Science.gov

Sample records for substrate oxidation appetite

  1. The effect of moderate versus severe simulated altitude on appetite, gut hormones, energy intake and substrate oxidation in men.

    PubMed

    Matu, Jamie; Deighton, Kevin; Ispoglou, Theocharis; Duckworth, Lauren

    2017-06-01

    Acute exposure to high altitude (>3500 m) is associated with marked changes in appetite regulation and substrate oxidation but the effects of lower altitudes are unclear. This study examined appetite, gut hormone, energy intake and substrate oxidation responses to breakfast ingestion and exercise at simulated moderate and severe altitudes compared with sea-level. Twelve healthy males (mean ± SD; age 30 ± 9years, body mass index 24.4 ± 2.7 kg·m(-2)) completed in a randomised crossover order three, 305 min experimental trials at a simulated altitude of 0 m, 2150 m (∼15.8% O2) and 4300 m (∼11.7% O2) in a normobaric chamber. Participants entered the chamber at 8am following a 12 h fast. A standardised breakfast was consumed inside the chamber at 1 h. One hour after breakfast, participants performed a 60 min treadmill walk at 50% of relative V˙O2max. An ad-libitum buffet meal was consumed 1.5 h after exercise. Blood samples were collected prior to altitude exposure and at 60, 135, 195, 240 and 285 min. No trial based differences were observed in any appetite related measure before exercise. Post-exercise area under the curve values for acylated ghrelin, pancreatic polypeptide and composite appetite score were lower (all P < 0.05) at 4300 m compared with sea-level and 2150 m. There were no differences in glucagon-like peptide-1 between conditions (P = 0.895). Mean energy intake was lower at 4300 m (3728 ± 3179 kJ) compared with sea-level (7358 ± 1789 kJ; P = 0.007) and 2150 m (7390 ± 1226 kJ; P = 0.004). Proportional reliance on carbohydrate as a fuel was higher (P = 0.01) before breakfast but lower during (P = 0.02) and after exercise (P = 0.01) at 4300 m compared with sea-level. This study suggests that altitude-induced anorexia and a subsequent reduction in energy intake occurs after exercise during exposure to severe but not moderate simulated altitude. Acylated ghrelin concentrations may contribute to this

  2. Appetite sensations and substrate metabolism at rest, during exercise, and recovery: impact of a high-calcium meal.

    PubMed

    Gonzalez, Javier T; Rumbold, Penny L S; Stevenson, Emma J

    2013-12-01

    The aim of this study was to investigate the effects of the calcium content of a high-carbohydrate, pre-exercise meal on substrate metabolism and appetite sensations before, during, and after exercise. Nine active males participated in 2 trials in a double-blind, randomised, crossover design. After consuming a high carbohydrate (1.5 g · kg(-1) of body mass) breakfast with a calcium content of either 3 (control trial) or 9 mg · kg(-1) of body mass (high milk-calcium (CAL)), participants ran at 60% peak oxygen uptake for 60 min. Following exercise, a recovery drink was consumed and responses were investigated for a further 90 min. Blood and expired gas were sampled throughout to determine circulating substrate and hormone concentrations and rates of substrate oxidation. Visual analogue scales were also administered to determine subjective appetite sensations. Neither whole-body lipid oxidation nor non-esterified fatty acid availability differed between trials. The area under the curve for the first hour following breakfast consumption was 16% (95% confidence interval: 0%-35%) greater for fullness and 10% (95% confidence interval: 2%-19%) greater for insulin in the CAL trial but these differences were transient and not apparent later in the trial. This study demonstrates that increasing the calcium content of a high carbohydrate meal transiently increases insulinemia and fullness but substrate metabolism is unaffected.

  3. Mediation of oxidative stress in hypothalamic ghrelin-associated appetite control in rats treated with phenylpropanolamine.

    PubMed

    Yu, C-H; Chu, S-C; Chen, P-N; Hsieh, Y-S; Kuo, D-Y

    2017-04-01

    Phenylpropanolamine (PPA)-induced appetite control is associated with oxidative stress in the hypothalamus. This study explored whether hypothalamic antioxidants participated in hypothalamic ghrelin system-associated appetite control in PPA-treated rats. Rats were given PPA daily for 4 days, and changes in food intake and the expression of neuropeptide Y (NPY), the cocaine- and amphetamine-regulated transcript (CART), superoxide dismutase, catalase, ghrelin, acyl ghrelin (AG), ghrelin O-acyltransferase (GOAT) and the ghrelin receptor (GHSR1a) were examined and compared. Results showed that both food intake and the expression of NPY and ghrelin/AG/GOAT/GHSR1a decreased in response to PPA treatment with maximum decrease on Day 2 of the treatment. In contrast, the expression of antioxidants and CART increased, with the maximum increase on Day 2, with the expression opposite to that of NPY and ghrelin. A cerebral infusion of either a GHSR1a antagonist or reactive oxygen species scavenger modulated feeding behavior and NPY, CART, antioxidants and ghrelin system expression, showing the involvement of ghrelin signaling and oxidative stress in regulating PPA-mediated appetite control. We suggest that hypothalamic ghrelin signaling system, with the help of antioxidants, may participate in NPY/CART-mediated appetite control in PPA-treated rats.

  4. High quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1994-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  5. High quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1994-02-01

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  6. Acute effects of exercise intensity on subsequent substrate utilisation, appetite, and energy balance in men and women.

    PubMed

    Shamlan, Ghalia; Bech, Paul; Robertson, M Denise; Collins, Adam L

    2017-08-01

    Exercise is capable of influencing the regulation of energy balance by acutely modulating appetite and energy intake coupled to effects on substrate utilization. Yet, few studies have examined acute effects of exercise intensity on aspects of both energy intake and energy metabolism, independently of energy cost of exercise. Furthermore, little is known as to the gender differences of these effects. One hour after a standardised breakfast, 40 (19 female), healthy participants (BMI 23.6 ± 3.6 kg·m(-2), V̇O2peak 34.4 ± 6.8 mL·kg(-1)·min(-1)) undertook either high-intensity intermittent cycling (HIIC) consisting of 8 repeated 60 s bouts of cycling at 95% V̇O2peak or low-intensity continuous cycling (LICC), equivalent to 50% V̇O2peak, matched for energy cost (∼950 kJ) followed by 90 mins of rest, in a randomised crossover design. Throughout each study visit, satiety was assessed subjectively using visual analogue scales alongside blood metabolites and GLP-1. Energy expenditure and substrate utilization were measured over 75 min postexercise via indirect calorimetry. Energy intake was assessed for 48 h postintervention. No differences in appetite, GLP-1, or energy intakes were observed between HIIC and LICC, with or without stratifying for gender. Significant differences in postexercise nonesterified fatty acid concentrations were observed between intensities in both genders, coupled to a significantly lower respiratory exchange ratio following HIIC (P = 0.0028), with a trend towards greater reductions in respiratory exchange ratioin males (P = 0.079). In conclusion, high-intensity exercise, if energy matched, does not lead to greater appetite or energy intake, but may exert additional beneficial metabolic effects that may be more pronounced in males.

  7. The SEEKING mind: primal neuro-affective substrates for appetitive incentive states and their pathological dynamics in addictions and depression.

    PubMed

    Alcaro, Antonio; Panksepp, Jaak

    2011-10-01

    Appetitive motivation and incentive states are essential functions sustained by a common emotional brain process, the SEEKING disposition, which drives explorative and approach behaviors, sustains goal-directed activity, promotes anticipatory cognitions, and evokes feelings of positive excitement which control reward-learning. All such functions are orchestrated by the same "archetypical" neural processes, activated in ancient subcortical areas and transported to the forebrain by the mesolimbic dopamine (ML-DA) system. In mammals, the neurophysiology of the SEEKING urge is expressed by DA-promoted high-frequency oscillations, in the form of transient and synchronized gamma waves (>30Hz) emerging in limbic forebrain and diffusing throughout basal ganglia-thalamocortical (BG-T-C) circuits. These patterns may be considered basic "SEEKING neurodynamic impulses" which represent the primary-process exploratory disposition getting integrated with information relative to the external and the internal environment. Abnormal manifestation of SEEKING and its neural substrates are evident in clinical depression and addiction. Specifically, depression is characterized by reduced recruitment of SEEKING, while addictions reflect re-organizations of the SEEKING disposition around ultra-specific appetitive memories and compulsive activities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Involvement of oxidative stress in the regulation of NPY/CART-mediated appetite control in amphetamine-treated rats.

    PubMed

    Hsieh, Yih-Shou; Chen, Pei-Ni; Yu, Ching-Han; Chen, Chia-Hui; Tsai, Tsung-Ta; Kuo, Dong-Yih

    2015-05-01

    Amphetamine (AMPH) treatment can suppress appetite and increase oxidative stress in the brain. AMPH-induced appetite suppression is associated with the regulation of neuropeptide Y (NPY) and cocaine- and amphetamine-regulated transcript (CART) in the hypothalamus. The present study explored whether antioxidants, including glutathione S-transferase (GST) and glutathione peroxidase (GP), were involved in this NPY/CART-mediated appetite control. Rats were treated daily with AMPH for four days. Changes in food intake and expression levels of hypothalamic NPY, CART, GST, and GP were examined and compared. Results showed that, in AMPH-treated rats, (1) food intake and NPY expression decreased, while CART, GST, and GP expression increased; (2) NPY knockdown in the brain enhanced the decrease in NPY and the increases in CART, GST, and GP expression; and (3) central inhibition of reactive oxygen species production decreased GST and GP and modulated AMPH anorexia and the expression levels of NPY and CART. The present results suggest that oxidative stress in the brain participates in regulating NPY/CART-mediated appetite control in AMPH-treated rats. These results may advance the knowledge regarding the molecular mechanism of AMPH-evoked or NPY/CART-mediated appetite suppression. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Atomically flat single terminated oxide substrate surfaces

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Yang, Chan-Ho; Ramesh, Ramamoorthy; Jeong, Yoon H.

    2017-05-01

    Scientific interest in atomically controlled layer-by-layer fabrication of transition metal oxide thin films and heterostructures has increased intensely in recent decades for basic physics reasons as well as for technological applications. This trend has to do, in part, with the coming post-Moore era, and functional oxide electronics could be regarded as a viable alternative for the current semiconductor electronics. Furthermore, the interface of transition metal oxides is exposing many new emergent phenomena and is increasingly becoming a playground for testing new ideas in condensed matter physics. To achieve high quality epitaxial thin films and heterostructures of transition metal oxides with atomically controlled interfaces, one critical requirement is the use of atomically flat single terminated oxide substrates since the atomic arrangements and the reaction chemistry of the topmost surface layer of substrates determine the growth and consequent properties of the overlying films. Achieving the atomically flat and chemically single terminated surface state of commercially available substrates, however, requires judicious efforts because the surface of as-received substrates is of chemically mixed nature and also often polar. In this review, we summarize the surface treatment procedures to accomplish atomically flat surfaces with single terminating layer for various metal oxide substrates. We particularly focus on the substrates with lattice constant ranging from 4.00 Å to 3.70 Å, as the lattice constant of most perovskite materials falls into this range. For materials outside the range, one can utilize the substrates to induce compressive or tensile strain on the films and explore new states not available in bulk. The substrates covered in this review, which have been chosen with commercial availability and, most importantly, experimental practicality as a criterion, are KTaO3, REScO3 (RE = Rare-earth elements), SrTiO3, La0.18Sr0.82Al0.59Ta0.41O3 (LSAT), Nd

  10. Silica substrate or portion formed from oxidation of monocrystalline silicon

    DOEpatents

    Matzke, Carolyn M.; Rieger, Dennis J.; Ellis, Robert V.

    2003-07-15

    A method is disclosed for forming an inclusion-free silica substrate using a monocrystalline silicon substrate as the starting material and oxidizing the silicon substrate to convert it entirely to silica. The oxidation process is performed from both major surfaces of the silicon substrate using a conventional high-pressure oxidation system. The resulting product is an amorphous silica substrate which is expected to have superior etching characteristics for microfabrication than conventional fused silica substrates. The present invention can also be used to convert only a portion of a monocrystalline silicon substrate to silica by masking the silicon substrate and locally thinning a portion the silicon substrate prior to converting the silicon portion entirely to silica. In this case, the silica formed by oxidizing the thinned portion of the silicon substrate can be used, for example, as a window to provide optical access through the silicon substrate.

  11. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1993-11-23

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  12. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1993-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  13. Single crystal complex oxide on flexible substrate

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Lee, Oukjae; Salahuddin, Sayeef

    Flexible ferroelectrics are needed for various applications such as biocompatible energy harvesting and flexible memory. In this sector, most of the current research is focused on organic piezoelectric materials which have advantage of flexibility but suffers severely from poor energy conversion and generation efficiency. On the contrary, owing to very high electromechanical coupling factor (representing energy conversion efficiency) complex oxides are the best choices as energy harvesting and transduction elements, especially for transforming mechanical energies into electronic energy. Still their usage in energy harvesting is very limited mainly due to the stringent growth conditions of single crystals, high temperature needed for crystallization and lack of flexibility and stretchability. We have shown that single crystal Pb0.8Zr0.2TiO3 can be epitaxially transferred on flexible plastic substrate. The transferred PZT shows 70 uC/cm2 remnant polarization and dielectric constant over 100 even when it is bent. These results suggest the possibility of single crystal complex oxide devices on flexible platform.

  14. Monolayer Contact Doping from a Silicon Oxide Source Substrate.

    PubMed

    Ye, Liang; González-Campo, Arántzazu; Kudernac, Tibor; Núñez, Rosario; de Jong, Michel; van der Wiel, Wilfred G; Huskens, Jurriaan

    2017-04-03

    Monolayer contact doping (MLCD) is a modification of the monolayer doping (MLD) technique that involves monolayer formation of a dopant-containing adsorbate on a source substrate. This source substrate is subsequently brought into contact with the target substrate, upon which the dopant is driven into the target substrate by thermal annealing. Here, we report a modified MLCD process, in which we replace the commonly used Si source substrate by a thermally oxidized substrate with a 100 nm thick silicon oxide layer, functionalized with a monolayer of a dopant-containing silane. The thermal oxide potentially provides a better capping effect and effectively prevents the dopants from diffusing back into the source substrate. The use of easily accessible and processable silane monolayers provides access to a general and modifiable process for the introduction of dopants on the source substrate. As a proof of concept, a boron-rich carboranyl-alkoxysilane was used here to construct the monolayer that delivers the dopant, to boost the doping level in the target substrate. X-ray photoelectron spectroscopy (XPS) showed a successful grafting of the dopant adsorbate onto the SiO2 surface. The achieved doping levels after thermal annealing were similar to the doping levels acessible by MLD as demonstrated by secondary ion mass spectrometry measurements. The method shows good prospects, e.g. for use in the doping of Si nanostructures.

