culture medium. Inhibition of nonpreferred substrate utilization by the addition of the preferred substrate was taken as evidence of catabolite regulation. For the various combinations of substrates tested, fructose and xylose utilization was found to be inhibited in the presence of glucose, indicating that catabolite regulation was involved. No clear-cut inhibition was observed with any of the other substrate combinations tested. The significance of these findings in relation to rumen microbial interactions and competitions is discussed. PMID:6660873
Glucose Transporters in Cardiac Metabolism and Hypertrophy
Shao, Dan; Tian, Rong
2016-01-01
The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions. PMID:26756635
Bak, Lasse K; Schousboe, Arne; Sonnewald, Ursula; Waagepetersen, Helle S
2006-10-01
Glucose is the primary energy substrate for the adult mammalian brain. However, lactate produced within the brain might be able to serve this purpose in neurons. In the present study, the relative significance of glucose and lactate as substrates to maintain neurotransmitter homeostasis was investigated. Cultured cerebellar (primarily glutamatergic) neurons were superfused in medium containing [U-13C]glucose (2.5 mmol/L) and lactate (1 or 5 mmol/L) or glucose (2.5 mmol/L) and [U-13C]lactate (1 mmol/L), and exposed to pulses of N-methyl-D-aspartate (300 micromol/L), leading to synaptic activity including vesicular release. The incorporation of 13C label into intracellular lactate, alanine, succinate, glutamate, and aspartate was determined by mass spectrometry. The metabolism of [U-13C]lactate under non-depolarizing conditions was high compared with that of [U-13C]glucose; however, it decreased significantly during induced depolarization. In contrast, at both concentrations of extracellular lactate, the metabolism of [U-13C]glucose was increased during neuronal depolarization. The role of glucose and lactate as energy substrates during vesicular release as well as transporter-mediated influx and efflux of glutamate was examined using preloaded D-[3H]aspartate as a glutamate tracer and DL-threo-beta-benzyloxyaspartate to inhibit glutamate transporters. The results suggest that glucose is essential to prevent depolarization-induced reversal of the transporter (efflux), whereas vesicular release was unaffected by the choice of substrate. In conclusion, the present study shows that glucose is a necessary substrate to maintain neurotransmitter homeostasis during synaptic activity and that synaptic activity does not induce an upregulation of lactate metabolism in glutamatergic neurons.
Lund, Trine M; Obel, Linea F; Risa, Øystein; Sonnewald, Ursula
2011-08-01
The ketogenic diet has multiple beneficial effects not only in treatment of epilepsy, but also in that of glucose transporter 1 deficiency, cancer, Parkinson's disease, obesity and pain. Thus, there is an increasing interest in understanding the mechanism behind this metabolic therapy. Patients on a ketogenic diet reach high plasma levels of ketone bodies, which are used by the brain as energy substrates. The interaction between glucose and ketone bodies is complex and there is still controversy as to what extent it affects the homeostasis of the neurotransmitters glutamate, aspartate and GABA. The present study was conducted to study this metabolic interaction in cultured GABAergic neurons exposed to different combinations of (13)C-labeled and unlabeled glucose and β-hydroxybutyrate. Depolarization was induced and the incorporation of (13)C into glutamate, GABA and aspartate was analyzed. The presence of β-hydroxybutyrate together with glucose did not affect the total GABA content but did, however, decrease the aspartate content to a lower value than when either glucose or β-hydroxybutyrate was employed alone. When combinations of the two substrates were used (13)C-atoms from β-hydroxybutyrate were found in all three amino acids to a greater extent than (13)C-atoms from glucose, but only the (13)C contribution from [1,6-(13)C]glucose increased upon depolarization. In conclusion, β-hydroxybutyrate was preferred over glucose as substrate for amino acid synthesis but the total content of aspartate decreased when both substrates were present. Furthermore only the use of glucose increased upon depolarization. Copyright © 2011 Elsevier B.V. All rights reserved.
Beta-cell metabolic alterations under chronic nutrient overload in rat and human islets
USDA-ARS?s Scientific Manuscript database
The aim of this study was to assess multifactorial Beta-cell responses to metabolic perturbations in primary rat and human islets. Treatment of dispersed rat islet cells with elevated glucose and free fatty acids (FFAs, oleate:palmitate = 1:1 v/v) resulted in increases in the size and the number of ...
Effects of Growth Rate and Limiting Substrate on Glucose Metabolism in Escherichia coli1
Wright, D. N.; Lockhart, W. R.
1965-01-01
Wright, D. N. (Iowa State University, Ames), and W. R. Lockhart. Effects of growth rate and limiting substrate on glucose metabolism in Escherichia coli. J. Bacteriol. 89:1082–1085. 1965.—Escherichia coli was grown in continuous culture at various rates in a defined medium with either glucose of (NH4)2SO4 as the rate-limiting substrate. Cellular content of polysaccharide (“glycogen”) is greater in cells grown under nitrogen limitation with glucose available in excess, and is greater in rapidly grown than in slowly grown cells. The ability of cells to carry on endogenous respiration, as measured by tetrazolium reduction, can be correlated with their glycogen content. In carbon-limited cultures, the proportion of substrate glucose diverted to glycogen production is least for cells grown slowly, which may reflect greater energy requirements for cell maintenance in such cultures. The activity of glucose-6-phosphate dehydrogenase (indicating function of a C-1 preferential pathway for glucose degradation) is greater in rapidly grown cells, confirming earlier observations in batch cultures. Activity of this enzyme is also greater in nitrogen-limited than in carbon-limited cells, suggesting that there may be catabolic repression of the Embden-Meyerhoff pathway when glucose is available in excess. PMID:14276099
Müller-Matthesius, R
1975-05-01
The sensitivity of enzyme kinetic substrate determinations can be improved with the aid of competitive inhibitors. As an example, the determination of glucose dehydrogenase in the presence of potassium thiocyanate is described. The method has the advantage of rapid operation with satisfactory precision.
Unknown biological effects of L-glucose, ALA, and PUFA.
Yamada, Katsuya; Sato, Daisuke; Nakamura, Takao; Amano, Hizuru; Morimoto, Yuji
2017-09-01
Key substrates including glucose, amino acids, and fatty acids play core roles in nutrient metabolism. In this review, we describe phenomena observed when key substrates are applied to cells. We focused on three promising substrates: L-glucose derivatives, 5-aminolevulinic acid, and polyunsaturated fatty acid. Since they are assumed to give a specific reaction when they are transported into cells or metabolized in cells, they are expected to be applied in a clinical setting. We provide the latest knowledge regarding their behaviors and effects on cells.
[Transamination in the mechanism of protection of mitochondria from Ca2+ overload].
Saakian, G G; Saakian, I R
2008-01-01
A high sensitivity of the succinate-dependent uptake of Ca2+ by mitochondria to (1) the transamination (TA) substrates glutamate (GLU) and alpha-ketoglutarate (KGL) and (2) the inhibitor of TA aminooxyacetate (AOA) was revealed. The effect of the TA substrates on Ca2+ uptake depends on the ratio (1:10 mM) of their concentrations: 1 mM GLU activates and 10 mM KGL decreases this activation by 35-46%, whereas AOA suppresses the Ca2+ capacity by 60% and the inhibitor of succinate oxidation malonate, by 80-90%. A similarity in the limiting action of KGL and phosphoenolpyruvate (PEP), two sources of oxaloacetate (OAA) and GTP, on Ca2+ capacity was revealed. The differences in the effects of KGL and GLU and the similarity in the effects of KGL and PEP on succinate oxidation are explained by the effect of OAA and GTP on this oxidation. The alternating inflow of OAA in coupled processes of TA, pyruvate cycle, and tricarboxylic acids cycle provides the reciprocal activation and cyclic recurrence of Ca2+ uptake, i. e., protection from the chronic exhausting activation of Ca2+-regulated dehydrogenases, the overload of Ca2+-outgoing channels, and the excessive production of free radicals in mitochondria. The reciprocal regulation of Ca2+ uptake by TA is considered as a mechanism of the maintenance of Ca2+ homeostasis and protection of mitochondria against Ca2+ overload.
Xu, Zhenkuan; Xu, Wenzhe; Song, Yan; Zhang, Bin; Li, Feng; Liu, Yuguang
2016-07-25
Altered store-operated calcium entry (SOCE) has been suggested to be involved in many diabetic complications. However, the association of altered SOCE and diabetic neuronal damage remains unclear. This study aimed to investigate the effects of altered SOCE on primary cultured rat neuron injury induced by high glucose. Our data demonstrated that high glucose increased rat neuron injury and upregulated the expression of store-operated calcium channel (SOC). Inhibition of SOCE by a pharmacological inhibitor and siRNA knockdown of stromal interaction molecule 1 weakened the intracellular calcium overload, restored mitochondrial membrane potential, downregulated cytochrome C release and inhibited cell apoptosis. As well, treatment with the calcium chelator BAPTA-AM prevented cell apoptosis by ameliorating the high glucose-increased intracellular calcium level. These findings suggest that SOCE blockade may alleviate high glucose-induced neuronal damage by inhibiting apoptosis. SOCE might be a promising therapeutic target in diabetic neurotoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Loss of Hfe Leads to Progression of Tumor Phenotype in Primary Retinal Pigment Epithelial Cells
Gnana-Prakasam, Jaya P.; Veeranan-Karmegam, Rajalakshmi; Coothankandaswamy, Veena; Reddy, Sushma K.; Martin, Pamela M.; Thangaraju, Muthusamy; Smith, Sylvia B.; Ganapathy, Vadivel
2013-01-01
Purpose. Hemochromatosis is a disorder of iron overload arising mostly from mutations in HFE. HFE is expressed in retinal pigment epithelium (RPE), and Hfe−/− mice develop age-related iron accumulation and retinal degeneration associated with RPE hyperproliferation. Here, the mechanism underlying the hyperproliferative phenotype in RPE was investigated. Methods. Cellular senescence was monitored by β-galactosidase activity. Gene expression was monitored by real-time PCR. Survivin was analyzed by Western blot and immunofluorescence. Migration and invasion were monitored using appropriate kits. Glucose transporters (GLUTs) were monitored by 3-O-methyl-D-glucose uptake. Histone deacetylases (HDACs) were studied by monitoring catalytic activity and acetylation status of histones H3/H4. Results. Hfe−/− RPE cells exhibited slower senescence rate and higher survivin expression than wild type cells. Hfe−/− cells migrated faster and showed greater glucose uptake and increased expression of GLUTs. The expression of HDACs and DNA methyltransferase (DNMTs) also was increased. Similarly, RPE cells from hemojuvelin (Hjv)-knockout mice, another model of hemochromatosis, also had increased expression of GLUTs, HDACs, and DNMTs. The expression of Slc5a8 was decreased in Hfe−/− RPE cells, but treatment with a DNA methylation inhibitor restored the transporter expression, indicating involvement of DNA methylation in the silencing of Slc5a8 in Hfe−/− cells. Conclusions. RPE cells from iron-overloaded mice exhibit several features of tumor cells: decreased senescence, enhanced migration, increased glucose uptake, and elevated levels of HDACs and DNMTs. These features are seen in Hfe−/− RPE cells as well as in Hjv−/− RPE cells, providing a molecular basis for the hyperproliferative phenotype of Hfe−/− and Hjv−/− RPE cells. PMID:23169885
Lin, Songyue; Feng, Wendou; Miao, Xiaofei; Zhang, Xiangxin; Chen, Sujing; Chen, Yuanqiang; Wang, Wei; Zhang, Yining
2018-07-01
Flexible and implantable glucose biosensors are emerging technologies for continuous monitoring of blood-glucose of diabetes. Developing a flexible conductive substrates with high active surface area is critical for advancing the technology. Here, we successfully fabricate a flexible and highly sensitive nonenzymatic glucose by using DVD-laser scribed graphene (LSG) as a flexible conductively substrate. Copper nanoparticles (Cu-NPs) are electrodeposited as the catalyst. The LSG/Cu-NPs sensor demonstrates excellent catalytic activity toward glucose oxidation and exhibits a linear glucose detection range from 1 μM to 4.54 mM with high sensitivity (1.518 mA mM -1 cm -2 ) and low limit of detection (0.35 μM). Moreover, the LSG/Cu-NPs sensor shows excellent reproducibility and long-term stability. It is also highly selective toward glucose oxidation under the presence of various interfering species. Excellent flexing stability is also demonstrated by the LSG/Cu-NPs sensor, which is capable of maintaining 83.9% of its initial current after being bent against a 4-mm diameter rod for 180 times. The LSG/Cu-NPs sensor shows great potential for practical application as a nonenzymatic glucose biosensor. Meanwhile, the LSG conductive substrate provides a platform for the developing next-generation flexible and potentially implantable bioelectronics and biosensors. Copyright © 2018 Elsevier B.V. All rights reserved.
Kalbermatter, David; Chiu, Po-Lin; Jeckelmann, Jean-Marc; Ucurum, Zöhre; Walz, Thomas; Fotiadis, Dimitrios
2017-07-01
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) is a structurally and functionally complex system that mediates sugar uptake in bacteria. Besides several soluble subunits, the glucose-specific PTS includes the integral membrane protein IICB that couples the transmembrane transport of glucose to its phosphorylation. Here, we used electron crystallography of sugar-embedded tubular crystals of the glucose-specific IIC transport domain from Escherichia coli (ecIIC glc ) to visualize the structure of the transporter in the presence and absence of its substrate. Using an in vivo transport assay and binding competition experiments, we first established that, while it transports d-glucose, ecIIC glc does not bind l-glucose. We then determined the projection structure of ecIIC glc from tubular crystals embedded in d- and l-glucose and found a subtle conformational change. From comparison of the ecIIC glc projection maps with crystal structures of other IIC transporters, we can deduce that the transporter adopts an inward-facing conformation, and that the maps in the presence and absence of the substrate reflect the transporter before and after release of the transported glucose into the cytoplasm. The transition associated with substrate release appears to require a subtle structural rearrangement in the region that includes hairpin 1. Copyright © 2017 Elsevier Inc. All rights reserved.
Substrate quality alters the microbial mineralization of added substrate and soil organic carbon
NASA Astrophysics Data System (ADS)
Jagadamma, S.; Mayes, M. A.; Steinweg, J. M.; Schaeffer, S. M.
2014-09-01
The rate and extent of decomposition of soil organic carbon (SOC) is dependent, among other factors, on substrate chemistry and microbial dynamics. Our objectives were to understand the influence of substrate chemistry on microbial decomposition of carbon (C), and to use model fitting to quantify differences in pool sizes and mineralization rates. We conducted an incubation experiment for 270 days using four uniformly labeled 14C substrates (glucose, starch, cinnamic acid and stearic acid) on four different soils (a temperate Mollisol, a tropical Ultisol, a sub-arctic Andisol, and an arctic Gelisol). The 14C labeling enabled us to separate CO2 respired from added substrates and from native SOC. Microbial gene copy numbers were quantified at days 4, 30 and 270 using quantitative polymerase chain reaction (qPCR). Substrate C respiration was always higher for glucose than other substrates. Soils with cinnamic and stearic acid lost more native SOC than glucose- and starch-amended soils. Cinnamic and stearic acid amendments also exhibited higher fungal gene copy numbers at the end of incubation compared to unamended soils. We found that 270 days were sufficient to model the decomposition of simple substrates (glucose and starch) with three pools, but were insufficient for more complex substrates (cinnamic and stearic acid) and native SOC. This study reveals that substrate quality exerts considerable control on the microbial decomposition of newly added and native SOC, and demonstrates the need for multi-year incubation experiments to constrain decomposition parameters for the most recalcitrant fractions of SOC and complex substrates.
Substrate quality alters microbial mineralization of added substrate and soil organic carbon
NASA Astrophysics Data System (ADS)
Jagadamma, S.; Mayes, M. A.; Steinweg, J. M.; Schaeffer, S. M.
2014-03-01
The rate and extent of decomposition of soil organic carbon (SOC) is dependent on substrate chemistry and microbial dynamics. Our objectives were to understand the influence of substrate chemistry on microbial processing of carbon (C), and to use model fitting to quantify differences in pool sizes and mineralization rates. We conducted an incubation experiment for 270 days using four uniformly-labeled 14C substrates (glucose, starch, cinnamic acid and stearic acid) on four different soils (a temperate Mollisol, a tropical Ultisol, a sub-arctic Andisol, and an arctic Gelisol). The 14C labeling enabled us to separate CO2 respired from added substrates and from native SOC. Microbial gene copy numbers were quantified at days 4, 30 and 270 using quantitative polymerase chain reaction (qPCR). Substrate C respiration was always higher for glucose than other substrates. Soils with cinnamic and stearic acid lost more native SOC than glucose- and starch-amended soils, despite an initial delay in respiration. Cinnamic and stearic acid amendments also exhibited higher fungal gene copy numbers at the end of incubation compared to unamended soils. We found that 270 days was sufficient to model decomposition of simple substrates (glucose and starch) with three pools, but was insufficient for more complex substrates (cinnamic and stearic acid) and native SOC. This study reveals that substrate quality imparts considerable control on microbial decomposition of newly added and native SOC, and demonstrates the need for multi-year incubation experiments to constrain decomposition parameters for the most recalcitrant fractions of SOC and added substrates.
Miyazaki, Mitsunori; McCarthy, John J; Fedele, Mark J; Esser, Karyn A
2011-01-01
Abstract The mammalian target of rapamycin complex 1 (mTORC1) functions as a central integrator of a wide range of signals that modulate protein metabolism and cell growth. However, the contributions of individual pathways regulating mTORC1 activity in skeletal muscle are poorly defined. The purpose of this study was to determine the regulatory mechanisms that contribute to mTORC1 activation during mechanical overload-induced skeletal muscle hypertrophy. Consistent with previous studies, mechanical overload induced progressive hypertrophy of the plantaris muscle which was associated with significant increases in total RNA content and protein metabolism. mTORC1 was activated after a single day of overload as indicated by a significant increase in S6K1 phosphorylation at T389 and T421/S424. In contrast, Akt activity, as assessed by Akt phosphorylation status (T308 and S473), phosphorylation of direct downstream targets (glycogen synthase kinase 3 β, proline-rich Akt substrate 40 kDa and tuberous sclerosis 2 (TSC2)) and a kinase assay, was not significantly increased until 2–3 days of overload. Inhibition of phosphoinositide 3-kinase (PI3K) activity by wortmannin was sufficient to block insulin-dependent signalling but did not prevent the early activation of mTORC1 in response to overload. We identified that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)-dependent pathway was activated at day 1 after overload. In addition, a target of MEK/ERK signalling, phosphorylation of TSC2 at S664, was also increased at this early time point. These observations demonstrate that in vivo, mTORC1 activation at the early phase of mechanical overload in skeletal muscle occurs independently of PI3K/Akt signalling and provide evidence that the MEK/ERK pathway may contribute to mTORC1 activation through phosphorylation of TSC2. PMID:21300751
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivagnanam, Kumaran; Raghavan, Vijaya G. S.; Shah, Manesh B
2011-01-01
Background: Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetonebutanol- ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production. Results: We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylosemore » substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates. Conclusion: Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report.« less
Zorzano, A; Herrera, E
1988-01-01
1. Incorporation of gluconeogenic precursors into blood glucose and hepatic glycogen and acylglycerol glycerol was examined in 24 h-fasted virgin rats by using a flooding procedure for substrate administration. At 10 min after their intravenous injection, the conversion of alanine or glycerol into liver glycogen or acylglycerol glycerol was proportional to glucose synthesis. 2. In 24 h-fasted 21-day-pregnant rats, the incorporation of alanine and glycerol into hepatic acylglycerol glycerol was markedly enhanced compared with the control group. In addition, during fasting at late pregnancy, the proportion of substrates directed to acylglycerol glycerol as compared with the fraction incorporated into glucose was augmented. 3. In pentobarbital-treated fasted rats, the incorporation of both alanine and pyruvate into circulating glucose and into hepatic glycogen and acylglycerol glycerol was increased. Pentobarbital treatment increased the proportion of substrates incorporated into liver glycogen, compared with the fraction appearing in circulating glucose. These changes were concomitant with a marked accumulation of glycogen. 4. The data indicate that, during fasting, gluconeogenesis provides glucose as well as hepatic glycogen and acylglycerol glycerol, independently of whether the substrates enter gluconeogenesis at the level of pyruvate or dihydroxyacetone phosphate. PMID:3223926
Smadja-Lamère, Nicolas; Shum, Michael; Déléris, Paul; Roux, Philippe P.; Abe, Jun-Ichi; Marette, André
2013-01-01
We previously demonstrated that the mTORC1/S6K1 pathway is activated by insulin and nutrient overload (e.g. amino acids (AA)), which leads to the inhibition of the PI3K/Akt pathway via the inhibitory serine phosphorylation of IRS-1, notably on serine 1101 (Ser-1101). However, even in the absence of AA, insulin can still promote IRS-1 Ser-1101 phosphorylation by other kinases that remain to be fully characterized. Here, we describe a new negative regulator of IRS-1, the p90 ribosomal S6 kinase (RSK). Computational analyses revealed that Ser-1101 within IRS-1 falls into the consensus motif of RSK. Moreover, recombinant RSK phosphorylated IRS-1 C-terminal fragment on Ser-1101, which was prevented by mutations of this site or when a kinase-inactive mutant of RSK was used. Using antibodies directed toward the phosphorylation sites located in the activation segment of RSK (Ser-221 or Ser-380), we found that insulin activates RSK in L6 myocytes in the absence of AA overload. Inhibition of RSK using either the pharmacological inhibitor BI-D1870 or after adenoviral expression of a dominant negative RSK1 mutant (RSK1-DN) showed that RSK selectively phosphorylates IRS-1 on Ser-1101. Accordingly, expression of the RSK1-DN mutant in L6 myocytes and FAO hepatic cells improved insulin action on glucose uptake and glucose production, respectively. Furthermore, RSK1 inhibition prevented insulin resistance in L6 myocytes chronically exposed to high glucose and high insulin. These results show that RSK is a novel regulator of insulin signaling and glucose metabolism and a potential mediator of insulin resistance, notably through the negative phosphorylation of IRS-1 on Ser-1101. PMID:24036112
Franke, Silvia I R; Molz, Patrícia; Mai, Camila; Ellwanger, Joel H; Zenkner, Fernanda F; Horta, Jorge A; Prá, Daniel
2018-04-16
We evaluated the influence of hesperidin and vitamin C (VitC) on glycemic parameters, lipid profile, and DNA damage in male Wistar rats treated with sucrose overload. Rats were divided into six experimental groups: I-water control; II-sucrose control; III-hesperidin control; IV-VitC control; V-co-treatment of sucrose plus hesperidin; VI-co-treatment of sucrose plus VitC. We measured the levels of triglycerides, total cholesterol, HDL-c, LDL-c, fasting glucose, and glycated hemoglobin (A1C). DNA damage was evaluated in blood and brain cells using the comet assay and the micronucleus test was used to evaluate chromosomal damages in the rat bone marrow. Co-treatment with VitC, but not with hesperidin, normalized the serum glucose. No effect of co-treatments was observed on A1C. The co-treatment with VitC or hesperidin did not influence the lipid profile (p>0.05). Rats co-treated with hesperidin had a significantly lower DNA damage level in blood (p<0.05) and brain (p<0.05). Rats treated with VitC only, but not those co-treated with VitC plus sucrose, had significantly higher DNA damage in brain (p<0.05). No significant differences were observed in the results of micronucleus test (p>0.05). Hesperidin and VitC showed different effects on sucrose and DNA damage levels. While VitC lowered the serum glucose, hesperidin reduced the DNA damage.
Seitz, Kelsey E; Smith, Cynthia R; Marks, Stanley L; Venn-Watson, Stephanie K; Ivančić, Marina
2016-12-01
The objective of this study was to establish a comprehensive technique for ultrasound examination of the dolphin hepatobiliary system and apply this technique to 30 dolphins to determine what, if any, sonographic changes are associated with blood-based indicators of metabolic syndrome (insulin greater than 14 μIU/ml or glucose greater than 112 mg/dl) and iron overload (transferrin saturation greater than 65%). A prospective study of individuals in a cross-sectional population with and without elevated postprandial insulin levels was performed. Twenty-nine bottlenose dolphins ( Tursiops truncatus ) in a managed collection were included in the final data analysis. An in-water ultrasound technique was developed that included detailed analysis of the liver and pancreas. Dolphins with hyperinsulinemia concentrations had larger livers compared with dolphins with nonelevated concentrations. Using stepwise, multivariate regression including blood-based indicators of metabolic syndrome in dolphins, glucose was the best predictor of and had a positive linear association with liver size (P = 0.007, R 2 = 0.24). Bottlenose dolphins are susceptible to metabolic syndrome and associated complications that affect the liver, including fatty liver disease and iron overload. This study facilitated the establishment of a technique for a rapid, diagnostic, and noninvasive ultrasonographic evaluation of the dolphin liver. In addition, the study identified ultrasound-detectable hepatic changes associated primarily with elevated glucose concentration in dolphins. Future investigations will strive to detail the pathophysiological mechanisms for these changes.
Sode, Koji; Loew, Noya; Ohnishi, Yosuke; Tsuruta, Hayato; Mori, Kazushige; Kojima, Katsuhiro; Tsugawa, Wakako; LaBelle, Jeffrey T; Klonoff, David C
2017-01-15
In this study, a novel fungus FAD dependent glucose dehydrogenase, derived from Aspergillus niger (AnGDH), was characterized. This enzyme's potential for the use as the enzyme for blood glucose monitor enzyme sensor strips was evaluated, especially by investigating the effect of the presence of xylose during glucose measurements. The substrate specificity of AnGDH towards glucose was investigated, and only xylose was found as a competing substrate. The specific catalytic efficiency for xylose compared to glucose was 1.8%. The specific activity of AnGDH for xylose at 5mM concentration compared to glucose was 3.5%. No other sugars were used as substrate by this enzyme. The superior substrate specificity of AnGDH was also demonstrated in the performance of enzyme sensor strips. The impact of spiking xylose in a sample with physiological glucose concentrations on the sensor signals was investigated, and it was found that enzyme sensor strips using AnGDH were not affected at all by 5mM (75mg/dL) xylose. This is the first report of an enzyme sensor strip using a fungus derived FADGDH, which did not show any positive bias at a therapeutic level xylose concentration on the signal for a glucose sample. This clearly indicates the superiority of AnGDH over other conventionally used fungi derived FADGDHs in the application for SMBG sensor strips. The negligible activity of AnGDH towards xylose was also explained on the basis of a 3D structural model, which was compared to the 3D structures of A. flavus derived FADGDH and of two glucose oxidases. Copyright © 2016 Elsevier B.V. All rights reserved.
Takenaka, Tsuneo; Kishimoto, Miyako; Ohta, Mari; Tomonaga, Osamu; Suzuki, Hiromichi
2017-05-01
The effects of sodium-glucose co-transporter type 2 inhibitors on home blood pressure were examined in type 2 diabetes with nephropathy. The patients with diabetic nephropathy were screened from medical records in our hospitals. Among them, 52 patients who measured home blood pressure and started to take sodium-glucose co-transporter type 2 inhibitors were selected. Clinical parameters including estimated glomerular filtration rate, albuminuria and home blood pressure for 6 months were analysed. Sodium-glucose co-transporter type 2 inhibitors (luseogliflozin 5 mg/day or canagliflozin 100 mg/day) reduced body weight, HbA1c, albuminuria, estimated glomerular filtration rate and office blood pressure. Although sodium-glucose co-transporter type 2 inhibitors did not alter morning blood pressure, it reduced evening systolic blood pressure. Regression analyses revealed that decreases in evening blood pressure predicted decrements in albuminuria. The present data suggest that sodium-glucose co-transporter type 2 inhibitors suppress sodium overload during daytime to reduce evening blood pressure and albuminuria.
Fungi immobilization for landfill leachate treatment.
Saetang, Jenjira; Babel, Sandhya
2010-01-01
This paper investigated treatment of landfill leachate collected from Nonthaburi landfill site, Thailand, by using immobilized white rot fungi, namely, Trametes versicolor BCC 8725 and Flavodon flavus BCC 17421. Effects of pH and co-substrates were investigated at different contact times. Three types of co-substrates as carbon source used in this study are glucose, corn starch and cassava. Treatment efficiency was evaluated based on color, BOD, and COD removal. Initial BOD and COD were found to be 5,600 and 34,560 mg/L, respectively. The optimum pH was found to be 4, the optimum co-substrate concentration (glucose, corn starch and cassava) was 3 g/L and the optimum contact time was 10 days for both types of fungi. Addition of glucose, corn starch and cassava as co-substrate at optimum conditions could remove 78, 74, and 66% of color, respectively for T. versicolor and 73, 68, and 60%, respectively, for F. flavus. Moreover, for T. versicolor, BOD and COD reduction of 69 and 57%, respectively, could be achieved at optimum conditions when using glucose as a co-substrate. For F. flavus, BOD and COD reduction of 66 and 52%, respectively were obtained when using glucose as a co-substrate. White rot fungi can be considered potentially useful in the treatment of landfill leachate as they can help in removing color, BOD and COD due to their biodegradative abilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack
During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared tomore » placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.« less
Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; ...
2015-02-18
During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared tomore » placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.« less
Liu, Yanping; Yu, Faquan
2011-04-08
Magnetic iron oxide nanoparticles (MION) were recently found to act as a peroxidase with intrinsic advantages over natural counterparts. Their limited affinity toward catalysis substrates, however, dramatically reduces their utility. In this paper, some effective groups were screened out and conjugated on MION as substrate-specific modifications for improving MION's affinity to substrates and hence utility. Nanoparticles of four different superficial structures were synthesized and characterized by TEM, size, zeta potential and SQUID, and assayed for peroxidase activity. Glucose detection was selected as an application model system to evaluate the bonus thereof. Catalysis was found to follow Michaelis-Menten kinetics. Sulfhydryl groups incorporated on MION (SH-MION) notably improve the affinity toward a substrate (hydrogen peroxide) and so do amino groups (NH₂-MION) toward another substrate, proved by variation in the determined kinetic parameters. A synergistically positive effect was observed and an apparently elevated detection sensitivity and a significantly lowered detection limit of glucose were achieved when integrated with both sulfhydryl and amino groups (SH-NH₂-MION). Our findings suggest that substrate-specific surface modifications are a straightforward and robust strategy to improve MION peroxidase-like activity. The high activity extends magnetic nanoparticles to wide applications other than glucose detection.
Amino acid and glucose uptake by rat brown adipose tissue. Effect of cold-exposure and acclimation.
López-Soriano, F J; Fernández-López, J A; Mampel, T; Villarroya, F; Iglesias, R; Alemany, M
1988-01-01
The net uptake/release of glucose, lactate and amino acids from the bloodstream by the interscapular brown adipose tissue of control, cold-exposed and cold-acclimated rats was estimated by measurement of arteriovenous differences in their concentrations. In the control animals amino acids contributed little to the overall energetic needs of the tissue; glucose uptake was more than compensated by lactate efflux. Cold-exposure resulted in an enhancement of amino acid utilization and of glucose uptake, with high lactate efflux. There was a net glycine and proline efflux that partly compensated the positive nitrogen balance of the tissue; amino acids accounted for about one-third of the energy supplied by glucose to the tissue. Cold-acclimation resulted in a very high increase in glucose uptake, with a parallel decrease in lactate efflux and amino acid consumption. Branched-chain amino acids, however, were more actively utilized. This was related with a much higher alanine efflux, in addition to that of glycine and proline. It is suggested that most of the glucose used during cold-exposure is returned to the bloodstream as lactate under conditions of active lipid utilization, amino acids contributing their skeletons largely in anaplerotic pathways. On the other hand, cold-acclimation resulted in an important enhancement of glucose utilization, with lowered amino acid oxidation. Amino acids are thus used as metabolic substrates by the brown adipose tissue of rats under conditions of relatively scarce substrate availability, but mainly as anaplerotic substrates, in parallel to glucose. Cold-acclimation results in a shift of the main substrates used in thermogenesis from lipid to glucose, with a much lower need for amino acids. PMID:3421924
Lundsgaard, Anne-Marie; Kiens, Bente
2014-01-01
It has become increasingly apparent that substrate metabolism is subject to gender-specific regulation, and the aim of this review is to outline the available evidence of molecular gender differences in glucose and lipid metabolism of skeletal muscle. Female sex has been suggested to have a favorable effect on glucose homeostasis, and the available evidence from hyperinsulinemic–euglycemic clamp studies is summarized to delineate whether there is a gender difference in whole-body insulin sensitivity and in particular insulin-stimulated glucose uptake of skeletal muscle. Whether an eventual higher insulin sensitivity of female skeletal muscle can be related to gender-specific regulation of molecular metabolism will be topic for discussion. Gender differences in muscle fiber type distribution and substrate availability to and in skeletal muscle are highly relevant for substrate metabolism in men and women. In particular, the molecular machinery for glucose and fatty acid oxidative and storage capacities in skeletal muscle and its implications for substrate utilization during metabolic situations of daily living are discussed, emphasizing their relevance for substrate choice in the fed and fasted state, and during periods of physical activity and recovery. Together, handling of carbohydrate and lipids and regulation of their utilization in skeletal muscle have implications for whole-body glucose homeostasis in men and women. 17-β estradiol is the most important female sex hormone, and the identification of estradiol receptors in skeletal muscle has opened for a role in regulation of substrate metabolism. Also, higher levels of circulating adipokines as adiponectin and leptin in women and their implications for muscle metabolism will be considered. PMID:25431568
Mitra, Ruchira; Chaudhuri, Surabhi; Dutta, Debjani
2017-01-01
In the present investigation, growth kinetics of Kocuria marina DAGII during batch production of β-Cryptoxanthin (β-CRX) was studied by considering the effect of glucose and maltose as a single and binary substrate. The importance of mixed substrate over single substrate has been emphasised in the present study. Different mathematical models namely, the Logistic model for cell growth, the Logistic mass balance equation for substrate consumption and the Luedeking-Piret model for β-CRX production were successfully implemented. Model-based analyses for the single substrate experiments suggested that the concentrations of glucose and maltose higher than 7.5 and 10.0 g/L, respectively, inhibited the growth and β-CRX production by K. marina DAGII. The Han and Levenspiel model and the Luong product inhibition model accurately described the cell growth in glucose and maltose substrate systems with a R 2 value of 0.9989 and 0.9998, respectively. The effect of glucose and maltose as binary substrate was further investigated. The binary substrate kinetics was well described using the sum-kinetics with interaction parameters model. The results of production kinetics revealed that the presence of binary substrate in the cultivation medium increased the biomass and β-CRX yield significantly. This study is a first time detailed investigation on kinetic behaviours of K. marina DAGII during β-CRX production. The parameters obtained in the study might be helpful for developing strategies for commercial production of β-CRX by K. marina DAGII.
Nagel, Frank-Jan; Van As, Henk; Tramper, Johannes; Rinzema, Arjen
2002-09-20
Gradients inside substrate particles cannot be prevented in solid-state fermentation. These gradients can have a strong effect on the physiology of the microorganisms but have hitherto received little attention in experimental studies. We report gradients in moisture and glucose content during cultivation of Aspergillus oryzae on membrane-covered wheat-dough slices that were calculated from (1)H-NMR images. We found that moisture gradients in the solid substrate remain small when evaporation is minimized. This is corroborated by predictions of a diffusion model. In contrast, strong glucose gradients developed. Glucose concentrations just below the fungal mat remained low due to high glucose uptake rates, but deeper in the matrix glucose accumulated to very high levels. Integration of the glucose profile gave an average concentration close to the measured average content. On the basis of published data, we expect that the glucose levels in the matrix cause a strong decrease in water activity. The results demonstrate that NMR can play an important role in quantitative analysis of water and glucose gradients at the particle level during solid-state fermentation, which is needed to improve our understanding of the response of fungi to this nonconventional fermentation environment. Copyright 2002 Wiley Periodicals, Inc.
Sabra, Wael; Bommareddy, Rajesh Reddy; Maheshwari, Garima; Papanikolaou, Seraphim; Zeng, An-Ping
2017-05-08
Unlike the well-studied backer yeast where catabolite repression represents a burden for mixed substrate fermentation, Yarrowia lipolytica, an oleaginous yeast, is recognized for its potential to produce single cell oils and citric acid from different feedstocks. These versatilities of Y. lipolytica with regards to substrate utilization make it an attractive host for biorefinery application. However, to develop a commercial process for the production of citric acid by Y. lipolytica, it is necessary to better understand the primary metabolism and its regulation, especially for growth on mixed substrate. Controlling the dissolved oxygen concentration (pO 2 ) in Y. lipolytica cultures enhanced citric acid production significantly in cultures grown on glucose in mono- or dual substrate fermentations, whereas with glycerol as mono-substrate no significant effect of pO 2 was found on citrate production. Growth on mixed substrate with glucose and glycerol revealed a relative preference of glycerol utilization by Y. lipolytica. Under optimized conditions with pO 2 control, the citric acid titer on glucose in mono- or in dual substrate cultures was 55 and 50 g/L (with productivity of 0.6 g/L*h in both cultures), respectively, compared to a maximum of 18 g/L (0.2 g/L*h) with glycerol in monosubstrate culture. Additionally, in dual substrate fermentation, glycerol limitation was found to trigger citrate consumption despite the presence of enough glucose in pO 2 -limited culture. The metabolic behavior of this yeast on different substrates was investigated at transcriptomic and 13 C-based fluxomics levels. Upregulation of most of the genes of the pentose phosphate pathway was found in cultures with highest citrate production with glucose in mono- or in dual substrate fermentation with pO 2 control. The activation of the glyoxylate cycle in the oxygen limited cultures and the imbalance caused by glycerol limitation might be the reason for the re-consumption of citrate in dual substrate fermentations. This study provides interesting targets for metabolic engineering of this industrial yeast.
Control of Growth Rate by Initial Substrate Concentration at Values Below Maximum Rate
Gaudy, Anthony F.; Obayashi, Alan; Gaudy, Elizabeth T.
1971-01-01
The hyperbolic relationship between specific growth rate, μ, and substrate concentration, proposed by Monod and used since as the basis for the theory of steady-state growth in continuous-flow systems, was tested experimentally in batch cultures. Use of a Flavobacterium sp. exhibiting a high saturation constant for growth in glucose minimal medium allowed direct measurement of growth rate and substrate concentration throughout the growth cycle in medium containing a rate-limiting initial concentration of glucose. Specific growth rates were also measured for a wide range of initial glucose concentrations. A plot of specific growth rate versus initial substrate concentration was found to fit the hyperbolic equation. However, the instantaneous relationship between specific growth rate and substrate concentration during growth, which is stated by the equation, was not observed. Well defined exponential growth phases were developed at initial substrate concentrations below that required for support of the maximum exponential growth rate and a constant doubling time was maintained until 50% of the substrate had been used. It is suggested that the external substrate concentration initially present “sets” the specific growth rate by establishing a steady-state internal concentration of substrate, possibly through control of the number of permeation sites. PMID:5137579
CHIP protects against cardiac pressure overload through regulation of AMPK
Schisler, Jonathan C.; Rubel, Carrie E.; Zhang, Chunlian; Lockyer, Pamela; Cyr, Douglas M.; Patterson, Cam
2013-01-01
Protein quality control and metabolic homeostasis are integral to maintaining cardiac function during stress; however, little is known about if or how these systems interact. Here we demonstrate that C terminus of HSC70-interacting protein (CHIP), a regulator of protein quality control, influences the metabolic response to pressure overload by direct regulation of the catalytic α subunit of AMPK. Induction of cardiac pressure overload in Chip–/– mice resulted in robust hypertrophy and decreased cardiac function and energy generation stemming from a failure to activate AMPK. Mechanistically, CHIP promoted LKB1-mediated phosphorylation of AMPK, increased the specific activity of AMPK, and was necessary and sufficient for stress-dependent activation of AMPK. CHIP-dependent effects on AMPK activity were accompanied by conformational changes specific to the α subunit, both in vitro and in vivo, identifying AMPK as the first physiological substrate for CHIP chaperone activity and establishing a link between cardiac proteolytic and metabolic pathways. PMID:23863712
Rasool, Kashif; Mahmoud, Khaled A; Lee, Dae Sung
2015-12-15
This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB. Copyright © 2015 Elsevier B.V. All rights reserved.
Sharma, Yogesh; Li, Baikun
2010-03-01
The wastewaters consist of diverse types of organic substrates that can be used as the carbon sources for power generation. To explore the utilization of some of these organics, the electricity generation from three substrates (acetate, ethanol, and glucose) was examined over a concentration range of 0.5-35 mM in single-chamber microbial fuel cells (SCMFCs). The power density generated from glucose was the highest at 401 mW/m(2) followed by acetate and ethanol at 368 mW/m(2) and 302 mW/m(2), respectively. The voltage increased with substrate concentration of 0.5-20mM, but significantly decreased at high substrate concentrations of 20-35 mM. Kinetic analysis indicated that the inhibition in the ethanol-fed MFCs was the highest at the concentration of 35 mM, while inhibition in glucose-fed MFCs was the lowest at the concentration of 20mM. These were in accordance with the extents of voltage decrease at high substrate concentration. Moreover, the effect of the distance between anode and cathode on voltage generation was also investigated. The reduction of the electrode distance by 33% in the glucose-fed MFCs reduced the internal resistance by 73% and led to 20% increase in voltage generation. Published by Elsevier Ltd.
Excess cholesterol inhibits glucose-stimulated fusion pore dynamics in insulin exocytosis.
Xu, Yingke; Toomre, Derek K; Bogan, Jonathan S; Hao, Mingming
2017-11-01
Type 2 diabetes is caused by defects in both insulin sensitivity and insulin secretion. Glucose triggers insulin secretion by causing exocytosis of insulin granules from pancreatic β-cells. High circulating cholesterol levels and a diminished capacity of serum to remove cholesterol from β-cells are observed in diabetic individuals. Both of these effects can lead to cholesterol accumulation in β-cells and contribute to β-cell dysfunction. However, the molecular mechanisms by which cholesterol accumulation impairs β-cell function remain largely unknown. Here, we used total internal reflection fluorescence microscopy to address, at the single-granule level, the role of cholesterol in regulating fusion pore dynamics during insulin exocytosis. We focused particularly on the effects of cholesterol overload, which is relevant to type 2 diabetes. We show that excess cholesterol reduced the number of glucose-stimulated fusion events, and modulated the proportion of full fusion and kiss-and-run fusion events. Analysis of single exocytic events revealed distinct fusion kinetics, with more clustered and compound exocytosis observed in cholesterol-overloaded β-cells. We provide evidence for the involvement of the GTPase dynamin, which is regulated in part by cholesterol-induced phosphatidylinositol 4,5-bisphosphate enrichment in the plasma membrane, in the switch between full fusion and kiss-and-run fusion. Characterization of insulin exocytosis offers insights into the role that elevated cholesterol may play in the development of type 2 diabetes. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
NASA Astrophysics Data System (ADS)
Perez-Mayen, Leonardo; Oliva, Jorge; Salas, P.; de La Rosa, Elder
2016-06-01
This work presents the design of substrates for Surface Enhanced Raman Scattering (SERS) using star-like gold nanoparticles synthesized by a wet chemical method. The SERS substrates were used for glucose detection for concentrations as low as 10-7 M, which represents an enhancement factor (EF) of 109, as a result of the hot spot formed by the spike termination and appropriate distribution of the gold nanoparticles. An improvement of two orders of magnitude was obtained by coating the gold nanoparticles with albumin with the configuration: glass/Au nanoparticles/albumin. In this case the lowest detection was at a concentration of 10-9 M for an EF of 1011. The albumin molecule allowed us to enhance the Raman signal because of the formation of peptide bonds (COOH-NH2) generated due to the interaction of glucose with albumin, and the appropriate separation distance between the glucose molecules and gold nanoparticles. The presence of such peptide conjugates was confirmed by FTIR spectra. Thus, our results suggest that our SERS substrates can be useful for the detection of very low concentrations of glucose, which is important for the diagnosis of diabetes in the field of medicine.This work presents the design of substrates for Surface Enhanced Raman Scattering (SERS) using star-like gold nanoparticles synthesized by a wet chemical method. The SERS substrates were used for glucose detection for concentrations as low as 10-7 M, which represents an enhancement factor (EF) of 109, as a result of the hot spot formed by the spike termination and appropriate distribution of the gold nanoparticles. An improvement of two orders of magnitude was obtained by coating the gold nanoparticles with albumin with the configuration: glass/Au nanoparticles/albumin. In this case the lowest detection was at a concentration of 10-9 M for an EF of 1011. The albumin molecule allowed us to enhance the Raman signal because of the formation of peptide bonds (COOH-NH2) generated due to the interaction of glucose with albumin, and the appropriate separation distance between the glucose molecules and gold nanoparticles. The presence of such peptide conjugates was confirmed by FTIR spectra. Thus, our results suggest that our SERS substrates can be useful for the detection of very low concentrations of glucose, which is important for the diagnosis of diabetes in the field of medicine. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00163g
Volkow, Nora D; Wang, Gene-Jack; Shokri Kojori, Ehsan; Fowler, Joanna S; Benveniste, Helene; Tomasi, Dardo
2015-02-18
During alcohol intoxication, the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis, we compared the effects of alcohol intoxication (0.75 g/kg alcohol vs placebo) on brain glucose metabolism during video stimulation (VS) versus when given with no stimulation (NS), in 25 heavy drinkers (HDs) and 23 healthy controls, each of whom underwent four PET-(18)FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p = 0.04); that alcohol (compared with placebo) decreased metabolism more in HD (20 ± 13%) than controls (9 ± 11%, p = 0.005) and in proportion to daily alcohol consumption (r = 0.36, p = 0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10 ± 12%) compared with NS in both groups (15 ± 13%, p = 0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e., acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in HDs, which might make them vulnerable to energy deficits during withdrawal. Copyright © 2015 the authors 0270-6474/15/353248-08$15.00/0.
Adaptive responses of GLUT-4 and citrate synthase in fast-twitch muscle of voluntary running rats
NASA Technical Reports Server (NTRS)
Henriksen, E. J.; Halseth, A. E.
1995-01-01
Glucose transporter (GLUT-4) protein, hexokinase, and citrate synthase (proteins involved in oxidative energy production from blood glucose catabolism) increase in response to chronically elevated neuromuscular activity. It is currently unclear whether these proteins increase in a coordinated manner in response to this stimulus. Therefore, voluntary wheel running (WR) was used to chronically overload the fast-twitch rat plantaris muscle and the myocardium, and the early time courses of adaptative responses of GLUT-4 protein and the activities of hexokinase and citrate synthase were characterized and compared. Plantaris hexokinase activity increased 51% after just 1 wk of WR, whereas GLUT-4 and citrate synthase were increased by 51 and 40%, respectively, only after 2 wk of WR. All three variables remained comparably elevated (+50-64%) through 4 wk of WR. Despite the overload of the myocardium with this protocol, no substantial elevations in these variables were observed. These findings are consistent with a coordinated upregulation of GLUT-4 and citrate synthase in the fast-twitch plantaris, but not in the myocardium, in response to this increased neuromuscular activity. Regulation of hexokinase in fast-twitch muscle appears to be uncoupled from regulation of GLUT-4 and citrate synthase, as increases in the former are detectable well before increases in the latter.
Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production.
Yuvadetkun, Prawphan; Leksawasdi, Noppol; Boonmee, Mallika
2017-03-16
Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8 g/L in xylose and 52.6 g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4 g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40 g/L of ethanol and ethanol production capacity of the yeast was 52 g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170 g/L sugar concentrations.
Board, Mary; Lopez, Colleen; van den Bos, Christian; Callaghan, Richard; Clarke, Kieran; Carr, Carolyn
2017-07-01
Stem cells have been assumed to demonstrate a reliance on anaerobic energy generation, suited to their hypoxic in vivo environment. However, we found that human mesenchymal stem cells (hMSCs) have an active oxidative metabolism with a range of substrates. More ATP was consistently produced from substrate oxidation than glycolysis by cultured hMSCs. Strong substrate preferences were shown with the ketone body, acetoacetate, being oxidised at up to 35 times the rate of glucose. ROS-generation was 45-fold lower during acetoacetate oxidation compared with glucose and substrate preference may be an adaptation to reduce oxidative stress. The UCP2 inhibitor, genipin, increased ROS production with either acetoacetate or glucose by 2-fold, indicating a role for UCP2 in suppressing ROS production. Addition of pyruvate stimulated acetoacetate oxidation and this combination increased ATP production 27-fold, compared with glucose alone, which has implications for growth medium composition. Oxygen tension during culture affected metabolism by hMSCs. Between passages 2 and 5, rates of both glycolysis and substrate-oxidation increased at least 2-fold for normoxic (20% O 2 )- but not hypoxic (5% O 2 )-cultured hMSCs, despite declining growth rates and no detectable signs of differentiation. Culture of the cells with 3-hydroxybutyrate abolished the increased rates of these pathways. These findings have implications for stem cell therapy, which necessarily involves in vitro culture of cells, since low passage number normoxic cultured stem cells show metabolic adaptations without detectable changes in stem-like status. Copyright © 2017. Published by Elsevier Ltd.
Low GDP Solution and Glucose-Sparing Strategies for Peritoneal Dialysis.
Szeto, Cheuk Chun; Johnson, David W
2017-01-01
Long-term exposure to a high glucose concentration in conventional peritoneal dialysis (PD) solution has a number of direct and indirect (via glucose degradation products [GDP]) detrimental effects on the peritoneal membrane, as well as systemic metabolism. Glucose- or GDP-sparing strategies often are hypothesized to confer clinical benefits to PD patients. Icodextrin (glucose polymer) solution improves peritoneal ultrafiltration and reduces the risk of fluid overload, but these beneficial effects are probably the result of better fluid removal rather than being glucose sparing. Although frequently used for glucose sparing, the role of amino acid-based solution in this regard has not been tested thoroughly. When glucose-free solutions are used in a combination regimen, published studies showed that glycemic control was improved significantly in diabetic PD patients, and there probably are beneficial effects on peritoneal function. However, the long-term effects of glucose-free solutions, used either alone or as a combination regimen, require further studies. On the other hand, neutral pH-low GDP fluids have been shown convincingly to preserve residual renal function and urine volume. The cost effectiveness of these solutions supports the regular use of neutral pH-low GDP solutions. Nevertheless, further studies are required to determine whether neutral pH-low GDP solutions exert beneficial effects on patient-level outcomes, such as peritonitis, technique survival, and patient survival. Copyright © 2017 Elsevier Inc. All rights reserved.
Cao, Yunqing; Hu, Yongyou; Sun, Jian; Hou, Bin
2010-08-01
Microbial fuel cell (MFC) holds a great promise to harvest electricity directly from a wide range of ready degradable organic matters and enhance degradation of some recalcitrant contaminants. Glucose, acetate sodium and ethanol were separately examined as co-substrates for simultaneous bioelectricity generation and Congo red degradation in a proton exchange membrane (PEM) air-cathode single-chamber MFC. The batch test results showed that more than 98% decolorization at the dye concentration of 300 mg/L were achieved within 36 h for all tested co-substrates during electricity generation. The decolorization rate was different with the co-substrates used. The fastest decolorization rate was achieved with glucose followed by ethanol and sodium acetate. Accumulated intermediates were observed during Congo red degradation which was demonstrated by UV-Visible spectra and high performance liquid chromatography (HPLC). Electricity generation was sustained and not significantly affected by the Congo red degradation. Glucose, acetate sodium and ethanol produced maximum power densities of 103 mW/m(2), 85.9 mW/m(2) and 63.2 mW/m(2), respectively, and the maximum voltage output decreased by only 7% to 15%. Our results demonstrated the feasibility of using various co-substrates for simultaneous decolorization of Congo red and bioelectricity generation in the MFC and showed that glucose was the preferred co-substrate. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Bajaj, Mini; Winter, Josef
2013-10-15
High strength automobile industry wastewater, collected from decanters (DECA) of the pre-treatment plant after oil, grease and sludge separation, was investigated for production of methane in the absence and presence of glucose or excess aerobic sludge (AS) from a lab scale suspension reactor as co-substrates. The highest methane production from DECA wastewater was 335.4 L CH4/kg CODsoluble removal which decreased in the presence of the co-substrates to 232.5 (with 2 g/L glucose) and to 179 (with 40% AS) L CH4/kg CODsoluble removal, respectively. Around 95% of total methane was produced within 5 days of incubation of DECA at 37 °C when no co-substrate was added. Addition of co-substrates did not improve biodegradation of DECA but overall methane production from DECA + co-substrates was increased due to co-substrate biodegradation. The anaerobic inoculum, capable of producing 2.4 mol of hydrogen/mol of glucose under zinc induced inhibitory conditions, was unable to produce hydrogen from DECA as substrate under the same conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lund, Trine M; Ploug, Kenneth B; Iversen, Anne; Jensen, Anders A; Jansen-Olesen, Inger
2015-03-01
Glucose is the main energy substrate for neurons, and ketone bodies are known to be alternative substrates. However, the capacity of ketone bodies to support different neuronal functions is still unknown. Thus, a change in energy substrate from glucose alone to a combination of glucose and β-hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β-hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown an effect of β-hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β-hydroxybutyrate was present in these neurons. In addition, the NMDA receptor-induced calcium responses in the neurons were diminished in the presence of β-hydroxybutyrate, whereas a direct effect of the ketone body on transmitter release was absent. However, the presence of β-hydroxybutyrate augmented transmitter release induced by the KATP channel blocker glibenclamide, thus giving an indirect indication of the involvement of KATP channels in the effects of ketone bodies on transmitter release. Energy metabolism and neurotransmission are linked and involve ATP-sensitive potassium (KATP ) channels. However, it is still unclear how and to what degree available energy substrate affects this link. We investigated the effect of changing energy substrate from only glucose to a combination of glucose and R-β-hydroxybutyrate in cultured neurons. Using the latter combination, glycolysis was diminished, NMDA receptor-induced calcium responses were lower, and the KATP channel blocker glibenclamide caused a higher transmitter release. © 2014 International Society for Neurochemistry.
Effects of acoustic wave resonance oscillation on immobilized enzyme
NASA Astrophysics Data System (ADS)
Nishiyama, Hiroshi; Watanabe, Tomoya; Inoue, Yasunobu
2014-03-01
In aiming at developing a new method to artificially activate enzyme catalysts immobilized on surface, the effects of resonance oscillation of bulk acoustic waves were studied. Glucose oxidase (GOD) was immobilized by a covalent coupling method on a ferroelectric lead zirconate titanate (PZT) device that was able to generate thickness-extensional resonance oscillation (TERO). Glucose oxidation by the GOD enzyme was studied in a microreactor. The generation of TERO immediately increased the catalytic activity of immobilized GOD by a factor of 2-3. With turn-off of TERO, no significant activity decrease occurred, and 80-90% of the enhanced activity was maintained while the reaction proceeded. The almost complete reversion of the activity to the original low level before TERO generation was observed when the immobilized GOD was exposed to a glucose substrate-free solution. These results indicated that the presence of glucose substrate was essential for TERO-induced GOD activation and preservation of the increased activity level. The influences of reaction temperature, glucose concentration, pH, and rf electric power on the TERO activation showed that TERO strengthened the interactions of the immobilized enzyme with glucose substrate and hence promoted the formation of an activation complex.
Zhang, Jie; Zhu, Wen; Xu, Haipeng; Li, Yan; Hua, Dongliang; Jin, Fuqiang; Gao, Mintian; Zhang, Xiaodong
2016-04-01
Most butanol-producing strains of Clostridium prefer glucose over xylose, leading to a slower butanol production from lignocellulose hydrolysates. It is therefore beneficial to find and use a strain that can simultaneously use both glucose and xylose. Clostridium beijerinckii SE-2 strain assimilated glucose and xylose simultaneously and produced ABE (acetone/butanol/ethanol). The classic diauxic growth behavior was not seen. Similar rates of sugar consumption (4.44 mM glucose h(-1) and 6.66 mM xylose h(-1)) were observed suggesting this strain could use either glucose or xylose as the substrate and it has a similar capability to degrade these two sugars. With different initial glucose:xylose ratios, glucose and xylose were consumed simultaneously at rates roughly proportional to their individual concentrations in the medium, leading to complete utilization of both sugars at the same time. ABE production profiles were similar on different substrates. Transcriptional studies on the effect of glucose and xylose supplementation, however, suggests a clear glucose inhibition on xylose metabolism-related genes is still present.
Kishimoto, Miyako; Endo, Hisako; Hagiwara, Shotaro; Miwa, Akiyoshi; Noda, Mitsuhiko
2010-08-01
Excessive iron storage sometimes causes diabetes in patients with hemochromatosis, a disease caused by iron overloading. We performed an immunohistochemical analysis to study an autopsy case of aplastic anemia and diabetic hemochromatosis caused by frequent blood transfusions, and extensive hemosiderin deposition was observed in the liver and pancreas. The pancreatic islets of the patient and a control subject were stained to detect glucagon, insulin, and proinsulin. Significantly lower levels of immunoreactivity with both insulin antibodies and proinsulin antibodies, but not with glucagon antibodies, was observed in the islet cells in the patient's tissue than in the islet cells of the control. Hemosiderin deposition in the islets is known to be exclusively distributed in the β-cells, thus, selective iron-induced damage to the β-cells may have affected insulin synthesis and secretion and led to glucose intolerance in the patient.
Barrett, M P; Tetaud, E; Seyfang, A; Bringaud, F; Baltz, T
1995-12-15
The gene encoding THT2, one of two hexose-transporter isoforms present in Trypanosoma brucei, has been expressed in both Xenopus laevis oocytes and a stably transfected line of Chinese hamster ovary (CHO) cells. The heterologously expressed gene encodes a protein with pharmacological and kinetic parameters similar to those of the hexose transporter measured in procyclic-culture-form trypanosomes. The substrate recognition of the THT2 transporter differed from that of the THT1 isoform, which is expressed only in bloodstream forms, in that: (i) it has a relatively high affinity for substrate with a Km of 59 microM for 2-deoxy-D-glucose (2-DOG) and a similar high affinity for D-glucose (compared with Km of 0.5 mM for 2-DOG in bloodstream forms); (ii) the affinity for 6-deoxy-D-glucose (6-DOG) is two orders of magnitude lower than that for D-glucose, whereas the bloodstream-form transporter recognizes D-glucose and its 6-DOG analogue with similar affinity; (iii) the bloodstream-form transporter, but not THT2, recognizes 3-fluoro-3-deoxy-D-glucose. D-Fructose-transport capacity and insensitivity to D-galactose was also found in THT2-expressing CHO cells and procyclic trypanosomes. We conclude from these cumulative results that the THT2 gene encodes the transporter responsible for hexose transport in procyclic trypanosomes. The transport of 2-DOG in procyclic organisms was inhibited by both the protonophore, carbonyl cyanide 4-trifluoromethoxy phenylhydrazone (FCCP), and KCN, suggesting a requirement for a protonmotive force. However, sensitivity to these reagents depended on the external substrate concentration, with uptake being unaffected at substrate concentrations higher than 2 mM. THT2 expressed in CHO cells behaved as a facilitated transporter, and was unaffected by FCCP or KCN over the whole substrate concentration range tested.
Pyruvate production and excretion by the luminous marine bacteria.
Ruby, E G; Nealson, K H
1977-01-01
During aerobic growth on glucose, several species of luminous marine bacteria exhibited an imcomplete oxidative catabolism of substrate. Pyruvate, one of the products of glucose metabolism, was excreted into the medium during exponential growth and accounted for up to 50% of the substrate carbon metabolized. When glucose was depleted from the medium, the excreted pyruvate was promptly utilized, demonstrating that the cells are capable of pyruvate catabolism. Pyruvate excretion is not a general phenomenon of carbohydrate metabolism since it does not occur during the utilization of glycerol or maltose. When cells pregrown on glycerol were exposed to glucose, they began to excrete pyruvate, even if protein synthesis was blocked with chloramphenicol. Glucose thus appears to have an effect on the activity of preexisting catabolic enzymes. PMID:303077
Zhang, Yan; Shi, Junling; Liu, Laping; Gao, Zhenhong; Che, Jinxin; Shao, Dongyan; Liu, Yanlin
2015-01-01
Pinoresinol diglucoside (PDG) and pinoresinol (Pin) are normally produced by plant cells via the phenylpropanoid pathway. This study reveals the existence of a related pathway in Phomopsis sp. XP-8, a PDG-producing fungal strain isolated from the bark of the Tu-chung tree (Eucommiaulmoides Oliv.). After addition of 0.15 g/L glucose to Phomopsis sp. XP-8, PDG and Pin formed when phenylalanine, tyrosine, leucine, cinnamic acid, and p-coumaric acid were used as the substrates respectively. No PDG formed in the absence of glucose, but Pin was detected after addition of all these substrates except leucine. In all systems in the presence of glucose, production of PDG and/or Pin and the accumulation of phenylalanine, cinnamic acid, or p-coumaric acid correlated directly with added substrate in a time- and substrate concentration- dependent manner. After analysis of products produced after addition of each substrate, the mass flow sequence for PDG and Pin biosynthesis was defined as: glucose to phenylalanine, phenylalanine to cinnamic acid, then to p-coumaric acid, and finally to Pin or PDG. During the bioconversion, the activities of four key enzymes in the phenylpropanoid pathway were also determined and correlated with accumulation of their corresponding products. PDG production by Phomopsis sp. exhibits greater efficiency and cost effectiveness than the currently-used plant-based system and will pave the way for large scale production of PDG and/or Pin for medical applications. PMID:26331720
Carbohydrate metabolism of the perfused rat liver
Ross, B. D.; Hems, R.; Freedland, R. A.; Krebs, H. A.
1967-01-01
1. The rates of gluconeogenesis from most substrates tested in the perfused livers of well-fed rats were about half of those obtained in the livers of starved rats. There was no difference for glycerol. 2. A diet low in carbohydrate increased the rates of gluconeogenesis from some substrates but not from all. In general the effects of a low-carbohydrate diet on rat liver are less marked than those on rat kidney cortex. 3. Glycogen was deposited in the livers of starved rats when the perfusion medium contained about 10mm-glucose. The shedding of glucose from the glycogen stores by the well-fed liver was greatly diminished by 10mm-glucose and stopped by 13·3mm-glucose. Livers of well-fed rats that were depleted of their glycogen stores by treatment with phlorrhizin and glucagon synthesized glycogen from glucose. 4. When two gluconeogenic substrates were added to the perfusion medium additive effects occurred only when glycerol was one of the substrates. Lactate and glycerol gave more than additive effects owing to an increased rate of glucose formation from glycerol. 5. Pyruvate also accelerated the conversion of glycerol into glucose, and the accelerating effect of lactate can be attributed to a rapid formation of pyruvate from lactate. 6. Butyrate and oleate at 2mm, which alone are not gluconeogenic, increased the rate of gluconeogenesis from lactate. 7. The acceleration of gluconeogenesis from lactate by glucagon was also found when gluconeogenesis from lactate was stimulated by butyrate and oleate. This finding is not compatible with the view that the primary action of glucagon in promoting gluconeogenesis is an acceleration of lipolysis. 8. The rate of gluconeogenesis from pyruvate at 10mm was only 70% of that at 5mm. This `inhibition' was abolished by oleate or glucagon. PMID:5584023
Vuong, Thu V; Foumani, Maryam; MacCormick, Benjamin; Kwan, Rachel; Master, Emma R
2016-11-21
Glucose oxidase (GO) activity is generally restricted to glucose and is susceptible to inactivation by H 2 O 2 . By comparison, the Y300A variant of gluco-oligosaccharide oxidase (GOOX) from Sarocladium strictum showed broader substrate range and higher H 2 O 2 stability. Specifically, Y300A exhibited up to 40 times higher activity on all tested sugars except glucose, compared to GO. Moreover, fusion of the Y300A variant to a family 22 carbohydrate binding module from Clostridium thermocellum (CtCBM22A) nearly doubled its catalytic efficiency on glucose, while retaining significant activity on oligosaccharides. In the presence of 200 mM of H 2 O 2 , the recombinant CtCBM22A_Y300A retained 80% of activity on glucose and 100% of activity on cellobiose, the preferred substrate for this enzyme. By contrast, a commercial glucose oxidase reported to contain ≤0.1 units catalase/ mg protein, retained 60% activity on glucose under the same conditions. GOOX variants appear to undergo a different mechanism of inactivation, as a loss of histidine instead of methionine was observed after H 2 O 2 incubation. The addition of CtCBM22A also promoted functional binding of the fusion enzyme to xylan, facilitating its simultaneous purification and immobilization using edible oat spelt xylan, which might benefit the usage of this enzyme preparation in food and baking applications.
Tahara, Erich B; Cunha, Fernanda M; Basso, Thiago O; Della Bianca, Bianca E; Gombert, Andreas K; Kowaltowski, Alicia J
2013-01-01
Calorie restriction (CR) is an intervention known to extend the lifespan of a wide variety of organisms. In S. cerevisiae, chronological lifespan is prolonged by decreasing glucose availability in the culture media, a model for CR. The mechanism has been proposed to involve an increase in the oxidative (versus fermentative) metabolism of glucose. Here, we measured wild-type and respiratory incompetent (ρ(0)) S. cerevisiae biomass formation, pH, oxygen and glucose consumption, and the evolution of ethanol, glycerol, acetate, pyruvate and succinate levels during the course of 28 days of chronological aging, aiming to identify metabolic changes responsible for the effects of CR. The concomitant and quantitative measurements allowed for calculations of conversion factors between different pairs of substrates and products, maximum specific substrate consumption and product formation rates and maximum specific growth rates. Interestingly, we found that the limitation of glucose availability in CR S. cerevisiae cultures hysteretically increases oxygen consumption rates many hours after the complete exhaustion of glucose from the media. Surprisingly, glucose-to-ethanol conversion and cellular growth supported by glucose were not quantitatively altered by CR. Instead, we found that CR primed the cells for earlier, faster and more efficient metabolism of respiratory substrates, especially ethanol. Since lifespan-enhancing effects of CR are absent in respiratory incompetent ρ(0) cells, we propose that the hysteretic effect of glucose limitation on oxidative metabolism is central toward chronological lifespan extension by CR in this yeast.
Survase, Shrikant A; van Heiningen, Adriaan; Granström, Tom
2012-03-01
Continuous production of acetone, n-butanol, and ethanol (ABE) was carried out using immobilized cells of Clostridium acetobutylicum DSM 792 using glucose and sugar mixture as a substrate. Among various lignocellulosic materials screened as a support matrix, coconut fibers and wood pulp fibers were found to be promising in batch experiments. With a motive of promoting wood-based bio-refinery concept, wood pulp was used as a cell holding material. Glucose and sugar mixture (glucose, mannose, galactose, arabinose, and xylose) comparable to lignocellulose hydrolysate was used as a substrate for continuous production of ABE. We report the best solvent productivity among wild-type strains using column reactor. The maximum total solvent concentration of 14.32 g L(-1) was obtained at a dilution rate of 0.22 h(-1) with glucose as a substrate compared to 12.64 g L(-1) at 0.5 h(-1) dilution rate with sugar mixture. The maximum solvent productivity (13.66 g L(-1) h(-1)) was obtained at a dilution rate of 1.9 h(-1) with glucose as a substrate whereas solvent productivity (12.14 g L(-1) h(-1)) was obtained at a dilution rate of 1.5 h(-1) with sugar mixture. The immobilized column reactor with wood pulp can become an efficient technology to be integrated with existing pulp mills to convert them into wood-based bio-refineries.
Insulin action in hyperthyroidism: a focus on muscle and adipose tissue.
Mitrou, Panayota; Raptis, Sotirios A; Dimitriadis, George
2010-10-01
Hyperthyroidism leads to an enhanced demand for glucose, which is primarily provided by increased rates of hepatic glucose production due to increased gluconeogenesis (in the fasting state) and increased Cori cycle activity (in the late postprandial and fasting state). Adipose tissue lipolysis is increased in the fasting state, resulting in increased production of glycerol and nonesterified fatty acids. Under these conditions, increased glycerol generated by lipolysis and increased amino acids generated by proteolysis are used as substrates for gluconeogenesis. Increased nonesterified fatty acid levels are necessary to stimulate gluconeogenesis and provide substrate for oxidation in other tissues (such as muscle). In the postprandial period, insulin-stimulated glucose uptake by the skeletal muscle has been found to be normal or increased, mainly due to increased blood flow. Under hyperthyroid conditions, insulin-stimulated rates of glycogen synthesis in skeletal muscle are decreased, whereas there is a preferential increase in the rates of lactate formation vs. glucose oxidation leading to increased Cori cycle activity. In hyperthyroidism, the Cori cycle could be considered as a large substrate cycle; by maintaining a high flux through it, a dynamic buffer of glucose and lactate is provided, which can be used by other tissues as required. Moreover, lipolysis is rapidly suppressed to normal after the meal to facilitate the disposal of glucose by the insulin-resistant muscle. This ensures the preferential use of glucose when available and helps to preserve fat stores.
Tributyltin-induced apoptosis requires glycolytic adenosine trisphosphate production.
Stridh, H; Fava, E; Single, B; Nicotera, P; Orrenius, S; Leist, M
1999-10-01
The toxicity of tributyltin chloride (TBT) involves Ca(2+) overload, cytoskeletal damage, and mitochondrial failure leading to cell death by apoptosis or necrosis. Here, we examined whether the intracellular ATP level modulates the mode of cell death after exposure to TBT. When Jurkat cells were energized by the mitochondrial substrate, pyruvate, low concentrations of TBT (1-2 microM) triggered an immediate depletion of intracellular ATP followed by necrotic death. When ATP levels were maintained by the addition of glucose, the mode of cell death was typically apoptotic. Glycolytic ATP production was required for apoptosis at two distinct steps. First, maintenance of adequate ATP levels accelerated the decrease of mitochondrial membrane potential, and the release of the intermembrane proteins adenylate kinase and cytochrome c from mitochondria. A possible role of the adenine nucleotide exchanger in this first ATP-dependent step is suggested by experiments performed with the specific inhibitor, bongkrekic acid. This substance delayed cytochrome c release in a manner similar to that caused by ATP depletion. Second, caspase activation following cytochrome c release was only observed in ATP-containing cells. Bcl-2 had only a minor effect on TBT-triggered caspase activation or cell death. We conclude that intracellular ATP concentrations control the mode of cell death in TBT-treated Jurkat cells at both the mitochondrial and caspase activation levels.