  15. Alkoxysilane adsorption on metal oxide substrates

    NASA Technical Reports Server (NTRS)

    Ramsier, R. D.; Zhuang, G. R.; Henriksen, P. N.

    1989-01-01

    Reflection-absorption infrared and inelastic electron tunneling spectroscopies have been used to study adsorption of liquid phase mono-, di-, and trialkoxysilanes on evaporated Al and Cu substrates. Spectral evidence shows that substrate properties influence the chemical and physical nature of trialkoxysilane films and that silane functionality plays a role in molecular orientation. Results show that dialkoxysilane films contain structural gradients, with adsorption at the monomolecular level influenced by surface morphology, and with organofunctionality and dosing procedure affecting the formation of thicker films. Evidence is presented that monoalkoxysilanes react with alumina surfaces, and a broad, multipeaked band from 1600 to 1900/cm has been interpreted as characteristic of the silylated AlO(x)Pb interface.

  16. Salt appetite in the elderly.

    PubMed

    Hendi, Khadeja; Leshem, Micah

    2014-11-28

    The present study investigated whether salt appetite in the elderly is impaired similar to thirst because of the commonality of their physiological substrates and whether alterations in salt appetite are related to mood. Elderly (65-85 years, n 30) and middle-aged (45-58 years, n 30) men and women were compared in two test sessions. Thirst, psychophysical ratings of taste solutions, dietary Na and energy intakes, seasoning with salt and sugar, number of salty and sweet snacks consumed, preferred amounts of salt in soup and sugar in tea, and an overall measure of salt appetite and its relationship with mood, nocturia and sleep were measured. Elderly participants were found to be less thirsty and respond less to thirst. In contrast, no impairment of salt appetite was found in them, and although they had a reduced dietary Na intake, it dissipated when corrected for their reduced dietary energy intake. Diet composition and Na intake were found to be similar in middle-aged and elderly participants, despite the lesser intake in elderly participants. There were no age-related differences in the intensity of taste or hedonic profile of Na, in salting habits, in tests of salting soup, or number of salty snacks consumed. No relationship of any measure of salt appetite with mood measured by the Positive and Negative Affect Schedule, frequency of nocturia, or sleep duration was observed. The age-related impairment of the physiology of mineralofluid regulation, while compromising thirst and fluid intake, spares salt appetite, suggesting that salt appetite in humans is not regulated physiologically. Intact salt appetite in the elderly might be utilised judiciously to prevent hyponatraemia, increase thirst and improve appetite.

  17. Passivation oxide controlled selective carbon nanotube growth on metal substrates.

    PubMed

    Bult, J B; Sawyer, W G; Ajayan, P M; Schadler, L S

    2009-02-25

    Vertically aligned arrays of multi-wall carbon nanotubes (MWNT) are grown on Inconel 600, a nickel-based super-alloy. Using x-ray photoelectron spectroscopy (XPS) and chemical vapor deposition (CVD) growth of the MWNTs it is shown that a stable oxidation barrier is required for the stabilization of iron on the substrate and subsequent nanotube growth. This evidence for passivation oxide supported growth of MWNTs was then used to grow MWNTs on patterned oxidized substrates in a selective growth furnace. The unique advantage of this patterned growth on Inconel 600 is found to be the chromia passivation layer's electrical conductivity (measured value of 1.08 micro Omega m), creating the opportunity for low resistivity electrodes made from nanotubes. Inconel substrates with 100 microm long aligned MWNTs are demonstrated to exhibit an average resistance value of 2 Omega.

  18. Substrate coating by conductive polymers through spontaneous oxidation and polymerization.

    PubMed

    Kuwabara, Kento; Masaki, Hirotaka; Imai, Hiroaki; Oaki, Yuya

    2017-06-14

    A variety of substrates and substances were coated with conductive polymers at low temperature under ambient pressure. The substrate coating with heteroaromatic polymers proceeded through spontaneous oxidation and polymerization of the monomers, such as pyrrole (Py) and thiophene (Tp) derivatives. The monomer liquid, the solid nitrate oxidant, and the substrate were put in a closed vessel. The vapor of the activated monomer was spontaneously generated on the surface of the solid nitrate oxidant through the diffusion of the monomer vapor. The monomer and its activated species were adsorbed and polymerized on the surface of any substrate in the reaction vessel. The thickness was controlled by the reaction time. The substituents of the monomers had an influence on the coating rate. The morphology of the coated polymers was changed by the substrates with different wettabilities. The thin coating of the heteroaromatic polymer was applied to the preparation of an electrode for charge storage based on the redox reaction. The thin coating on the current collector showed an enhanced high-rate charge-discharge performance. The present synthetic approach can be applied to the coating of polymer materials on a variety of substrates from the monomer vapor under mild conditions.

  19. Interfacial Shear Strength of Oxide Scale and SS 441 Substrate

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-05-01

    Recent developments on decreasing the operating temperature for Solid Oxide Fuel Cells (SOFCs) have enabled the use of high temperature ferritic alloys as interconnect materials. Oxide scale will inevitably grow on the ferritic interconnects in a high temperature oxidation environment of SOFCs. The growth of the oxide scale induces growth stresses in the scale layer and on the scale/substrate interface. These growth stresses combined with the thermal stresses induced upon stacking cooling by the thermal expansion coefficient mismatch between the oxide scale and the substrate may lead to scale delamination/buckling and eventual spallation, which may lead to serious cell performance degradation. Hence the interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. In this paper, we applied an integrated experimental/modeling methodology to quantify the interfacial adhesion strength between the oxide scale and the SS 441 metallic interconnect. The predicted interfacial strength is discussed in details.

  20. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases.

    PubMed

    Ruiz-Dueñas, Francisco J; Morales, María; García, Eva; Miki, Yuta; Martínez, María Jesús; Martínez, Angel T

    2009-01-01

    Versatile peroxidase (VP) is defined by its capabilities to oxidize the typical substrates of other basidiomycete peroxidases: (i) Mn(2+), the manganese peroxidase (MnP) substrate (Mn(3+) being able to oxidize phenols and initiate lipid peroxidation reactions); (ii) veratryl alcohol (VA), the typical lignin peroxidase (LiP) substrate; and (iii) simple phenols, which are the substrates of Coprinopsis cinerea peroxidase (CIP). Crystallographic, spectroscopic, directed mutagenesis, and kinetic studies showed that these 'hybrid' properties are due to the coexistence in a single protein of different catalytic sites reminiscent of those present in the other basidiomycete peroxidase families. Crystal structures of wild and recombinant VP, and kinetics of mutated variants, revealed certain differences in its Mn-oxidation site compared with MnP. These result in efficient Mn(2+) oxidation in the presence of only two of the three acidic residues forming its binding site. On the other hand, a solvent-exposed tryptophan is the catalytically-active residue in VA oxidation, initiating an electron transfer pathway to haem (two other putative pathways were discarded by mutagenesis). Formation of a tryptophanyl radical after VP activation by peroxide was detected using electron paramagnetic resonance. This was the first time that a protein radical was directly demonstrated in a ligninolytic peroxidase. In contrast with LiP, the VP catalytic tryptophan is not beta-hydroxylated under hydrogen peroxide excess. It was also shown that the tryptophan environment affected catalysis, its modification introducing some LiP properties in VP. Moreover, some phenols and dyes are oxidized by VP at the edge of the main haem access channel, as found in CIP. Finally, the biotechnological interest of VP is discussed.

  1. Lateral solid-phase epitaxy of oxide thin films on glass substrate seeded with oxide nanosheets.

    PubMed

    Taira, Kenji; Hirose, Yasushi; Nakao, Shoichiro; Yamada, Naoomi; Kogure, Toshihiro; Shibata, Tatsuo; Sasaki, Takayoshi; Hasegawa, Tetsuya

    2014-06-24

    We developed a technique to fabricate oxide thin films with uniaxially controlled crystallographic orientation and lateral size of more than micrometers on amorphous substrates. This technique is lateral solid-phase epitaxy, where epitaxial crystallization of amorphous precursor is seeded with ultrathin oxide nanosheets sparsely (≈10% coverage) deposited on the substrate. Transparent conducting Nb-doped anatase TiO2 thin films were fabricated on glass substrates by this technique. Perfect (001) orientation and large grains with lateral sizes up to 10 μm were confirmed by X-ray diffraction, atomic force microscopy, and electron beam backscattering diffraction measurements. As a consequence of these features, the obtained film exhibited excellent electrical transport properties comparable to those of epitaxial thin films on single-crystalline substrates. This technique is a versatile method for fabricating high-quality oxide thin films other than anatase TiO2 and would increase the possible applications of oxide-based thin film devices.

  2. Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum

    DOEpatents

    Choi, Jung-Pyung; Weil, Kenneth Scott

    2016-11-01

    Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.

  3. Gold coated zinc oxide nanonecklaces as a SERS substrate.

    PubMed

    He, Lili; Shi, Jian; Sun, Xin; Lin, Mengshi; Yu, Ping; Li, Hao

    2011-04-01

    Faceted zinc oxide nanonecklace (ZnO NN) arrays were grown on r-plane sapphires along one direction (ZnO [0001] II sapphire [10-11] and ZnO (-12-10) II sapphire (01-12)) using chemical vapor deposition. After coated with 45 nm gold films and annealed at 250 degrees C for 30 seconds, the coated ZnO NNs exhibit satisfactory and stable surface enhanced Raman scattering (SERS) effects when tested with melamine and other chemicals. The limit of detection of melamine is 10(-5) mol/L and the analytical enhancement factor is 10(4), which is competitive to a commercial substrate. This study indicates that gold coated ZnO NN substrates have a great potential as SERS-active substrates in rapid detection of trace amount food contaminants such as melamine and other chemicals.

  4. Substrate Oxidation by Indoleamine 2,3-Dioxygenase

    PubMed Central

    Booth, Elizabeth S.; Basran, Jaswir; Lee, Michael; Handa, Sandeep; Raven, Emma L.

    2015-01-01

    The kynurenine pathway is the major route of l-tryptophan (l-Trp) catabolism in biology, leading ultimately to the formation of NAD+. The initial and rate-limiting step of the kynurenine pathway involves oxidation of l-Trp to N-formylkynurenine. This is an O2-dependent process and catalyzed by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. More than 60 years after these dioxygenase enzymes were first isolated (Kotake, Y., and Masayama, I. (1936) Z. Physiol. Chem. 243, 237–244), the mechanism of the reaction is not established. We examined the mechanism of substrate oxidation for a series of substituted tryptophan analogues by indoleamine 2,3-dioxygenase. We observed formation of a transient intermediate, assigned as a Compound II (ferryl) species, during oxidation of l-Trp, 1-methyl-l-Trp, and a number of other substrate analogues. The data are consistent with a common reaction mechanism for indoleamine 2,3-dioxygenase-catalyzed oxidation of tryptophan and other tryptophan analogues. PMID:26511316

  5. Structural requirements for human inducible nitric oxide synthase substrates and substrate analogue inhibitors.

    PubMed

    Grant, S K; Green, B G; Stiffey-Wilusz, J; Durette, P L; Shah, S K; Kozarich, J W

    1998-03-24

    Inducible nitric oxide synthase (iNOS; EC 1.14.13.39) catalyzes the NADPH-dependent oxidation of one of the free guanidino nitrogens of L-Arg to form nitric oxide and L-citrulline. Analogues of L-Arg and the inhibitor, L-N6-(1-iminoethyl)lysine, were used to define structural elements required for the binding and catalysis of compounds. L-Arg analogues with sequentially shorter methylene spacing between the guanidino group and the amino acid portion of the molecule were not iNOS substrates but were reversible inhibitors. L-Arg analogues such as agmatine with a hydroxyl substitution at the 2-amino position were substrates. Desaminoarginine was not a substrate but a reversible inhibitor. Desaminoarginine, agmatine, and argininic acid bound to the enzyme to give type I difference spectra similar to that of L-Arg. The amidino compounds L-N6-(1-iminoethyl)lysine, L-N5-(1-iminoethyl)ornithine, and N5-(1-iminoethyl)cadaverdine, but not N6-(1-iminoethyl)-6-aminocaproic acid, were NADPH-dependent, irreversible inactivators of iNOS. For both the L-Arg and L-N6-(1-iminoethyl)lysine analogues, the 2-amino group appeared to play an important role in catalytic events leading to either substrate turnover or mechanism-based inactivation. Inactivation of iNOS by L-N6-(1-iminoethyl)lysine was NADPH- and dioxygen-dependent, but low incorporation of radiolabel with DL--4, 5-3H]-N6-(1-iminoethyl)lysine indicates that the mechanism of enzyme inactivation is not covalent modification of the protein.

  6. Transition metal oxide nanowires synthesized by heating metal substrates

    SciTech Connect

    Yan, Hui; Sun, Yi; He, Lin; Nie, Jia-Cai

    2011-11-15

    Highlights: {center_dot} This paper describes a simple and general method to synthesize 3d metal oxide nanowires. {center_dot} Self-catalysis growth mechanism was proposed to explain the growth of the nanowires. {center_dot} The temperature range for the growth of nanowires was estimated by taking into account the Gibbs free energy of reaction. {center_dot} This synthesis approach could be applied to synthesize other one-dimensional structures, such as FeSe and Bi{sub 2}Te{sub 3} nanowires. -- Abstract: Here we reported a simple method to synthesize transition metal oxide nanowires. Copper oxide (CuO), zinc oxide (ZnO), and cobalt oxide (Co{sub 3}O{sub 4}) nanowires were synthesized by heating the copper, zinc, and cobalt substrates under atmosphere condition. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the morphology and microstructure of the nanowires. According to our experimental results, self-catalysis growth mechanism was proposed to explain the growth of the nanowires. The temperature window for the growth of nanowires was estimated by taking into account the Gibbs free energy of reaction. The synthesis approach observed in our experiment could be applied to synthesize other one-dimensional structures, such as FeSe and Bi{sub 2}Te{sub 3} nanowires.

  7. Sliding of zinc oxide nanowires on silicon substrate

    NASA Astrophysics Data System (ADS)

    Desai, A. V.; Haque, M. A.

    2007-01-01

    Adhesion and friction forces between zinc oxide nanowires and silicon substrate were studied in situ inside a scanning electron microscope. A procedure for measuring these forces from the bending profiles of the nanowires was developed and the van der Waals and friction forces were found to be about 81.05pN and 7.7nN, respectively. The pronounced friction was explained using nanoscale adhesion-friction coupling mechanisms. Immediate implication of the findings is on the accuracy of nanomechanical characterization using bending experiments.