NASA Astrophysics Data System (ADS)
Yang, Hao; Wei, Wei; Liu, Songqin
A novel glucose sensing strategy by using bi-enzyme coated monodispered silica nanoparticles (SiO2) was proposed. The monodispered SiO2 was synthesized according to our previously reported seed-growth methods. Glucose oxidase (GOD) and horseradish peroxidase (HRP) were simultaneously covalent immobilized on the surface of SiO2 nanoparticles through the cross-linker of glutaraldehyde. The immobilized bi-enzyme remained their bioactivities well for the substrate reaction. Thus, the resultant SiO2-GOD/HRP nanocomposites could be used as catalyst for enzymatic substrate reactions in the presence of 3,3‧,5,5‧-tetramethylbenzidine (TMB) as chromogenic reagent and glucose as substrate. The factors of affecting the catalytic activities of enzymes were optimized. Under optimal conditions, the absorbance at 450 nm in UV-visible spectra increased with the glucose concentration, which could be used for glucose detection with a linear range from 0.5 μM to 250 μM and a detection limit of 0.22 μM at a signal-to-noise ratio of 3σ. Considering the potential of making pills using this SiO2-GOD/HRP, the present strategy has good prospect in the clinic science and other fields in future.
Amphiphile-induced heart muscle-cell (myocyte) injury: effects of intracellular fatty acid overload.
Janero, D R; Burghardt, C; Feldman, D
1988-10-01
Lipid amphiphile toxicity may be an important contributor to myocardial injury, especially during ischemia/reperfusion. In order to investigate directly the potential biochemical and metabolic effects of amphiphile overload on the functioning heart muscle cell (myocyte), a novel model of nonesterified fatty acid (NEFA)-induced myocyte damage has been defined. The model uses intact, beating neonatal rat myocytes in primary monolayer culture as a study object and 5-(tetradecyloxy)-2-furoic acid (TOFA) as a nonmetabolizable fatty acid. Myocytes incubated with TOFA accumulated it as NEFA, and the consequent NEFA amphiphile overload elicited a variety of cellular defects (including decreased beating rate, depletion of high-energy stores and glycogen pools, and breakdown of myocyte membrane phospholipid) and culminated in cell death. The amphiphile-induced cellular pathology could be reversed by removing TOFA from the culture medium, which resulted in intracellular TOFA "wash-out." Although the development and severity of amphiphile-induced myocyte injury could be correlated with both the intracellular TOFA/NEFA content (i.e., the level of TOFA to which the cells were exposed) and the duration of this exposure, removal of amphiphile overload did not inevitably lead to myocyte recovery. TOFA had adverse effects on myocyte mitochondrial function in situ (decoupling of oxidative phosphorylation, impairing respiratory control) and on myocyte oxidative catabolism (transiently increasing fatty acid beta oxidation, citric acid cycle flux, and glucose oxidation). The amphiphile-induced bioenergetic abnormalities appeared to constitute a state of "metabolic anoxia" underlying the progression of myocyte injury to cell death. This anoxic state could be ameliorated to some extent, but not prevented, by carbohydrate catabolism.
Feng, Yuan Z; Nikolić, Nataša; Bakke, Siril S; Boekschoten, Mark V; Kersten, Sander; Kase, Eili T; Rustan, Arild C; Thoresen, G Hege
2014-02-01
The role of peroxisome proliferator-activated receptor δ (PPARδ) activation on global gene expression and mitochondrial fuel utilization were investigated in human myotubes. Only 21 genes were up-regulated and 3 genes were down-regulated after activation by the PPARδ agonist GW501516. Pathway analysis showed up-regulated mitochondrial fatty acid oxidation, TCA cycle and cholesterol biosynthesis. GW501516 increased oleic acid oxidation and mitochondrial oxidative capacity by 2-fold. Glucose uptake and oxidation were reduced, but total substrate oxidation was not affected, indicating a fuel switch from glucose to fatty acid. Cholesterol biosynthesis was increased, but lipid biosynthesis and mitochondrial content were not affected. This study confirmed that the principal effect of PPARδ activation was to increase mitochondrial fatty acid oxidative capacity. Our results further suggest that PPARδ activation reduced glucose utilization through a switch in mitochondrial substrate preference by up-regulating pyruvate dehydrogenase kinase isozyme 4 and genes involved in lipid metabolism and fatty acid oxidation.
Morgenthaler, F D; Kraftsik, R; Catsicas, S; Magistretti, P J; Chatton, J-Y
2006-08-11
This study examines the role of glucose and lactate as energy substrates to sustain synaptic vesicle cycling. Synaptic vesicle turnover was assessed in a quantitative manner by fluorescence microscopy in primary cultures of mouse cortical neurons. An electrode-equipped perfusion chamber was used to stimulate cells both by electrical field and potassium depolarization during image acquisition. An image analysis procedure was elaborated to select in an unbiased manner synaptic boutons loaded with the fluorescent dye N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide (FM1-43). Whereas a minority of the sites fully released their dye content following electrical stimulation, others needed subsequent K(+) depolarization to achieve full release. This functional heterogeneity was not significantly altered by the nature of metabolic substrates. Repetitive stimulation sequences of FM1-43 uptake and release were then performed in the absence of any metabolic substrate and showed that the number of active sites dramatically decreased after the first cycle of loading/unloading. The presence of 1 mM glucose or lactate was sufficient to sustain synaptic vesicle cycling under these conditions. Moreover, both substrates were equivalent for recovery of function after a phase of decreased metabolic substrate availability. Thus, lactate appears to be equivalent to glucose for sustaining synaptic vesicle turnover in cultured cortical neurons during activity.
Hanly, Timothy J; Henson, Michael A
2011-02-01
Sequential uptake of pentose and hexose sugars that compose lignocellulosic biomass limits the ability of pure microbial cultures to efficiently produce value-added bioproducts. In this work, we used dynamic flux balance modeling to examine the capability of mixed cultures of substrate-selective microbes to improve the utilization of glucose/xylose mixtures and to convert these mixed substrates into products. Co-culture simulations of Escherichia coli strains ALS1008 and ZSC113, engineered for glucose and xylose only uptake respectively, indicated that improvements in batch substrate consumption observed in previous experimental studies resulted primarily from an increase in ZSC113 xylose uptake relative to wild-type E. coli. The E. coli strain ZSC113 engineered for the elimination of glucose uptake was computationally co-cultured with wild-type Saccharomyces cerevisiae, which can only metabolize glucose, to determine if the co-culture was capable of enhanced ethanol production compared to pure cultures of wild-type E. coli and the S. cerevisiae strain RWB218 engineered for combined glucose and xylose uptake. Under the simplifying assumption that both microbes grow optimally under common environmental conditions, optimization of the strain inoculum and the aerobic to anaerobic switching time produced an almost twofold increase in ethanol productivity over the pure cultures. To examine the effect of reduced strain growth rates at non-optimal pH and temperature values, a break even analysis was performed to determine possible reductions in individual strain substrate uptake rates that resulted in the same predicted ethanol productivity as the best pure culture. © 2010 Wiley Periodicals, Inc.
Xing, Yang; Bu, Lingxi; Sun, Dafeng; Liu, Zhiping; Liu, Shijie; Jiang, Jianxin
2015-10-01
This study reports four schemes to pretreat wet furfural residues (FRs) with sodium bisulfite for production of fermentable sugar. The results showed that non-detoxified FRs (pH 2-3) had great potential to lower the cost of bioconversion. The optimal process was that unwashed FRs were first pretreated with bisulfite, and the whole slurry was then directly used for enzymatic hydrolysis. A maximum glucose yield of 99.4% was achieved from substrates pretreated with 0.1 g NaHSO3/g dry substrate (DS), at a relatively low temperature of 100 °C for 3 h. Compared with raw material, enzymatic hydrolysis at a high-solid of 16.5% (w/w) specifically showed more excellent performance with bisulfite treated FRs. Direct bisulfite pretreatment improved the accessibility of substrates and the total glucose recovery. Lignosulfonate in the non-detoxified slurry decreased the non-productive adsorption of cellulase on the substrate, thus improving enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ramalingam, Latha; Oh, Eunjin; Thurmond, Debbie C.
2012-01-01
The insulin signaling pathway regulates whole-body glucose homeostasis by transducing extracellular signals from the insulin receptor (IR) to downstream intracellular targets, thus coordinating a multitude of biological functions. Dysregulation of IR or its signal transduction is associated with insulin resistance, which may culminate in type 2 diabetes (T2D). Following initial stimulation of IR, insulin signaling diverges into different pathways, activating multiple substrates which have roles in various metabolic and cellular processes. The integration of multiple pathways arising from IR activation continues to expand as new IR substrates are identified and characterized. Accordingly, our review will focus on roles for IR substrates as they pertain to three primary areas: Metabolism/glucose uptake, Mitogenesis/growth, and Aging/Longevity. While IR functions in a seemingly pleotropic manner in many cell types, through these three main roles in fat and skeletal muscle cells, IR multi-tasks to regulate whole-body glucose homeostasis to impact healthspan and lifespan. PMID:23052216
Influence of mare uterine tubal fluids on the metabolism of stallion sperm.
Engle, C E; Foley, C W; Witherspoon, D M; Scarth, R D; Goetsch, D D
1975-08-01
Three experiments were conducted on the metabolism of stallion sperm. In experiment 1, whole and washed sperm were incubated under aerobic and anaerobic enviroments and analyzed before and after controlled incubation for motility, pH, lactic acid, glucose, fructose, and O2 comsumption. In experiment 2, whole and washed sperm were incubated aerobically and anaerobically with and without uterine tubal fluids. Experiment 3 was the same as experiment 2, except added substrates of glucose and lactic acid were studied. The same examinations were made in experiments 2 and 3 as for experiment 1. Motility decreased significantly during incubation for all treatments, with the greatest decrease occurring for whole semen where only trace amounts of substrate (fructose) were present. Exogenous glucose plus uterine tubal fluid maintained sperm motility better than did added lactate. However, sperm respiration rates were highest when exogenous lactate was the only substrate in the incubation medium. The mean pH values for gel-free stallion semen at the start of controlled aerobic and anaerobic incubation were 7.08 and 7.34. Lactic acid accummulation for 1 hour increased from 0.05 mg to 0.09 mg/10(9) sperm when uterine tubal fluid was added to the incubation medium. Washed spermatozoa incubated in 0.03 M glucose plus uterine tubal fluid utilized less glucose than did sperm incubated in the glucose medium. These results, along with the increased oxygen utilization (ZO2) values produced by adding uterine tubal fluid to the incubation mediums, might indicate utilization of a uterine tubal substrate. Added uterine tubal fluid resulted in increased ZO2 values (expressed in mul of O2 utilized by 10(8) sperm in 1 hour at 37 C) for whole semen from 10.45 to 12.63. Washed spermatozoa also respired at a significantly greater rate than whole sperm. Respiration rates were greater for sperm incubated with 0.01 M lactic acid than for any other substrate or experiment.
Fonseca, Carla P; Jones, John G; Carvalho, Rui A; Jeffrey, F Mark H; Montezinho, Liliana P; Geraldes, Carlos F G C; Castro, M M C A
2005-11-01
Li+ effects on glucose metabolism and on the competitive metabolism of glucose and lactate were investigated in the human neuroblastoma SH-SY5Y cell line using 13C NMR spectroscopy. The metabolic model proposed for glucose and lactate metabolism in these cells, based on tcaCALC best fitting solutions, for both control and Li+ conditions, was consistent with: (i) a single pyruvate pool; (ii) anaplerotic flux from endogenous unlabelled substrates; (iii) no cycling between pyruvate and oxaloacetate. Li+ was shown to induce a 38 and 53% decrease, for 1 and 15 mM Li+, respectively, in the rate of glucose conversion into pyruvate, when [U-13C]glucose was present, while no effects on lactate production were observed. Pyruvate oxidation by the tricarboxylic acid cycle and citrate synthase flux were shown to be significantly reduced by 64 and 84% in the presence of 1 and 15 mM Li+, respectively, suggesting a direct inhibitory effect of Li+ on tricarboxylic acid cycle flux. This work also showed that when both glucose and lactate are present as energetic substrates, SH-SY5Y cells preferentially consumed exogenous lactate over glucose, as 62% of the acetyl-CoA was derived from [3-13C]lactate while only 26% was derived from [U-13C]glucose. Li+ did not significantly affect the relative utilisation of these two substrates by the cells or the residual contribution of unlabelled endogenous sources for the acetyl-CoA pool.
Functional Properties and Genomics of Glucose Transporters
Zhao, Feng-Qi; Keating, Aileen F
2007-01-01
Glucose is the major energy source for mammalian cells as well as an important substrate for protein and lipid synthesis. Mammalian cells take up glucose from extracellular fluid into the cell through two families of structurallyrelated glucose transporters. The facilitative glucose transporter family (solute carriers SLC2A, protein symbol GLUT) mediates a bidirectional and energy-independent process of glucose transport in most tissues and cells, while the NaM+/glucose cotransporter family (solute carriers SLC5A, protein symbol SGLT) mediates an active, Na+-linked transport process against an electrochemical gradient. The GLUT family consists of thirteen members (GLUT1-12 and HMIT). Phylogenetically, the members of the GLUT family are split into three classes based on protein similarities. Up to now, at least six members of the SGLT family have been cloned (SGLT1-6). In this review, we report both the genomic structure and function of each transporter as well as intra-species comparative genomic analysis of some of these transporters. The affinity for glucose and transport kinetics of each transporter differs and ranges from 0.2 to 17mM. The ability of each protein to transport alternative substrates also differs and includes substrates such as fructose and galactose. In addition, the tissue distribution pattern varies between species. There are different regulation mechanisms of these transporters. Characterization of transcriptional control of some of the gene promoters has been investigated and alternative promoter usage to generate different protein isoforms has been demonstrated. We also introduce some pathophysiological roles of these transporters in human. PMID:18660845
De Sanctis, Vincenzo; Soliman, Ashraf T.; Elsedfy, Heba; Yaarubi, Saif AL; Skordis, Nicos; Khater, Doaa; El Kholy, Mohamed; Stoeva, Iva; Fiscina, Bernadette; Angastiniotis, Michael; Daar, Shahina; Kattamis, Christos
2016-01-01
Iron overload in patients with thalassemia major (TM) affects glucose regulation and is mediated by several mechanisms. The pathogenesis of glycaemic abnormalities in TM is complex and multifactorial. It has been predominantly attributed to a combination of reduced insulin secretory capacity and insulin resistance. The exact mechanisms responsible for progression from norm glycaemia to overt diabetes in these patients are still poorly understood but are attributed mainly to insulin deficiency resulting from the toxic effects of iron deposited in the pancreas and insulin resistance. A group of endocrinologists, haematologists and paediatricians, members of the International Network of Clinicians for Endocrinopathies in Thalassemia and Adolescence Medicine (ICET-A) convened to formulate recommendations for the diagnosis and management of abnormalities of glucose homeostasis in thalassemia major patients on the basis of available evidence from clinical and laboratory data and consensus practice. The results of their work and discussions are described in this article. PMID:27872738
Cura, Anthony J.; Carruthers, Anthony
2012-01-01
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol and dehydroascorbic acid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into 3 classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been co-opted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 (HMIT1) is a proton/myoinositol co-transporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption, distribution, cellular transport and metabolism and recovery/retention. Glucose transport and metabolism have co-evolved in mammals to support cerebral glucose utilization. PMID:22943001
Enzymatic Hydrolysis of Cellulosic Materials to Fermentable Sugars for the Production of Ethanol
1980-10-12
Pretreatment . • . . • . . . . . • . . . 19 5. Enzyme Production (Prepilot Scale) • . • ·. • • . . . . . • • • • 29 6. Saccharification (Prepilot...hour hydrolysis of 15% substrate. TASK II 1. Poplar shavings were compression mill pretreated most effectively at an initial moisture content of 12...concentration, pretreatment of.cellulose substrates, glucose syrup concentration, temperature, acidity, residence time, recovery of enzymes, fungi, glucose
Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state.
Agius, L
1994-02-15
In rat hepatocytes cultured in 5 mM glucose, glucokinase activity is present predominantly in a bound state, and during permeabilization of the cells with digitonin in the presence of Mg2+ less than 20% of glucokinase activity is released. However, incubation of hepatocytes with a higher [glucose] [concn. giving half-maximal activation (A50) 15 mM] or with fructose (A50 50 microM) causes translocation of glucokinase from its Mg(2+)-dependent binding site to an alternative site [Agius and Peak (1993) Biochem. J. 296, 785-796]. A comparison of various substrates showed that sorbitol (A50 8 microM) was 6-fold more potent than fructose at causing glucokinase translocation, whereas tagatose was as potent and mannitol was > 10-fold less potent (A50 550 microM). These substrates also stimulate glucose conversion into glycogen with a similar relative potency, suggesting that conversion of glucose into glycogen is dependent on the binding and/or location of glucokinase within the hepatocyte. Ethanol and glycerol inhibited the effects of fructose, sorbitol and glucose on glucokinase translocation, whereas dihydroxy-acetone had a small additive effect at sub-maximal substrate stimulation. The converse effects of glycerol and dihydroxy-acetone suggest a role for the cytosolic NADH/NAD+ redox state in controlling glucokinase translocation. Titrations with three competitive inhibitors of glucokinase did not provide evidence for involvement of glucokinase flux in glucose-induced glucokinase translocation: N-acetylglucosamine inhibited glucose conversion into glycogen, but not glucose-induced glucokinase translocation; glucosamine partially suppressed glucose-induced and fructose-induced glucokinase translocation, at concentrations that caused total inhibition of glucose conversion into glycogen; D-mannoheptulose increased glucokinase release and had an additive effect with glucose. 3,3'-Tetramethylene-glutaric acid (5 mM), an inhibitor of aldose reductase, inhibited glucokinase translocation induced by glucose, but not that by sorbitol or fructose, suggesting that glucose may induce glucokinase translocation by conversion into sorbitol. Sorbitol generated from glucose intrahepatically or extrahepatically in hyperglycaemic conditions may be a physiological regulator of hepatic glucokinase translocation.
Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state.
Agius, L
1994-01-01
In rat hepatocytes cultured in 5 mM glucose, glucokinase activity is present predominantly in a bound state, and during permeabilization of the cells with digitonin in the presence of Mg2+ less than 20% of glucokinase activity is released. However, incubation of hepatocytes with a higher [glucose] [concn. giving half-maximal activation (A50) 15 mM] or with fructose (A50 50 microM) causes translocation of glucokinase from its Mg(2+)-dependent binding site to an alternative site [Agius and Peak (1993) Biochem. J. 296, 785-796]. A comparison of various substrates showed that sorbitol (A50 8 microM) was 6-fold more potent than fructose at causing glucokinase translocation, whereas tagatose was as potent and mannitol was > 10-fold less potent (A50 550 microM). These substrates also stimulate glucose conversion into glycogen with a similar relative potency, suggesting that conversion of glucose into glycogen is dependent on the binding and/or location of glucokinase within the hepatocyte. Ethanol and glycerol inhibited the effects of fructose, sorbitol and glucose on glucokinase translocation, whereas dihydroxy-acetone had a small additive effect at sub-maximal substrate stimulation. The converse effects of glycerol and dihydroxy-acetone suggest a role for the cytosolic NADH/NAD+ redox state in controlling glucokinase translocation. Titrations with three competitive inhibitors of glucokinase did not provide evidence for involvement of glucokinase flux in glucose-induced glucokinase translocation: N-acetylglucosamine inhibited glucose conversion into glycogen, but not glucose-induced glucokinase translocation; glucosamine partially suppressed glucose-induced and fructose-induced glucokinase translocation, at concentrations that caused total inhibition of glucose conversion into glycogen; D-mannoheptulose increased glucokinase release and had an additive effect with glucose. 3,3'-Tetramethylene-glutaric acid (5 mM), an inhibitor of aldose reductase, inhibited glucokinase translocation induced by glucose, but not that by sorbitol or fructose, suggesting that glucose may induce glucokinase translocation by conversion into sorbitol. Sorbitol generated from glucose intrahepatically or extrahepatically in hyperglycaemic conditions may be a physiological regulator of hepatic glucokinase translocation. PMID:8129726
Bae, Ji-Eun; Hwang, Kwang Yeon; Nam, Ki Hyun
2018-06-16
Glucose isomerase (GI) catalyzes the reversible enzymatic isomerization of d-glucose and d-xylose to d-fructose and d-xylulose, respectively. This is one of the most important enzymes in the production of high-fructose corn syrup (HFCS) and biofuel. We recently determined the crystal structure of GI from S. rubiginosus (SruGI) complexed with a xylitol inhibitor in one metal binding mode. Although we assessed inhibitor binding at the M1 site, the metal binding at the M2 site and the substrate recognition mechanism for SruGI remains the unclear. Here, we report the crystal structure of the two metal binding modes of SruGI and its complex with glucose. This study provides a snapshot of metal binding at the SruGI M2 site in the presence of Mn 2+ , but not in the presence of Mg 2+ . Metal binding at the M2 site elicits a configuration change at the M1 site. Glucose molecule can only bind to the M1 site in presence of Mn 2+ at the M2 site. Glucose and Mn 2+ at the M2 site were bridged by water molecules using a hydrogen bonding network. The metal binding geometry of the M2 site indicates a distorted octahedral coordination with an angle of 55-110°, whereas the M1 site has a relatively stable octahedral coordination with an angle of 85-95°. We suggest a two-step sequential process for SruGI substrate recognition, in Mn 2+ binding mode, at the M2 site. Our results provide a better understanding of the molecular role of the M2 site in GI substrate recognition. Copyright © 2018. Published by Elsevier Inc.
CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel.
Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun
2014-11-01
A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments.
Aguilar-Uscanga, M G; Garcia-Alvarado, Y; Gomez-Rodriguez, J; Phister, T; Delia, M L; Strehaiano, P
2011-08-01
To study the effect of glucose concentrations on the growth by Brettanomyces bruxellensis yeast strain in batch experiments and develop a mathematical model for kinetic behaviour analysis of yeast growing in batch culture. A Matlab algorithm was developed for the estimation of model parameters. Glucose fermentation by B. bruxellensis was studied by varying its concentration (5, 9.3, 13.8, 16.5, 17.6 and 21.4%). The increase in substrate concentration up to a certain limit was accompanied by an increase in ethanol and biomass production; at a substrate concentration of 50-138 g l(-1), the ethanol and biomass production were 24, 59 and 6.3, 11.4 g l(-1), respectively. However, an increase in glucose concentration to 165 g l(-1) led to a drastic decrease in product formation and substrate utilization. The model successfully simulated the batch kinetic observed in all cases. The confidence intervals were also estimated at each phase at a 0.95 probability level in a t-Student distribution for f degrees of freedom. The maximum ethanol and biomass yields were obtained with an initial glucose concentration of 138 g l(-1). These experiments illustrate the importance of using a mathematical model applied to kinetic behaviour on glucose concentration by B. bruxellensis. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
Kirkland, Melissa E.; Kosinski, Daniel T.; Mane, Joel; Bunzel, Michelle; Cao, Jin; Souza, Sarah; Thomas-Fowlkes, Brande; Di Salvo, Jerry; Weinglass, Adam B.; Li, Xiaoyan; Myers, Robert W.; Knagge, Kevin; Carrington, Paul E.; Hagmann, William K.
2017-01-01
GPR40 (FFA1) is a fatty acid receptor whose activation results in potent glucose lowering and insulinotropic effects in vivo. Several reports illustrate that GPR40 agonists exert glucose lowering in diabetic humans. To assess the mechanisms by which GPR40 partial agonists improve glucose homeostasis, we evaluated the effects of MK-2305, a potent and selective partial GPR40 agonist, in diabetic Goto Kakizaki rats. MK-2305 decreased fasting glucose after acute and chronic treatment. MK-2305-mediated changes in glucose were coupled with increases in plasma insulin during hyperglycemia and glucose challenges but not during fasting, when glucose was normalized. To determine the mechanism(s) mediating these changes in glucose metabolism, we measured the absolute contribution of precursors to glucose production in the presence or absence of MK-2305. MK-2305 treatment resulted in decreased endogenous glucose production (EGP) driven primarily through changes in gluconeogenesis from substrates entering at the TCA cycle. The decrease in EGP was not likely due to a direct effect on the liver, as isolated perfused liver studies showed no effect of MK-2305 ex vivo and GPR40 is not expressed in the liver. Taken together, our results suggest MK-2305 treatment increases glucose stimulated insulin secretion (GSIS), resulting in changes to hepatic substrate handling that improve glucose homeostasis in the diabetic state. Importantly, these data extend our understanding of the underlying mechanisms by which GPR40 partial agonists reduce hyperglycemia. PMID:28542610
Hrynevich, Sviatlana V; Waseem, Tatyana V; Hébert, Audrey; Pellerin, Luc; Fedorovich, Sergei V
2016-02-01
The ketogenic diet is used as a prophylactic treatment for different types of brain diseases, such as epilepsy or Alzheimer's disease. In such a diet, carbohydrates are replaced by fats in everyday food, resulting in an elevation of blood-borne ketone bodies levels. Despite clinical applications of this treatment, the molecular mechanisms by which the ketogenic diet exerts its beneficial effects are still uncertain. In this study, we investigated the effect of replacing glucose by the ketone body β-hydroxybutyrate as the main energy substrate on synaptic vesicle recycling in rat brain synaptosomes. First, we observed that exposing presynaptic terminals to nonglycolytic energy substrates instead of glucose did not alter the plasma membrane potential. Next, we found that synaptosomes were able to maintain the synaptic vesicle cycle monitored with the fluorescent dye acridine orange when glucose was replaced by β-hydroxybutyrate. However, in presence of β-hydroxybutyrate, synaptic vesicle recycling was modified with reduced endocytosis. Replacing glucose by pyruvate also led to a reduced endocytosis. Addition of β-hydroxybutyrate to glucose-containing incubation medium was without effect. Reduced endocytosis in presence of β-hydroxybutyrate as sole energy substrate was confirmed using the fluorescent dye FM2-10. Also we found that replacement of glucose by ketone bodies leads to inhibition of exocytosis, monitored by FM2-10. However this reduction was smaller than the effect on endocytosis under the same conditions. Using both acridine orange in synaptosomes and the genetically encoded sensor synaptopHluorin in cortical neurons, we observed that replacing glucose by β-hydroxybutyrate did not modify the pH gradient of synaptic vesicles. In conclusion, the nonglycolytic energy substrates β-hydroxybutyrate and pyruvate are able to support synaptic vesicle recycling. However, they both reduce endocytosis. Reduction of both endocytosis and exocytosis together with misbalance between endocytosis and exocytosis could be involved in the anticonvulsant activity of the ketogenic diet. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study on the aerobic biodegradability and degradation kinetics of 3-NP; 2,4-DNP and 2,6-DNP.
She, Zonglian; Xie, Tian; Zhu, Yingjie; Li, Leilei; Tang, Gaifeng; Huang, Jian
2012-11-30
Four biodegradability tests (BOD(5)/COD ratio, production of carbon dioxide, relative oxygen uptake rate and relative enzymatic activity) were used to determine the aerobic biodegradability of 3-nitrophenol (3-NP), 2,4-dinitrophenol (2,4-DNP) and 2,6-dinitrophenol (2,6-DNP). Furthermore, biodegradation kinetics of the compounds was investigated in sequencing batch reactors both in the presence of glucose (co-substrate) and with nitrophenol as the sole carbon source. Among the three tested compounds, 3-NP showed the best biodegradability while 2,6-DNP was the most difficult to be biodegraded. The Haldane equation was applied to the kinetic test data of the nitrophenols. The kinetic constants are as follows: the maximum specific degradation rate (K(max)), the saturation constants (K(S)) and the inhibition constants (K(I)) were in the range of 0.005-2.98 mg(mgSS d)(-1), 1.5-51.9 mg L(-1) and 1.8-95.8 mg L(-1), respectively. The presence of glucose enhanced the degradation of the nitrophenols at low glucose concentrations. The degradation of 3-NP was found to be accelerated with the increasing of glucose concentrations from 0 to 660 mg L(-1). At high (1320-2000 mg L(-1)) glucose concentrations, the degradation rate of 3-NP was reduced and the K(max) of 3-NP was even lower than the value obtained in the absence of glucose, suggesting that high concentrations of co-substrate could inhibit 3-NP biodegradation. At 2,4-DNP concentration of 30 mg L(-1), the K(max) of 2,4-DNP with glucose as co-substrate was about 30 times the value with 2,4-DNP as sole substrate. 2,6-DNP preformed high toxicity in the case of sole carbon source degradation and the kinetic data was hardly obtained. Copyright © 2012 Elsevier B.V. All rights reserved.
Lettieri-Barbato, Daniele; Cannata, Stefano Maria; Casagrande, Viviana; Ciriolo, Maria Rosa
2018-01-01
A large body of evidence suggests that persistent dietary fat overload causes mitochondrial dysfunction and systemic metabolic gridlock. Mitochondrial and lipid metabolism in skeletal muscle (SkM) are severely affected upon persistent high fat diet (HFD) leading to premature tissue aging. Here, we designed weekly cycles of fasting (called as time-controlled fasting, TCF) and showed that they were effective in limiting mitochondrial damage and metabolic disturbances induced by HFD. Specifically, TCF was able to prevent the decline of adipose triglyceride lipase (Atgl), maintain efficient mitochondrial respiration in SkM as well as improve blood glucose and lipid profile. Atgl was found to be the mediator of such preventive effects as its downregulation or up-regulation in C2C12 myotubes triggers mitochondrial alteration or protects against the deleterious effects of high fat levels respectively. In conclusion, TCF could represent an effective strategy to limit mitochondrial impairment and metabolic inflexibility that are typically induced by modern western diets or during aging. PMID:29742122
Lettieri-Barbato, Daniele; Cannata, Stefano Maria; Casagrande, Viviana; Ciriolo, Maria Rosa; Aquilano, Katia
2018-01-01
A large body of evidence suggests that persistent dietary fat overload causes mitochondrial dysfunction and systemic metabolic gridlock. Mitochondrial and lipid metabolism in skeletal muscle (SkM) are severely affected upon persistent high fat diet (HFD) leading to premature tissue aging. Here, we designed weekly cycles of fasting (called as time-controlled fasting, TCF) and showed that they were effective in limiting mitochondrial damage and metabolic disturbances induced by HFD. Specifically, TCF was able to prevent the decline of adipose triglyceride lipase (Atgl), maintain efficient mitochondrial respiration in SkM as well as improve blood glucose and lipid profile. Atgl was found to be the mediator of such preventive effects as its downregulation or up-regulation in C2C12 myotubes triggers mitochondrial alteration or protects against the deleterious effects of high fat levels respectively. In conclusion, TCF could represent an effective strategy to limit mitochondrial impairment and metabolic inflexibility that are typically induced by modern western diets or during aging.
Growth of the extremophilic Deinococcus geothermalis DSM 11302 using co-substrate fed-batch culture.
Bornot, Julie; Molina-Jouve, Carole; Uribelarrea, Jean-Louis; Gorret, Nathalie
2014-02-01
Deinococcus geothermalis metabolism has been scarcely studied to date, although new developments on its utilization for bioremediation have been carried out. So, large-scale production of this strain and a better understanding of its physiology are required. A fed-batch experiment was conducted to achieve a high cell density non-limiting culture of D. geothermalis DSM 11302. A co-substrate nutritional strategy using glucose and yeast extract was carried out in a 20-L bioreactor in order to maintain a non-limited growth at a maximal growth rate of 1 h(-1) at 45 °C. Substrate supplies were adjusted by monitoring online culture parameters and physiological data (dissolved oxygen, gas analyses, respiratory quotient, biomass concentration). The results showed that yeast extract could serve as both carbon and nitrogen sources, although glucose and ammonia were consumed too. Yeast extract carbon-specific uptake rate reached a value 4.5 times higher than glucose carbon-specific uptake rate. Cell concentration of 9.6 g L(-1) dry cell weight corresponding to 99 g of biomass was obtained using glucose and yeast extract as carbon and nitrogen sources.
Görl, Julian; Possiel, Christian; Sotriffer, Christoph; Seibel, Jürgen
2017-10-18
Functionalized rare sugars were synthesized with 2-, 3-, and 6-tosylated glucose derivatives as acceptor substrates by transglucosylation with sucrose and the glucansucrase GTFR from Streptococcus oralis. The 2- and 3-tosylated glucose derivatives yielded the corresponding 1,6-linked disaccharides (isomaltose analogues), whereas the 6-tosylated glucose derivatives resulted in 1,3-linked disaccharides (nigerose analogue) with high regioselectivity in up to 95 % yield. Docking studies provided insight into the binding mode of the acceptors and suggested two different orientations that were responsible for the change in regioselectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Prince, Paula D; Santander, Yanina A; Gerez, Estefania M; Höcht, Christian; Polizio, Ariel H; Mayer, Marcos A; Taira, Carlos A; Fraga, Cesar G; Galleano, Monica; Carranza, Andrea
2017-08-01
Metabolic syndrome is an array of closely metabolic disorders that includes glucose intolerance/insulin resistance, central obesity, dyslipidemia, and hypertension. Fructose, a highly lipogenic sugar, has profound metabolic effects in adipose tissue, and has been associated with the etiopathology of many components of the metabolic syndrome. In adipocytes, the enzyme 11 β-HSD1 amplifies local glucocorticoid production, being a key player in the pathogenesis of central obesity and metabolic syndrome. 11 β-HSD1 reductase activity is dependent on NADPH, a cofactor generated by H6PD inside the endoplasmic reticulum. Our focus was to explore the effect of fructose overload on epididymal white adipose tissue (EWAT) machinery involved in glucocorticoid production and NADPH and oxidants metabolism. Male Sprague-Dawley rats fed with a fructose solution (10% (w/v) in tap water) during 9 weeks developed some characteristic features of metabolic syndrome, such as hypertriglyceridemia, and hypertension. In addition, high levels of plasma and EWAT corticosterone were detected. Activities and expressions of H6PD and 11 β-HSD1, NAPDH content, superoxide anion production, expression of NADPH oxidase 2 subunits, and indicators of oxidative metabolism were measured. Fructose overloaded rats showed an increased potential in oxidant production respect to control rats. In parallel, in EWAT from fructose overloaded rats we found higher expression/activity of H6PD and 11 β-HSD1, and NADPH/NADP + ratio. Our in vivo results support that fructose overload installs in EWAT conditions favoring glucocorticoid production through higher H6PD expression/activity supplying NADPH for enhanced 11 β-HSD1 expression/activity, becoming this tissue a potential extra-adrenal source of corticosterone under these experimental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
Peredo, H A; Andrade, V; Donoso, A S; Lee, H J; Puyó, A M
2013-10-01
(1) Fructose (F) overload produces elevated blood pressure (BP), hyperglycaemia, hypertriglyceridemia and insulin resistance, resembling human metabolic syndrome. Previously, we found altered vascular prostanoid (PR) production in this model. (2) Sodium molybdate (Mo), as well as sodium tungstate, causes insulin-like effects and normalizes plasma glucose levels in streptozotocin-treated diabetic rats. We studied the effects of Mo on BP, metabolic parameters and release of PR from the mesenteric vascular bed (MVB) in F-overloaded rats. (3) Four groups of male Sprague-Dawley rats were analysed: Control, tap water to drink; F, F solution 10% W/V to drink; CMo, Mo 100 mg kg day(-1) and FMo, both treatments. After 9 weeks, the animals were killed and MVBs removed and the released PRs measured. (4) F increased BP, glycemia, triglyceridemia and insulinemia. Mo treatment prevented the increases in BP and glycemia, but did not modify triglyceridemia or insulinemia. In addition, Mo decreased BP in controls. (5) Prostaglandins (PG) F2 alpha and E2, PG 6-ketoF1 alpha and thromboxane (TX) B2 , as well as inactive metabolites of prostacyclin (PGI2 ) and TXA2 were detected. F decreased the production of vasodilator PRs PGI2 and PGE2 in MVB. Mo prevented these alterations and increased PGE2 in controls. Vasoconstrict or PRs PGF2 alpha and TXA2 release was not modified. (6) Mo treatment, beyond its known lowering effect on glycemia, prevents the reduction in the vascular release of vasodilator PR observed in this model. This could be one of the mechanisms by which Mo avoids the increase in BP caused by F overload in the rat. © 2013 John Wiley & Sons Ltd.
Francini, Flavio; Castro, María C; Gagliardino, Juan J; Massa, María L
2009-09-01
We evaluated the relative role of different regulatory mechanisms, particularly 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFK2/FBPase-2), in liver glucokinase (GK) activity in intact animals with fructose-induced insulin resistance and impaired glucose and lipid metabolism. We measured blood glucose, triglyceride and insulin concentration, glucose tolerance, liver triglyceride content, GK activity, and GK and PFK2 protein and gene expression in fructose-rich diet (FRD) and control rats. After 3 weeks, FRD rats had significantly higher blood glucose, insulin and triglyceride levels, and liver triglyceride content, insulin resistance, and impaired glucose tolerance. FRD rats also had significantly higher GK activity in the cytosolic fraction (18.3 +/- 0.35 vs. 11.27 +/- 0.34 mU/mg protein). Differences in GK protein concentration (116% and 100%) were not significant, suggesting a potentially impaired GK translocation in FRD rats. Although GK transcription level was similar, PFK2 gene expression and protein concentration were 4- and 5-fold higher in the cytosolic fraction of FRD animals. PFK2 immunological blockage significantly decreased GK activity in control and FRD rats; in the latter, this blockage decreased GK activity to control levels. Results suggest that increased liver GK activity might participate in the adaptative response to fructose overload to maintain glucose/triglyceride homeostasis in intact animals. Under these conditions, PFK2 increase would be the main enhancer of GK activity.
Stjernström, H; Jorfeldt, L; Wiklund, L
1981-10-01
Abdominal surgery increases blood glucose concentration and peripheral release and splanchnic uptake of gluconeogenic substrates, including alanine. During trauma or sepsis, infusion of glucose fails to depress alanine conversion to glucose. The effect of intra-operative glucose infusion on splanchnic metabolism was examined in the present study. In eight patients undergoing elective cholecystectomy, splanchnic glucose metabolism was investigated before, during and immediately after surgery. Glucose was infused at a constant rate of 1 mmol/min. Splanchnic blood flow and arterio-hepatic venous differences of oxygen, glucose, lactate, glycerol, 3-hydroxybutyrate and alanine were measured. Eight other patients, who received saline instead of glucose, served as a control group. Infusion of glucose resulted in total inhibition of splanchnic glucose release before as well as during and immediately after surgery. This was observed, even before surgery, at an arterial glucose level which was lower than that in the control group at the end of and immediately after surgery, at which no decrease of the splanchnic glucose release was recorded. changes in neuronal and hormonal factors due to the surgical trauma are considered responsible for this difference in glucose homeostasis. Splanchnic alanine uptake increased during surgery in both groups, but tended to be somewhat lower in the glucose group. The arterial glycerol concentration and splanchnic uptake, as well as the arterial concentration and splanchnic release of 3-hydroxybutyrate, were reduced. It is concluded that an intravenous infusion of glucose at the rate of 1 mmol/min during abdominal surgery (a) increases the arterial blood glucose level and abolishes splanchnic glucose release, (b) reduces, but does not totally prevent the increase in splanchnic uptake of gluconeogenic substrates, and (c) diminishes lipolysis and the formation of 3-hydroxybutyrate.
CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel
Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun
2014-01-01
A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments. PMID:25426316
Substrate utilization/insulin resistance in sepsis/trauma.
Wolfe, R R
1997-12-01
Endogenous substrate metabolism is markedly altered in critically ill patients. Glucose production is elevated not only in the post-absorptive state, but the normal suppressive effect of exogenous glucose and glucose production is greatly diminished. In the post-absorptive state, glucose clearance is generally elevated, potentially causing hypoglycaemia in extreme cases. Somewhat paradoxically, the ability of insulin to stimulate glucose uptake is diminished, so that hyperglycaemia is often evident during nutritional intake. Lipolysis, the breakdown of peripheral fat, is accelerated, meaning that free fatty acids are released into plasma at a rate far exceeding their oxidation. Some of the excess fatty acids are re-esterified in the liver, leading to accelerated hepatic triglyceride formation. A large increase in hepatic triglyceride stores can ensue if the rate of excretion of triglycerides in very low density lipoproteins is not accelerated commensurately with the increased triglyceride production. Indirect calorimetry measurements support the notion that the large increase in availability of fatty acids may lead to a greater reliance on fatty acids as energy substrates. Nonetheless, carbohydrates should be the predominant source of non-protein calories, because the accompanying insulin response effectively enhances protein synthesis. There is already ample fat available via endogenous lipolysis, and more fat given exogenously provides little further benefit.
Glucose Regulation of Load‐Induced mTOR Signaling and ER Stress in Mammalian Heart
Sen, Shiraj; Kundu, Bijoy K.; Wu, Henry Cheng‐Ju; Hashmi, S. Shahrukh; Guthrie, Patrick; Locke, Landon W.; Roy, R. Jack; Matherne, G. Paul; Berr, Stuart S.; Terwelp, Matthew; Scott, Brian; Carranza, Sylvia; Frazier, O. Howard; Glover, David K.; Dillmann, Wolfgang H.; Gambello, Michael J.; Entman, Mark L.; Taegtmeyer, Heinrich
2013-01-01
Background Changes in energy substrate metabolism are first responders to hemodynamic stress in the heart. We have previously shown that hexose‐6‐phosphate levels regulate mammalian target of rapamycin (mTOR) activation in response to insulin. We now tested the hypothesis that inotropic stimulation and increased afterload also regulate mTOR activation via glucose 6‐phosphate (G6P) accumulation. Methods and Results We subjected the working rat heart ex vivo to a high workload in the presence of different energy‐providing substrates including glucose, glucose analogues, and noncarbohydrate substrates. We observed an association between G6P accumulation, mTOR activation, endoplasmic reticulum (ER) stress, and impaired contractile function, all of which were prevented by pretreating animals with rapamycin (mTOR inhibition) or metformin (AMPK activation). The histone deacetylase inhibitor 4‐phenylbutyrate, which relieves ER stress, also improved contractile function. In contrast, adding the glucose analogue 2‐deoxy‐d‐glucose, which is phosphorylated but not further metabolized, to the perfusate resulted in mTOR activation and contractile dysfunction. Next we tested our hypothesis in vivo by transverse aortic constriction in mice. Using a micro‐PET system, we observed enhanced glucose tracer analog uptake and contractile dysfunction preceding dilatation of the left ventricle. In contrast, in hearts overexpressing SERCA2a, ER stress was reduced and contractile function was preserved with hypertrophy. Finally, we examined failing human hearts and found that mechanical unloading decreased G6P levels and ER stress markers. Conclusions We propose that glucose metabolic changes precede and regulate functional (and possibly also structural) remodeling of the heart. We implicate a critical role for G6P in load‐induced mTOR activation and ER stress. PMID:23686371
Park, Juyi; Hong, Soon-Kwang; Chang, Yong Keun
2015-09-01
A novel two-step fermentation process using a mixed-sugar medium mimicking microalgal hydrolysate has been proposed to avoid glucose repression and thus to maximize substrate utilization efficiency. When DagA, a β-agarase was produced in one step in the mixed-sugar medium by using a recombinant Streptomyces lividans, glucose was found to have negative effects on the consumption of the other sugars and DagA biosynthesis causing low substrate utilization efficiency and low DagA productivity. To overcome such difficulties, a new strategy of sequential substrate utilization was developed. In the first step, glucose was consumed by Saccharomyces cerevisiae together with galactose and mannose producing ethanol, after which DagA was produced from the remaining sugars of xylose, rhamnose and ribose. Fucose was not consumed. By adopting this two-step process, the overall substrate utilization efficiency was increased approximately 3-fold with a nearly 2-fold improvement of DagA production, let alone the additional benefit of ethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ye, Yuxin; Saburi, Wataru; Odaka, Rei; Kato, Koji; Sakurai, Naofumi; Komoda, Keisuke; Nishimoto, Mamoru; Kitaoka, Motomitsu; Mori, Haruhide; Yao, Min
2016-03-01
In Ruminococcus albus, 4-O-β-D-mannosyl-D-glucose phosphorylase (RaMP1) and β-(1,4)-mannooligosaccharide phosphorylase (RaMP2) belong to two subfamilies of glycoside hydrolase family 130. The two enzymes phosphorolyze β-mannosidic linkages at the nonreducing ends of their substrates, and have substantially diverse substrate specificity. The differences in their mechanism of substrate binding have not yet been fully clarified. In the present study, we report the crystal structures of RaMP1 with/without 4-O-β-D-mannosyl-d-glucose and RaMP2 with/without β-(1→4)-mannobiose. The structures of the two enzymes differ at the +1 subsite of the substrate-binding pocket. Three loops are proposed to determine the different substrate specificities. One of these loops is contributed from the adjacent molecule of the oligomer structure. In RaMP1, His245 of loop 3 forms a hydrogen-bond network with the substrate through a water molecule, and is indispensible for substrate binding. © 2016 Federation of European Biochemical Societies.
2012-01-01
Background Second generation hydrogen fermentation technologies using organic agricultural and forestry wastes are emerging. The efficient microbial fermentation of hexoses and pentoses resulting from the pretreatment of lingocellulosic materials is essential for the success of these processes. Results Conversion of arabinose and glucose to hydrogen, by extreme thermophilic, anaerobic, mixed cultures was studied in continuous (70°C, pH 5.5) and batch (70°C, pH 5.5 and pH 7) assays. Two expanded granular sludge bed (EGSB) reactors, Rarab and Rgluc, were continuously fed with arabinose and glucose, respectively. No significant differences in reactor performance were observed for arabinose and glucose organic loading rates (OLR) ranging from 4.3 to 7.1 kgCOD m-3 d-1. However, for an OLR of 14.2 kgCOD m-3 d-1, hydrogen production rate and hydrogen yield were higher in Rarab than in Rgluc (average hydrogen production rate of 3.2 and 2.0 LH2 L-1 d-1 and hydrogen yield of 1.10 and 0.75 molH2 mol-1substrate for Rarab and Rgluc, respectively). Lower hydrogen production in Rgluc was associated with higher lactate production. Denaturing gradient gel electrophoresis (DGGE) results revealed no significant difference on the bacterial community composition between operational periods and between the reactors. Increased hydrogen production was observed in batch experiments when hydrogen partial pressure was kept low, both with arabinose and glucose as substrate. Sugars were completely consumed and hydrogen production stimulated (62% higher) when pH 7 was used instead of pH 5.5. Conclusions Continuous hydrogen production rate from arabinose was significantly higher than from glucose, when higher organic loading rate was used. The effect of hydrogen partial pressure on hydrogen production from glucose in batch mode was related to the extent of sugar utilization and not to the efficiency of substrate conversion to hydrogen. Furthermore, at pH 7.0, sugars uptake, hydrogen production and yield were higher than at pH 5.5, with both arabinose and glucose as substrates. PMID:22330180
Investigation of HP Turbine Blade Failure in a Military Turbofan Engine
NASA Astrophysics Data System (ADS)
Mishra, R. K.; Thomas, Johny; Srinivasan, K.; Nandi, Vaishakhi; Bhatt, R. Raghavendra
2017-04-01
Failure of a high pressure (HP) turbine blade in a military turbofan engine is investigated to determine the root cause of failure. Forensic and metallurgical investigations are carried out on the affected blades. The loss of coating and the presence of heavily oxidized intergranular fracture features including substrate material aging and airfoil curling in the trailing edge of a representative blade indicate that the coating is not providing adequate oxidation protection and the blade material substrate is not suitable for the application at hand. Coating spallation followed by substrate oxidation and aging leading to intergranular cracking and localized trailing edge curling is the root cause of the blade failure. The remaining portion of the blade fracture surface showed ductile overload features in the final failure. The damage observed in downstream components is due to secondary effects.
Lu, Hongying; Zhao, Xiao; Wang, Yongze; Ding, Xiaoren; Wang, Jinhua; Garza, Erin; Manow, Ryan; Iverson, Andrew; Zhou, Shengde
2016-02-19
A thermal tolerant stereo-complex poly-lactic acid (SC-PLA) can be made by mixing Poly-D-lactic acid (PDLA) and poly-L-lactic acid (PLLA) at a defined ratio. This environmentally friendly biodegradable polymer could replace traditional recalcitrant petroleum-based plastics. To achieve this goal, however, it is imperative to produce optically pure lactic acid isomers using a cost-effective substrate such as cellulosic biomass. The roadblock of this process is that: 1) xylose derived from cellulosic biomass is un-fermentable by most lactic acid bacteria; 2) the glucose effect results in delayed and incomplete xylose fermentation. An alternative strain devoid of the glucose effect is needed to co-utilize both glucose and xylose for improved D-lactic acid production using a cellulosic biomass substrate. A previously engineered L-lactic acid Escherichia coli strain, WL204 (ΔfrdBC ΔldhA ΔackA ΔpflB ΔpdhR ::pflBp6-acEF-lpd ΔmgsA ΔadhE, ΔldhA::ldhL), was reengineered for production of D-lactic acid, by replacing the recombinant L-lactate dehydrogenase gene (ldhL) with a D-lactate dehydrogenase gene (ldhA). The glucose effect (catabolite repression) of the resulting strain, JH13, was eliminated by deletion of the ptsG gene which encodes for IIBC(glc) (a PTS enzyme for glucose transport). The derived strain, JH14, was metabolically evolved through serial transfers in screw-cap tubes containing glucose. The evolved strain, JH15, regained improved anaerobic cell growth using glucose. In fermentations using a mixture of glucose (50 g L(-1)) and xylose (50 g L(-1)), JH15 co-utilized both glucose and xylose, achieving an average sugar consumption rate of 1.04 g L(-1)h(-1), a D-lactic acid titer of 83 g L(-1), and a productivity of 0.86 g L(-1) h(-1). This result represents a 46 % improved sugar consumption rate, a 26 % increased D-lactic acid titer, and a 48 % enhanced productivity, compared to that achieved by JH13. These results demonstrated that JH15 has the potential for fermentative production of D-lactic acid using cellulosic biomass derived substrates, which contain a mixture of C6 and C5 sugars.
Oxidase-functionalized Fe(3)O(4) nanoparticles for fluorescence sensing of specific substrate.
Liu, Cheng-Hao; Tseng, Wei-Lung
2011-10-03
This study reports the development of a reusable, single-step system for the detection of specific substrates using oxidase-functionalized Fe(3)O(4) nanoparticles (NPs) as a bienzyme system and using amplex ultrared (AU) as a fluorogenic substrate. In the presence of H(2)O(2), the reaction pH between Fe(3)O(4) NPs and AU was similar to the reaction of oxidase and the substrate. The catalytic activity of Fe(3)O(4) NPs with AU was nearly unchanged following modification with poly(diallyldimethylammonium chloride) (PDDA). Based on these features, we prepared a composite of PDDA-modified Fe(3)O(4) NPs and oxidase for the quantification of specific substrates through the H(2)O(2)-mediated oxidation of AU. By monitoring fluorescence intensity at 587 nm of oxidized AU, the minimum detectable concentrations of glucose, galactose, and choline were found to be 3, 2, and 20 μM using glucose oxidase-Fe(3)O(4), galactose oxidase-Fe(3)O(4), and choline oxidase-Fe(3)O(4) composites, respectively. The identification of glucose in blood was selected as the model to validate the applicability of this proposed method. Copyright © 2011 Elsevier B.V. All rights reserved.
Glucose and lactate as metabolic constraints on presynaptic transmission at an excitatory synapse.
Lucas, Sarah J; Michel, Christophe B; Marra, Vincenzo; Smalley, Joshua L; Hennig, Matthias H; Graham, Bruce P; Forsythe, Ian D
2018-05-01
Synapses have high energy demands which increase during intense activity. We show that presynaptic terminals can utilise extracellular glucose or lactate to generate energy to maintain synaptic transmission. Reducing energy substrates induces a metabolic stress: presynaptic ATP depletion impaired synaptic transmission through a reduction in the number of functional synaptic vesicle release sites and a slowing of vesicle pool replenishment, without a consistent change in release probability. Metabolic function is compromised in many pathological conditions (e.g. stroke, traumatic brain injury and neurodegeneration). Knowledge of how synaptic transmission is constrained by metabolic stress, especially during intense brain activity, will provide insights to improve cognition following pathological insults. The synapse has high energy demands, which increase during intense activity. Presynaptic ATP production depends on substrate availability and usage will increase during activity, which in turn could influence transmitter release and information transmission. We investigated transmitter release at the mouse calyx of Held synapse using glucose or lactate (10, 1 or 0 mm) as the extracellular substrates while inducing metabolic stress. High-frequency stimulation (HFS) and recovery paradigms evoked trains of EPSCs monitored under voltage-clamp. Whilst postsynaptic intracellular ATP was stabilised by diffusion from the patch pipette, depletion of glucose increased EPSC depression during HFS and impaired subsequent recovery. Computational modelling of these data demonstrated a reduction in the number of functional release sites and slowed vesicle pool replenishment during metabolic stress, with little change in release probability. Directly depleting presynaptic terminal ATP impaired transmitter release in an analogous manner to glucose depletion. In the absence of glucose, presynaptic terminal metabolism could utilise lactate from the aCSF and this was blocked by inhibition of monocarboxylate transporters (MCTs). MCT inhibitors significantly suppressed transmission in low glucose, implying that lactate is a presynaptic substrate. Additionally, block of glycogenolysis accelerated synaptic transmission failure in the absence of extracellular glucose, consistent with supplemental supply of lactate by local astrocytes. We conclude that both glucose and lactate support presynaptic metabolism and that limited availability, exacerbated by high-intensity firing, constrains presynaptic ATP, impeding transmission through a reduction in functional presynaptic release sites as vesicle recycling slows when ATP levels are low. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Cell-free protein synthesis energized by slowly-metabolized maltodextrin
Wang, Yiran; Zhang, Y-H Percival
2009-01-01
Background Cell-free protein synthesis (CFPS) is a rapid and high throughput technology for obtaining proteins from their genes. The primary energy source ATP is regenerated from the secondary energy source through substrate phosphorylation in CFPS. Results Distinct from common secondary energy sources (e.g., phosphoenolpyruvate – PEP, glucose-6-phosphate), maltodextrin was used for energizing CFPS through substrate phosphorylation and the glycolytic pathway because (i) maltodextrin can be slowly catabolized by maltodextrin phosphorylase for continuous ATP regeneration, (ii) maltodextrin phosphorylation can recycle one phosphate per reaction for glucose-1-phosphate generation, and (iii) the maltodextrin chain-shortening reaction can produce one ATP per glucose equivalent more than glucose can. Three model proteins, esterase 2 from Alicyclobacillus acidocaldarius, green fluorescent protein, and xylose reductase from Neurospora crassa were synthesized for demonstration. Conclusion Slowly-metabolized maltodextrin as a low-cost secondary energy compound for CFPS produced higher levels of proteins than PEP, glucose, and glucose-6-phospahte. The enhancement of protein synthesis was largely attributed to better-controlled phosphate levels (recycling of inorganic phosphate) and a more homeostatic reaction environment. PMID:19558718
Brown, Angus M; Ransom, Bruce R
2015-02-01
Energy metabolism in the brain is a complex process that is incompletely understood. Although glucose is agreed as the main energy support of the brain, the role of glucose is not clear, which has led to controversies that can be summarized as follows: the fate of glucose, once it enters the brain is unclear. It is not known the form in which glucose enters the cells (neurons and glia) within the brain, nor the degree of metabolic shuttling of glucose derived metabolites between cells, with a key limitation in our knowledge being the extent of oxidative metabolism, and how increased tissue activity alters this. Glycogen is present within the brain and is derived from glucose. Glycogen is stored in astrocytes and acts to provide short-term delivery of substrates to neural elements, although it may also contribute an important component to astrocyte metabolism. The roles played by glycogen awaits further study, but to date its most important role is in supporting neural elements during increased firing activity, where signaling molecules, proposed to be elevated interstitial K(+), indicative of elevated neural firing rates, activate glycogen phosphorylase leading to increased production of glycogen derived substrate.
Non-enzymatic Fluorescent Biosensor for Glucose Sensing Based on ZnO Nanorods
NASA Astrophysics Data System (ADS)
Mai, Hong Hanh; Pham, Van Thanh; Nguyen, Viet Tuyen; Sai, Cong Doanh; Hoang, Chi Hieu; Nguyen, The Binh
2017-06-01
We have developed a non-enzymatic fluorescent biosensor for glucose sensing based on ZnO nanorods. ZnO nanorods of high density, high crystallinity, and good alignment were grown on low-cost industrial copper substrates at low temperature. To grow them directly on the substrates without using a seed layer, we utilized a simple one-step seedless hydrothermal method, which is based on galvanic cell structure. Herein, the glucose-treated ZnO nanorods together with the ultraviolet (UV) irradiation of the sample during the photoluminescent measurement played the role of a catalyst. They decomposed glucose into hydrogen peroxide (H2O2) and gluconic acid, which is similar to the glucose oxidase enzyme (GOx) used in enzymatic sensors. Due to the formation of H2O2, the photoluminescence intensity of the UV emission peak of ZnO nanorods decreased as the glucose concentration increased from 1 mM to 100 mM. In comparison with glucose concentration of a normal human serum, which is in the range of 4.4-6.6 mM, the obtained results show potential of non-enzymatic fluorescent biosensors in medical applications.
Fabrication of a Flexible Amperometric Glucose Sensor Using Additive Processes
Du, Xiaosong; Durgan, Christopher J.; Matthews, David J.; Motley, Joshua R.; Tan, Xuebin; Pholsena, Kovit; Árnadóttir, Líney; Castle, Jessica R.; Jacobs, Peter G.; Cargill, Robert S.; Ward, W. Kenneth; Conley, John F.; Herman, Gregory S.
2015-01-01
This study details the use of printing and other additive processes to fabricate a novel amperometric glucose sensor. The sensor was fabricated using a Au coated 12.7 μm thick polyimide substrate as a starting material, where micro-contact printing, electrochemical plating, chloridization, electrohydrodynamic jet (e-jet) printing, and spin coating were used to pattern, deposit, chloridize, print, and coat functional materials, respectively. We have found that e-jet printing was effective for the deposition and patterning of glucose oxidase inks with lateral feature sizes between ~5 to 1000 μm in width, and that the glucose oxidase was still active after printing. The thickness of the permselective layer was optimized to obtain a linear response for glucose concentrations up to 32 mM and no response to acetaminophen, a common interfering compound, was observed. The use of such thin polyimide substrates allow wrapping of the sensors around catheters with high radius of curvature ~250 μm, where additive and microfabrication methods may allow significant cost reductions. PMID:26634186
Comparison of metabolic substrates in alligators and several birds of prey.
Sweazea, Karen L; McMurtry, John P; Elsey, Ruth M; Redig, Patrick; Braun, Eldon J
2014-08-01
On average, avian blood glucose concentrations are 1.5-2 times those of mammals of similar mass and high concentrations of insulin are required to lower blood glucose. Whereas considerable data exist for granivorous species, few data are available for plasma metabolic substrate and glucoregulatory hormone concentrations for carnivorous birds and alligators. Birds and mammals with carnivorous diets have higher metabolic rates than animals consuming diets with less protein whereas alligators have low metabolic rates. Therefore, the present study was designed to compare substrate and glucoregulatory hormone concentrations in several birds of prey and a phylogenetically close relative of birds, the alligator. The hypothesis was that the combination of carnivorous diets and high metabolic rates favored the evolution of greater protein and fatty acid utilization leading to insulin resistance and high plasma glucose concentrations in carnivorous birds. In contrast, it was hypothesized that alligators would have low substrate utilization attributable to a low metabolic rate. Fasting plasma substrate and glucoregulatory hormone concentrations were compared for bald eagles (Haliaeetus leucocephalus), great horned owls (Bubo virginianus), red-tailed hawks (Buteo jamaicensis), and American alligators (Alligator mississippiensis). Avian species had high circulating β-hydroxybutyrate (10-21 mg/dl) compared to alligators (2.81 ± 0.16 mg/dl). In mammals high concentrations of this byproduct of fatty acid utilization are correlated with insulin resistance. Fasting glucose and insulin concentrations were positively correlated in eagles whereas no relationship was found between these variables for owls, hawks or alligators. Additionally, β-hydroxybutyrate concentrations were low in alligators. Similar to carnivorous mammals, ingestion of a high protein diet may have favored the utilization of fatty acids and protein for energy thereby promoting the development of insulin resistance and gluconeogenesis-induced high plasma glucose concentrations during periods of fasting in birds of prey. Copyright © 2014 Elsevier GmbH. All rights reserved.
Galyon, Kristina D; Farshidi, Farnoosh; Han, Guang; Ross, Michael G; Desai, Mina; Jellyman, Juanita K
2017-03-01
The obesogenic and diabetogenic effects of the environmental toxin bisphenol A during critical windows of development are well recognized. Liver and skeletal muscle play a central role in the control of glucose production, utilization, and storage. We hypothesized that maternal bisphenol A exposure disrupts insulin signaling in rat offspring liver and skeletal muscle. We determined the protein expression of hepatic and skeletal muscle insulin signaling molecules including insulin receptor beta, its downstream target insulin receptor substrate 1 and glucose transporters (glucose transporter 2, glucose transporter 4), and hepatic glucose-regulating enzymes phosphoenolpyruvate carboxykinase and glucokinase. Rat dams had ad libitum access to filtered drinking water (control) or drinking water with bisphenol A from 2 weeks prior to mating and through pregnancy and lactation. Offspring litters were standardized to 4 males and 4 females and nursed by the same dam. At weaning, bisphenol A exposure was removed from all offspring. Glucose tolerance was tested at 6 weeks and 6 months. Liver and skeletal muscle was collected from 3 week old and 10 month old offspring for protein expression (Western blot) of insulin receptor beta, insulin receptor substrate 1, glucose transporter 2, glucose transporter 4, phosphoenolpyruvate carboxykinase, and glucokinase. Male, but not female, bisphenol A offspring had impaired glucose tolerance at 6 weeks and 6 months. Both male and female adult offspring had higher glucose-stimulated insulin secretion as well as the ratio of stimulated insulin to glucose. Male bisphenol A offspring had higher liver protein abundance of the 200 kDa insulin receptor beta precursor (2-fold), and insulin receptor substrate 1 (1.5-fold), whereas glucose transporter 2 was 0.5-fold of the control at 3 weeks of age. In adult male bisphenol A offspring, the abundance of insulin receptor beta was higher (2-fold) and glucose transporter 4 was 0.8-fold of the control in skeletal muscle. In adult female bisphenol A offspring, the skeletal muscle protein abundance of glucose transporter 4 was 0.4-fold of the control. Maternal bisphenol A had sex- and tissue-specific effects on insulin signaling components, which may contribute to increased risk of glucose intolerance in offspring. Glucose transporters were consistently altered at both ages as well as in both sexes and may contribute to glucose intolerance. These data suggest that maternal bisphenol A exposure should be limited during pregnancy and lactation. Copyright © 2016 Elsevier Inc. All rights reserved.
The Role of Skeletal Muscle Glycogen Breakdown for Regulation of Insulin Sensitivity by Exercise
Jensen, Jørgen; Rustad, Per Inge; Kolnes, Anders Jensen; Lai, Yu-Chiang
2011-01-01
Glycogen is the storage form of carbohydrates in mammals. In humans the majority of glycogen is stored in skeletal muscles (∼500 g) and the liver (∼100 g). Food is supplied in larger meals, but the blood glucose concentration has to be kept within narrow limits to survive and stay healthy. Therefore, the body has to cope with periods of excess carbohydrates and periods without supplementation. Healthy persons remove blood glucose rapidly when glucose is in excess, but insulin-stimulated glucose disposal is reduced in insulin resistant and type 2 diabetic subjects. During a hyperinsulinemic euglycemic clamp, 70–90% of glucose disposal will be stored as muscle glycogen in healthy subjects. The glycogen stores in skeletal muscles are limited because an efficient feedback-mediated inhibition of glycogen synthase prevents accumulation. De novo lipid synthesis can contribute to glucose disposal when glycogen stores are filled. Exercise physiologists normally consider glycogen’s main function as energy substrate. Glycogen is the main energy substrate during exercise intensity above 70% of maximal oxygen uptake (Vo2max) and fatigue develops when the glycogen stores are depleted in the active muscles. After exercise, the rate of glycogen synthesis is increased to replete glycogen stores, and blood glucose is the substrate. Indeed insulin-stimulated glucose uptake and glycogen synthesis is elevated after exercise, which, from an evolutional point of view, will favor glycogen repletion and preparation for new “fight or flight” events. In the modern society, the reduced glycogen stores in skeletal muscles after exercise allows carbohydrates to be stored as muscle glycogen and prevents that glucose is channeled to de novo lipid synthesis, which over time will causes ectopic fat accumulation and insulin resistance. The reduction of skeletal muscle glycogen after exercise allows a healthy storage of carbohydrates after meals and prevents development of type 2 diabetes. PMID:22232606
The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise.
Jensen, Jørgen; Rustad, Per Inge; Kolnes, Anders Jensen; Lai, Yu-Chiang
2011-01-01
Glycogen is the storage form of carbohydrates in mammals. In humans the majority of glycogen is stored in skeletal muscles (∼500 g) and the liver (∼100 g). Food is supplied in larger meals, but the blood glucose concentration has to be kept within narrow limits to survive and stay healthy. Therefore, the body has to cope with periods of excess carbohydrates and periods without supplementation. Healthy persons remove blood glucose rapidly when glucose is in excess, but insulin-stimulated glucose disposal is reduced in insulin resistant and type 2 diabetic subjects. During a hyperinsulinemic euglycemic clamp, 70-90% of glucose disposal will be stored as muscle glycogen in healthy subjects. The glycogen stores in skeletal muscles are limited because an efficient feedback-mediated inhibition of glycogen synthase prevents accumulation. De novo lipid synthesis can contribute to glucose disposal when glycogen stores are filled. Exercise physiologists normally consider glycogen's main function as energy substrate. Glycogen is the main energy substrate during exercise intensity above 70% of maximal oxygen uptake ([Formula: see text]) and fatigue develops when the glycogen stores are depleted in the active muscles. After exercise, the rate of glycogen synthesis is increased to replete glycogen stores, and blood glucose is the substrate. Indeed insulin-stimulated glucose uptake and glycogen synthesis is elevated after exercise, which, from an evolutional point of view, will favor glycogen repletion and preparation for new "fight or flight" events. In the modern society, the reduced glycogen stores in skeletal muscles after exercise allows carbohydrates to be stored as muscle glycogen and prevents that glucose is channeled to de novo lipid synthesis, which over time will causes ectopic fat accumulation and insulin resistance. The reduction of skeletal muscle glycogen after exercise allows a healthy storage of carbohydrates after meals and prevents development of type 2 diabetes.
Sunya, Sirichai; Bideaux, Carine; Molina-Jouve, Carole; Gorret, Nathalie
2013-04-15
The effect of repeated glucose perturbations on dynamic behavior of Escherichia coli DPD2085, yciG::LuxCDABE reporter strain, was studied and characterized on a short-time scale using glucose-limited chemostat cultures at dilution rates close to 0.18h(-1). The substrate disturbances were applied on independent steady-state cultures, firstly using a single glucose pulse under different aeration conditions and secondly using repeated glucose pulses under fully aerobic condition. The dynamic responses of E. coli to a single glucose pulse of different intensities (0.25 and 0.6gL(-1)) were significantly similar at macroscopic level, revealing the independency of the macroscopic microbial behavior to the perturbation intensity in the range of tested glucose concentrations. The dynamic responses of E. coli to repeated glucose pulses to simulate fluctuating environments between glucose-limited and glucose-excess conditions were quantified; similar behavior regarding respiration and by-product formations was observed, except for the first perturbation denoted by an overshoot of the specific oxygen uptake rate in the first minutes after the pulse. In addition, transcriptional induction of yciG promoter gene involved in general stress response, σ(S), was monitored through the bioluminescent E. coli strain. This study aims to provide and compare short-term quantitative kinetics data describing the dynamic behavior of E. coli facing repeated transient substrate conditions. Copyright © 2013 Elsevier B.V. All rights reserved.
Production of Mycophenolic Acid by Penicillium brevicompactum Using Solid State Fermentation.
Patel, Gopal; Patil, Mahesh D; Soni, Surbhi; Chisti, Yusuf; Banerjee, Uttam Chand
2017-05-01
Solid-state fermentation using the microfungus Penicillium brevicompactum for the production of mycophenolic acid is reported in this paper. Of the initial substrates tested (whole wheat, cracked wheat, long grain Basmati rice, and short grain Parmal rice), Parmal rice proved to be the best. Under initial conditions, using steamed Parmal rice with 80% (w/w) initial moisture content, a maximum mycophenolic acid concentration of 3.4 g/kg substrate was achieved in 12 days of fermentation at 25 °C. The above substrate was supplemented with the following additional nutrients (g/L packed substrate): glucose 40.0, peptone 54.0, KH 2 PO 4 8.0, MgSO4⋅7H 2 O 2.0, glycine 7.0, and methionine 1.65 (initial pH 5.0). A small amount of a specified trace element solution was also added. The final mycophenolic acid concentration was increased to nearly 4 g/kg substrate by replacing glucose with molasses. Replacing Parmal rice with rice bran as substrate further improved the mycophenolic acid production to nearly 4.5 g/kg substrate.