  8. Two Oxidation Sites for Low Redox Potential Substrates

    PubMed Central

    Morales, María; Mate, María J.; Romero, Antonio; Martínez, María Jesús; Martínez, Ángel T.; Ruiz-Dueñas, Francisco J.

    2012-01-01

    Versatile peroxidase shares with manganese peroxidase and lignin peroxidase the ability to oxidize Mn2+ and high redox potential aromatic compounds, respectively. Moreover, it is also able to oxidize phenols (and low redox potential dyes) at two catalytic sites, as shown by biphasic kinetics. A high efficiency site (with 2,6-dimethoxyphenol and p-hydroquinone catalytic efficiencies of ∼70 and ∼700 s−1 mm−1, respectively) was localized at the same exposed Trp-164 responsible for high redox potential substrate oxidation (as shown by activity loss in the W164S variant). The second site, characterized by low catalytic efficiency (∼3 and ∼50 s−1 mm−1 for 2,6-dimethoxyphenol and p-hydroquinone, respectively) was localized at the main heme access channel. Steady-state and transient-state kinetics for oxidation of phenols and dyes at the latter site were improved when side chains of residues forming the heme channel edge were removed in single and multiple variants. Among them, the E140G/K176G, E140G/P141G/K176G, and E140G/W164S/K176G variants attained catalytic efficiencies for oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) at the heme channel similar to those of the exposed tryptophan site. The heme channel enlargement shown by x-ray diffraction of the E140G, P141G, K176G, and E140G/K176G variants would allow a better substrate accommodation near the heme, as revealed by the up to 26-fold lower Km values (compared with native VP). The resulting interactions were shown by the x-ray structure of the E140G-guaiacol complex, which includes two H-bonds of the substrate with Arg-43 and Pro-139 in the distal heme pocket (at the end of the heme channel) and several hydrophobic interactions with other residues and the heme cofactor. PMID:23071108

  9. Photoelectrochemical oxidation of organic substrates in organic media.

    PubMed

    Li, Tengfei; Kasahara, Takahito; He, Jingfu; Dettelbach, Kevan E; Sammis, Glenn M; Berlinguette, Curtis P

    2017-08-30

    There is a global effort to convert sunlight into fuels by photoelectrochemically splitting water to form hydrogen fuels, but the dioxygen byproduct bears little economic value. This raises the important question of whether higher value commodities can be produced instead of dioxygen. We report here photoelectrochemistry at a BiVO4 photoanode involving the oxidation of substrates in organic media. The use of MeCN instead of water enables a broader set of chemical transformations to be performed (e.g., alcohol oxidation and C-H activation/oxidation), while suppressing photocorrosion of BiVO4 that otherwise occurs readily in water, and sunlight reduces the electrical energy required to drive organic transformations by 60%. These collective results demonstrate the utility of using photoelectrochemical cells to mediate organic transformations that otherwise require expensive and toxic reagents or catalysts.Photoelectrochemical water splitting is a promising method for H2 fuel production, but the O2 by-product generated has little economic value. Here, Berlinguette and colleagues demonstrate that BiVO4 photoanodes immersed in organic media can instead perform valuable alcohol oxidation and C-H functionalization reactions.

  10. Oxide perovskite crystals for HTSC film substrates microwave applications

    NASA Technical Reports Server (NTRS)

    Bhalla, A. S.; Guo, Ruyan

    1995-01-01

    The research focused upon generating new substrate materials for the deposition of superconducting yttrium barium cuprate (YBCO) has yielded several new hosts in complex perovskites, modified perovskites, and other structure families. New substrate candidates such as Sr(Al(1/2)Ta(1/2))O3 and Sr(Al(1/2)Nb(1/2))O3, Ba(Mg(1/3)Ta(2/3))O3 in complex oxide perovskite structure family and their solid solutions with ternary perovskite LaAlO3 and NdGaO3 are reported. Conventional ceramic processing techniques were used to fabricate dense ceramic samples. A laser heated molten zone growth system was utilized for the test-growth of these candidate materials in single crystal fiber form to determine crystallographic structure, melting point, thermal, and dielectric properties as well as to make positive identification of twin free systems. Some of those candidate materials present an excellent combination of properties suitable for microwave HTSC substrate applications.

  11. The effect of substrate texture and oxidation temperature on oxide texture development in zirconium alloys

    NASA Astrophysics Data System (ADS)

    Garner, A.; Frankel, P.; Partezana, J.; Preuss, M.

    2017-02-01

    During corrosion of zirconium alloys a highly textured oxide is formed, the degree of this preferred orientation has previously been shown to be an important factor in determining the corrosion behaviour of these alloys. Two distinct experiments were designed in order to investigate the origin of this oxide texture development on two commercial alloys. Firstly, sheet samples of Zircaloy-4 were oxidised between 500 and 800 °C in air. The resulting monoclinic oxide texture strength was observed to decrease with increasing oxidation temperature. In a second experiment, orthogonal faces of Low Tin ZIRLO™ were oxidised in 360 °C water, providing different substrate textures but identical microstructures. The substrate texture was observed to have a negligible effect on the corrosion performance whilst the major orientation of both oxide phases was found to be independent of substrate orientation. It is concluded that the main driving force for oxide texture development in single-phase zirconium alloys is the compressive stress caused by the Zrsbnd ZrO2 transformation.

  12. Polycrystalline ferroelectric or multiferroic oxide articles on biaxially textured substrates and methods for making same

    DOEpatents

    Goyal, Amit; Shin, Junsoo

    2015-03-31

    A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.

  13. Substrate-Ligand Interactions in Geobacillus Stearothermophilus Nitric Oxide Synthase†

    PubMed Central

    Kabir, Mariam; Sudhamsu, Jawahar; Crane, Brian R.; Yeh, Syun-Ru; Rousseau, Denis L.

    2012-01-01

    Ntric oxide synthase (NOS) generates NO via a sequential two-step reaction, L-arginine (L-Arg) → N-hydroxy-L-arginine (NOHA) → L-citrulline + NO. Each step of the reaction follows a distinct mechanism defined by the chemical environment introduced by each substrate bound to the heme active site. The dioxygen complex of the NOS enzyme from a thermophilic bacterium, Geobacillus stearothermophilus (gsNOS), is unusually stable; hence it provides a unique model for the studies of the mechanistic differences between the two steps of the NOS reaction. By using CO as a structural probe, it was found that gsNOS exhibits two conformations in the absence of substrate, as indicated by the presence of two sets of the νFe-CO/νC-O modes in the resonance Raman spectra. In the νFe-CO versus νC-O inverse correlation plot, one set of the data falls on the correlation line characterized by mammalian NOSs (mNOS), whereas the other set of the data lies on a new correlation line defined by a bacterial NOS from Bacillus subtilis (bsNOS), reflecting a difference in the proximal Fe-Cys bond strength in the two conformers of gsNOS. The addition of L-Arg stabilizes the conformer associated with the mNOS correlation line, whereas NOHA stabilizes the conformer associated with the bsNOS correlation line, although both substrates introduce a positive electrostatic potential to the distal heme pocket. To assess how substrate-binding affects the Fe-Cys bond strength, the frequency of the Fe-Cys stretching mode of gsNOS was monitored by resonance Raman spectroscopy with 363.8 nm excitation. In the substrate-free form, the Fe-Cys stretching mode was detected at 342.5 cm−1 similar to that of bsNOS. The binding of L-Arg and NOHA brings about a small decrease and increase in the Fe-Cys stretching frequency, respectively. The implication of these unique structural features on the oxygen chemistry of NOS is discussed. PMID:18956884

  14. Substrate-ligand interactions in Geobacillus stearothermophilus nitric oxide synthase.

    PubMed

    Kabir, Mariam; Sudhamsu, Jawahar; Crane, Brian R; Yeh, Syun-Ru; Rousseau, Denis L

    2008-11-25

    Nitric oxide synthase (NOS) generates NO via a sequential two-step reaction [l-arginine (l-Arg) --> N-hydroxy-l-arginine (NOHA) --> l-citrulline + NO]. Each step of the reaction follows a distinct mechanism defined by the chemical environment introduced by each substrate bound to the heme active site. The dioxygen complex of the NOS enzyme from a thermophilic bacterium, Geobacillus stearothermophilus (gsNOS), is unusually stable; hence, it provides a unique model for the studies of the mechanistic differences between the two steps of the NOS reaction. By using CO as a structural probe, we found that gsNOS exhibits two conformations in the absence of substrate, as indicated by the presence of two sets of nu(Fe-CO)/nu(C-O) modes in the resonance Raman spectra. In the nu(Fe-CO) versus nu(C-O) inverse correlation plot, one set of data falls on the correlation line characterized by mammalian NOSs (mNOS), whereas the other set of data lies on a new correlation line defined by a bacterial NOS from Bacillus subtilis (bsNOS), reflecting a difference in the proximal Fe-Cys bond strength in the two conformers of gsNOS. The addition of l-Arg stabilizes the conformer associated with the mNOS correlation line, whereas NOHA stabilizes the conformer associated with the bsNOS correlation line, although both substrates introduce a positive electrostatic potential into the distal heme pocket. To assess how substrate binding affects Fe-Cys bond strength, the frequency of the Fe-Cys stretching mode of gsNOS was monitored by resonance Raman spectroscopy with 363.8 nm excitation. In the substrate-free form, the Fe-Cys stretching mode was detected at 342.5 cm(-1), similar to that of bsNOS. The binding of l-Arg and NOHA brings about a small decrease and increase in the Fe-Cys stretching frequency, respectively. The implication of these unique structural features with respect to the oxygen chemistry of NOS is discussed.

  15. Fabrication and characterization of conductive anodic aluminum oxide substrates

    NASA Astrophysics Data System (ADS)

    Altuntas, Sevde; Buyukserin, Fatih

    2014-11-01

    Biomaterials that allow the utilization of electrical, chemical and topographic cues for improved neuron-material interaction and neural regeneration hold great promise for nerve tissue engineering applications. The nature of anodic aluminum oxide (AAO) membranes intrinsically provides delicate control over topographic and chemical cues for enhanced cell interaction; however their use in nerve regeneration is still very limited. Herein, we report the fabrication and characterization of conductive AAO (CAAO) surfaces for the ultimate goal of integrating electrical cues for improved nerve tissue behavior on the nanoporous substrate material. Parafilm was used as a protecting polymer film, for the first time, in order to obtain large area (50 cm2) free-standing AAO membranes. Carbon (C) was then deposited on the AAO surface via sputtering. Morphological characterization of the CAAO surfaces revealed that the pores remain open after the deposition process. The presence of C on the material surface and inside the nanopores was confirmed by XPS and EDX studies. Furthermore, I-V curves of the surface were used to extract surface resistance values and conductive AFM demonstrated that current signals can only be achieved where conductive C layer is present. Finally, novel nanoporous C films with controllable pore diameters and one dimensional (1-D) C nanostructures were obtained by the dissolution of the template AAO substrate.

  16. Efficient Direct Reduction of Graphene Oxide by Silicon Substrate

    PubMed Central

    Chan Lee, Su; Some, Surajit; Wook Kim, Sung; Jun Kim, Sun; Seo, Jungmok; Lee, Jooho; Lee, Taeyoon; Ahn, Jong-Hyun; Choi, Heon-Jin; Chan Jun, Seong

    2015-01-01

    Graphene has been studied for various applications due to its excellent properties. Graphene film fabrication from solutions of graphene oxide (GO) have attracted considerable attention because these procedures are suitable for mass production. GO, however, is an insulator, and therefore a reduction process is required to make the GO film conductive. These reduction procedures require chemical reducing agents or high temperature annealing. Herein, we report a novel direct and simple reduction procedure of GO by silicon, which is the most widely used material in the electronics industry. In this study, we also used silicon nanosheets (SiNSs) as reducing agents for GO. The reducing effect of silicon was confirmed by various characterization methods. Furthermore, the silicon wafer was also used as a reducing template to create a reduced GO (rGO) film on a silicon substrate. By this process, a pure rGO film can be formed without the impurities that normally come from chemical reducing agents. This is an easy and environmentally friendly method to prepare large scale graphene films on Si substrates. PMID:26194107

  17. Quantifying the Interfacial Strength of Oxide Scale and SS 441 Substrate Used in SOFC

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2009-08-15

    Under a typical SOFC working environment, oxide scale will grow on the metallic interconnects in oxidant environment. The growth of the oxide scale induces the growth stresses in the oxide scale and on the scale/substrate interface combined with the thermal stresses induced by thermal expansion coefficient mismatch between the oxide scale and the substrate, which may lead to scale delamination/buckling and eventual spallation during stack cooling, even leading to serious cell performance degradation. Therefore, the interfacial adhesion strength between the oxide scale and substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. As a powerful contender of ferritic interconnects used in SOFC, its interfacial strength between the oxide scale and SS 441 substrate is very important for its application. In this paper, we applied an integrated experimental/analytical methodology to quantify the interfacial adhesion strength between oxide scale and metallic interconnect. The predicted interfacial strength is discussed in detailed

  18. Two types of local oxide/substrate defects in very thin silicon dioxide films on silicon

    NASA Astrophysics Data System (ADS)

    Lau, W. S.; Sane, V.; Pey, K. S.; Cronquist, B.

    1995-11-01

    The local oxide defects observed in thin silicon dioxide films on p-type Si were studied with the electron beam induced current/tunneling current microscopy technique. Excluding pinholes, all the local defects observed are local oxide/substrate defects, i.e., local oxide defects propagated from defects in the Si substrate into the SiO2. It was observed that local oxide/substrate defects can be further differentiated into two different types by studying the transition from the true oxide electron beam induced current contrast to the tunneling current microscopy contrast.

  19. Postprandial thermogenesis and substrate oxidation are unaffected by sleep restriction

    PubMed Central

    Shechter, Ari; Rising, Russell; Wolfe, Scott; Albu, Jeanine B.; St-Onge, Marie-Pierre

    2014-01-01

    Background/Objectives The extent to which alterations in energy expenditure (EE) in response to sleep restriction contribute to the short sleep-obesity relationship is not clearly defined. Short sleep may induce changes in resting metabolic rate (RMR), thermic effect of food (TEF), and postprandial substrate oxidation. Subjects/Methods Ten females (age and BMI: 22-43 y and 23.4-28 kg/m2) completed a randomized, crossover study assessing the effects of short (4 h/night) and habitual (8 h/night) sleep duration on fasting and postprandial RMR and respiratory quotient (RQ). Measurements were taken after 3 nights using whole-room indirect calorimetry. The TEF was assessed over a 6-h period following consumption of a high-fat liquid meal. Results Short vs. habitual sleep did not affect RMR (1.01 ± 0.05 and 0.97 ± 0.04 kcal/min; p=0.23). Fasting RQ was significantly lower after short vs. habitual sleep (0.84 ± 0.01 and 0.88 ± 0.01; p=0.028). Postprandial EE (short: 1.13 ± 0.04 and habitual: 1.10 ± 0.04, p=0.09) and RQ (short: 0.88 ± 0.01 and habitual: 0.88 ± 0.01, p=0.50) after the high-fat meal were not different between conditions. TEF was similar between conditions (0.24 ± 0.02 kcal/min in both; p=0.98), as was the ~6-h incremental area under the curve (1.16 ± 0.10 and 1.17 ± 0.09 kcal/min x 356 min after short and habitual sleep, respectively; p=0.92). Conclusions Current findings observed in non-obese healthy premenopausal women do not support the hypothesis that alterations in TEF and postprandial substrate oxidation are major contributors to the higher rate of obesity observed in short sleepers. In exploring a role of sleep duration on EE, research should focus on potential alterations in physical activity to explain the increased obesity risk in short sleepers. PMID:24352294

  20. Enhanced transparent conducting networks on plastic substrates modified with highly oxidized graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Woo, Jong Seok; Sin, Dong Hun; Kim, Haena; Jang, Jeong In; Kim, Ho Young; Lee, Geon-Woong; Cho, Kilwon; Park, Soo-Young; Han, Joong Tark

    2016-03-01

    Atomically thin and two-dimensional graphene oxide (GO) is a very fascinating material because of its functional groups, high transparency, and solution processability. Here we show that highly oxidized GO (HOGO) nanosheets serve as an effective interfacial modifier of transparent conducting films with one-dimensional (1D) silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs). Optically transparent and small-sized GO nanosheets, with minimal sp2 domains, were successfully fabricated by step-wise oxidation and exfoliation of graphite. We demonstrated that under-coated HOGO further decreases the sheet resistance of the SWCNT film top-coated with HOGO by increasing the contact area between the SWCNTs and HOGO nanosheets by generating hole carriers in the SWCNT as a result of charge transfer. Moreover, HOGO nanosheets with AgNWs contribute to the efficient thermal joining of AgNW networks on plastic substrates by limiting the thermal embedding of AgNWs into the plastic surface, resulting in efficient decrease of the sheet resistance. Furthermore, flexible organic photovoltaic cells with GO-modified AgNW anodes on a flexible substrate were successfully demonstrated.Atomically thin and two-dimensional graphene oxide (GO) is a very fascinating material because of its functional groups, high transparency, and solution processability. Here we show that highly oxidized GO (HOGO) nanosheets serve as an effective interfacial modifier of transparent conducting films with one-dimensional (1D) silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs). Optically transparent and small-sized GO nanosheets, with minimal sp2 domains, were successfully fabricated by step-wise oxidation and exfoliation of graphite. We demonstrated that under-coated HOGO further decreases the sheet resistance of the SWCNT film top-coated with HOGO by increasing the contact area between the SWCNTs and HOGO nanosheets by generating hole carriers in the SWCNT as a result of charge

  1. Evaluation of recipes for obtaining single terminated perovskite oxide substrates

    NASA Astrophysics Data System (ADS)

    Gunnarsson, R.; Kalabukhov, A. S.; Winkler, D.

    2009-01-01

    We have re-assessed different methods to obtain single terminated perovskite oxide substrate surfaces of SrTiO3, LaAlO3 and NdGaO3. The surfaces have been probed by a combination of atomic and lateral force microscopy, X-ray photoelectron spectroscopy and reflection high-energy electron diffraction. (0 0 1)SrTiO3 surfaces were prepared with HF or plasma etching and annealing, (0 0 1)LaAlO3 surfaces were prepared with or without HCl etching and a consecutive annealing at 750-1100 °C, and (1 1 0)NdGaO3 surfaces were only annealed. Two of the recipes have previously been suggested to result in A-site terminated surfaces. However, except for the case of high-temperature annealed LaAlO3 where we observe a double-terminated surface, our data suggest that the single terminated surfaces obtained by these methods were of B-site type.

  2. Investigation of optical properties of nickel oxide thin films deposited on different substrates

    NASA Astrophysics Data System (ADS)

    Nama Manjunatha, Krishna; Paul, Shashi

    2015-10-01

    Nickel oxide has been investigated for several potential applications, namely, ultraviolet detectors, electro chromic devices, displays, diodes for light emitting, transparent conductive electrode, and optoelectronic devices. These applications require an in depth analysis of nickel oxide prior to its exploration in aforementioned devices. Optical properties of materials were investigated by depositing thin film of nickel oxide on different substrates in order to understand if the choice of substrate can have effect on deducing various optical parameters and can lead to wrong conclusions. In view of this, we have investigated optical properties of nickel oxide deposited on different substrates (glass, transparent plastic, sapphire, potassium bromide, and calcium fluoride).

  3. Enhanced transparent conducting networks on plastic substrates modified with highly oxidized graphene oxide nanosheets.

    PubMed

    Woo, Jong Seok; Sin, Dong Hun; Kim, Haena; Jang, Jeong In; Kim, Ho Young; Lee, Geon-Woong; Cho, Kilwon; Park, Soo-Young; Han, Joong Tark

    2016-03-28

    Atomically thin and two-dimensional graphene oxide (GO) is a very fascinating material because of its functional groups, high transparency, and solution processability. Here we show that highly oxidized GO (HOGO) nanosheets serve as an effective interfacial modifier of transparent conducting films with one-dimensional (1D) silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs). Optically transparent and small-sized GO nanosheets, with minimal sp(2) domains, were successfully fabricated by step-wise oxidation and exfoliation of graphite. We demonstrated that under-coated HOGO further decreases the sheet resistance of the SWCNT film top-coated with HOGO by increasing the contact area between the SWCNTs and HOGO nanosheets by generating hole carriers in the SWCNT as a result of charge transfer. Moreover, HOGO nanosheets with AgNWs contribute to the efficient thermal joining of AgNW networks on plastic substrates by limiting the thermal embedding of AgNWs into the plastic surface, resulting in efficient decrease of the sheet resistance. Furthermore, flexible organic photovoltaic cells with GO-modified AgNW anodes on a flexible substrate were successfully demonstrated.

  4. Novel synthetic methodology for controlling the orientation of zinc oxide nanowires grown on silicon oxide substrates

    NASA Astrophysics Data System (ADS)

    Cho, Jinhyun; Salleh, Najah; Blanco, Carlos; Yang, Sungwoo; Lee, Chul-Jin; Kim, Young-Woo; Kim, Jungsang; Liu, Jie

    2014-03-01

    This study presents a simple method to reproducibly obtain well-aligned vertical ZnO nanowire arrays on silicon oxide (SiOx) substrates using seed crystals made from a mixture of ammonium hydroxide (NH4OH) and zinc acetate (Zn(O2CCH3)2) solution. In comparison, high levels of OH- concentration obtained using NaOH or KOH solutions lead to incorporation of Na or K atoms into the seed crystals, destroying the c-axis alignment of the seeds and resulting in the growth of misaligned nanowires. The use of NH4OH eliminates the metallic impurities and ensures aligned nanowire growth in a wide range of OH- concentrations in the seed solution. The difference of crystalline orientations between NH4OH- and NaOH-based seeds is directly observed by lattice-resolved images and electron diffraction patterns using a transmission electron microscope (TEM). This study obviously suggests that metallic impurities incorporated into the ZnO nanocrystal seeds are one of the factors that generates the misaligned ZnO nanowires. This method also enables the use of silicon oxide substrates for the growth of vertically aligned nanowires, making ZnO nanostructures compatible with widely used silicon fabrication technology.This study presents a simple method to reproducibly obtain well-aligned vertical ZnO nanowire arrays on silicon oxide (SiOx) substrates using seed crystals made from a mixture of ammonium hydroxide (NH4OH) and zinc acetate (Zn(O2CCH3)2) solution. In comparison, high levels of OH- concentration obtained using NaOH or KOH solutions lead to incorporation of Na or K atoms into the seed crystals, destroying the c-axis alignment of the seeds and resulting in the growth of misaligned nanowires. The use of NH4OH eliminates the metallic impurities and ensures aligned nanowire growth in a wide range of OH- concentrations in the seed solution. The difference of crystalline orientations between NH4OH- and NaOH-based seeds is directly observed by lattice-resolved images and electron

  5. Stress generation in thermally grown oxide films. [oxide scale spalling from superalloy substrates

    NASA Technical Reports Server (NTRS)

    Kumnick, A. J.; Ebert, L. J.

    1981-01-01

    A three dimensional finite element analysis was conducted, using the ANSYS computer program, of the stress state in a thin oxide film thermally formed on a rectangular piece of NiCrAl alloy. The analytical results indicate a very high compressive stress in the lateral directions of the film (approximately 6200 MPa), and tensile stresses in the metal substrate that ranged from essentially zero to about 55 MPa. It was found further that the intensity of the analytically determined average stresses could be approximated reasonably well by the modification of an equation developed previously by Oxx for stresses induced into bodies by thermal gradients.

  6. Substrate and laser power dependence of surface-enhanced Raman scattering from a silver oxide film.

    PubMed

    Iwanabe, Yasuhiko; Fujimaki, Makoto; Awazu, Koichi; Horiuchi, Toshiyuki; Tominaga, Junji

    2006-03-28

    We report a method to improve the efficiency of surface-enhanced Raman scattering (SERS) from a silver oxide film. A 632.8 nm He-Ne laser beam was focused on silver oxide films deposited on different substrates (silica, TiO2, Si). We found that the substrate material greatly affected the SERS efficiency, and that silica substrate showed the highest efficiency among the materials measured. Scanning electron microscopy observations revealed that silver nanoparticles were generated within the focused laser spot. Computer simulations of the thermal profile based upon data from experimental observations were also carried out. It was found that the temperature of the silver oxide film differed greatly according to the substrate. We infer that substrates that allow higher silver-oxide-film temperatures to be attained are more suitable for efficient SERS.

  7. Side Effects: Appetite Loss

    Cancer.gov

    Cancer treatments may lower your appetite. Side effects such as nausea, fatigue, or mouth sores can also making eating difficult. Learn how to eat well to avoid losing weight or becoming dehydrated, so you stay strong during treatment.

  8. CNS regulation of appetite.

    PubMed

    Harrold, Joanne A; Dovey, Terry M; Blundell, John E; Halford, Jason C G

    2012-07-01

    This article reviews the regulation of appetite from a biopsychological perspective. It considers psychological experiences and peripheral nutritional systems (both episodic and tonic) and addresses their relationship with the CNS networks that process and integrate their input. Whilst such regulatory aspects of obesity focus on homeostatic control mechanisms, in the modern environment hedonic aspects of appetite are also critical. Enhanced knowledge of the complexity of appetite regulation and the mechanisms that sustain obesity indicate the challenge presented by management of the obesity epidemic. Nonetheless, effective control of appetite expression remains a critical therapeutic target for weight management. Currently, strategies which utilise a combination of agents to target both homeostatic and hedonic control mechanisms represent the most promising approaches. This article is part of a Special Issue entitled 'Central Control of Food Intake'.

  9. Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil

    Treesearch

    J.S. Norman; J.E. Barrett

    2014-01-01

    Ammonia-oxidizing microbes control the rate-limiting step of nitrification, a critical ecosystem process, which affects retention and mobility of nitrogen in soil ecosystems. This study investigated substrate (NH4þ) and nutrient (K and P) limitation of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in temperate forest soils at Coweeta Hydrologic...

  10. Anti-reflective conducting indium oxide layer on nanostructured substrate as a function of aspect ratio

    NASA Astrophysics Data System (ADS)

    Park, Hyun-Woo; Ji, Seungmuk; Lim, Hyuneui; Choi, Dong-won; Park, Jin-Seong; Chung, Kwun-Bum

    2016-09-01

    Antireflective conducting indium oxide layers were deposited using atomic layer deposition on a transparent nanostructured substrate grown using colloidal lithography. In order to explain the changes in the electrical resistivity and the optical transmittance of conducting indium oxide layers depending on various aspect ratios of the nanostructured substrates, we investigated the surface area and refractive index of the indium oxide layers in the film depth direction as a function of aspect ratio. The conformal indium oxide layer on a transparent nanostructured substrate with optimized geometry exhibited transmittance of 88% and resistivity of 7.32 × 10-4 Ω cm. The enhancement of electrical resistivity is strongly correlated with the surface area of the indium oxide layer depending on the aspect ratio of the nanostructured substrates. In addition, the improvement in transparency was explained by the gradual changes of the refractive index in the film depth direction according to the aspect ratio of the nanostructures.

  11. Effect of substrate temperature on structural and electrical properties of RF sputtered hafnium oxide thin films

    SciTech Connect

    Das, K. C.; Ghosh, S. P.; Tripathy, N.; Kar, J. P.; Bose, G.; Lee, T.; Myoung, J. M.

    2015-06-24

    In this work hafnium oxide thin films were deposited on p-type silicon substrate by Radio frequency magnetron sputtering at different substrate temperature ranging from room temperature to 300 °C. The structural and electrical properties of the sputtered films were investigated by x-ray diffraction, capacitance-voltage and current-voltage measurements. The XRD results show the formation monoclinic structure of the hafnium oxide thin films. The shifting of C-V curves towards negative voltage side depicts the increase in positive oxide charges with the rise of substrate temperature. Leakage current was found increased, when temperature enhanced from room temperature to 300 °C.

  12. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Schwank, James R.; Fleetwood, Daniel M.; Shaneyfelt, Marty R.; Winokur, Peter S.; Devine, Roderick A. B.

    1998-01-01

    A method for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus-voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer.

  13. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, W.L.; Vanheusden, K.J.R.; Schwank, J.R.; Fleetwood, D.M.; Shaneyfelt, M.R.; Winokur, P.S.; Devine, R.A.B.

    1998-07-28

    A method is disclosed for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer. 5 figs.

  14. Overlay coating degradation by simultaneous oxidation and coating/substrate interdiffusion. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.