Eyiuche, Nweze Julius; Asakawa, Shiho; Yamashita, Takahiro; Ikeguchi, Atsuo; Kitamura, Yutaka; Yokoyama, Hiroshi
2017-06-29
The flame-oxidized stainless steel anode (FO-SSA) is a newly developed electrode that enhances microbial fuel cell (MFC) power generation; however, substrate preference and community structure of the biofilm developed on FO-SSA have not been well characterized. Herein, we investigated the community on FO-SSA using high-throughput sequencing of the 16S rRNA gene fragment in acetate-, starch-, glucose-, and livestock wastewater-fed MFCs. Furthermore, to analyze the effect of the anode material, the acetate-fed community formed on a common carbon-based electrode-carbon-cloth anode (CCA)-was examined for comparison. Substrate type influenced the power output of MFCs using FO-SSA; the highest electricity was generated using acetate as a substrate, followed by peptone, starch and glucose, and wastewater. Intensity of power generation using FO-SSA was related to the abundance of exoelectrogenic genera, namely Geobacter and Desulfuromonas, of the phylum Proteobacteria, which were detected at a higher frequency in acetate-fed communities than in communities fed with other substrates. Lactic acid bacteria (LAB)-Enterococcus and Carnobacterium-were predominant in starch- and glucose-fed communities, respectively. In the wastewater-fed community, members of phylum Planctomycetes were frequently detected (36.2%). Exoelectrogenic genera Geobacter and Desulfuromonas were also detected in glucose-, starch-, and wastewater-fed communities on FO-SSA, but with low frequency (0-3.2%); the lactate produced by Carnobacterium and Enterococcus in glucose- and starch-fed communities might affect exoelectrogenic bacterial growth, resulting in low power output by MFCs fed with these substrates. Furthermore, in the acetate-fed community on FO-SSA, Desulfuromonas was abundant (15.4%) and Geobacter had a minor proportion (0.7%), while in that on CCA, both Geobacter and Desulfuromonas were observed at similar frequencies (6.0-9.8%), indicating that anode material affects exoelectrogenic genus enrichment in anodic biofilm. Anodic community structure was dependent on both substrate and anode material. Although Desulfuromonas spp. are marine microorganisms, they were abundant in the acetate-fed community on FO-SSA, implying the presence of novel non-halophilic and exoelectrogenic species in this genus. Power generation using FO-SSA was positively related to the frequency of exoelectrogenic genera in the anodic community. Predominant LAB in saccharide-fed anodic biofilm caused low abundance of exoelectrogenic genera and consequent low power generation.
Choudhary, Alpa; Modak, Arnab; Apte, Shree K.
2017-01-01
ABSTRACT The effective elimination of xenobiotic pollutants from the environment can be achieved by efficient degradation by microorganisms even in the presence of sugars or organic acids. Soil isolate Pseudomonas putida CSV86 displays a unique ability to utilize aromatic compounds prior to glucose. The draft genome and transcription analyses revealed that glucose uptake and benzoate transport and metabolism genes are clustered at the glc and ben loci, respectively, as two distinct operons. When grown on glucose plus benzoate, CSV86 displayed significantly higher expression of the ben locus in the first log phase and of the glc locus in the second log phase. Kinetics of substrate uptake and metabolism matched the transcription profiles. The inability of succinate to suppress benzoate transport and metabolism resulted in coutilization of succinate and benzoate. When challenged with succinate or benzoate, glucose-grown cells showed rapid reduction in glc locus transcription, glucose transport, and metabolic activity, with succinate being more effective at the functional level. Benzoate and succinate failed to interact with or inhibit the activities of glucose transport components or metabolic enzymes. The data suggest that succinate and benzoate suppress glucose transport and metabolism at the transcription level, enabling P. putida CSV86 to preferentially metabolize benzoate. This strain thus has the potential to be an ideal host to engineer diverse metabolic pathways for efficient bioremediation. IMPORTANCE Pseudomonas strains play an important role in carbon cycling in the environment and display a hierarchy in carbon utilization: organic acids first, followed by glucose, and aromatic substrates last. This limits their exploitation for bioremediation. This study demonstrates the substrate-dependent modulation of ben and glc operons in Pseudomonas putida CSV86, wherein benzoate suppresses glucose transport and metabolism at the transcription level, leading to preferential utilization of benzoate over glucose. Interestingly, succinate and benzoate are cometabolized. These properties are unique to this strain compared to other pseudomonads and open up avenues to unravel novel regulatory processes. Strain CSV86 can serve as an ideal host to engineer and facilitate efficient removal of recalcitrant pollutants even in the presence of simpler carbon sources. PMID:28733285
Enzyme Analysis to Determine Glucose Content
NASA Astrophysics Data System (ADS)
Carpenter, Charles; Ward, Robert E.
Enzyme analysis is used for many purposes in food science and technology. Enzyme activity is used to indicate adequate processing, to assess enzyme preparations, and to measure constituents of foods that are enzyme substrates. In this experiment, the glucose content of corn syrup solids is determined using the enzymes, glucose oxidase and peroxidase. Glucose oxidase catalyzes the oxidation of glucose to form hydrogen peroxide (H2O2), which then reacts with a dye in the presence of peroxidase to give a stable colored product.
NASA Astrophysics Data System (ADS)
Pasma, Satriani Aga; Daik, Rusli; Maskat, Mohamad Yusof
2013-11-01
Succinic acid is a common metabolite in plants, animals and microorganisms. It has been used widely in agricultural, food and pharmaceutical industries. Enzymatic hydrolysate glucose from oil palm empty fruit bunch (OPEFB) cellulose was used as a substrate for succinic acid production using Actinobacillus succinogenes. Using cellulose extraction from OPEFB can enhance the production of glucose as a main substrate for succinic acid production. The highest concentration of glucose produced from enzymatic hydrolysis is 167 mg/mL and the sugar recovery is 0.73 g/g of OPEFB. By optimizing the culture medium for succinic acid fermentation with enzymatic hydrolysate of OPEFB cellulose, the nitrogen sources could be reduced to just only 2.5 g yeast extract and 2.5 g corn step liquor. Batch fermentation was carried out using enzymatic hydrolysate of OPEFB cellulose with yeast extract, corn steep liquor and the salts mixture, 23.5 g/L succinic acid was obtained with consumption of 72 g/L glucose in enzymatic hydrolysate of OPEFB cellulose at 38 hours and 37°C. This study suggests that enzymatic hydrolysate of OPEFB cellulose maybe an alternative substrate for the efficient production of succinic acid by Actinobacillus succinogenes.
Disruption of protein-tyrosine phosphatase 1B expression in the pancreas affects β-cell function.
Liu, Siming; Xi, Yannan; Bettaieb, Ahmed; Matsuo, Kosuke; Matsuo, Izumi; Kulkarni, Rohit N; Haj, Fawaz G
2014-09-01
Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and energy balance. However, the role of PTP1B in pancreatic endocrine function remains largely unknown. To investigate the metabolic role of pancreatic PTP1B, we generated mice with pancreas PTP1B deletion (panc-PTP1B KO). Mice were fed regular chow or a high-fat diet, and metabolic parameters, insulin secretion and glucose tolerance were determined. On regular chow, panc-PTP1B KO and control mice exhibited comparable glucose tolerance whereas aged panc-PTP1B KO exhibited mild glucose intolerance. Furthermore, high-fat feeding promoted earlier impairment of glucose tolerance and attenuated glucose-stimulated insulin secretion in panc-PTP1B KO mice. The secretory defect in glucose-stimulated insulin secretion was recapitulated in primary islets ex vivo, suggesting that the effects were likely cell-autonomous. At the molecular level, PTP1B deficiency in vivo enhanced basal and glucose-stimulated tyrosyl phosphorylation of EphA5 in islets. Consistently, PTP1B overexpression in the glucose-responsive MIN6 β-cell line attenuated EphA5 tyrosyl phosphorylation, and substrate trapping identified EphA5 as a PTP1B substrate. In summary, these studies identify a novel role for PTP1B in pancreatic endocrine function.
Wongnate, Thanyaporn; Chaiyen, Pimchai
2013-07-01
Enzymes in the glucose-methanol-choline (GMC) oxidoreductase superfamily catalyze the oxidation of an alcohol moiety to the corresponding aldehyde. In this review, the current understanding of the sugar oxidation mechanism in the reaction of pyranose 2-oxidase (P2O) is highlighted and compared with that of other enzymes in the GMC family for which structural and mechanistic information is available, including glucose oxidase, choline oxidase, cholesterol oxidase, cellobiose dehydrogenase, aryl-alcohol oxidase, and pyridoxine 4-oxidase. Other enzymes in the family that have been newly discovered or for which less information is available are also discussed. A large primary kinetic isotope effect was observed for the flavin reduction when 2-d-D-glucose was used as a substrate, but no solvent kinetic isotope effect was detected for the flavin reduction step. The reaction of P2O is consistent with a hydride transfer mechanism in which there is stepwise formation of d-glucose alkoxide prior to the hydride transfer. Site-directed mutagenesis of P2O and pH-dependence studies indicated that His548 is a catalytic base that facilitates the deprotonation of C2-OH in D-glucose. This finding agrees with the current mechanistic model for aryl-alcohol oxidase, glucose oxidase, cellobiose dehydrogenase, methanol oxidase, and pyridoxine 4-oxidase, but is different from that of cholesterol oxidase and choline oxidase. Although all of the GMC enzymes share similar structural folding and use the hydride transfer mechanism for flavin reduction, they appear to have subtle differences in the fine-tuned details of how they catalyze substrate oxidation. © 2013 The Authors Journal compilation © 2013 FEBS.
Zhang, Cheng; Zong, Hong; Zhuge, Bin; Lu, Xinyao; Fang, Huiying; Zhuge, Jian
2015-07-01
Efficient bioconversion of D-xylose into various biochemicals is critical for the developing lignocelluloses application. In this study, we compared D-xylose utilization in Candida glycerinogenes WL2002-5 transformants expressing xylose reductase (XYL1) in D-xylose metabolism. C. glycerinogenes WL2002-5 expressing XYL1 from Schefferomyces stipitis can produce xylitol. Xylitol production by the recombinant strains was evaluated using a xylitol fermentation medium with glucose as a co-substrate. As glucose was found to be an insufficient co-substrate, various carbon sources were screened for efficient cofactor regeneration, and glycerol was found to be the best co-substrate. The effects of glycerol on the xylitol production rate by a xylose reductase gene (XYL1)-overexpressed mutant of C. glycerinogenes WL2002-5 were investigated. The XYL1-overexpressed mutant produced xylitol from D-xylose using glycerol as a co-substrate for cell growth and NAD (P) H regeneration: 100 g/L D-xylose was completely converted into xylitol when at least 20 g/L glycerol was used as a co-substrate. XYL1 overexpressed mutant grown on glycerol as co-substrate accumulated 2.1-fold increased xylitol concentration over those cells grown on glucose as co-substrate. XYL1 overexpressed mutant produced xylitol with a volumetric productivity of 0.83 g/L/h, and a xylitol yield of 98 % xylose. Recombinant yeast strains obtained in this study are promising candidates for xylitol production. This is the first report of XYL1 gene overexpression of C. glycerinogenes WL2002-5 for enhancing the efficiency of xylitol production.
Gao, Shengli; Kushida, Hirotaka; Makino, Toshiaki
2017-01-01
Recent pharmacokinetic studies have revealed that ginsenosides, the major ingredients of ginseng (the roots of Panax ginseng), are present in the plasma collected from subjects receiving ginseng, and speculated that ginsenosides might be actively transported via glucose transporters. We evaluated whether ginsenosides Rb 1 and Rg 1 , and their metabolites from enteric bacteria act as substrates of sodium-glucose cotransporter (SGLT) 1, the major glucose transporter expressed on the apical side of intestinal epithelial cells. First, we evaluated the competing effects of ginseng extract and ginsenosides on the uptake of [ 14 C]methyl-glucose, a substrate of SGLT1, by SGLT1-overexpressing HEK293 cells. A boiling water extract of ginseng inhibited SGLT1 in a concentration-dependent manner with an IC 50 value of 0.85 mg/ml. By activity-guided fractionation, we determined that the fraction containing ginsenosides displayed an inhibitory effect on SGLT1. Of the ginsenosides evaluated, protopanaxatriol-type ginsenosides were not found to inhibit SGLT1, whereas protopanaxadiol-type ginsenosides, including ginsenosides Rd, Rg 3 , Rh 2 , F 2 and compound K, exhibited significant inhibitory effects on SGLT1, with ginsenoside F 2 having the highest activity with an IC 50 value of 23.0 µM. Next, we measured the uptake of ginsenoside F 2 and compound K into Caco-2 cells, a cell line frequently used to evaluate the intestinal absorption of drugs. The uptake of ginsenoside F 2 and compound K into Caco-2 cells was not competitively inhibited by glucose. Furthermore, the uptake of ginsenoside F 2 and compound K into SGLT1-overexpressing HEK293 cells was not significantly higher than into mock cells. Ginsenoside F 2 and compound K did not appear to be substrates of SGLT1, although these compounds could inhibit SGLT1. Ginsenosides might be absorbed by passive diffusion through the intestinal membrane or actively transported via unknown transporters other than SGLT1.
Wohl, Petr; Krusinová, Eva; Hill, Martin; Kratochvílová, Simona; Zídková, Katerina; Kopecký, Jan; Neskudla, Tomás; Pravenec, Michal; Klementová, Marta; Vrbíková, Jana; Wohl, Pavel; Mlejnek, Petr; Pelikánová, Terezie
2010-10-01
Telmisartan improves glucose and lipid metabolism in rodents. This study evaluated the effect of telmisartan on insulin sensitivity, substrate utilization, selected plasma adipokines and their expressions in subcutaneous adipose tissue (SAT) in metabolic syndrome. Twelve patients with impaired fasting glucose completed the double-blind, randomized, crossover trial. Patients received telmisartan (160 mg/day) or placebo for 3 weeks and vice versa with a 2-week washout period. At the end of each period, a hyperinsulinemic euglycemic clamp (HEC) combined with indirect calorimetry was performed. During HEC (0, 30, and 120 min), plasma levels of adipokines were measured and a needle biopsy (0 and 30 min) of SAT was performed. Fasting plasma glucose was lower after telmisartan compared with placebo (P<0.05). There were no differences in insulin sensitivity and substrate utilization. We found no differences in basal plasma adiponectin, resistin and tumour necrosis factor α (TNFα), but an increase was found in basal leptin, after telmisartan treatment. Insulin-stimulated plasma adiponectin (P<0.05), leptin and resistin (P<0.001) were increased, whereas TNFα was decreased (P<0.05) after telmisartan treatment. Expression of resistin, but not adiponectin, TNFα and leptin was increased after telmisartan treatment. Despite the decrease in fasting plasma glucose, telmisartan does not improve insulin sensitivity and substrate utilization. Telmisartan increases plasma leptin as well as insulin-stimulated plasma adiponectin, leptin and resistin, and decreases plasma TNFα during HEC. Changes in plasma adipokines cannot be explained by their expressions in SAT. The changes in plasma adipokines might be involved in the metabolic effects of telmisartan in metabolic syndrome.
SHIBUTANI, Mihiro; LEE, Jibak; MIYANO, Takashi; MIYAKE, Masashi
2015-01-01
The embryo culture technique has been improving, but the detailed demands for energy substrates such as glucose, fructose, pyruvate and lactate of preimplantation embryos are still unclear. In the present study, the demands of pig preimplantation embryos at each different developmental stage were investigated by use of parthenogenetic diploids as a model of pig preimplantation embryos. Pig parthenogenetic diploids showed different use of glucose and fructose before and after the 4-cell stage. Although glucose supported the development of pig embryos throughout the preimplantation stages and even maintained the expansion and hatching of blastocysts, it suppressed development to the blastocyst stage when glucose coexisted with pyruvate and lactate from 4 h after activation, but not after 48 h (early 4-cell stage). Since ketohexokinase that metabolizes fructose was not expressed in 2-cell and 4-cell diploids, a medium that included only fructose as a major energy substrate did not support early cleavage of pig diploids beyond the 4-cell stage, and almost no diploids developed to the morula stage just as in a medium without carbohydrates. These results may explain the different suppressive effects on pig preimplantation development between glucose and fructose when pyruvate and lactate were present in a medium. In addition, 4-cell diploids that had been cultured in a medium with pyruvate and lactate developed to the expanded blastocyst stage without any carbohydrates as a major energy substrate. These results show that the demands for carbohydrates are different depending on the developmental stage in pig preimplantation embryos. PMID:25736264
Wakabayashi, Ken T.; Myal, Stephanie E.; Kiyatkin, Eugene A.
2015-01-01
While motivated behavior involves multiple neurochemical systems, few studies have focused on the role of glutamate, the brain’s excitatory neurotransmitter, and glucose, the energetic substrate of neural activity in reward-related neural processes. Here, we used high-speed amperometry with enzyme-based substrate-sensitive and control, enzyme-free biosensors to examine second-scale fluctuations in the extracellular levels of these substances in the nucleus accumbens shell during glucose-drinking behavior in trained rats. Glutamate rose rapidly after the presentation of a glucose-containing cup and before the initiation of drinking (reward seeking), decreased more slowly to levels below baseline during consumption (sensory reward), and returned to baseline when the ingested glucose reached the brain (metabolic reward). When water was substituted for glucose, glutamate rapidly increased with cup presentation and in contrast to glucose drinking, increased above baseline after rats tasted the water and refused to drink further. Therefore, extracellular glutamate show distinct changes associated with key events of motivated drinking behavior and opposite dynamics during sensory and metabolic components of reward. In contrast to glutamate, glucose increased at each stimulus and behavioral event, showing a sustained elevation during the entire behavior and a robust post-ingestion rise that correlated with the gradual return of glutamate levels to their baseline. By comparing active drinking with passive intra-gastric glucose delivery, we revealed that fluctuations in extracellular glucose are highly dynamic, reflecting a balance between rapid delivery due to neural activity, intense metabolism, and the influence of ingested glucose reaching the brain. PMID:25393775
Direct patterning of gold nanoparticles using flexographic printing for biosensing applications
NASA Astrophysics Data System (ADS)
Benson, Jamie; Fung, Chung Man; Lloyd, Jonathan Stephen; Deganello, Davide; Smith, Nathan Andrew; Teng, Kar Seng
2015-03-01
In this paper, we have presented the use of flexographic printing techniques in the selective patterning of gold nanoparticles (AuNPs) onto a substrate. Highly uniform coverage of AuNPs was selectively patterned on the substrate surface, which was subsequently used in the development of a glucose sensor. These AuNPs provide a biocompatible site for the attachment of enzymes and offer high sensitivity in the detection of glucose due to their large surface to volume ratio. The average size of the printed AuNPs is less than 60 nm. Glucose sensing tests were performed using printed carbon-AuNP electrodes functionalized with glucose oxidase (GOx). The results showed a high sensitivity of 5.52 μA mM-1 cm-2 with a detection limit of 26 μM. We have demonstrated the fabrication of AuNP-based biosensors using flexographic printing, which is ideal for low-cost, high-volume production of the devices.
Ansari, Arif M; Bhat, Kamalakshi G; Dsa, Smitha S; Mahalingam, Soundarya; Joseph, Nitin
2018-03-01
Complications like impaired glucose tolerance and diabetes mellitus due to iron overload need early identification in thalassemia. We studied the proportion of insulin resistance in thalassemia major patients on chronic transfusion, identified insulin resistance using homeostasis model assessment of insulin resistance (HOMA-IR) and triglyceride glucose (TYG) index, compared them and validated TYG index. In total, 73 thalassemia patients on regular transfusion for 3 years with serum ferritin >1500 ng/mL were studied. Serum ferritin, fasting blood glucose, triglycerides, and insulin levels were measured, HOMA-IR, and TYG index calculated and analyzed. Mean fasting glucose, triglyceride, and serum insulin values were 104 mg/dL, 164.18 mg/dL, and 19.6 m IU/mL, respectively. Mean serum ferritin was 5156 ng/mL. Insulin resistance was prevalent in one third of thalassemia patients and showed increase with age and serum ferritin. Insulin resistance by HOMA-IR was 32% as against 16% by TYG index with a cut-off value of 4.3. Using receiver operating charecteristic curve analysis, it was found that, by lowering the value of TYG index to 4.0215, sensitivity improved to 78.3% (from 39.13%) with specificity of 70%. Hence, we recommend a newer lower cut-off value of 4.0215 for TYG index for better sensitivity and specificity in identifying insulin resistance.
Medrano, A; Peña, A; Rigau, T; Rodrìguez-Gil, J E
2005-10-01
In this work the role of energy substrates in the maintenance of boar-sperm survival during storage at 15-17 degrees C was tested. For this purpose, boar spermatozoa were stored at 15-17 degrees C in several defined media with separate combinations of a monosaccharide, glucose and a non-monosaccharide, either citrate or lactate, energy substrates. Our results indicate that the medium containing the highest concentration of glucose together with low lactate levels was the most suitable to maintain sperm quality for 168 h at 15-17 degrees C. This was confirmed after observation of the results of the percentages of viability and altered acrosomes, the osmotic resistance test, the hyperosmotic resistance test and the rhythm of L-lactate production. The survival ability of boar sperm was greater in this experimental medium than in the standard Beltsville Thawing Solution extender, which contains only glucose as an energy substrate, although at a concentration far higher than that of all the tested experimental media. Our results indicate that the exact composition, more than the pure quantity of energy substrates, is a very important modulatory factor which affects survival ability of boar sperm in refrigeration. Thus, the exact combination of several energy substrates would have to be taken into account when optimizing the design of commercial extenders to store boar spermatozoa at 15-17 degrees C.
Production of extracellular polysaccharide by Bacillus megaterium RB-05 using jute as substrate.
Chowdhury, Sougata Roy; Basak, Ratan Kumar; Sen, Ramkrishna; Adhikari, Basudam
2011-06-01
Bacillus megaterium RB-05 was grown on glucose and on "tossa-daisee" (Corchorus olitorius)-derived jute, and production and composition of extracellular polysaccharide (EPS) were monitored. An EPS yield of 0.065 ± 0.013 and of 0.297 g ± 0.054 g(-1) substrate after 72 h was obtained for glucose and jute, respectively. EPS production in the presence of jute paralleled bacterial cellulase activity. High performance liquid chromatography (HPLC), matrix assisted LASER desorption/ionization-time of flight (MALDI-ToF) mass spectroscopy, and fourier transform infrared (FT-IR) spectroscopy demonstrated that the EPS synthesized in jute culture (JC) differed from that synthesized in glucose mineral salts medium (GMSM). While fucose was only a minor constituent (4.9 wt.%) of EPS from GMSM, it a major component (41.9 wt.%) of EPS synthesized in JC. This study establishes jute as an effective fermentation substrate for EPS production by a cellulase-producing bacterium. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zeidler, Julianna D; Fernandes-Siqueira, Lorena O; Carvalho, Ana S; Cararo-Lopes, Eduardo; Dias, Matheus H; Ketzer, Luisa A; Galina, Antonio; Da Poian, Andrea T
2017-08-25
Mitochondrial oxidation of nutrients is tightly regulated in response to the cellular environment and changes in energy demands. In vitro studies evaluating the mitochondrial capacity of oxidizing different substrates are important for understanding metabolic shifts in physiological adaptations and pathological conditions, but may be influenced by the nutrients present in the culture medium or by the utilization of endogenous stores. One such influence is exemplified by the Crabtree effect (the glucose-mediated inhibition of mitochondrial respiration) as most in vitro experiments are performed in glucose-containing media. Here, using high-resolution respirometry, we evaluated the oxidation of endogenous or exogenous substrates by cell lines harboring different metabolic profiles. We found that a 1-h deprivation of the main energetic nutrients is an appropriate strategy to abolish interference of endogenous or undesirable exogenous substrates with the cellular capacity of oxidizing specific substrates, namely glutamine, pyruvate, glucose, or palmitate, in mitochondria. This approach primed mitochondria to immediately increase their oxygen consumption after the addition of the exogenous nutrients. All starved cells could oxidize exogenous glutamine, whereas the capacity for oxidizing palmitate was limited to human hepatocarcinoma Huh7 cells and to C2C12 mouse myoblasts that differentiated into myotubes. In the presence of exogenous glucose, starvation decreased the Crabtree effect in Huh7 and C2C12 cells and abrogated it in mouse neuroblastoma N2A cells. Interestingly, the fact that the Crabtree effect was observed only for mitochondrial basal respiration but not for the maximum respiratory capacity suggests it is not caused by a direct effect on the electron transport system. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Robitaille, M; Dubé, M-C; Weisnagel, S J; Prud'homme, D; Massicotte, D; Péronnet, F; Lavoie, C
2007-07-01
Substrate oxidation and the respective contributions of exogenous glucose, glucose released from the liver, and muscle glycogen oxidation were measured by indirect respiratory calorimetry combined with tracer technique in eight control subjects and eight diabetic patients (5 men and 3 women in both groups) of similar age, height, body mass, and maximal oxygen uptake, over a 60-min exercise period on cycle ergometer at 50.8% (SD 4.0) maximal oxygen uptake [131.0 W (SD 38.2)]. The subjects and patients ingested a breakfast (containing approximately 80 g of carbohydrates) 3 h before and 30 g of glucose (labeled with 13C) 15 min before the beginning of exercise. The diabetic patients also received their usual insulin dose [Humalog = 9.1 U (SD 0.9); Humulin N = 13.9 U (SD 4.4)] immediately before the breakfast. Over the last 30 min of exercise, the oxidation of carbohydrate [1.32 g/min (SD 0.48) and 1.42 g/min (SD 0.63)] and fat [0.33 g/min (SD 0.10) and 0.30 g/min (SD 0.10)] and their contribution to the energy yield were not significantly different in the control subjects and diabetic patients. Exogenous glucose oxidation was also not significantly different in the control subjects and diabetic patients [6.3 g/30 min (SD 1.3) and 5.2 g/30 min (SD 1.6), respectively]. In contrast, the oxidation of plasma glucose and oxidation of glucose released from the liver were significantly lower in the diabetic patients than in control subjects [14.5 g/30 min (SD 4.3) and 9.3 g/30 min (SD 2.8) vs. 27.9 g/30 min (SD 13.3) and 21.6 g/30 min (SD 12.8), respectively], whereas that of muscle glycogen was significantly higher [28.1 g/30 min (SD 15.5) vs. 11.6 g/30 min (SD 8.1)]. These data indicate that, compared with control subjects, in diabetic patients fed glucose before exercise, substrate oxidation and exogenous glucose oxidation overall are similar but plasma glucose oxidation is lower; this is associated with a compensatory higher utilization of muscle glycogen.
Antidiabetic activity of aqueous extract and non polysaccharide fraction of Cynodon dactylon Pers.
Jarald, E E; Joshi, S B; Jain, D C
2008-09-01
Petroleum ether (60 degrees-80 degrees C), chloroform, acetone, ethanol, aqueous and crude hot water extracts of the whole plant of C. dactylon and the two fractions of aqueous extract were tested for antihyperglycaemic activity in glucose overloaded hyperglycemic rats and in alloxan induced diabetic model at two-dose levels, 200 and 400 mg/kg (po) respectively. The aqueous extract of C. dactylon and the non polysaccharide fraction of aqueous extract were found to exhibit significant antihyperglycaemic activity and only the non polysaccharide fraction was found to produce hypoglycemia in fasted normal rats. Treatment of diabetic rats with aqueous extract and non polysaccharide fraction of the plant decreased the elevated biochemical parameters, glucose, urea, creatinine, serum cholesterol, serum triglyceride, high density lipoprotein, low density lipoprotein, haemoglobin and glycosylated haemoglobin significantly. Comparatively, the non polysaccharide fraction of aqueous extract was found to be more effective than the aqueous extract.
Wan, Hai-tong; Wang, Yu; Yang, Jie-hong
2007-03-01
To establish the oxygen and glucose deprive (OGD) model in cultured hippocampal neuron and study the effect of ligustrazine on intracellular Ca2+ level in the model neurons. The OGD model was established in cultured hippocampal neuron, and the intracellular Ca2+ level in it was detected by laser scanning confocal microscope (LSCM). The OGD model was successfully established in cultured hippocampal neurons; the intracellular Ca2+ level in the OGD model group was significantly higher than that in the blank control group (P < 0.05), and that in the nemodipine and high and medium dosage of ligustrazine treated groups was lower than that in the OGD model group (P < 0.05). Intracellular Ca2+ overload occurs in OGD model neuron, which could be antagonized by ligustrazine, indicating that ligustrazine has a protective effect on hippocampal neuron from hypoxic-ischemic injury.
Staudacher, H M; Carey, A L; Cummings, N K; Hawley, J A; Burke, L M
2001-09-01
We determined the effect of a high-fat diet and carbohydrate (CHO) restoration on substrate oxidation and glucose tolerance in 7 competitive ultra-endurance athletes (peak oxygen uptake [VO(2peak)] 68 +/- 1 ml x kg(-1) x min(-1); mean +/- SEM). For 6 days, subjects consumed a random order of a high-fat (69% fat; FAT-adapt) or a high-CHO (70% CHO; HCHO) diet, each followed by 1 day of a high-CHO diet. Treatments were separated by an 18-day wash out. Substrate oxidation was determined during submaximal cycling (20 min at 65% VO(2peak)) prior to and following the 6 day dietary interventions. Fat oxidation at baseline was not different between treatments (17.4 +/- 2.1 vs. 16.1 +/- 1.3 g x 20 min(-1) for FAT-adapt and HCHO, respectively) but increased 34% after 6 days of FAT-adapt (to 23.3 +/- 0.9 g x 20 min(-1), p < .05) and decreased 30% after HCHO (to 11.3 +/- 1.4 g x 20 min(-1), p < .05). Glucose tolerance, determined by the area under the plasma [glucose] versus time curve during an oral glucose tolerance (OGTT) test, was similar at baseline (545 +/- 21 vs. 520 +/- 28 mmol x L(-1) x 90 min(-1)), after 5-d of dietary intervention (563 +/- 26 vs. 520 +/-18 mmol x L(-1) x 90 min(-1)) and after 1 d of high-CHO (491 +/- 28 vs. 489 +/- 22 mmol x L(-1) x 90 min(-1) for FAT- adapt and HCHO, respectively). An index of whole-body insulin sensitivity ( S(I), 10000/divided by fasting [glucose] x fasting [insulin] x mean [glucose] during OGTT x mean [insulin] during OGTT) was similar at baseline (15 +/- 2 vs. 17 +/- 5 arbitrary units), after 5-d of dietary intervention (15 +/- 2 vs. 15 +/- 2) and after 24 h of CHO loading (17 +/- 3 vs. 18 +/- 2 for FAT- adapt and HCHO, respectively). We conclude that despite marked changes in the pattern of substrate oxidation during submaximal exercise, short-term adaptation to a high-fat diet does not alter whole-body glucose tolerance or an index of insulin sensitivity in highly-trained individuals.
Muthuramu, Ilayaraja; Amin, Ruhul; Postnov, Andrey; Mishra, Mudit; Jacobs, Frank; Gheysens, Olivier; Van Veldhoven, Paul P.; De Geest, Bart
2017-01-01
Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher (p < 0.05) in 0.2% cholesterol 10% coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64) during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold (p < 0.01) higher in coconut oil mice than in standard chow mice. Myocardial capillary density (p < 0.001) was decreased, interstitial fibrosis was 1.88-fold (p < 0.001) higher, and systolic and diastolic function was worse in coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold (p < 0.001) higher in coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower (p < 0.05) in coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy. PMID:28718833
Muthuramu, Ilayaraja; Amin, Ruhul; Postnov, Andrey; Mishra, Mudit; Jacobs, Frank; Gheysens, Olivier; Van Veldhoven, Paul P; De Geest, Bart
2017-07-18
Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher ( p < 0.05) in 0.2% cholesterol 10% coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64) during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold ( p < 0.01) higher in coconut oil mice than in standard chow mice. Myocardial capillary density ( p < 0.001) was decreased, interstitial fibrosis was 1.88-fold ( p < 0.001) higher, and systolic and diastolic function was worse in coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold ( p < 0.001) higher in coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower ( p < 0.05) in coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.
Mirlohi, Maryam Sadat; Yaghooti, Hamid; Shirali, Saeed; Aminasnafi, Ali; Olapour, Samaneh
2018-04-01
The impaired biosynthesis of the β-globin chain in β-thalassemia leads to the accumulation of unpaired alpha globin chains, failure in hemoglobin formation, and iron overload due to frequent blood transfusion. Iron excess causes oxidative stress and massive tissue injuries. Advanced glycation end products (AGEs) are harmful agents, and their production accelerates in oxidative conditions. This study was conducted on 45 patients with major β-thalassemia who received frequent blood transfusions and chelation therapy and were compared to 40 healthy subjects. Metabolic parameters including glycemic and iron indices, hepatic and renal functions tests, oxidative stress markers, and AGEs (carboxymethyl-lysine and pentosidine) levels were measured. All parameters were significantly increased in β-thalassemia compared to the control except for glutathione levels. Blood glucose, iron, serum ferritin, non-transferrin-bound iron (NTBI), MDA, soluble form of low-density lipoprotein receptor, glutathione peroxidase, total reactive oxygen species (ROS), and AGE levels were significantly higher in the β-thalassemia patients. Iron and ferritin showed a significant positive correlation with pentosidine (P < 0.01) but not with carboxymethyl-lysine. The NTBI was markedly increased in the β-thalassemia patients, and its levels correlated significantly with both carboxymethyl-lysine and pentosidine (P < 0.05). Our findings confirm the oxidative status generated by the iron overload in β-thalassemia major patients and highlight the enhanced formation of AGEs, which may play an important role in the pathogenesis of β-thalassemia major.
A visual analytics approach for pattern-recognition in patient-generated data.
Feller, Daniel J; Burgermaster, Marissa; Levine, Matthew E; Smaldone, Arlene; Davidson, Patricia G; Albers, David J; Mamykina, Lena
2018-06-13
To develop and test a visual analytics tool to help clinicians identify systematic and clinically meaningful patterns in patient-generated data (PGD) while decreasing perceived information overload. Participatory design was used to develop Glucolyzer, an interactive tool featuring hierarchical clustering and a heatmap visualization to help registered dietitians (RDs) identify associative patterns between blood glucose levels and per-meal macronutrient composition for individuals with type 2 diabetes (T2DM). Ten RDs participated in a within-subjects experiment to compare Glucolyzer to a static logbook format. For each representation, participants had 25 minutes to examine 1 month of diabetes self-monitoring data captured by an individual with T2DM and identify clinically meaningful patterns. We compared the quality and accuracy of the observations generated using each representation. Participants generated 50% more observations when using Glucolyzer (98) than when using the logbook format (64) without any loss in accuracy (69% accuracy vs 62%, respectively, p = .17). Participants identified more observations that included ingredients other than carbohydrates using Glucolyzer (36% vs 16%, p = .027). Fewer RDs reported feelings of information overload using Glucolyzer compared to the logbook format. Study participants displayed variable acceptance of hierarchical clustering. Visual analytics have the potential to mitigate provider concerns about the volume of self-monitoring data. Glucolyzer helped dietitians identify meaningful patterns in self-monitoring data without incurring perceived information overload. Future studies should assess whether similar tools can support clinicians in personalizing behavioral interventions that improve patient outcomes.
USDA-ARS?s Scientific Manuscript database
Glucose and fructose are abundant hexose sugars in pig conceptuses (embryo/fetus and associated placenta). While glucose is mostly catabolized for energy, in vitro studies implicate fructose as a substrate for the biosynthesis of glycoaminoglycans, phospholipids, and nucleic acids as well as a signa...
Europe Report, Science and Technology.
1986-06-18
amylase, heat stable alpha-amylase and glucoamylase for processing starch as a substrate for 71 glucose and its isomerization to fructose using an...continuous column process under laboratory conditions. We have demonstrated that these preparations isomerize glucose syrups up to 42 percent, converting...food industry is the leading consumer of microbial enzymes devouring about 80 percent of the world production of enzymes -- glucose isomerase, alpha
NASA Astrophysics Data System (ADS)
Li, Shizhe; Zhang, Yan; Ferraris Araneta, Maria; Xiang, Yun; Johnson, Christopher; Innis, Robert B.; Shen, Jun
2012-05-01
This study demonstrates the feasibility of simultaneously detecting human brain metabolites labeled by two substrates infused in a sequential order. In vivo 13C spectra of carboxylic/amide carbons were acquired only during the infusion of the second substrate. This approach allowed dynamic detection of 13C labeling from two substrates with considerably different labeling patterns. [2-13C]glucose and [U-13C6]glucose were used to generate singlet and doublet signals of the same carboxylic/amide carbon atom, respectively. Because of the large one-bond 13C-13C homonuclear J coupling between a carboxylic/amide carbon and an aliphatic carbon (˜50 Hz), the singlet and doublet signals of the same carboxylic/amide carbon were well distinguished. The results demonstrated that different 13C isotopomer patterns could be simultaneously and distinctly measured in vivo in a clinical setting at 3 T.
Wakabayashi, Ken T; Myal, Stephanie E; Kiyatkin, Eugene A
2015-02-01
While motivated behavior involves multiple neurochemical systems, few studies have focused on the role of glutamate, the brain's excitatory neurotransmitter, and glucose, the energetic substrate of neural activity in reward-related neural processes. Here, we used high-speed amperometry with enzyme-based substrate-sensitive and control, enzyme-free biosensors to examine second-scale fluctuations in the extracellular levels of these substances in the nucleus accumbens shell during glucose-drinking behavior in trained rats. Glutamate rose rapidly after the presentation of a glucose-containing cup and before the initiation of drinking (reward seeking), decreased more slowly to levels below baseline during consumption (sensory reward), and returned to baseline when the ingested glucose reached the brain (metabolic reward). When water was substituted for glucose, glutamate rapidly increased with cup presentation and in contrast to glucose drinking, increased above baseline after rats tasted the water and refused to drink further. Therefore, extracellular glutamate show distinct changes associated with key events of motivated drinking behavior and opposite dynamics during sensory and metabolic components of reward. In contrast to glutamate, glucose increased at each stimulus and behavioral event, showing a sustained elevation during the entire behavior and a robust post-ingestion rise that correlated with the gradual return of glutamate levels to their baseline. By comparing active drinking with passive intra-gastric glucose delivery, we revealed that fluctuations in extracellular glucose are highly dynamic, reflecting a balance between rapid delivery because of neural activity, intense metabolism, and the influence of ingested glucose reaching the brain. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Hoggett, J G; Kellett, G L
1976-09-15
The binding of glucose to the monomeric forms of hexokinases P-I and P-II in Tris and phosphate buffers at pH 8.0 in the presence of 1 mol l-1 KCl has been studied using the fluorescence temperature-jump technique. For both isozymes only one relaxation time was observed; values of tau-1 increased linearly with increasing concentration of free reacting partners. The apparent second-order rate constant for association was about 2 X 10(6) 1 mol-1 s-1 for both isozymes; the differences in the stabilities of the complexes with P-I and P-II are entirely attributable to the fact that glucose dissociates more slowly from its complex with P-I than P-II (approximately 300 s-1 and 1100 s-1 respectively). Although the kinetic data are compatible with a single-step mechanism for glucose binding the association rate constant was much lower than that expected for a diffusion-limited rate of encounter. Other mechanisms for describing an induced-fit are discussed. It is shown that the data are incompatible with a slow 'prior-isomerization' pathway of substrate binding, but are consistent with a 'substrate-guided' pathway involving isomerization of the enzyme-substrate complex.
Berron, Brad J; Johnson, Leah M; Ba, Xiao; McCall, Joshua D; Alvey, Nicholas J; Anseth, Kristi S; Bowman, Christopher N
2011-01-01
We report the first use of a polymerization-based ELISA substrate solution employing enzymatically mediated radical polymerization as a dual-mode amplification strategy. Enzymes are selectively coupled to surfaces to generate radicals that subsequently lead to polymerization-based amplification (PBA) and biodetection. Sensitivity and amplification of the polymerization-based detection system were optimized in a microwell strip format using a biotinylated microwell surface with a glucose oxidase (GOx)–avidin conjugate. The immobilized GOx is used to initiate polymerization, enabling the detection of the biorecognition event visually or through the use of a plate reader. Assay response is compared to that of an enzymatic substrate utilizing nitroblue tetrazolium in a simplified assay using biotinylated wells. The polymerization substrate exhibits equivalent sensitivity (2 µg/mL of GOx-avidin) and over three times greater signal amplification than this traditional enzymatic substrate since each radical that is enzymatically generated leads to a large number of polymerization events. Enzyme-mediated polymerization proceeds in an ambient atmosphere without the need for external energy sources, which is an improvement upon previous PBA platforms. Substrate formulations are highly sensitive to both glucose and iron concentrations at the lowest enzyme concentrations. Increases in amplification time correspond to higher assay sensitivities with no increase in non-specific signal. Finally, the polymerization substrate generated a signal to noise ratio of 14 at the detection limit (156 ng/mL) in an assay of transforming growth factor-beta. Biotechnol. Bioeng. 2011; 108:1521–1528. © 2011 Wiley Periodicals, Inc. PMID:21337335
1-.sup.11 C-D-Glucose and related compounds
Shiue, Chyng-Yann; Wolf, Alfred P.
1984-03-27
The novel compounds 1-.sup.11 C-D-glucose, 1-.sup.11 C-D-mannose, 1-.sup.11 C-D-galactose, 2-.sup.11 C-D-glucose, 2-.sup.11 C-D-mannose and 2-.sup.11 C-D-galactose which can be used in nuclear medicine to monitor the metabolism of glucose and galactose can be rapidly prepared by reaction of the appropriate aldose substrate with an alkali metal .sup.11 C-labeled cyanide followed by reduction with a Raney alloy in formic acid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosche, Bert, E-mail: bert.bosche@uk-essen.de; Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne; Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com
Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, whichmore » results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium chloride before the inhibition of ATP synthesis abolished both phases of the 2-DG-induced [Ca{sup 2+}]{sub i} increase. This effect was not observed when lithium chloride was added simultaneously with 2-DG. We conclude that lithium chloride abolishes the injurious [Ca{sup 2+}]{sub i} overload in EC and that this most likely occurs by preventing inositol 3-phosphate-sensitive Ca{sup 2+}-release from the endoplasmic reticulum. Though further research is needed, these findings provide a novel option for therapeutic strategies to protect the endothelium against imminent barrier failure.« less
Tan, Tien Chye; Spadiut, Oliver; Gandini, Rosaria; Haltrich, Dietmar; Divne, Christina
2014-01-01
Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose and can be used to refine future enzyme designs for more efficient use of lactose-hydrolysis byproducts.
Gandini, Rosaria; Haltrich, Dietmar; Divne, Christina
2014-01-01
Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose and can be used to refine future enzyme designs for more efficient use of lactose-hydrolysis byproducts. PMID:24466218
Substrate specificity of the high-affinity glucose transport system of Pseudomonas aeruginosa.
Wylie, J L; Worobec, E A
1993-07-01
Specificity of the high-affinity glucose transport system of Pseudomonas aeruginosa was examined. At a concentration of [14C]glucose near the Vmax of the system, inhibition by maltose, galactose, and xylose was detected. This inhibition is similar to that detected in earlier in vivo studies and correlates with the known specificity of OprB, a glucose-specific porin of P. aeruginosa. At a level of [14C]glucose 100 times lower, only unlabelled glucose inhibited uptake to any extent. This matches the known in vitro specificity of the periplasmic glucose binding protein. These findings were used to explain the discrepancy between earlier in vivo and in vitro results reported in the literature.
Akt substrate TBC1D1 regulates GLUT1 expression through the mTOR pathway in 3T3-L1 adipocytes
Zhou, Qiong L.; Jiang, Zhen Y.; Holik, John; Chawla, Anil; Hagan, G. Nana; Leszyk, John; Czech, Michael P.
2010-01-01
Multiple studies have suggested that the protein kinase Akt/PKB (protein kinase B) is required for insulin-stimulated glucose transport in skeletal muscle and adipose cells. In an attempt to understand links between Akt activation and glucose transport regulation, we applied mass spectrometry-based proteomics and bioinformatics approaches to identify potential Akt substrates containing the phospho-Akt substrate motif RXRXXpS/T. The present study describes the identification of the Rab GAP (GTPase-activating protein)-domain containing protein TBC1D1 [TBC (Tre-2/Bub2/Cdc16) domain family, member 1], which is closely related to TBC1D4 [TBC domain family, member 4, also denoted AS160 (Akt substrate of 160 kDa)], as an Akt substrate that is phosphorylated at Thr590. RNAi (RNA interference)-me-diated silencing of TBC1D1 elevated basal deoxyglucose uptake by approx. 61% in 3T3-L1 mouse embryo adipocytes, while the suppression of TBC1D4 and RapGAP220 under the same conditions had little effect on basal and insulin-stimulated deoxy-glucose uptake. Silencing of TBC1D1 strongly increased expression of the GLUT1 glucose transporter but not GLUT4 in cultured adipocytes, whereas the decrease in TBC1D4 had no effect. Remarkably, loss of TBC1D1 in 3T3-L1 adipocytes activated the mTOR (mammalian target of rapamycin)-p70 S6 protein kinase pathway, and the increase in GLUT1 expression in the cells treated with TBC1D1 siRNA (small interfering RNA) was blocked by the mTOR inhibitor rapamycin. Furthermore, overexpression of the mutant TBC1D1-T590A, lacking the putative Akt/PKB phosphorylation site, inhibited insulin stimulation of p70 S6 kinase phosphorylation at Thr389, a phosphorylation induced by mTOR. Taken together, our data suggest that TBC1D1 may be involved in controlling GLUT1 glucose transporter expression through the mTOR-p70 S6 kinase pathway. PMID:18215134
Fungal degradation of calcium-, lead- and silicon-bearing minerals.
Adeyemi, Ademola O; Gadd, Geoffrey M
2005-06-01
The aim of this study was to examine nutritional influence on the ability of selected filamentous fungi to mediate biogenic weathering of the minerals, apatite, galena and obsidian in order to provide further understanding of the roles of fungi as biogeochemical agents, particularly in relation to the cycling of metals and associated elements found in minerals. The impact of three organic acid producing fungi (Aspergillus niger, Serpula himantioides and Trametes versicolor) on apatite, galena and obsidian was examined in the absence and presence of a carbon and energy source (glucose). Manifestation of fungal weathering included corrosion of mineral surfaces, modification of the mineral substrate through transformation into secondary minerals (i.e. crystal formation) and hyphal penetration of the mineral substrate. Physicochemical interactions of fungal metabolites, e.g. H+ and organic acids, with the minerals are thought to be the primary driving forces responsible. All experimental fungi were capable of mineral surface colonization in the absence and presence of glucose but corrosion of the mineral surface and secondary mineral formation were affected by glucose availability. Only S. himantioides and T. versicolor were able to corrode apatite in the absence of glucose but none of the fungi were capable of doing so with the other minerals. In addition, crystal formation with galena was entirely dependent on the availability of glucose. Penetration of the mineral substrates by fungal hyphae occurred but this did not follow any particular pattern. Although the presence of glucose in the media appeared to influence positively the mineral penetrating abilities of the fungi, the results obtained also showed that some geochemical change(s) might occur under nutrient-limited conditions. It was, however, unclear whether the hyphae actively penetrated the minerals or were growing into pre-existing pores or cracks.
Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction.
Chen, Wei; Yang, Jie; Chen, Shuhua; Xiang, Hong; Liu, Hengdao; Lin, Dan; Zhao, Shaoli; Peng, Hui; Chen, Pan; Chen, Alex F; Lu, Hongwei
2017-11-01
Mitochondrial Ca 2+ overload is implicated in hyperglycaemia-induced endothelial cell dysfunction, but the key molecular events responsible remain unclear. We examined the involvement of mitochondrial calcium uniporter, which mediates mitochondrial Ca 2+ uptake, in endothelial cell dysfunction resulting from high-glucose treatment. Human umbilical vein endothelial cells were exposed to various glucose concentrations and to high glucose (30 mM) following mitochondrial calcium uniporter inhibition or activation with ruthenium red and spermine, respectively. Subsequently, mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA and protein expression was measured by real-time polymerase chain reaction and western blotting. Ca 2+ concentrations were analysed by laser confocal microscopy, and cytoplasmic and mitochondrial oxidative stress was detected using 2',7'-dichlorofluorescein diacetate and MitoSOX Red, respectively. Apoptosis was assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and a wound-healing assay was performed using an in vitro model. High glucose markedly upregulated mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA expression, as well as protein production, in a dose- and time-dependent manner with a maximum effect demonstrated at 72 h and 30 mM glucose concentration. Moreover, high-glucose treatment significantly raised both mitochondrial and cytoplasmic Ca 2+ and reactive oxygen species levels, increased apoptosis and compromised wound healing (all p < 0.05). These effects were enhanced by spermine and completely negated by ruthenium red, which are known to activate and inhibit mitochondrial calcium uniporter, respectively. Mitochondrial calcium uniporter plays an important role in hyperglycaemia-induced endothelial cell dysfunction and may constitute a therapeutic target to reduce vascular complications in diabetes.
Niazov, Angelica; Freeman, Ronit; Girsh, Julia; Willner, Itamar
2011-01-01
A hybrid consisting of glucose oxidase-functionalized with hemin/G-quadruplex units is used for the chemiluminescence detection of glucose. The glucose oxidase-mediated oxidation of glucose yields gluconic acid and H(2)O(2). The latter in the presence of luminol acts as substrate for the hemin/G-quadruplex-catalyzed generation of chemiluminescence. The glucose oxidase/hemin G-quadruplex hybrid was immobilized on CdSe/ZnS quantum dots (QDs). The light generated by the hybrid, in the presence of glucose, activated a chemiluminescence resonance energy transfer process to the QDs, resulting in the luminescence of the QDs. The intensities of the luminescence of the QDs at different concentrations of glucose provided an optical means to detect glucose.
Niazov, Angelica; Freeman, Ronit; Girsh, Julia; Willner, Itamar
2011-01-01
A hybrid consisting of glucose oxidase-functionalized with hemin/G-quadruplex units is used for the chemiluminescence detection of glucose. The glucose oxidase-mediated oxidation of glucose yields gluconic acid and H2O2. The latter in the presence of luminol acts as substrate for the hemin/G-quadruplex-catalyzed generation of chemiluminescence. The glucose oxidase/hemin G-quadruplex hybrid was immobilized on CdSe/ZnS quantum dots (QDs). The light generated by the hybrid, in the presence of glucose, activated a chemiluminescence resonance energy transfer process to the QDs, resulting in the luminescence of the QDs. The intensities of the luminescence of the QDs at different concentrations of glucose provided an optical means to detect glucose. PMID:22346648
Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination.
Ji, Hanxu; Zhou, Feng; Gu, Jiangjiang; Shu, Chen; Xi, Kai; Jia, Xudong
2016-05-04
Nitrogen-doped carbon dots are introduced as a novel substrate suitable for enzyme immobilization in electrochemical detection metods. Nitrogen-doped carbon dots are easily synthesised from polyacrylamide in just one step. With the help of the amino group on chitosan, glucose oxidase is immobilized on nitrogen-doped carbon dots-modified carbon glassy electrodes by amino-carboxyl reactions. The nitrogen-induced charge delocalization at nitrogen-doped carbon dots can enhance the electrocatalytic activity toward the reduction of O₂. The specific amino-carboxyl reaction provides strong and stable immobilization of GOx on electrodes. The developed biosensor responds efficiently to the presence of glucose in serum samples over the concentration range from 1 to 12 mM with a detection limit of 0.25 mM. This novel biosensor has good reproducibility and stability, and is highly selective for glucose determination under physiological conditions. These results indicate that N-doped quantum dots represent a novel candidate material for the construction of electrochemical biosensors.
Soldatkin, O O; Peshkova, V M; Saiapina, O Y; Kucherenko, I S; Dudchenko, O Y; Melnyk, V G; Vasylenko, O D; Semenycheva, L M; Soldatkin, A P; Dzyadevych, S V
2013-10-15
The aim of this work was to develop an array of biosensors for simultaneous determination of four carbohydrates in solution. Several enzyme systems selective to lactose, maltose, sucrose and glucose were immobilised on the surface of four conductometric transducers and served as bio-recognition elements of the biosensor array. Direct enzyme analysis carried out by the developed biosensors was highly sensitive to the corresponding substrates. The analysis lasted 2 min. The dynamic range of substrate determination extended from 0.001 mM to 1.0-3.0mM, and strongly depended on the enzyme system used. An effect of the solution pH, ionic strength and buffer capacity on the biosensors responses was investigated; the conditions of simultaneous operation of all biosensors were optimised. The data on cross-impact of the substrates of all biosensors were obtained; the biosensor selectivity towards possible interfering carbohydrates was tested. The developed biosensor array showed good signal reproducibility and storage stability. The biosensor array is suited for simultaneous, quick, simple, and selective determination of maltose, lactose, sucrose and glucose. © 2013 Elsevier B.V. All rights reserved.
Effects of fluid, electrolyte and substrate ingestion on endurance capacity.
Maughan, R J; Fenn, C E; Leiper, J B
1989-01-01
The availability of carbohydrate (CHO) as a substrate for the exercising muscles is known to be a limiting factor in the performance of prolonged cycle exercise, and provision of exogenous CHO in the form of glucose can increase endurance capacity. The present study examined the effects of ingestion of fluids and of CHO in different forms on exercise performance. Six male volunteers exercised to exhaustion on a cycle ergometer at a workload which required approximately 70% of Vo2max. After one preliminary trial, subjects performed this exercise test on six occasions, one week apart. Immediately before exercise, and at 10-min intervals throughout, subjects ingested 100 ml of one of the following: control (no drink), water, glucose syrup, fructose syrup, glucose-fructose syrup or a dilute glucose-electrolyte solution. Each of the syrup solutions contained approximately 36 g CHO per 100 ml; the isotonic glucose-electrolyte solution contained 4 g glucose per 100 ml. A randomised Latin square order of administration of trials was employed. Expired air samples for determination of Vo2, respiratory exchange ratio and rate of CHO oxidation were collected at 15-min intervals. Venous blood samples were obtained before and after exercise. Subjects drinking the isotonic glucose-electrolyte solution exercised longer (90.8 (12.4) min, mean (SEM] than on the control test (70.2 (8.3) min; p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)
Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo.
Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L
2011-12-01
Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-(13)C(2)]-D-β-hydroxybutyrate (BHB). Time courses of (13)C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized (1)H-[(13)C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron-astrocyte) metabolic model to the (13)C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. D-β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (≈ 70:30), and followed a pattern closely similar to the metabolism of [1-(13)C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-(13)C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use.
Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo
Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L
2011-01-01
Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-13C2]--β-hydroxybutyrate (BHB). Time courses of 13C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized 1H-[13C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron–astrocyte) metabolic model to the 13C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. -β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (∼70:30), and followed a pattern closely similar to the metabolism of [1-13C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-13C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use. PMID:21731032
Blesson, Chellakkan S.; Sathishkumar, Kunju; Chinnathambi, Vijayakumar
2014-01-01
Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet–exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet–fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor substrate-1, and AS160 phosphorylation and impaired glucose transporter type 4 translocation. PMID:24797633
Analysis of D-glucose metabolism of wood decay fungi using 13C-NMR and 13C-labeled substrates
Theodorus H. de Koker; Michael D. Mozuch; Philip J. Kersten
2003-01-01
D-Glucose metabolism is thought to be important during wood decay by fungi, not only for anabolic and catabolic purposes of central metabolism, but also as a potential source of peroxide required by extracellular peroxidases. There has been some confusion in the literature as to whether this peroxide-generating activity is of the glucose 1-oxidase or pyranose 2-oxidase...
Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhdanov, Alexander V., E-mail: a.zhdanov@ucc.ie; Waters, Alicia H.C.; Golubeva, Anna V.
2015-01-01
Changes in availability and utilisation of O{sub 2} and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O{sub 2}. Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP,more » produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O{sub 2} and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O{sub 2} and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O{sub 2} and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells.« less
Aravindhan, Karpagam; Bao, Weike; Harpel, Mark R; Willette, Robert N; Lepore, John J; Jucker, Beat M
2015-01-01
Previous studies have shown that glucagon-like peptide-1 (GLP-1) provides cardiovascular benefits independent of its role on peripheral glycemic control. However, the precise mechanism(s) by which GLP-1 treatment renders cardioprotection during myocardial ischemia remain unresolved. Here we examined the role for GLP-1 treatment on glucose and fatty acid metabolism in normal and ischemic rat hearts following a 30 min ischemia and 24 h reperfusion injury, and in isolated cardiomyocytes (CM). Relative carbohydrate and fat oxidation levels were measured in both normal and ischemic hearts using a 1-13C glucose clamp coupled with NMR-based isotopomer analysis, as well as in adult rat CMs by monitoring pH and O2 consumption in the presence of glucose or palmitate. In normal heart, GLP-1 increased glucose uptake (↑64%, p<0.05) without affecting glycogen levels. In ischemic hearts, GLP-1 induced metabolic substrate switching by increasing the ratio of carbohydrate versus fat oxidation (↑14%, p<0.01) in the LV area not at risk, without affecting cAMP levels. Interestingly, no substrate switching occurred in the LV area at risk, despite an increase in cAMP (↑106%, p<0.05) and lactate (↑121%, p<0.01) levels. Furthermore, in isolated CMs GLP-1 treatment increased glucose utilization (↑14%, p<0.05) and decreased fatty acid oxidation (↓15%, p<0.05) consistent with in vivo finding. Our results show that this benefit may derive from distinct and complementary roles of GLP-1 treatment on metabolism in myocardial sub-regions in response to this injury. In particular, a switch to anaerobic glycolysis in the ischemic area provides a compensatory substrate switch to overcome the energetic deficit in this region in the face of reduced tissue oxygenation, whereas a switch to more energetically favorable carbohydrate oxidation in more highly oxygenated remote regions supports maintaining cardiac contractility in a complementary manner.
Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose
NASA Astrophysics Data System (ADS)
Mukherjee, Kakali; Ghosh, Aniruddha; Saha, Rumpa; Sar, Pintu; Malik, Susanta; Saha, Bidyut
2014-03-01
Kinetic data for oxidation of D-sorbitol to glucose by hexavalent chromium in aqueous medium and aqueous surfactant medium (SDS, TX-100) have been reported. Effect of promoter such as PA, bipy and phenanthroline on the reaction has been investigated. The reaction is performed under pseudo first order condition with an excess of substrate over the oxidant. The reaction is first order with respect to substrate and oxidant. The micelles have a catalytic effect on the reaction. Combination of phen and TX-100 produces almost twelve times increase in rate of oxidation.
Diffusion and reaction within porous packing media: a phenomenological model.
Jones, W L; Dockery, J D; Vogel, C R; Sturman, P J
1993-04-25
A phenomenological model has been developed to describe biomass distribution and substrate depletion in porous diatomaceous earth (DE) pellets colonized by Pseudomonas aeruginosa. The essential features of the model are diffusion, attachment and detachment to/from pore walls of the biomass, diffusion of substrate within the pellet, and external mass transfer of both substrate and biomass in the bulk fluid of a packed bed containing the pellets. A bench-scale reactor filled with DE pellets was inoculated with P. aeruginosa and operated in plug flow without recycle using a feed containing glucose as the limiting nutrient. Steady-state effluent glucose concentrations were measured at various residence times, and biomass distribution within the pellet was measured at the lowest residence time. In the model, microorganism/substrate kinetics and mass transfer characteristics were predicted from the literature. Only the attachment and detachment parameters were treated as unknowns, and were determined by fitting biomass distribution data within the pellets to the mathematical model. The rate-limiting step in substrate conversion was determined to be internal mass transfer resistance; external mass transfer resistance and microbial kinetic limitations were found to be nearly negligible. Only the outer 5% of the pellets contributed to substrate conversion.
Revisiting the physiological roles of SGLTs and GLUTs using positron emission tomography in mice
Sala‐Rabanal, Monica; Hirayama, Bruce A.; Ghezzi, Chiara; Liu, Jie; Huang, Sung‐Cheng; Kepe, Vladimir; Koepsell, Hermann; Yu, Amy; Powell, David R.; Thorens, Bernard; Barrio, Jorge R.
2016-01-01
Key points Glucose transporters are central players in glucose homeostasis.There are two major classes of glucose transporters in the body, the passive facilitative glucose transporters (GLUTs) and the secondary active sodium‐coupled glucose transporters (SGLTs).In the present study, we report the use of a non‐invasive imaging technique, positron emission tomography, in mice aiming to evaluate the role of GLUTs and SGLTs in controlling glucose distribution and utilization.We show that GLUTs are most significant for glucose uptake into the brain and liver, whereas SGLTs are important in glucose recovery in the kidney.This work provides further support for the use of SGLT imaging in the investigation of the role of SGLT transporters in human physiology and diseases such as diabetes and cancer. Abstract The importance of sodium‐coupled glucose transporters (SGLTs) and facilitative glucose transporters (GLUTs) in glucose homeostasis was studied in mice using fluorine‐18 labelled glucose molecular imaging probes and non‐invasive positron emission tomography (PET) imaging. The probes were: α‐methyl‐4‐[F‐18]‐fluoro‐4‐deoxy‐d‐glucopyranoside (Me‐4FDG), a substrate for SGLTs; 4‐deoxy‐4‐[F‐18]‐fluoro‐d‐glucose (4‐FDG), a substrate for SGLTs and GLUTs; and 2‐deoxy‐2‐[F‐18]‐fluoro‐d–glucose (2‐FDG), a substrate for GLUTs. These radiolabelled imaging probes were injected i.v. into wild‐type, Sglt1–/–, Sglt2–/– and Glut2–/– mice and their dynamic whole‐body distribution was determined using microPET. The distribution of 2‐FDG was similar to that reported earlier (i.e. it accumulated in the brain, heart, liver and kidney, and was excreted into the urinary bladder). There was little change in the distribution of 2‐FDG in Glut2–/– mice, apart from a reduction in the rate of uptake into liver. The major differences between Me‐4FDG and 2‐FDG were that Me‐4FDG did not enter the brain and was not excreted into the urinary bladder. There was urinary excretion of Me‐4FDG in Sglt1–/– and Sglt2–/– mice. However, Me‐4FDG was not reabsorbed in the kidney in Glut2–/– mice. There were no differences in Me‐4FDG uptake into the heart of wild‐type, Sglt1–/– and Sglt2–/– mice. We conclude that GLUT2 is important in glucose liver transport and reabsorption of glucose in the kidney along with SGLT2 and SGLT1. Complete reabsorption of Me‐4FDG from the glomerular filtrate in wild‐type mice and the absence of reabsorption in the kidney in Glut2–/– mice confirm the importance of GLUT2 in glucose absorption across the proximal tubule. PMID:27018980
Functional design of electrolytic biosensor
NASA Astrophysics Data System (ADS)
Gamage Preethichandra, D. M.; Mala Ekanayake, E. M. I.; Onoda, M.
2017-11-01
A novel amperometric biosensbased on conjugated polypyrrole (PPy) deposited on a Pt modified ITO (indium tin oxide) conductive glass substrate and their performances are described. We have presented a method of developing a highly sensitive and low-cost nano-biosensor for blood glucose measurements. The fabrication method proposed decreases the cost of production significantly as the amount of noble metals used is minimized. A nano-corrugated PPy substrate was developed through pulsed electrochemical deposition. The sensitivity achieved was 325 mA/(Mcm2) and the linear range of the developed sensor was 50-60 mmol/l. Then the application of the electrophoresis helps the glucose oxidase (GOx) on the PPy substrate. The main reason behind this high enzyme loading is the high electric field applied across the sensor surface (working electrode) and the counter electrode where that pushes the nano-scale enzyme particles floating in the phosphate buffer solution towards the substrate. The novel technique used has provided an extremely high sensitivities and very high linear ranges for enzyme (GOx) and therefore can be concluded that this is a very good technique to load enzyme onto the conducting polymer substrates.
He, Zhi; Lu, Qing; Xu, Xulin; Huang, Lin; Chen, Jianguo; Guo, Lianjun
2009-01-28
Our previous work has demonstrated that DDPH (1-(2, 6-dimethylphenoxy)-2-(3, 4-dimethoxyphenylethylamino) propane hydrochloride), a competitive alpha(1)-adrenoceptor antagonist, could improve cognitive deficits, reduce histopathological damage and facilitate synaptic plasticity in vivo possibly via increasing NR2B (NMDA receptor 2B) expression and antioxidation of DDPH itself. The present study further evaluated effects of DDPH on OGD (Oxygen and glucose deprivation)-induced neuronal damage in rat primary hippocampal cells. The addition of DDPH to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and LDH (lactate dehydrogenase) release experiments. The effects of DDPH on intracellular calcium concentration were explored by Fura-2 based calcium imaging techniques and results showed that DDPH at the dosages of 5 microM and 10 microM suppressed the increase of intracellular calcium ([Ca(2+)](i)) stimulated by 50 mM KCl in Ca(2+)-containing extracellular solutions. However, DDPH couldn't suppress the increase of [Ca(2+)](i) induced by both 50 microM glutamate in Ca(2+)-containing extracellular solutions and 20 microM ATP (Adenosine Triphosphate) in Ca(2+)-free solution. These results indicated that DDPH prevented [Ca(2+)](i) overload in hippocampal neurons by blocking Ca(2+) influx (voltage-dependent calcium channel) but not Ca(2+) mobilization from the intracellular Ca(2+) store in endoplasm reticulum (ER). We also demonstrated that DDPH could decrease glutamate release when hippocampal cells were subjected to OGD. These observations demonstrated that DDPH protected hippocampal neurons against OGD-induced damage by preventing the Ca(2+) influx and decreasing glutamate release.
Matsuhashi, Tomohiro; Hishiki, Takako; Zhou, Heping; Ono, Tomohiko; Kaneda, Ruri; Iso, Tatsuya; Yamaguchi, Aiko; Endo, Jin; Katsumata, Yoshinori; Atsushi, Anzai; Yamamoto, Tsunehisa; Shirakawa, Kohsuke; Yan, Xiaoxiang; Shinmura, Ken; Suematsu, Makoto; Fukuda, Keiichi; Sano, Motoaki
2015-05-01
Dichloroacetate (DCA) promotes pyruvate entry into the Krebs cycle by inhibiting pyruvate dehydrogenase (PDH) kinase and thereby maintaining PDH in the active dephosphorylated state. DCA has recently gained attention as a potential metabolic-targeting therapy for heart failure but the molecular basis of the therapeutic effect of DCA in the heart remains a mystery. Once-daily oral administration of DCA alleviates pressure overload-induced left ventricular remodeling. We examined changes in the metabolic fate of pyruvate carbon (derived from glucose) entering the Krebs cycle by metabolic interventions of DCA. (13)C6-glucose pathway tracing analysis revealed that instead of being completely oxidized in the mitochondria for ATP production, DCA-mediated PDH dephosphorylation results in an increased acetyl-CoA pool both in control and pressure-overloaded hearts. DCA induces hyperacetylation of histone H3K9 and H4 in a dose-dependent manner in parallel to the dephosphorylation of PDH in cultured cardiomyocytes. DCA administration increases histone H3K9 acetylation in in vivo mouse heart. Interestingly, DCA-dependent histone acetylation was associated with an up-regulation of 2.3% of genes (545 out of 23,474 examined). Gene ontology analysis revealed that these genes are highly enriched in transcription-related categories. This evidence suggests that sustained activation of PDH by DCA results in an overproduction of acetyl-CoA, which exceeds oxidation in the Krebs cycle and results in histone acetylation. We propose that DCA-mediated PDH activation has the potential to induce epigenetic remodeling in the heart, which, at least in part, forms the molecular basis for the therapeutic effect of DCA in the heart. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xie, Xuehui; Liu, Na; Ping, Jing; Zhang, Qingyun; Zheng, Xiulin; Liu, Jianshe
2018-06-01
In present study, a hydrolysis acidification (HA) reactor was used for simulated dyeing wastewater treatment. Co-substrates included starch, glucose, sucrose, yeast extract (YE) and peptone were fed sequentially into the HA reactor to enhance the HA process effects. The performance of the HA reactor and the microbial community structure in HA process were investigated under different co-substrates conditions. Results showed that different co-substrates had different influences on the performance of HA reactor. The highest decolorization (50.64%) and COD removal rate (60.73%) of the HA reactor were obtained when sucrose was as the co-substrate. And it found that carbon co-substrates starch, glucose and sucrose exhibited better decolorization and higher COD removal efficiency of the HA reactor than the nitrogen co-substrates YE and peptone. Microbial community structure in the HA process was analyzed by Illumina MiSeq sequencing. Results revealed different co-substrates had different influences on the community structure and microbial diversity in HA process. It was considered that sucrose could enrich the species such as Raoultella, Desulfovibrio, Tolumonas, Clostridium, which might be capable of degrading the dyes. Sucrose was considered to be the best co-substrate of enhancing the HA reactor's performance in this study. This work would provide deep insight into the influence of many different co-substrates on HA reactor performance and microbial communities in HA process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Application of Semipermeable Membranes in Glucose Biosensing
Kulkarni, Tanmay; Slaughter, Gymama
2016-01-01
Glucose biosensors have received significant attention in recent years due to the escalating mortality rate of diabetes mellitus. Although there is currently no cure for diabetes mellitus, individuals living with diabetes can lead a normal life by maintaining tight control of their blood glucose levels using glucose biosensors (e.g., glucometers). Current research in the field is focused on the optimization and improvement in the performance of glucose biosensors by employing a variety of glucose selective enzymes, mediators and semipermeable membranes to improve the electron transfer between the active center of the enzyme and the electrode substrate. Herein, we summarize the different semipermeable membranes used in the fabrication of the glucose biosensor, that result in improved biosensor sensitivity, selectivity, dynamic range, response time and stability. PMID:27983630
Houin, Satya S.; Rozance, Paul J.; Brown, Laura D.; Hay, William W.; Wilkening, Randall B.