    1983-01-01

    Degradation of NiCrAlZr overlay coatings on various NiCrAl substrates was examined after cyclic oxidation. Concentration/distance profiles were measured in the coating and substrate after various oxidation exposures at 1150 C. For each stubstrate, the Al content in the coating decreased rapidly. The concentration/distance profiles, and particularly that for Al, reflected the oxide spalling resistance of each coated substrate. A numerical model was developed to simulate diffusion associated with overlay-coating degradation by oxidation and coating/substrate interdiffusion. Input to the numerical model consisted of the Cr and Al content of the coating and substrate, ternary diffusivities, and various oxide spalling parameters. The model predicts the Cr and Al concentrations in the coating and substrate after any number of oxidation/thermal cycles. The numerical model also predicts coating failure based on the ability of the coating to supply sufficient Al to the oxide scale. The validity of the model was confirmed by comparison of the predicted and measured concentration/distance profiles. The model was subsequently used to identify the most critical system parameters affecting coating life.

  15. Application of a mixed metal oxide catalyst to a metallic substrate

    NASA Technical Reports Server (NTRS)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  16. Pharmacology of appetite suppression.

    PubMed

    Halford, J C; Blundell, J E

    2000-01-01

    Despite a rising worldwide epidemic of obesity there is currently only a very small number of anti-obesity drugs available to manage the problem. Large numbers of differing pharmacological agents reliably produce a reduction in food intake when administered acutely to animals, and when administered chronically they result in a significant decrease in body mass. Behavioural analysis of drug-induced anorexia in animals demonstrates that various compounds profoundly effect feeding behaviour in differing ways. This indicates the variety of mechanisms by which pharmacological agents can induce changes in food intake, body weight and eventually body composition. Some of the same drugs produce decreases in food intake and weight loss in humans. Some of these drugs do so by modifying the functioning of the appetite system as measured by subjective changes in feelings of hunger and fullness (indices of satiety). Such drugs can be considered as "appetite suppressants" with clinical potential as anti-obesity agents. Other drugs induce changes in food intake and body weight through various physiological mechanisms inducing feelings of nausea or even by side effect related malaise. Of the drugs considered suitable candidates for appetite suppressants are agents which act via peripherally satiety peptide systems (such as CCK, Bombesin/GRP, Enterostatin and GLP-1), or alter the CNS levels of various hypothalamic neuropeptides (NPY, Galanin, Orexin and Melanocortins) or levels of the key CNS appetite monoamine neurotransmitters such as serotonin (5-HT) and noradrenaline (NA). Recently, the hormone leptin has been regarded as a hormonal signal linking adipose tissue status with a number of key central nervous system circuits. The peptide itself stimulates leptin receptors and it links with POMC and MC-4 receptors. These receptors may also provide drug targets for the control of appetite. Any changes induced by a potential appetite suppressant should be considered in terms of the (i

  17. Acute changes in substrate oxidation do not affect short-term food intake in healthy boys and men.

    PubMed

    Hunschede, Sascha; El Khoury, Dalia; Antoine-Jonville, Sophie; Smith, Christopher; Thomas, Scott; Anderson, G Harvey

    2015-02-01

    The acute relationship between substrate oxidation as measured by respiratory exchange ratio (RER) and food intake (FI) has not been defined. The purpose of the study was to determine acute relationships between RER, modified by exercise and a glucose load, and FI and net energy balance (NEB) in physically active normal-weight boys and men. In a crossover design, 15 boys (aged 9-12 years) and 15 men (aged 20-30 years) were randomly assigned to 4 conditions: (i) water and rest, (ii) glucose-drink and rest, (iii) water and exercise, and (iv) glucose-drink and exercise. Indirect calorimetry was used to determine RER, energy expenditure, and carbohydrate and fat oxidation. Subjective appetite and blood glucose were also measured. RER was higher after glucose (0.91 ± 0.01) compared with water (0.87 ± 0.01) (p < 0.0001), and after exercise (0.91 ± 0.01) compared with rest (0.88 ± 0.01) (p = 0.0043) in men (0.91 ± 0.01) compared with boys (0.88 ± 0.01) (p = 0.0002). FI (kcal·m(-2)) did not differ between boys and men. Glucose (582 ± 24 kcal·m(-2)) reduced FI compared with water (689 ± 25 kcal·m(-2)) (p < 0.0001), and further decreased FI when combined with exercise (554 ± 34 kcal·m(-2)) (p = 0.0303). NEB was reduced with exercise (573 ± 25 kcal·m(-2)) compared with the sedentary condition (686 ± 24 kcal·m(-2)) (p < 0.0001), but was higher after the glucose drink (654 ± 27 kcal·m(-2)) compared with water (605 ± 25 kcal·m(-2)) (p = 0.0267). No correlations were found between RER and FI or NEB in boys and men, except in the control condition of resting with water. In conclusion, the short-term modification of substrate oxidation by glucose and/or exercise in normal weight and active boys and men did not affect FI and NEB.

  18. Regulation of Blood Pressure, Appetite, and Glucose by Leptin After Inactivation of Insulin Receptor Substrate 2 Signaling in the Entire Brain or in Proopiomelanocortin Neurons.

    PubMed

    do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Freeman, Nathan J; Alsheik, Ammar J; Adi, Ahmad; Hall, John E

    2016-02-01

    Insulin receptor substrate 2 (IRS2) is one of the 3 major leptin receptor signaling pathways, but its role in mediating the chronic effects of leptin on blood pressure, food intake, and glucose regulation is unclear. We tested whether genetic inactivation of IRS2 in the entire brain (IRS2/Nestin-cre mice) or specifically in proopiomelanocortin (POMC) neurons (IRS2/POMC-cre mice) attenuates the chronic cardiovascular, metabolic, and antidiabetic effects of leptin. Mice were instrumented with telemetry probes for measurement of blood pressure and heart rate and with venous catheters for intravenous infusions. After a 5-day control period, mice received leptin infusion (2 μg/kg per minute) for 7 days. Compared with control IRS2(flox/flox) mice, IRS2/POMC-cre mice had similar body weight and food intake (33±1 versus 35±1 g and 3.6±0.5 versus 3.8±0.2 g per day) but higher mean arterial pressure (MAP) and heart rate (110±2 versus 102±2 mm Hg and 641±9 versus 616±5 bpm). IRS2/Nestin-cre mice were heavier (38±2 g), slightly hyperphagic (4.5±1.0 g per day), and had higher MAP and heart rate (108±2 mm Hg and 659±9 bpm) compared with control mice. Leptin infusion gradually increased MAP despite decreasing food intake by 31% in IRS2(flox/flox) and in Nestin-cre control mice. In contrast, leptin infusion did not change MAP in IRS2/Nestin-cre or IRS2/POMC-cre mice. The anorexic and antidiabetic effects of leptin, however, were similar in all 3 groups. These results indicate that IRS2 signaling in the central nervous system, and particularly in POMC neurons, is essential for the chronic actions of leptin to raise MAP but not for its anorexic or antidiabetic effects.

  19. [Drug control of appetite].

    PubMed

    Makoundou, V; Golay, A

    2011-01-12

    The control of the appetite by drugs (sensation of hunger, satiation and satiety) is crucial in the management of obesity. Numerous drugs in this domain were forbidden these last years because of serious side effects. New researches allow the development of new substances presenting fewer side effects either by better specificity on receptors (locarserin), or by new mechanism of action (GLP-1, leptin, anti Ghrelin). The appetite is settled by a complex neurohormonal mechanism. To act on some systems at the same time, the development of products "polypill" combining naltroxone-bupropion, phentermine-topiramate or amylin-leptine give encouraging results. However the dominant mechanism of the appetite dysregulation needs to be better understood.

  20. Nitrosyl-Heme Structures of Bacillus subtilis Nitric Oxide Synthase Have Implications for Understanding Substrate Oxidation

    SciTech Connect

    Pant,K.; Crane, B.

    2006-01-01

    The crystal structures of nitrosyl-heme complexes of a prokaryotic nitric oxide synthase (NOS) from Bacillus subtilis (bsNOS) reveal changes in active-site hydrogen bonding in the presence of the intermediate N{sup {omega}}-hydroxy-L-arginine (NOHA) compared to the substrate L-arginine (L-Arg). Correlating with a Val-to-Ile residue substitution in the bsNOS heme pocket, the Fe(II)-NO complex with both L-Arg and NOHA is more bent than the Fe(II)-NO, L-Arg complex of mammalian eNOS. Structures of the Fe(III)-NO complex with NOHA show a nearly linear nitrosyl group, and in one subunit, partial nitrosation of bound NOHA. In the Fe(II)-NO complexes, the protonated NOHA N{sup {omega}} atom forms a short hydrogen bond with the heme-coordinated NO nitrogen, but active-site water molecules are out of hydrogen bonding range with the distal NO oxygen. In contrast, the L-Arg guanidinium interacts more weakly and equally with both NO atoms, and an active-site water molecule hydrogen bonds to the distal NO oxygen. This difference in hydrogen bonding to the nitrosyl group by the two substrates indicates that interactions provided by NOHA may preferentially stabilize an electrophilic peroxo-heme intermediate in the second step of NOS catalysis.

  1. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  2. Substrate Effects on the High Temperature Oxidation Behavior of a Gold-Based Braze Filler Metal

    SciTech Connect

    Weil, K. Scott; Rice, Joseph P.

    2005-06-01

    Oxidation testing was conducted on a commercial gold-based braze alloy, Gold ABA®, and on zirconia/stainless steel couples joined using this filler metal. Preliminary results reveal that both substrates play a significant role in determining the overall oxidation behavior of the brazed joint.

  3. Substrate Effects on the High Temperature Oxidation Behavior of a Gold-Based Braze Filler Metal

    SciTech Connect

    Weil, K. Scott; Rice, Joseph P.

    2005-06-30

    Oxidation testing was conducted on a commercial gold-based braze alloy, Gold ABA, and on zirconia and stainless steel joining couples prepared using this braze filler metal. Preliminary results reveal that both substrates play a significant role in determining the overall oxidation resistance of the brazed joint.

  4. Interactions at Metal/oxide and Oxide/oxide Interfaces Studied by Ultrathin Film Growth on Single-Crystal Oxide Substrates

    NASA Astrophysics Data System (ADS)

    Lad, Robert J.

    This article reviews aspects of the electronic, chemical, and structural properties of metal/oxide and oxide/oxide interfaces which are formed via ultrathin film growth on oxide single-crystal surfaces. The interactions at the interfaces are classified based on the nature of the reaction products, thermodynamic predictions of interfacial reactions, and wetting and adhesion. Then, properties of single-crystal oxide substrates and limitations and difficulties in studying these ceramic systems are discussed. The remainder of the article presents experimental observations for several systems involving both metal and oxide ultrathin film growth on stoichiometric NiO(100), TiO2(110), and α - Al2 O3 (10bar {1} 2) surfaces including a discussion of interdiffusion, chemical and electronic interactions, thermal stability, and interfacial impurity effects.

  5. Anodic Bonding of Transparent Conductive Oxide Coated Silicon Wafer to Glass Substrate for Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Yuda, Yohei; Koida, Takashi; Kaneko, Tetsuya; Kondo, Michio

    2013-01-01

    We report on the anodic bonding of Si wafer coated by thin transparent conductive oxide (TCO) with a glass substrate, for the first time. We obtained sufficient bonding strength of as high as 9.5 MPa using a 30-nm-thick indium tin oxide (ITO) layer. We have also found that the ITO sample shows much stronger bonding strength does a sample that with a zinc oxide layer. The bonding mechanism is discussed in terms of the permeation of indium elements into the glass side driven by electric field. Finally we demonstrated a solar cell using this substrate.

  6. Overlay coating degradation by simultaneous oxidation and coating/substrate interdiffusion

    SciTech Connect

    Nesbitt, J.A.

    1984-08-01

    This paper describes a numerical model which simulates diffusion, associated with overlay-coating degradation by oxidation and coating/substrate interdiffusion. Such nickel-chromium-aluminum overlays are used in high temperature turbine applications. Inputs to the model were the chromium and aluminum content of coating and substrate, ternary diffusivities, and various oxide spalling parameters. The model predicts the chromium and aluminum concentrations in the coating and substrate after any number of oxidation/thermal cycles. The model also predicts coating failure based on the ability of the coating to supply sufficient aluminum to the oxide scale. The validity of the model was confirmed by comparison of the predicted and measured concentration/distance profiles.

  7. Determination of Interfacial Adhesion Strength between Oxide Scale and Substrate for Metallic SOFC Interconnects

    SciTech Connect

    Sun, Xin; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-01-21

    The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in SOFC operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

  8. Laser surface treatment of porous ceramic substrate for application in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Mahmod, D. S. A.; Khan, A. A.; Munot, M. A.; Glandut, N.; Labbe, J. C.

    2016-08-01

    Laser has offered a large number of benefits for surface treatment of ceramics due to possibility of localized heating, very high heating/cooling rates and possibility of growth of structural configurations only produced under non-equilibrium high temperature conditions. The present work investigates oxidation of porous ZrB2-SiC sintered ceramic substrates through treatment by a 1072 ± 10 nm ytterbium fiber laser. A multi-layer structure is hence produced showing successively oxygen rich distinct layers. The porous bulk beneath these layers remained unaffected as this laser-formed oxide scale and protected the substrate from oxidation. A glassy SiO2 structure thus obtained on the surface of the substrate becomes subject of interest for further research, specifically for its utilization as solid protonic conductor in Solid Oxide Fuel Cells (SOFCs).

  9. Iron Complex Catalyzed Selective C-H Bond Oxidation with Broad Substrate Scope.

    PubMed

    Jana, Sandipan; Ghosh, Munmun; Ambule, Mayur; Sen Gupta, Sayam

    2017-02-17

    The use of a peroxidase-mimicking Fe complex has been reported on the basis of the biuret-modified TAML macrocyclic ligand framework (Fe-bTAML) as a catalyst to perform selective oxidation of unactivated 3° C-H bonds and activated 2° C-H bonds with low catalyst loading (1 mol %) and high product yield (excellent mass balance) under near-neutral conditions and broad substrate scope (18 substrates which includes arenes, heteroaromatics, and polar functional groups). Aliphatic C-H oxidation of 3° and 2° sites of complex substrates was achieved with predictable selectivity using steric, electronic, and stereoelectronic rules that govern site selectivity, which included oxidation of (+)-artemisinin to (+)-10β-hydroxyartemisinin. Mechanistic studies indicate Fe(V)(O) to be the active oxidant during these reactions.

  10. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  11. Oxide thin film transistors on novel flexible substrates

    NASA Astrophysics Data System (ADS)

    Pearton, S. J.; Lim, Wantae; Douglas, Erica; Ren, Fan; Heo, Young Woo; Norton, D. P.