2014-01-01
Reduced fetal glucose supply, induced experimentally or as a result of placental insufficiency, produces an early activation of fetal glucose production. The mechanisms and substrates used to fuel this increased glucose production rate remain unknown. We hypothesized that in response to hypoglycemia, induced experimentally with maternal insulin infusion, the fetal liver would increase uptake of lactate and amino acids (AA), which would combine with hormonal signals to support hepatic glucose production. To test this hypothesis, metabolic studies were done in six late gestation fetal sheep to measure hepatic glucose and substrate flux before (basal) and after [days (d)1 and 4] the start of hypoglycemia. Maternal and fetal glucose concentrations decreased by 50% on d1 and d4 (P < 0.05). The liver transitioned from net glucose uptake (basal, 5.1 ± 1.5 μmol/min) to output by d4 (2.8 ± 1.4 μmol/min; P < 0.05 vs. basal). The [U-13C]glucose tracer molar percent excess ratio across the liver decreased over the same period (basal: 0.98 ± 0.01, vs. d4: 0.89 ± 0.01, P < 0.05). Total hepatic AA uptake, but not lactate or pyruvate uptake, increased by threefold on d1 (P < 0.05) and remained elevated throughout the study. This AA uptake was driven largely by decreased glutamate output and increased glycine uptake. Fetal plasma concentrations of insulin were 50% lower, while cortisol and glucagon concentrations increased 56 and 86% during hypoglycemia (P < 0.05 for basal vs. d4). Thus increased hepatic AA uptake, rather than pyruvate or lactate uptake, and decreased fetal plasma insulin and increased cortisol and glucagon concentrations occur simultaneously with increased fetal hepatic glucose output in response to fetal hypoglycemia. PMID:25516551
Liu, Jiaqiang; Mao, Jing; Jiang, Yi; Xia, Lunguo; Mao, Lixia; Wu, Yong; Ma, Pan; Fang, Bing
2016-03-01
Advanced glycation end products (AGEs) accumulate under high-glucose conditions and affect the healing of bone damage through various pathways; however, the detail mechanisms underlying these changes are unknown. In this study, we investigated the effects of AGEs on the apoptosis of in vitro-cultured rat osteoblasts under high-glucose conditions and explored the underlying mechanisms of these effects. First, we cultured rat osteoblasts and determined the accumulation of AGEs in the culture medium under high-glucose conditions. Then, we cultured rat osteoblasts under a high glucose concentration (35 mM), a normal glucose concentration (5.5 mM), and a normal glucose concentration (5.5 mM) in the presence of AGEs. We examined the effects of high glucose and AGEs on the apoptosis of rat osteoblasts at different time points and further analyzed the activity and changes in the levels of procaspase-3, caspase-3, and the caspase-3 substrate poly ADP-ribose polymerase (PARP). Finally, we added sRAGE (soluble RAGE) (an AGE inhibitor) or DEVD (a caspase-3 inhibitor) to each culture group and examined apoptosis under each culture condition and the changes in the levels of procaspase-3, caspase-3, and its substrate PARP. The results showed that the high-glucose condition and the addition of AGEs increased the apoptosis of rat osteoblast cells and simultaneously increased the activity and quantity of caspase-3. These increases could be inhibited by the AGE inhibitor sRAGE or the caspase-3 inhibitor DEVD. The above results demonstrate that high-glucose conditions lead to the accumulation of AGEs and activation of the caspase-3 signaling pathway, resulting in the increased apoptosis of cultured rat osteoblast cells.
Wilson, Wayne A; Pradhan, Prajakta; Madhan, Nayasha; Gist, Galen C; Brittingham, Andrew
2017-07-01
Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Amaral, Ana I
2013-07-01
Hypoglycaemia is characterized by decreased blood glucose levels and is associated with different pathologies (e.g. diabetes, inborn errors of metabolism). Depending on its severity, it might affect cognitive functions, including impaired judgment and decreased memory capacity, which have been linked to alterations of brain energy metabolism. Glucose is the major cerebral energy substrate in the adult brain and supports the complex metabolic interactions between neurons and astrocytes, which are essential for synaptic activity. Therefore, hypoglycaemia disturbs cerebral metabolism and, consequently, neuronal function. Despite the high vulnerability of neurons to hypoglycaemia, important neurochemical changes enabling these cells to prolong their resistance to hypoglycaemia have been described. This review aims at providing an overview over the main metabolic effects of hypoglycaemia on neurons, covering in vitro and in vivo findings. Recent studies provided evidence that non-glucose substrates including pyruvate, glycogen, ketone bodies, glutamate, glutamine, and aspartate, are metabolized by neurons in the absence of glucose and contribute to prolong neuronal function and delay ATP depletion during hypoglycaemia. One of the pathways likely implicated in the process is the pyruvate recycling pathway, which allows for the full oxidation of glutamate and glutamine. The operation of this pathway in neurons, particularly after hypoglycaemia, has been re-confirmed recently using metabolic modelling tools (i.e. Metabolic Flux Analysis), which allow for a detailed investigation of cellular metabolism in cultured cells. Overall, the knowledge summarized herein might be used for the development of potential therapies targeting neuronal protection in patients vulnerable to hypoglycaemic episodes.
Bakrania, Bhavisha; Granger, Joey P.; Harmancey, Romain
2016-01-01
The mammalian heart is a major consumer of ATP and requires a constant supply of energy substrates for contraction. Not surprisingly, alterations of myocardial metabolism have been linked to the development of contractile dysfunction and heart failure. Therefore, unraveling the link between metabolism and contraction should shed light on some of the mechanisms governing cardiac adaptation or maladaptation in disease states. The isolated working rat heart preparation can be used to follow, simultaneously and in real time, cardiac contractile function and flux of energy providing substrates into oxidative metabolic pathways. The present protocol aims to provide a detailed description of the methods used in the preparation and utilization of buffers for the quantitative measurement of the rates of oxidation for glucose and fatty acids, the main energy providing substrates of the heart. The methods used for sample analysis and data interpretation are also discussed. In brief, the technique is based on the supply of 14C- radiolabeled glucose and a 3H- radiolabeled long-chain fatty acid to an ex vivo beating heart via normothermic crystalloid perfusion. 14CO2 and 3H2O, end byproducts of the enzymatic reactions involved in the utilization of these energy providing substrates, are then quantitatively recovered from the coronary effluent. With knowledge of the specific activity of the radiolabeled substrates used, it is then possible to individually quantitate the flux of glucose and fatty acid in the oxidation pathways. Contractile function of the isolated heart can be determined in parallel with the appropriate recording equipment and directly correlated to metabolic flux values. The technique is extremely useful to study the metabolism/contraction relationship in response to various stress conditions such as alterations in pre and after load and ischemia, a drug or a circulating factor, or following the alteration in the expression of a gene product. PMID:27768055
Castro-Fernandez, Víctor; Herrera-Morande, Alejandra; Zamora, Ricardo; Merino, Felipe; Gonzalez-Ordenes, Felipe; Padilla-Salinas, Felipe; Pereira, Humberto M; Brandão-Neto, Jose; Garratt, Richard C; Guixe, Victoria
2017-09-22
One central goal in molecular evolution is to pinpoint the mechanisms and evolutionary forces that cause an enzyme to change its substrate specificity; however, these processes remain largely unexplored. Using the glycolytic ADP-dependent kinases of archaea, including the orders Thermococcales , Methanosarcinales , and Methanococcales , as a model and employing an approach involving paleoenzymology, evolutionary statistics, and protein structural analysis, we could track changes in substrate specificity during ADP-dependent kinase evolution along with the structural determinants of these changes. To do so, we studied five key resurrected ancestral enzymes as well as their extant counterparts. We found that a major shift in function from a bifunctional ancestor that could phosphorylate either glucose or fructose 6-phosphate (fructose-6-P) as a substrate to a fructose 6-P-specific enzyme was started by a single amino acid substitution resulting in negative selection with a ground-state mode against glucose and a subsequent 1,600-fold change in specificity of the ancestral protein. This change rendered the residual phosphorylation of glucose a promiscuous and physiologically irrelevant activity, highlighting how promiscuity may be an evolutionary vestige of ancestral enzyme activities, which have been eliminated over time. We also could reconstruct the evolutionary history of substrate utilization by using an evolutionary model of discrete binary characters, indicating that substrate uses can be discretely lost or acquired during enzyme evolution. These findings exemplify how negative selection and subtle enzyme changes can lead to major evolutionary shifts in function, which can subsequently generate important adaptive advantages, for example, in improving glycolytic efficiency in Thermococcales . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Bilzon, J L J; Murphy, J L; Allsopp, A J; Wootton, S A; Williams, C
2002-08-01
Carbohydrate (CHO) ingestion during short-term recovery from prolonged running has been shown to increase the capacity for subsequent exercise in a warm environment. The aim of this study was to examine the effects of the amount of glucose given during recovery on substrate storage and utilisation during recovery and subsequent exercise in a warm environment. A group of 11 healthy male volunteers took part in two experiments in a controlled warm environment (35 degrees C, 40% relative humidity), 1 week apart. On each occasion the subjects completed two treadmill runs (T1 and T2) at a speed equivalent to 60% of maximal oxygen uptake, for 90 min, until they were fatigued, or until aural temperature (T(aur)) reached 39 degrees C. The two runs were separated by a 4 h recovery period (REC), during which subjects consumed 55 g of naturally enriched [U-(13)C]-glucose in the form of a 7.5% carbohydrate-electrolyte solution (CES, mass of solution 667 g) immediately after T1. The subjects then consumed either: the same quantity of CES, or an equivalent volume of an electrolyte placebo, at 60, 120 and 180 min during REC, providing a total of 220 g (C220) or 55 g (C55) of [U-(13)C]-glucose, respectively. Expired gases were collected at 15 min intervals during exercise and 60 min intervals during REC, for determination of total CHO and fat oxidation by indirect respiratory calorimetry, and orally ingested [U-(13)C]-glucose oxidation, estimated from the (13)C:(12)C ratio of expired CO(2). Substrate metabolism did not differ between conditions during T1. Despite the fact that total CHO (P < 0.05) and ingested glucose oxidation (P < 0.01) were greater during REC of the C220 condition, glycogen synthesis was estimated to be approximately fivefold greater (P < 0.01) than in the C55 condition. During T2 the rate of total CHO oxidation was higher (P < 0.01) and total fat oxidation lower (P < 0.01) at all times during the C220 compared to the C55 condition. The greater CHO oxidation during C220 appeared to be met from ingested sources, as the rate of [U-(13)C]-glucose oxidation was greater (P < 0.01) at all times during T2, compared to C55. Whilst more of the ingested substrate remained unoxidised on completion of T2 during C220, exercise duration was similar in the two experimental conditions, and was limited by thermoregulatory incapacity (T(aur) > 39 degrees C) rather than substrate availability per se.
Sun, Shaolong; Zhang, Lidan; Liu, Fang; Fan, Xiaolin; Sun, Run-Cang
2018-01-01
To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline treatment, which led to decrease the pure economic profit for production of bioethanol. Therefore, four one-step processes based on order of hydrothermal and alkaline treatment have been developed to enhance concentration of glucose of wheat straw by enzymatic saccharification. The aim of the present study was to systematically evaluated effect for different one-step processes by analyzing the physicochemical properties (composition, structural change, crystallinity, surface morphology, and BET surface area) and enzymatic saccharification of the treated substrates. In this study, hemicelluloses and lignins were removed from wheat straw and the morphologic structures were destroyed to various extents during the four one-step processes, which were favorable for cellulase absorption on cellulose. A positive correlation was also observed between the crystallinity and enzymatic saccharification rate of the substrate under the conditions given. The surface area of the substrate was positively related to the concentration of glucose in this study. As compared to the control (3.0 g/L) and treated substrates (11.2-14.6 g/L) obtained by the other three one-step processes, the substrate treated by one-step process based on successively hydrothermal and alkaline treatment had a maximum glucose concentration of 18.6 g/L, which was due to the high cellulose concentration and surface area for the substrate, accompanying with removal of large amounts of lignins and hemicelluloses. The present study demonstrated that the order of hydrothermal and alkaline treatment had significant effects on the physicochemical properties and enzymatic saccharification of wheat straw. The one-step process based on successively hydrothermal and alkaline treatment is a simple operating and economical feasible method for the production of glucose, which will be further converted into bioethanol.
Shokati, Touraj; Zwingmann, Claudia; Leibfritz, Dieter
2005-10-01
Multinuclear NMR spectroscopy is used to investigate the effect of glutamine on neuronal glucose metabolism. Primary neurons were incubated with [1-(13C)]glucose in the absence or presence of glutamine (2 mM) and/or NH4Cl (5 mM). After ammonia-treatment, the concentrations of high-energy phosphates decreased up to 84% of control, which was aggravated in glutamine-containing medium (up to 42% of control). These effects could not be attributed to changes in mitochondrial glucose oxidation. Withdrawal of glutamine decreased amino acid concentrations, e.g. of glutamate to 53%, but also considerably lessened the 13C enrichment in [4-(13C)]glutamate to 8.3% of control, and decreased the 13C-enrichment in acetyl-CoA entering the Krebs cycle (P < 0.001). Thus, although glutamine is potent in replenishing neuronal glutamate stores, glutamate formation is mainly attributed to its de novo synthesis from glucose. Furthermore, mitochondrial glucose metabolism strongly depends on the supply of carbons from glutamine, indicating that exogenous glutamine is a well-suited substrate to replenish neuronal Krebs cycle intermediates.
Rende, Umut; Wang, Wei; Gandla, Madhavi Latha; Jönsson, Leif J; Niittylä, Totte
2017-04-01
Carbon for cellulose biosynthesis is derived from sucrose. Cellulose is synthesized from uridine 5'-diphosphoglucose (UDP-glucose), but the enzyme(s) responsible for the initial sucrose cleavage and the source of UDP-glucose for cellulose biosynthesis in developing wood have not been defined. We investigated the role of CYTOSOLIC INVERTASEs (CINs) during wood formation in hybrid aspen (Populus tremula × tremuloides) and characterized transgenic lines with reduced CIN activity during secondary cell wall biosynthesis. Suppression of CIN activity by 38-55% led to a 9-13% reduction in crystalline cellulose. The changes in cellulose were reflected in reduced diameter of acid-insoluble cellulose microfibrils and increased glucose release from wood upon enzymatic digestion of cellulose. Reduced CIN activity decreased the amount of the cellulose biosynthesis precursor UDP-glucose in developing wood, pointing to the likely cause of the cellulose phenotype. The findings suggest that CIN activity has an important role in the cellulose biosynthesis of trees, and indicate that cellulose biosynthesis in wood relies on a quantifiable UDP-glucose pool. The results also introduce a concept of altering cellulose microfibril properties by modifying substrate supply to cellulose biosynthesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Aranda, Carlos; Godoy, Félix; Becerra, José; Barra, Ricardo; Martínez, Miguel
2003-08-01
This paper reports 2,4,6-trichlorophenol (246TCP) degradation by Sphingopyxis chilensis S37 and Sphingopyxis chilensis-like strain S32, which were unable to use 246TCP as the sole carbon and energy source. In R2A broth, the strains degraded 246TCP up to 0.5 mM. Results with mixtures of different 246TCP and glucose concentrations in mineral salt media demonstrated dependence on glucose to allow bacterial growth and degradation of 246TCP. Strain S32 degraded halophenol up to 0.2 mM when 5.33 mM glucose was simultaneously added, while strain S37 degraded the compound up to 0.1 mM when 1.33 mM glucose was added. These 246TCP concentrations were lethal for inocula in absence of glucose. Stoichiometric releases of chloride and analysis by HPLC, GC-ECD and GC-MS indicated 246TCP mineralisation by both strains. To our knowledge, this is the first report of bacteria able to mineralize a chlorophenol as a non-growth and inhibitory substrate. The concept of secondary utilization instead of cometabolism is proposed for this activity.
Men, Yan; Zhu, Yueming; Zeng, Yan; Izumori, Ken; Sun, Yuanxia; Ma, Yanhe
2014-10-01
D-Psicose has been attracting attention in recent years because of its alimentary activities and is used as an ingredient in a range of foods and dietary supplements. To develop a one-step enzymatic process of D-psicose production, thermoactive D-glucose isomerase and the D-psicose 3-epimerase obtained from Bacillus sp. and Ruminococcus sp., respectively, were successfully co-expressed in Escherichia coli BL21 strain. The substrate of one-step enzymatic process was D-glucose. The co-expression system exhibited maximum activity at 65 °C and pH 7.0. Mg(2+) could enhance the output of D-psicose by 2.32 fold to 1.6 g/L from 10 g/L of D-glucose. When using high-fructose corn syrup (HFCS) as substrate, 135 g/L D-psicose was produced under optimum conditions. The mass ratio of D-glucose, D-fructose, and D-psicose was almost 3.0:2.7:1.0, when the reaction reached equilibrium after an 8h incubation time. This co-expression system approaching to produce D-psicose has potential application in food and beverage products, especially softdrinks. Copyright © 2014 Elsevier Inc. All rights reserved.
Comparison of pretreatment methods on the enzymatic Saccharification of aspen wood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinto, J.H.; Kamden, D.P.
Five different chemical pretreatments, using dilute sulfuric acid, sodium hydroxide, hydrogen peroxide and sodium hydroxide, peroxy-monosulfate, and acetic acid, were applied to aspen thermomechanical fibers. The pretreated fibers were submitted to enzymatic hydrolysis and the liberated glucose was monitored. High glucose concentrations were observed for the peroxymonosulfate and the acetic acid pretreated samples. Glucose concentrations greater than 25 g/L were obtained in these cases. This corresponds to conversions on the order of 90% of the retreated substrate glucose content. 18 refs., 1 fig., 4 tabs.
Enhancement of xylose utilization from corn stover by a recombinant bacterium for ethanol production
USDA-ARS?s Scientific Manuscript database
Effects of substrate-selective inoculum prepared by growing on glucose, xylose, arabinose, GXA (glucose, xylose, arabinose, 1:1:1) and corn stover hydrolyzate (dilute acid pretreated and enzymatically hydrolyzed, CSH) on ethanol production from CSH by a mixed sugar utilizing recombinant Escherichia ...
Saccharomyces cerevisiae 424A (LNH-ST) strain was used for fermentation of glucose and xylose. Growth kinetics and ethanol productivity were calculated for batch fermentation on media containing different combinations of glucose and xylose to give a final sugar concentra...
Spindler, Diane D.; Grohmann, Karel; Wyman, Charles E.
1992-01-01
A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol.
Peters, Robert F; Gutierrez-Rivera, Luis; Dew, Steven K; Stepanova, Maria
2015-03-20
Fabrication and characterization of conjugate nano-biological systems interfacing metallic nanostructures on solid supports with immobilized biomolecules is reported. The entire sequence of relevant experimental steps is described, involving the fabrication of nanostructured substrates using electron beam lithography, immobilization of biomolecules on the substrates, and their characterization utilizing surface-enhanced Raman spectroscopy (SERS). Three different designs of nano-biological systems are employed, including protein A, glucose binding protein, and a dopamine binding DNA aptamer. In the latter two cases, the binding of respective ligands, D-glucose and dopamine, is also included. The three kinds of biomolecules are immobilized on nanostructured substrates by different methods, and the results of SERS imaging are reported. The capabilities of SERS to detect vibrational modes from surface-immobilized proteins, as well as to capture the protein-ligand and aptamer-ligand binding are demonstrated. The results also illustrate the influence of the surface nanostructure geometry, biomolecules immobilization strategy, Raman activity of the molecules and presence or absence of the ligand binding on the SERS spectra acquired.
Observing cellulose biosynthesis and membrane translocation in crystallo
Morgan, Jacob L.W.; McNamara, Joshua T.; Fischer, Michael; Rich, Jamie; Chen, Hong-Ming; Withers, Stephen G.; Zimmer, Jochen
2016-01-01
Many biopolymers, including polysaccharides, must be translocated across at least one membrane to reach their site of biological function. Cellulose is a linear glucose polymer synthesized and secreted by a membrane-integrated cellulose synthase. In crystallo enzymology with the catalytically-active bacterial cellulose synthase BcsA-B complex reveals structural snapshots of a complete cellulose biosynthesis cycle, from substrate binding to polymer translocation. Substrate and product-bound structures of BcsA provide the basis for substrate recognition and demonstrate the stepwise elongation of cellulose. Furthermore, the structural snapshots show that BcsA translocates cellulose via a ratcheting mechanism involving a “finger helix” that contacts the polymer's terminal glucose. Cooperating with BcsA's gating loop, the finger helix moves ‘up’ and ‘down’ in response to substrate binding and polymer elongation, respectively, thereby pushing the elongated polymer into BcsA’s transmembrane channel. This mechanism is validated experimentally by tethering BcsA's finger helix, which inhibits polymer translocation but not elongation. PMID:26958837
Dahlquist, G
1976-10-01
Cerebral arteriovenous differences of acetoacetate, D-beta-hydroxybutyrate, glucose, lactate and oxygen and brain DNA content was measured at 20 days of age in intrauterine growth retarded (IUGR) rats and normal littermates after 48 and 72 h of starvation. Cerebral blood flow (CBF) was measured with labeled microspheres in other comparable groups of IUGR and control rats. CBF was similar in IUGR and normal littermates (0.57+/-0.09 and 0.58+/-0.10 ml/min respectively). After 48 h of starvation, arterial glucose was significantly lower in IUGR than control animals but the arterial concentrations of ketone bodies were similar. After 48 h of starvation, cerebral arteriovenous difference of beta-hydroxybutyrate was significantly higher in control than IUGR rats also when expressed per mg brain DNA as was the fractional uptake of D-beta-hydroxybutyrate. After 72 h of starvation, arterial concentrations of ketone bodies were significantly lower in IUGR rats than controls but the fractional uptake of D-beta-hydroxybutyrate was increased compared to IUGR rats starved for 48 h. The average percentage of calculated total substrate uptake (mumol/min) accounted for by ketone bodies increased in control animals from 31.1% after 48 h of starvation to 41.0% after 72 h of starvation. In IUGR rats these percentage values were 26.5 and 25.7 respectively. After 72 h of starvation the fraction of total cerebral uptake of substrates accounted for by ketone bodies was significantly higher in control that IUGR rats. As total cerebral uptake of substrates was similar between IUGR and control animals it is concluded that IUGR rats are more dependent on glucose as a substrate for the brain during starvation.
Gama, Repson; Van Dyk, J Susan; Burton, Mike H; Pletschke, Brett I
2017-06-01
The enzymatic degradation of lignocellulosic biomass such as apple pomace is a complex process influenced by a number of hydrolysis conditions. Predicting optimal conditions, including enzyme and substrate concentration, temperature and pH can improve conversion efficiency. In this study, the production of sugar monomers from apple pomace using commercial enzyme preparations, Celluclast 1.5L, Viscozyme L and Novozyme 188 was investigated. A limited number of experiments were carried out and then analysed using an artificial neural network (ANN) to model the enzymatic hydrolysis process. The ANN was used to simulate the enzymatic hydrolysis process for a range of input variables and the optimal conditions were successfully selected as was indicated by the R 2 value of 0.99 and a small MSE value. The inputs for the ANN were substrate loading, enzyme loading, temperature, initial pH and a combination of these parameters, while release profiles of glucose and reducing sugars were the outputs. Enzyme loadings of 0.5 and 0.2 mg/g substrate and a substrate loading of 30% were optimal for glucose and reducing sugar release from apple pomace, respectively, resulting in concentrations of 6.5 g/L glucose and 28.9 g/L reducing sugars. Apple pomace hydrolysis can be successfully carried out based on the predicted optimal conditions from the ANN.
Naranjo, Javier M; Posada, John A; Higuita, Juan C; Cardona, Carlos A
2013-04-01
In this work technical and economic analyses were performed to evaluate the glycerol transformation into Polyhydroxybutyrate using Bacillus megaterium. The production of PHB was compared using glycerol or glucose as substrates and similar yields were obtained. The total production costs for PHB generation with both substrates were estimated at an industrial scale. Compared to glucose, glycerol showed a 10% and 20% decrease in the PHB production costs using two different separation schemes respectively. Moreover, a 20% profit margin in the PHB sales price using glycerol as substrate resulted in a 166% valorization of crude glycerol. In this work, the feasibility of glycerol as feedstock for the production of PHB at laboratory (up to 60% PHB accumulation) and industrial (2.6US$/kgPHB) scales is demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.
Functional expression of SGLTs in rat brain.
Yu, Amy S; Hirayama, Bruce A; Timbol, Gerald; Liu, Jie; Basarah, Ernest; Kepe, Vladimir; Satyamurthy, Nagichettiar; Huang, Sung-Cheng; Wright, Ernest M; Barrio, Jorge R
2010-12-01
This work provides evidence of previously unrecognized uptake of glucose via sodium-coupled glucose transporters (SGLTs) in specific regions of the brain. The current understanding of functional glucose utilization in brain is largely based on studies using positron emission tomography (PET) with the glucose tracer 2-deoxy-2-[F-18]fluoro-D-glucose (2-FDG). However, 2-FDG is only a good substrate for facilitated-glucose transporters (GLUTs), not for SGLTs. Thus, glucose accumulation measured by 2-FDG omits the role of SGLTs. We designed and synthesized two high-affinity tracers: one, α-methyl-4-[F-18]fluoro-4-deoxy-D-glucopyranoside (Me-4FDG), is a highly specific SGLT substrate and not transported by GLUTs; the other one, 4-[F-18]fluoro-4-deoxy-D-glucose (4-FDG), is transported by both SGLTs and GLUTs and will pass through the blood brain barrier (BBB). In vitro Me-4FDG autoradiography was used to map the distribution of uptake by functional SGLTs in brain slices with a comparable result from in vitro 4-FDG autoradiography. Immunohistochemical assays showed that uptake was consistent with the distribution of SGLT protein. Ex vivo 4-FDG autoradiography showed that SGLTs in these areas are functionally active in the normal in vivo brain. The results establish that SGLTs are a normal part of the physiology of specific areas of the brain, including hippocampus, amygdala, hypothalamus, and cerebral cortices. 4-FDG PET imaging also established that this BBB-permeable SGLT tracer now offers a functional imaging approach in humans to assess regulation of SGLT activity in health and disease.
Turner, Timothy L; Zhang, Guo-Chang; Kim, Soo Rin; Subramaniam, Vijay; Steffen, David; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Jin, Yong-Su
2015-10-01
Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production. In this study, we introduced a lactic acid-producing pathway into an engineered Saccharomyces cerevisiae capable of fermenting xylose. Specifically, ldhA from the fungi Rhizopus oryzae was overexpressed under the control of the PGK1 promoter through integration of the expression cassette in the chromosome. The resulting strain exhibited a high lactate dehydrogenase activity and produced lactic acid from glucose or xylose. Interestingly, we observed that the engineered strain exhibited substrate-dependent product formation. When the engineered yeast was cultured on glucose, the major fermentation product was ethanol while lactic acid was a minor product. In contrast, the engineered yeast produced lactic acid almost exclusively when cultured on xylose under oxygen-limited conditions. The yields of ethanol and lactic acid from glucose were 0.31 g ethanol/g glucose and 0.22 g lactic acid/g glucose, respectively. On xylose, the yields of ethanol and lactic acid were <0.01 g ethanol/g xylose and 0.69 g lactic acid/g xylose, respectively. These results demonstrate that lactic acid can be produced from xylose with a high yield by S. cerevisiae without deleting pyruvate decarboxylase, and the formation patterns of fermentations can be altered by substrates.
Yamagishi, Sho-ichi; Matsui, Takanori
2016-04-01
Diabetic micro- and macroangiopathy are devastating vascular complications that could account for disabilities and high mortality rate in patients with diabetes. Indeed, diabetic nephropathy and retinopathy are the leading causes of end-stage renal failure and acquired blindness, respectively, and atherosclerotic cardiovascular diseases (CVD) accounts for about 60% of death in diabetic subjects. As a result, the average life span of diabetic patients is about 10-15 years shorter than that of non-diabetic subjects. Furthermore, tight blood glucose control might have no more than a marginal impact on CVD in general and on all-cause mortality in particular in diabetes. Therefore, therapeutic strategies that target vascular complications in diabetes need to be developed. Recently, selective inhibition of sodium-glucose co-transporter 2 (SGLT2) has been proposed as a potential therapeutic target for the treatment of patients with diabetes because of low risk of hypoglycemia and no weight gain. Because 90% of glucose filtered by the glomerulus is reabsorbed by a low-affinity/high-capacity SGLT2 expressed in the S1 and S2 segments of the proximal tubule, blockade of SGLT2 promotes urinary glucose excretion and as a result improves hyperglycemia in an insulin-independent manner. Moreover, we have shown that SGLT2-mediated glucose overload to tubular cells could elicit inflammatory and pro-apoptotic reactions in this cell, being directly involved in diabetic nephropathy. In addition, several clinical studies have also shown that SGLT2 inhibitors could reduce blood pressure, body weight, and serum uric acid levels and ameliorate cardiovascular risk in patients with diabetes. This review summarizes the pathophysiological role of SGLT2 in vascular complications in diabetes and its potential therapeutic interventions.
Formononetin exhibits anti-hyperglycemic activity in alloxan-induced type 1 diabetic mice.
Qiu, Guizhen; Tian, Wei; Huan, Mei; Chen, Jinlong; Fu, Haitao
2017-01-01
The aim of this study was to investigate the anti-hyperglycemic activity and mechanism of formononetin in alloxan-induced type 1 diabetic mice by determining its effect on some diabetes-related indices as described below. Body weight, fasting blood glucose, hepatic glycogen, serum insulin, and serum glucagon were determined by electronic scales, glucometer, and ELISA kits. Fas, Caspase-3, pancreatic and duodenal homeobox-1 , insulin receptor substrate 2, glucokinase and glucose transporter 2, mRNA and proteins levels in pancreas tissue, and glucokinase and glucose-6-phosphatase mRNA, and proteins levels in liver tissue were detected by fluorogenic quantitative-polymerase chain reaction and Western blot assays. The results indicated that formononetin (5, 10, and 20 mg/kg; oral administration) reversed the alloxan-induced increase of some indices (fasting blood glucose level and Fas and Caspase-3 mRNA and proteins levels in pancreas tissue) and reduction of some indices (body weight gain, oral glucose tolerance, insulin activity, hepatic glycogen level, pancreatic and duodenal homeobox-1, insulin receptor substrate 2, glucokinase and glucose transporter 2, mRNA and proteins levels in pancreas tissue, and glucokinase mRNA and protein levels in liver tissue). The glucagon level and glucose-6-phosphatase mRNA and protein levels in liver tissue were not affected by the drugs administration. In conclusion, formononetin exhibited anti-hyperglycemic activity in alloxan-induced type 1 diabetic mice by inhibiting islet B cell apoptosis and promoting islet B cell regeneration, insulin secretion, hepatic glycogen synthesis, and hepatic glycolysis.
NASA Astrophysics Data System (ADS)
Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.
2014-08-01
The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our results led to several conclusions: (i) based on our experimental setup, higher substrate concentration resulted in a higher concentration of non-labile DOC; (ii) TEP, generated by bacteria, degrade rapidly, thus limiting their potential contribution to carbon sequestration; (iii) the molecular signatures of DOM derived from algal exudates and glucose after 70 days of incubation differed strongly from refractory DOM. After 2 years, however, the molecular patterns of DOM in glucose incubations were more similar to deep ocean DOM whereas the degraded exudate was still different.
Nguyen, T Dung; Shingu, Yasushige; Amorim, Paulo A; Schwarzer, Michael; Doenst, Torsten
2013-10-09
GLP-1 and exendin-4, which are used as insulin sensitizers or weight reducing drugs, were shown to improve glucose uptake in the heart. However, the direct effects of GLP-1 or exendin-4 on normal hearts in the presence of fatty acids, the main cardiac substrates, have never been investigated. We therefore assessed the effects of GLP-1 or exendin-4 on myocardial glucose uptake (GU), glucose oxidation (GO) and cardiac performance (CP) under conditions of fatty acid utilization. Rat hearts were perfused with only glucose (5 mM) or glucose (5 mM) plus oleate (0.4 mM) as substrates for 60 min. After 30 min, GLP-1 or exendin-4 (0.5 nM or 5 nM) was added. In the absence of oleate, GLP-1 increased both GU and GO. Exendin-4 increased GO but showed no effect on GU. Neither GLP-1 nor exendin-4 affected CP. However, when oleate was present, GLP-1 failed to stimulate glucose utilization and exendin-4 even decreased GU. Furthermore, now GLP-1 reduced CP. In contrast to prior reports, this negative inotropic effect could not be blocked by the protein kinase A inhibitor H-89. We then measured myocardial GO and CP in rats receiving a 4-week GLP-1 infusion. Interestingly, this chronic treatment resulted in a significant reduction in both GO and CP. Under the influence of oleate, GLP-1 reduces contractile function and fails to stimulate glucose utilization in normal hearts. Exendin-4 may acutely reduce cardiac glucose uptake but not contractility. We suggest advanced investigation of heart function and metabolism in patients treating with these peptides. © 2013.
Biomass of active microorganisms is not limited only by available carbon in the rhizosphere
NASA Astrophysics Data System (ADS)
Gilmullina, Aliia
2017-04-01
Microbial activity is generally limited by carbon (C) availability. The easily available substrate release by roots creates so called "hotspots" in the rhizosphere that drives microbial activity removing C limitation. We simulated a gradient of root exudates by glucose addition at different concentrations to stimulate the activation of microbial biomass (MB). Glucose was added at the rates lower than MB (5, 10, 25 and 50%) and at the rates similar or higher than MB (100, 150, 200, 250, 300 and 400%). During incubation CO2 efflux was measured by conductometry, the size of active MB and specific growth rate were estimated by substrate-induced growth response method. We tested a hypothesis that glucose addition exceeding 100% MB is able to activate major fraction of soil microbial community. Addition of glucose at concentrations higher than 5% decreased specific growth rate, demonstrating the shift of microbial community from r-strategy to K-strategy. The percentage of active MB grew up by the increase of glucose concentration. The treatment with glucose at 100% presented a dramatic shift in the activation of MB up to 14%. Contrary to our hypothesis, further increase in glucose rate caused moderate stimulation of active MB up to 22% of total MB. Furthermore, glucose addition above 200% did not increase the fraction of active biomass indicating glucose oversaturation and possible limitation by other nutrients. The results suggest that despite the fact that C is the most important limitation factor, limitless C supply is not able to activate MB up to 100%. Thus, if the rhizosphere is limited by nutrients, the fraction of active biomass remains at low level despite an excess of available C.
Circulating metabolite predictors of glycemia in middle-aged men and women.
Würtz, Peter; Tiainen, Mika; Mäkinen, Ville-Petteri; Kangas, Antti J; Soininen, Pasi; Saltevo, Juha; Keinänen-Kiukaanniemi, Sirkka; Mäntyselkä, Pekka; Lehtimäki, Terho; Laakso, Markku; Jula, Antti; Kähönen, Mika; Vanhala, Mauno; Ala-Korpela, Mika
2012-08-01
Metabolite predictors of deteriorating glucose tolerance may elucidate the pathogenesis of type 2 diabetes. We investigated associations of circulating metabolites from high-throughput profiling with fasting and postload glycemia cross-sectionally and prospectively on the population level. Oral glucose tolerance was assessed in two Finnish, population-based studies consisting of 1,873 individuals (mean age 52 years, 58% women) and reexamined after 6.5 years for 618 individuals in one of the cohorts. Metabolites were quantified by nuclear magnetic resonance spectroscopy from fasting serum samples. Associations were studied by linear regression models adjusted for established risk factors. Nineteen circulating metabolites, including amino acids, gluconeogenic substrates, and fatty acid measures, were cross-sectionally associated with fasting and/or postload glucose (P < 0.001). Among these metabolic intermediates, branched-chain amino acids, phenylalanine, and α1-acid glycoprotein were predictors of both fasting and 2-h glucose at 6.5-year follow-up (P < 0.05), whereas alanine, lactate, pyruvate, and tyrosine were uniquely associated with 6.5-year postload glucose (P = 0.003-0.04). None of the fatty acid measures were prospectively associated with glycemia. Changes in fatty acid concentrations were associated with changes in fasting and postload glycemia during follow-up; however, changes in branched-chain amino acids did not follow glucose dynamics, and gluconeogenic substrates only paralleled changes in fasting glucose. Alterations in branched-chain and aromatic amino acid metabolism precede hyperglycemia in the general population. Further, alanine, lactate, and pyruvate were predictive of postchallenge glucose exclusively. These gluconeogenic precursors are potential markers of long-term impaired insulin sensitivity that may relate to attenuated glucose tolerance later in life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spindler, D.D.; Grohmann, K.; Wyman, C.E.
1991-01-16
A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol.
Spindler, D.D.; Grohmann, K.; Wyman, C.E.
1992-03-31
A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. 2 figs.
NASA Astrophysics Data System (ADS)
Spampinato, Valentina; Parracino, Mariaantonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo
2016-02-01
In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.
Sugar and Glycerol Transport in Saccharomyces cerevisiae.
Bisson, Linda F; Fan, Qingwen; Walker, Gordon A
2016-01-01
In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition.
Wimmer, B; Lottspeich, F; Ritter, J; Bronnenmeier, K
1997-01-01
An alpha-glucosidase with the ability to attack polymeric substrates was purified to homogeneity from culture supernatants of Thermoanaerobacter thermohydrosulfuricus DSM 567. The enzyme is apparently a glycoprotein with a molecular mass of 160 kDa. Maximal activity is observed between pH5 and 7 at 75 degrees C. The alpha-glucosidase is active towards p-nitrophenyl-alpha-D-glucoside, maltose, malto-oligosaccharides, starch and pullulan. Highest activity is displayed towards the disaccharide maltose. In addition to glucose, maltohexaose and maltoheptaose can be detected as the initial products of starch hydrolysis. After short incubations of pullulan, glucose is found as the only product. At high substrate concentrations, maltose and malto-oligosaccharide, but not glucose, are used as acceptors for glucosyl-transfer. These findings indicate that the T. thermohydrosulfuricus enzyme represents a novel type of alpha-glucosidase exhibiting maltase, glucohydrolase and 'maltodextrinohydrolase' activity. PMID:9371718
Walker, D. J.
1968-01-01
Synthesis of reserve polysaccharide by mixed rumen organisms fermenting glucose, maltose, cellobiose, and xylose has been studied in relation to the adenosine triphosphate energy calculated to be available from substrate fermentation. About 80% of the energy available from glucose and xylose was used for polysaccharide synthesis, whereas, assuming hydrolytic cleavage of the disaccharides, more than 100% was used when cellobiose and maltose were the substrates. If, however, phosphorolytic cleavage of the disaccharides, for which there is evidence, was involved, the energy from both maltose and cellobiose fermentation was used with about the same efficiency as that from glucose and xylose fermentation. The rumen fluid used was collected 24 hr after feeding, and growth of microorganisms in such samples was sufficient to account for utilization of less than 10% of the total energy becoming available during the 40-min incubation period. PMID:16349819
Spampinato, Valentina; Parracino, Maria Antonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo
2016-01-01
In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behavior of the glucose-modified particles in the presence of the maltose binding protein. PMID:26973830
Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose.
Mukherjee, Kakali; Ghosh, Aniruddha; Saha, Rumpa; Sar, Pintu; Malik, Susanta; Saha, Bidyut
2014-03-25
Kinetic data for oxidation of D-sorbitol to glucose by hexavalent chromium in aqueous medium and aqueous surfactant medium (SDS, TX-100) have been reported. Effect of promoter such as PA, bipy and phenanthroline on the reaction has been investigated. The reaction is performed under pseudo first order condition with an excess of substrate over the oxidant. The reaction is first order with respect to substrate and oxidant. The micelles have a catalytic effect on the reaction. Combination of phen and TX-100 produces almost twelve times increase in rate of oxidation. Copyright © 2013 Elsevier B.V. All rights reserved.
Preoperative oral carbohydrate treatment attenuates immediate postoperative insulin resistance.
Soop, M; Nygren, J; Myrenfors, P; Thorell, A; Ljungqvist, O
2001-04-01
Postoperative insulin resistance is a well-characterized metabolic state that has been shown to correlate with the length of postoperative stay in hospital. Preoperative intravenous or oral carbohydrate treatment has been shown to attenuate the development of postoperative insulin resistance measured 1 day after surgery. To study the effects of preoperative oral carbohydrate treatment on postoperative changes in insulin resistance and substrate utilization, in the absence of postoperative confounding factors, 15 patients were double-blindly treated with either a carbohydrate-rich beverage (12.5%) (n = 8) or placebo (n = 7) before undergoing total hip replacement surgery. Insulin sensitivity, endogenous glucose release, and substrate oxidation rates were measured before and immediately after surgery. Whole body insulin sensitivity decreased by 18% in the treatment group vs. 43% in the placebo group (P < 0.05, Student's t-test for unpaired data). In both groups, the major mechanism of insulin resistance was an inhibition of insulin-induced nonoxidative glucose disposal after surgery. The better preservation of insulin sensitivity in the treatment group was attributable to a less reduced glucose disposal in peripheral tissues and increased glucose oxidation rates.
The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury
Prins, Mayumi L.; Matsumoto, Joyce H.
2014-01-01
The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. PMID:24721741
Lai, Ling; Leone, Teresa C; Keller, Mark P; Martin, Ola J; Broman, Aimee T; Nigro, Jessica; Kapoor, Kapil; Koves, Timothy R; Stevens, Robert; Ilkayeva, Olga R; Vega, Rick B; Attie, Alan D; Muoio, Deborah M; Kelly, Daniel P
2014-11-01
An unbiased systems approach was used to define energy metabolic events that occur during the pathological cardiac remodeling en route to heart failure (HF). Combined myocardial transcriptomic and metabolomic profiling were conducted in a well-defined mouse model of HF that allows comparative assessment of compensated and decompensated (HF) forms of cardiac hypertrophy because of pressure overload. The pressure overload data sets were also compared with the myocardial transcriptome and metabolome for an adaptive (physiological) form of cardiac hypertrophy because of endurance exercise training. Comparative analysis of the data sets led to the following conclusions: (1) expression of most genes involved in mitochondrial energy transduction were not significantly changed in the hypertrophied or failing heart, with the notable exception of a progressive downregulation of transcripts encoding proteins and enzymes involved in myocyte fatty acid transport and oxidation during the development of HF; (2) tissue metabolite profiles were more broadly regulated than corresponding metabolic gene regulatory changes, suggesting significant regulation at the post-transcriptional level; (3) metabolomic signatures distinguished pathological and physiological forms of cardiac hypertrophy and served as robust markers for the onset of HF; and (4) the pattern of metabolite derangements in the failing heart suggests bottlenecks of carbon substrate flux into the Krebs cycle. Mitochondrial energy metabolic derangements that occur during the early development of pressure overload-induced HF involve both transcriptional and post-transcriptional events. A subset of the myocardial metabolomic profile robustly distinguished pathological and physiological cardiac remodeling. © 2014 American Heart Association, Inc.
Backs, Johannes; Backs, Thea; Neef, Stefan; Kreusser, Michael M.; Lehmann, Lorenz H.; Patrick, David M.; Grueter, Chad E.; Qi, Xiaoxia; Richardson, James A.; Hill, Joseph A.; Katus, Hugo A.; Bassel-Duby, Rhonda; Maier, Lars S.; Olson, Eric N.
2009-01-01
Acute and chronic injuries to the heart result in perturbation of intracellular calcium signaling, which leads to pathological cardiac hypertrophy and remodeling. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the transduction of calcium signals in the heart, but the specific isoforms of CaMKII that mediate pathological cardiac signaling have not been fully defined. To investigate the potential involvement in heart disease of CaMKIIδ, the major CaMKII isoform expressed in the heart, we generated CaMKIIδ-null mice. These mice are viable and display no overt abnormalities in cardiac structure or function in the absence of stress. However, pathological cardiac hypertrophy and remodeling are attenuated in response to pressure overload in these animals. Cardiac extracts from CaMKIIδ-null mice showed diminished kinase activity toward histone deacetylase 4 (HDAC4), a substrate of stress-responsive protein kinases and suppressor of stress-dependent cardiac remodeling. In contrast, phosphorylation of the closely related HDAC5 was unaffected in hearts of CaMKIIδ-null mice, underscoring the specificity of the CaMKIIδ signaling pathway for HDAC4 phosphorylation. We conclude that CaMKIIδ functions as an important transducer of stress stimuli involved in pathological cardiac remodeling in vivo, which is mediated, at least in part, by the phosphorylation of HDAC4. These findings point to CaMKIIδ as a potential therapeutic target for the maintenance of cardiac function in the setting of pressure overload. PMID:19179290
Demozay, Damien; Tsunekawa, Shin; Briaud, Isabelle; Shah, Ramila; Rhodes, Christopher J.
2011-01-01
OBJECTIVE Insulin receptor substrate-2 (IRS-2) plays an essential role in pancreatic islet β-cells by promoting growth and survival. IRS-2 turnover is rapid in primary β-cells, but its expression is highly regulated at the transcriptional level, especially by glucose. The aim was to investigate the molecular mechanism on how glucose regulates IRS-2 gene expression in β-cells. RESEARCH DESIGN AND METHODS Rat islets were exposed to inhibitors or subjected to adenoviral vector–mediated gene manipulations and then to glucose-induced IRS-2 expression analyzed by real-time PCR and immunoblotting. Transcription factor nuclear factor of activated T cells (NFAT) interaction with IRS-2 promoter was analyzed by chromatin immunoprecipitation assay and glucose-induced NFAT translocation by immunohistochemistry. RESULTS Glucose-induced IRS-2 expression occurred in pancreatic islet β-cells in vivo but not in liver. Modulating rat islet β-cell Ca2+ influx with nifedipine or depolarization demonstrated that glucose-induced IRS-2 gene expression was dependent on a rise in intracellular calcium concentration derived from extracellular sources. Calcineurin inhibitors (FK506, cyclosporin A, and a peptide calcineurin inhibitor [CAIN]) abolished glucose-induced IRS-2 mRNA and protein levels, whereas expression of a constitutively active calcineurin increased them. Specific inhibition of NFAT with the peptide inhibitor VIVIT prevented a glucose-induced IRS-2 transcription. NFATc1 translocation to the nucleus in response to glucose and association of NFATc1 to conserved NFAT binding sites in the IRS-2 promoter were demonstrated. CONCLUSIONS The mechanism behind glucose-induced transcriptional control of IRS-2 gene expression specific to the islet β-cell is mediated by the Ca2+/calcineurin/NFAT pathway. This insight into the IRS-2 regulation could provide novel therapeutic means in type 2 diabetes to maintain an adequate functional mass. PMID:21940781
Renal glucose metabolism in normal physiological conditions and in diabetes.
Alsahli, Mazen; Gerich, John E
2017-11-01
The kidney plays an important role in glucose homeostasis via gluconeogenesis, glucose utilization, and glucose reabsorption from the renal glomerular filtrate. After an overnight fast, 20-25% of glucose released into the circulation originates from the kidneys through gluconeogenesis. In this post-absorptive state, the kidneys utilize about 10% of all glucose utilized by the body. After glucose ingestion, renal gluconeogenesis increases and accounts for approximately 60% of endogenous glucose release in the postprandial period. Each day, the kidneys filter approximately 180g of glucose and virtually all of this is reabsorbed into the circulation. Hormones (most importantly insulin and catecholamines), substrates, enzymes, and glucose transporters are some of the various factors influencing the kidney's role. Patients with type 2 diabetes have an increased renal glucose uptake and release in the fasting and the post-prandial states. Additionally, glucosuria in these patients does not occur at plasma glucose levels that would normally produce glucosuria in healthy individuals. The major abnormality of renal glucose metabolism in type 1 diabetes appears to be impaired renal glucose release during hypoglycemia. Copyright © 2017 Elsevier B.V. All rights reserved.
Rat liver uncoupling protein 2: changes induced by a fructose-rich diet.
Castro, María C; Massa, María L; Del Zotto, Héctor; Gagliardino, Juan J; Francini, Flavio
2011-10-24
To evaluate the role of uncoupling protein 2 (UCP2) and peroxisome proliferator-activated receptors (PPARs) in the response of liver to glycoxidative stress triggered by administration of a fructose-rich diet (FRD). We assessed blood glucose in the fasting state and after a glucose load (glucose-oxidase method), serum triglyceride (enzymatic measurement), insulin (radioimmunoassay), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels (colorimetric kits) in control and FRD animals. In liver, we measured UCP2, PPARα, PPARδ and PPARγ gene (real-time PCR) and protein (Western blot) expression, fatty acid synthase (FAS) and glycerol-3-phosphate acyltransferase (GPAT) gene expression, as well as triglyceride content. Blood glucose, serum insulin and triglyceride levels, homeostasis model assessment of insulin resistance (HOMA-IR) indexes and impaired glucose tolerance were higher in FRD rats. Whereas UCP2 and PPARδ gene and protein expression increased in these animals; PPARγ levels were lower and those of PPARα remained unchanged. FRD also increased the mRNA expression of PPARδ target genes FAS and GPAT. Our results suggest that a) the increased UCP2 gene and protein expression measured in FRD rats could be part of a compensatory mechanism to reduce reactive oxygen species production induced by the fructose overload, and b) PPARs expression participates actively in the regulation of UCP2 expression, and under the metabolic condition tested, PPARδ played a key role. This knowledge would help to better understand the mechanisms involved in liver adaptation to fructose-induced glycoxidative stress, and to develop appropriate prevention strategies in obesity and type 2 diabetes. Copyright © 2011 Elsevier Inc. All rights reserved.
Enzymatic mechanisms of soil-carbon response to temperature on Mt. Kilimanjaro
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatskiy, Sergey; Kuzyakov, Yakov
2016-04-01
Short-term acceleration of soil organic matter (SOM) decomposition by increasing temperature contradicts the acclimation observed in long-term studies. We used the unique altitudinal gradient (from colline tropical zone to subalpine zone) on Mt. Kilimanjaro to demonstrate the mechanisms of short- and long-term acclimation of extra- and intracellular enzymes that decompose polymers (cellulose, chitin, phytate) and oxidize monomers (14C-glucose). Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation
Benini, Stefano; Toccafondi, Mirco; Rejzek, Martin; Musiani, Francesco; Wagstaff, Ben A; Wuerges, Jochen; Cianci, Michele; Field, Robert A
2017-11-01
Erwinia amylovora, a Gram-negative plant pathogen, is the causal agent of Fire Blight, a contagious necrotic disease affecting plants belonging to the Rosaceae family, including apple and pear. E. amylovora is highly virulent and capable of rapid dissemination in orchards; effective control methods are still lacking. One of its most important pathogenicity factors is the exopolysaccharide amylovoran. Amylovoran is a branched polymer made by the repetition of units mainly composed of galactose, with some residues of glucose, glucuronic acid and pyruvate. E. amylovora glucose-1-phosphate uridylyltransferase (UDP-glucose pyrophosphorylase, EC 2.7.7.9) has a key role in amylovoran biosynthesis. This enzyme catalyses the production of UDP-glucose from glucose-1-phosphate and UTP, which the epimerase GalE converts into UDP-galactose, the main building block of amylovoran. We determined EaGalU kinetic parameters and substrate specificity with a range of sugar 1-phosphates. At time point 120min the enzyme catalysed conversion of the sugar 1-phosphate into the corresponding UDP-sugar reached 74% for N-acetyl-α-d-glucosamine 1-phosphate, 28% for α-d-galactose 1-phosphate, 0% for α-d-galactosamine 1-phosphate, 100% for α-d-xylose 1-phosphate, 100% for α-d-glucosamine 1-phosphate, 70% for α-d-mannose 1-phosphate, and 0% for α-d-galacturonic acid 1-phosphate. To explain our results we obtained the crystal structure of EaGalU and augmented our study by docking the different sugar 1-phosphates into EaGalU active site, providing both reliable models for substrate binding and enzyme specificity, and a rationale that explains the different activity of EaGalU on the sugar 1-phosphates used. These data demonstrate EaGalU potential as a biocatalyst for biotechnological purposes, as an alternative to the enzyme from Escherichia coli, besides playing an important role in E. amylovora pathogenicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Iverson, Andrew; Garza, Erin; Manow, Ryan; Wang, Jinhua; Gao, Yuanyuan; Grayburn, Scott; Zhou, Shengde
2016-04-16
Anaerobic rather than aerobic fermentation is preferred for conversion of biomass derived sugars to high value redox-neutral and reduced commodities. This will likely result in a higher yield of substrate to product conversion and decrease production cost since substrate often accounts for a significant portion of the overall cost. To this goal, metabolic pathway engineering has been used to optimize substrate carbon flow to target products. This approach works well for the production of redox neutral products such as lactic acid from redox neutral sugars using the reducing power NADH (nicotinamide adenine dinucleotide, reduced) generated from glycolysis (2 NADH per glucose equivalent). Nevertheless, greater than two NADH per glucose catabolized is needed for the production of reduced products (such as xylitol) from redox neutral sugars by anaerobic fermentation. The Escherichia coli strain AI05 (ΔfrdBC ΔldhA ΔackA Δ(focA-pflB) ΔadhE ΔptsG ΔpdhR::pflBp 6-(aceEF-lpd)), previously engineered for reduction of xylose to xylitol using reducing power (NADH equivalent) of glucose catabolism, was further engineered by 1) deleting xylAB operon (encoding for xylose isomerase and xylulokinase) to prevent xylose from entering the pentose phosphate pathway; 2) anaerobically expressing the sdhCDAB-sucABCD operon (encoding for succinate dehydrogenase, α-ketoglutarate dehydrogenase and succinyl-CoA synthetase) to enable an anaerobically functional tricarboxcylic acid cycle with a theoretical 10 NAD(P)H equivalent per glucose catabolized. These reducing equivalents can be oxidized by synthetic respiration via xylose reduction, producing xylitol. The resulting strain, AI21 (pAI02), achieved a 96 % xylose to xylitol conversion, with a yield of 6 xylitol per glucose catabolized (molar yield of xylitol per glucose consumed (YRPG) = 6). This represents a 33 % improvement in xylose to xylitol conversion, and a 63 % increase in xylitol yield per glucose catabolized over that achieved by AI05 (pAI02). Increasing reducing power (NADH equivalent) output per glucose catabolized was achieved by anaerobic expression of both the pdh operon (pyruvate dehydrogenase) and the sdhCDAB-sucABCD operon, resulting in a strain capable of generating 10 NADH equivalent per glucose under anaerobic condition. The new E. coli strain AI21 (pAI02) achieved an actual 96 % conversion of xylose to xylitol (via synthetic respiration), and 6 xylitol (from xylose) per glucose catabolized (YRPG = 6, the highest known value). This strategy can be used to engineer microbial strains for the production of other reduced products from redox neutral sugars using glucose as a source of reducing power.
Chen, Fan; Rydzewski, Kerstin; Kutzner, Erika; Häuslein, Ina; Schunder, Eva; Wang, Xinzhe; Meighen-Berger, Kevin; Grunow, Roland; Eisenreich, Wolfgang; Heuner, Klaus
2017-01-01
Francisella tularensis is an intracellular pathogen for many animals causing the infectious disease, tularemia. Whereas F. tularensis subsp. holarctica is highly pathogenic for humans, F. novicida is almost avirulent for humans, but virulent for mice. In order to compare metabolic fluxes between these strains, we performed 13C-labeling experiments with F. tularensis subsp. holarctica wild type (beaver isolate), F. tularensis subsp. holarctica strain LVS, or F. novicida strain U112 in complex media containing either [U-13C6]glucose, [1,2-13C2]glucose, [U-13C3]serine, or [U-13C3]glycerol. GC/MS-based isotopolog profiling of amino acids, polysaccharide-derived glucose, free fructose, amino sugars derived from the cell wall, fatty acids, 3-hydroxybutyrate, lactate, succinate and malate revealed uptake and metabolic usage of all tracers under the experimental conditions with glucose being the major carbon source for all strains under study. The labeling patterns of the F. tularensis subsp. holarctica wild type were highly similar to those of the LVS strain, but showed remarkable differences to the labeling profiles of the metabolites from the F. novicida strain. Glucose was directly used for polysaccharide and cell wall biosynthesis with higher rates in F. tularensis subsp. holarctica or metabolized, with higher rates in F. novicida, via glycolysis and the non-oxidative pentose phosphate pathway (PPP). Catabolic turnover of glucose via gluconeogenesis was also observed. In all strains, Ala was mainly synthesized from pyruvate, although no pathway from pyruvate to Ala is annotated in the genomes of F. tularensis and F. novicida. Glycerol efficiently served as a gluconeogenetic substrate in F. novicida, but only less in the F. tularensis subsp. holarctica strains. In any of the studied strains, serine did not serve as a major substrate and was not significantly used for gluconeogenesis under the experimental conditions. Rather, it was only utilized, at low rates, in downstream metabolic processes, e.g., via acetyl-CoA in the citrate cycle and for fatty acid biosynthesis, especially in the F. tularensis subsp. holarctica strains. In summary, the data reflect differential metabolite fluxes in F. tularensis subsp. holarctica and F. novicida suggesting that the different utilization of substrates could be related to host specificity and virulence of Francisella. PMID:28680859
Enhanced non-enzymatic glucose biosensor of Ga-doped ZnO nanorods
NASA Astrophysics Data System (ADS)
Peng, Wan-Chan; Wang, Zi-Hao; Yang, Chih-Chiang; Huang, Chien-Sheng; Su, Yan-Kuin; Ruan, Jian-Long
2017-04-01
In this work gallium (Ga)-Doped ZnO nanorods (GZO NRs) successfully applied for the development of enzyme free glucose. GZO NRs synthesized by using the hydrothermal on ZnO seed layer was subsequently deposited onto the glass substrate. The GZO NRs electrode has peak currents increasing from 620 to 941μA with glucose concentration (6, 8 and 10 mM) in cyclic voltammograms. GZO NRs electrode sensitivity of the sensor to glucose oxidation was 33.4 (μA/mM-cm2). The GZO NRs modified electrode showed a greatly enhanced electrocatalytic property toward glucose oxidation, as well as an excellent anti-interference and a good stability.
Zhao, Yang-Guo; Zhang, Yi; She, Zonglian; Shi, Yue; Wang, Min; Gao, Mengchun; Guo, Liang
2017-09-01
Performance of microbial fuel cells (MFCs) was monitored during the influent nutrient change from lactate to glucose/acetate/propionate and then to lactate. Meanwhile, anodic microbial communities were characterized by culture-independent molecular biotechnologies. Results showed MFC performance recovered rapidly when the lactate was replaced by one of its metabolic intermediates acetate, while it needed a longer time to recover if lactate substrate was converted to glucose/propionate or acetate to lactate. Secondary lactate feed enhanced the enrichment of bacterial populations dominating in first lactate feed. Electricity-producing bacteria, Geobacter spp., and beneficial helpers, Anaeromusa spp. and Pseudomonas spp., revived from a low abundance as lactate secondary supply, but microbial communities were hard to achieve former profiles in structure and composition. Hence, microbial community profiles tended to recover when outside environmental condition were restored. Different substrates selected unique functional microbial populations.
Jiao, Jian; Bae, Eun Ju; Bandyopadhyay, Gautam; Oliver, Jason; Marathe, Chaitra; Chen, Michael; Hsu, Jer-Yuan; Chen, Yu; Tian, Hui; Olefsky, Jerrold M; Saberi, Maziyar
2013-04-01
Gastrointestinal bypass surgeries that result in rerouting and subsequent exclusion of nutrients from the duodenum appear to rapidly alleviate hyperglycemia and hyperinsulinemia independent of weight loss. While the mechanism(s) responsible for normalization of glucose homeostasis remains to be fully elucidated, this rapid normalization coupled with the well-known effects of vagal inputs into glucose homeostasis suggests a neurohormonally mediated mechanism. Our results show that duodenal bypass surgery on obese, insulin-resistant Zucker fa/fa rats restored insulin sensitivity in both liver and peripheral tissues independent of body weight. Restoration of normoglycemia was attributable to an enhancement in key insulin-signaling molecules, including insulin receptor substrate-2, and substrate metabolism through a multifaceted mechanism involving activation of AMP-activated protein kinase and downregulation of key regulatory genes involved in both lipid and glucose metabolism. Importantly, while central nervous system-derived vagal nerves were not essential for restoration of insulin sensitivity, rapid normalization in hepatic gluconeogenic capacity and basal hepatic glucose production required intact vagal innervation. Lastly, duodenal bypass surgery selectively altered the tissue concentration of intestinally derived glucoregulatory hormone peptides in a segment-specific manner. The present data highlight and support the significance of vagal inputs and intestinal hormone peptides toward normalization of glucose and lipid homeostasis after duodenal bypass surgery.
Tsuji, Akihiko; Tominaga, Keiko; Nishiyama, Nami; Yuasa, Keizo
2013-01-01
Although many endo-ß-1,4-glucanases have been isolated in invertebrates, their cellulolytic systems are not fully understood. In particular, gastropod feeding on seaweed is considered an excellent model system for production of bioethanol and renewable bioenergy from third-generation feedstocks (microalgae and seaweeds). In this study, enzymes involved in the conversion of cellulose and other polysaccharides to glucose in digestive fluids of the sea hare (Aplysia kurodai) were screened and characterized to determine how the sea hare obtains glucose from sea lettuce (Ulva pertusa). Four endo-ß-1,4-glucanases (21K, 45K, 65K, and 95K cellulase) and 2 ß-glucosidases (110K and 210K) were purified to a homogeneous state, and the synergistic action of these enzymes during cellulose digestion was analyzed. All cellulases exhibited cellulase and lichenase activities and showed distinct cleavage specificities against cellooligosaccharides and filter paper. Filter paper was digested to cellobiose, cellotriose, and cellotetraose by 21K cellulase, whereas 45K and 65K enzymes hydrolyzed the filter paper to cellobiose and glucose. 210K ß-glucosidase showed unique substrate specificity against synthetic and natural substrates, and 4-methylumbelliferyl (4MU)-ß-glucoside, 4MU–ß-galactoside, cello-oligosaccharides, laminarin, and lichenan were suitable substrates. Furthermore, 210K ß-glucosidase possesses lactase activity. Although ß-glucosidase and cellulase are necessary for efficient hydrolysis of carboxymethylcellulose to glucose, laminarin is hydrolyzed to glucose only by 210K ß-glucosidase. Kinetic analysis of the inhibition of 210K ß-glucosidase by D-glucono-1,5-lactone suggested the presence of 2 active sites similar to those of mammalian lactase-phlorizin hydrolase. Saccharification of sea lettuce was considerably stimulated by the synergistic action of 45K cellulase and 210K ß-glucosidase. Our results indicate that 45K cellulase and 210K ß-glucosidase are the core components of the sea hare digestive system for efficient production of glucose from sea lettuce. These findings contribute important new insights into the development of biofuel processing biotechnologies from seaweed. PMID:23762366
Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis.
Nakano, Haruko; Minami, Itsunari; Braas, Daniel; Pappoe, Herman; Wu, Xiuju; Sagadevan, Addelynn; Vergnes, Laurent; Fu, Kai; Morselli, Marco; Dunham, Christopher; Ding, Xueqin; Stieg, Adam Z; Gimzewski, James K; Pellegrini, Matteo; Clark, Peter M; Reue, Karen; Lusis, Aldons J; Ribalet, Bernard; Kurdistani, Siavash K; Christofk, Heather; Nakatsuji, Norio; Nakano, Atsushi
2017-12-12
The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway. Blood glucose level in embryos is stable in utero during normal pregnancy, but glucose uptake by fetal cardiac tissue is drastically reduced in late gestational stages. In a murine model of diabetic pregnancy, fetal hearts showed cardiomyopathy with increased mitotic activity and decreased maturity. These data suggest that high glucose suppresses cardiac maturation, providing a possible mechanistic basis for congenital heart disease in diabetic pregnancy.
Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis
Nakano, Haruko; Minami, Itsunari; Braas, Daniel; Pappoe, Herman; Wu, Xiuju; Sagadevan, Addelynn; Vergnes, Laurent; Fu, Kai; Morselli, Marco; Dunham, Christopher; Ding, Xueqin; Stieg, Adam Z; Gimzewski, James K; Pellegrini, Matteo; Clark, Peter M; Reue, Karen; Lusis, Aldons J; Ribalet, Bernard; Kurdistani, Siavash K; Christofk, Heather; Nakatsuji, Norio
2017-01-01
The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway. Blood glucose level in embryos is stable in utero during normal pregnancy, but glucose uptake by fetal cardiac tissue is drastically reduced in late gestational stages. In a murine model of diabetic pregnancy, fetal hearts showed cardiomyopathy with increased mitotic activity and decreased maturity. These data suggest that high glucose suppresses cardiac maturation, providing a possible mechanistic basis for congenital heart disease in diabetic pregnancy. PMID:29231167
NASA Astrophysics Data System (ADS)
Chen, Jian-Syun; Chou, Jung-Chuan; Liao, Yi-Hung; Chen, Ruei-Ting; Huang, Min-Siang; Wu, Tong-Yu
2017-03-01
This study used a fast, simple, and low-cost method to fabricate arrayed flexible glucose biosensor, and the glucose biosensor was integrated with microfluidic framework for investigating sensing characteristics of glucose biosensor at the dynamic conditions. The indium gallium zinc oxide (IGZO) was adopted as sensing membrane and it was deposited on aluminum electrodes / polyethylene terephthalate (PET) substrate by the radio frequency sputtering system. Then, we utilized screen-printed technology to accomplish miniaturization of glucose biosensor. Finally, the glucose sensing membrane was composed of glucose oxidase (GOx) and nafion, which was dropped on IGZO sensing membrane to complete glucose biosensor. According to the experimental results, we found that optimal sensing characteristics of arrayed flexible IGZO glucose biosensor at the dynamic conditions were better than at the static conditions. The optimal average sensitivity and linearity of the arrayed flexible IGZO glucose biosensor were 7.255 mV/mM and 0.994 at 20 µL/min flow rate, respectively.
Yu, Jin-Jin; Jin, Ren-Cun
2012-09-01
The process stability of an anaerobic ammonium oxidation (ANAMMOX) was investigated in an upflow anaerobic sludge blanket reactor subjected to overloads of 2.0- to 3.0-fold increases in substrate concentrations, inflow rates lasting 12 or 24h, extreme pH levels of 4 and 10 for 12h and a 12-h 30 g l(-1) NaCl addition. During the overloads, the nitrogen removal rate improved, and the shock period was an important factor affecting the reactor performance. In the high pH condition, the reactor performance significantly degenerated; while in the low pH condition, it did not happen. The NaCl addition caused the most serious deterioration in the reactor, which took 108 h to recover and was accompanied by a stoichiometric ratio divergence. There are well correlations between the total nitrogen and the electrical conductivity which is considered to be a convenient signal for controlling and monitoring the ANAMMOX process under transient-state conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gross, J J; van Dorland, H A; Wellnitz, O; Bruckmaier, R M
2015-08-01
In dairy cows, glucose is essential as energy source and substrate for milk constituents. The objective of this study was to investigate effects of long-term manipulated glucose and insulin concentrations in combination with a LPS-induced mastitis on mRNA abundance of glucose transporters and factors involved in milk composition. Focusing on direct effects of insulin and glucose without influence of periparturient endocrine adaptations, 18 dairy cows (28 ± 6 weeks of lactation) were randomly assigned to one of three infusion treatments for 56 h (six animals each). Treatments included a hyperinsulinemic hypoglycaemic clamp (HypoG), a hyperinsulinemic euglycaemic clamp (EuG) and a control group (NaCl). After 48 h of infusions, an intramammary challenge with LPS from E. coli was performed and infusions continued for additional 8 h. Mammary gland biopsies were taken before, at 48 (before LPS challenge) and at 56 h (after LPS challenge) of infusion, and mRNA abundance of genes involved in mammary gland metabolism was measured by RT-qPCR. During the 48 h of infusions, mRNA abundance of glucose transporters GLUT1, 3, 4, 8, 12, SGLT1, 2) was not affected in HypoG, while they were downregulated in EuG. The mRNA abundance of alpha-lactalbumin, insulin-induced gene 1, κ-casein and acetyl-CoA carboxylase was downregulated in HypoG, but not affected in EuG. Contrary during the intramammary LPS challenge, most of the glucose transporters were downregulated in NaCl and HypoG, but not in EuG. The mRNA abundance of glucose transporters in the mammary gland seems not to be affected by a shortage of glucose, while enzymes and milk constituents directly depending on glucose as a substrate are immediately downregulated. During LPS-induced mastitis in combination with hypoglycaemia, mammary gland metabolism was more aligned to save glucose for the immune system compared to a situation without limited glucose availability during EuG. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Martin, Neil A.; McArthur, David L.; Hovda, David A.; Vespa, Paul; Johnson, Matthew L.; Horning, Michael A.; Brooks, George A.
2015-01-01
Abstract We evaluated the hypothesis that nutritive needs of injured brains are supported by large and coordinated increases in lactate shuttling throughout the body. To that end, we used dual isotope tracer ([6,6-2H2]glucose, i.e., D2-glucose, and [3-13C]lactate) techniques involving central venous tracer infusion along with cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Patients with traumatic brain injury (TBI) who had nonpenetrating head injuries (n=12, all male) were entered into the study after consent of patients' legal representatives. Written and informed consent was obtained from healthy controls (n=6, including one female). As in previous investigations, the cerebral metabolic rate (CMR) for glucose was suppressed after TBI. Near normal arterial glucose and lactate levels in patients studied 5.7±2.2 days (range of days 2–10) post-injury, however, belied a 71% increase in systemic lactate production, compared with control, that was largely cleared by greater (hepatic+renal) glucose production. After TBI, gluconeogenesis from lactate clearance accounted for 67.1% of glucose rate of appearance (Ra), which was compared with 15.2% in healthy controls. We conclude that elevations in blood glucose concentration after TBI result from a massive mobilization of lactate from corporeal glycogen reserves. This previously unrecognized mobilization of lactate subserves hepatic and renal gluconeogenesis. As such, a lactate shuttle mechanism indirectly makes substrate available for the body and its essential organs, including the brain, after trauma. In addition, when elevations in arterial lactate concentration occur after TBI, lactate shuttling may provide substrate directly to vital organs of the body, including the injured brain. PMID:25279664
Amorini, Angela M.; Tuttobene, Michele; Tomasello, Flora M.; Biazzo, Filomena; Gullotta, Stefano; De Pinto, Vito; Lazzarino, Giuseppe; Tavazzi, Barbara
2013-01-01
Background It is essential that the quality of platelet metabolism and function remains high during storage in order to ensure the clinical effectiveness of a platelet transfusion. New storage conditions and additives are constantly evaluated in order to achieve this. Using glucose as a substrate is controversial because of its potential connection with increased lactate production and decreased pH, both parameters triggering the platelet lesion during storage. Materials and methods In this study, we analysed the morphological status and metabolic profile of platelets stored for various periods in autologous plasma enriched with increasing glucose concentrations (13.75, 27.5 and 55 mM). After 0, 2, 4, 6 and 8 days, high energy phosphates (ATP, GTP, ADP, AMP), oxypurines (hypoxanthine, xanthine, uric acid), lactate, pH, mitochondrial function, cell lysis and morphology, were evaluated. Results The data showed a significant dose-dependent improvement of the different parameters in platelets stored with increasing glucose, compared to what detected in controls. Interestingly, this phenomenon was more marked at the highest level of glucose tested and in the period of time generally used for platelet transfusion (0–6 days). Conclusion These results indicate that the addition of glucose during platelet storage ameliorates, in a dose-dependent manner, the biochemical parameters related to energy metabolism and mitochondrial function. Since there was no correspondence between glucose addition, lactate increase and pH decrease in our experiments, it is conceivable that platelet derangement during storage is not directly caused by glucose through an increase of anaerobic glycolysis, but rather to a loss of mitochondrial functions caused by reduced substrate availability. PMID:22682337
Glenn, Thomas C; Martin, Neil A; McArthur, David L; Hovda, David A; Vespa, Paul; Johnson, Matthew L; Horning, Michael A; Brooks, George A
2015-06-01
We evaluated the hypothesis that nutritive needs of injured brains are supported by large and coordinated increases in lactate shuttling throughout the body. To that end, we used dual isotope tracer ([6,6-(2)H2]glucose, i.e., D2-glucose, and [3-(13)C]lactate) techniques involving central venous tracer infusion along with cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Patients with traumatic brain injury (TBI) who had nonpenetrating head injuries (n=12, all male) were entered into the study after consent of patients' legal representatives. Written and informed consent was obtained from healthy controls (n=6, including one female). As in previous investigations, the cerebral metabolic rate (CMR) for glucose was suppressed after TBI. Near normal arterial glucose and lactate levels in patients studied 5.7±2.2 days (range of days 2-10) post-injury, however, belied a 71% increase in systemic lactate production, compared with control, that was largely cleared by greater (hepatic+renal) glucose production. After TBI, gluconeogenesis from lactate clearance accounted for 67.1% of glucose rate of appearance (Ra), which was compared with 15.2% in healthy controls. We conclude that elevations in blood glucose concentration after TBI result from a massive mobilization of lactate from corporeal glycogen reserves. This previously unrecognized mobilization of lactate subserves hepatic and renal gluconeogenesis. As such, a lactate shuttle mechanism indirectly makes substrate available for the body and its essential organs, including the brain, after trauma. In addition, when elevations in arterial lactate concentration occur after TBI, lactate shuttling may provide substrate directly to vital organs of the body, including the injured brain.
Overloaded and stressed: A case study of women working in the health care sector.
Stevenson, Maggie; Duxbury, Linda
2018-04-23
Although role overload has been shown to be prevalent and consequential, there has been little attempt to develop the associated theory. The fact that the consequences of role overload can be positive or negative implies that the relationship between role overload and perceived stress depends partly on the environment within which role overload is experienced (i.e., the perceived situation) and how the situation is evaluated (i.e., appraised). Guided by cognitive appraisal theory, this study applies qualitative methodology to identify the situation properties that contribute to variable stress reactions to role overload. In this in-depth examination, overloaded female hospital workers were asked to describe what makes role overload situations potentially stressful, to gain an insight into how role overload is appraised. A taxonomy listing 12 role overload situation properties was developed from the findings, providing the first known classification of the situation properties of role overload that can create the potential for stress. The results also reveal clues as to why some people suffer more stress during role overload than others, increase our understanding of the relationship between role overload and perceived stress, and provide a useful tool for examining the environment of role overload. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prior, R.L.
1982-01-01
Conflicting evidence exists as to whether the gluconeogenetic process is active in the late gestation fetal lamb. In vitro evidence based on measurements of enzyme activity and substrate flux into glucose indicates that the capacity for gluconeogenesis exists in fetal liver. The in vivo conversion of (/sup 14/C)lactate and (/sup 14/C)alanine into glucose in the lamb fetus has been demonstrated. Lactate and alanine account for 49 and 2.3% of the fetal glucose pool, respectively. Although gluconeogenesis can occur in the fetal lamb, alterations in net rates of umbilical uptake of glucose or lactate, fetal blood glucose concentrations, fetal or maternalmore » glucose replacement rates, or maternal nutrition may alter the observed rates of fetal gluconeogenesis.« less
Guzzardi, M A; Hodson, L; Guiducci, L; La Rosa, F; Salvadori, P A; Burchielli, S; Iozzo, P
2017-11-01
Metabolic factors initiating adipose tissue expansion and ectopic triglyceride accumulation are not completely understood. We aimed to investigate the independent role of circulating glucose, NEFA and insulin on glucose and NEFA uptake, and lipogenesis in skeletal muscle and subcutaneous adipose tissue (SCAT). Twenty-two pigs were stratified according to four protocols: 1) and 2) low NEFA + high insulin ± high glucose (hyperinsulinaemia-hyperglycaemia or hyperinsulinaemia-euglycaemia), 3) high NEFA + low insulin (fasting), 4) low NEFA + low insulin (nicotinic acid). Positron emission tomography with [ 18 F]fluoro-2-deoxyglucose and [ 11 C]acetate, was combined with [ 14 C]acetate and [U- 13 C]palmitate enrichment techniques to assess glucose and lipid metabolism. Hyperinsulinaemia increased glucose extraction, whilst hyperglycaemia enhanced glucose uptake in skeletal muscle and SCAT. In SCAT, during hyperglycaemia, elevated glucose uptake was accompanied by greater [U- 13 C]palmitate-TG enrichment compared to the other groups, and by a 39% increase in de novo lipogenesis (DNL) compared to baseline, consistent with a 70% increment in plasma lipogenic index. Conversely, in skeletal muscle, [U- 13 C]palmitate-TG enrichment was higher after prolonged fasting. Our data show the necessary role of hyperglycaemia-hyperinsulinaemia vs euglycaemia-hyperinsulinaemia in promoting expansion of TG stores in SCAT, by the consensual elevation in plasma NEFA and glucose uptake and DNL. In contrast, skeletal muscle NEFA uptake for TG synthesis is primarily driven by circulating NEFA levels. These results suggest that a) prolonged fasting or dietary regimens enhancing lipolysis might promote muscle steatosis, and b) the control of glucose levels, in association with adequate energy balance, might contribute to weight loss. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
Gerena, Yamil; Lozada, Janice Griselle; Collazo, Bryan Jael; Méndez-Álvarez, Jarold; Méndez-Estrada, Jennifer; De Mello, Walmor C
2017-10-01
A growing body of evidence demonstrates an association between Angiotensin II (Ang II) receptor blockers (ARBs) and enhanced glucose metabolism during ischemic heart disease. Despite these encouraging results, the mechanisms responsible for these effects during ischemia remain poorly understood. In this study we investigated the influence of losartan, an AT1 receptor blocker, and secreted Ang II (sAng II) on glucose uptake and insulin receptor substrate (IRS-1) levels during cardiomyocyte swelling. H9c2 cells were differentiated to cardiac muscle and the levels of myogenin, Myosin Light Chain (MLC), and membrane AT1 receptors were measured using flow cytometry. Intracellular Ang II (iAng II) was overexpressed in differentiated cardiomyocytes and swelling was induced after incubation with hypotonic solution for 40min. Glucose uptake and IRS-1 levels were monitored by flow cytometry using 2-NBDG fluorescent glucose (10μM) or an anti-IRS-1 monoclonal antibody in the presence or absence of losartan (10 -7 M). Secreted Angiotensin II was quantified from the medium using a specific Ang II-EIA kit. To evaluate the relationship between sAng II and losartan effects on glucose uptake, transfected cells were pretreated with the drug for 24h and then exposed to hypotonic solution in the presence or absence of the secreted peptide. The results indicate that: (1) swelling of transfected cardiomyocytes decreased glucose uptake and induced the secretion of Ang II to the extracellular medium; (2) losartan antagonized the effects of swelling on glucose uptake and IRS-1 levels in transfected cardiomyocytes; (3) the effects of losartan on glucose uptake were observed during swelling only in the presence of sAng II in the culture medium. Our study demonstrates that both losartan and sAng II have essential roles in glucose metabolism during cardiomyocyte swelling. Copyright © 2017 Elsevier Inc. All rights reserved.
Formononetin exhibits anti-hyperglycemic activity in alloxan-induced type 1 diabetic mice
Qiu, Guizhen; Tian, Wei; Huan, Mei; Chen, Jinlong
2016-01-01
The aim of this study was to investigate the anti-hyperglycemic activity and mechanism of formononetin in alloxan-induced type 1 diabetic mice by determining its effect on some diabetes-related indices as described below. Body weight, fasting blood glucose, hepatic glycogen, serum insulin, and serum glucagon were determined by electronic scales, glucometer, and ELISA kits. Fas, Caspase-3, pancreatic and duodenal homeobox-1 , insulin receptor substrate 2, glucokinase and glucose transporter 2, mRNA and proteins levels in pancreas tissue, and glucokinase and glucose-6-phosphatase mRNA, and proteins levels in liver tissue were detected by fluorogenic quantitative-polymerase chain reaction and Western blot assays. The results indicated that formononetin (5, 10, and 20 mg/kg; oral administration) reversed the alloxan-induced increase of some indices (fasting blood glucose level and Fas and Caspase-3 mRNA and proteins levels in pancreas tissue) and reduction of some indices (body weight gain, oral glucose tolerance, insulin activity, hepatic glycogen level, pancreatic and duodenal homeobox-1, insulin receptor substrate 2, glucokinase and glucose transporter 2, mRNA and proteins levels in pancreas tissue, and glucokinase mRNA and protein levels in liver tissue). The glucagon level and glucose-6-phosphatase mRNA and protein levels in liver tissue were not affected by the drugs administration. In conclusion, formononetin exhibited anti-hyperglycemic activity in alloxan-induced type 1 diabetic mice by inhibiting islet B cell apoptosis and promoting islet B cell regeneration, insulin secretion, hepatic glycogen synthesis, and hepatic glycolysis. PMID:27412955
Trapp, Márcia; Valle, Sandra Costa; Pöppl, Alan Gomes; Chittó, Ana Lúcia Fernandes; Kucharski, Luiz Carlos; Da Silva, Roselis Silveira Martins
2018-06-01
The present study determined the effect of osmotic stress on the insulin-like receptor binding characteristics and on glucose metabolism in the anterior (AG) and posterior (PG) gills of the crab Neohelice granulata. Bovine insulin increased the capacity of the PG cell membrane to phosphorylate exogenous substrate poly (Glu:Tyr 4:1) and the glucose uptake in the control crab group. The crabs were submitted to three periods of hyperosmotic (HR) and hyposmotic (HO) stress, for 24, 72 and 144 h, to investigate the insulin-like receptor phosphorylation capacity of gills. Acclimation to HO for 24 h or HR for 144 h of stress inhibited the effects of insulin in the PG, decreasing the capacity of insulin to phosphorylate exogenous substrate poly (Glu:Tyr 4:1) and decreasing the glucose uptake. Hyperosmotic stress for the same period of 144 h significantly affected 125 I-insulin binding in the AG and PG. However, HO stress for 24 h significantly reduced 125 I-insulin-specific uptake only in the PG. Therefore, osmotic stress induces alterations in the gill insulin-like receptors that decrease insulin binding in the PG. These findings indicate that osmotic stress induced a pattern of insulin resistance in the PG. The free-glucose concentration in the PG decreased during acclimation to 144 h of HR stress and 24 h of HO stress. This decrease in the cell free-glucose concentration was not accompanied by a significant change in hemolymph glucose levels. In AG from the control group, neither the capacity of bovine insulin to phosphorylate exogenous substrate poly (Glu:Tyr 4:1) nor the glucose uptake changed; however, genistein decreased tyrosine-kinase activity, confirming that this receptor belongs to the tyrosine-kinase family. Acclimation to HO (24 h) or HR (144 h) stress decreased tyrosine-kinase activity in the AG. This study provided new information on the mechanisms involved in the osmoregulation process in crustaceans, demonstrating for the first time in an estuarine crab that osmotic challenge inhibited insulin-like signaling and the effect of insulin on glucose uptake in the PG. Copyright © 2018 Elsevier Inc. All rights reserved.
Allosteric Control of Substrate Specificity of the Escherichia coli ADP-glucose Pyrophosphorylase
NASA Astrophysics Data System (ADS)
Ebrecht, Ana C.; Solamen, Ligin; Hill, Benjamin L.; Iglesias, Alberto A.; Olsen, Kenneth W.; Ballicora, Miguel A.
2017-06-01
The substrate specificity of enzymes is crucial to control the fate of metabolites to different pathways. However, there is growing evidence that many enzymes can catalyze alternative reactions. This promiscuous behavior has important implications in protein evolution and the acquisition of new functions. The question is how the undesirable outcomes of in vivo promiscuity can be prevented. ADP-glucose pyrophosphorylase from Escherichia coli is an example of an enzyme that needs to select the correct substrate from a broad spectrum of alternatives. This selection will guide the flow of carbohydrate metabolism towards the synthesis of reserve polysaccharides. Here, we show that the allosteric activator fructose-1,6-bisphosphate plays a role in such selection by increasing the catalytic efficiency of the enzyme towards the use of ATP rather than other nucleotides. In the presence of fructose-1,6-bisphosphate, the kcat/S0.5 for ATP was near 600-fold higher that other nucleotides, whereas in the absence of activator was only 3-fold higher. We propose that the allosteric regulation of certain enzymes is an evolutionary mechanism of adaptation for the selection of specific substrates.
Yokoyama, Hiroshi; Moriya, Naoko; Ohmori, Hideyuki; Waki, Miyoko; Ogino, Akifumi; Tanaka, Yasuo
2007-11-01
The present study analyzed the community structures of anaerobic microflora producing hydrogen under extreme thermophilic conditions by two culture-independent methods: denaturing gradient gel electrophoresis (DGGE) and clone library analyses. Extreme thermophilic microflora (ETM) was enriched from cow manure by repeated batch cultures at 75 degrees C, using a substrate of xylose, glucose, lactose, cellobiose, or soluble starch, and produced hydrogen at yields of 0.56, 2.65, 2.17, 2.68, and 1.73 mol/mol-monosaccharide degraded, respectively. The results from the DGGE and clone library analyses were consistent and demonstrated that the community structures of ETM enriched with the four hexose-based substrates (glucose, lactose, cellobiose, and soluble starch) consisted of a single species, closely related to a hydrogen-producing extreme thermophile, Caldoanaerobacter subterraneus, with diversity at subspecies levels. The ETM enriched with xylose was more diverse than those enriched with the other substrates, and contained the bacterium related to C. subterraneus and an unclassified bacterium, distantly related to a xylan-degrading and hydrogen-producing extreme thermophile, Caloramator fervidus.
Nair, Ramkumar B; Kalif, Mahdi; Ferreira, Jorge A; Taherzadeh, Mohammad J; Lennartsson, Patrik R
2017-12-01
The use of hot-water (100°C) from the 1st generation ethanol plants for mild-temperature lignocellulose pretreatment can possibly cut down the operational (energy) cost of 2nd generation ethanol process, in an integrated model. Dilute-sulfuric and -phosphoric acid pretreatment at 100°C was carried out for wheat bran and whole-stillage fibers. Pretreatment time and acid type influenced the release of sugars from wheat bran, while acid-concentration was found significant for whole-stillage fibers. Pretreatment led up-to 300% improvement in the glucose yield compared to only-enzymatically treated substrates. The pretreated substrates were 191-344% and 115-300% richer in lignin and glucan, respectively. Fermentation using Neurospora intermedia, showed 81% and 91% ethanol yields from wheat bran and stillage-fibers, respectively. Sawdust proved to be a highly recalcitrant substrate for mild-temperature pretreatment with only 22% glucose yield. Both wheat bran and whole-stillage are potential substrates for pretreatment using waste heat from the 1st generation process for 2nd generation ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hassan, Kamal; Hassan, Fadi; Edgem, Rabia; Moshe, Smadar; Hassan, Shadi
2015-02-01
To evaluate the impact of the peritoneal glucose load (PGL) on hydration status and inflammation in peritoneal dialysis (PD) patients. This cross-sectional study evaluated stable PD patients using a novel PGL index (PGLI), which was calculated as the net glucose content (g) in the PD solutions administered in the daily PD prescription divided by the dry body weight (kg) assessed by whole-body bioimpedance spectroscopy. The relationship between PGLI and glycosylated haemoglobin (HbA1c), fluid overload (FO), and inflammatory markers was investigated. A total of 43 stable PD patients participated in the study. Significant positive correlations were found between PGLI and HbA1c, FO, plasma high sensitivity C-reactive protein (hsCRP), and plasma interleukin-6 (IL-6) levels. HbA1c, FO, plasma hsCRP and plasma IL-6 levels were significantly higher in patients with PGLI >3 g/kg/day compared with those with PGLI ≤3 g/kg/day. PGLI values >3 g/kg/day may be associated with poor glycaemic control, over hydration and augmented inflammation. PGLI might be a useful tool for the quantitative assessment of the PGL and could be applied when managing PD patients. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Jovanović, Ljubomir; Pantelić, Marija; Prodanović, Radiša; Vujanac, Ivan; Đurić, Miloje; Tepavčević, Snežana; Vranješ-Đurić, Sanja; Korićanac, Goran; Kirovski, Danijela
2017-12-01
The objective of this study was to investigate the effects of peroral administration of chromium-enriched yeast on glucose tolerance in Holstein calves, assessed by insulin signaling pathway molecule determination and intravenous glucose tolerance test (IVGTT). Twenty-four Holstein calves, aged 1 month, were chosen for the study and divided into two groups: the PoCr group (n = 12) that perorally received 0.04 mg of Cr/kg of body mass daily, for 70 days, and the NCr group (n = 12) that received no chromium supplementation. Skeletal tissue samples from each calf were obtained on day 0 and day 70 of the experiment. Chromium supplementation increased protein content of the insulin β-subunit receptor, phosphorylation of insulin receptor substrate 1 at Tyrosine 632, phosphorylation of Akt at Serine 473, glucose transporter-4, and AMP-activated protein kinase in skeletal muscle tissue, while phosphorylation of insulin receptor substrate 1 at Serine 307 was not affected by chromium treatment. Results obtained during IVGTT, which was conducted on days 0, 30, 50, and 70, suggested an increased insulin sensitivity and, consequently, a better utilization of glucose in the PoCr group. Lower basal concentrations of glucose and insulin in the PoCr group on days 30 and 70 were also obtained. Our results indicate that chromium supplementation improves glucose utilization in calves by enhancing insulin intracellular signaling in the skeletal muscle tissue.
Fabrication and characterization of a pd nanowire-based glucose biofuel cell
NASA Astrophysics Data System (ADS)
Amoah, Kweku Obeng
The use of glucose as a source in biofuel cell technology has received a lot of attention in part due to the potential applications of such systems. In addition to the being a clean energy alternative, it provides a pathway for implantable microelectronic devices, such as pacemakers, to be powered by interstitial fluid and eliminate the need for batteries. Furthermore, using interstitial fluid as fuel sources will drastically reduce necessary invasive surgeries to replace batteries. Additionally, cost to such patients will be reduced while quality of life enhanced. The research presents a unique platform for harvesting energy from glucose. Using semiconductor cleanroom techniques, electrically conductive palladium nanowires are grown on anodized aluminum oxide templates using silicon and glass as supporting substrates. Photolithography is used to create two non-continuous gold windows and contact pads on the substrates. AAO templates are attached to the two gold windows and palladium nanowires are electrochemically grown on the AAO templates. Glucose oxidase and catalase are immobilized on the anode and laccase on the cathode. In the presence of glucose, electrons are released that result in the generation of voltage and current. The current-voltage behavior of the fuel cell, as well as electrochemical properties, is characterized using standard performance metrics. In 5 mM glucose solution with a neutral pH of 7.3, the open circuit voltage obtained was 335 mV and the short circuit current of 6 microA to yield a maximum power output of 1.38 microW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuskey, S.M.; Schamhart, D.H.J.; Chase, T. Jr.
A simple technique, using an esculin-ferric salt visualization system, for selective isolation of mutants of Trichoderma reesei was employed. The ..beta..-glucosidase crude enzyme complexes of the 17 mutants isolated from some 66,000 colonies screened were characterized. Type of inhibition (competitive, noncompetitive) by glucose, and kinetic parameters K/sub m/ (mM pNPG), V/sub max/ (units/mg extracellular protein), and K/sub i/ slopes (mM glucose) were determined for the mutants using p-nitrophenyl ..beta..-D-glucoside (pNPG) as substrate. All the isolates were inhibited competitively by glucose, but certain of them were less sensitive than parent and wild-type to inhibition by glucose. 5 figures, 1 table.
Roles of glucose in photoreceptor survival.
Chertov, Andrei O; Holzhausen, Lars; Kuok, Iok Teng; Couron, Drew; Parker, Ed; Linton, Jonathan D; Sadilek, Martin; Sweet, Ian R; Hurley, James B
2011-10-07
Vertebrate photoreceptor neurons have a high demand for metabolic energy, and their viability is very sensitive to genetic and environmental perturbations. We investigated the relationship between energy metabolism and cell death by evaluating the metabolic effects of glucose deprivation on mouse photoreceptors. Oxygen consumption, lactate production, ATP, NADH/NAD(+), TCA cycle intermediates, morphological changes, autophagy, and viability were evaluated. We compared retinas incubated with glucose to retinas deprived of glucose or retinas treated with a mixture of mitochondrion-specific fuels. Rapid and slow phases of cell death were identified. The rapid phase is linked to reduced mitochondrial activity, and the slower phase reflects a need for substrates for cell maintenance and repair.
Peptide hydrogelation triggered by enzymatic induced pH switch
NASA Astrophysics Data System (ADS)
Cheng, Wei; Li, Ying
2016-07-01
It remains challenging to develop methods that can precisely control the self-assembling kinetics and thermodynamics of peptide hydrogelators to achieve hydrogels with optimal properties. Here we report the hydrogelation of peptide hydrogelators by an enzymatically induced pH switch, which involves the combination of glucose oxidase and catalase with D-glucose as the substrate, in which both the gelation kinetics and thermodynamics can be controlled by the concentrations of D-glucose. This novel hydrogelation method could result in hydrogels with higher mechanical stability and lower hydrogelation concentrations. We further illustrate the application of this hydrogelation method to differentiate different D-glucose levels.
The role of fluid overload in the prediction of outcome in acute kidney injury.
Selewski, David T; Goldstein, Stuart L
2018-01-01
Our understanding of the epidemiology and the impact of acute kidney injury (AKI) and fluid overload on outcomes has improved significantly over the past several decades. Fluid overload occurs commonly in critically ill children with and without associated AKI. Researchers in pediatric AKI have been at the forefront of describing the impact of fluid overload on outcomes in a variety of populations. A full understanding of this topic is important as fluid overload represents a potentially modifiable risk factor and a target for intervention. In this state-of-the-art review, we comprehensively describe the definition of fluid overload, the impact of fluid overload on kidney function, the impact of fluid overload on the diagnosis of AKI, the association of fluid overload with outcomes, the targeted therapy of fluid overload, and the impact of the timing of renal replacement therapy on outcomes.
Effects of heavy metals (Fe3+/Cr6+) on low-level energy generation in a microbial fuel cell
NASA Astrophysics Data System (ADS)
Caparanga, A. R.; Balatbat, A. S.; Tayo, L.
2017-06-01
A dual-chamber microbial fuel cell (MFC) was constructed with Pseudomonas aeruginosa as biocatalyst to facilitate substrate conversion and, consequently, low-level energy generation. To simulate a wastewater situation with BOD and heavy metals contamination, glucose and Fe3+ and Cr6+ were used as substrate and heavy-metal spikes, respectively. The effects of varying substrate concentrations (150 ppm, 300 ppm, 600 ppm) and heavy metal loads (10 ppm, 50 ppm, 100 ppm) on overall power generation were evaluated. The presence of Cr6+ in the anode compartment decreased the potential from 565 to 201 mV (i.e., lowest value achieved at highest Cr6+ concentration of 300 ppm). On the other hand, replacing Cr6+ with Fe3+ as electron acceptor resulted in substantial increase in measured potential (i.e., from 565 to 703 mV). Increasing glucose concentrations resulted in longer time to reach constant open circuit voltage. A maximum potential of 606 mV was achieved at 1200 ppm glucose. Incorporating Pseudomonas aeruginosa increased the potential from 256 to 592 mV. On the basis of these results, a microbial fuel cell feeding on wastewater can be an important potential technology for generating low-level energy
Xu, Li-Jian; Liu, Yuan-Shuai; Zhou, Li-Gang; Wu, Jian-Yong
2011-09-01
Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20-50 g l(-1) glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l(-1)) than in the batch culture (194 mg l(-1)). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures.
Deng, Yi-Jie; Wang, Shiao Y
2017-03-01
Bacterial competition for resources is common in nature but positive interactions among bacteria are also evident. We speculate that the structural complexity of substrate might play a role in mediating bacterial interactions. We tested the hypothesis that the frequency of antagonistic interactions among lignocellulolytic bacteria is reduced when complex polysaccharide is the main carbon source compared to when a simple sugar such as glucose is available. Results using all possible pairwise interactions among 35 bacteria isolated from salt marsh detritus showed that the frequency of antagonistic interactions was significantly lower on carboxymethyl cellulose (CMC)-xylan medium (7.8%) than on glucose medium (15.5%). The two interaction networks were also different in their structures. Although 75 antagonistic interactions occurred on both media, there were 115 that occurred only on glucose and 20 only on CMC-xylan, indicating that some antagonistic interactions were substrate specific. We also found that the frequency of antagonism differed among phylogenetic groups. Gammaproteobacteria and Bacillus sp. were the most antagonistic and they tended to antagonize Bacteroidetes and Actinobacteria, the most susceptible groups. Results from the study suggest that substrate complexity affects how bacteria interact and that bacterial interactions in a community are dynamic as nutrient conditions change. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Deelchand, Dinesh K.; Nelson, Christopher; Shestov, Alexander A.; Uğurbil, Kâmil; Henry, Pierre-Gilles
2009-02-01
In this work the feasibility of measuring neuronal-glial metabolism in rat brain in vivo using co-infusion of [1,6- 13C 2]glucose and [1,2- 13C 2]acetate was investigated. Time courses of 13C spectra were measured in vivo while infusing both 13C-labeled substrates simultaneously. Individual 13C isotopomers (singlets and multiplets observed in 13C spectra) were quantified automatically using LCModel. The distinct 13C spectral pattern observed in glutamate and glutamine directly reflected the fact that glucose was metabolized primarily in the neuronal compartment and acetate in the glial compartment. Time courses of concentration of singly and multiply-labeled isotopomers of glutamate and glutamine were obtained with a temporal resolution of 11 min. Although dynamic metabolic modeling of these 13C isotopomer data will require further work and is not reported here, we expect that these new data will allow more precise determination of metabolic rates as is currently possible when using either glucose or acetate as the sole 13C-labeled substrate.
One-pot synthesis of NiO/Mn2O3 nanoflake arrays and their application in electrochemical biosensing
NASA Astrophysics Data System (ADS)
Wang, Yao; Cui, Jiewu; Luo, Lan; Zhang, Jingcheng; Wang, Yan; Qin, Yongqiang; Zhang, Yong; Shu, Xia; Lv, Jun; Wu, Yucheng
2017-11-01
The exploration of novel nanomaterials employed as substrate to construct glucose biosensors is still of significance in the field of clinical diagnosis. In this work, NiO/Mn2O3 nanoflake arrays were synthesized by hydrothermal approach in combination with calcination process. As-prepared NiO/Mn2O3 nanoflake arrays were utilized to construct electrochemical biosensors for glucose detection. NiO/Mn2O3 nanoflake arrays were investigated systematically by scanning electron microscopy (SEM), X-ray diffractionmeter (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy, the formation mechanism of NiO/Mn2O3 nanoflake arrays was proposed. As-prepared glucose biosensors based on NiO/Mn2O3 nanoflake arrays were characterized by cyclic voltammgrams and chronoamperometry. The results indicated that glucose biosensors based on optimized NiO/Mn2O3 nanoflake arrays exhibited a high sensitivity of 167.0 μA mM-1 Cm-2 and good anti-interference ability, suggesting the NiO/Mn2O3 nanoflake arrays are an attractive substrate for the construction of oxidase-based biosensors.
Nasirian, Nima; Mirzaie, Maryam; Cicek, Nazim; Levin, David B
2018-04-01
Relationships between lipid and carotenoid synthesis by Rhodosporidium diobovatum were investigated for cell cultures in nitrogen-limited medium (GMY) containing equimolar amounts of carbon of glucose or glycerol. The cultures were also supplemented with additional substrate at 120 h postinoculation (pi) and during a fed-batch experiment. Growth of R. diobovatum on glucose resulted in higher yields of triacyglycerides (TAGs) and carotenoid than when grown on glycerol, even though the cultures contained equimolar amounts of carbon. After the addition of fresh substrate at 120 h pi, total carotenoid concentrations were significantly different from the concentrations measured at 120 h pi in both glucose and glycerol cultures, with no concomitant increase in lipid concentrations, suggesting that carotenoid synthesis is linked to exponential-phase growth, while lipid synthesis is linked to stationary phase. We also compared the calculated properties of biodiesel that could be made with TAGs derived from R. diobovatum with properties of biodiesel made from TAGs of other oleaginous yeasts, microalgae, vegetable oils, and animal fats. This study shows that R. diobovatum can be an effective strain for production of neutral lipids containing high percentages of oleic acid, palmitic acid, and linoleic acid, as well as carotenoids.
Yu, Hailong; You, Yanzhi; Lei, Fuhou; Liu, Zuguang; Zhang, Weiming; Jiang, Jianxin
2015-01-01
Green liquor (GL) combined with H2O2 (GL-H2O2) and green liquor (GL) combined with ethanol (GL-ethanol) were chosen for treating sugarcane bagasse. Results showed that the glucose yield (calculated from the glucose content as a percentage of the theoretical glucose available in the substrates)of sugarcane bagasse from GL-ethanol pretreatment (97.7%) was higher than that from GL-H2O2 pretreatment (41.7%) after 72h hydrolysis with 18 filter paper unit (FPU)/g-cellulose for cellulase, 27,175 cellobiase units (CBU)/g-cellulose for β-glucosidase. Furthermore, about 94.1% of xylan was converted to xylose after GL-ethanol pretreatment without additional xylanase, while the xylose yield was only 29.2% after GL-H2O2 pretreatment. Scanning electron microscopy showed that GL-ethanol pretreatment could break up the fiber severely. Moreover, GL-ethanol pretreated substrate was more accessible to cellulase and more hydrophilic than that of GL-H2O2 pretreated. Therefore, GL-ethanol pretreatment is a promising method for improving the overall sugar (glucose and xylan) yield of sugarcane bagasse. Copyright © 2015 Elsevier Ltd. All rights reserved.
The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury.
Prins, Mayumi L; Matsumoto, Joyce H
2014-12-01
The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.
Vendelbo, M. H.; Clasen, B. F. F.; Treebak, J. T.; Møller, L.; Krusenstjerna-Hafstrøm, T.; Madsen, M.; Nielsen, T. S.; Stødkilde-Jørgensen, H.; Pedersen, S. B.; Jørgensen, J. O. L.; Goodyear, L. J.; Wojtaszewski, J. F. P.; Møller, N.
2012-01-01
During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast. PMID:22028408
High Carbon Use Efficiency is Not Explained by Production of Storage Compounds
NASA Astrophysics Data System (ADS)
Dijkstra, Paul; van Groenigen, Kees-Jan
2015-04-01
The efficiency with which microbes use substrate to make new microbial biomass (Carbon Use Efficiency or CUE; mol C / mol C) is an important variable in soil and ecosystem C cycling models. Estimates of CUE in soil microbial communities vary widely. It has been hypothesized that high values of CUE are associated with production of storage compounds following a sudden increases in substrate availability during CUE measurements. In that case, these high CUE values would not be representative for balanced microbial growth (i.e. the production of all compounds needed to make new microbial cells). To test this hypothesis, we added position-specific 13C-labeled glucose isotopomers in parallel incubations of a ponderosa pine and piñon-juniper soil. We compared the measured pattern of CO2 release for the six glucose C atoms with patterns of CO2 production expected for balanced growth with a low, medium, or high CUE, and with CO2 production patterns associated with production of storage compounds (glycogen, lipids, or polyhydroxybutyrate). The measured position-specific CO2 production did not match that for production of glycogen, lipids, or polyhydroxybutyrate, but agreed closely with that expected for balanced growth at high CUE and high pentose phosphate pathway activity. We conclude that soil microbial communities utilize glucose substrate for biomass growth with high CUE, and that addition of small amounts of 13C-labeled glucose tracers do not affect CUE or induce storage compounds production. We submit that the measurement of position-specific CO2 production offers a quick and easy way to test biochemically explicit hypotheses concerning microbial growth metabolism.
Scapa, Erez F; Pocai, Alessandro; Wu, Michele K; Gutierrez-Juarez, Roger; Glenz, Lauren; Kanno, Keishi; Li, Hua; Biddinger, Sudha; Jelicks, Linda A; Rossetti, Luciano; Cohen, David E
2008-07-01
Phosphatidylcholine transfer protein (PC-TP, also known as StarD2) is a highly specific intracellular lipid binding protein with accentuated expression in oxidative tissues. Here we show that decreased plasma concentrations of glucose and free fatty acids in fasting PC-TP-deficient (Pctp(-/-)) mice are attributable to increased hepatic insulin sensitivity. In hyperinsulinemic-euglycemic clamp studies, Pctp(-/-) mice exhibited profound reductions in hepatic glucose production, gluconeogenesis, glycogenolysis, and glucose cycling. These changes were explained in part by the lack of PC-TP expression in liver per se and in part by marked alterations in body fat composition. Reduced respiratory quotients in Pctp(-/-) mice were indicative of preferential fatty acid utilization for energy production in oxidative tissues. In the setting of decreased hepatic fatty acid synthesis, increased clearance rates of dietary triglycerides and increased hepatic triglyceride production rates reflected higher turnover in Pctp(-/-) mice. Collectively, these data support a key biological role for PC-TP in the regulation of energy substrate utilization.
NASA Astrophysics Data System (ADS)
xue, Zhonghua; He, Nan; Rao, Honghong; Hu, Chenxian; Wang, Xiaofen; Wang, Hui; Liu, Xiuhui; Lu, Xiaoquan
2017-02-01
Rapid glucose detection is a key requirement for both diagnosis and treatment of diabetes. A facile and green strategy to achieve spherical-shaped nickel hexacyanoferrate (NiHCF) nanoparticals supported on electrochemical reduction graphene oxide by using electrochemical cyclic voltammetry is explored. As a sensing substrate, electrochemical reduction graphene oxide deposited on a glassy carbon electrode surface exhibited obvious positive effect on the electrodeposition of NiHCF nanoparticals with spherical structure and thus effectively improved the electrical conductivity and electrochemical sensing of the proposed amperometric sensor. Proof-concept experiments demonstrated that the proposed nanocomposites modified electrode exhibited excellent sensitivity toward glucose oxidation as well as with a satisfying detection limit of 0.11 μM. More importantly, we also explore that as a simple, green and facile method, electrochemical technology can be employed and provide a new strategy for developing GO and metal hexacyanoferrate based amperometric sensing platform toward glucose and other biomolecules.
Cometabolic Degradation of Naproxen by Planococcus sp. Strain S5.
Domaradzka, Dorota; Guzik, Urszula; Hupert-Kocurek, Katarzyna; Wojcieszyńska, Danuta
Naproxen is a non-steroidal anti-inflammatory drug frequently detected in the influent and effluent of sewage treatment plants. The Gram-positive strain Planococcus sp. S5 was able to remove approximately 30 % of naproxen after 35 days of incubation in monosubstrate culture. Under cometabolic conditions, with glucose or phenol as a growth substrate, the degradation efficiency of S5 increased. During 35 days of incubation, 75.14 ± 1.71 % and 86.27 ± 2.09 % of naproxen was degraded in the presence of glucose and phenol, respectively. The highest rate of naproxen degradation observed in the presence of phenol may be connected with the fact that phenol is known to induce enzymes responsible for aromatic ring cleavage. The activity of phenol monooxygenase, naphthalene monooxygenase, and hydroxyquinol 1,2-dioxygenase was indicated in Planococcus sp. S5 culture with glucose or phenol as a growth substrate. It is suggested that these enzymes may be engaged in naproxen degradation.
Xu, Hao; Tong, Na; Huang, Shaobin; Zhou, Shaofeng; Li, Shuang; Li, Jianjun; Zhang, Yongqing
2018-05-03
This study aimed to investigate the degradation efficiency of 2,4,6-trichlorophenol through a batch of potentiostatic experiments (0.2 V vs. Ag/AgCl). Efficiencies in the presence and absence of acetate and glucose were compared through open-circuit reference experiments. Significant differences in degradation efficiency were observed in six reactors. The highest and lowest degradation efficiencies were observed in the closed-circuit reactor fed with glucose and in the open-circuit reactor, respectively. This finding was due to the enhanced bacterial metabolism caused by the application of micro-electrical field and degradable organics as co-substrates. The different treatment efficiencies were also caused by the distinct bacterial communities. The composition of bacterial community was affected by adding different organics as co-substrates. At the phylum level, the most dominant bacteria in the reactor with the added acetate and glucose were Proteobacteria and Firmicutes, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A Lactobacillus buchneri strain NRRL B-30929 can convert xylose and glucose into ethanol and chemicals. In this paper, L. buchneri NRRL B-30929 was initially compared with the type strains L. buchneri NRRL 1837 and DSM 5987 for growth and fermentation using single substrate derived from plant mater...
Substrate-induced respiration in Puerto Rican soils: minimum glucose amendment
Marcela Zalamea; Grizelle Gonzalez
2007-01-01
Soil microbiota âusually quantified as microbial biomass âis a key component of terrestrial ecosystems, regulating nutrient cycling and organic matter turnover. Among the several methods developed for estimating soil microbial biomass, Substrate-Induced Respiration (SIR) is considered reliable and easy to implement; once the maximum respiratory response is determined...
Gebril, Hoda M; Avula, Bharathi; Wang, Yan-Hong; Khan, Ikhlas A; Jekabsons, Mika B
2016-02-01
Glycolysis, mitochondrial substrate oxidation, and the pentose phosphate pathway (PPP) are critical for neuronal bioenergetics and oxidation-reduction homeostasis, but quantitating their fluxes remains challenging, especially when processes such as hexose phosphate (i.e., glucose/fructose-6-phosphate) recycling in the PPP are considered. A hexose phosphate recycling model was developed which exploited the rates of glucose consumption, lactate production, and mitochondrial respiration to infer fluxes through the major glucose consuming pathways of adherent cerebellar granule neurons by replicating [(13)C]lactate labeling from metabolism of [1,2-(13)C2]glucose. Flux calculations were predicated on a steady-state system with reactions having known stoichiometries and carbon atom transitions. Non-oxidative PPP activity and consequent hexose phosphate recycling, as well as pyruvate production by cytoplasmic malic enzyme, were optimized by the model and found to account for 28 ± 2% and 7.7 ± 0.2% of hexose phosphate and pyruvate labeling, respectively. From the resulting fluxes, 52 ± 6% of glucose was metabolized by glycolysis, compared to 19 ± 2% by the combined oxidative/non-oxidative pentose cycle that allows for hexose phosphate recycling, and 29 ± 8% by the combined oxidative PPP/de novo nucleotide synthesis reactions. By extension, 62 ± 6% of glucose was converted to pyruvate, the metabolism of which resulted in 16 ± 1% of glucose oxidized by mitochondria and 46 ± 6% exported as lactate. The results indicate a surprisingly high proportion of glucose utilized by the pentose cycle and the reactions synthesizing nucleotides, and exported as lactate. While the in vitro conditions to which the neurons were exposed (high glucose, no lactate or other exogenous substrates) limit extrapolating these results to the in vivo state, the approach provides a means of assessing a number of metabolic fluxes within the context of hexose phosphate recycling in the PPP from a minimal set of measurements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Monoaminergic control of cellular glucose utilization by glycogenolysis in neocortex and hippocampus
DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia
2016-01-01
Brainstem nuclei are the principal sites of monoamine (MA) innervation to major forebrain structures. In the cortical grey matter, increased secretion of MA neuromodulators occurs in response to a wealth of environmental and homeostatic challenges, whose onset is associated with rapid, preparatory changes in neural activity as well as with increases in energy metabolism. Blood-borne glucose is the main substrate for energy production in the brain. Once entered the tissue, interstitial glucose is equally accessible to neurons and astrocytes, the two cell types accounting for most of cellular volume and energy metabolism in neocortex and hippocampus. Astrocytes also store substantial amounts of glycogen, but non-stimulated glycogen turnover is very small. The rate of cellular glucose utilization in the brain is largely determined by hexokinase, which under basal conditions is more than 90% inhibited by its product glucose-6-phosphate (Glc-6-P). During rapid increases in energy demand, glycogen is a primary candidate in modulating the intracellular level of Glc-6-P, which can occur only in astrocytes. Glycogenolysis can produce Glc-6-P at a rate higher than uptake and phosphorylation of glucose. MA neurotransmitter are released extrasinaptically by brainstem neurons projecting to neocortex and hippocampus, thus activating MA receptors located on both neuronal and astrocytic plasma membrane. Importantly, MAs are glycogenolytic agents and thus they are exquisitely suitable for regulation of astrocytic Glc-6-P concentration, upstream substrate flow through hexokinase and hence cellular glucose uptake. Conforming to such mechanism, Gerald A. Dienel and Nancy F. Cruz recently suggested that activation of noradrenergic locus coeruleus might reversibly block astrocytic glucose uptake by stimulating glycogenolysis in these cells, thereby anticipating the rise in glucose need by active neurons. In this paper, we further develop the idea that the whole monoaminergic system modulates both function and metabolism of forebrain regions in a manner mediated by glycogen mobilization in astrocytes. PMID:26168779
Acclimation temperature affects the metabolic response of amphibian skeletal muscle to insulin.
Petersen, Ann M; Gleeson, Todd T
2011-09-01
Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (P<0.05). Under the same conditions lactate incorporation into glycogen was reduced (P<0.05) in insulin-treated muscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (P<0.05). When muscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel. Copyright © 2011 Elsevier Inc. All rights reserved.
DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia
2015-12-01
Brainstem nuclei are the principal sites of monoamine (MA) innervation to major forebrain structures. In the cortical grey matter, increased secretion of MA neuromodulators occurs in response to a wealth of environmental and homeostatic challenges, whose onset is associated with rapid, preparatory changes in neural activity as well as with increases in energy metabolism. Blood-borne glucose is the main substrate for energy production in the brain. Once entered the tissue, interstitial glucose is equally accessible to neurons and astrocytes, the two cell types accounting for most of cellular volume and energy metabolism in neocortex and hippocampus. Astrocytes also store substantial amounts of glycogen, but non-stimulated glycogen turnover is very small. The rate of cellular glucose utilization in the brain is largely determined by hexokinase, which under basal conditions is more than 90 % inhibited by its product glucose-6-phosphate (Glc-6-P). During rapid increases in energy demand, glycogen is a primary candidate in modulating the intracellular level of Glc-6-P, which can occur only in astrocytes. Glycogenolysis can produce Glc-6-P at a rate higher than uptake and phosphorylation of glucose. MA neurotransmitter are released extrasinaptically by brainstem neurons projecting to neocortex and hippocampus, thus activating MA receptors located on both neuronal and astrocytic plasma membrane. Importantly, MAs are glycogenolytic agents and thus they are exquisitely suitable for regulation of astrocytic Glc-6-P concentration, upstream substrate flow through hexokinase and hence cellular glucose uptake. Conforming to such mechanism, Gerald A. Dienel and Nancy F. Cruz recently suggested that activation of noradrenergic locus coeruleus might reversibly block astrocytic glucose uptake by stimulating glycogenolysis in these cells, thereby anticipating the rise in glucose need by active neurons. In this paper, we further develop the idea that the whole monoaminergic system modulates both function and metabolism of forebrain regions in a manner mediated by glycogen mobilization in astrocytes.
Adler, Lital N.; Gomez, Tara A.; Clarke, Steven G.; Linster, Carole L.
2011-01-01
The plant VTC2 gene encodes GDP-l-galactose phosphorylase, a rate-limiting enzyme in plant vitamin C biosynthesis. Genes encoding apparent orthologs of VTC2 exist in both mammals, which produce vitamin C by a distinct metabolic pathway, and in the nematode worm Caenorhabditis elegans where vitamin C biosynthesis has not been demonstrated. We have now expressed cDNAs of the human and worm VTC2 homolog genes (C15orf58 and C10F3.4, respectively) and found that the purified proteins also display GDP-hexose phosphorylase activity. However, as opposed to the plant enzyme, the major reaction catalyzed by these enzymes is the phosphorolysis of GDP-d-glucose to GDP and d-glucose 1-phosphate. We detected activities with similar substrate specificity in worm and mouse tissue extracts. The highest expression of GDP-d-glucose phosphorylase was found in the nervous and male reproductive systems. A C. elegans C10F3.4 deletion strain was found to totally lack GDP-d-glucose phosphorylase activity; this activity was also found to be decreased in human HEK293T cells transfected with siRNAs against the human C15orf58 gene. These observations confirm the identification of the worm C10F3.4 and the human C15orf58 gene expression products as the GDP-d-glucose phosphorylases of these organisms. Significantly, we found an accumulation of GDP-d-glucose in the C10F3.4 mutant worms, suggesting that the GDP-d-glucose phosphorylase may function to remove GDP-d-glucose formed by GDP-d-mannose pyrophosphorylase, an enzyme that has previously been shown to lack specificity for its physiological d-mannose 1-phosphate substrate. We propose that such removal may prevent the misincorporation of glucosyl residues for mannosyl residues into the glycoconjugates of worms and mammals. PMID:21507950
Adler, Lital N; Gomez, Tara A; Clarke, Steven G; Linster, Carole L
2011-06-17
The plant VTC2 gene encodes GDP-L-galactose phosphorylase, a rate-limiting enzyme in plant vitamin C biosynthesis. Genes encoding apparent orthologs of VTC2 exist in both mammals, which produce vitamin C by a distinct metabolic pathway, and in the nematode worm Caenorhabditis elegans where vitamin C biosynthesis has not been demonstrated. We have now expressed cDNAs of the human and worm VTC2 homolog genes (C15orf58 and C10F3.4, respectively) and found that the purified proteins also display GDP-hexose phosphorylase activity. However, as opposed to the plant enzyme, the major reaction catalyzed by these enzymes is the phosphorolysis of GDP-D-glucose to GDP and D-glucose 1-phosphate. We detected activities with similar substrate specificity in worm and mouse tissue extracts. The highest expression of GDP-D-glucose phosphorylase was found in the nervous and male reproductive systems. A C. elegans C10F3.4 deletion strain was found to totally lack GDP-D-glucose phosphorylase activity; this activity was also found to be decreased in human HEK293T cells transfected with siRNAs against the human C15orf58 gene. These observations confirm the identification of the worm C10F3.4 and the human C15orf58 gene expression products as the GDP-D-glucose phosphorylases of these organisms. Significantly, we found an accumulation of GDP-D-glucose in the C10F3.4 mutant worms, suggesting that the GDP-D-glucose phosphorylase may function to remove GDP-D-glucose formed by GDP-D-mannose pyrophosphorylase, an enzyme that has previously been shown to lack specificity for its physiological D-mannose 1-phosphate substrate. We propose that such removal may prevent the misincorporation of glucosyl residues for mannosyl residues into the glycoconjugates of worms and mammals.
Das, Subhash K; Wang, Wang; Zhabyeyev, Pavel; Basu, Ratnadeep; McLean, Brent; Fan, Dong; Parajuli, Nirmal; DesAulniers, Jessica; Patel, Vaibhav B; Hajjar, Roger J; Dyck, Jason R B; Kassiri, Zamaneh; Oudit, Gavin Y
2015-12-07
Iron-overload cardiomyopathy is a prevalent cause of heart failure on a world-wide basis and is a major cause of mortality and morbidity in patients with secondary iron-overload and genetic hemochromatosis. We investigated the therapeutic effects of resveratrol in acquired and genetic models of iron-overload cardiomyopathy. Murine iron-overload models showed cardiac iron-overload, increased oxidative stress, altered Ca(2+) homeostasis and myocardial fibrosis resulting in heart disease. Iron-overload increased nuclear and acetylated levels of FOXO1 with corresponding inverse changes in SIRT1 levels in the heart corrected by resveratrol therapy. Resveratrol, reduced the pathological remodeling and improved cardiac function in murine models of acquired and genetic iron-overload at varying stages of iron-overload. Echocardiography and hemodynamic analysis revealed a complete normalization of iron-overload mediated diastolic and systolic dysfunction in response to resveratrol therapy. Myocardial SERCA2a levels were reduced in iron-overloaded hearts and resveratrol therapy restored SERCA2a levels and corrected altered Ca(2+) homeostasis. Iron-mediated pro-oxidant and pro-fibrotic effects in human and murine cardiomyocytes and cardiofibroblasts were suppressed by resveratrol which correlated with reduction in iron-induced myocardial oxidative stress and myocardial fibrosis. Resveratrol represents a clinically and economically feasible therapeutic intervention to reduce the global burden from iron-overload cardiomyopathy at early and chronic stages of iron-overload.
Das, Subhash K.; Wang, Wang; Zhabyeyev, Pavel; Basu, Ratnadeep; McLean, Brent; Fan, Dong; Parajuli, Nirmal; DesAulniers, Jessica; Patel, Vaibhav B.; Hajjar, Roger J.; Dyck, Jason R. B.; Kassiri, Zamaneh; Oudit, Gavin Y.
2015-01-01
Iron-overload cardiomyopathy is a prevalent cause of heart failure on a world-wide basis and is a major cause of mortality and morbidity in patients with secondary iron-overload and genetic hemochromatosis. We investigated the therapeutic effects of resveratrol in acquired and genetic models of iron-overload cardiomyopathy. Murine iron-overload models showed cardiac iron-overload, increased oxidative stress, altered Ca2+ homeostasis and myocardial fibrosis resulting in heart disease. Iron-overload increased nuclear and acetylated levels of FOXO1 with corresponding inverse changes in SIRT1 levels in the heart corrected by resveratrol therapy. Resveratrol, reduced the pathological remodeling and improved cardiac function in murine models of acquired and genetic iron-overload at varying stages of iron-overload. Echocardiography and hemodynamic analysis revealed a complete normalization of iron-overload mediated diastolic and systolic dysfunction in response to resveratrol therapy. Myocardial SERCA2a levels were reduced in iron-overloaded hearts and resveratrol therapy restored SERCA2a levels and corrected altered Ca2+ homeostasis. Iron-mediated pro-oxidant and pro-fibrotic effects in human and murine cardiomyocytes and cardiofibroblasts were suppressed by resveratrol which correlated with reduction in iron-induced myocardial oxidative stress and myocardial fibrosis. Resveratrol represents a clinically and economically feasible therapeutic intervention to reduce the global burden from iron-overload cardiomyopathy at early and chronic stages of iron-overload. PMID:26638758
NASA Astrophysics Data System (ADS)
Kozak, Maciej; Taube, Michał
2009-10-01
The structure and conformation of molecule of xylose/glucose isomerase from Streptomyces rubiginosus in solution (at pH 6 and 7.6; with and without the substrate) has been studied by small- and wide-angle scattering of synchrotron radiation (SAXS-WAXS). On the basis of the SAXS-WAXS data, the low-resolution structure in solution has been reconstructed using ab inito methods. A comparison of the models of glucose isomerase shows only small differences between the model in solution and the crystal structure.
The Electrophysiologic Effects of Acute Mitral Regurgitation in a Canine Model.
Lawrance, Christopher P; Henn, Matthew C; Miller, Jacob R; Kopek, Michael A; Zhang, Andrew J; Schuessler, Richard B; Damiano, Ralph J
2017-04-01
Atrial fibrillation (AF) occurs in 30% of patients with mitral regurgitation referred for surgical intervention. However, the underlying mechanisms in this population are poorly understood. This study examined the effects of acute left atrial volume overload on atrial electrophysiology and the inducibility of AF. Ten canines underwent insertion of an atrioventricular shunt between the left ventricle and left atrium. Shunt and aortic flows were calculated, and the shunt was titrated to a shunt fraction to 40% to 50% of cardiac output. An epicardial plaque with 250 bipolar electrodes was used to determine activation and refractory periods. Biatrial pressures and volumes, conduction times, and atrial fibrillation inducibility were recorded. Data were collected at baseline and 20 minutes after shunt opening and closure. Mean shunt flow was 1.3 ± 0.5 L/min with a shunt fraction of 43% ± 6% simulating moderate to severe mitral regurgitation. Compared with baseline, left atrial volumes and maximum pressures increased by 27% and 29%, respectively, after shunt opening. Biatrial effective refractory periods did not change significantly after shunt opening or closure. Conduction times increased by 9% with shunt opening and returned to baseline after closure. AF duration or inducibility did not change with shunt opening. This canine model of mitral regurgitation demonstrated that acute left atrial volume overload did not increase the inducibility of atrial arrhythmias in contrast with experimental and clinical findings of chronic left atrial volume overload. This suggests that the substrates for AF in patients with mitral regurgitation are a result of chronic remodeling. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Guler, Muhammet; Turkoglu, Vedat; Kivrak, Arif
2015-08-01
In the study, the electrochemical behavior of glucose oxidase (GOx) immobilized on poly([2,2';5',2″]-terthiophene-3'-carbaldehyde) (poly(TTP)) modified glassy carbon electrode (GCE) was investigated. The biosensor (poly(TTP)/GOx/GCE) showed a pair of redox peaks in 0.1 M phosphate buffer (pH 7.4) solution in the absence of oxygen the co-substrate of GOx. In here, Poly(TTP)/GOx/GCE biosensor acts as the co-substrate instead of oxygen. Upon the addition of glucose, the reduction and oxidation peak currents increased until the active site of GOx was fully saturated with glucose. The apparent m was estimated 26.13 mM from Lineweaver-Burk graph. The biosensor displayed a good stability and bioactivity. The biosensor showed a high sensitivity (56.1 nA/mM), a linear range (from 0.5 to 20.15 mM), and a good reproducibility with 3.6% of relative standard deviation. In addition, the interference currents of glycin, ascorbic acid, histidine, uric acid, dopamine, arginine, and fructose on GOx biosensor were investigated. All that substances exhibited an interference current under 10%. It was not shown a marked difference between GOx biosensor and spectrophotometric measurement of glucose in serum examples. UV-visible spectroscopy and scanning electron microscopy (SEM) experiments of the biosensor were also performed. Copyright © 2015 Elsevier B.V. All rights reserved.
Maclaren, D P M; Mohebbi, H; Nirmalan, M; Keegan, M A; Best, C T; Perera, D; Harvie, M N; Campbell, I T
2011-09-01
Carbohydrate stores within muscle are considered essential as a fuel for prolonged endurance exercise, and regimes for enhancing such stores have proved successful in aiding performance. This study explored the effects of a hyperglycaemic-hyperinsulinemic clamp performed 18 h previously on subsequent prolonged endurance performance in cycling. Seven male subjects, accustomed to prolonged endurance cycling, performed 90 min of cycling at ~65% VO(2max) followed by a 16-km time trial 18 h after a 2-h hyperglycemic-hyperinsulinemic clamp (HCC). Hyperglycemia (10 mM) with insulin infused at 300 mU/m(2)/min over a 2-h period resulted in a total glucose uptake of 275 g (assessed by the area under the curve) of which glucose storage accounted for about 73% (i.e. 198 g). Patterns of substrate oxidation during 90-min exercise at 65% VO(2max) were not altered by HCC. Blood glucose and plasma insulin concentrations were higher during exercise after HCC compared with control (p < 0.05) while plasma NEFA was similar. Exercise performance was improved by 49 s and power output was 10-11% higher during the time trial (p < 0.05) after HCC. These data suggest that carbohydrate loading 18 h previously by means of a 2-h HCC improves cycling performance by 3.3% without any change in pattern of substrate oxidation.
Jensen, Vivi F H; Mølck, Anne-Marie; Chapman, Melissa; Alifrangis, Lene; Andersen, Lene; Lykkesfeldt, Jens; Bøgh, Ingrid B
2017-01-01
The brain is vulnerable to hypoglycaemia due to a continuous need of energy substrates to meet its high metabolic demands. Studies have shown that severe acute insulin-induced hypoglycaemia results in oxidative stress in the rat brain, when neuroglycopenia cannot be evaded despite increased levels of cerebral glucose transporters. Compensatory measures in the brain during chronic insulin-induced hypoglycaemia are less well understood. The present study investigated how the brain of nondiabetic rats copes with chronic insulin-induced hypoglycaemia for up to eight weeks. Brain level of different substrate transporters and redox homeostasis was evaluated. Hyperinsulinaemia for 8 weeks consistently lowered blood glucose levels by 30-50% (4-6 mM versus 7-9 mM in controls). The animals had increased food consumption, body weights, and hyperleptinaemia. During infusion, protein levels of the brain neuronal glucose transporter were decreased, whereas levels of lipid peroxidation products were unchanged. Discontinued infusion was followed by transient systemic hyperglycaemia and decreased food consumption and body weight. After 4 weeks, plasma levels of lipid peroxidation products were increased, possibly as a consequence of hyperglycaemia-induced oxidative stress. The present data suggests that chronic moderate hyperinsulinaemic hypoglycaemia causes increased body weight and hyperleptinaemia. This is accompanied by decreased neuronal glucose transporter levels, which may be leptin-induced.
[Space-time organization of systems of membrane hydrolysis and transport in rat small intestine].
Loginov, G I
1977-05-01
Glucose transport by the concentration gradient with the incubation for 90 min in 0.2% glucose and soluble starch solutions was studied in Wistar rats in 5 segments of the small intestine by the "sac turned inside out" method. Serous fluid was completely replaced by a new portion of Ringer's solution every 15 or 30 min. Substrate load synchronized the enterocyte population and stabilized the transport systems. The changes of glucose absorption during the period of about an hour proved to differ in the 5 segments against the background of continuous and interrupted substrate load. These differences were due to the properties of the transported systems autocontrol and the reactivity level of the given enterocyte population. Areas with different reactivity were found to alternate along the intestine. Between the 8th and 16th hour (rats were sacrificed every 2 hours) starch glucose transport fell sharply in the proximal, and, to a lesser extent, in the middle segments. On the contrary, absorption between the 8th and the 12th hour was considerably intensified in the distal segments. The changes of the strach glucose transport during the period of about an hour along the intestine differed. The data obtained are discussed with consideration to the possible role of the undulating processes in the individual enterocyte population and in the small intestine as an integral system.
Chain, Ernst B.; Sender, Peter M.
1973-01-01
In the absence of glucose, insulin stimulated the incorporation of 14C-labelled amino acids into protein by perfused rat hearts that had been previously substantially depleted of endogenous glucose, glucose 6-phosphate and glycogen by substrate-free perfusion. This stimulation was also demonstrated in hearts perfused with buffer containing 2-deoxy-d-glucose, an inhibitor of glucose utilization. It is concluded that insulin exerts an effect on protein synthesis independent of its action on glucose metabolism. Streptozotocin-induced diabetes was found to have no effect either on 14C-labelled amino acid incorporation by the perfused heart or on the polyribosome profile and amino acid-incorporating activity of polyribosomes prepared from the non-perfused hearts of these insulin-deficient rats, which show marked abnormalities in glucose metabolism. Protein synthesis was not diminished in the perfused hearts from rats treated with anti-insulin antiserum. The significance of these findings is discussed in relation to the reported effects of insulin deficiency on protein synthesis in skeletal muscle. PMID:4269308
Response to glucose and lipid infusions in sepsis: a kinetic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, J.H.; Wolfe, R.R.
The kinetics and oxidation of glucose and free fatty acid (FFA) metabolism were assessed in control and Escherichia coli septicemic dogs by using primed, constant infusions of U-/sup 14/C-glucose and 1,2, /sup 13/C-palmitic acid. In the controls, the infusion of glucose suppressed endogenous glucose production completely, whereas, in the septic dogs, only a 30% suppression of glucose production occurred. The ability of the septic dogs to oxidize endogenous or exogenous glucose was decreased significantly. The basal rate of appearance of FFA was significantly higher in the septic dogs, but their ability to oxidize FFA was comparable to that of themore » control dogs; therefore, the basal rate of FFA oxidation was higher in the septic dogs. These studies indicate that septic dogs have a decreased capacity to oxidize glucose, but that they retain their ability to oxidize long-chain fatty acids. Because the rate of lipolysis was increased in sepsis, lipid was the predominate energy substrate in this septic model.« less
Fabrication of a liquid-gated enzyme field effect device for sensitive glucose detection.
Fathollahzadeh, M; Hosseini, M; Haghighi, B; Kolahdouz, M; Fathipour, M
2016-06-14
This study presents fabrication of a liquid-gated enzyme field effect device and its implementation as a glucose biosensor. The device consisted of four electrodes on a glass substrate with a channel functionalized by carboxylated multi-walled carbon nanotubes-polyaniline nanocomposite (MWCNTCOOH/PAn) and glucose oxidase. The resistance of functionalized channel increased with increasing the concentration of glucose when an electric field was applied to the liquid gate. The most effective and stable performance was obtained at the applied electric field of 100 mV. The device resistance, R, exhibited a linear relationship with the logarithm of glucose concentration in the range between 0.005 and 500 mM glucose. The detection limit (S/N = 3) for glucose was about 0.5 μM. Large effective area and good conductivity properties of MWCNTCOOH/PAn nanocomposite were the key features of the fabricated sensitive and stable glucose biosensor. Copyright © 2016 Elsevier B.V. All rights reserved.
Glucose metabolism in the developing brain.
Vannucci, R C; Vannucci, S J
2000-04-01
As in adults, glucose is the predominant cerebral energy fuel for the fetus and newborn. Studies in experimental animals and humans indicate that cerebral glucose utilization initially is low and increases with maturation with increasing regional heterogeneity. The increases in cerebral glucose utilization with advancing age occurs as a consequence of increasing functional activity and cerebral energy demands. The levels of expression of the 2 primary facilitative glucose transporter proteins in brain, GLUT1 (blood-brain barrier and glia) and GLUT3 (neuronal), display a similar maturational pattern. Alternate cerebral energy fuels, specifically the ketone bodies and lactate, can substitute for glucose, especially during hypoglycemia, thereby protecting the immature brain from potential untoward effects of hypoglycemia. Unlike adults, glucose supplementation during hypoxia-ischemia is protective in the immature brain, whereas hypoglycemia is deleterious. Accordingly, glucose plays a critical role in the developing brain, not only as the primary substrate for energy production but also to allow for normal biosynthetic processes to proceed.
Sone, Hideyuki; Sasaki, Yuka; Komai, Michio; Toyomizu, Masaaki; Kagawa, Yasuo; Furukawa, Yuji
2004-02-13
Previous studies showed that biotin enhanced glucose-induced insulin secretion. Changes in the cytosolic ATP/ADP ratio in the pancreatic islets participate in the regulation of insulin secretion by glucose. In the present study we investigated whether biotin regulates the cytosolic ATP/ADP ratio in glucose-stimulated islets. When islets were stimulated with glucose plus biotin, the ATP/ADP ratio increased to approximately 160% of the ATP/ADP ratio in islets stimulated with glucose alone. The rate of glucose oxidation, assessed by CO(2) production, was also about 2-fold higher in islets treated with biotin. These increasing effects of biotin were proportional to the effects seen in insulin secretion. There are no previous reports of vitamins, such as biotin, directly affecting ATP synthesis. Our data indicate that biotin enhances ATP synthesis in islets following the increased rate of substrate oxidation in mitochondria and that, as a consequence of these events, glucose-induced insulin release is reinforced by biotin.
Colorimetric detection of glucose based on ficin with peroxidase-like activity
NASA Astrophysics Data System (ADS)
Pang, Yanjiao; Huang, Zili; Yang, Yufang; Long, Yijuan; Zheng, Huzhi
2018-01-01
In this work, we developed a colorimetric biosensing system for glucose detection by coupling the peroxidase-like of ficin and the glucose oxidase (GOx). GOx can catalyze the oxidation of glucose to produce H2O2, then, ficin catalyzes the oxidation of peroxidase substrate 3,3‧,5,5‧-tetramethylbenzidine (TMB) by H2O2 to produce a blue color reaction. The present sensing system showed a linear response toward glucose detection over range of 2.0-100 μM with a detection limit of 0.5 μM. This system is simple, low cost, highly sensitive and selective for glucose detection, and was also applied to measuring glucose in human serum. Furthermore, in order to expand the application of ficin in biological sensing, we immobilized ficin onto the SiO2@Fe3O4 NPs, which exhibited the merits of recycling as well as allowing the repeated detection of glucose. Thus it may provide great potential applications in biomedicine, biotechnology and environmental chemistry.
Wang, Xu; Li, Fang; Cai, Ziqi; Liu, Kaifan; Li, Jing; Zhang, Boyang; He, Jianbo
2018-04-01
In this work, a multilayer-modified paper-based colorimetric sensing platform with improved color uniformity and intensity was developed for the sensitive and selective determination of uric acid and glucose with smartphone as signal readout. In detail, chitosan, different kinds of chromogenic reagents, and horseradish peroxidase (HRP) combined with a specific oxidase, e.g., uricase or glucose oxidase (GOD), were immoblized onto the paper substrate to form a multilayer-modified test paper. Hydrogen peroxide produced by the oxidases (uricase or GOD) reacts with the substrates (uric acid or glucose), and could oxidize the co-immoblized chromogenic reagents to form colored products with HRP as catalyst. A simple strategy by placing the test paper on top of a light-emitting diode lamp was adopted to efficiently prevent influence from the external light. The color images were recorded by the smartphone camera, and then the gray values of the color images were calculated for quantitative analysis. The developed method provided a wide linear response from 0.01 to 1.0 mM for uric acid detection and from 0.02 to 4.0 mM for glucose detection, with a limit of detection (LOD) as low as 0.003 and 0.014 mM, respectively, which was much lower than for previously reported paper-based colorimetric assays. The proposed assays were successfully applied to uric acid and glucose detection in real serum samples. Furthermore, the enhanced analytical performance of the proposed method allowed the non-invasive detection of glucose levels in tear samples, which holds great potential for point-of-care analysis. Graphical abstract ᅟ.
Nikolaidis, Lazaros A; Elahi, Dariush; Hentosz, Teresa; Doverspike, Aaron; Huerbin, Rhonda; Zourelias, Lee; Stolarski, Carol; Shen, You-tang; Shannon, Richard P
2004-08-24
The failing heart demonstrates a preference for glucose as its metabolic substrate. Whether enhancing myocardial glucose uptake favorably influences left ventricular (LV) contractile performance in heart failure remains uncertain. Glucagon-like peptide-1 (GLP-1) is a naturally occurring incretin with potent insulinotropic effects the action of which is attenuated when glucose levels fall below 4 mmol. We examined the impact of recombinant GLP-1 (rGLP-1) on LV and systemic hemodynamics and myocardial substrate uptake in conscious dogs with advanced dilated cardiomyopathy (DCM) as a mechanism for overcoming myocardial insulin resistance and enhancing myocardial glucose uptake. Thirty-five dogs were instrumented and studied in the fully conscious state. Advanced DCM was induced by 28 days of rapid pacing. Sixteen dogs with advanced DCM received a 48-hour infusion of rGLP-1 (1.5 pmol x kg(-1) x min(-1)). Eight dogs with DCM served as controls and received 48 hours of a saline infusion (3 mL/d). Infusion of rGLP-1 was associated with significant (P<0.02) increases in LV dP/dt (98%), stroke volume (102%), and cardiac output (57%) and significant decreases in LV end-diastolic pressure, heart rate, and systemic vascular resistance. rGLP-1 increased myocardial insulin sensitivity and myocardial glucose uptake. There were no significant changes in the saline control group. rGLP-1 dramatically improved LV and systemic hemodynamics in conscious dogs with advanced DCM induced by rapid pacing. rGLP-1 has insulinomimetic and glucagonostatic properties, with resultant increases in myocardial glucose uptake. rGLP-1 may be a useful metabolic adjuvant in decompensated heart failure.
Mäkinen, Mari A; Risulainen, Netta; Mattila, Hans; Lundell, Taina K
2018-05-04
Previously identified twelve plant cell wall degradation-associated genes of the white rot fungus Phlebia radiata were studied by RT-qPCR in semi-aerobic solid-state cultures on lignocellulose waste material, and on glucose-containing reference medium. Wood-decay-involved enzyme activities and ethanol production were followed to elucidate both the degradative and fermentative processes. On the waste lignocellulose substrate, P. radiata carbohydrate-active enzyme (CAZy) genes encoding cellulolytic and hemicellulolytic activities were significantly upregulated whereas genes involved in lignin modification displayed a more complex response. Two lignin peroxidase genes were differentially expressed on waste lignocellulose compared to glucose medium, whereas three manganese peroxidase-encoding genes were less affected. On the contrary, highly significant difference was noticed for three cellulolytic genes (cbhI_1, eg1, bgl1) with higher expression levels on the lignocellulose substrate than on glucose. This indicates expression of the wood-attacking degradative enzyme system by the fungus also on the recycled, waste core board material. During the second week of cultivation, ethanol production increased on the core board to 0.24 g/L, and extracellular activities against cellulose, xylan, and lignin were detected. Sugar release from the solid lignocellulose resulted with concomitant accumulation of ethanol as fermentation product. Our findings confirm that the fungus activates its white rot decay system also on industrially processed lignocellulose adopted as growth substrate, and under semi-aerobic cultivation conditions. Thus, P. radiata is a good candidate for lignocellulose-based renewable biotechnology to make biofuels and biocompounds from materials with less value for recycling or manufacturing.
Podbregar, Matej; Voga, Gorazd
2002-12-01
In chronic heart failure (CHF) beta-blockers reduce myocardial oxygen consumption and improve myocardial efficiency by shifting myocardial substrate utilization from increased free fatty acid oxidation to increased glucose oxidation. The effect of selective and nonselective beta-blockers on total body resting energy production rate (EPR) and substrate utilization is not known. Twenty-six noncachectic patients with moderately severe heart failure (New York Heart Association class II or III, left ventricular ejection fraction < 0.40) were treated with carvedilol (37.5 +/- 13.5 mg/12 h) or bisoprolol (5.4 +/- 3.0 mg/d) for 6 months. Indirect calorimetry was performed before and after 6 months of treatment. Resting EPR was decreased in carvedilol (5.021 +/- 0.803 to 4.552 +/- 0.615 kJ/min, P <.001) and bisoprolol group (5.230 +/- 0.828 to 4.978 +/- 0.640 kJ/min, P <.05; nonsignificant difference between groups). Lipid oxidation rate decreased in carvedilol and remained unchanged in bisoprolol group (2.4 +/- 1.4 to 1.5 +/- 0.9 mg m(2)/kg min versus 2.7 +/- 1.1 to 2.5 +/- 1.1 mg m(2)/kg min, P <.05). Glucose oxidation rate was increased only in carvedilol (2.6 +/- 1.4 to 4.4 +/- 1.6 mg m(2)/kg min, P <.05), but did not change in bisoprolol group. Both selective and nonselective beta-blockers reduce total body resting EPR in noncachectic CHF patients. Carvedilol compared to bisoprolol shifts total body substrate utilization from lipid to glucose oxidation.