    2010-03-01

    Enhancement-mode TFTs based on amorphous InGaZnO channel were fabricated on paper, glass or plastic substrates at low temperature (< 100°C). The TFTs operated in enhancement mode and showed low operating voltages of 0.5-2.5 V, drain current on-to-off ratios of ~ 105, sub-threshold gate-voltage swing of 0.25-0.5 V.decade-1, and high saturation mobilities of 5-12 cm2.V-1.s-1. The devices exhibited small shifts during 1000 hours aging time at room temperature. Significant challenges remain, including improving the stability of the devices under bias, lowering the operating voltages, replacing metal contacts with conducting polymers that should be more resistant to cracking on rolling-up of flexible substrates and developing large-area printing processes that are compatible with manufacturing these devices on very large areas.

  12. Rare earth zirconium oxide buffer layers on metal substrates

    DOEpatents

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  13. Appetite regulation: an overview.

    PubMed

    Dhillo, Waljit S

    2007-05-01

    Obesity is a major public health problem associated with morbidity and mortality and continues to increase worldwide. This review focuses on the regions of the brain that are important in appetite regulation and the circulating factors implicated in the control of food intake. The hypothalamus is critical in the regulation of food intake containing neural circuits, which produce a number of peptides that influence food intake. The arcuate nucleus of the hypothalamus produces both orexigenic peptides (agouti-related protein and neuropeptide Y) and anorectic peptides (alpha-melanocyte-stimulating hormone and cocaine- and amphetamine-related transcript). The lateral hypothalamus produces the orexigenic peptides (melanin-concentrating hormone and orexins). Other hypothalamic factors recently implicated in appetite regulation include the endocannabinoids, brain-derived neurotrophic factor, nesfatin-1, AMP-activated protein kinase, mammalian target of rapamycin protein, and protein tyrosine phosphatase. Circulating factors that affect food intake mediate their effects by signaling to the hypothalamus and/or brainstem. A number of circulating factors are produced by peripheral organs, for example, leptin by adipose tissue, insulin and pancreatic polypeptide by the pancreas, gut hormones (e.g., ghrelin, obestatin, glucagon-like peptide-1, oxyntomodulin, peptide YY), and triiodothyronine by the thyroid gland. Circulating carbohydrates, lipids, and amino acids also affect appetite regulation. Knowledge regarding appetite regulation has vastly expanded in recent years providing targets for antiobesity drug design.

  14. Addiction as excessive appetite.

    PubMed

    Orford, J

    2001-01-01

    The excessive appetite model of addiction is summarized. The paper begins by considering the forms of excessive appetite which a comprehensive model should account for: principally, excessive drinking, smoking, gambling, eating, sex and a diverse range of drugs including at least heroin, cocaine and cannabis. The model rests, therefore, upon a broader concept of what constitutes addiction than the traditional, more restricted, and arguably misleading definition. The core elements of the model include: very skewed consumption distribution curves; restraint, control or deterrence; positive incentive learning mechanisms which highlight varied forms of rapid emotional change as rewards, and wide cue conditioning; complex memory schemata; secondary, acquired emotional regulation cycles, of which 'chasing', 'the abstinence violation effect' and neuroadaptation are examples; and the consequences of conflict. These primary and secondary processes, occurring within diverse sociocultural contexts, are sufficient to account for the development of a strong attachment to an appetitive activity, such that self-control is diminished, and behaviour may appear to be disease-like. Giving up excess is a natural consequence of conflict arising from strong and troublesome appetite. There is much supportive evidence that change occurs outside expert treatment, and that when it occurs within treatment the change processes are more basic and universal than those espoused by fashionable expert theories.

  15. Integrated Fresnel lens on thermally oxidized silicon substrate.

    PubMed

    Mottier, P; Valette, S

    1981-05-01

    Thin film Fresnel lenses have been achieved on SiO(2)/Si substrates covered with a waveguide layer of Si(3)N(4) grown by low pressure chemical vapor deposition (LPCVD). The phase shift between the different zones is induced by a SiO(2) top layer chemically etched. The use of this additional layer having a smaller refractive index than the waveguide results in a saturation of the lens characteristics vs the thickness of the SiO(2) layer; this feature associated with the good reproducibility of the LPCVD technology allows good control of the lens characteristics.

  16. The effect of oxidations on phosphorus-diffused crystalline-silicon substrates

    SciTech Connect

    Gee, J.M.; King, R.R.; Reiss, J.H.; Mitchell, K.W.; Narayanan, S.

    1997-08-01

    The authors examined the effect of oxidation on phosphorus-diffused crystalline-silicon p-type substrates. Oxidations subsequent to the phosphorus diffusion are of interest for passivating surfaces, and are commonly found in both high-efficiency laboratory-cell and commercial-cell fabrication sequences. The authors found a degradation of the bulk lifetime due to the oxidation in a variety of crystalline-silicon substrates that were diffused in various laboratories. The degradation was avoided if there was aluminum present on the back surface of the wafer during the oxidation. The study suggests that impurities gettered during the phosphorus diffusion can be released back into the bulk during a subsequent oxidation, and that the aluminum suppressed the bulk lifetime degradation by reabsorbing these released impurities.

  17. Stopped-flow analysis of substrate binding to neuronal nitric oxide synthase.

    PubMed

    Abu-Soud, H M; Wang, J; Rousseau, D L; Stuehr, D J

    1999-09-21

    The kinetics of binding L-arginine and three alternative substrates (homoarginine, N-methylarginine, and N-hydroxyarginine) to neuronal nitric oxide synthase (nNOS) were characterized by conventional and stopped-flow spectroscopy. Because binding these substrates has only a small effect on the light absorbance spectrum of tetrahydrobiopterin-saturated nNOS, their binding was monitored by following displacement of imidazole, which displays a significant change in Soret absorbance from 427 to 398 nm. Rates of spectral change upon mixing Im-nNOS with increasing amounts of substrates were obtained and found to be monophasic in all cases. For each substrate, a plot of the apparent rate versus substrate concentration showed saturation at the higher concentrations. K(-)(1), k(2), k(-)(2), and the apparent dissociation constant were derived for each substrate from the kinetic data. The dissociation constants mostly agreed with those calculated from equilibrium spectral data obtained by titrating Im-nNOS with each substrate. We conclude that nNOS follows a two-step, reversible mechanism of substrate binding in which there is a rapid equilibrium between Im-nNOS and the substrate S followed by a slower isomerization process to generate nNOS'-S: Im-nNOS + S if Im-nNOS-S if nNOS'-S + Im. All four substrates followed this general mechanism, but differences in their kinetic values were significant and may contribute to their varying capacities to support NO synthesis.

  18. Electrochemically deposited gallium oxide nanostructures on silicon substrates.

    PubMed

    Ghazali, Norizzawati Mohd; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf

    2014-03-17

    We report a synthesis of β-Ga2O3 nanostructures on Si substrate by electrochemical deposition using a mixture of Ga2O3, HCl, NH4OH, and H2O. The presence of Ga3+ ions contributed to the deposition of Ga2O3 nanostructures on the Si surface with the assistance of applied potentials. The morphologies of the grown structures strongly depended on the molarity of Ga2O3 and pH level of electrolyte. β-Ga2O3 nanodot-like structures were grown on Si substrate at a condition with low molarity of Ga2O3. However, Ga2O3 nanodot structures covered with nanorods on top of their surfaces were obtained at higher molarity, and the densities of nanorods seem to increase with the decrease of pH level. High concentration of Ga3+ and OH- ions may promote the reaction of each other to produce Ga2O3 nanorods in the electrolyte. Such similar nature of Ga2O3 nanorods was also obtained by using hydrothermal process. The grown structures seem to be interesting for application in electronic and optoelectronic devices as well as to be used as a seed structure for subsequent chemical synthesis of GaN by thermal transformation method.

  19. Electrochemically deposited gallium oxide nanostructures on silicon substrates

    NASA Astrophysics Data System (ADS)

    Ghazali, Norizzawati Mohd; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf

    2014-03-01

    We report a synthesis of β-Ga2O3 nanostructures on Si substrate by electrochemical deposition using a mixture of Ga2O3, HCl, NH4OH, and H2O. The presence of Ga3+ ions contributed to the deposition of Ga2O3 nanostructures on the Si surface with the assistance of applied potentials. The morphologies of the grown structures strongly depended on the molarity of Ga2O3 and pH level of electrolyte. β-Ga2O3 nanodot-like structures were grown on Si substrate at a condition with low molarity of Ga2O3. However, Ga2O3 nanodot structures covered with nanorods on top of their surfaces were obtained at higher molarity, and the densities of nanorods seem to increase with the decrease of pH level. High concentration of Ga3+ and OH- ions may promote the reaction of each other to produce Ga2O3 nanorods in the electrolyte. Such similar nature of Ga2O3 nanorods was also obtained by using hydrothermal process. The grown structures seem to be interesting for application in electronic and optoelectronic devices as well as to be used as a seed structure for subsequent chemical synthesis of GaN by thermal transformation method.

  20. Electrochemically deposited gallium oxide nanostructures on silicon substrates

    PubMed Central

    2014-01-01

    We report a synthesis of β-Ga2O3 nanostructures on Si substrate by electrochemical deposition using a mixture of Ga2O3, HCl, NH4OH, and H2O. The presence of Ga3+ ions contributed to the deposition of Ga2O3 nanostructures on the Si surface with the assistance of applied potentials. The morphologies of the grown structures strongly depended on the molarity of Ga2O3 and pH level of electrolyte. β-Ga2O3 nanodot-like structures were grown on Si substrate at a condition with low molarity of Ga2O3. However, Ga2O3 nanodot structures covered with nanorods on top of their surfaces were obtained at higher molarity, and the densities of nanorods seem to increase with the decrease of pH level. High concentration of Ga3+ and OH- ions may promote the reaction of each other to produce Ga2O3 nanorods in the electrolyte. Such similar nature of Ga2O3 nanorods was also obtained by using hydrothermal process. The grown structures seem to be interesting for application in electronic and optoelectronic devices as well as to be used as a seed structure for subsequent chemical synthesis of GaN by thermal transformation method. PMID:24629107

  1. Solvent effects on the morphology and performance of the anode substrates for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Ren, Cong; Zhang, Yanxiang; Wang, Yao; Lei, Libin; Chen, Fanglin

    2017-09-01

    Solvents effects on the microstructure of anode substrates as well as the electrochemical performance of the respective cells are systematically evaluated. The solubility parameters are used to interpret the relationship between the rheological properties of phase inversion slurries and pore formation mechanism of the anode substrates. When N-methyl-2-pyrrolidone (NMP) is chosen as the solvent, a dual-layered anode substrates with hierarchically oriented pores is achieved, while a sponge-like homogeneous anode substrate is obtained using dimethyl sulfoxide (DMSO) as the solvent, indicating that solvent is a key factor to affect the anode substrate microstructure. Two-dimensional and three-dimensional microstructures of the anode substrates prepared using NMP are analyzed by scanning electron microscopy and X-ray microscopy, respectively. Solid oxide fuel cells (SOFCs) with different microstructured anode substrates are prepared, and the maximum power density is significantly enhanced from 320.3 to 719.2 mWcm-2 by varying the anode substrate from homogeneous sponge-like microstructure to dual-layered microstructure, revealing that the finger-like macro-voids layer can facilitate H2-H2O mass diffusion, while the thin sponge-like pores layer can serve as anode functional layer and provide sufficient active reaction sites for H2 oxidation. This study demonstrates that NMP is a promising solvent to fabricate hierarchically oriented anode for high-performance SOFCs application.

  2. Oxidative Attack of Carbon/Carbon Substrates through Coating Pinholes

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Leonhardt, Todd; Curry, Donald; Rapp, Robert A.

    1998-01-01

    A critical issue with oxidation protected carbon/carbon composites used for spacecraft thermal protection is the formation of coating pinholes. In laboratory experiments, artificial pinholes were drilled through SiC-coatings on a carbon/carbon material and the material was oxidized at 600, 1000, and 1400 C at reduced pressures of air. The attack of the carbon/carbon was quantified by both weight loss and a novel cross-sectioning technique. A two-zone, one dimensional diffusion control model was adapted to analyze this problem. Agreement of the model with experiment was reasonable at 1000 and 1400 C; however results at lower temperatures show clear deviations from the theory suggesting that surface reaction control plays a role.

  3. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  4. Targeting oxidative stress in the hypothalamus: the effect of transcription factor STAT3 knockdown on endogenous antioxidants-mediated appetite control.

    PubMed

    Kuo, Dong-Yih; Chen, Pei-Ni; Hsieh, Yih-Shou

    2015-01-01

    It has been reported that the redox sensing system in the hypothalamus participates in fuel metabolism and that endogenous antioxidants contribute to the regulation of phenylpropanolamine (PPA), an anorectic drug-induced appetite suppression. We explored whether the signal transducer and activator of transcription-3 (STAT3) is involved in PPA's action. Rats were given PPA once a day for 4 days. Changes in endogenous antioxidants, Janus kinase-2 (JAK2), STAT3, neuropeptide Y (NPY), and proopiomelanocortin (POMC), levels during PPA treatment were assessed and compared. Feeding, body weight, and NPY decreased with the biggest reduction on Day 2 during PPA treatment. Antioxidants, JAK2, pSTAT3, POMC expression, and STAT3/DNA-binding activity increased and were expressed in a pattern opposite to NPY expression. Moreover, cerebral STAT3 knockdown modified PPA-induced anorexia and antioxidants, POMC, and NPY expression. superoxide dismutase immunoreactivity in the hypothalamus increased and the inhibition of hypothalamic reactive oxygen species (ROS) production reversed antioxidants, STAT3, POMC, and NPY expression. It is suggested that hypothalamic JAK2-STAT3 participates in regulating antioxidants-mediated appetite control. This result may further the understanding of ROS-involved appetite control.

  5. Roles of protein kinase Calpha isozyme in the regulation of oxidative stress and neuropeptide Y gene expression in phenylpropanolamine-mediated appetite suppression.

    PubMed

    Kuo, Dong-Yih; Yang, Shun-Fa; Chu, Shu-Chen; Chen, Chin-Hsiu; Hsieh, Yih-Shou

    2009-03-01

    Hypothalamic neuropeptide Y (NPY) is an appetite stimulant in the brain. Although regulation of NPY expression has been reported to contribute to the appetite-suppressing effect of phenylpropanolamine (PPA), it is still unknown if protein kinase C (PKC) is involved in this effect. Rats were daily treated with PPA for 4 days. Changes in food intake, hypothalamic NPY, PKC, and proopiomelanocortin (POMC) mRNA levels were assessed and compared. Results showed that the NPY gene was down-regulated following PPA treatment, which was parallel with the decrease of feeding. Moreover, several isotypes of PKC mRNA level (alpha, betaI, betaII, gamma, delta, eta, lambda, epsilon, and zeta) were changed. Among these, alpha, delta, and lambda PKC were up-regulated along with POMC gene expression which coincided with down-regulation of the NPY gene. To further determine if PKCalpha was involved, infusions of antisense oligonucleotide into the cerebroventricle were performed at 1 h before daily PPA treatment in free-moving rats. Results showed that PKCalpha knock-down could modify both anorexia induced by PPA and the NPY mRNA levels. Moreover, PKCalpha knock-down could also modify superoxide dismutase (SOD) gene expression. It is suggested that PKCalpha participates in the regulation of PPA-mediated appetite suppression via the modulation of NPY and SOD gene expression.

  6. Deposition of an Ultraflat Graphene Oxide Nanosheet on Atomically Flat Substrates

    NASA Astrophysics Data System (ADS)

    Khan, M. Z. H.; Shahed, S. M. F.; Yuta, N.; Komeda, T.

    2017-02-01

    In this study, graphene oxide (GO) sheets produced in the form of stable aqueous dispersions were deposited on Au (111), freshly cleaved mica, and highly oriented pyrolytic graphite (HOPG) substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study the presence and distinct contact of GO sheets on the substrates. It was revealed from the topography images that high-quality ultraflat GO monolayer sheets formed on the substrates without distinct cracking/wrinkling or folding. GO sheets with apparent height variation observed by microscopy also indicate ultraflat deposition with clear underlying steps. It was observed that ultrasonication and centrifuge steps prior to deposition were very effective for getting oxidation debris (OD)-free ultraflat single monolayer GO nanosheets onto substrates and that the process depends on the concentration of supplied GO solutions.

  7. Deposition of an Ultraflat Graphene Oxide Nanosheet on Atomically Flat Substrates

    NASA Astrophysics Data System (ADS)

    Khan, M. Z. H.; Shahed, S. M. F.; Yuta, N.; Komeda, T.

    2017-07-01

    In this study, graphene oxide (GO) sheets produced in the form of stable aqueous dispersions were deposited on Au (111), freshly cleaved mica, and highly oriented pyrolytic graphite (HOPG) substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study the presence and distinct contact of GO sheets on the substrates. It was revealed from the topography images that high-quality ultraflat GO monolayer sheets formed on the substrates without distinct cracking/wrinkling or folding. GO sheets with apparent height variation observed by microscopy also indicate ultraflat deposition with clear underlying steps. It was observed that ultrasonication and centrifuge steps prior to deposition were very effective for getting oxidation debris (OD)-free ultraflat single monolayer GO nanosheets onto substrates and that the process depends on the concentration of supplied GO solutions.

  8. Tensile strain effect in ferroelectric perovskite oxide thin films on spinel magnesium aluminum oxide substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaolan

    Ferroelectrics are used in FeRAM (Ferroelectric random-access memory). Currently (Pb,Zr)TiO3 is the most common ferroelectric material. To get lead-free and high performance ferroelectric material, we investigated perovskite ferroelectric oxides (Ba,Sr)TiO3 and BiFeO3 films with strain. Compressive strain has been investigated intensively, but the effects of tensile strain on the perovskite films have yet to be explored. We have deposited (Ba,Sr)TiO3, BiFeO3 and related films by pulsed laser deposition (PLD) and analyzed the films by X-ray diffractometry (XRD), atomic force microscopy (AFM), etc. To obtain inherently fully strained films, the selection of the appropriate substrates is crucial. MgAl2O4 matches best with good quality and size, yet the spinel structure has an intrinsic incompatibility to that of perovskite. We introduced a rock-salt structure material (Ni 1-xAlxO1+delta) as a buffer layer to mediate the structural mismatch for (Ba,Sr)TiO3 films. With buffer layer Ni1-xAlxO1+delta, we show that the BST films have high quality crystallization and are coherently epitaxial. AFM images show that the films have smoother surfaces when including the buffer layer, indicating an inherent compatibility between BST-NAO and NAO-MAO. In-plane Ferroelectricity measurement shows double hysteresis loops, indicating an antiferroelectric-like behavior: pinned ferroelectric domains with antiparallel alignments of polarization. The Curie temperatures of the coherent fully strained BST films are also measured. It is higher than 900°C, at least 800°C higher than that of bulk. The improved Curie temperature makes the use of BST as FeRAM feasible. We found that the special behaviors of ferroelectricity including hysteresis loop and Curie temperature are due to inherent fully tensile strain. This might be a clue of physics inside ferroelectric stain engineering. An out-of-plane ferroelectricity measurement would provide a full whole story of the tensile strain. However, a

  9. Method for computing the oxidation of two 13C-substrates ingested simultaneously during exercise.

    PubMed

    Péronnet, F; Adopo, E; Massicotte, D; Brisson, G R; Hillaire-Marcel, C

    1993-09-01

    This study presents a method for computing the respective amounts of two simultaneously ingested exogenous substrates (A and B) that are oxidized during a period of prolonged exercise by use of 13C labeling. This method is based on the observation that the total volume of 13CO2 produced (V13CO2tot) is the sum of 1) V13CO2 arising from the oxidation of endogenous substrates (V13CO2endo), 2) V13CO2 arising from the oxidation of substrate A (V13CO2A), and 3) V13CO2 arising from the oxidation of substrate B (V13CO2B). The equation, V13CO2tot = V13CO2endo+V13CO2A+V13CO2B, with three unknowns, can be solved from the results of three experiments conducted under the same conditions but with at least two values for the isotopic composition of A and B. This method has been used on five healthy male subjects to compute the amounts of glucose and fructose oxidized when a mixture of 15 g of glucose and 15 g of fructose is ingested (in 300 ml of water) over 60 min of cycle ergometer exercise at 65% of maximal O2 uptake. Results from three experiments indicated that 9.8 +/- 3.1 and 5.7 +/- 2.1 g of glucose and fructose, respectively, were oxidized. The total amount of exogenous carbohydrates oxidized (15.5 +/- 4.3 g) is in agreement with the oxidation rates of exogenous glucose computed in similar conditions when 30 g of glucose were ingested (13 g; Péronnet et al. Med. Sci. Sports Exercise 25: 297-302, 1993). The difference between the oxidation rates of exogenous glucose and fructose is also in line with data from the literature.

  10. [Oxidation of sulfur-containing substrates by aboriginal and experimentally designed microbial communities].

    PubMed

    Pivovarova, T A; Bulaev, A G; Roshchupko, P V; Belyĭ, A V; Kondrat'eva, T F

    2012-01-01

    Aboriginal and experimental (constructed of pure microbial cultures) communities of acidophilic chemolithotrophs have been studied. The oxidation of elemental sulfur, sodium thiosulfate, and potassium tetrathionate as sole sources of energy has been monitored. The oxidation rate of the experimental community is higher as compared to the aboriginal community isolated from a flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore. The degree of oxidation of the mentioned S substrates amounts to 17.91, 68.30, and 93.94% for the experimental microbial community and to 10.71, 56.03, and 79.50% for the aboriginal community, respectively. The degree of oxidation of sulfur sulfide forms in the ore flotation concentrate is 59.15% by the aboriginal microbial community and 49.40% by the experimental microbial community. Despite a higher rate of oxidation of S substrates as a sole source of energy by the experimental microbial community, the aboriginal community oxidizes S substrates at a higher rate in the flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore, from which it was isolated. Bacterial-chemical oxidation of the flotation concentrate by the aboriginal microbial community allows for the extraction of an additional 32.3% of gold from sulfide minerals, which is by 5.7% larger compared to the yield obtained by the experimental microbial community.

  11. Drug Insight: appetite suppressants.

    PubMed

    Bray, George A

    2005-02-01

    The term 'appetite suppressant' is used to denote drugs that act primarily on the neurochemical transmitters of the central nervous system to reduce food intake. In addition to drugs that release or mimic the effect of norepinephrine (noradrenaline), this could include drugs that inhibit: reuptake of norepinephrine or 5-hydroxytryptamine (also known as serotonin); bind to the gamma-aminobutyric acid receptors or the cannabinoid receptors; and some peptides that reduce food intake. The sympathomimetic drugs phentermine, diethylpropion, benzphetamine, and phendimetrazine--so named because they mimic many effects of norepinephrine--are only approved in a few countries, and then only for short-term use. Sibutramine, a norepinephrine-5-hydroxytryptamine reuptake inhibitor, is approved for long-term use. Several new mechanisms for drug action are under investigation. Appetite suppressants should be viewed as useful adjuncts to diet and physical activity and might help selected patients to achieve and maintain weight loss.

  12. Electrochemical oxidation of imazapyr with BDD electrode in titanium substrate.

    PubMed

    Souza, F L; Teodoro, T Q; Vasconcelos, V M; Migliorini, F L; Lima Gomes, P C F; Ferreira, N G; Baldan, M R; Haiduke, R L A; Lanza, M R V

    2014-12-01

    In this work we have studied the treatment of imazapyr by electrochemical oxidation with boron-doped diamond anode. Electrochemical degradation experiments were performed in a one-compartment cell containing 0.45 L of commercial formulations of herbicide in the pH range 3.0-10.0 by applying a density current between 10 and 150 mA cm(-2) and in the temperature range 25-45 °C. The maximum current efficiencies were obtained at lower current densities since the electrochemical system is under mass transfer control. The mineralization rate increased in acid medium and at higher temperatures. The treatment was able to completely degrade imazapyr in the range 4.6-100.0 mg L(-1), although the current charge required rises along with the increasing initial concentration of the herbicide. Toxicity analysis with the bioluminescent bacterium Vibrio fischeri showed that at higher pollutant concentrations the toxicity was reduced after the electrochemical treatment. To clarify the reaction pathway for imazapyr mineralization by OH radicals, LC-MS/MS analyses we performed together with a theoretical study. Ions analysis showed the formation of high levels of ammonium in the cathode. The main final products of the electrochemical oxidation of imazapyr with diamond thin film electrodes are formic, acetic and butyric acids.

  13. Laser patterning of very thin indium tin oxide thin films on PET substrates

    NASA Astrophysics Data System (ADS)

    McDonnell, C.; Milne, D.; Prieto, C.; Chan, H.; Rostohar, D.; O'Connor, G. M.

    2015-12-01

    This work investigates the film removal properties of 30 nm thick Indium Tin Oxide (ITO) thin films, on flexible polyethylene terephthalate (PET) substrates, using 355, 532 and 1064 nm nanosecond pulses (ns), and 343 and 1064 nm femtosecond pulses. The ablation threshold was found to be dependent on the applied wavelength and pulse duration. The surface topography of the laser induced features were examined using atomic force microscopy across the range of wavelengths and pulse durations. The peak temperature, strain and stress tensors were examined in the film and substrate during laser heating, using finite element computational methods. Selective removal of the thin ITO film from the polymer substrate is possible at all wavelengths except at 266 nm, were damage to substrate is observed. The damage to the substrate results in periodic surface structures (LIPPS) on the exposed PET, with a period of twice the incident wavelength. Fragmented crater edges are observed at all nanosecond pulse durations. Film removal using 1030 nm femtosecond pulses results in clean crater edges, however, minor 5 nm damage to the substrate is also observed. The key results show that film removal for ITO on PET, is through film de-lamination across all wavelengths and pulse durations. Film de-lamination occurs due to thermo-elastic stress at the film substrate interface region, as the polymer substrate expands under heating from direct laser absorption and heat conduction across the film substrate interface.

  14. Ferromagnetism of manganese-doped indium tin oxide films deposited on polyethylene naphthalate substrates

    SciTech Connect

    Nakamura, Toshihiro; Isozaki, Shinichi; Tanabe, Kohei; Tachibana, Kunihide

    2009-04-01

    Mn-doped indium tin oxide (ITO) films were deposited on polyethylene naphthalate (PEN) substrates using radio-frequency magnetron sputtering. The magnetic, electrical, and optical properties of the films deposited on PEN substrates were investigated by comparing with the properties of films grown on glass substrates at the same growth conditions. Thin films on PEN substrates exhibited low electrical resistivity of the order of 10{sup -4} {omega} cm and high optical transmittance between 75% and 90% in the visible region. Ferromagnetic hysteresis loops were observed at room temperature for the samples grown on PEN substrates. Mn-doped ITO films can be one of the most promising candidates of transparent ferromagnetic materials for flexible spintronic devices.

  15. Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates

    NASA Astrophysics Data System (ADS)

    Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C. N.; Mihailescu, I. N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A. C.; Luculescu, C. R.; Craciun, V.

    2012-11-01

    The influence of target-substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10-4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.

  16. Molecular beacon anchored onto a graphene oxide substrate.

    PubMed

    Darbandi, Arash; Datta, Debopam; Patel, Krunal; Lin, Gary; Stroscio, Michael A; Dutta, Mitra

    2017-09-15

    In this article, we report a graphene oxide-based nanosensor incorporating semiconductor quantum dots linked to DNA-aptamers that functions as a 'turn-off' fluorescent nanosensor for detection of low concentrations of analytes. A specific demonstration of this turn-off aptasensor is presented for the case of the detection of mercury (II) ions. In this system, ensembles of aptamer-based quantum-dot sensors are anchored onto graphene oxide (GO) flakes which provide a platform for analyte detection in the vicinity of GO. Herein, the operation of this ensemble-based nanosensor is demonstrated for mercury ions, which upon addition of mercury, quenching of the emission intensity from the quantum dots is observed due to resonance energy transfer between quantum dots and the gold nanoparticle connected via a mercury target aptamer. A key result is that the usually dominant effect of quenching of the quantum dot due to close proximity to the GO can be reduced to negligible levels by using a linker molecule in conjunctions with the aptamer-based nanosensor. The effect of ionic concentration of the background matrix on the emission intensity was also investigated. The sensor system is found to be highly selective towards mercury and exhibits a linear behavior (r (2) > 0.99) in the nanomolar concentration range. The detection limit of the sensor towards mercury with no GO present was found to be 16.5 nM. With GO attached to molecular beacon via 14 base, 35 base, and 51 base long linker DNA, the detection limit was found to be 38.4 nM, 9.45 nM, and 11.38 nM; respectively.