Morozova, V V; Semenova, M V; Rozhkova, A M; Kondrat'eva, E G; Okunev, O N; Bekkarevich, A O; Novozhilov, E V; Sinitsin, A P
2010-01-01
Hydrolytic ability of laboratory enzyme preparations from fungus of the Penicillium genus was investigated using kraft pulp from nonbleached softwood and bleached hardwood cellulose as substrates. The enzyme preparations were shown to efficiently hydrolyze both softwood and hardwood cellulose. The yields of glucose and reducing sugars were 24-36 g/l and 27-37 g/l from 100 g/l of dry substrate in 48 h, respectively, and depended on the number of substrate grinding cycles.
Wittmann, C; Heinzle, E
2001-04-01
Experimental design of (13)C-tracer studies for metabolic flux analysis with mass spectrometric determination of labeling patterns was performed for the central metabolism of Corynebacterium glutamicum comprising various flux scenarios. Ratio measurement of mass isotopomer pools of Corynebacterium products lysine, alanine, and trehalose is sufficient to quantify the flux partitioning ratios (i) between glycolysis and pentose phosphate pathways (Phi(PPP)), (ii) between the split pathways in the lysine biosynthesis (Phi(DH)), (iii) at the pyruvate node (Phi(PC)), and reversibilities of (iv) glucose 6-phosphate isomerase (zeta(PGI)), (v) at the pyruvate node (zeta(PC/PEPCK)), and (vi) of transaldolase and transketolases in the PPP. Weighted sensitivities for flux parameters were derived from partial derivatives to quantitatively evaluate experimental approaches and predict precision for estimated flux parameters. Deviation of intensity ratios from ideal values of 1 was used as weighting function. Weighted flux sensitivities can be used to identify optimal type and degree of tracer labeling or potential intensity ratios to be measured. Experimental design for lysine-producing strain C. glutamicum MH 20-22B (Marx et al., Biotechnol. Bioeng. 49, 111-129, 1996) and various potential mutants with different alterations in the flux pattern showed that specific tracer labelings are optimal to quantify a certain flux parameter uninfluenced by the overall flux situation. Identified substrates of choice are [1-(13)C]glucose for the estimation of Phi(PPP) and zeta(PGI) and a 1 : 1 mixture of [U-(12)C/U-(13)C]glucose for the determination of zeta(PC/PEPCK). Phi(PC) can be quantified by feeding [4-(13)C]glucose or [U-(12)C/U-(13)C]glucose (1 : 1), whereas Phi(DH) is accessible via [4-(13)C]glucose. The sensitivity for the quantification of a certain flux parameter can be influenced by superposition through other flux parameters in the network, but substrate and measured mass isotopomers of choice remain the same. In special cases, reduced labeling degree of the tracer substrate can increase the precision of flux analysis. Enhanced precision and flux information can be achieved via multiply labeled substrates. The presented approach can be applied for effective experimental design of (13)C tracer studies for metabolic flux analysis. Intensity ratios of other products such as glutamate, valine, phenylalanine, and riboflavin also sensitively reflect flux parameters, which underlines the great potential of mass spectrometry for flux analysis. Copyright 2001 Academic Press.
Overload effect and fatigue crack propagation in amorphous metallic alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaki, T.K.; Li, J.C.M.
1984-07-01
Fatigue crack propagation in amorphous metals has an overload effect which usually increases with the number of overload cycles. The variation of overload effect with delta K is explained by the size of the plastic zone which depends on delta K. A comparison of the spacing between striations and da/dN shows that the crack jumps a step about every hundred cycles. The featureless region is probably due to shear fracture along a shear band during overload. Both crack tip blunting and branching occur during the application of overload. Work hardening is not a necessary factor for the overloading effect.
In vivo operation of the pentose phosphate pathway in frog oocytes is limited by NADP+ availability.
Preller, A; Guixé, V; Ureta, T
1999-03-05
Evolution of CO2 from labelled glucose microinjected into frog oocytes in vivo may be ascribed to the pentose-P pathway, as measured by radioactive CO2 production from [1-(14)C] and [6-(14)C]glucose. Coinjection of NADP+ and [14C]glucose significantly stimulated 14CO2 production. The effect depends on the amount of NADP+ injected, half maximal stimulation being obtained at 0.13 mM. The increase in CO2 production was also observed with microinjected glucose-1-P, glucose-6-P or fructose-6-P used as substrates. Phenazine methosulfate, mimicked the effects of NADP+. A high NADPH/NADP+ ratio of 4.3 was found in the cells, the intracellular concentration of NADP+ being 19 microM.
Diethylentriaminepenta acetic acid glucose conjugates as a cell permeable iron chelator.
Mosayebnia, Mona; Shafiee-Ardestani, Mehdi; Pasalar, Parvin; Mashayekhi, Mojgan; Amanlou, Massoud
2014-01-01
To find out whether DTPA-DG complex can enhance clearance of intracellular free iron. Diethylenetriaminepentaacetic acid-D-deoxy-glucosamine (DTPA-DG) was synthesized and examined for its activity as a cell-permeable iron chelator in human hepatocellular carcinoma (HEPG2) cell line exposed to high concentration of iron sulfate and compared with deferoxamine (DFO), a prototype iron chelator. The effect of DTPA-DG on cell viability was monitored using the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide MTT assay as well. There was a significant increase of iron level after iron overload induction in HEPG2 cell culture. DTPA-DG presented a remarkable capacity to iron burden reducing with estimated 50% inhibitory concentration value of 65.77 nM. In fact, glycosyl moiety was gained access of DTPA to intracellular iron deposits through glucose transporter systems. DTPA-DG, more potent than DFO to sequester deposits of free iron with no profound toxic effect. The results suggest the potential of DTPA-DG in chelating iron and permitting its excretion from primary organ storage.
Vavaiya, Kamlesh V; Briski, Karen P
2007-10-24
While in vitro studies show that the oxidizable energy substrate, lactate, is a preferred fuel for CNS neurons during states of energy crisis, and that lactate may regulate neuronal glucose uptake under those conditions, its role in neuronal function in vivo remains controversial. Glucose-excited neurons in hindbrain dorsal vagal complex (DVC) monitor both glucose and lactate, and express both the glucose sensor, glucokinase (GK), and the SUR1 subunit of the plasma membrane energy transducer, K(ATP). Fourth ventricular lactate infusion exacerbates insulin-induced hypoglycemia (IIH) and IIH-associated patterns of DVC neuronal activation. We investigated the hypothesis that during glucoprivation, lactate regulates neuronal monocarboxylate and glucose transporter gene transcription in the DVC, and adjustments in these gene profiles are correlated with altered GK and SUR1 mRNA expression. We also examined whether caudal hindbrain lactate repletion alters the impact of hypoglycemia on substrate fuel uptake and metabolic sensing functions in other characterized metabolic monitoring sites, e.g., the ventromedial hypothalamic nucleus (VMH) and lateral hypothalamic area (LHA). qPCR was used to measure MCT2, GLUT3, GLUT4, GK, and SUR1 transcripts in the microdissected DVC, VMH, and LHA from groups of male rats treated by continuous infusion of aCSF or lactate into the caudal fourth ventricle (CV4), initiated prior to injection of Humulin R or saline. Blood glucose was decreased in response to insulin, a response that was significantly augmented by CV4 lactate infusion. IIH alone did not alter mean DVC MCT2, GLUT3, GLUT4, GK, or SUR1 mRNA levels, but these transcripts were increased in the lactate plus insulin group, relative to both euglycemic and aCSF-infused hypoglycemic rats. IIH decreased MCT2, GLUT3, and SUR1 gene profiles in the VMH; CV4 lactate infusion during IIH further diminished these transcripts, and suppressed GLUT4 and GK mRNA levels in this site. In LHA, IIH increased GLUT3 and SUR1 gene expression to an equal extent, with or without lactate, while GLUT4, MCT2, and GK mRNA levels were elevated only in response to lactate plus insulin. These studies show that caudal hindbrain-targeted delivery of exogenous lactate during IIH upregulates neuronal monocarboxylate and glucose transporter, GK, and SUR1 gene profiles in the DVC, and results in increased or decreased GLUT4 and GK mRNA in LHA and VMH, respectively. These data suggest that lactate and glucose utilization by DVC neurons may be enhanced in response to local lactate surfeit, alone or relative to glucose deficiency, and that increases in intracellular glucose and net energy yield may be correlated with elevated GK and SUR1 gene transcription, respectively, in local glucose sensing neurons. The results also imply that GLUT4- and GK-mediated glucose uptake and glucose sensing functions in the VMH and LHA may be reactive to DVC signaling of relative lactate abundance within the caudal hindbrain, and/or to physiological sequelae of this fuel augmentation, including amplified hypoglycemia.
Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime.
Zu, Shuai; Li, Wen-zhi; Zhang, Mingjian; Li, Zihong; Wang, Ziyu; Jameel, Hasan; Chang, Hou-min
2014-01-01
In this study, a two stage process was evaluated to increase the sugar recovery. Firstly, corn stover was treated with diluted hydrochloric acid to maximize the xylose yield, and then the residue was treated with lime to alter the lignin structure and swell the cellulose surface. The optimal condition was 120 °C and 40 min for diluted hydrochloric acid pretreatment followed by lime pretreatment at 60 °C for 12h with lime loading at 0.1 g/g of substrate. The glucose and xylose yield was 78.0% and 97.0%, respectively, with cellulase dosage at 5 FPU/g of substrate. The total glucose yield increased to 85.9% when the cellulase loading was increased to 10 FPU/g of substrate. This two stage process was effective due to the swelling of the internal surface, an increase in the porosity and a decrease in the degree of polymerization. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bradfield, Michael F A; Nicol, Willie
2016-11-01
Increased pentose phosphate pathway flux, relative to total substrate uptake flux, is shown to enhance succinic acid (SA) yields under continuous, non-growth conditions of Actinobacillus succinogenes biofilms. Separate fermentations of glucose and xylose were conducted in a custom, continuous biofilm reactor at four different dilution rates. Glucose-6-phosphate dehydrogenase assays were performed on cell extracts derived from in situ removal of biofilm at each steady state. The results of the assays were coupled to a kinetic model that revealed an increase in oxidative pentose phosphate pathway (OPPP) flux relative to total substrate flux with increasing SA titre, for both substrates. Furthermore, applying metabolite concentration data to metabolic flux models that include the OPPP revealed similar flux relationships to those observed in the experimental kinetic analysis. A relative increase in OPPP flux produces additional reduction power that enables increased flux through the reductive branch of the TCA cycle, leading to increased SA yields, reduced by-product formation and complete closure of the overall redox balance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Ji-Hye; Lee, Heeseob; Kim, Young-Wan
2009-01-09
A novel debranching enzyme from Nostoc punctiforme PCC73102 (NPDE) exhibits hydrolysis activity toward both {alpha}-(1,6)- and {alpha}-(1,4)-glucosidic linkages. The action patterns of NPDE revealed that branched chains are released first, and the resulting maltooligosaccharides are then hydrolyzed. Analysis of the reaction with maltooligosaccharide substrates labeled with {sup 14}C-glucose at the reducing end shows that NPDE specifically liberates glucose from the reducing end. Kinetic analyses showed that the hydrolytic activity of NPDE is greatly affected by the length of the substrate. The catalytic efficiency of NPDE increased considerably upon using substrates that can occupy at least eight glycone subsites such asmore » maltononaose and maltooctaosyl-{alpha}-(1,6)-{beta}-cyclodextrin. These results imply that NPDE has a unique subsite structure consisting of -8 to +1 subsites. Given its unique subsite structure, side chains shorter than maltooctaose in amylopectin were resistant to hydrolysis by NPDE, and the population of longer side chains was reduced.« less
Meroño, Tomás; Brites, Fernando; Dauteuille, Carolane; Lhomme, Marie; Menafra, Martín; Arteaga, Alejandra; Castro, Marcelo; Saez, María Soledad; Ballerga, Esteban González; Sorroche, Patricia; Rey, Jorge; Lesnik, Philippe; Sordá, Juan Andrés; Chapman, M John; Kontush, Anatol; Daruich, Jorge
2015-05-01
Iron overload (IO) has been associated with glucose metabolism alterations and increased risk of cardiovascular disease (CVD). Primary IO is associated with mutations in the HFE gene. To which extent HFE gene mutations and metabolic alterations contribute to the presence of atherogenic lipoprotein modifications in primary IO remains undetermined. The present study aimed to assess small, dense low-density lipoprotein (LDL) levels, chemical composition of LDL and high-density lipoprotein (HDL) particles, and HDL functionality in IO patients. Eighteen male patients with primary IO and 16 sex- and age-matched controls were recruited. HFE mutations (C282Y, H63D and S65C), measures of insulin sensitivity and secretion (calculated from the oral glucose tolerance test), chemical composition and distribution profile of LDL and HDL subfractions (isolated by gradient density ultracentrifugation) and HDL functionality (as cholesterol efflux and antioxidative activity) were studied. IO patients compared with controls exhibited insulin resistance (HOMA-IR (homoeostasis model assessment-estimated insulin resistance): +93%, P< 0.001). Metabolic profiles differed across HFE genotypes. C282Y homozygotes (n=7) presented a reduced β-cell function and insulin secretion compared with non-C282Y patients (n=11) (-58% and -73%, respectively, P< 0.05). In addition, C282Y homozygotes featured a predominance of large, buoyant LDL particles (C282Y: 43±5; non-C282Y: 25±8; controls: 32±7%; P< 0.001), whereas non-C282Y patients presented higher amounts of small, dense LDL (C282Y: 23±5; non-C282Y: 39±10; controls: 26±4%; P< 0.01). HDL particles were altered in C282Y homozygotes. However, HDL functionality was conserved. In conclusion, metabolic alterations and HFE gene mutations are involved in the presence of atherogenic lipoprotein modifications in primary IO. To what extent such alterations could account for an increase in CVD risk remains to be determined.
Prevalence of diabetes mellitus in Chinese children with thalassaemia major.
Liang, Yuzhen; Bajoria, Rekha; Jiang, Yan; Su, Hongwei; Pan, Hongfei; Xia, Ning; Chatterjee, Ratna; Lai, Yongrong
2017-06-01
Diabetes mellitus is a common endocrinopathy in patients with β-thalassaemia major (β-TM), which is high prevalent in southern China. This study aimed to determine the cause and prevalence of glycaemic disorders in Chinese children with β-TM. In this prospective study, fasting glucose and insulin (FINS) levels were assessed in 267 β-TM and 80 non-TM control children. Homeostatic model assessment (HOMA) and the quantitative insulin sensitivity check index (QUICKI) were evaluated. Iron overload was assessed by serum ferritin (SF), total units of blood transfused and cardiac T2*. β-TM had higher FPG (P < 0.001), FINS (P < 0.001) and HOMA-IR (P < 0.05), but lower QUICKI (P < 0.01) than those of controls. The impaired fasting glucose (IFG) was present in 30% of children, whereas 2% had diabetes. The prevalence of IFG in β-TM group was higher in children aged >10 years (OR 6.5; 95% CI 3.7-11.4; P < 0.001), SF of >2500 μg/l (OR 4.8; 95% CI 2.1-11.1; P < 0.01), serum ALT levels of >50 IU/l (OR 2.1; 95% CI 1.2-3.7; P < 0.05) and cardiac T2* of <20 ms (OR 3.3; 95% CI 1.7-6.6; P < 0. 01). The children on deferiprone (DFP) had a reduced incidence of glycaemic aberrations than those on other chelating agents (OR 0.4; 95% CI 0.23-0.8; P < 0.05). Our data suggest that IFG occurred in 30% of β TM children, perhaps due to insulin resistance secondary to iron overload. Deferiprone-containing chelating agent may have a protective effect. © 2017 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.
A discrete mathematical model applied to genetic regulation and metabolic networks.
Asenjo, A J; Ramirez, P; Rapaport, I; Aracena, J; Goles, E; Andrews, B A
2007-03-01
This paper describes the use of a discrete mathematical model to represent the basic mechanisms of regulation of the bacteria E. coli in batch fermentation. The specific phenomena studied were the changes in metabolism and genetic regulation when the bacteria use three different carbon substrates (glucose, glycerol, and acetate). The model correctly predicts the behavior of E. coli vis-à-vis substrate mixtures. In a mixture of glucose, glycerol, and acetate, it prefers glucose, then glycerol, and finally acetate. The model included 67 nodes; 28 were genes, 20 enzymes, and 19 regulators/biochemical compounds. The model represents both the genetic regulation and metabolic networks in an inrtegrated form, which is how they function biologically. This is one of the first attempts to include both of these networks in one model. Previously, discrete mathematical models were used only to describe genetic regulation networks. The study of the network dynamics generated 8 (2(3)) fixed points, one for each nutrient configuration (substrate mixture) in the medium. The fixed points of the discrete model reflect the phenotypes described. Gene expression and the patterns of the metabolic fluxes generated are described accurately. The activation of the gene regulation network depends basically on the presence of glucose and glycerol. The model predicts the behavior when mixed carbon sources are utilized as well as when there is no carbon source present. Fictitious jokers (Joker1, Joker2, and Repressor SdhC) had to be created to control 12 genes whose regulation mechanism is unknown, since glycerol and glucose do not act directly on the genes. The approach presented in this paper is particularly useful to investigate potential unknown gene regulation mechanisms; such a novel approach can also be used to describe other gene regulation situations such as the comparison between non-recombinant and recombinant yeast strain, producing recombinant proteins, presently under investigation in our group.
Mitacchione, Gianfranco; Powers, Jeffrey C; Grifoni, Gino; Woitek, Felix; Lam, Amy; Ly, Lien; Settanni, Fabio; Makarewich, Catherine A; McCormick, Ryan; Trovato, Letizia; Houser, Steven R; Granata, Riccarda; Recchia, Fabio A
2014-07-01
The gut-derived hormone ghrelin, especially its acylated form, plays a major role in the regulation of systemic metabolism and exerts also relevant cardioprotective effects; hence, it has been proposed for the treatment of heart failure (HF). We tested the hypothesis that ghrelin can directly modulate cardiac energy substrate metabolism. We used chronically instrumented dogs, 8 with pacing-induced HF and 6 normal controls. Human des-acyl ghrelin [1.2 nmol/kg per hour] was infused intravenously for 15 minutes, followed by washout (rebaseline) and infusion of acyl ghrelin at the same dose. (3)H-oleate and (14)C-glucose were coinfused and arterial and coronary sinus blood sampled to measure cardiac free fatty acid and glucose oxidation and lactate uptake. As expected, cardiac substrate metabolism was profoundly altered in HF because baseline oxidation levels of free fatty acids and glucose were, respectively, >70% lower and >160% higher compared with control. Neither des-acyl ghrelin nor acyl ghrelin significantly affected function and metabolism in normal hearts. However, in HF, des-acyl and acyl ghrelin enhanced myocardial oxygen consumption by 10.2±3.5% and 9.9±3.7%, respectively (P<0.05), and cardiac mechanical efficiency was not significantly altered. This was associated, respectively, with a 41.3±6.7% and 32.5±10.9% increase in free fatty acid oxidation and a 31.3±9.2% and 41.4±8.9% decrease in glucose oxidation (all P<0.05). Acute increases in des-acyl or acyl ghrelin do not interfere with cardiac metabolism in normal dogs, whereas they enhance free fatty acid oxidation and reduce glucose oxidation in HF dogs, thus partially correcting metabolic alterations in HF. This novel mechanism might contribute to the cardioprotective effects of ghrelin in HF. © 2014 American Heart Association, Inc.
Ben-Ari, Yehezkel; Tyzio, Roman; Nehlig, Astrid
2011-09-01
Brain slices incubated with glucose have provided most of our knowledge on cellular, synaptic, and network driven mechanisms. It has been recently suggested that γ-aminobutyric acid (GABA) excites neonatal neurons in conventional glucose-perfused slices but not when ketone bodies metabolites, pyruvate, and/or lactate are added, suggesting that the excitatory actions of GABA are due to energy deprivation when glucose is the sole energy source. In this article, we review the vast number of studies that show that slices are not energy deprived in glucose-containing medium, and that addition of other energy substrates at physiologic concentrations does not alter the excitatory actions of GABA on neonatal neurons. In contrast, lactate, like other weak acids, can produce an intracellular acidification that will cause a reduction of intracellular chloride and a shift of GABA actions. The effects of high concentrations of lactate, and particularly of pyruvate (4-5 mm), as used are relevant primarily to pathologic conditions; these concentrations not being found in the brain in normal "control" conditions. Slices in glucose-containing medium may not be ideal, but additional energy substrates neither correspond to physiologic conditions nor alter GABA actions. In keeping with extensive observations in a wide range of animal species and brain structures, GABA depolarizes immature neurons and the reduction of the intracellular concentration of chloride ([Cl(-)](i)) is a basic property of brain maturation that has been preserved throughout evolution. In addition, this developmental sequence has important clinical implications, notably concerning the higher incidence of seizures early in life and their long-lasting deleterious sequels. Immature neurons have difficulties exporting chloride that accumulates during seizures, leading to permanent increase of [Cl(-)](i) that converts the inhibitory actions of GABA to excitatory and hampers the efficacy of GABA-acting antiepileptic drugs. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.
Seebacher, Nicole A.; Lane, Darius J. R.; Jansson, Patric J.; Richardson, Des R.
2016-01-01
Pgp is functional on the plasma membrane and lysosomal membrane. Lysosomal-Pgp can pump substrates into the organelle, thereby trapping certain chemotherapeutics (e.g. doxorubicin; DOX). This mechanism serves as a “safe house” to protect cells against cytotoxic drugs. Interestingly, in contrast to DOX, lysosomal sequestration of the novel anti-tumor agent and P-glycoprotein (Pgp) substrate, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), induces lysosomal membrane permeabilization. This mechanism of lysosomal-Pgp utilization enhances cytotoxicity to multidrug-resistant cells. Consequently, Dp44mT has greater anti-tumor activity in drug-resistant relative to non-Pgp-expressing tumors. Interestingly, stressors in the tumor microenvironment trigger endocytosis for cell signaling to assist cell survival. Hence, this investigation examined how glucose variation-induced stress regulated early endosome and lysosome formation via endocytosis of the plasma membrane. Furthermore, the impact of glucose variation-induced stress on resistance to DOX was compared with Dp44mT and its structurally related analogue, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). These studies showed that glucose variation-induced stress-stimulated formation of early endosomes and lysosomes. In fact, through the process of fluid-phase endocytosis, Pgp was redistributed from the plasma membrane to the lysosomal membrane via early endosome formation. This lysosomal-Pgp actively transported the Pgp substrate, DOX, into the lysosome where it became trapped as a result of protonation at pH 5. Due to increased lysosomal DOX trapping, Pgp-expressing cells became more resistant to DOX. In contrast, cytotoxicity of Dp44mT and DpC was potentiated due to more lysosomes containing functional Pgp under glucose-induced stress. These thiosemicarbazones increased lysosomal membrane permeabilization and cell death. This mechanism has critical implications for drug-targeting in multidrug-resistant tumors where a stressful micro-environment exists. PMID:26601947
Zhang, Guangnan; Li, Yanyan; King, Mark J; Zhong, Qiaoting
2018-03-21
Motor vehicle overloading is correlated with the possibility of road crash occurrence and severity. Although overloading of motor vehicles is pervasive in developing nations, few empirical analyses have been performed on factors that might influence the occurrence of overloading. This study aims to address this shortcoming by seeking evidence from several years of crash data from Guangdong province, China. Data on overloading and other factors are extracted for crash-involved vehicles from traffic crash records for 2006-2010 provided by the Traffic Management Bureau in Guangdong province. Logistic regression is applied to identify risk factors for overloading in crash-involved vehicles and within these crashes to identify factors contributing to greater crash severity. Driver, vehicle, road and environmental characteristics and violation types are considered in the regression models. In addition to the basic logistic models, association analysis is employed to identify the potential interactions among different risk factors during fitting the logistic models of overloading and severity. Crash-involved vehicles driven by males from rural households and in an unsafe condition are more likely to be overloaded and to be involved in higher severity overloaded vehicle crashes. If overloaded vehicles speed, the risk of severe traffic crash casualties increases. Young drivers (aged under 25 years) in mountainous areas are more likely to be involved in higher severity overloaded vehicle crashes. This study identifies several factors associated with overloading in crash-involved vehicles and with higher severity overloading crashes and provides an important reference for future research on those specific risk factors. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Das, Subhash K; Patel, Vaibhav B; Basu, Ratnadeep; Wang, Wang; DesAulniers, Jessica; Kassiri, Zamaneh; Oudit, Gavin Y
2017-01-23
Sex-related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron-overload cardiomyopathy is poorly understood. Male and female wild-type and hemojuvelin-null mice were injected and fed with a high-iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron-overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron-overloaded mice based on echocardiographic and invasive pressure-volume analyses. Female mice demonstrated a marked suppression of iron-mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron-overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron-induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β-Estradiol therapy rescued the iron-overload cardiomyopathy in male wild-type mice. The responses in wild-type and hemojuvelin-null female mice were remarkably similar, highlighting a conserved mechanism of sex-dependent protection from iron-overload-mediated cardiac injury. Male and female mice respond differently to iron-overload-mediated effects on heart structure and function, and females are markedly protected from iron-overload cardiomyopathy. Ovariectomy in female mice exacerbated iron-induced myocardial injury and precipitated severe cardiac dysfunction during iron-overload conditions, whereas 17β-estradiol therapy was protective in male iron-overloaded mice. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Smeraglio, Anne C.; Kennedy, Emily K.; Horgan, Angela; Purnell, Jonathan Q.; Gillingham, Melanie B.
2013-01-01
Oral fructose decreases fat oxidation and increases carbohydrate (CHO) oxidation in obese subjects, but the metabolic response to fructose in lean individuals is less well understood. The purpose of this study was to assess the effects of a single fructose-rich mixed meal on substrate oxidation in young healthy non-obese males. We hypothesized that a decrease in fat oxidation and an increase in carbohydrate oxidation would be observed following a fructose-rich mixed meal compared to a glucose-rich mixed meal. Twelve healthy males, normal to overweight and age 23–31 years old, participated in a double-blind, cross-over study. Each participant completed two study visits, eating a mixed meal containing 30% of the calories from either fructose or glucose. Blood samples for glucose, insulin, triglycerides, and leptin as well as gas exchange by indirect calorimetry were measured intermittently for 7 hours. Serum insulin was higher after a fructose mixed meal but plasma glucose, plasma leptin and serum triglycerides were not different. Mean postprandial respiratory quotient and estimated fat oxidation did not differ between the fructose and glucose meals. The change in fat oxidation between the fructose and glucose rich meals negatively correlated with BMI (r=−0.59, P=0.04 and r=−0.59, P=0.04 at the 4 and 7 hour time points, respectively). In healthy non-obese males, BMI correlates with altered postprandial fat oxidation after a high-fructose mixed meal. The metabolic response to a high fructose meal may be modulated by BMI. PMID:23746558
Mithieux, G; Vega, F V; Riou, J P
1990-11-25
We have recently shown that the Ca.EGTA and Mg.EDTA complexes, but not free Ca2+ or Mg2+, inhibit the liver glucose-6-phosphatase (Mithieux, G., Vega, F. V., Beylot, M., and Riou, J. P. (1990) J. Biol. Chem. 265, 7257-7259). In this work, we report that, when complexed with Mg2+, two endogenous dicarboxylic keto acids (alpha-ketoglutarate (alpha-KG) and oxaloacetate (OAA] inhibit the glucose-6-phosphatase activity at low concentrations of substrate. This phenomenon is specific for complexes of Mg2+ with alpha-KG and OAA since 1) the complexes of Mg2+ with a number of other di- or tricarboxylic acids having high structural analogy with alpha-KG and OAA (oxalate, malate, succinate, citrate, aspartate, and glutamate) do not inhibit the glucose-6-phosphatase activity and 2) the Ca.alpha-KG and Ca.OAA chelates do not inhibit the glucose-6-phosphatase activity. In the presence of Mg.alpha-KG or Mg.OAA chelates, the enzyme displays sigmoid kinetics; the Hanes plots deviate from linearity, indicating the positive cooperative dependence of the velocity upon the substrate concentration. Hill coefficients (equal to 1 in the absence of the chelates) of 1.23 and 1.33 have been determined in the presence of Mg.alpha-KG and Mg.OAA complexes, respectively. The disruption of microsomal integrity by detergents abolishes the effect of Mg.alpha-KG and Mg.OAA, suggesting that the magnesium chelates inhibit the translocase component of the glucose-6-phosphatase system.
Costas Malvido, Mónica; Alonso González, Elisa; Pérez Guerra, Nelson
2016-09-01
Nisin production by Lactococcus lactis CECT 539 was followed in batch cultures in whey supplemented with different concentrations of glucose and in two realkalized fed-batch fermentations in unsupplemented whey, which were fed, respectively, with concentrated solutions of lactose and glucose. In the batch fermentations, supplementation of whey with glucose inhibited both the growth and bacteriocin production. However, fed-batch cultures were characterized with high productions of biomass (1.34 and 1.51 g l(-1)) and nisin (50.6 and 60.3 BU ml(-1)) in comparison to the batch fermentations in unsupplemented whey (0.48 g l(-1) and 22.5 BU ml(-1)) and MRS broth (1.59 g l(-1) and 50.0 BU ml(-1)). In the two realkalized fed-batch fermentations, the increase in bacteriocin production parallels both the biomass production and pH drop generated in each realkalization and feeding cycle, suggesting that nisin was synthesized as a pH-dependent primary metabolite. A shift from homolactic to heterolactic fermentation was observed at the 108 h of incubation, and other metabolites (acetic acid and butane-2,3-diol) in addition to lactic acid accumulated in the medium. On the other hand, the feeding with glucose improved the efficiencies in glucose, nitrogen, and phosphorus consumption as compared to the batch cultures. The realkalized fed-batch fermentations showed to be an effective strategy to enhance nisin production in whey by using an appropriate feeding strategy to avoid the substrate inhibition.
Hughes, Stephen R; Bang, Sookie S; Cox, Elby J; Schoepke, Andrew; Ochwat, Kate; Pinkelman, Rebecca; Nelson, Danielle; Qureshi, Nasib; Gibbons, William R; Kurtzman, Cletus P; Bischoff, Kenneth M; Liu, Siqing; Cote, Gregory L; Rich, Joseph O; Jones, Marjorie A; Cedeño, David; Doran-Peterson, Joy; Riaño-Herrera, Nestor M; Rodríguez-Valencia, Nelson; López-Núñez, Juan C
2013-08-01
The yeast Kluyveromyces marxianus is a potential microbial catalyst for fuel ethanol production from a wide range of biomass substrates. To improve its growth and ethanol yield at elevated temperature under microaerophilic conditions, K. marxianus NRRL Y-1109 was irradiated with UV-C using automated protocols on a robotic platform for picking and spreading irradiated cultures and for processing the resulting plates. The plates were incubated under anaerobic conditions on xylose or glucose for 5 mo at 46 °C. Two K. marxianus mutant strains (designated 7-1 and 8-1) survived and were isolated from the glucose plates. Both mutant strains, but not wild type, grew aerobically on glucose at 47 °C. All strains grew anaerobically at 46 °C on glucose, galactose, galacturonic acid, and pectin; however, only 7-1 grew anaerobically on xylose at 46 °C. Saccharomyces cerevisiae NRRL Y-2403 did not grow at 46 °C on any of these substrates. With glucose as a carbon source, ethanol yield after 3 d at 46 °C was higher for 8-1 than for wild type (0.51 and 0.43 g ethanol/g glucose, respectively). With galacturonic acid as a carbon source, the ethanol yield after 7 d at 46 °C was higher for 7-1 than for wild type (0.48 and 0.34 g ethanol/g galacturonic acid, respectively). These mutant strains have potential application in fuel ethanol production at elevated temperature from sugar constituents of starch, sucrose, pectin, and cellulosic biomass.
Bhakta, Samir A; Benavidez, Tomas E; Garcia, Carlos D
2014-09-15
A critical step for the development of biosensors is the immobilization of the biorecognition element to the surface of a substrate. Among other materials that can be used as substrates, block copolymers have the untapped potential to provide significant advantages for the immobilization of proteins. To explore such possibility, this manuscript describes the fabrication and characterization of thin-films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP). These films were then used to investigate the immobilization of glucose oxidase, a model enzyme for the development of biosensors. According to the results presented, the nanoporous films can provide significant increases in surface area of the substrate and the immobilization of larger amounts of active enzyme. The characterization of the substrate-enzyme interface discussed in the manuscript aims to provide critical information about relationship between the surface (material, geometry, and density of pores), the protein structure, and the immobilization conditions (pH, and protein concentration) required to improve the catalytic activity and stability of the enzymes. A maximum normalized activity of 3300±700 U m(-2) was achieved for the nanoporous film of PS-b-P2VP. Copyright © 2014 Elsevier Inc. All rights reserved.
Immobilization of Glucose Oxidase to Nanostructured Films of Polystyrene-block-poly(2-vinylpyridine)
Bhakta, Samir A; Benavidez, Tomas E; Garcia, Carlos D
2014-01-01
A critical step for the development of biosensors is the immobilization of the biorecognition element to the surface of a substrate. Among other materials that can be used as substrates, block copolymers have the untapped potential to provide significant advantages for the immobilization of proteins. To explore such possibility, this manuscript describes the fabrication and characterization of thin-films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP). These films were then used to investigate the immobilization of glucose oxidase, a model enzyme for the development of biosensors. According to the results presented, the nanoporous films can provide significant increases in surface area of the substrate and the immobilization of larger amounts of active enzyme. The characterization of the substrate-enzyme interface discussed in the manuscript aims to provide critical information about relationship between the surface (material, geometry, and density of pores), the protein structure, and the immobilization conditions (pH, ionic strength, and protein concentration) required to improve the catalytic activity and stability of the enzymes. A maximum normalized activity of 3300 ± 700 U m−2 was achieved for the nanoporous film of PS-b-P2VP. PMID:24980481
Electrochemically Driven Fermentation of Organic Substrates with Undefined Mixed Microbial Cultures.
Villano, Marianna; Paiano, Paola; Palma, Enza; Miccheli, Alfredo; Majone, Mauro
2017-08-10
Growing scientific interest in mixed microbial culture-based anaerobic biotechnologies for the production of value-added chemicals and fuels from organic waste residues requires a parallel focus on the development and implementation of strategies to control the distribution of products. This study examined the feasibility of an electrofermentation approach, based on the introduction of a polarized (-700 mV vs. the standard hydrogen electrode) graphite electrode in the fermentation medium, to steer the product distribution during the conversion of organic substrates (glucose, ethanol, and acetate supplied as single compounds or in mixtures) by undefined mixed microbial cultures. In batch experiments, the polarized electrode triggered a nearly 20-fold increase (relative to open circuit controls) in the yield of isobutyrate production (0.43±0.01 vs. 0.02±0.02 mol mol -1 glucose) during the anaerobic fermentation of the ternary mixture of substrates, without adversely affecting the rate of substrate bioconversion. The observed change in the fermentative metabolism was most likely triggered by the (potentiostatic) regulation of the oxidation-reduction potential of the reaction medium rather than by the electrode serving as an electron donor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sabater, David; Arriarán, Sofía; Romero, María Del Mar; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià
2014-01-01
White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.
Acetone-butanol fermentation of marine macroalgae.
Huesemann, Michael H; Kuo, Li-Jung; Urquhart, Lindsay; Gill, Gary A; Roesijadi, Guri
2012-03-01
The objective of this study was to subject mannitol, either as a sole carbon source or in combination with glucose, and aqueous extracts of the kelp Saccharina spp., containing mannitol and laminarin, to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible. Copyright © 2012 Elsevier Ltd. All rights reserved.
Aerobic and anaerobic glucose metabolism of Phytomonas sp. isolated from Euphorbia characias.
Chaumont, F; Schanck, A N; Blum, J J; Opperdoes, F R
1994-10-01
Metabolic studies on Phytomonas sp. isolated from the lactiferous tubes of the latex-bearing spurge Euphorbia characias indicate that glucose is the preferred energy and carbon substrate during logarithmic growth. In stationary phase cells glucose consumption was dramatically reduced. Glucose consumption and end-product formation were measured on logarithmically growing cells, both under aerobic (air and 95% O2/5% CO2) and anaerobic (95% N2/5% CO2 and 100% N2) conditions. The rate of glucose consumption slightly increased under anaerobic conditions indicating that Phytomonas lacks a 'reverse Pasteur' effect contrary to the situation encountered in Leishmania major. Major end-products of glucose catabolism under aerobic conditions, detected by enzymatic and NMR measurements, were acetate, ethanol and carbon dioxide and under anaerobic conditions ethanol, glycerol and carbon dioxide. Smaller amounts of pyruvate, succinate, L-malate, L-lactate, phosphoenolpyruvate, alanine and aspartate were also detected.
Hyun, C; Kim, S S; Sohng, J K; Hahn, J; Kim, J; Suh, J
2000-02-01
Specifically designed PCR primers were applied to amplify a segment of dTDP-glucose synthase gene from six actinomycete strains. About 300-bp or 580-bp DNA fragments were obtained from all the organisms tested. By DNA sequence analysis, seven amplified fragments showed high homology with dTDP-glucose synthase genes that participate in the biosynthesis of secondary metabolites or in deoxy-sugar moieties in lipopolysaccharides. In addition, we have cloned a 45-kb region of DNA from Streptomyces spectabilis ATCC27741, a spectinomycin producer which contained the dTDP-glucose synthase and dTDP-glucose 4,6-dehydratase genes named spcD and spcE, respectively. The spcE gene was expressed in Escherichia coli and the activity was assayed in cell extracts. The enzyme showed substrate specificity only to dTDP-glucose.
Umekawa, Midori; Ujihara, Masato; Nakai, Daiki; Takematsu, Hiromu; Wakayama, Mamoru
2017-11-01
Glucose uptake is crucial for providing both an energy source and a signal that regulates cell proliferation. Therefore, it is important to clarify the mechanisms underlying glucose uptake and its transmission to intracellular signaling pathways. In this study, we searched for a novel regulatory factor involved in glucose-induced signaling by using Saccharomyces cerevisiae as a eukaryotic model. Requirement of the extracellular protein Ecm33 in efficient glucose uptake and full activation of the nutrient-responsive TOR kinase complex 1 (TORC1) signaling pathway is shown. Cells lacking Ecm33 elicit a series of starvation-induced pathways even in the presence of extracellular high glucose concentration. This results in delayed cell proliferation, reduced ATP, induction of autophagy, and dephosphorylation of the TORC1 substrates Atg13 and Sch9. © 2017 Federation of European Biochemical Societies.
Del Blanco, Alba; Caro, Irma; Quinto, Emiliano J; Mateo, Javier
2017-04-01
Meat spoilage greatly depends on meat composition and storage conditions. Microbial and biochemical changes in minced pork (100-g portions) wrapped with a polyvinyl chloride film during a 4-day refrigerated storage were studied. As glucose is the first substrate used by spoilage bacteria and when it is depleted bacteria could generate undesirable volatiles, the effect of the addition of glucose to minced meat was also studied. Three treatments were used: control (C), without added glucose, and low and high glucose concentration (L and H), 150mg and 750mg of glucose in 100g of meat, respectively. Spoilage bacteria, pH, redox potential, colour, basic volatile nitrogen, glucose, organic acids, and volatiles were analyzed in both recently prepared and stored pork samples. Storage resulted in increased levels of lactic acid bacteria and glucose-derived short chain alkyl volatiles, and a decrease in redox potential and volatile aldehyde levels. The addition of glucose to meat did not affect the biochemical characteristics of stored minced pork. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of Combinations of Substrates on Maximum Growth Rates of Several Rumen Bacteria
Russell, James B.; Delfino, Frank J.; Baldwin, R. L.
1979-01-01
Five rumen bacteria, Selenomonas ruminantium, Bacteroides ruminicola, Megasphaera elsdenii, Butyrivibrio fibrisolvens, and Streptococcus bovis were grown in media containing nonlimiting concentrations of glucose, sucrose, maltose, cellobiose, xylose and/or lactate. Each bacterium was grown with every substrate that it could ferment in every possible two-way combination. Only once did a combination of substrates result in a higher maximum growth rate than that observed with either substrate alone. Such stimulations of growth rate would be expected if specific factors unique to individual substrates (transport proteins and/or enzymes) were limiting. Since such synergisms were rare, it was concluded that more general factors limit maximum growth rates in these five bacteria. PMID:16345360
Physical activity behavior and role overload in mothers.
Lovell, Geoff P; Butler, Frances R
2015-01-01
We examined physical activity stages of change, physical activity behavior, and role overload in different stages of motherhood in a predominantly Australian sample. Neither physical activity behavior, stages of physical activity change, nor role overload significantly differed across motherhood groups. Role overload was significantly higher for mothers in the contemplation, planning, and action stages of physical activity than in the maintenance stage of change. Role overload had a weak, although significant, negative correlation with leisure-time physical activity. We conclude that strategies focused upon reducing role overload or perceived role overload have only limited potential to meaningfully increase leisure-time physical activity in mothers.
A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes.
Chen, Chih-Yu; Chen, Tzu-Yu; Chung, Ying-Chien
2014-01-01
Microbial fuel cells (MFCs) can, besides running on wastewater, also derive energy directly from certain aquatic plants. However, few studies have focussed on electricity generation using aerobic anodes. This study presents a comparison of the MFC performances of an anaerobic-anode MFC (ana-MFC) and an aerobic-anode MFC (aa-MFC), and shows their individual conditions for optimal operation. Results show that the maximum power density of 7.07 +/- 0.45 mW/m2 for the ana-MFC occurred at 500 omega, whereas the aa-MFC had a maximum power density of 2.34 +/- 0.16 mW/m2 at 2200 omega. The ana-MFC generally achieved high electricity generation, and the aa-MFC achieved relatively high electricity generation when fed with a diluted substrate. In the ana-MFC, the optimal substrate for electricity generation was glucose (fermentable substrate); however, glucose and acetic acid (non-fermentable substrate) were both suitable substrates for the aa-MFC. The optimal gas retention times of the ana-MFC and the aa-MFC were 9 and 120 s, respectively. This retention time is an important limiting factor of electricity generation for the ana-MFC. The aa-MFCs fed with different substrates exhibited non-significant differences between bacterial communities. We observed the relative diversities of bacterial communities in the ana-MFC fed with various substrates. The results of denaturing gradient gel electrophoresis analysis suggest that Ochrobactrum intermedium, Delftia acidovorans, and Citrobacterfreundii may be potential electrogenic bacteria. To our knowledge, this is the first study comparing the MFC performances of anaerobic and aerobic anodes.
Ahlsson, Fredrik; Diderholm, Barbro; Ewald, Uwe; Jonsson, Björn; Forslund, Anders; Stridsberg, Mats; Gustafsson, Jan
2013-05-01
The role of adipokines in the regulation of energy substrate production in non-diabetic pregnant women has not been elucidated. We hypothesize that serum concentrations of adiponectin are related to fetal growth via maternal fat mass, insulin resistance and glucose production, and further, that serum levels of leptin are associated with lipolysis and that this also influences fetal growth. Hence, we investigated the relationship between adipokines, energy substrate production, insulin resistance, body composition and fetal weight in non-diabetic pregnant women in late gestation. Twenty pregnant women with normal glucose tolerance were investigated at 36 weeks of gestation at Uppsala University Hospital. Levels of adipokines were related to rates of glucose production and lipolysis, maternal body composition, insulin resistance, resting energy expenditure and estimated fetal weights. Rates of glucose production and lipolysis were estimated by stable isotope dilution technique. Median (range) rate of glucose production was 805 (653-1337) μmol/min and that of glycerol production, reflecting lipolysis, was 214 (110-576) μmol/min. HOMA insulin resistance averaged 1.5 ± 0.75 and estimated fetal weights ranged between 2670 and 4175 g (-0.2 to 2.7 SDS). Mean concentration of adiponectin was 7.2 ± 2.5mg/L and median level of leptin was 47.1 (9.9-58.0) μg/L. Adiponectin concentrations (7.2 ± 2.5mg/L) correlated inversely with maternal fat mass, insulin resistance, glucose production and fetal weight, r=-0.50, p<0.035, r=-0.77, p<0.001, r=-0.67, p<0.002, and r=-0.51, p<0.032, respectively. Leptin concentrations correlated with maternal fat mass and insulin resistance, r=0.76, p<0.001 and r=0.73, p<0.001, respectively. There was no correlation between maternal levels of leptin and rate of glucose production or fetal weight. Neither were any correlations found between levels of leptin or adiponectin and maternal lipolysis or resting energy expenditure. The inverse correlations between levels of maternal adiponectin and insulin resistance as well as endogenous glucose production rates indicate that low levels of adiponectin in obese pregnant women may represent one mechanism behind increased fetal size. Maternal levels of leptin are linked to maternal fat mass and its metabolic consequences, but the data indicate that leptin lacks a regulatory role with regard to maternal lipolysis in late pregnancy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Yu, S; Ahmad, T; Kenne, L; Pedersén, M
1995-05-11
The alpha-1,4-glucan lyase (EC 4.2.2.-), purified from the red alga Gracilariopsis lemaneiformis, is a single polypeptide with a molecular mass of 116,654 Da as determined by matrix-assisted laser-desorption mass spectrometry. It degraded maltose, maltosaccharides, amylose, amylopectin and glycogen, forming 1,5-anhydro-D-fructose from the non-reducing end groups. The substrate specificity, mode of action, and cleavage mechanism of the enzyme were studied by using various naturally occurring and synthesized substrates. This enzyme was highly specific for the alpha-1,4-D-glucosidic bond. When a linear alpha-1,4-glucan was used as substrate, the enzyme split the substrate from the non-reducing end and released 1,5-anhydro-D-fructose successively until only one glucose unit was left. When a branched pentasaccharide of 6(2)-alpha-maltosylmaltotriose, obtained from glycogen by alpha-amylase limitation, was used as substrate, the glucose group in the 4-position of the 4,6-branched residue was not cleaved off. Using maltoheptaose as substrate and following the reaction with HPLC and 1H-NMR spectroscopy, it was found that the action mode of the lyase followed a multichain attack mechanism. 1H- and 13C-NMR spectroscopic studies on unlabelled and labelled amylose (1-2H, 2-2H, 1-13C) as substrates indicated that the lyase cleaved the C-(1')-O(4) bond forming a double bond between C-1' and C-2', thus forming the enol form of 1,5-anhydro-D-fructose. It also indicated that the catalytic process of the lyase involved proton exchanges among C-1, C-2, C-3 and the solvent.
Iron overload patients with unknown etiology from national survey in Japan.
Ikuta, Katsuya; Hatayama, Mayumi; Addo, Lynda; Toki, Yasumichi; Sasaki, Katsunori; Tatsumi, Yasuaki; Hattori, Ai; Kato, Ayako; Kato, Koichi; Hayashi, Hisao; Suzuki, Takahiro; Kobune, Masayoshi; Tsutsui, Miyuki; Gotoh, Akihiko; Aota, Yasuo; Matsuura, Motoo; Hamada, Yuzuru; Tokuda, Takahiro; Komatsu, Norio; Kohgo, Yutaka
2017-03-01
Transfusion is believed to be the main cause of iron overload in Japan. A nationwide survey on post-transfusional iron overload subsequently led to the establishment of guidelines for iron chelation therapy in this country. To date, however, detailed clinical information on the entire iron overload population in Japan has not been fully investigated. In the present study, we obtained and studied detailed clinical information on the iron overload patient population in Japan. Of 1109 iron overload cases, 93.1% were considered to have occurred post-transfusion. There were, however, 76 cases of iron overload of unknown origin, which suggest that many clinicians in Japan may encounter some difficulty in correctly diagnosing and treating iron overload. Further clinical data were obtained for 32 cases of iron overload of unknown origin; median of serum ferritin was 1860.5 ng/mL. As occurs in post-transfusional iron overload, liver dysfunction was found to be as high as 95.7% when serum ferritin levels exceeded 1000 ng/mL in these patients. Gene mutation analysis of the iron metabolism-related genes in 27 cases of iron overload with unknown etiology revealed mutations in the gene coding hemojuvelin, transferrin receptor 2, and ferroportin; this indicates that although rare, hereditary hemochromatosis does occur in Japan.
Ding, Fan; Yao, Jia; Zhao, Liqin; Mao, Zisu; Chen, Shuhua; Brinton, Roberta Diaz
2013-01-01
Previously, we demonstrated that reproductive senescence in female triple transgenic Alzheimer's (3×TgAD) mice was paralleled by a shift towards a ketogenic profile with a concomitant decline in mitochondrial activity in brain, suggesting a potential association between ovarian hormone loss and alteration in the bioenergetic profile of the brain. In the present study, we investigated the impact of ovariectomy and 17β-estradiol replacement on brain energy substrate availability and metabolism in a mouse model of familial Alzheimer's (3×TgAD). Results of these analyses indicated that ovarian hormones deprivation by ovariectomy (OVX) induced a significant decrease in brain glucose uptake indicated by decline in 2-[(18)F]fluoro-2-deoxy-D-glucose uptake measured by microPET-imaging. Mechanistically, OVX induced a significant decline in blood-brain-barrier specific glucose transporter expression, hexokinase expression and activity. The decline in glucose availability was accompanied by a significant rise in glial LDH5 expression and LDH5/LDH1 ratio indicative of lactate generation and utilization. In parallel, a significant rise in ketone body concentration in serum occurred which was coupled to an increase in neuronal MCT2 expression and 3-oxoacid-CoA transferase (SCOT) required for conversion of ketone bodies to acetyl-CoA. In addition, OVX-induced decline in glucose metabolism was paralleled by a significant increase in Aβ oligomer levels. 17β-estradiol preserved brain glucose-driven metabolic capacity and partially prevented the OVX-induced shift in bioenergetic substrate as evidenced by glucose uptake, glucose transporter expression and gene expression associated with aerobic glycolysis. 17β-estradiol also partially prevented the OVX-induced increase in Aβ oligomer levels. Collectively, these data indicate that ovarian hormone loss in a preclinical model of Alzheimer's was paralleled by a shift towards the metabolic pathway required for metabolism of alternative fuels in brain with a concomitant decline in brain glucose transport and metabolism. These findings also indicate that estrogen plays a critical role in sustaining brain bioenergetic capacity through preservation of glucose metabolism.
... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...
Metabolic engineering to expand the substrate spectrum of Pseudomonas putida toward sucrose.
Löwe, Hannes; Schmauder, Lukas; Hobmeier, Karina; Kremling, Andreas; Pflüger-Grau, Katharina
2017-08-01
Sucrose is an important disaccharide used as a substrate in many industrial applications. It is a major component of molasses, a cheap by-product of the sugar industry. Unfortunately, not all industrially relevant organisms, among them Pseudomonas putida, are capable of metabolizing sucrose. We chose a metabolic engineering approach to circumvent this blockage and equip P. putida with the activities necessary to consume sucrose. Therefore, we constructed a pair of broad-host range mini-transposons (pSST - sucrose splitting transposon), carrying either cscA, encoding an invertase able to split sucrose into glucose and fructose, or additionally cscB, encoding a sucrose permease. Introduction of cscA was sufficient to convey sucrose consumption and the additional presence of cscB had no further effect, though the sucrose permease was built and localized to the membrane. Sucrose was split extracellularly by the activity of the invertase CscA leaking out of the cell. The transposons were also used to confer sucrose consumption to Cupriavidus necator. Interestingly, in this strain, CscB acted as a glucose transporter, such that C. necator also gained the ability to grow on glucose. Thus, the pSST transposons are functional tools to extend the substrate spectrum of Gram-negative bacterial strains toward sucrose. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Marioli, Dimitra J; Koika, Vasiliki; Adonakis, George L; Saltamavros, Alexandros D; Karela, Anastasia; Armeni, Anastasia K; Tsapanos, Vasilios S; Decavalas, George O; Georgopoulos, Neoklis A
2010-06-01
The aim of the present study was to determine the prevalence and association of the G972S polymorphism of the insulin receptor substrate-1 gene (IRS-1 G972S SNP) with polycystic ovary syndrome (PCOS) and insulin resistance-related traits in a distinct phenotypic group of lean PCOS women with biochemical hyperandrogenemia, excluding obesity, which is considered to be an aggravating parameter of insulin resistance. The study included 162 women with PCOS and 122 regularly menstruating, ovulatory women as controls. Physical measurements included weight, height, fat-free mass, fat mass, systolic and diastolic blood pressure and resting heart rate. Biochemical parameters included the serum testosterone, free testosterone, androstenedione, total cholesterol, triglycerides, HDL and LDL cholesterol and glucose levels. Insulin resistance was assessed by determining fasting insulin levels, fasting glucose levels, the fasting glucose/insulin ratio, as well as the HOMA and QUICKI indexes. All DNA samples were genotyped by a PCR-restriction fragment length polymorphism (RLFP) assay. No association of the genotype frequencies of the G972S polymorphism in insulin receptor substrate-1 gene (IRS-1 G972S SNP) with PCOS phenotype and insulin resistance was detected. The G972S polymorphism of the IRS-1 gene should not be viewed as major contributor to the development of PCOS or as a causative variant for insulin resistance.
Wu, Tongzhi; Zhao, Beiyi R; Bound, Michelle J; Checklin, Helen L; Bellon, Max; Little, Tanya J; Young, Richard L; Jones, Karen L; Horowitz, Michael; Rayner, Christopher K
2012-01-01
Macronutrient "preloads" can stimulate glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), slow gastric emptying, and reduce postprandial glycemic excursions. After sweet preloads, these effects may be signaled by sodium-glucose cotransporter-1 (SGLT1), sweet taste receptors, or both. We determined the effects of 4 sweet preloads on GIP and GLP-1 release, gastric emptying, and postprandial glycemia. Ten healthy subjects were studied on 4 separate occasions each. A preload drink containing 40 g glucose, 40 g tagatose/isomalt mixture (TIM), 40 g 3-O-methylglucose (3OMG; a nonmetabolized substrate of SGLT1), or 60 mg sucralose was consumed 15 min before a (13)C-octanoic acid-labeled mashed potato meal. Blood glucose, plasma total GLP-1 and GIP, serum insulin, and gastric emptying were determined. Both glucose and 3OMG stimulated GLP-1 and GIP release in advance of the meal (each P < 0.05), whereas TIM and sucralose did not. The overall postprandial GLP-1 response was greater after glucose, 3OMG, and TIM than after sucralose (P < 0.05), albeit later after TIM than the other preloads. The blood glucose and insulin responses in the first 30 min after the meal were greatest after glucose (each P < 0.05). Gastric emptying was slower after both 3OMG and TIM than after sucralose (each P < 0.05). In healthy humans, SGLT1 substrates stimulate GLP-1 and GIP and slow gastric emptying, regardless of whether they are metabolized, whereas the artificial sweetener sucralose does not. Poorly absorbed sweet tastants (TIM), which probably expose a greater length of gut to nutrients, result in delayed GLP-1 secretion but not in delayed GIP release. These observations have the potential to optimize the use of preloads for glycemic control. This trial was registered at www.actr.org.au as ACTRN12611000775910.
Kaur, Bhupinder; Quek Yu Chin, Rina; Camps, Stefan; Henry, Christiani Jeyakumar
2016-06-01
Low glycaemic index (GI) foods are known to minimize large fluctuations in blood glucose levels and have been suggested to increase fat oxidation. The objective of this study was to simultaneously investigate glucose excursion and substrate oxidation in a whole body calorimetre when Chinese male subjects were provided a low or high GI meal. In a randomized, controlled crossover non blind design, 12 healthy Chinese male adults (BMI 21.8 ± 1.3 kgm -2 ) attended two sessions consisting of either four low or high glycaemic meals (LGI vs HGI). Breakfast, lunch and snack were consumed in a whole body calorimetre while dinner was consumed at home. Daily changes in glycaemic response (GR) and postprandial GR responses were measured using a continuous glucose monitoring system. The GR was further calculated to obtain the incremental area under the curve (iAUC) for glucose concentrations. Glycaemic variability was calculated as mean amplitude of glycaemic excursion (MAGE). Substrate oxidation was calculated by measuring respiratory quotient and urine nitrogen excretion. After LGI meals in the whole body calorimetre, iAUC for glucose (P = 0.008) was lower compared to the HGI session. The HGI treatment produced a significantly greater MAGE than the LGI treatment over the 24 hour period (P < 0.001). Additionally, higher fat oxidation and lower carbohydrate oxidation were observed following breakfast and lunch when comparing LGI to HGI (P < 0.05). Consumption of LGI meals was capable of attenuating 24-hour blood glucose profiles and decreasing postprandial glucose excursions in healthy Asian males. Additionally, LGI mixed meals were able to promote fat oxidation over carbohydrate oxidation when compared to HGI mixed meals. The consumption of low GI meals may be a strategic approach in improving overall glycaemia and increasing fat oxidation in Asians consuming a high carbohydrate diet.
Bouzas, Isabel Cristina da Silva; Cader, Samária Ali; Leão, Lenora; Kuschnir, Maria Cristina; Braga, Claudia
2014-12-01
To assess the importance of the menstrual pattern as a marker for clinical and laboratory alterations related to metabolic syndrome (MS) and polycystic ovary syndrome (PCOS) among Brazilian adolescents. A cross-sectional study. Endocrine Gynecology Outpatient Clinic of the Adolescent Health Studies Center (NESA) at the Pedro Ernesto University Hospital. 59 girls (12-19 years old) were classified by their menstrual cycles as regular (n = 23) and irregular (n = 36). None. Biochemical collections were made of peripheral blood after fasting for 12 hours, and the oral glucose tolerance test with 75 g of anhydrous glucose. PCOS, MS, and the criteria for MS were significantly more frequent (P < .05) in the subgroup with irregular menstruation. Adolescents with irregular cycles presented a significant increase in waist circumference, glycemia 2 hours after oral glucose overload (2 h), fasting and 2-h insulin, HOMA-IR, and triglycerides. In contrast, the glucose/insulin ratio, quantitative insulin-sensitivity check index, and HDL serum levels were significantly lower among patients with irregular menstruation, compared to those with regular cycles. In the logistic regression, we noted that insulin 2 h ≥ 75 μIU/mL (r = 1.90; P = .018), waist circumference > 95 cm (r = 2.21; P = .006) and diagnosis of PCOS (r = 1.93; P = .023) were significantly correlated to irregular cycles. We concluded that close observation of menstrual cycle patterns is an important tool for identifying adolescents at higher risk of developing PCOS and MS. Copyright © 2014 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.
Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death
Graham, Nicholas A; Tahmasian, Martik; Kohli, Bitika; Komisopoulou, Evangelia; Zhu, Maggie; Vivanco, Igor; Teitell, Michael A; Wu, Hong; Ribas, Antoni; Lo, Roger S; Mellinghoff, Ingo K; Mischel, Paul S; Graeber, Thomas G
2012-01-01
The altered metabolism of cancer can render cells dependent on the availability of metabolic substrates for viability. Investigating the signaling mechanisms underlying cell death in cells dependent upon glucose for survival, we demonstrate that glucose withdrawal rapidly induces supra-physiological levels of phospho-tyrosine signaling, even in cells expressing constitutively active tyrosine kinases. Using unbiased mass spectrometry-based phospho-proteomics, we show that glucose withdrawal initiates a unique signature of phospho-tyrosine activation that is associated with focal adhesions. Building upon this observation, we demonstrate that glucose withdrawal activates a positive feedback loop involving generation of reactive oxygen species (ROS) by NADPH oxidase and mitochondria, inhibition of protein tyrosine phosphatases by oxidation, and increased tyrosine kinase signaling. In cells dependent on glucose for survival, glucose withdrawal-induced ROS generation and tyrosine kinase signaling synergize to amplify ROS levels, ultimately resulting in ROS-mediated cell death. Taken together, these findings illustrate the systems-level cross-talk between metabolism and signaling in the maintenance of cancer cell homeostasis. PMID:22735335
NASA Astrophysics Data System (ADS)
Abdul Razak, Khairunisak; Neoh, Soo Huan; Ridhuan, N. S.; Mohamad Nor, Noorhashimah
2016-09-01
The properties of ZnO nanorods (ZnONRs) decorated with platinum nanodendrites (PtNDs) were studied. Various sizes of PtNDs were synthesized and spin coated onto ZnONRs, which were grown on indium-titanium-oxide (ITO) substrates through a low-temperature hydrothermal method. Scanning electron microscopy and X-ray diffraction analyses were conducted to analyze the morphology and structural properties of the electrodes. The effects of PtND size, glucose concentration, and Nafion amount on glucose-sensing properties were investigated. The glucose-sensing properties of electrodes with immobilized glucose oxidase (GOx) were measured using cyclic voltammetry. The bio-electrochemical properties of Nafion/GOx/42 nm PtNDs/ZnONRs/ITO glucose sensor was observed with linear range within 1-18 mM, with a sensitivity value of 5.85 μA/mM and a limit of detection of 1.56 mM. The results of this study indicate that PtNDs/ZnONRs/ITO has potential in glucose sensor applications.
Zhai, Hong; Feng, Ting; Dong, Lingyu; Wang, Liyun; Wang, Xiangfeng; Liu, Hailing; Liu, Yuan; Chen, Luan; Xie, MengXia
2016-08-01
A novel dual emission ratiometric fluorescence probe for determination of glucose has been developed. The reference dye fluorescence isothiocyanate (FITC) has been encapsulated in the silica nanoparticles and then the red emission CdTe QDs were grafted on the surface of the silica particles to obtain the fluorescence probe. With glucose and dopamine as substrates, the glucose level was proportional to the fluorescence ratio change of above probe caused by dopamine oxidation, which was produced via bienzyme catalysis (glucose oxidase and horseradish peroxidase). The established approach was sensitive and selective, and has been applied to determine the glucose in beverage, urine and serum samples. The average recoveries of the glucose at various spiking levels ranged from 95.5% to 108.9% with relative standard deviations from 1.5% to 4.3%. The results provided a clue to develop sensors for rapid determination of the target analytes from complex matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei
2013-05-01
The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol-gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. Copyright © 2013 Elsevier B.V. All rights reserved.
Vaillant, Fanny; Lauzier, Benjamin; Ruiz, Matthieu; Shi, Yanfen; Lachance, Dominic; Rivard, Marie-Eve; Bolduc, Virginie; Thorin, Eric; Tardif, Jean-Claude; Des Rosiers, Christine
2016-10-01
While heart rate reduction (HRR) is a target for the management of patients with heart disease, contradictory results were reported using ivabradine, which selectively inhibits the pacemaker I f current, vs. β-blockers like metoprolol. This study aimed at testing whether similar HRR with ivabradine vs. metoprolol differentially modulates cardiac energy substrate metabolism, a factor determinant for cardiac function, in a mouse model of dyslipidemia (hApoB +/+ ;LDLR -/- ). Following a longitudinal study design, we used 3- and 6-mo-old mice, untreated or treated for 3 mo with ivabradine or metoprolol. Cardiac function was evaluated in vivo and ex vivo in working hearts perfused with 13 C-labeled substrates to assess substrate fluxes through energy metabolic pathways. Compared with 3-mo-old, 6-mo-old dyslipidemic mice had similar cardiac hemodynamics in vivo but impaired (P < 0.001) contractile function (aortic flow: -45%; cardiac output: -34%; stroke volume: -35%) and glycolysis (-24%) ex vivo. Despite inducing a similar 10% HRR, ivabradine-treated hearts displayed significantly higher stroke volume values and glycolysis vs. their metoprolol-treated counterparts ex vivo, values for the ivabradine group being often not significantly different from 3-mo-old mice. Further analyses highlighted additional significant cardiac alterations with disease progression, namely in the total tissue level of proteins modified by O-linked N-acetylglucosamine (O-GlcNAc), whose formation is governed by glucose metabolism via the hexosamine biosynthetic pathway, which showed a similar pattern with ivabradine vs. metoprolol treatment. Collectively, our results emphasize the implication of alterations in cardiac glucose metabolism and signaling linked to disease progression in our mouse model. Despite similar HRR, ivabradine, but not metoprolol, preserved cardiac function and glucose metabolism during disease progression. Copyright © 2016 the American Physiological Society.
Zhang, Yijia; Chu, Mi; Yang, Lu; Tan, Yueming; Deng, Wenfang; Ma, Ming; Su, Xiaoli; Xie, Qingji
2014-08-13
We report here three-dimensional graphene networks (3D-GNs) as a novel substrate for the immobilization of laccase (Lac) and dopamine (DA) and its application in glucose/O2 biofuel cell. 3D-GNs were synthesized with an Ni(2+)-exchange/KOH activation combination method using a 732-type sulfonic acid ion-exchange resin as the carbon precursor. The 3D-GNs exhibited an interconnected network structure and a high specific surface area. DA was noncovalently functionalized on the surface of 3D-GNs with 3,4,9,10-perylene tetracarboxylic acid (PTCA) as a bridge and used as a novel immobilized mediating system for Lac-based bioelectrocatalytic reduction of oxygen. The 3D-GNs-PTCA-DA nanocomposite modified glassy carbon electrode (GCE) showed stable and well-defined redox current peaks for the catechol/o-quinone redox couple. Due to the mediated electron transfer by the 3D-GNs-PTCA-DA nanocomposite, the Nafion/Lac/3D-GNs-PTCA-DA/GCE exhibited high catalytic activity for oxygen reduction. The 3D-GNs are proven to be a better substrate for Lac and its mediator immobilization than 2D graphene nanosheets (2D-GNs) due to the interconnected network structure and high specific surface area of 3D-GNs. A glucose/O2 fuel cell using Nafion/Lac/3D-GNs-PTCA-DA/GCE as the cathode and Nafion/glucose oxidase/ferrocence/3D-GNs/GCE as the anode can output a maximum power density of 112 μW cm(-2) and a short-circuit current density of 0.96 mA cm(-2). This work may be helpful for exploiting the popular 3D-GNs as an efficient electrode material for many other biotechnology applications.
Carbon mineralization in acidic, xeric forest soils: induction of new activities.
Tate, R L
1985-08-01
Carbon mineralization was examined in Lakehurst and Atsion sands collected from the New Jersey Pinelands and in Pahokee muck from the Everglades Agricultural Area. Objectives were (i) to estimate the carbon mineralization capacities of acidic, xeric Pinelands soils in the absence of exogenously supplied carbon substrate (nonamended carbon mineralization rate) and to compare these activities with those of agriculturally developed pahokee muck, and (ii) to measure the capacity for increased carbon mineralization in the soils after carbon amendment. In most cases, nonamended carbon mineralization rates were greater in samples of the acid- and moisture-stressed Pinelands soils than in Pahokee muck collected from a fallow (bare) field. Carbon amendment resulted in augmented catabolic activity in Pahokee muck samples, suggesting that the microbial community was carbon limited in this soil. With many of the substrates, no stimulation of the catabolic rate was detected after amendment of Pinelands soils. This was documented by the observation that amendment of Pahokee muck with an amino acid mixture, glucose, or acetate resulted in a 3.0-, 3.9-, or 10.5-fold stimulation of catabolic activity, respectively, for the added substrate. In contrast, amendment of the Pinelands soils resulted in increased amino acid and acetate catabolic rates in Lakehurst sand and increased acetate metabolism only in Atsion sand. Other activities were unchanged. The increased glucose respiration rates resulted from stimulation of existing microbial activity rather than from microbial proliferation since no change in the microbial growth rate, as estimated by the rate of incorporation of C-labeled acetate into cell membranes, occurred after glucose amendment of the soils. A stimulation of microbial growth rate was recorded with glucose-amended Lakehurst sand collected from the B horizon.
Carbon Mineralization in Acidic, Xeric Forest Soils: Induction of New Activities †
Tate, Robert L.
1985-01-01
Carbon mineralization was examined in Lakehurst and Atsion sands collected from the New Jersey Pinelands and in Pahokee muck from the Everglades Agricultural Area. Objectives were (i) to estimate the carbon mineralization capacities of acidic, xeric Pinelands soils in the absence of exogenously supplied carbon substrate (nonamended carbon mineralization rate) and to compare these activities with those of agriculturally developed pahokee muck, and (ii) to measure the capacity for increased carbon mineralization in the soils after carbon amendment. In most cases, nonamended carbon mineralization rates were greater in samples of the acid- and moisture-stressed Pinelands soils than in Pahokee muck collected from a fallow (bare) field. Carbon amendment resulted in augmented catabolic activity in Pahokee muck samples, suggesting that the microbial community was carbon limited in this soil. With many of the substrates, no stimulation of the catabolic rate was detected after amendment of Pinelands soils. This was documented by the observation that amendment of Pahokee muck with an amino acid mixture, glucose, or acetate resulted in a 3.0-, 3.9-, or 10.5-fold stimulation of catabolic activity, respectively, for the added substrate. In contrast, amendment of the Pinelands soils resulted in increased amino acid and acetate catabolic rates in Lakehurst sand and increased acetate metabolism only in Atsion sand. Other activities were unchanged. The increased glucose respiration rates resulted from stimulation of existing microbial activity rather than from microbial proliferation since no change in the microbial growth rate, as estimated by the rate of incorporation of 14C-labeled acetate into cell membranes, occurred after glucose amendment of the soils. A stimulation of microbial growth rate was recorded with glucose-amended Lakehurst sand collected from the B horizon. PMID:16346862
Tuazon, Marc A; Campbell, Sara C; Klein, Dylan J; Shapses, Sue A; Anacker, Keith R; Anthony, Tracy G; Uzumcu, Mehmet; Henderson, Gregory C
2018-06-01
Menopause is associated with fatty liver, glucose dysregulation, increased body fat, and impaired bone quality. Previously, it was demonstrated that single sessions of high-intensity interval exercise (HIIE) are more effective than distance- and duration-matched continuous exercise (CE) on altering hepatic triglyceride (TG) metabolism and very-low density lipoprotein-TG (VLDL-TG) secretion. Six weeks training using these modalities was examined for effects on hepatic TG metabolism/secretion, glucose tolerance, body composition, and bone mineral density (BMD) in ovariectomized (OVX) and sham-operated (SHAM) mice. OVX and SHAM were assigned to distance- and duration-matched CE and HIIE, or sedentary control. Energy expenditure during exercise was confirmed to be identical between CE and HIIE and both similarly reduced post-exercise absolute carbohydrate oxidation and spontaneous physical activity (SPA). OVX vs. SHAM displayed impaired glucose tolerance and greater body fat despite lower hepatic TG, and these outcomes were not affected by training. Only HIIE increased hepatic AMPK in OVX and SHAM, but neither training type impacted VLDL-TG secretion. As expected, BMD was lower in OVX, and training did not affect long bones. The results reveal intensity-dependent effects on hepatic AMPK expression and general exercise effects on subsequent SPA and substrate oxidation that is independent of estrogen status. These findings support the notion that HIIE can impact aspects of liver physiology in females while the effects of exercise on whole body substrate selection appear to be independent of training intensity. However, neither exercise approach mitigated the impairment in glucose tolerance and elevated body fat occurring in OVX mice. Copyright © 2018 Elsevier Inc. All rights reserved.
Bakirtzi, Kyriaki; Kokkotou, Efi; Stavrakis, Dimitris; Margolis, Kara Gross; Thomou, Thomas; Giorgadze, Nino; Kirkland, James L.
2011-01-01
Substance P (SP), encoded by the tachykinin 1 (Tac1) gene, is the most potent tachykinin ligand for the high-affinity neurokinin-1 receptor (NK-1R). We previously reported that NK-1R-deficient mice show less weight gain and reduced circulating levels of leptin and insulin in response to a high-fat diet (HFD) and demonstrated the presence of functional NK-1R in isolated human preadipocytes. Here we assessed the effects of SP on weight gain in response to HFD and determined glucose metabolism in Tac1-deficient (Tac1−/−) mice. The effect of SP on the expression of molecules that may predispose to reduced glucose uptake was also determined in isolated human mesenteric, omental, and sc preadipocytes. We show that although weight accumulation in response to HFD was similar between Tac1−/− mice and wild-type littermates, Tac1−/− mice demonstrated lower glucose and leptin and increased adiponectin blood levels and showed improved responses to insulin challenge after HFD. SP stimulated phosphorylation of c-Jun N-terminal kinase, protein kinase Cθ, mammalian target of rapamycin, and inhibitory serine insulin receptor substrate-1 phosphorylation in human preadipocytes in vitro. Preincubation of human mesenteric preadipocytes with the protein kinase Cθ pseudosubstrate inhibitor reduced insulin receptor substrate 1 phosphorylation in response to SP. Lastly, SP also induced insulin receptor substrate-1 phosphorylation in mature human sc adipocytes. Our results demonstrate an important role for SP in adipose tissue responses and obesity-associated pathologies. These novel SP effects on molecules that enhance insulin resistance at the adipocyte level may reflect an important role for this peptide in the pathophysiology of type 2 diabetes. PMID:22009727
Karagiannides, Iordanes; Bakirtzi, Kyriaki; Kokkotou, Efi; Stavrakis, Dimitris; Margolis, Kara Gross; Thomou, Thomas; Giorgadze, Nino; Kirkland, James L; Pothoulakis, Charalabos
2011-12-01
Substance P (SP), encoded by the tachykinin 1 (Tac1) gene, is the most potent tachykinin ligand for the high-affinity neurokinin-1 receptor (NK-1R). We previously reported that NK-1R-deficient mice show less weight gain and reduced circulating levels of leptin and insulin in response to a high-fat diet (HFD) and demonstrated the presence of functional NK-1R in isolated human preadipocytes. Here we assessed the effects of SP on weight gain in response to HFD and determined glucose metabolism in Tac1-deficient (Tac1(-/-)) mice. The effect of SP on the expression of molecules that may predispose to reduced glucose uptake was also determined in isolated human mesenteric, omental, and sc preadipocytes. We show that although weight accumulation in response to HFD was similar between Tac1(-/-) mice and wild-type littermates, Tac1(-/-) mice demonstrated lower glucose and leptin and increased adiponectin blood levels and showed improved responses to insulin challenge after HFD. SP stimulated phosphorylation of c-Jun N-terminal kinase, protein kinase C, mammalian target of rapamycin, and inhibitory serine insulin receptor substrate-1 phosphorylation in human preadipocytes in vitro. Preincubation of human mesenteric preadipocytes with the protein kinase C pseudosubstrate inhibitor reduced insulin receptor substrate 1 phosphorylation in response to SP. Lastly, SP also induced insulin receptor substrate-1 phosphorylation in mature human sc adipocytes. Our results demonstrate an important role for SP in adipose tissue responses and obesity-associated pathologies. These novel SP effects on molecules that enhance insulin resistance at the adipocyte level may reflect an important role for this peptide in the pathophysiology of type 2 diabetes.
Method for the enzymatic production of hydrogen
Woodward, Jonathan; Mattingly, Susan M.
1999-01-01
The present invention is an enzymatic method for producing hydrogen comprising the steps of: a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch. The reaction mixture further comprises an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and c) detecting the hydrogen produced from the reaction mixture.
Method for the enzymatic production of hydrogen
Woodward, J.; Mattingly, S.M.
1999-08-24
The present invention is an enzymatic method for producing hydrogen comprising the steps of: (a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch; the reaction mixture also comprising an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; (b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and (c) detecting the hydrogen produced from the reaction mixture. 8 figs.
Færch, Louise H; Thorsteinsson, Birger; Tarnow, Lise; Holst, Jens Juul; Kjær, Troels; Kanters, Jørgen; Larroude, Charlotte; Dela, Flemming; Pedersen-Bjergaard, Ulrik
2015-12-01
High spontaneous activity of the renin-angiotensin system (RAS) results in more pronounced cognitive impairment and more prolonged QTc interval during hypoglycaemia in type 1 diabetes. We tested whether angiotensin II receptor blockade improves cerebral and cardiovascular function during hypoglycaemia. Nine patients with type 1 diabetes and high spontaneous RAS activity were included in a double-blind, randomised, cross-over study on the effect of angiotensin II receptor antagonist (candesartan 32 mg) or placebo for one week on cognitive function, cardiovascular parameters, hormonal counter-regulatory response, substrate mobilisation, and symptoms during hypoglycaemia induced by two hyperinsulinaemic, hypoglycaemic clamps. Compared to placebo, candesartan did neither change performance of the cognitive tests nor the EEG at a plasma glucose concentration of 2.6±0.2 mmol/l. During candesartan treatment, the QT interval in the ECG was not affected. No effect of candesartan was observed in the hormonal counter-regulatory responses, in substrate concentrations, or in symptom scores. A 36% reduced glucose infusion rate during hypoglycaemia with candesartan was observed. In conclusion candesartan has no effect on cerebral function during mild experimental hypoglycaemia in subjects with type 1 diabetes and high RAS activity. Candesartan may reduce glucose utilisation or increase endogenous glucose production during hypoglycaemia. © The Author(s) 2014.
Developmental reprogramming of rat GLUT-5 requires de novo mRNA and protein synthesis.
Jiang, L; Ferraris, R P
2001-01-01
Fructose transporter (GLUT-5) expression is low in mid-weaning rat small intestine, increases normally after weaning is completed, and can be precociously induced by premature consumption of a high-fructose (HF) diet. In this study, an in vivo perfusion model was used to determine the mechanisms regulating this substrate-induced reprogramming of GLUT-5 development. HF (100 mM) but not high-glucose (HG) perfusion increased GLUT-5 activity and mRNA abundance. In contrast, HF and HG perfusion had no effect on Na(+)-dependent glucose transporter (SGLT-1) expression but increased c-fos and c-jun expression. Intraperitoneal injection of actinomycin D before intestinal perfusion blocked the HF-induced increase in fructose uptake rate and GLUT-5 mRNA abundance. Actinomycin D also prevented the perfusion-induced increase in c-fos and c-jun mRNA abundance but did not affect glucose uptake rate and SGLT-1 mRNA abundance. Cycloheximide blocked the HF-induced increase in fructose uptake rate but not the increase in GLUT-5 mRNA abundance and had no effect on glucose uptake rate and SGLT-1 mRNA abundance. In neonatal rats, the substrate-induced reprogramming of intestinal fructose transport is likely to involve transcription and translation of the GLUT-5 gene.
Detection of mercury compounds using invertase-glucose oxidase-based biosensor
NASA Astrophysics Data System (ADS)
Amine, A.; Cremisini, C.; Palleschi, G.
1995-10-01
Mercury compounds have been determined with an electrochemical biosensor based on invertase inhibition. When invertase is in the presence of mercury its activity decreases; this causes a decrease of glucose production which is monitored by the glucose sensor and correlated to the concentration of mercury in solution. Parameters as pH, enzyme concentration, substrate concentration, and reaction and incubation time were optimized. Mercury compounds determination using soluble or immobilized invertase were reported. Results show that the inhibition was competitive and reversible. Mercury compounds can be detected directly in aqueous solution in the range 2 - 10 ppb.
2013-01-01
Background Efficient conversion of lignocellulosic biomass to optically pure lactic acid is a key challenge for the economical production of biodegradable poly-lactic acid. A recently isolated strain, Thermoanaerobacterium aotearoense SCUT27, is promising as an efficient lactic acid production bacterium from biomass due to its broad substrate specificity. Additionally, its strictly anaerobic and thermophilic characteristics suppress contamination from other microoragnisms. Herein, we report the significant improvements of concentration and yield in lactic acid production from various lignocellulosic derived sugars, achieved by the carbon flux redirection through homologous recombination in T. aotearoense SCUT27. Results T. aotearoense SCUT27 was engineered to block the acetic acid formation pathway to improve the lactic acid production. The genetic manipulation resulted in 1.8 and 2.1 fold increase of the lactic acid yield using 10 g/L of glucose or 10 g/L of xylose as substrate, respectively. The maximum l-lactic acid yield of 0.93 g/g glucose with an optical purity of 99.3% was obtained by the engineered strain, designated as LA1002, from 50 g/L of substrate, which is very close to the theoretical value (1.0 g/g of glucose). In particular, LA1002 produced lactic acid at an unprecedented concentration up to 3.20 g/L using 10 g/L xylan as the single substrate without any pretreatment after 48 h fermentation. The non-sterilized fermentative production of l-lactic acid was also carried out, achieving values of 44.89 g/L and 0.89 g/g mixed sugar for lactic acid concentration and yield, respectively. Conclusions Blocking acetic acid formation pathway in T. aotearoense SCUT27 increased l-lactic acid production and yield dramatically. To our best knowledge, this is the best performance of fermentation on lactic acid production using xylan as the sole carbon source, considering the final concentration, yield and fermentation time. In addition, it should be mentioned that the performance of non-sterilized simultaneous fermentation from glucose and xylose was very close to that of normal sterilized cultivation. All these results used the mutant strain, LA1002, indicated that it is a new promising candidate for the effective production of optically pure l-lactic acid from lignocellulosic biomass. PMID:23985133
Modeling diffusion control on organic matter decomposition in unsaturated soil pore space
NASA Astrophysics Data System (ADS)
Vogel, Laure; Pot, Valérie; Garnier, Patricia; Vieublé-Gonod, Laure; Nunan, Naoise; Raynaud, Xavier; Chenu, Claire
2014-05-01
Soil Organic Matter decomposition is affected by soil structure and water content, but field and laboratory studies about this issue conclude to highly variable outcomes. Variability could be explained by the discrepancy between the scale at which key processes occur and the measurements scale. We think that physical and biological interactions driving carbon transformation dynamics can be best understood at the pore scale. Because of the spatial disconnection between carbon sources and decomposers, the latter rely on nutrient transport unless they can actively move. In hydrostatic case, diffusion in soil pore space is thus thought to regulate biological activity. In unsaturated conditions, the heterogeneous distribution of water modifies diffusion pathways and rates, thus affects diffusion control on decomposition. Innovative imaging and modeling tools offer new means to address these effects. We have developed a new model based on the association between a 3D Lattice-Boltzmann Model and an adimensional decomposition module. We designed scenarios to study the impact of physical (geometry, saturation, decomposers position) and biological properties on decomposition. The model was applied on porous media with various morphologies. We selected three cubic images of 100 voxels side from µCT-scanned images of an undisturbed soil sample at 68µm resolution. We used LBM to perform phase separation and obtained water phase distributions at equilibrium for different saturation indices. We then simulated the diffusion of a simple soluble substrate (glucose) and its consumption by bacteria. The same mass of glucose was added as a pulse at the beginning of all simulations. Bacteria were placed in few voxels either regularly spaced or concentrated close to or far from the glucose source. We modulated physiological features of decomposers in order to weight them against abiotic conditions. We could evidence several effects creating unequal substrate access conditions for decomposers, hence inducing contrasted decomposition kinetics: position of bacteria relative to the substrate diffusion pathways, diffusion rate and hydraulic connectivity between bacteria and substrate source, local substrate enrichment due to restricted mass transfer. Physiological characteristics had a strong impact on decomposition only when glucose diffused easily but not when diffusion limitation prevailed. This suggests that carbon dynamics should not be considered to derive from decomposers' physiology alone but rather from the interactions of biological and physical processes at the microscale.
Zeuthen*, Thomas; Belhage, Bo; Zeuthen, Emil
2006-01-01
The relation between substrate and water transport was studied in Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS) expressed in Xenopus oocytes. The water transport was monitored from changes in oocyte volume at a resolution of 20 pl, more than one order of magnitude better than previous investigations. The rate of cotransport was monitored as the clamp current obtained from two-electrode voltage clamp. The high resolution data demonstrated a fixed ratio between the turn-over of the cotransporter and the rate of water transport. This applied to experiments in which the rate of cotransport was changed by isosmotic application of substrate, by rapid changes in clamp voltage, or by poisoning. Transport of larger substrates gave rise to less water transport. For the rabbit SGLT1, 378 ± 20 (n = 18 oocytes) water molecules were cotransported along with the 2 Na+ ions and the glucose-analogue α-MDG (MW 194); using the larger sugar arbutin (MW 272) this number was reduced by a factor of at least 0.86 ± 0.03 (15). For the human SGLT1 the respective numbers were 234 ± 12 (18) and 0.85 ± 0.8 (7). For NIS, 253 ± 16 (12) water molecules were cotransported for each 2 Na+ and 1 thiocyanate (SCN−, MW 58), with I− as anion (MW 127) only 162 ± 11 (19) water molecules were cotransported. The effect of substrate size suggests a molecular mechanism for water cotransport and is opposite to what would be expected from unstirred layer effects. Data were analysed by a model which combined cotransport and osmosis at the membrane with diffusion in the cytoplasm. The combination of high resolution measurements and precise modelling showed that water transport across the membrane can be explained by cotransport of water in the membrane proteins and that intracellular unstirred layers effects are minute. PMID:16322051
Qiu, Jian-Hua; Li, You-Wei; Xie, Hong-Li; Li, Qing; Dong, Hai-Bo; Sun, Ming-Ju; Gao, Wei-Qiang; Tan, Jing-He
2016-08-01
Although great efforts were made to prolong the fertility of liquid-stored semen, limited improvements have been achieved in different species. Although it is expected that energy supply and the redox potential will play an essential role in sperm function, there are few reports on the impact of specific energy substrates on spermatozoa during liquid semen storage. Furthermore, although it is accepted that glucose metabolism through glycolysis provides energy, roles of pentose phosphate pathway (PPP) and tricarboxylic acid cycle remain to be unequivocally found in spermatozoa. We have studied the pathways by which spermatozoa metabolize glucose during long-term liquid storage of goat semen. The results indicated that among the substrates tested, glucose and pyruvate were better than lactate in maintaining goat sperm motility. Although both glycolysis and PPP were essential, PPP was more important than glycolysis to maintain sperm motility. Pentose phosphate pathway reduced oxidative stress and provided glycolysis with more intermediate products such as fructose-6-phosphate. Pyruvate entered goat spermatozoa through monocarboxylate transporters and was oxidized by the tricarboxylic acid cycle and electron transfer to sustain sperm motility. Long-term liquid semen storage can be used as a good model to study sperm glucose metabolism. The data are important for an optimal control of sperm survival during semen handling and preservation not only in the goat but also in other species. Copyright © 2016 Elsevier Inc. All rights reserved.
Syshchyk, Olga; Skryshevsky, Valeriy A; Soldatkin, Oleksandr O; Soldatkin, Alexey P
2015-04-15
A phenomenon of changes in photoluminescence of porous silicon at variations in medium pH is proposed to be used as a basis for the biosensor system development. The method of conversion of a biochemical signal into an optical one is applied for direct determination of glucose and urea as well as for inhibitory analysis of heavy metal ions. Changes in the quantum yield of porous silicon photoluminescence occur at varying pH of the tested solution due to the enzyme-substrate reaction. When creating the biosensor systems, the enzymes urease and glucose oxidase (GOD) were used as a bioselective material; their optimal concentrations were experimentally determined. It was shown that the photoluminescence intensity of porous silicon increased by 1.7 times when increasing glucose concentration in the GOD-containing reaction medium from 0 to 3.0mM, and decreased by 1.45 times at the same increase in the urea concentration in the urease-containing reaction medium. The calibration curves of dependence of the biosensor system responses on the substrate concentrations are presented. It is shown that the presence of heavy metal ions (Cu(2+), Pb(2+), and Cd(2+)) in the tested solution causes an inhibition of the enzymatic reactions catalyzed by glucose oxidase and urease, which results in a restoration of the photoluminescence quantum yield of porous silicon. It is proposed to use this effect for the inhibitory analysis of heavy metal ions. Copyright © 2014 Elsevier B.V. All rights reserved.
Herrmann, Elena; Young, Wayne; Rosendale, Douglas; Reichert-Grimm, Verena; Conrad, Ralf
2017-01-01
RNA-based stable isotope probing (RNA-SIP) and metabolic profiling were used to detect actively glucose-consuming bacteria in a complex microbial community obtained from a murine model system. A faeces-derived microbiota was incubated under anaerobic conditions for 0, 2, and 4 h with 40 mM [U13C]glucose. Isopycnic density gradient ultracentrifugation and fractionation of isolated RNA into labeled and unlabeled fractions followed by 16S rRNA sequencing showed a quick adaptation of the bacterial community in response to the added sugar, which was dominated by unclassified Lachnospiraceae species. Inspection of distinct fractions of isotope-labeled RNA revealed Allobaculum spp. as particularly active glucose utilizers in the system, as the corresponding RNA showed significantly higher proportions among the labeled RNA. With time, the labeled sugar was used by a wider spectrum of faecal bacteria. Metabolic profiling indicated rapid fermentation of [U13C]glucose, with lactate, acetate, and propionate being the principal 13C-labeled fermentation products, and suggested that “cross-feeding” occurred in the system. RNA-SIP combined with metabolic profiling of 13C-labeled products allowed insights into the microbial assimilation of a general model substrate, demonstrating the appropriateness of this technology to study assimilation processes of nutritionally more relevant substrates, for example, prebiotic carbohydrates, in the gut microbiota of mice as a model system. PMID:28299315
Lerch, Thomas Z; Dignac, Marie-France; Barriuso, Enrique; Mariotti, André
2011-10-01
Combining lipid biomarker profiling with stable isotope probing (SIP) is a powerful technique for studying specific microbial populations responsible for the degradation of organic pollutants in various natural environments. However, the presence of other easily degradable substrates may induce significant physiological changes by altering both the rate of incorporation of the target compound into the biomass and the microbial lipid profiles. In order to test this hypothesis, Cupriavidus necator JMP134, a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium, was incubated with [(13)C]2,4-D, [(13)C]glucose, or mixtures of both substrates alternatively labeled with (13)C. C. necator JMP134 exhibited a preferential use of 2,4-D over glucose. The isotopic analysis showed that glucose had only a small effect on the incorporation of the acetic chain of 2,4-D into the biomass (at days 2 and 3) and no effect on that of the benzenic ring. The addition of glucose did change the fatty acid methyl ester (FAME) composition. However, the overall FAME isotopic signature reflected that of the entire biomass. Compound-specific individual isotopic analyses of FAME composition showed that the (13)C-enriched FAME profiles were slightly or not affected when tracing the 2,4-D acetic chain or 2,4-D benzenic ring, respectively. This batch study is a necessary step for validating the use of lipid-based SIP methods in complex environments.
Vergara-Fernández, Alberto; Van Haaren, Brice; Revah, Sergio
2006-12-01
The filamentous fungus, Fusarium solani, was grown in liquid and solid culture with glucose, glycerol, 1-hexanol and n-hexane. The partition coefficient with gaseous hexane (HPC) in the biomass was lower when grown in liquid medium with 1-hexanol (0.4) than with glycerol (0.8) or glucose (1) The HPC for surface growth were 0.2 for 1-hexanol, 0.5 for glycerol, 0.6 for glucose, and 0.2 for F. solani biomass obtained from a biofilter fed with gaseous n-hexane. These values show a 200-fold increase in n-hexane solubility when compared to water (HPC = 42). Lower HPC values can be partially explained by increased lipid accumulation with 1-hexanol, 10.5% (w/w) than with glycerol (8.5% w/w) or glucose (7.1% w/w). The diameter of the hyphae diminished from 3 microm to 2 microm when F. solani was grown on solid media with gaseous n-hexane thereby doubling the surface area for gaseous substrate exchange. The surface hydrophobicity of the mycelia increased consistently with more hydrophobic substrates and the contact angle of a drop of water on the mycelial mat was 113 degrees when grown on n-hexane as compared to 75 degrees with glucose. The fungus thus adapts to hydrophobic conditions and these changes may explain the higher uptake of gaseous hydrophobic substances by fungi in biofilters.
Future opportunities for advancing glucose test device electronics.
Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z
2011-09-01
Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano "ink" composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, "ink," and continuous processing development presents the opportunity for research collaboration with medical device designers. © 2011 Diabetes Technology Society.
USDA-ARS?s Scientific Manuscript database
This study aimed to determine the contribution of substrates to tricarboxylic acid (TCA) cycle fluxes in rumen epithelial (REC) and duodenal mucosal (DMC) cells isolated from bulls (n = 6) fed either a 75% forage (HF) or 75% concentrate (HC) diet. In separate incubations, [13C6]glucose, [13C5]glutam...
Darr, Christa R; Varner, Dickson D; Teague, Sheila; Cortopassi, Gino A; Datta, Sandipan; Meyers, Stuart A
2016-08-01
Stallion sperm rely primarily on oxidative phosphorylation for production of ATP used in sperm motility and metabolism. The objective of the study was to identify which substrates included in Biggers, Whitten, and Whittingham (BWW) media are key to optimal mitochondrial function through measurements of sperm motility parameters, mitochondrial oxygen consumption, and cellular reactive oxygen species (ROS) production. It was expected that mitochondrial substrates, pyruvate and lactate, would support sperm motility and mitochondrial function better than the glycolytic substrate, glucose, due to direct utilization within the mitochondria. Measurements were performed after incubation in modified BWW media with varying concentrations of lactate, pyruvate, and glucose. The effects of media and duration of incubation on sperm motility, ROS production, and oxygen consumption were determined using a linear mixed-effects model. Duplicate ejaculates from four stallions were used in three separate experiments to determine the effects of substrate availability and concentration on sperm motility and mitochondrial function and the relationship of oxygen consumption with cellular ROS production. The present results indicate that lactate and pyruvate are the most important sources of energy for stallion sperm motility and velocity, and elicit a dose-dependent response. Additionally, lactate and pyruvate are ideal for maximal mitochondrial function, as sperm in these media operate at a very high level of their bioenergetic capability due to the high rate of energy metabolism. Moreover, we found that addition of glucose to the media is not necessary for short-term storage of equine sperm, and may even result in reduction of mitochondrial function. Finally, we have confirmed that ROS production can be the result of mitochondrial dysfunction as well as intense mitochondrial activity. © 2016 by the Society for the Study of Reproduction, Inc.
Raman microspectroscopy for in situ examination of carbon-microbe-mineral interactions
NASA Astrophysics Data System (ADS)
Creamer, C.; Foster, A. L.; Lawrence, C. R.; Mcfarland, J. W.; Waldrop, M. P.
2016-12-01
The changing paradigm of soil organic matter formation and turnover is focused at the nexus of microbe-carbon-mineral interactions. However, visualizing biotic and abiotic stabilization of C on mineral surfaces is difficult given our current techniques. Therefore we investigated Raman microspectroscopy as a potential tool to examine microbially mediated organo-mineral associations. Raman microspectroscopy is a non-destructive technique that has been used to identify microorganisms and minerals, and to quantify microbial assimilation of 13C labeled substrates in culture. We developed a partial least squares regression (PLSR) model to accurately quantify (within 5%) adsorption of four model 12C substrates (glucose, glutamic acid, oxalic acid, p-hydroxybenzoic acid) on a range of soil minerals. We also developed a PLSR model to quantify the incorporation of 13C into E. coli cells. Using these two models, along with measures of the 13C content of respired CO2, we determined the allocation of glucose-derived C into mineral-associated microbial biomass and respired CO2 in situ and through time. We observed progressive 13C enrichment of microbial biomass with incubation time, as well as 13C enrichment of CO2 indicating preferential decomposition of glucose-derived C. We will also present results on the application of our in situ chamber to quantify the formation of organo-mineral associations under both abiotic and biotic conditions with a variety of C and mineral substrates, as well as the rate of turnover and stabilization of microbial residues. Application of Raman microspectroscopy to microbial-mineral interactions represents a novel method to quantify microbial transformation of C substrates and subsequent mineral stabilization without destructive sampling, and has the potential to provide new insights to our conceptual understanding of carbon-microbe-mineral interactions.
Stretchable glucose biofuel cell with wirings made of multiwall carbon nanotubes
NASA Astrophysics Data System (ADS)
Fujimagari, Yusuke; Nishioka, Yasushiro
2015-12-01
In this study, we fabricated a flexible and stretchable glucose-biofuel cell with wirings made of multi wall carbon nanotube (MWCNTs) on a polydimethylsiloxane substrate. The biofuel cell investigated consists of a porous carbon anode (area of 30 mm2) modified by glucose oxidase and ferrocene, and a cathode (area of 30 mm2) modified by bilirubin oxidase. The anode and the cathode were connected with the MWCNT wirings. The maximum power of 0.31 μW at 76.6 mV, which corresponds to a power density of 1.04 μW/cm2, was realized by immersing the biofuel cell in a phosphate buffer solution with a glucose concentration of 100 mM, at room temperature.
Satake, Ryoko; Ichiyanagi, Atsushi; Ichikawa, Keiichi; Hirokawa, Kozo; Araki, Yasuko; Yoshimura, Taro; Gomi, Keiko
2015-11-01
Glucose dehydrogenase (GDH) is of interest for its potential applications in the field of glucose sensors. To improve the performance of glucose sensors, GDH is required to have strict substrate specificity. A novel flavin adenine dinucleotide (FAD)-dependent GDH was isolated from Mucor prainii NISL0103 and its enzymatic properties were characterized. This FAD-dependent GDH (MpGDH) exhibited high specificity toward glucose. High specificity for glucose was also observed even in the presence of saccharides such as maltose, galactose and xylose. The molecular masses of the glycoforms of GDH ranged from 90 to 130 kDa. After deglycosylation, a single 80 kDa band was observed. The gene encoding MpGDH was cloned and expressed in Aspergillus sojae. The apparent kcat and Km values of recombinant enzyme for glucose were found to be 749.7 s(-1) and 28.3 mM, respectively. The results indicated that the characteristics of MpGDH were suitable for assaying blood glucose levels. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Mesoporous Nickel Oxide (NiO) Nanopetals for Ultrasensitive Glucose Sensing
NASA Astrophysics Data System (ADS)
Mishra, Suryakant; Yogi, Priyanka; Sagdeo, P. R.; Kumar, Rajesh
2018-01-01
Glucose sensing properties of mesoporous well-aligned, dense nickel oxide (NiO) nanostructures (NSs) in nanopetals (NPs) shape grown hydrothermally on the FTO-coated glass substrate has been demonstrated. The structural study based investigations of NiO-NPs has been carried out by X-ray diffraction (XRD), electron and atomic force microscopies, energy dispersive X-ray (EDX), and X-ray photospectroscopy (XPS). Brunauer-Emmett-Teller (BET) measurements, employed for surface analysis, suggest NiO's suitability for surface activity based glucose sensing applications. The glucose sensor, which immobilized glucose on NiO-NPs@FTO electrode, shows detection of wide range of glucose concentrations with good linearity and high sensitivity of 3.9 μA/μM/cm2 at 0.5 V operating potential. Detection limit of as low as 1 μΜ and a fast response time of less than 1 s was observed. The glucose sensor electrode possesses good anti-interference ability, stability, repeatability & reproducibility and shows inert behavior toward ascorbic acid (AA), uric acid (UA) and dopamine acid (DA) making it a perfect non-enzymatic glucose sensor.
High ethanol producing derivatives of Thermoanaerobacter ethanolicus
Ljungdahl, L.G.; Carriera, L.H.
1983-05-24
Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).
High ethanol producing derivatives of Thermoanaerobacter ethanolicus
Ljungdahl, Lars G.; Carriera, Laura H.
1983-01-01
Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).
REGULATION OF MEMORY – FROM THE ADRENAL MEDULLA TO LIVER TO ASTROCYTES TO NEURONS1
Gold, Paul E.
2014-01-01
Epinephrine, released into blood from the adrenal medulla in response to arousing experiences, is a potent enhancer of learning and memory processing. This review examines mechanisms by which epinephrine exerts its effects on these cognitive functions. Because epinephrine is largely blocked from moving from blood to brain, it is likely that the hormone's effects on memory are mediated by peripheral actions. A classic effect of epinephrine is to act at the liver to break down glycogen stores, resulting in increased blood glucose levels. The increase in blood glucose provides additional energy substrates to the brain to buttress the processes needed for an experience to be learned and remembered. In part, it appears that the increased glucose may act in the brain in a manner akin to that evident in the liver, engaging glycogenolysis in astrocytes to provide an energy substrate, in this case lactate, to augment neuronal functions. Together, the findings reveal a mechanism underlying modulation of memory that integrates the physiological functions of multiple organ systems to support brain processes. PMID:24406469
Simultaneous monitoring of glucose and uric acid on a single test strip with dual channels.
Guo, Jinhong; Ma, Xing
2017-08-15
The conventional test strip has usually only one electrochemical reaction channel, which requires two times figure punctures for the self-management of patients suffering from both diabetes and gout. Considering the large number of such patients and for the sake of reducing their pains, we report an enzymatic test strip which can simultaneously monitor glucose and uric acid (UA) with only one fingertip blood droplet. The proposed test strip is composed of dual channels. The glucose in blood is detected in the 1st channel above on the substrate and the UA is characterized in the 2nd channel located at the bottom of the substrate. The proposed design intensively matches the requirement of those patients simultaneously suffering from diabetes and gout. We carried out comparative investigations on the proposed test strip and clinical biochemical analyser, which indicates a good agreement and proved the reliability and accuracy of the proposed test strip, as promising solution for the fast growth of family health management market. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Xin; Ohta, Takeshi; Kawabata, Takeshi; Kawai, Fusako
2013-01-01
Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor. PMID:23306149
Liu, Xin; Ohta, Takeshi; Kawabata, Takeshi; Kawai, Fusako
2013-01-10
Ethoxy (EO) chain nonylphenol dehydrogenase (NPEO-DH) from Ensifer sp. AS08 and EO chain octylphenol dehydrogenase from Pseudomonas putida share common molecular characteristics with polyethylene glycol (PEG) dehydrogenases (PEG-DH) and comprise a PEG-DH subgroup in the family of glucose-methanol-choline (GMC) oxidoreductases that includes glucose/alcohol oxidase and glucose/choline dehydrogenase. Three-dimensional (3D) molecular modeling suggested that differences in the size, secondary structure and hydropathy in the active site caused differences in their substrate specificities toward EO chain alkylphenols and free PEGs. Based on 3D molecular modeling, site-directed mutagenesis was utilized to introduce mutations into potential catalytic residues of NPEO-DH. From steady state and rapid kinetic characterization of wild type and mutant NPEO-DHs, we can conclude that His465 and Asn507 are directly involved in the catalysis. Asn507 mediates the transfer of proton from a substrate to FAD and His465 transfers the same proton from the reduced flavin to an electron acceptor.
Human forearm metabolism during progressive starvation.
Owen, O E; Reichard, G A
1971-07-01
Forearm muscle metabolism was studied in eight obese subjects after an overnight, 3 and 24 day fast. Arterio-deep-venous differences of oxygen, carbon dioxide, glucose, lactate, pyruvate, free fatty acids, acetoacetate, and beta-hydroxybutyrate with simultaneous forearm blood flow were measured. Rates of metabolite utilization and production were thus estimated. Oxygen consumption and lactate and pyruvate production remained relatively constant at each fasting period. Glucose, initially the major substrate consumed, showed decreased consumption after 3 and 24 days of fasting. Acetoacetate and beta-hydroxybutyrate consumption after an overnight fast was low. At 3 days of fasting with increased arterial concentrations of acetoactate and beta-hydroxybutyrate, consumption of these substrates rose dramatically. At 24 days of fasting, despite further elevation of arterial levels of acetoacetate and beta-hydroxybutyrate, the utilization of acetoacetate did not increase further and if anything decreased, while five out of eight subjects released beta-hydroxybutyrate across the forearm. Acetoacetate was preferentially extracted over beta-hydroxybutyrate. At 24 days of starvation, free fatty acids were the principal fuels extracted by forearm muscle; at this time there was a decreased glucose and also ketone-body consumption by skeletal muscle.
Genetic improvement of native xylose-fermenting yeasts for ethanol production.
Harner, Nicole K; Wen, Xin; Bajwa, Paramjit K; Austin, Glen D; Ho, Chi-Yip; Habash, Marc B; Trevors, Jack T; Lee, Hung
2015-01-01
Lignocellulosic substrates are the largest source of fermentable sugars for bioconversion to fuel ethanol and other valuable compounds. To improve the economics of biomass conversion, it is essential that all sugars in potential hydrolysates be converted efficiently into the desired product(s). While hexoses are fermented into ethanol and some high-value chemicals, the bioconversion of pentoses in hydrolysates remains inefficient. This remains one of the key challenges in lignocellulosic biomass conversion. Native pentose-fermenting yeasts can ferment both glucose and xylose in lignocellulosic biomass to ethanol. However, they perform poorly in the presence of hydrolysate inhibitors, exhibit low ethanol tolerance and glucose repression, and ferment pentoses less efficiently than the main hexoses glucose and mannose. This paper reviews classical and molecular strain improvement strategies applied to native pentose-fermenting yeasts for improved ethanol production from xylose and lignocellulosic substrates. We focus on Pachysolen tannophilus, Scheffersomyces (Candida) shehatae, Scheffersomyces (Pichia) stipitis, and Spathaspora passalidarum which are good ethanol producers among the native xylose-fermenting yeasts. Strains obtained thus far are not robust enough for efficient ethanol production from lignocellulosic hydrolysates and can benefit from further improvements.
Yamashiro, Takumi; Murata, Kousaku; Kawai, Shigeyuki
2017-03-01
Deinococcus radiodurans is highly resistant to ionizing radiation and UV radiation, and oxidative stress caused by such radiations. NADP(H) seems to be important for this resistance (Slade and Radman, Microbiol Mol Biol Rev 75:133-191; Slade, Radman, Microbiol Mol Biol Rev 75:133-191, 2011), but the mechanism underlying the generation of NADP(H) or NAD(H) in D. radiodurans has not fully been addressed. Intracellular concentrations of NAD + , NADH, NADP + , and NADPH in D. radiodurans are also not determined yet. We found that cell extracts of D. radiodurans catalyzed reduction of NAD(P) + in vitro, indicating that D. radiodurans cells contain both enzymes and a high concentration of substrates for this activity. The enzyme and the substrate were attributed to glucose-6-phosphate dehydrogenase and glucose-6-phosphate of which intracellular concentration was extremely high. Unexpectedly, the intracellular concentration of NAD(H) was also much greater than that of NADP(H), suggesting some significant roles of NADH. These unusual features of this bacterium would shed light on a new aspect of physiology of this bacterium.
Jugdé, Hélène; Nguy, Danny; Moller, Isabel; Cooney, Janine M; Atkinson, Ross G
2008-08-01
The dihydrochalcone phlorizin (phloretin 2'-glucoside) contributes to the flavor, color and health benefits of apple fruit and processed products. A genomics approach was used to identify the gene MdPGT1 in apple (Malus x domestica) with homology to the UDP-glycosyltransferase 88 family of uridine diphosphate glycosyltransferases that show specificity towards flavonoid substrates. Expressed sequence tags for MdPGT1 were found in all tissues known to produce phlorizin including leaf, flower and fruit. However, the highest expression was measured by quantitative PCR in apple root tissue. The recombinant MdPGT1 enzyme expressed in Escherichia coli glycosylated phloretin in the presence of [(3)H]-UDP-glucose, but not other apple antioxidants, including quercetin, naringenin and cyanidin. The product of phloretin and UDP-glucose co-migrated with an authentic phlorizin standard. LC/MS indicated that MdPGT1 could glycosylate phloretin in the presence of three sugar donors: UDP-glucose, UDP-xylose and UDP-galactose. This is the first report of functional characterization of a UDP-glycosyltransferase that utilizes a dihydrochalcone as its primary substrate.
Choleva, Tatiana G; Gatselou, Vasiliki A; Tsogas, George Z; Giokas, Dimosthenis L
2017-12-05
The intrinsic peroxidase-like activity of rhodium nanoparticles (RhNPs) and their use as catalytic labels for sensitive colorimetric assays is presented. RhNPs catalyze the oxidation of the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H 2 O 2 to produce a blue reaction product with a maximum absorbance at 652 nm. Kinetic studies show catalysis to follow Michaelis-Menten kinetics and a "ping-pong" mechanism. The calculated kinetic parameters indicate high affinity of RhNPs for both the substrate TMB and H 2 O 2 . In fact, they are better than other peroxidase mimicking nanomaterials and even the natural enzyme horseradish peroxidase. On the other hand, RhNPs exhibit no reactivity towards saccharides, thiols, amino acids and ascorbic acid. Based on these findings, a sensitive and selective colorimetric method was worked out for the determination of H 2 O 2 in real samples with a linear response in the 1-100 μM concentration range. By employing glucose oxidase, the glucose assay has a linear range that covers the 5 to 125 μM glucose concentration range. The detection limits are <0.75 μM for both species. The methods were applied to the determination of H 2 O 2 in spiked pharmaceutical formulations, and of glucose in soft drinks and blood plasma. Figures of merit include (a) good accuracy (with errors of <6%), (b) high recoveries (96.5-103.7%), and (c) satisfactory reproducibility (<6.3%). Graphical abstract Rhodium nanoparticles catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H 2 O 2 to produce a blue reaction product. The effect is exploited in photometric assays for hydrogen peroxide and glucose.
Arnosti, Carol; Steen, Andrew D.
2013-01-01
The microbial community composition of polar and temperate ocean waters differs substantially, but the potential functional consequences of these differences are largely unexplored. We measured bacterial production, glucose metabolism, and the abilities of microbial communities to hydrolyze a range of polysaccharides in an Arctic fjord of Svalbard (Smeerenburg Fjord), and thus to initiate remineralization of high-molecular weight organic matter. We compared these data with similar measurements previously carried out in the northern Gulf of Mexico in order to investigate whether differences in the spectrum of enzyme activities measurable in Arctic and temperate environments are reflected in “downstream” aspects of microbial metabolism (metabolism of monomers and biomass production). Only four of six polysaccharide substrates were hydrolyzed in Smeerenburg Fjord; all were hydrolyzed in the upper water column of the Gulf. These patterns are consistent on an interannual basis. Bacterial protein production was comparable at both locations, but the pathways of glucose utilization differed. Glucose incorporation rate constants were comparatively higher in Svalbard, but glucose respiration rate constants were higher in surface waters of the Gulf. As a result, at the time of sampling ca. 75% of the glucose was incorporated into biomass in Svalbard, but in the northern Gulf of Mexico most of the glucose was respired to CO2. A limited range of enzyme activities is therefore not a sign of a dormant community or one unable to further process substrates resulting from extracellular enzymatic hydrolysis. The ultimate fate of carbohydrates in marine waters, however, is strongly dependent upon the specific capabilities of heterotrophic microbial communities in these disparate environments. PMID:24198812
Bertholdt, Lærke; Gudiksen, Anders; Schwartz, Camilla L; Knudsen, Jakob G; Pilegaard, Henriette
2017-04-01
The liver is essential in maintaining and regulating glucose homeostasis during prolonged exercise. IL-6 has been shown to be secreted from skeletal muscle during exercise and has been suggested to signal to the liver. Therefore, the aim of this study was to investigate the role of skeletal muscle IL-6 on hepatic glucose regulation and substrate choice during prolonged exercise. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice (age, 12-14 wk) and littermate lox/lox (Control) mice were either rested (Rest) or completed a single bout of exercise for 10, 60, or 120 min, and the liver was quickly obtained. Hepatic IL-6 mRNA was higher at 60 min of exercise, and hepatic signal transducer and activator of transcription 3 was higher at 120 min of exercise than at rest in both genotypes. Hepatic glycogen was higher in IL-6 MKO mice than control mice at rest, but decreased similarly during exercise in the two genotypes, and hepatic glucose content was lower in IL-6 MKO than control mice at 120 min of exercise. Hepatic phosphoenolpyruvate carboxykinase mRNA and protein increased in both genotypes at 120 min of exercise, whereas hepatic glucose 6 phosphatase protein remained unchanged. Furthermore, IL-6 MKO mice had higher hepatic pyruvate dehydrogenase (PDH) Ser232 and PDH Ser300 phosphorylation than control mice at rest. In conclusion, hepatic gluconeogenic capacity in mice is increased during prolonged exercise independent of muscle IL-6. Furthermore, Skeletal muscle IL-6 influences hepatic substrate regulation at rest and hepatic glucose metabolism during prolonged exercise, seemingly independent of IL-6 signaling in the liver. Copyright © 2017 the American Physiological Society.
Interdisciplinary Research and Information Overload.
ERIC Educational Resources Information Center
Wilson, Patrick
1996-01-01
Discusses information overload and examines several ways in which actual and potential overload affects research choices for the solo researcher in interdisciplinary areas. Topics include information overload and teamwork; entry barriers to certain specialties, including necessary background knowledge; and information utilization and knowledge…
1983-11-17
Oat"UaL msue.(rm ~10"ee 66147 effe% nowe. 1.12a, **04 VON"* a Poest 46"a of04 ~ ah es ie [Z-3)~ totego~is f ht * g IM M..s~U~ -• - - -- L.. s. K varying...time course.* That £ 5 , the method of combining and considering the overload retardation models on the basis of the successive accumlation method in...Hysteresis stage of overload retardation (B); 3) Maximum retardation point of overload (C); 4) weakened stage of overload retardation’CD); 5 ) Basic
Zheng, Qing-Qing; Zhao, You-Shan; Guo, Juan; Zhao, Si-da; Song, Lu-Xi; Fei, Cheng-Ming; Zhang, Zheng; Li, Xiao; Chang, Chun-Kang
2017-07-01
Erythroid apoptosis increases significantly in myelodysplastic syndrome (MDS) patients with iron overload, but the underlying mechanism is not fully clear. In this study, we aim to explore the effect of HIF-1a/ROS on erythroid apoptosis in MDS patients with iron overload. We found that iron overload injured cellular functions through up-regulating ROS levels in MDS/AML cells, including inhibited cell viability, increased cell apoptosis and blocked cell cycle at G0/G1 phase. Interestingly, overexpression of hypoxia inducible factor-1a (HIF-1a), which was under-expressed in iron overload models, reduced ROS levels and attenuated cell damage caused by iron overload in MDS/AML cells. And gene knockdown of HIF-1a got the similar results as iron overload in MDS/AML cells. Furthermore, iron overload caused high erythroid apoptosis was closely related with ROS in MDS patients. Importantly, the HIF-1a protein levels of erythrocytes elevated obviously after incubation with desferrioxamine (DFO) from MDS patients with iron overload, accompanied by ROS levels inhibited and erythroid apoptosis reduced. Taken together, our findings determine that the HIF-1a/ROS signaling pathway plays a key role in promoting erythroid apoptosis in MDS patients with iron overload. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arnell, Magnus; Astals, Sergi; Åmand, Linda; Batstone, Damien J; Jensen, Paul D; Jeppsson, Ulf
2016-07-01
Anaerobic co-digestion is an emerging practice at wastewater treatment plants (WWTPs) to improve the energy balance and integrate waste management. Modelling of co-digestion in a plant-wide WWTP model is a powerful tool to assess the impact of co-substrate selection and dose strategy on digester performance and plant-wide effects. A feasible procedure to characterise and fractionate co-substrates COD for the Benchmark Simulation Model No. 2 (BSM2) was developed. This procedure is also applicable for the Anaerobic Digestion Model No. 1 (ADM1). Long chain fatty acid inhibition was included in the ADM1 model to allow for realistic modelling of lipid rich co-substrates. Sensitivity analysis revealed that, apart from the biodegradable fraction of COD, protein and lipid fractions are the most important fractions for methane production and digester stability, with at least two major failure modes identified through principal component analysis (PCA). The model and procedure were tested on bio-methane potential (BMP) tests on three substrates, each rich on carbohydrates, proteins or lipids with good predictive capability in all three cases. This model was then applied to a plant-wide simulation study which confirmed the positive effects of co-digestion on methane production and total operational cost. Simulations also revealed the importance of limiting the protein load to the anaerobic digester to avoid ammonia inhibition in the digester and overloading of the nitrogen removal processes in the water train. In contrast, the digester can treat relatively high loads of lipid rich substrates without prolonged disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.
Walsh, Patrick J; Kajimura, Makiko; Mommsen, Thomas P; Wood, Chris M
2006-08-01
In order to investigate the metabolic poise of the elasmobranch rectal gland, we conducted two lines of experimentation. First, we examined the effects of feeding on plasma metabolites and enzyme activities from several metabolic pathways in several tissues of the dogfish shark, Squalus acanthias, after starvation and at 6, 20, 30 and 48 h post-feeding. We found a rapid and sustained ten-fold decrease in plasma beta-hydroxybutyrate at 6 h and beyond compared with starved dogfish, suggesting an upregulation in the use of this substrate, a decrease in production, or both. Plasma acetoacetate levels remain unchanged, whereas there was a slight and transient decrease in plasma glucose levels at 6 h. Several enzymes showed a large increase in activity post-feeding, including beta-hydroxybutyrate dehydrogenase in rectal gland and liver, and in rectal gland, isocitrate dehydrogenase, citrate synthase, lactate dehydrogenase, aspartate amino transferase, alanine amino transferase, glutamine synthetase and Na(+)/K(+) ATPase. Also notable in these enzyme measurements was the overall high level of activity in the rectal gland in general. For example, activity of the Krebs' TCA cycle enzyme citrate synthase (over 30 U g(-1)) was similar to activities in muscle from other species of highly active fish. Surprisingly, lactate dehydrogenase activity in the gland was also high (over 150 U g(-1)), suggesting either an ability to produce lactate anaerobically or use lactate as an aerobic fuel. Given these interesting observations, in the second aspect of the study we examined the ability of several metabolic substrates (alone and in combination) to support chloride secretion by the rectal gland. Among the substrates tested at physiological concentrations (glucose, beta-hydroxybutyrate, lactate, alanine, acetoacetate, and glutamate), only glucose could consistently maintain a viable preparation. Whereas beta-hydroxybutyrate could enhance gland activity when presented in combination with glucose, surprisingly it could not sustain chloride secretion when used as a lone substrate. Our results are discussed in the context of the in vivo role of the gland and mechanisms of possible upregulation of enzyme activities.
Adenylyl cyclase-associated protein-1/CAP1 as a biological target substrate of gelatinase B/MMP-9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cauwe, Benedicte; Martens, Erik; Van den Steen, Philippe E.
2008-09-10
Matrix metalloproteinases (MMPs) are classically associated with the turnover of secreted structural and functional proteins. Although MMPs have been shown to process also a kaleidoscope of membrane-associated substrates, little is known about the processing of intracellular proteins by MMPs. Physiological and pathological cell apoptosis, necrosis and tumor lysis by chemotherapy, radiotherapy or immunological cytotoxicity, are examples of conditions in which an overload of intracellular proteins becomes accessible to the action of MMPs. We used a model system of dying human myelomonocytic cells to study the processing of intracellular protein substrates by gelatinase B/MMP-9 in vitro. Adenylyl cyclase-associated protein-1 or CAP1more » was identified as a novel and most efficient substrate of gelatinase B/MMP-9. The presence of CAP1 in the extracellular milieu in vivo was documented by analysis of urine of patients with systemic autoimmune diseases. Whereas no active MMP-9 could be detected in urines of healthy controls, all urine samples of patients with clinical parameters of renal failure contained activated MMP-9 and/or MMP-2. In addition, in some of these patients indications of CAP1 cleavage are observed, implying CAP1 degradation in vivo. The high turnover rate of CAP1 by MMP-9, comparable to that of gelatin as the natural extracellular substrate of this enzyme, may be critical to prevent pathological conditions associated with considerable cytolysis.« less
Jia, Xiaohong; Zhou, Xuhui; Luo, Yiqi; Xue, Kai; Xue, Xian; Xu, Xia; Yang, Yuanhe; Wu, Liyou; Zhou, Jizhong
2014-01-01
Regulatory mechanisms of soil respiratory carbon (C) release induced by substrates (i.e., plant derived substrates) are critical for predicting ecosystem responses to climate change, but the mechanisms are not well understood. In this study, we sampled soils from a long-term field manipulative experiment and conducted a laboratory incubation to explore the role of substrate supply in regulating the differences in soil C release among the experimental treatments, including control, warming, clipping, and warming plus clipping. Three types of substrates (glucose, C3 and C4 plant materials) were added with an amount equal to 1% of soil dry weight under the four treatments. We found that the addition of all three substrates significantly stimulated soil respiratory C release in all four warming and clipping treatments. In soils without substrate addition, warming significantly stimulated soil C release but clipping decreased it. However, additions of glucose and C3 plant materials (C3 addition) offset the warming effects, whereas C4 addition still showed the warming-induced stimulation of soil C release. Our results suggest that long-term warming may inhibit microbial capacity for decomposition of C3 litter but may enhance it for decomposition of C4 litter. Such warming-induced adaptation of microbial communities may weaken the positive C-cycle feedback to warming due to increased proportion of C4 species in plant community and decreased litter quality. In contrast, clipping may weaken microbial capacity for warming-induced decomposition of C4 litter but may enhance it for C3 litter. Warming- and clipping-induced shifts in microbial metabolic capacity may be strongly associated with changes in plant species composition and could substantially influence soil C dynamics in response to global change. PMID:25490701
Jia, Xiaohong; Zhou, Xuhui; Luo, Yiqi; Xue, Kai; Xue, Xian; Xu, Xia; Yang, Yuanhe; Wu, Liyou; Zhou, Jizhong
2014-01-01
Regulatory mechanisms of soil respiratory carbon (C) release induced by substrates (i.e., plant derived substrates) are critical for predicting ecosystem responses to climate change, but the mechanisms are not well understood. In this study, we sampled soils from a long-term field manipulative experiment and conducted a laboratory incubation to explore the role of substrate supply in regulating the differences in soil C release among the experimental treatments, including control, warming, clipping, and warming plus clipping. Three types of substrates (glucose, C3 and C4 plant materials) were added with an amount equal to 1% of soil dry weight under the four treatments. We found that the addition of all three substrates significantly stimulated soil respiratory C release in all four warming and clipping treatments. In soils without substrate addition, warming significantly stimulated soil C release but clipping decreased it. However, additions of glucose and C3 plant materials (C3 addition) offset the warming effects, whereas C4 addition still showed the warming-induced stimulation of soil C release. Our results suggest that long-term warming may inhibit microbial capacity for decomposition of C3 litter but may enhance it for decomposition of C4 litter. Such warming-induced adaptation of microbial communities may weaken the positive C-cycle feedback to warming due to increased proportion of C4 species in plant community and decreased litter quality. In contrast, clipping may weaken microbial capacity for warming-induced decomposition of C4 litter but may enhance it for C3 litter. Warming- and clipping-induced shifts in microbial metabolic capacity may be strongly associated with changes in plant species composition and could substantially influence soil C dynamics in response to global change.
Stanišić, Jelena; Korićanac, Goran; Ćulafić, Tijana; Romić, Snježana; Stojiljković, Mojca; Kostić, Milan; Pantelić, Marija; Tepavčević, Snežana
2016-01-15
Increase in fructose consumption together with decrease in physical activity contributes to the development of metabolic syndrome and consequently cardiovascular diseases. The current study examined the preventive role of exercise on defects in cardiac insulin signaling and function of endothelial nitric oxide synthase (eNOS) in fructose fed rats. Male Wistar rats were divided into control, sedentary fructose (received 10% fructose for 9 weeks) and exercise fructose (additionally exposed to low intensity exercise) groups. Concentration of triglycerides, glucose, insulin and visceral adipose tissue weight were determined to estimate metabolic syndrome development. Expression and/or phosphorylation of cardiac insulin receptor (IR), insulin receptor substrate 1 (IRS1), tyrosine-specific protein phosphatase 1B (PTP1B), Akt, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and eNOS were evaluated. Fructose overload increased visceral adipose tissue, insulin concentration and homeostasis model assessment index. Exercise managed to decrease visceral adiposity and insulin level and to increase insulin sensitivity. Fructose diet increased level of cardiac PTP1B and pIRS1 (Ser307), while levels of IR and ERK1/2, as well as pIRS1 (Tyr 632), pAkt (Ser473, Thr308) and pERK1/2 were decreased. These disturbances were accompanied by reduced phosphorylation of eNOS at Ser1177. Exercise managed to prevent most of the disturbances in insulin signaling caused by fructose diet (except phosphorylation of IRS1 at Tyr 632 and phosphorylation and protein expression of ERK1/2) and consequently restored function of eNOS. Low intensity exercise could be considered as efficient treatment of cardiac insulin resistance induced by fructose diet. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Xiao, Weihua; Chen, Peijie; Dong, Jingmei; Wang, Ru; Luo, Beibei
2015-04-01
The aim of this study was to evaluate the effect of overload training on the function of peritoneal macrophages in rats, and to test the hypothesis that glutamine in vivo supplementation would partly reverse the eventual functional alterations induced by overload training in these cells. Forty male Wistar rats were randomly divided into 5 groups: control group (C), overload training group (E1), overload training and restore one week group (E2), glutamine-supplementation group (EG1), and glutamine-supplementation and restore 1-week group (EG2). All rats, except those placed on sedentary control were subjected to 11 weeks of overload training protocol. Blood hemoglobin, serum testosterone, and corticosterone of rats were measured. Moreover, the functions (chemotaxis, phagocytosis, cytokines synthesis, reactive oxygen species generation) of peritoneal macrophages were determined. Data showed that blood hemoglobin, serum testosterone, corticosterone and body weight in the overload training group decreased significantly as compared with the control group. Meanwhile, the chemotaxis capacity (decreased by 31%, p = .003), the phagocytosis capacity (decreased by 27%, p = .005), the reactive oxygen species (ROS) generation (decreased by 35%, p = .003) and the cytokines response capability of macrophages were inhibited by overload training. However, the hindering of phagocytosis and the cytokines response capability of macrophages induced by overload training could be ameliorated and reversed respectively, by dietary glutamine supplementation. These results suggest that overload training impairs the function of peritoneal macrophages, which is essential for the microbicidal actions of macrophages. This may represent a novel mechanism of immunodepression induced by overload training. Nonetheless, dietary glutamine supplementation could partly reverse the impaired macrophage function resulting from overload training.
Hsieh, Shuchen; Hsieh, Shu-Ling; Hsieh, Chiung-Wen; Lin, Po-Chiao; Wu, Chun-Hsin
2013-01-01
Efficient maintenance of glucose homeostasis is a major challenge in diabetes therapy, where accurate and reliable glucose level detection is required. Though several methods are currently used, these suffer from impaired response and often unpredictable drift, making them unsuitable for long-term therapeutic practice. In this study, we demonstrate a method that uses a functionalized atomic force microscope (AFM) cantilever as the sensor for reliable glucose detection with sufficient sensitivity and selectivity for clinical use. We first modified the AFM tip with aminopropylsilatrane (APS) and then adsorbed glucose-specific lectin concanavalin A (Con A) onto the surface. The Con A/APS-modified probes were then used to detect glucose by monitoring shifts in the cantilever resonance frequency. To confirm the molecule-specific interaction, AFM topographical images were acquired of identically treated silicon substrates which indicated a specific attachment for glucose-Con A and not for galactose-Con A. These results demonstrate that by monitoring the frequency shift of the AFM cantilever, this sensing system can detect the interaction between Con A and glucose, one of the biomolecule recognition processes, and may assist in the detection and mass quantification of glucose for clinical applications with very high sensitivity.
Webster, Gordon; Watt, Lynsey C; Rinna, Joachim; Fry, John C; Evershed, Richard P; Parkes, R John; Weightman, Andrew J
2006-09-01
Marine sediment slurries enriched for anaerobic, sulfate-reducing prokaryotic communities utilizing glucose and acetate were used to provide the first comparison between stable-isotope probing (SIP) of phospholipid fatty acids (PLFA) and DNA (16S rRNA and dsrA genes) biomarkers. Different 13C-labelled substrates (glucose, acetate and pyruvate) at low concentrations (100 microM) were used over a 7-day incubation to follow and identify carbon flow into different members of the community. Limited changes in total PLFA and bacterial 16S rRNA gene DGGE profiles over 7 days suggested the presence of a stable bacterial community. A broad range of PLFA were rapidly labelled (within 12 h) in the 13C-glucose slurry but this changed with time, suggesting the presence of an active glucose-utilizing population and later development of another population able to utilize glucose metabolites. The identity of the major glucose-utilizers was unclear as 13C-enriched PLFA were common (16:0, 16:1, 18:1omega7, highest incorporation) and there was little difference between 12C- and 13C-DNA 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) profiles. Seemingly glucose, a readily utilizable substrate, resulted in widespread incorporation consistent with the higher extent of 13C-incorporation (approximately 10 times) into PLFA compared with 13C-acetate or 13C-pyruvate. 13C-PLFA in the 13C-acetate and 13C-pyruvate slurries were similar to each other and to those that developed in the 13C-glucose slurry after 4 days. These were more diagnostic, with branched odd-chain fatty acids (i15:0, a15:0 and 15:1omega6) possibly indicating the presence of Desulfococcus or Desulfosarcina sulfate-reducing bacteria (SRB) and sequences related to these SRB were in the 13C-acetate-DNA dsrA gene library. The 13C-acetate-DNA 16S rRNA gene library also contained sequences closely related to SRB, but these were the acetate-utilizing Desulfobacter sp., as well as a broad range of uncultured Bacteria. In contrast, analysis of DGGE bands from 13C-DNA demonstrated that the candidate division JS1 and Firmicutes were actively assimilating 13C-acetate. Denaturing gradient gel electrophoresis also confirmed the presence of JS1 in the 13C-DNA from the 13C-glucose slurry. These results demonstrate that JS1, originally found in deep subsurface sediments, is more widely distributed in marine sediments and provides the first indication of its metabolism; incorporation of acetate and glucose (or glucose metabolites) under anaerobic, sulfate-reducing conditions. Here we demonstrate that PLFA- and DNA-SIP can be used together in a sedimentary system, with low concentrations of 13C-substrate and overlapping incubation times (up to 7 days) to provide complementary, although not identical, information on carbon flow and the identity of active members of an anaerobic prokaryotic community.
TIMP3 deficiency exacerbates iron overload-mediated cardiomyopathy and liver disease.
Zhabyeyev, Pavel; Das, Subhash K; Basu, Ratnadeep; Shen, Mengcheng; Patel, Vaibhav B; Kassiri, Zamaneh; Oudit, Gavin Y
2018-05-01
Chronic iron overload results in heart and liver diseases and is a common cause of morbidity and mortality in patients with genetic hemochromatosis and secondary iron overload. We investigated the role of tissue inhibitor of metalloproteinase 3 (TIMP3) in iron overload-mediated tissue injury by subjecting male mice lacking Timp3 ( Timp3 -/- ) and wild-type (WT) mice to 12 wk of chronic iron overload. Whereas WT mice with iron overload developed diastolic dysfunction, iron-overloaded Timp3 -/- mice showed worsened cardiac dysfunction coupled with systolic dysfunction. In the heart, loss of Timp3 was associated with increased myocardial fibrosis, greater Timp1, matrix metalloproteinase ( Mmp) 2, and Mmp9 expression, increased active MMP-2 levels, and gelatinase activity. Iron overload in Timp3 -/- mice showed twofold higher iron accumulation in the liver compared with WT mice because of constituently lower levels of ferroportin. Loss of Timp3 enhanced the hepatic inflammatory response to iron overload, leading to greater neutrophil and macrophage infiltration and increased hepatic fibrosis. Expression of inflammation-related MMPs (MMP-12 and MMP-13) and inflammatory cytokines (IL-1β and monocyte chemoattractant protein-1) was elevated to a greater extent in iron-overloaded Timp3 -/- livers. Gelatin zymography demonstrated equivalent increases in MMP-2 and MMP-9 levels in WT and Timp3 -/- iron-overloaded livers. Loss of Timp3 enhanced the susceptibility to iron overload-mediated heart and liver injury, suggesting that Timp3 is a key protective molecule against iron-mediated pathology. NEW & NOTEWORTHY In mice, loss of tissue inhibitor of metalloproteinase 3 ( Timp3) was associated with systolic and diastolic dysfunctions, twofold higher hepatic iron accumulation (attributable to constituently lower levels of ferroportin), and increased hepatic inflammation. Loss of Timp3 enhanced the susceptibility to iron overload-mediated injury, suggesting that Timp3 plays a key protective role against iron-mediated pathology.
ERIC Educational Resources Information Center
Bateman, Thomas S.
1980-01-01
To investigate managerial use of work (or role) overload to increase productivity, the author studied 77 nonclerical white-collar employees and found that work overload had negative effects on productivity, supervisors' ratings, employee attitudes, job satisfaction, and health. He recommends ways for managers and employees to reduce work overload.…
30 CFR 57.12003 - Trailing cable overload protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cable overload protection. 57.12003... Electricity Surface and Underground § 57.12003 Trailing cable overload protection. Individual overload protection or short circuit protection shall be provided for the trailing cables of mobile equipment. ...
The effects of diurnal Ramadan fasting on energy expenditure and substrate oxidation in healthy men.
Alsubheen, Sana'a A; Ismail, Mohammad; Baker, Alicia; Blair, Jason; Adebayo, Adeboye; Kelly, Liam; Chandurkar, Vikram; Cheema, Sukhinder; Joanisse, Denis R; Basset, Fabien A
2017-12-01
The study aimed to examine the effects of diurnal Ramadan fasting (RF) on substrate oxidation, energy production, blood lipids and glucose as well as body composition. Nine healthy Muslim men (fasting (FAST) group) and eight healthy non-practicing men (control (CNT) group) were assessed pre- and post-RF. FAST were additionally assessed at days 10, 20 and 30 of RF in the morning and evening. Body composition was determined by hydrodensitometry, substrate oxidation and energy production by indirect calorimetry, blood metabolic profile by biochemical analyses and energy balance by activity tracker recordings and food log analyses. A significant group×time interaction revealed that chronic RF reduced body mass and adiposity in FAST, without changing lean mass, whereas CNT subjects remained unchanged. In parallel to these findings, a significant main diurnal effect (morning v. evening) of RF on substrate oxidation (a shift towards lipid oxidation) and blood metabolic profile (a decrease in glucose and an increase in total cholesterol and TAG levels, respectively) was observed, which did not vary over the course of the Ramadan. In conclusion, although RF induces diurnal metabolic adjustments (morning v. evening), no carryover effect was observed throughout RF despite the extended daily fasting period (18·0 (sd 0·3) h) and changes in body composition.
Scaffold Architecture Controls Insulinoma Clustering, Viability, and Insulin Production
Blackstone, Britani N.; Palmer, Andre F.; Rilo, Horacio R.
2014-01-01
Recently, in vitro diagnostic tools have shifted focus toward personalized medicine by incorporating patient cells into traditional test beds. These cell-based platforms commonly utilize two-dimensional substrates that lack the ability to support three-dimensional cell structures seen in vivo. As monolayer cell cultures have previously been shown to function differently than cells in vivo, the results of such in vitro tests may not accurately reflect cell response in vivo. It is therefore of interest to determine the relationships between substrate architecture, cell structure, and cell function in 3D cell-based platforms. To investigate the effect of substrate architecture on insulinoma organization and function, insulinomas were seeded onto 2D gelatin substrates and 3D fibrous gelatin scaffolds with three distinct fiber diameters and fiber densities. Cell viability and clustering was assessed at culture days 3, 5, and 7 with baseline insulin secretion and glucose-stimulated insulin production measured at day 7. Small, closely spaced gelatin fibers promoted the formation of large, rounded insulinoma clusters, whereas monolayer organization and large fibers prevented cell clustering and reduced glucose-stimulated insulin production. Taken together, these data show that scaffold properties can be used to control the organization and function of insulin-producing cells and may be useful as a 3D test bed for diabetes drug development. PMID:24410263
Ferris, Sean P.; Jaber, Nikita S.; Molinari, Maurizio; Arvan, Peter; Kaufman, Randal J.
2013-01-01
Protein folding in the endoplasmic reticulum (ER) is error prone, and ER quality control (ERQC) processes ensure that only correctly folded proteins are exported from the ER. Glycoproteins can be retained in the ER by ERQC, and this retention contributes to multiple human diseases, termed ER storage diseases. UDP-glucose:glycoprotein glucosyltransferase (UGGT1) acts as a central component of glycoprotein ERQC, monoglucosylating deglucosylated N-glycans of incompletely folded glycoproteins and promoting subsequent reassociation with the lectin-like chaperones calreticulin and calnexin. The extent to which UGGT1 influences glycoprotein folding, however, has only been investigated for a few selected substrates. Using mouse embryonic fibroblasts lacking UGGT1 or those with UGGT1 complementation, we investigated the effect of monoglucosylation on the soluble/insoluble distribution of two misfolded α1-antitrypsin (AAT) variants responsible for AAT deficiency disease: null Hong Kong (NHK) and Z allele. Whereas substrate solubility increases directly with the number of N-linked glycosylation sites, our results indicate that additional solubility is conferred by UGGT1 enzymatic activity. Monoglucosylation-dependent solubility decreases both BiP association with NHK and unfolded protein response activation, and the solubility increase is blocked in cells deficient for calreticulin. These results suggest that UGGT1-dependent monoglucosylation of N-linked glycoproteins promotes substrate solubility in the ER. PMID:23864712
Exercise in muscle glycogen storage diseases.
Preisler, Nicolai; Haller, Ronald G; Vissing, John
2015-05-01
Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.
Ezeji, Thaddeus C; Qureshi, Nasib; Blaschek, Hans P
2007-12-01
A potential industrial substrate (liquefied corn starch; LCS) has been employed for successful acetone butanol ethanol (ABE) production. Fermentation of LCS (60 g l(-1)) in a batch process resulted in the production of 18.4 g l(-1) ABE, comparable to glucose: yeast extract based medium (control experiment, 18.6 g l(-1) ABE). A batch fermentation of LCS integrated with product recovery resulted in 92% utilization of sugars present in the feed. When ABE was recovered by gas stripping (to relieve inhibition) from the fed-batch reactor fed with saccharified liquefied cornstarch (SLCS), 81.3 g l(-1) ABE was produced compared to 18.6 g l(-1) (control). In this integrated system, 225.8 g l(-1) SLCS sugar (487 % of control) was consumed. In the absence of product removal, it is not possible for C. beijerinckii BA101 to utilize more than 46 g l(-1) glucose. A combination of fermentation of this novel substrate (LCS) to butanol together with product recovery by gas stripping may economically benefit this fermentation.
Sivasakthi, P; Ramesh Bapu, G N K; Chandrasekaran, Maruthai
2016-01-01
Nickel and nickel-ITO nanocomposite on mild steel substrate were prepared by pulse electrodeposition method from nickel sulphamate electrolyte and were examined as electrocatalysts for non-enzymatic glucose sensing. The surface morphology, chemical composition, preferred orientation and oxidation states of the nickel metal ion in the deposits were characterized by SEM, EDAX, XRD and XPS. Electrochemical sensing of glucose was studied by cyclic voltammetry and amperometry. The modified Ni-ITO nanocomposite electrode showed higher electrocatalytic activity for the oxidation of glucose in alkaline medium and exhibited a linear range from 0.02 to 3.00 mM with a limit of detection 3.74 μM at a signal-to-noise ratio of 3. The higher selectivity, longer stability and better reproducibility of this electrode compared to nickel in the sensing of glucose are pointers for exploitation in practical clinical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Matsumoto, T; Saito, S; Ikeda, S
2006-03-23
This paper reports on a multilayer membrane amperometric glucose sensor fabricated using planar techniques. It is characterized by good reproducibility and suitable for large-scale production. The glucose sensor has 82 electrode sets formed on a single glass substrate, each with a platinum working electrode (WE), a platinum counter electrode (CE) and an Ag/AgCl reference electrode (RE). The electrode sets are coated with a membrane consisting of five layers: gamma-aminopropyltriethoxysilane (gamma-APTES), Nafion, glucose oxidase (GOX), gamma-APTES and perfluorocarbon polymer (PFCP), in that order. Tests have shown that the sensor has acceptably low dispersion (relative standard deviation, R.S.D.=42.9%, n=82), a wide measurement range (1.11-111 mM) and measurement stability over a 27-day period. Measurements of the glucose concentration in a control human urine sample demonstrated that the sensor has very low dispersion (R.S.D.=2.49%, n=10).
NASA Astrophysics Data System (ADS)
Miyagi, Katsunori; Oe, Etsuo; Yamagata, Naoki; Miyahara, Hideyuki
A sudden capacity increase in demand during the summer peak, or in contingencies such as malfunctioning transformers, may cause overload for normal transformers. In this paper, on the basis of examples of overloaded transformer operation in distributing substations, thermal aging testing in oil was carried out under various overload patterns, such as short time overload and long time overload, but with the winding insulation paper's life loss kept constant. From the results, various characteristics such as mean degree of polymerization and productions of furfural and (CO2+CO), and their effects on the life loss of the insulation paper were obtained.
Effect of overload on the fatigue crack propagation in metastable beta Ti-V alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrabortty, S.B.; Starke, E.A. Jr.; Lee, E.W.
1984-03-01
The effects of overload on the fatigue crack propagation behavior of two Ti-V alloys having different deformation mechanisms were studied. The results are explained in terms of residual stress effects associated with the overload and the removal of these stresses during post-overload cycling. An additional effect occurs during multiple cycle overload when the deformation structure representative of the strain amplitude is believed to form in the overload reverse plastic zone. This structure must be rearranged during cycling at Delta Kb before the baseline FCGR is reached and the process is responsible for part of the delay period. 46 references.
Lin, Xiaotong; Zhao, Yan; Li, Shanhe
2017-07-05
Astaxanthin (AST) is a carotenoid that has been shown to have neuroprotective effects. In this study, it was found that AST significantly inhibited glutamate-induced loss of cell viability and apoptosis. AST pretreatment attenuated glutamate-induced activation of caspase-3, reduction of anti-apoptotic protein Bcl-2, and increase of pro-apoptotic protein Bak. In addition, AST pretreatment suppressed the production of intracellular reactive oxygen species. AST treatment also prevented glutamate-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK), which has been shown to promote apoptotic events. Furthermore, AST treatment greatly reduced the elevation of intracellular calcium level induced by glutamate and inhibited the activity of calpain, a calcium-dependent protease that plays an important role in mediating apoptosis stimulated by calcium overload in cytoplasm. Both oxidative stress and calcium overload can lead to endoplasmic reticulum (ER) stress. C/EBP-homologous protein (CHOP) is a bZIP transcription factor that can be activated by ER stress and promotes apoptosis. Here we found that AST attenuated glutamate-induced elevation of CHOP and ER chaperone glucose-regulated protein (GRP78). Overall, these results suggested that AST might protect cells against glutamate-induced apoptosis through maintaining redox balance and inhibiting glutamate-induced calcium influx and ER stress. Copyright © 2017 Elsevier B.V. All rights reserved.
Hemochromatosis and Vibrio vulnificus wound infections.
Barton, James C; Acton, Ronald T
2009-10-01
There are several reports of persons with hemochromatosis and Vibrio vulnificus primary septicemia, but few accounts of persons with hemochromatosis and V. vulnificus wound infection. A 58-year-old white man developed infection of a forearm injury exposed to seawater in the Gulf of Mexico near the Alabama coast. At age 66, he was diagnosed to have hemochromatosis. Transferrin saturation was 89% and serum ferritin was 4761 pmol/L. HFE genotype was C282Y/C282Y. Serum levels of hepatic enzymes, glucose, IgG, IgA, and IgM, and blood levels of T, B, and natural killer cells were normal. We identified previous reports of only 2 similar cases: a woman from Alabama and a man from northern Australia. Mean age of the 3 subjects was 51 years at diagnosis of infection. Each had elevated serum iron measures or iron overload complications; both men were diagnosed to have hemochromatosis after they developed infection. Each of the 3 had recent exposure of a wound on an extremity to seawater, rapid development of a necrotizing soft tissue infection that required debridement and skin grafting, and positive wound or blood cultures. Each subject survived the infection. V. vulnificus wound infection occurs in some persons with hemochromatosis, but the risk of infection may be small. All patients with V. vulnificus infections should be evaluated for hemochromatosis, iron overload, and liver disorders.
Acetone-butanol Fermentation of Marine Macroalgae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huesemann, Michael H.; Kuo, Li-Jung; Urquhart, Lindsay A.
2012-03-01
Mannitol and laminarin, which are present at high concentrations in the brown macroalga Saccharina spp., a type of kelp, are potential biochemical feedstocks for butanol production. To test their bioconversion potential, aqueous extracts of the kelp Saccharina spp., mannitol, and glucose (a product of laminarin hydrolysis) were subjected to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, andmore » bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.« less
In vitro metabolism of radiolabeled carbohydrates by protective cecal anaerobic bacteria.
Hume, M E; Beier, R C; Hinton, A; Scanlan, C M; Corrier, D E; Peterson, D V; DeLoach, J R
1993-12-01
Cecal anaerobic bacteria from adult broilers were cultured in media containing .25% glucose or .25% lactose. Media also contained either [14C]-labeled lactose, glucose, galactose, or lactic acid as metabolic tracers. Cultures were analyzed at 4, 8, and 12 h for pH, radiolabeled and unlabeled volatile fatty acids, and lactic acid. The pH values of cultures containing .25% lactose were significantly (P < .05) higher than the pH values of cultures containing .25% glucose. Lactose cultures reached their lowest pH more slowly than glucose cultures. Concentrations of unlabeled volatile fatty acids increased and lactic acid decreased during incubation of the cultures. Radiolabeled sugars and lactic acid were more readily metabolized to volatile fatty acids in media containing lactose than in media containing glucose. The preferred metabolism of [14C]substrates, independent of media carbohydrate, was in the following order: lactic acid > galactose, lactose > glucose. The volatile fatty acids in which radiolabel was most concentrated were acetic acid, propionic acid, or butyric acid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redies, C.; Hoffer, L.J.; Beil, C.
In prolonged fasting, the brain derives a large portion of its oxidative energy from the ketone bodies, beta-hydroxybutyrate and acetoacetate, thereby reducing whole body glucose consumption. Energy substrate utilization differs regionally in the brain of fasting rat, but comparable information has hitherto been unavailable in humans. We used positron emission tomography (PET) to study regional brain glucose and oxygen metabolism, blood flow, and blood volume in four obese subjects before and after a 3-wk total fast. Whole brain glucose utilization fell to 54% of control (postabsorptive) values (P less than 0.002). The whole brain rate constant for glucose tracer phosphorylationmore » fell to 51% of control values (P less than 0.002). Both parameters decreased uniformly throughout the brain. The 2-fluoro-2-deoxy-D-glucose lumped constant decreased from a control value of 0.57 to 0.43 (P less than 0.01). Regional blood-brain barrier transfer coefficients for glucose tracer, regional oxygen utilization, blood flow, and blood volume were unchanged.« less
Kannan, Palanisamy; Maiyalagan, Thandavarayan; Marsili, Enrico; Ghosh, Srabanti; Niedziolka-Jönsson, Joanna; Jönsson-Niedziolka, Martin
2016-01-14
Three-dimensional nickel-iron (3-D/Ni-Fe) nanostructures are exciting candidates for various applications because they produce more reaction-active sites than 1-D and 2-D nanostructured materials and exhibit attractive optical, electrical and catalytic properties. In this work, freestanding 3-D/Ni-Fe interconnected hierarchical nanosheets, hierarchical nanospheres, and porous nanospheres are directly grown on a flexible carbon fiber paper (CFP) substrate by a single-step hydrothermal process. Among the nanostructures, 3-D/Ni-Fe interconnected hierarchical nanosheets show excellent electrochemical properties because of its high conductivity, large specific active surface area, and mesopores on its walls (vide infra). The 3-D/Ni-Fe hierarchical nanosheet array modified CFP substrate is further explored as a novel electrode for electrochemical non-enzymatic glucose sensor application. The 3-D/Ni-Fe hierarchical nanosheet arrays exhibit significant catalytic activity towards the electrochemical oxidation of glucose, as compared to the 3-D/Ni-Fe hierarchical nanospheres, and porous nanospheres. The 3-D/Ni-Fe hierarchical nanosheet arrays can access a large amount of glucose molecules on their surface (mesopore walls) for an efficient electrocatalytic oxidation process. Moreover, 3-D/Ni-Fe hierarchical nanosheet arrays showed higher sensitivity (7.90 μA μM(-1) cm(-2)) with wide linear glucose concentration ranging from 0.05 μM to 0.2 mM, and the low detection limit (LOD) of 0.031 μM (S/N = 3) is achieved by the amperometry method. Further, the 3-D/Ni-Fe hierarchical nanosheet array modified CFP electrode can be demonstrated to have excellent selectivity towards the detection of glucose in the presence of 500-fold excess of major important interferents. All these results indicate that 3-D/Ni-Fe hierarchical nanosheet arrays are promising candidates for non-enzymatic glucose sensing.
Hu, Q; Agarwal, U; Bequette, B J
2017-02-01
We aimed to quantify the rate of gluconeogenesis (GNG), non-essential amino-acid (NEAA) synthesis, and substrate partitioning to the Krebs cycle in embryonic (e) day e14 and e19 chicken embryos. An in ovo continuous tracer infusion approach was employed to test the hypotheses that GNG and NEAA synthesis in developing chicken embryo increases from e14 to e19. [ 13 C 6 ]Glucose or [ 13 C 3 ]glycerol was continuously infused (8 h) into the chorio-allantoic compartment of eggs on e14 and e19. Glucose entry rate, Cori cycling, and GNG were higher (P < 0.05) in e19 compared to e14 embryos, presumably to support higher glycogen deposition in liver and muscle. Whereas de novo synthesis of alanine, aspartate, and glutamate via glycolysis and the Krebs cycle was higher (P < 0.01) in e14 embryos, synthesis of these NEAA from glycerol was higher (P < 0.05) in e19 compared to e14 embryos. These patterns of glucose and glycerol utilization suggest a metabolic shift to conserve glucose for glycogen synthesis and an increased utilization of yolk glycerol (from triacylglyceride) after e14. Although the contribution of glycerol to GNG in e19 embryos was higher (P < 0.05) than that in e14 embryos, the contribution of glycerol to GNG (1.3 to 6.0%) was minor. Based on [ 13 C 6 ]glucose tracer kinetics, the activities of both pyruvate carboxylase (PC) and pyruvate dehydrogenase (PDH) in the liver were higher (P < 0.05) in e19 embryos; whereas the higher (P < 0.01) relative activity of liver PC compared to PDH in e14 embryos suggests a greater anaplerotic flux into the Krebs cycle. In summary, the in ovo continuous tracer infusion approach allowed for a measurement of chicken embryo whole body and liver metabolism over a shorter window of development. This study provided quantitative estimates of the developmental shifts in substrate utilization, GNG, and NEAA synthesis by chicken embryos, as well as qualitative estimates of the activities of enzymes central to the Krebs cycle, glucose, and fatty acid metabolism. © 2016 Poultry Science Association Inc.
Contemporary Risk Factors and Outcomes of Transfusion-Associated Circulatory Overload.
Roubinian, Nareg H; Hendrickson, Jeanne E; Triulzi, Darrell J; Gottschall, Jerome L; Michalkiewicz, Michael; Chowdhury, Dhuly; Kor, Daryl J; Looney, Mark R; Matthay, Michael A; Kleinman, Steven H; Brambilla, Donald; Murphy, Edward L
2018-04-01
Transfusion-associated circulatory overload is characterized by hydrostatic pulmonary edema following blood transfusion. Restrictive transfusion practice may affect the occurrence and severity of transfusion-associated circulatory overload in critically ill patients. We sought to examine contemporary risk factors and outcomes for transfusion-associated circulatory overload. Case-control study. Four tertiary care hospitals. We prospectively enrolled 200 patients with transfusion-associated circulatory overload identified by active surveillance and 405 controls matched by transfusion intensity. None. Among 20,845 transfused patients who received 128,263 blood components from May 2015 until July 2016, transfusion-associated circulatory overload incidence was one case per 100 transfused patients. In addition to cardiovascular comorbidities, multivariable analysis identified the following independent predictors of transfusion-associated circulatory overload: acute kidney injury, emergency surgery, pretransfusion diuretic use, and plasma transfusion-the latter especially in females. Compared with matched controls, transfusion-associated circulatory overload cases were more likely to require mechanical ventilation (71% vs 49%; p < 0.001), experienced longer intensive care and hospital lengths of stay following transfusion, and had higher mortality (21% vs 11%; p = 0.02) even after adjustment for other potentially confounding variables. Despite restrictive transfusion practice, transfusion-associated circulatory overload remains a frequent complication of transfusion and is an independent risk factor for in-hospital morbidity and mortality. In addition to cardiovascular and renal risk factors, plasma transfusion was associated with transfusion-associated circulatory overload after controlling for other covariates. Additional research is needed to examine the benefit of reduced erythrocyte or plasma exposure in patients at high risk for transfusion-associated circulatory overload.
High-Affinity Accumulation of Chloroquine by Mouse Erythrocytes Infected with Plasmodium berghei
Fitch, Coy D.; Yunis, Norman G.; Chevli, Rekha; Gonzalez, Yolanda
1974-01-01
Washed erythrocytes infected with chloroquine-susceptible (CS) or with chloroquine-resistant (CR) P. berghei were used in model systems in vitro to study the accumulation of chloroquine with high affinity. The CS model could achieve distribution ratios (chloroquine in cells: chloroquine in medium) of 100 in the absence of substrate. 200—300 in the presence of 10 mM pyruvate or lactate, and over 600 in the presence of 1 mM glucose or glycerol. In comparable studies of the CR model, the distribution ratios were 100 in the absence of substrate and 300 or less in the presence of glucose or glycerol. The presence of lactate stimulated chloroquine accumulation in the CR model, whereas the presence of pyruvate did not. Lactate production from glucose and glycerol was undiminished in the CR model, and ATP concentrations were higher than in the CS model. Cold, iodoacetate, 2,4-dinitrophenol, or decreasing pH inhibited chloroquine accumulation in both models. These findings demonstrate substrate involvement in the accumulation of chloroquine with high affinity. In studies of the CS model, certain compounds competitively inhibited chloroquine accumulation, while others did not. This finding is attributable to a specific receptor that imposes structural constraints on the process of accumulation. For chloroquine analogues, the position and length of the side chain, the terminal nitrogen atom of the side chain, and the nitrogen atom in the quinoline ring are important determinants of binding to this receptor. PMID:4600044
Ruzanski, Christian; Krucewicz, Katarzyna; Meier, Sebastian; Hägglund, Per; Svensson, Birte; Palcic, Monica M.
2017-01-01
The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1 (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis, that is, the enzymes and substrates involved in the initial transition from simple sugars to polysaccharides, remain unclear. We found that HvPho1 is present as an active protein at the onset of barley endosperm development. Notably, purified recombinant protein can catalyze the de novo production of α-1,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley. PMID:28407006
Lin, Hsien-Sheng; Shi, Jen-Bin; Peng, Cheng-Ming; Zheng, Bo-Chi; Cheng, Fu-Chou; Lee, Ming-Way; Lee, Hsuan-Wei; Wu, Po-Feng; Liu, Yi-Jui
2018-04-19
In this study, alpha nickel sulfide (α-NiS) nanosphere films have been successfully synthesized by electroplating the nickel nanosheet film on the indium tin oxide (ITO) glass substrate and sulfuring nickel-coated ITO glass substrate. First, we electrodeposited the nickel nanosheet films on the ITO glass substrates which were cut into a 0.5 × 1 cm 2 size. Second, the nanosheet nickel films were annealed in vacuum-sealed glass ampoules with sulfur sheets at different annealing temperatures (300, 400, and 500 °C) for 4 h in vacuum-sealed glass ampoules. The α-NiS films were investigated by using X-ray diffraction (XRD), variable vacuum scanning electron microscopy (VVSEM), field emission scanning electron microscopy/energy dispersive spectrometer (FE-SEM/EDS), cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), ultraviolet/visible/near-infrared (UV/Visible/NIR) spectra, and photoluminescence (PL) spectra. Many nanospheres were observed on the surface of the α-NiS films at the annealing temperature 400 °C for 4 h. We also used the high-resolution transmission electron microscopy (HR-TEM) for the analysis of the α-NiS nanospheres. We demonstrated that our α-NiS nanosphere film had a linear current response to different glucose concentrations. Additionally, our α-NiS nanosphere films were preserved at room temperature for five and a half years and were still useful for detecting glucose at low concentration.
NASA Astrophysics Data System (ADS)
Lin, Hsien-Sheng; Shi, Jen-Bin; Peng, Cheng-Ming; Zheng, Bo-Chi; Cheng, Fu-Chou; Lee, Ming-Way; Lee, Hsuan-Wei; Wu, Po-Feng; Liu, Yi-Jui
2018-04-01
In this study, alpha nickel sulfide (α-NiS) nanosphere films have been successfully synthesized by electroplating the nickel nanosheet film on the indium tin oxide (ITO) glass substrate and sulfuring nickel-coated ITO glass substrate. First, we electrodeposited the nickel nanosheet films on the ITO glass substrates which were cut into a 0.5 × 1 cm2 size. Second, the nanosheet nickel films were annealed in vacuum-sealed glass ampoules with sulfur sheets at different annealing temperatures (300, 400, and 500 °C) for 4 h in vacuum-sealed glass ampoules. The α-NiS films were investigated by using X-ray diffraction (XRD), variable vacuum scanning electron microscopy (VVSEM), field emission scanning electron microscopy/energy dispersive spectrometer (FE-SEM/EDS), cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), ultraviolet/visible/near-infrared (UV/Visible/NIR) spectra, and photoluminescence (PL) spectra. Many nanospheres were observed on the surface of the α-NiS films at the annealing temperature 400 °C for 4 h. We also used the high-resolution transmission electron microscopy (HR-TEM) for the analysis of the α-NiS nanospheres. We demonstrated that our α-NiS nanosphere film had a linear current response to different glucose concentrations. Additionally, our α-NiS nanosphere films were preserved at room temperature for five and a half years and were still useful for detecting glucose at low concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashiri, G.; Squire, C.J.; Moreland, N.J.
2009-05-11
The modified flavin coenzyme F{sub 420} is found in a restricted number of microorganisms. It is widely distributed in mycobacteria, however, where it is important in energy metabolism, and in Mycobacterium tuberculosis (Mtb) is implicated in redox processes related to non-replicating persistence. In Mtb, the F{sub 420}-dependent glucose-6-phosphate dehydrogenase FGD1 provides reduced F{sub 420} for the in vivo activation of the nitroimidazopyran prodrug PA-824, currently being developed for anti-tuberculosis therapy against both replicating and persistent bacteria. The structure of M. tuberculosis FGD1 has been determined by x-ray crystallography both in its apo state and in complex with F{sub 420} andmore » citrate at resolutions of 1.90 and 1.95{angstrom}, respectively. The structure reveals a highly specific F{sub 420} binding mode, which is shared with several other F{sub 420}-dependent enzymes. Citrate occupies the substrate binding pocket adjacent to F{sub 420} and is shown to be a competitive inhibitor (IC{sub 50} 43 {micro}m). Modeling of the binding of the glucose 6-phosphate (G6P) substrate identifies a positively charged phosphate binding pocket and shows that G6P, like citrate, packs against the isoalloxazine moiety of F{sub 420} and helps promote a butterfly bend conformation that facilitates F{sub 420} reduction and catalysis.« less
30 CFR 75.518-2 - Incandescent lamps, overload and short circuit protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Incandescent lamps, overload and short circuit...-General § 75.518-2 Incandescent lamps, overload and short circuit protection. Incandescent lamps installed... or direct current feeder circuits, need not be provided with separate short circuit or overload...
Dahlquist, G; Persson, B
1976-11-01
Cerebral blood flow (CBF) was measured by means of Celabeled microspheres in infant (20-day-old) and adult (3-month-old) rats, anesthetised with Na-5-ethyl-5-(1-methylpropyl)2-thiobarbituric acid. Cerebral arteriovenous differences of acetoacetate, D-beta-hydroxybutyrate, glucose, lactate, and oxygen and brain DNA content were determined in other groups of similarly treated infant and adult animals fed or starved for 48 or 72 hr. The mean CBF values of 0.48+/-0.04 and 0.62+/-0.07 ml/(g X min), +/- SEM, in infant and adult animals, respectively, were not significantly different. CBF was unaffected by starvation. At any given arterial concentration the cerebral arteriovenous difference of acetoacetate was significantly higher in infant than adult rats. The same was true for D-beta-hydroxybutyrate at arterial concentrations above 1 mmol/liter. There was an approximately linear relationship between arterial concentration of acetoacetate and its cerebral arteriovenous difference in both infant and adult rats. A similar relationship was found for D-beta-hydroxybutyrate only in infant animals. In the fed state, the cerebral uptake of glucose and ketone bodies (micromoles per (mg DNA X min)) was not different in infant and adult rats. During starvation, cerebral uptake of ketone bodies expressed as micromoles per (mg DNA X min) was higher in infant than adult rats, indicating a higher rate of utilization of ketone bodies per cell in these animals. For glucose, no such difference was found in either fed or starved groups (Table 3). The average percentage of the total cerebral uptake of substrates (micromoles per min) accounted for by ketone bodies increased in both infant and adult rats during starvation. This percentage value was clearly higher in infant than adult rats during starvation. After 72 hr of starvation the values were 38.8% and 15.2% in infant and adult rats, respectively (Fig. 3). Calculated cerebral metabolic rate for oxygen (CMRO2), assuming complete oxidation of glucose and ketone bodies and expressed as micromoles per (mg DNA X min), was similar in fed and starved rats of both age groups (Table 3), indicating that ketone bodies serve as an alternative substrate for glucose during starvation. Calculated CMRO2 for glucose plus ketone bodies was similar to the measured CMRO2 in adult rats both in the fed and the starved groups. For infant rats, calculated CMRO2 for glucose plus ketone bodies was higher than measured CMRO2, indicating that in this age group a portion of substrate was used for synthesis or storage rather than for complete oxidation.
Hyper-G stress-induced hyperglycemia in rats mediated by glucoregulatory hormones
NASA Technical Reports Server (NTRS)
Daligcon, B. C.; Oyama, J.
1985-01-01
The present investigation is concerned with possible relations of the hyperglycemic response of rats exposed to hyper-G stress to (1) alterations in blood levels of the glucoregulatory hormones and gluconeogenic substrates, and (2) changes in insulin response on muscle glucose uptake. Male Sprague-Dawley rats weighing 250-300 g were used in the study. The results of the experiments indicate that the initial rapid rise in blood glucose of rats exposed to hyper-G stress is mediated by increases in circulating catecholamines and glucagon, both potent stimulators of hepatic gluconeogenesis. Lactate, derived from epinephrine stimulation of muscle glycogenolysis, appears to be a major precursor for the initial rise in blood glucose. The inhibition of the insulin-stimulated glucose uptake by muscle tissues may be a factor in the observed sustained hyperglycemia.
NASA Astrophysics Data System (ADS)
Li, Zhenzhen; Chen, Yan; Xin, Yanmei; Zhang, Zhonghai
2015-11-01
In this work, we proposed to utilize three-dimensional porous copper foam (CF) as conductive substrate and precursor of in-situ growth CuO nanowires (NWs) for fabricating electrochemical nonenzymatic glucose sensors. The CF supplied high surface area due to its unique three-dimensional porous foam structure, and thus resulted in high sensitivity for glucose detection. The CuO NWs/CF based nonenzymatic sensors presented reliable selectivity, good repeatability, reproducibility, and stability. In addition, the CuO NWs/CF based nonenzymatic sensors have been employed for practical applications, and the glucose concentration in human serum was measured to be 4.96 ± 0.06 mM, agreed well with the value measured from the commercial available glucose sensor in hospital, and the glucose concentration in saliva was also estimated to be 0.91 ± 0.04 mM, which indicated that the CuO NWs/CF owned the possibility for noninvasive glucose detection. The rational design of CuO NWs/CF provided an efficient strategy for fabricating of electrochemical nonenzymatic biosensors.
A membraneless single compartment abiotic glucose fuel cell
NASA Astrophysics Data System (ADS)
Slaughter, Gymama; Sunday, Joshua
2014-09-01
A simple energy harvesting strategy has been developed to selectively catalyze glucose in the presence of oxygen in a glucose/O2 fuel cell. The anode consists of an abiotic catalyst Al/Au/ZnO, in which ZnO seed layer was deposited on the surface of Al/Au substrate using hydrothermal method. The cathode is constructed from a single rod of platinum with an outer diameter of 500 μm. The abiotic glucose fuel cell was studied in phosphate buffer solution (pH 7.4) containing 5 mM glucose at a temperature of 22 °C. The cell is characterized according to its open-circuit voltage, polarization profile, and power density plot. Under these conditions, the abiotic glucose fuel cell possesses an open-circuit voltage of 840 mV and delivered a maximum power density of 16.2 μW cm-2 at a cell voltage of 495 mV. These characteristics are comparable to biofuel cell utilizing a much more complex system design. Such low-cost lightweight abiotic catalyzed glucose fuel cells have a great promise to be optimized, miniaturized to power bio-implantable devices.
NASA Astrophysics Data System (ADS)
Wei, Wenjing; Song, Yilin; Fan, Xinyi; Zhang, Song; Wang, Li; Xu, Shengwei; Wang, Mixia; Cai, Xinxia
2016-03-01
Glucose is the main substrate for neurons in the central nervous system. In order to efficiently characterize the brain glucose mechanism, it is desirable to determine the extracellular glucose dynamics as well as the corresponding neuroelectrical activity in vivo. In the present study, we fabricated an implantable microelectrode array (MEA) probe composed of platinum electrochemical and electrophysiology microelectrodes by standard micro electromechanical system (MEMS) processes. The MEA probe was modified with nano-materials and implanted in a urethane-anesthetized rat for simultaneous recording of striatal extracellular glucose, local field potential (LFP) and spike on the same spatiotemporal scale when the rat was in normoglycemia, hypoglycemia and hyperglycemia. During these dual-mode recordings, we observed that increase of extracellular glucose enhanced the LFP power and spike firing rate, while decrease of glucose had an opposite effect. This dual mode MEA probe is capable of examining specific spatiotemporal relationships between electrical and chemical signaling in the brain, which will contribute significantly to improve our understanding of the neuron physiology.
Li, Zhenzhen; Chen, Yan; Xin, Yanmei; Zhang, Zhonghai
2015-01-01
In this work, we proposed to utilize three-dimensional porous copper foam (CF) as conductive substrate and precursor of in-situ growth CuO nanowires (NWs) for fabricating electrochemical nonenzymatic glucose sensors. The CF supplied high surface area due to its unique three-dimensional porous foam structure, and thus resulted in high sensitivity for glucose detection. The CuO NWs/CF based nonenzymatic sensors presented reliable selectivity, good repeatability, reproducibility, and stability. In addition, the CuO NWs/CF based nonenzymatic sensors have been employed for practical applications, and the glucose concentration in human serum was measured to be 4.96 ± 0.06 mM, agreed well with the value measured from the commercial available glucose sensor in hospital, and the glucose concentration in saliva was also estimated to be 0.91 ± 0.04 mM, which indicated that the CuO NWs/CF owned the possibility for noninvasive glucose detection. The rational design of CuO NWs/CF provided an efficient strategy for fabricating of electrochemical nonenzymatic biosensors. PMID:26522446
Effects of glucose load on cognitive functions in elderly people.
van der Zwaluw, Nikita L; van de Rest, Ondine; Kessels, Roy P C; de Groot, Lisette C P G M
2015-02-01
Glucose is the main fuel for the brain, and manipulation of the glucose supply may consequently affect brain function. The present review was conducted to provide an overview of studies that investigated the acute effects of glucose load on memory and other cognitive functions in elderly people. The effects of sucrose on cognition and suggested mechanisms were also explored. A total of twenty studies met the inclusion criteria. In the majority of studies, episodic memory was investigated and a beneficial role for glucose in that specific cognitive domain was suggested. Other cognitive domains, i.e., working memory, semantic memory, visual memory, information-processing speed, attention, executive function, and visual/spatial function, have been studied less frequently and evidence for a beneficial effect of glucose was equivocal. Mechanisms are suggested to be mainly related to the human body's need for glucose as a metabolic substrate for physiological mechanisms in both central and peripheral processes. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Choi, Kyung Ha; Lee, Hyun Ah; Park, Mi Hwa; Han, Ji-Sook
2017-09-01
In this study, the effect of cyanidin-3-rutinoside (C3R) on glucose uptake by 3T3-L1 adipocytes was studied. C3R significantly increased glucose uptake, which was associated with enhanced plasma membrane glucose transporter type 4 (PM-GLUT4) expression in 3T3-L1 adipocytes. The potentiating effect of C3R on glucose uptake and PM-GLUT4 expression was related to enhanced phosphorylation of insulin receptor substrate 1 (IRS-1) and Akt, as well as augmented activation of phosphatidylinositol-3-kinase (PI3K) in the insulin signaling pathway. C3R induced glucose uptake was inhibited only by the PI3K inhibitor, but not by an AMPK inhibitor in 3T3-L1 adipocytes. Therefore, C3R likely up-regulates glucose uptake and PM-GLUT4 expression in 3T3-L1 adipocytes by activating the PI3K/Akt pathways. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Jaideep; Her, Cheenou; Krishnan, V. V.
2018-02-01
The anomerization of carbohydrates is an essential process that determines the relative stabilization of stereoisomers in an aqueous solution. In a typical real-time enzyme kinetics experiment, the substrate (sucrose) is converted to glucose and fructose by the enzyme invertase. The product (α-D-glucose) starts to convert to β-D-glucose immediately by hydrolysis. Though the anomerization process is independent of the enzyme catalysis, the progress curve describing the production of β-D-glucose from α-D-glucose is directly affected by the kinetics of consecutive reactions. When α-D-glucose is continually converted to β-D-glucose, by the enzymatic action, the time course of both α- and β-D-glucose is influenced by the enzyme kinetics. Thus, a reversible first-order rate equation is not adequate to model the reaction mechanism, leading to erroneous results on the rates of formation of the glucose anomers. In this manuscript, we incorporate an approximate method to address consecutive general reactions involving enzyme kinetics and first-order reaction processes. The utility of the approach is demonstrated in the real-time NMR measurement of the anomerization process of α-D-glucose (enzymatically produced from sucrose) to β-D-glucose, as a function of invertase enzyme concentration. Variable temperature experiments were used to estimate the thermodynamic parameters of the anomerization process and are consistent with literature values.
Magnetic and quadrupolar studies of the iron storage overload in livers
NASA Astrophysics Data System (ADS)
Rimbert, J. N.; Dumas, F.; Richardot, G.; Kellershohn, C.
1986-02-01
Absorption57Fe Mössbauer spectra, performed directly on tissues of liver with iron overload due to an excessive intestinal iron absorption or induced by hypertransfusional therapeutics, have pointed out a new high spin ferric storage iron besides the ferritin and hemosiderin. Mössbauer studies, carried out on ferritin and hemosiderin fractions isolated from normal and overloaded livers, show that this compound, only present in the secondary iron overload (transfusional pathway), seems characteristic of the physiological process which induces the iron overload.
Ma, Ju-Fang; Hager, Paul W.; Howell, Michael L.; Phibbs, Paul V.; Hassett, Daniel J.
1998-01-01
In this study, we cloned the Pseudomonas aeruginosa zwf gene, encoding glucose-6-phosphate dehydrogenase (G6PDH), an enzyme that catalyzes the NAD+- or NADP+-dependent conversion of glucose-6-phosphate to 6-phosphogluconate. The predicted zwf gene product is 490 residues, which could form a tetramer with a molecular mass of ∼220 kDa. G6PDH activity and zwf transcription were maximal in early logarithmic phase when inducing substrates such as glycerol, glucose, or gluconate were abundant. In contrast, both G6PDH activity and zwf transcription plummeted dramatically when bacteria approached stationary phase, when inducing substrate was limiting, or when the organisms were grown in a citrate-, succinate-, or acetate-containing basal salts medium. G6PDH was purified to homogeneity, and its molecular mass was estimated to be ∼220 kDa by size exclusion chromatography. Estimated Km values of purified G6PDH acting on glucose-6-phosphate, NADP+, and NAD+ were 530, 57, and 333 μM, respectively. The specific activities with NAD+ and NADP+ were calculated to be 176 and 69 μmol/min/mg. An isogenic zwf mutant was unable to grow on minimal medium supplemented with mannitol. The mutant also demonstrated increased sensitivity to the redox-active superoxide-generating agent methyl viologen (paraquat). Since one by-product of G6PDH activity is NADPH, the latter data suggest that this cofactor is essential for the activity of enzymes critical in defense against paraquat toxicity. PMID:9537370
Molecular Dynamics Simulations of the Human Glucose Transporter GLUT1
Park, Min-Sun
2015-01-01
Glucose transporters (GLUTs) provide a pathway for glucose transport across membranes. Human GLUTs are implicated in devastating diseases such as heart disease, hyper- and hypo-glycemia, type 2 diabetes and caner. The human GLUT1 has been recently crystalized in the inward-facing open conformation. However, there is no other structural information for other conformations. The X-ray structures of E. coli Xylose permease (XylE), a glucose transporter homolog, are available in multiple conformations with and without the substrates D-xylose and D-glucose. XylE has high sequence homology to human GLUT1 and key residues in the sugar-binding pocket are conserved. Here we construct a homology model for human GLUT1 based on the available XylE crystal structure in the partially occluded outward-facing conformation. A long unbiased all atom molecular dynamics simulation starting from the model can capture a new fully opened outward-facing conformation. Our investigation of molecular interactions at the interface between the transmembrane (TM) domains and the intracellular helices (ICH) domain in the outward- and inward-facing conformation supports that the ICH domain likely stabilizes the outward-facing conformation in GLUT1. Furthermore, inducing a conformational transition, our simulations manifest a global asymmetric rocker switch motion and detailed molecular interactions between the substrate and residues through the water-filled selective pore along a pathway from the extracellular to the intracellular side. The results presented here are consistent with previously published biochemical, mutagenesis and functional studies. Together, this study shed light on the structure and functional relationships of GLUT1 in multiple conformational states. PMID:25919356
Lerch, Thomas Z.; Dignac, Marie-France; Barriuso, Enrique; Mariotti, André
2011-01-01
Combining lipid biomarker profiling with stable isotope probing (SIP) is a powerful technique for studying specific microbial populations responsible for the degradation of organic pollutants in various natural environments. However, the presence of other easily degradable substrates may induce significant physiological changes by altering both the rate of incorporation of the target compound into the biomass and the microbial lipid profiles. In order to test this hypothesis, Cupriavidus necator JMP134, a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium, was incubated with [13C]2,4-D, [13C]glucose, or mixtures of both substrates alternatively labeled with 13C. C. necator JMP134 exhibited a preferential use of 2,4-D over glucose. The isotopic analysis showed that glucose had only a small effect on the incorporation of the acetic chain of 2,4-D into the biomass (at days 2 and 3) and no effect on that of the benzenic ring. The addition of glucose did change the fatty acid methyl ester (FAME) composition. However, the overall FAME isotopic signature reflected that of the entire biomass. Compound-specific individual isotopic analyses of FAME composition showed that the 13C-enriched FAME profiles were slightly or not affected when tracing the 2,4-D acetic chain or 2,4-D benzenic ring, respectively. This batch study is a necessary step for validating the use of lipid-based SIP methods in complex environments. PMID:21856833
Leishmania UDP-sugar pyrophosphorylase: the missing link in galactose salvage?
Damerow, Sebastian; Lamerz, Anne-Christin; Haselhorst, Thomas; Führing, Jana; Zarnovican, Patricia; von Itzstein, Mark; Routier, Françoise H
2010-01-08
The Leishmania parasite glycocalyx is rich in galactose-containing glycoconjugates that are synthesized by specific glycosyltransferases that use UDP-galactose as a glycosyl donor. UDP-galactose biosynthesis is thought to be predominantly a de novo process involving epimerization of the abundant nucleotide sugar UDP-glucose by the UDP-glucose 4-epimerase, although galactose salvage from the environment has been demonstrated for Leishmania major. Here, we present the characterization of an L. major UDP-sugar pyrophosphorylase able to reversibly activate galactose 1-phosphate into UDP-galactose thus proving the existence of the Isselbacher salvage pathway in this parasite. The ordered bisubstrate mechanism and high affinity of the enzyme for UTP seem to favor the synthesis of nucleotide sugar rather than their pyrophosphorolysis. Although L. major UDP-sugar pyrophosphorylase preferentially activates galactose 1-phosphate and glucose 1-phosphate, the enzyme is able to act on a variety of hexose 1-phosphates as well as pentose 1-phosphates but not hexosamine 1-phosphates and hence presents a broad in vitro specificity. The newly identified enzyme exhibits a low but significant homology with UDP-glucose pyrophosphorylases and conserved in particular is the pyrophosphorylase consensus sequence and residues involved in nucleotide and phosphate binding. Saturation transfer difference NMR spectroscopy experiments confirm the importance of these moieties for substrate binding. The described leishmanial enzyme is closely related to plant UDP-sugar pyrophosphorylases and presents a similar substrate specificity suggesting their common origin.
La Rosa, Ruggero; Nogales, Juan; Rojo, Fernando
2015-09-01
In metabolically versatile bacteria, carbon catabolite repression (CCR) facilitates the preferential assimilation of the most efficient carbon sources, improving growth rates and fitness. In Pseudomonas putida, the Crc and Hfq proteins and the CrcZ and CrcY small RNAs, which are believed to antagonize Crc/Hfq, are key players in CCR. Unlike that seen in other bacterial species, succinate and glucose elicit weak CCR in this bacterium. In the present work, metabolic, transcriptomic and constraint-based metabolic flux analyses were combined to clarify whether P. putida prefers succinate or glucose, and to identify the role of the Crc protein in the metabolism of these compounds. When provided simultaneously, succinate was consumed faster than glucose, although both compounds were metabolized. CrcZ and CrcY levels were lower when both substrates were present than when only one was provided, suggesting a role for Crc in coordinating metabolism of these compounds. Flux distribution analysis suggested that, when both substrates are present, Crc works to organize a metabolism in which carbon compounds flow in opposite directions: from glucose to pyruvate, and from succinate to pyruvate. Thus, our results support that Crc not only favours the assimilation of preferred compounds, but balances carbon fluxes, optimizing metabolism and growth. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Stark, Romana; Guebre-Egziabher, Fitsum; Zhao, Xiaojian; Feriod, Colleen; Dong, Jianying; Alves, Tiago C.; Ioja, Simona; Pongratz, Rebecca L.; Bhanot, Sanjay; Roden, Michael; Cline, Gary W.; Shulman, Gerald I.; Kibbey, Richard G.
2014-01-01
Synthesis of phosphoenolpyruvate (PEP) from oxaloacetate is an absolute requirement for gluconeogenesis from mitochondrial substrates. Generally, this reaction has solely been attributed to the cytosolic isoform of PEPCK (PEPCK-C), although loss of the mitochondrial isoform (PEPCK-M) has never been assessed. Despite catalyzing the same reaction, to date the only significant role reported in mammals for the mitochondrial isoform is as a glucose sensor necessary for insulin secretion. We hypothesized that this nutrient-sensing mitochondrial GTP-dependent pathway contributes importantly to gluconeogenesis. PEPCK-M was acutely silenced in gluconeogenic tissues of rats using antisense oligonucleotides both in vivo and in isolated hepatocytes. Silencing PEPCK-M lowers plasma glucose, insulin, and triglycerides, reduces white adipose, and depletes hepatic glycogen, but raises lactate. There is a switch of gluconeogenic substrate preference to glycerol that quantitatively accounts for a third of glucose production. In contrast to the severe mitochondrial deficiency characteristic of PEPCK-C knock-out livers, hepatocytes from PEPCK-M-deficient livers maintained normal oxidative function. Consistent with its predicted role, gluconeogenesis rates from hepatocytes lacking PEPCK-M are severely reduced for lactate, alanine, and glutamine, but not for pyruvate and glycerol. Thus, PEPCK-M has a direct role in fasted and fed glucose homeostasis, and this mitochondrial GTP-dependent pathway should be reconsidered for its involvement in both normal and diabetic metabolism. PMID:24497630
Stark, Romana; Guebre-Egziabher, Fitsum; Zhao, Xiaojian; Feriod, Colleen; Dong, Jianying; Alves, Tiago C; Ioja, Simona; Pongratz, Rebecca L; Bhanot, Sanjay; Roden, Michael; Cline, Gary W; Shulman, Gerald I; Kibbey, Richard G
2014-03-14
Synthesis of phosphoenolpyruvate (PEP) from oxaloacetate is an absolute requirement for gluconeogenesis from mitochondrial substrates. Generally, this reaction has solely been attributed to the cytosolic isoform of PEPCK (PEPCK-C), although loss of the mitochondrial isoform (PEPCK-M) has never been assessed. Despite catalyzing the same reaction, to date the only significant role reported in mammals for the mitochondrial isoform is as a glucose sensor necessary for insulin secretion. We hypothesized that this nutrient-sensing mitochondrial GTP-dependent pathway contributes importantly to gluconeogenesis. PEPCK-M was acutely silenced in gluconeogenic tissues of rats using antisense oligonucleotides both in vivo and in isolated hepatocytes. Silencing PEPCK-M lowers plasma glucose, insulin, and triglycerides, reduces white adipose, and depletes hepatic glycogen, but raises lactate. There is a switch of gluconeogenic substrate preference to glycerol that quantitatively accounts for a third of glucose production. In contrast to the severe mitochondrial deficiency characteristic of PEPCK-C knock-out livers, hepatocytes from PEPCK-M-deficient livers maintained normal oxidative function. Consistent with its predicted role, gluconeogenesis rates from hepatocytes lacking PEPCK-M are severely reduced for lactate, alanine, and glutamine, but not for pyruvate and glycerol. Thus, PEPCK-M has a direct role in fasted and fed glucose homeostasis, and this mitochondrial GTP-dependent pathway should be reconsidered for its involvement in both normal and diabetic metabolism.
13C-Labeled-Starch Breath Test in Congenital Sucrase-isomaltase Deficiency.
Robayo-Torres, Claudia C; Diaz-Sotomayor, Marisela; Hamaker, Bruce R; Baker, Susan S; Chumpitazi, Bruno P; Opekun, Antone R; Nichols, Buford L
2018-06-01
Human starch digestion is a multienzyme process involving 6 different enzymes: salivary and pancreatic α-amylase; sucrase and isomaltase (from sucrose-isomaltase [SI]), and maltase and glucoamylase (from maltase-glucoamylase [MGAM]). Together these enzymes cleave starch to smaller molecules ultimately resulting in the absorbable monosaccharide glucose. Approximately 80% of all mucosal maltase activity is accounted for by SI and the reminder by MGAM. Clinical studies suggest that starch may be poorly digested in those with congenital sucrase-isomaltase deficiency (CSID). Poor starch digestion occurs in individuals with CSID and can be documented using a noninvasive C-breath test (BT). C-Labled starch was used as a test BT substrate in children with CSID. Sucrase deficiency was previously documented in study subjects by both duodenal biopsy enzyme assays and C-sucrose BT. Breath CO2 was quantitated at intervals before and after serial C-substrate loads (glucose followed 75 minutes later by starch). Variations in metabolism were normalized against C-glucose BT (coefficient of glucose absorption). Control subjects consisted of healthy family members and a group of children with functional abdominal pain with biopsy-proven sucrase sufficiency. Children with CSID had a significant reduction of C-starch digestion mirroring that of their duodenal sucrase and maltase activity and C-sucrase BT. In children with CSID, starch digestion may be impaired. In children with CSID, starch digestion correlates well with measures of sucrase activity.
Dahman, Yaser; Ugwu, Charles U
2014-08-01
This work describes potential opportunities for utilization of agro-industrial residues to produce green biodegradable plastics of poly(3-hydroxybutyrate) (PHB). Wheat straws were examined with good efficacy of carbon substrates using Cupriavidus necator. Production was examined in separate hydrolysis and fermentation (SHF) in the presence and absence of WS hydrolysis enzymes, and in simultaneous saccharification and fermentation (SSF) with enzymes. Results showed that production of PHB in SSF was more efficient in terms of viable cell count, cell dry weight, and PHB production and yield compared to those of SHF and glucose-control cultures. While glucose control experiment produced 4.6 g/L PHB; SSF produced 10.0 g/L compared to 7.1 g/L in SHF when utilizing enzymes during WS hydrolysis. Results showed that most of sugars produced during the hydrolysis were consumed in SHF (~98 %) compared to 89.2 % in SSF. Results also demonstrated that a combination of glucose and xylose can compensate for the excess carbon required for enhancing PHB production by C. necator. However, higher concentration of sugars at the beginning of fermentation in SHF can lead to cell inhibition and consequently catabolite repressions. Accordingly, results demonstrated that the gradual release of sugars in SSF enhanced PHB production. Moreover, the presence of sugars other than glucose and xylose can eliminate PHB degradation in medium of low carbon substrate concentrations in SSF.
Evidence that downregulation of hexose transport limits intracellular glucose in 3T3-L1 fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitesell, R.R.; Regen, D.M.; Pelletier, D.
1990-10-01
Measurements of initial glucose entry rate and intracellular glucose concentration in cultured cells are difficult because of rapid transport relative to intracellular volume and a substantial extracellular space from which glucose cannot be completely removed by quick exchanges of medium. In 3T3-L1 cells, we obtained good estimates of initial entry of ({sup 14}C)methylglucose and D-({sup 14}C)glucose with (1) L-({sup 3}H)glucose as an extracellular marker together with the ({sup 14}C)glucose or ({sup 14}C)methylglucose in the substrate mixture, (2) sampling times as short as 2 s, (3) ice-cold phloretin-containing medium to stop uptake and rinse away the extracellular label, and (4) nonlinearmore » regression of time courses. Methylglucose equilibrated in two phases--the first with a half-time of 1.7 s and the second with a half-time of 23 s; it eventually equilibrated in an intracellular space of 8 microliters/mg protein. Entry of glucose remained almost linear for 10 s, making its transport kinetics easier to study (Km = 5.7 mM, Vmax = 590 nmol.s-1.ml-1 cell water). Steady-state intracellular glucose concentration was 75-90% of extracellular glucose concentration. Cells grown in a high-glucose medium (24 mM) exhibited a 67% reduction of glucose-transport activity and a 50% reduction of steady-state ratio of intracellular glucose to extracellular glucose.« less
Allocation of systemic glucose output to cerebral utilization as a function of fetal canine growth.
Huang, M M; Kliegman, R M; Trindade, C; Kall, D; Voelker, K
1988-05-01
To determine whether the neonatal canine brain consumes a major proportion of the systemic glucose production, we investigated the cerebral glucose requirement and hepatic glucose production in beagle pups. Sixteen pups received D-[6-3H]-glucose to determine systemic glucose production. Cerebral blood flow was measured by [N-methyl-14C]antipyrine, and the brain uptake index (BUI) of glucose was determined using 2-[14C]deoxy-D-glucose. Glucose production was 49.6 +/- 11.0 mumol.kg-1.min-1. Cerebral blood flow was 0.83 ml.g-1.min-1; cerebral uptake of glucose was 0.60 +/- 0.15 mumol.g-1.min-1. Of the total glucose production 36.6 +/- 7.9% was accounted for by the cerebral uptake of glucose. Brain-to-body weight and brain-to-liver weight ratios were the greatest in the smallest pups, suggesting brain sparing. The effect of growth status on cerebral substrate availability could not be correlated with cerebral uptake of glucose or oxygen or with systemic glucose production. However, the percentage of systemic glucose production allotted to the cerebral cortex increased with increasing body weight (r = 0.50, P less than 0.05). Cerebral glucose entry measured by BUI was demonstrated to be 0.108 +/- 0.014; BUI inversely correlated with canine birth weight (r = -0.832, P less than 0.001). We conclude that the percentage of glucose production utilized by the neonatal canine brain is not proportionately larger in the smaller pups despite a proportionately larger brain. Because the absolute cerebral glucose utilization may be static, we speculate that BUI (glucose entry) may be less of a rate-limiting factor for cerebral glucose entry in the smallest pups.
Yun, Richard J; Krystal, John H; Mathalon, Daniel H
2010-03-01
The human working memory system provides an experimentally useful model for examination of neural overload effects on subsequent functioning of the overloaded system. This study employed functional magnetic resonance imaging in conjunction with a parametric working memory task to characterize the behavioral and neural effects of cognitive overload on subsequent cognitive performance, with particular attention to cognitive-limbic interactions. Overloading the working memory system was associated with varying degrees of subsequent decline in performance accuracy and reduced activation of brain regions central to both task performance and suppression of negative affect. The degree of performance decline was independently predicted by three separate factors operating during the overload condition: the degree of task failure, the degree of amygdala activation, and the degree of inverse coupling between the amygdala and dorsolateral prefrontal cortex. These findings suggest that vulnerability to overload effects in cognitive functioning may be mediated by reduced amygdala suppression and subsequent amygdala-prefrontal interaction.
Protective effects of deferasirox and N-acetyl-L-cysteine on iron overload-injured bone marrow.
Shen, J C; Zhang, Y C; Zhao, M F
2017-10-19
Using an iron overload mouse model, we explored the protective effect of deferasirox (DFX) and N-acetyl-L-cysteine (NAC) on injured bone marrow hematopoietic stem/progenitor cells (HSPC) induced by iron overload. Mice were intraperitoneally injected with 25 mg iron dextran every 3 days for 4 weeks to establish an iron overload (Fe) model. DFX or NAC were co-administered with iron dextran in two groups of mice (Fe+DFX and Fe+NAC), and the function of HSPCs was then examined. Iron overload markedly decreased the number of murine HSPCs in bone marrow. Subsequent colony-forming cell assays showed that iron overload also decreased the colony forming capacity of HSPCs, the effect of which could be reversed by DFX and NAC. The bone marrow hematopoiesis damage caused by iron overload could be alleviated by DFX and NAC.
Brown, Steven P; Jones, Eli; Leigh, Thomas W
2005-09-01
The reported research examines the moderating effects of role overload on the antecedents and consequences of self-efficacy and personal goal level in a longitudinal study conducted in an industrial selling context. The results indicate that role overload moderates the antecedent effect of perceived organizational resources on self-efficacy beliefs. They also show that role overload moderates the direct effects of both self-efficacy and goal level on performance, such that these relationships are positive when role overload is low but not significant when role overload is high. Further, the results reveal a pattern of moderated mediation, in which goal level mediates the indirect effect of self-efficacy on performance when role overload is low but not when it is high. Implications for theory and managerial practice are discussed. Copyright 2005 APA, all rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. Y.; Sun, Yinan; An, Ke
2010-01-01
Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of themore » large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed.« less
Chai, Xiao; Li, Deguan; Cao, Xiaoli; Zhang, Yuchen; Mu, Juan; Lu, Wenyi; Xiao, Xia; Li, Chengcheng; Meng, Juanxia; Chen, Jie; Li, Qing; Wang, Jishi; Meng, Aimin; Zhao, Mingfeng
2015-01-01
Iron overload, caused by hereditary hemochromatosis or repeated blood transfusions in some diseases, such as beta thalassemia, bone marrow failure and myelodysplastic syndrome, can significantly induce injured bone marrow (BM) function as well as parenchyma organ dysfunctions. However, the effect of iron overload and its mechanism remain elusive. In this study, we investigated the effects of iron overload on the hematopoietic stem and progenitor cells (HSPCs) from a mouse model. Our results showed that iron overload markedly decreased the ratio and clonogenic function of murine HSPCs by the elevation of reactive oxygen species (ROS). This finding is supported by the results of NAC or DFX treatment, which reduced ROS level by inhibiting NOX4 and p38MAPK and improved the long-term and multi-lineage engrafment of iron overload HSCs after transplantation. Therefore, all of these data demonstrate that iron overload injures the hematopoiesis of BM by enhancing ROS through NOX4 and p38MAPK. This will be helpful for the treatment of iron overload in patients with hematopoietic dysfunction. PMID:25970748
Changes in rat muscle with compensatory overload occur in a sequential manner.
Macpherson, P C; Thayer, R E; Rodgers, C; Taylor, A W; Noble, E G
1999-01-01
The present study was initiated to determine the time course of changes in the profile of selected skeletal muscle myofibril proteins during compensatory overload. Whole muscle isometric contractile properties were measured to assess the physiological consequences of the overload stimulus. Compensatory overload of plantaris muscle of rats was induced by surgical ablation of the synergistic soleus and gastrocnemius muscles. Myosin light chain (LC) and tropomyosin (TM) compositions of control (CP) and overloaded plantaris (OP) muscles were determined by electrophoresis and myofibrillar ATPase assays were performed to assess changes in contractile protein interactions. Within one week of overload decreases in the alpha:beta TM ratio and myofibrillar ATPase activity were observed. Following 30 days of overload, a transition in type II to type I fibres was associated with an increase in slow myosin LC1. Interestingly, after 77 days of overload, the TM subunit ratio returned to one resembling a fast twitch muscle. It is proposed that the early and transitory changes in the TM subunits of OP, as well as the rapid initial depression in maximum tetanic isometric force and myofibrillar ATPase activity may be explained as a result of muscle fibre degeneration-regeneration. We propose that alterations in protein expression induced by compensatory overload reflect both degenerative-regenerative change and increased neuromuscular activity.
Mustafa, Sally Sabry; Looper, Karl Julian; Zelkowitz, Phyllis; Purden, Margaret; Baron, Murray
2012-05-03
Inflammatory arthritis impairs participation in societal roles. Role overload arises when the demands by a given role set exceed the resources; time and energy, to carry out the required tasks. The present study examines the association between role overload and disease outcomes in early inflammatory arthritis (EIA). Patients (n = 104) of 7.61 months mean duration of inflammatory arthritis completed self-report questionnaires on sociodemographics, disease characteristics and role overload. Pain was assessed using the Short Form McGill Pain Questionnaire (MPQ) and physical functioning was measured with the Medical Outcomes Study Short Form 36 (SF-36) physical functioning score. Role overload was measured by the Role Overload Scale. Patients indicated the number of social roles they occupied from a total of the three typical roles; marital, parental and paid work. Participants' mean age was 56 years and 70.2% were female. Role overload was not correlated to the number of social roles, however, it was positively associated with pain (p = 0.004) and negatively associated with physical functioning (p = 0.001). On multivariate analysis, role overload was negatively associated with physical functioning after controlling for the relevant sociodemographic variables. This study identifies a possible reciprocal relationship between role overload and physical functioning in patients with EIA.
Shammo, Jamile M; Komrokji, Rami S
2018-06-14
Patients with myelodysplastic syndromes (MDS) are at increased risk of iron overload due to ineffective erythropoiesis and chronic transfusion therapy. The clinical consequences of iron overload include cardiac and/or hepatic failure, endocrinopathies, and infection risk. Areas covered: Iron chelation therapy (ICT) can help remove excess iron and ultimately reduce the clinical consequences of iron overload. The authors reviewed recent (last five years) English-language articles from PubMed on the topic of iron overload-related complications and the use of ICT (primarily deferasirox) to improve outcomes in patients with MDS. Expert Commentary: While a benefit of ICT has been more firmly established in other transfusion-dependent conditions such as thalassemia, its role in reducing iron overload in MDS remains controversial due to the lack of prospective controlled data demonstrating a survival benefit. Orally administered chelation agents (e.g., deferasirox), are now available, and observational and/or retrospective data support a survival benefit of using ICT in MDS. The placebo-controlled TELESTO trial (NCT00940602) is currently examining the use of deferasirox in MDS patients with iron overload, and is evaluating specifically whether use of ICT to alleviate iron overload can also reduce iron overload-related complications in MDS and improve survival.
Functional expression of sodium-glucose transporters in cancer
Scafoglio, Claudio; Hirayama, Bruce A.; Kepe, Vladimir; Liu, Jie; Ghezzi, Chiara; Satyamurthy, Nagichettiar; Moatamed, Neda A.; Huang, Jiaoti; Koepsell, Hermann; Barrio, Jorge R.; Wright, Ernest M.
2015-01-01
Glucose is a major metabolic substrate required for cancer cell survival and growth. It is mainly imported into cells by facilitated glucose transporters (GLUTs). Here we demonstrate the importance of another glucose import system, the sodium-dependent glucose transporters (SGLTs), in pancreatic and prostate adenocarcinomas, and investigate their role in cancer cell survival. Three experimental approaches were used: (i) immunohistochemical mapping of SGLT1 and SGLT2 distribution in tumors; (ii) measurement of glucose uptake in fresh isolated tumors using an SGLT-specific radioactive glucose analog, α-methyl-4-deoxy-4-[18F]fluoro-d-glucopyranoside (Me4FDG), which is not transported by GLUTs; and (iii) measurement of in vivo SGLT activity in mouse models of pancreatic and prostate cancer using Me4FDG-PET imaging. We found that SGLT2 is functionally expressed in pancreatic and prostate adenocarcinomas, and provide evidence that SGLT2 inhibitors block glucose uptake and reduce tumor growth and survival in a xenograft model of pancreatic cancer. We suggest that Me4FDG-PET imaging may be used to diagnose and stage pancreatic and prostate cancers, and that SGLT2 inhibitors, currently in use for treating diabetes, may be useful for cancer therapy. PMID:26170283
Lang, Michael J.; Martinez-Marquez, Jorge Y.; Prosser, Derek C.; Ganser, Laura R.; Buelto, Destiney; Wendland, Beverly; Duncan, Mara C.
2014-01-01
Cellular energy influences all aspects of cellular function. Although cells can adapt to a gradual reduction in energy, acute energy depletion poses a unique challenge. Because acute depletion hampers the transport of new energy sources into the cell, the cell must use endogenous substrates to replenish energy after acute depletion. In the yeast Saccharomyces cerevisiae, glucose starvation causes an acute depletion of intracellular energy that recovers during continued glucose starvation. However, how the cell replenishes energy during the early phase of glucose starvation is unknown. In this study, we investigated the role of pathways that deliver proteins and lipids to the vacuole during glucose starvation. We report that in response to glucose starvation, plasma membrane proteins are directed to the vacuole through reduced recycling at the endosomes. Furthermore, we found that vacuolar hydrolysis inhibits macroautophagy in a target of rapamycin complex 1-dependent manner. Accordingly, we found that endocytosis and hydrolysis are required for survival in glucose starvation, whereas macroautophagy is dispensable. Together, these results suggest that hydrolysis of components delivered to the vacuole independent of autophagy is the cell survival mechanism used by S. cerevisiae in response to glucose starvation. PMID:24753258
NASA Astrophysics Data System (ADS)
Abreu, Caroline; Nedellec, Yannig; Ondel, Olivier; Buret, Francois; Cosnier, Serge; Le Goff, Alan; Holzinger, Michael
2018-07-01
Bioelectrocatalytic carbon nanotube pellets comprising glucose oxidase (GOx) at the anode and horseradish peroxidase (HRP) at the cathode were integrated in a glucose/H2O2 flow-through fuel cell setup. The porous bioelectrodes, separated with a cellulose membrane, were assembled in a design allowing the fuel/electrolyte flow through the entire fuel cell with controlled direction. An air saturated 5 mmol L-1 glucose solution was directed through the anode where glucose is used for power conversion and for the enzymatic generation of hydrogen peroxide supplying the HRP biocathode with its substrate. This configuration showed an open circuit voltage (OCV) of 0.6 V and provided 0.7 ± 0.035 mW at 0.41 V. Furthermore, different charge/discharge cycles at 500 Ω and 3 kΩ were applied to show the long term stability of this setup producing 290 μW h (1.04 J) of energy after 48 h. The biofuel cell design further allows a convenient assembly of several glucose biofuel cells in reduced volumes and its connection in parallel or in series.
Pelikánová, T; Krausová, Z; Kohout, M; Válek, J; Basĕ, J
1993-01-01
To evaluate the clinical significance of substrate competition in the insulin-resistant state, we measured glucose and lipid utilization in 10 non-insulin-dependent diabetic patients during an isoglycemic hyperinsulinemic (approximately 75 and approximately 1500 mU/L) clamp without and with the concomitant infusion of Intralipid (0.15 g triglycerides.kg-1 x h-1) and during Intralipid infusion only in combination with indirect calorimetry. We found that a lipid emulsion does not alter the metabolic clearance rates of glucose at insulinemias of approximately 75 mU/L (5.58 +/- 2.56 vs. 6.03 +/- 2.43 ml.kg-1 x min-1) and approximately 1500 mU/L (13.55 +/- 3.17 vs. 13.75 +/- 4.36 ml.kg-1 x min-1) and it does not change oxidative and nonoxidative glucose disposal rates. Insulin and glucose attenuate the Intralipid-induced increase in serum triglycerides, free fatty acids, and lipid oxidation. We conclude that, whereas Intralipid infused at a standard rate does not decrease glucose utilization under hyperinsulinemic conditions, its own removal from the plasma is enhanced by glucose and insulin in non-insulin-dependent diabetic patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croft,M.; Jisrawi, N.; Zhong, Z.
High-energy synchrotron X-ray diffraction experiments are used to perform local crack plane strain profiling of 4140 steel compact tension specimens fatigued at constant amplitude, subjected to a single overload cycle, then fatigued some more at constant amplitude. X-ray strain profiling results on a series of samples employing in-situ load cycling are correlated with the crack growth rate (da/dN) providing insight into the da/dN retardation known as the 'overload effect'. Immediately after the overload, the strain under maximum load is greatly reduced but the range of strain, between zero and maximum load, remains unchanged compared to the pre-overload values. At themore » point of maximum retardation, it is the strain range that is greatly reduced while the maximum-load strain has begun to recover to the pre-overload value. For a sample that has recovered to approximately half of the original da/dN value following the overload, the strain at maximum load is fully recovered while the strain range, though partially recovered, is still substantially reduced. The dominance of the strain range in the overload effect is clearly indicated. Subject to some assumptions, strong quantitative support for a crack growth rate driving force of the suggested form [(K{sub max}){sup -p}({Delta}K){sup p}]{sup {gamma}} is found. A dramatic nonlinear load dependence in the spatial distribution of the strain at maximum retardation is also demonstrated: at low load the response is dominantly at the overload position; whereas at high loads it is dominantly at the crack tip position. This transfer of load response away from the crack tip to the overload position appears fundamental to the overload effect for high R-ratio fatigue as studied here.« less
Chen, Longjian; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Zhang, Haiyan; Han, Lujia
2016-05-05
Corn stover was pretreated with acid under moderate conditions (1.5%, w/w, 121°C, 60min), and kinetic enzymolysis experiments were performed on the pretreated substrate using a mixture of Celluclast 1.5L (20FPU/g dry substrate) and Novozyme 188 (40CBU/g dry substrate). Integrated chemical and multi-scale structural methods were then used to characterize both processes. Chemical analysis showed that acid pretreatment removed considerable hemicellulose (from 19.7% in native substrate to 9.28% in acid-pretreated substrate) and achieved a reasonably high conversion efficiency (58.63% of glucose yield) in the subsequent enzymatic hydrolysis. Multi-scale structural analysis indicated that acid pretreatment caused structural changes via cleaving acetyl linkages, solubilizing hemicellulose, relocating cell wall surfaces and enlarging substrate porosity (pore volume increased from 0.0067cm(3)/g in native substrate to 0.019cm(3)/g in acid-pretreated substrate), thereby improving the polysaccharide digestibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
SERS on paper: an extremely low cost technique to measure Raman signal
NASA Astrophysics Data System (ADS)
Chamuah, Nabadweep; Hazarika, Anil; Hatiboruah, Diganta; Nath, Pabitra
2017-12-01
Finding a low cost substrate for surface-enhanced Raman spectroscopy (SERS) yielding enhanced, reproducible Raman signal from Raman active samples has been a longstanding goal for researchers for years. Herein, we demonstrate the fabrication of such a SERS substrate from paper. The proposed paper-based SERS substrate was developed by attaching polyvinylpyrrolidone (PVP) capped silver nano-particles (AgNPs) to printing grade paper. The performance of the substrate has been evaluated for paper substrates of various grades (in grams per square meter; GSM). The usability of the developed substrate for detection of two Raman active samples—namely, malachite green (MG) and rhodamine6G (R6G)—is reported. In addition to these samples, the reproducibility of the designed substrate has been evaluated for 1,2-bis(4-pyridyl)ethylene (BPE); a good degree of reproducibility was observed. Finally, applicability of the proposed substrate for reliable detection of Raman signals from two more important samples—namely, glucose and urine—has been successfully demonstrated.
Simple Practical Investigations Using Invertase.
ERIC Educational Resources Information Center
Asare-Brown, Emma; Bullock, Clive
1988-01-01
Describes three activities, substrate inhibition, product inhibition by fructose and glucose, and gel immobilization of invertase for use with undergraduate biochemistry classes. Discusses materials, methods, and results. Stresses the advantages of practical exercises in undergraduate classes. (CW)
Volume Overload: Prevalence, Risk Factors, and Functional Outcome in Survivors of Septic Shock
Carlbom, David; Caldwell, Ellen; Himmelfarb, Jonathan; Hough, Catherine L.
2015-01-01
Rationale: Survivors of septic shock have impaired functional status. Volume overload is associated with poor outcomes in patients with septic shock, but the impact of volume overload on functional outcome and discharge destination of survivors is unknown. Objectives: This study describes patterns of fluid management both during and after septic shock. We examined factors associated with volume overload upon intensive care unit (ICU) discharge. We then examined associations between volume overload upon ICU discharge, mobility limitation, and discharge to a healthcare facility in septic shock survivors, with the hypothesis that volume overload is associated with increased odds of these outcomes. Methods: We retrospectively reviewed the medical records of 247 patients admitted with septic shock to an academic county hospital between June 2009 and April 2012 who survived to ICU discharge. We defined volume overload as a fluid balance expected to increase the subject’s admission weight by 10%. Statistical methods included unadjusted analyses and multivariable logistic regression. Measurements and Main Results: Eighty-six percent of patients had a positive fluid balance, and 35% had volume overload upon ICU discharge. Factors associated with volume overload in unadjusted analyses included more severe illness, cirrhosis, blood transfusion during shock, and higher volumes of fluid administration both during and after shock. Blood transfusion during shock was independently associated with increased odds of volume overload (odds ratio [OR], 2.65; 95% confidence interval [CI], 1.33–5.27; P = 0.01) after adjusting for preexisting conditions and severity of illness. Only 42% of patients received at least one dose of a diuretic during their hospitalization. Volume overload upon ICU discharge was independently associated with inability to ambulate upon hospital discharge (OR, 2.29; 95% CI, 1.24–4.25; P = 0.01) and, in patients admitted from home, upon discharge to a healthcare facility (OR, 2.34; 95% CI, 1.1–4.98; P = 0.03). Conclusions: Volume overload is independently associated with impaired mobility and discharge to a healthcare facility in survivors of septic shock. Prevention and treatment of volume overload in patients with septic shock warrants further investigation. PMID:26394090
Wakabayashi, Ken T.; Kiyatkin, Eugene A.
2015-01-01
Glucose is the primary energetic substrate for the metabolic activity of brain cells and its proper delivery from the arterial blood is essential for neural activity and normal brain functions. Glucose is also a unique natural reinforcer, supporting glucose-drinking behavior without food or water deprivation. While it is known that glucose enters brain tissue via gradient-dependent facilitated diffusion, it remains unclear how glucose levels are changed during natural behavior and whether the direct central action of ingested glucose can be involved in regulating glucose-drinking behavior. Here, we used glucose biosensors with high-speed amperometry to examine the pattern of phasic and tonic changes in extracellular glucose in the nucleus accumbens (NAc) during unrestricted glucose-drinking in well-trained rats. We found that the drinking behavior is highly cyclic and is associated with relatively large and prolonged increases in extracellular glucose levels. These increases had two distinct components: a highly phasic but relatively small behavior-related rise and a larger tonic elevation that results from the arrival of consumed glucose into the brain’s extracellular space. The large post-ingestion increases in NAc glucose began minutes after the cessation of drinking and were consistently associated with periods of non-drinking, suggesting that the central action of ingested glucose could inhibit drinking behavior by inducing a pause in activity between repeated drinking bouts. Finally, the difference in NAc glucose responses found between active, behavior-mediated and passive glucose delivery via an intra-gastric catheter confirms that motivated behavior is also associated with metabolic glucose use by brain cells. PMID:26190984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Xiaoyun; Agarwal, Vinayak; Dodd, Dylan
2010-11-22
Carbohydrate binding modules (CBMs) are specialized proteins that bind to polysaccharides and oligosaccharides. Caldanaerobius polysaccharolyticus Man5ACBM16-1/CBM16-2 bind to glucose-, mannose-, and glucose/mannose-configured substrates. The crystal structures of the two proteins represent the only examples in CBM family 16, and studies that evaluate the roles of amino acid residues in ligand binding in this family are lacking. In this study, we probed the roles of amino acids (selected based on CBM16-1/ligand co-crystal structures) on substrate binding. Two tryptophan (Trp-20 and Trp-125) and two glutamine (Gln-81 and Gln-93) residues are shown to be critical in ligand binding. Additionally, several polar residues thatmore » flank the critical residues also contribute to ligand binding. The CBM16-1 Q121E mutation increased affinity for all substrates tested, whereas the Q21G and N97R mutants exhibited decreased substrate affinity. We solved CBM/substrate co-crystal structures to elucidate the molecular basis of the increased substrate binding by CBM16-1 Q121E. The Gln-121, Gln-21, and Asn-97 residues can be manipulated to fine-tune ligand binding by the Man5A CBMs. Surprisingly, none of the eight residues investigated was absolutely conserved in CBM family 16. Thus, the critical residues in the Man5A CBMs are either not essential for substrate binding in the other members of this family or the two CBMs are evolutionarily distinct from the members available in the current protein database. Man5A is dependent on its CBMs for robust activity, and insights from this study should serve to enhance our understanding of the interdependence of its catalytic and substrate binding modules.« less
Zheng, Lu; Bai, Zhongzhong; Xu, Tingting; He, Bingfang
2012-11-01
Sporolactobacillus inulinus, a homofermentative lactic acid bacterium, is a species capable of efficient industrial D-lactic acid production from glucose. Glucose phosphorylation is the key step of glucose metabolism, and fine-tuned expression of which can improve D-lactic acid production. During growth on high-concentration glucose, a fast induction of high glucokinase (GLK) activity was observed, and paralleled the patterns of glucose consumption and D-lactic acid accumulation, while phosphoenolpyruvate phosphotransferase system (PTS) activity was completely repressed. The transmembrane proton gradient of 1.3-1.5 units was expected to generate a large proton motive force to the uptake of glucose. This suggests that the GLK pathway is the major route for glucose utilization, with the uptake of glucose through PTS-independent transport systems and phosphorylation of glucose by GLK in S. inulinus D-lactic acid production. The gene encoding GLK was cloned from S. inulinus and expressed in Escherichia coli. The amino acid sequence revealed significant similarity to GLK sequences from Bacillaceae. The recombinant GLK was purified and shown to be a homodimer with a subunit molecular mass of 34.5 kDa. Strikingly, it demonstrated an unusual broad substrate specificity, catalyzing phosphorylation of 2-deoxyglucose, mannitol, maltose, galactose and glucosamine, in addition to glucose. This report documented the key step concerning glucose phosphorylation of S. inulinus, which will help to understand the regulation of glucose metabolism and D-lactic acid production.
Factory overload testing of a large power transformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas, D.H.; Lawrence, C.O.; Templeton, J.B.
1985-09-01
A factory overload test of up to 150% of the nameplate rating was run on a 224 MVA autotransformer. The results of this test were of great value and were used in identifying transformer overload limitations, in evaluating loading guide oil and winding equations, exponents and time constants, and in helping to perfect a factory overload test procedure.
Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems
Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting
2016-01-01
In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937