  17. Molecular beacon anchored onto a graphene oxide substrate

    NASA Astrophysics Data System (ADS)

    Darbandi, Arash; Datta, Debopam; Patel, Krunal; Lin, Gary; Stroscio, Michael A.; Dutta, Mitra

    2017-09-01

    In this article, we report a graphene oxide-based nanosensor incorporating semiconductor quantum dots linked to DNA-aptamers that functions as a ‘turn-off’ fluorescent nanosensor for detection of low concentrations of analytes. A specific demonstration of this turn-off aptasensor is presented for the case of the detection of mercury (II) ions. In this system, ensembles of aptamer-based quantum-dot sensors are anchored onto graphene oxide (GO) flakes which provide a platform for analyte detection in the vicinity of GO. Herein, the operation of this ensemble-based nanosensor is demonstrated for mercury ions, which upon addition of mercury, quenching of the emission intensity from the quantum dots is observed due to resonance energy transfer between quantum dots and the gold nanoparticle connected via a mercury target aptamer. A key result is that the usually dominant effect of quenching of the quantum dot due to close proximity to the GO can be reduced to negligible levels by using a linker molecule in conjunctions with the aptamer-based nanosensor. The effect of ionic concentration of the background matrix on the emission intensity was also investigated. The sensor system is found to be highly selective towards mercury and exhibits a linear behavior (r 2 > 0.99) in the nanomolar concentration range. The detection limit of the sensor towards mercury with no GO present was found to be 16.5 nM. With GO attached to molecular beacon via 14 base, 35 base, and 51 base long linker DNA, the detection limit was found to be 38.4 nM, 9.45 nM, and 11.38 nM; respectively.

  18. Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators

    PubMed Central

    2004-01-01

    VPs (versatile peroxidases) sharing the functions of LiP (lignin peroxidase) and MnP (manganese peroxidase) have been described in basidiomycetous fungi Pleurotus and Bjerkandera. Despite the importance of this enzyme in polymer degradation, its reactivity with polymeric substrates remains poorly understood. In the present study, we first report that, unlike LiP, VP from Pleurotus ostreatus directly oxidized two polymeric substrates, bovine pancreatic RNase and Poly R-478, through a long-range electron pathway without redox mediators. P. ostreatus produces several MnP isoenzymes, including the multifunctional enzyme MnP2 (VP) and a typical MnP isoenzyme MnP3. MnP2 (VP) depolymerized a polymeric azo dye, Poly R-478, to complete its catalytic cycle. Reduction of the oxidized intermediates of MnP2 (VP) to its resting state was also observed for RNase. RNase inhibited the oxidation of VA (veratryl alcohol) in a competitive manner. Blocking of the exposed tryptophan by N-bromosuccinimide inhibited the oxidation of RNase and VA by MnP2 (VP), but its Mn2+-oxidizing activity was retained, suggesting that Trp-170 exposed on an enzyme surface is a substrate-binding site both for VA and the polymeric substrates. The direct oxidation of RNase and Poly R by MnP2 (VP) is in sharp contrast with redox mediator-dependent oxidation of these polymers by LiP from Phanerochaete chrysosporium. Molecular modelling of MnP2 (VP) revealed that the differences in the dependence on redox mediators in polymer oxidation by MnP2 (VP) and LiP were explained by the anionic microenvironment surrounding the exposed tryptophan. PMID:15461584

  19. Pt3Zr(0001): A substrate for growing well-ordered ultrathin zirconia films by oxidation

    NASA Astrophysics Data System (ADS)

    Antlanger, Moritz; Mayr-Schmölzer, Wernfried; Pavelec, Jiří; Mittendorfer, Florian; Redinger, Josef; Varga, Peter; Diebold, Ulrike; Schmid, Michael

    2012-07-01

    We have studied the surface of pure and oxidized Pt3Zr(0001) by scanning tunneling microscopy (STM), Auger electron microscopy, and density functional theory (DFT). The well-annealed alloy surface shows perfect long-range chemical order. Occasional domain boundaries are probably caused by nonstoichiometry. Pt3Zr exhibits ABAC stacking along [0001]; only the A-terminated surfaces are seen by STM, in agreement with DFT results showing a lower surface energy for the A termination. DFT further predicts a stronger inward relaxation of the surface Zr than for Pt, in spite of the larger atomic size of Zr. A closed ZrO2 film is obtained by oxidation in 10-7 mbar O2 at 400 ∘C and post-annealing at ≈800∘C. The oxide consists of an O-Zr-O trilayer, equivalent to a (111) trilayer of the fluorite structure of cubic ZrO2, but contracted laterally. The oxide forms a (19×19)R23∘ superstructure. The first monolayer of the substrate consists of Pt and contracts, similar to the metastable reconstruction of pure Pt(111). DFT calculations show that the oxide trilayer binds rather weakly to the substrate. In spite of the O-terminated oxide, bonding to the substrate mainly occurs via the Zr atoms in the oxide, which strongly buckle down toward the Pt substrate atoms if near a Pt position. According to DFT, the oxide has a band gap; STM indicates that the conduction band minimum lies ≈2.3 eV above EF.

  20. Sex difference in substrate oxidation during low-intensity isometric exercise in young adults.

    PubMed

    Sarafian, Delphine; Schutz, Yves; Montani, Jean-Pierre; Dulloo, Abdul G; Miles-Chan, Jennifer L

    2016-09-01

    Low-intensity physical activity is increasingly promoted as an alternative to sedentary behavior. However, much research to date has focused on moderate- to vigorous-intensity physical activity, and in particular dynamic work, with the effect of low-intensity isometric exercise (<4 METs) on substrate utilization yet to be explored. Here we investigate the effects of such exercise on respiratory quotient (RQ) and determine the extent of intra- and inter-individual variability in response. Energy expenditure, RQ, and substrate oxidation were measured by ventilated-hood indirect calorimetry at rest and in response to standardized, intermittent, low-level isometric leg-press exercises at 5 loads (+5, +10, +15, +20, +25 kg) in 26 healthy, young adults. Nine participants repeated the experiment on 3 separate days to assess within-subject, between-day variability. There was no significant difference in energy cost and heart rate responses to low-intensity isometric exercise (<2 METs) between men and women. However, a sex difference was apparent in terms of substrate oxidation - with men increasing both fat and carbohydrate oxidation, and women only increasing fat oxidation while maintaining carbohydrate oxidation at baseline, resting levels. This sex difference was repeatable and persisted when substrate oxidation was adjusted for differences in body weight or body composition. Individual variability in RQ was relatively low, with both intra- and inter-individual coefficients of variation in the range of 3%-6% in both sexes. These results suggest that women preferentially increase fat oxidation during low-level isometric exercise. Whether such physical activity could be incorporated into treatment/prevention strategies aimed at optimizing fat oxidation in women warrants further investigation.

  1. H2O2-dependent substrate oxidation by an engineered diiron site in a bacterial hemerythrin.

    PubMed

    Okamoto, Yasunori; Onoda, Akira; Sugimoto, Hiroshi; Takano, Yu; Hirota, Shun; Kurtz, Donald M; Shiro, Yoshitsugu; Hayashi, Takashi

    2014-04-04

    The O2-binding carboxylate-bridged diiron site in DcrH-Hr was engineered in an effort to perform the H2O2-dependent oxidation of external substrates. A His residue was introduced near the diiron site in place of a conserved residue, Ile119. The I119H variant promotes the oxidation of guaiacol and 1,4-cyclohexadiene upon addition of H2O2.

  2. Rapid analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate.

    PubMed

    Pike Winer, Lisa S; Wu, Min

    2014-01-01

    Cancer cells exhibit remarkable alterations in cellular metabolism, particularly in their nutrient substrate preference. We have devised several experimental methods that rapidly analyze the metabolic substrate flux in cancer cells: glycolysis and the oxidation of major fuel substrates glucose, glutamine, and fatty acids. Using the XF Extracellular Flux analyzer, these methods measure, in real-time, the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of living cells in a microplate as they respond to substrates and metabolic perturbation agents. In proof-of-principle experiments, we analyzed substrate flux and mitochondrial bioenergetics of two human glioblastoma cell lines, SF188s and SF188f, which were derived from the same parental cell line but proliferate at slow and fast rates, respectively. These analyses led to three interesting observations: 1) both cell lines respired effectively with substantial endogenous substrate respiration; 2) SF188f cells underwent a significant shift from glycolytic to oxidative metabolism, along with a high rate of glutamine oxidation relative to SF188s cells; and 3) the mitochondrial proton leak-linked respiration of SF188f cells increased significantly compared to SF188s cells. It is plausible that the proton leak of SF188f cells may play a role in allowing continuous glutamine-fueled anaplerotic TCA cycle flux by partially uncoupling the TCA cycle from oxidative phosphorylation. Taken together, these rapid, sensitive and high-throughput substrate flux analysis methods introduce highly valuable approaches for developing a greater understanding of genetic and epigenetic pathways that regulate cellular metabolism, and the development of therapies that target cancer metabolism.

  3. Rapid Analysis of Glycolytic and Oxidative Substrate Flux of Cancer Cells in a Microplate

    PubMed Central

    Pike Winer, Lisa S.; Wu, Min

    2014-01-01

    Cancer cells exhibit remarkable alterations in cellular metabolism, particularly in their nutrient substrate preference. We have devised several experimental methods that rapidly analyze the metabolic substrate flux in cancer cells: glycolysis and the oxidation of major fuel substrates glucose, glutamine, and fatty acids. Using the XF Extracellular Flux analyzer, these methods measure, in real-time, the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of living cells in a microplate as they respond to substrates and metabolic perturbation agents. In proof-of-principle experiments, we analyzed substrate flux and mitochondrial bioenergetics of two human glioblastoma cell lines, SF188s and SF188f, which were derived from the same parental cell line but proliferate at slow and fast rates, respectively. These analyses led to three interesting observations: 1) both cell lines respired effectively with substantial endogenous substrate respiration; 2) SF188f cells underwent a significant shift from glycolytic to oxidative metabolism, along with a high rate of glutamine oxidation relative to SF188s cells; and 3) the mitochondrial proton leak-linked respiration of SF188f cells increased significantly compared to SF188s cells. It is plausible that the proton leak of SF188f cells may play a role in allowing continuous glutamine-fueled anaplerotic TCA cycle flux by partially uncoupling the TCA cycle from oxidative phosphorylation. Taken together, these rapid, sensitive and high-throughput substrate flux analysis methods introduce highly valuable approaches for developing a greater understanding of genetic and epigenetic pathways that regulate cellular metabolism, and the development of therapies that target cancer metabolism. PMID:25360519

  4. Activation energy of thermal desorption of silicon oxide layers on silicon substrates

    NASA Astrophysics Data System (ADS)

    Enta, Yoshiharu; Osanai, Shodai; Ogasawara, Takahito

    2017-02-01

    Thermal desorption rates of silicon oxide layers, from 20 to 120 nm in thickness, on silicon substrates in vacuum have been accurately obtained from intervals between ring structures formed inside voids on the oxide layers. From the temperature dependence of the desorption rate, the activation energy and frequency factor of the desorption reaction have been derived as a function of the oxide thickness. The obtained values are compared with the previous studies, and as a result, the activation energy is found to be almost constant ( 4 eV) in a wide range of the oxide thickness. The frequency factor decreases as the inverse square of the oxide thickness. The decomposition kinetics of the oxide layer is also discussed from the obtained results.

  5. Epitaxial gallium oxide on a SiC/Si substrate

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Nikolaev, V. I.; Osipov, A. V.; Osipova, E. V.; Pechnikov, A. I.; Feoktistov, N. A.

    2016-09-01

    Well-textured gallium oxide β-Ga2O3 layers with a thickness of 1 μm and a close to epitaxial layer structure were grown by the method of chloride vapor phase epitaxy on Si(111) wafers with a nano-SiC buffer layer. In order to improve the growth, a high-quality silicon carbide buffer layer 100 nm thick was preliminarily synthesized by the substitution of atoms on the silicon surface. The β-Ga2O3 films were thoroughly investigated using reflection high-energy electron diffraction, ellipsometry, X-ray diffraction, scanning electron microscopy, and micro-Raman spectroscopy. The investigations revealed that the films are textured with a close to epitaxial structure and consist of a pure β-phase Ga2O3 with the (overline 2 01) orientation. The dependence of the dielectric constant of epitaxial β-Ga2O3 on the photon energy ranging from 0.7 to 6.5 eV in the isotropic approximation was measured.

  6. Bovine plasma amine oxidase (PAO) oxidizes substrate by a proton activation mechanism

    SciTech Connect

    Hartmann, C.; Klinman, J.P.

    1986-05-01

    PAO catalyzes the oxidative deamination of amines to aldehydes, concomitant with a 2e/sup -/ reduction of O/sub 2/ to H/sub 2/O/sub 2/. Several investigators have proposed recently that the organic cofactor in PAO is pyrroloquinoline quinone (PQQ), hitherto seen exclusively in prokaryotes. The structure and properties of PQQ predict first, that substrate and PAO will form a covalent adduct and second, that substrate will be oxidized via proton abstraction. In earlier studies from this laboratory, steady state isotope effects, in conjunction with an intrinsic isotope effect, have been shown to provide microscopic rate constants from complex mechanisms. In this study, V, D/sub V/, V/K and /sup D/(V/K) have been measured for the oxidation of a series of nine ring-substituted benzylamines and (1-/sup 2/H/sub 2/)-benzylamines with PAO. The series of substrates was chosen to minimize collinearity in the electronic and hydrophobic properties of ring substituents. Computed rate constants for the C-H bond cleavage step indicate a strong correlation with electron withdrawing substituents, rho = 1.3, confirming the formation of a discrete carbanion intermediate upon substrate activation. Additional studies are in progress, with the objective of trapping and characterizing the putative adduct between PAO and substrates.

  7. Oxidation of ultrafast radical clock substrate probes by the soluble methane monooxygenase from Methylococcus capsulatus (Bath).

    PubMed

    Valentine, A M; LeTadic-Biadatti, M H; Toy, P H; Newcomb, M; Lippard, S J

    1999-04-16

    Radical clock substrate probes were used to assess the viability of a discrete substrate radical species in the mechanism of hydrocarbon oxidation by the soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath). New substituted cyclopropane probes were used with very fast ring-opening rate constants and other desirable attributes, such as the ability to discriminate between radical and cationic intermediates. Oxidation of these substrates by a reconstituted sMMO system resulted in no rearranged products, allowing an upper limit of 150 fs to be placed on the lifetime of a putative radical species. This limit strongly suggests that there is no such substrate radical intermediate. The two enantiomers of trans-1-methyl-2-phenyl-cyclopropane were prepared, and the regioselectivity of their oxidation to the corresponding cyclopropylmethanol and cyclopropylphenol products was determined. The results are consistent with selective orientation of the two enantiomeric substrates in the hydrophobic cavity at the active site of sMMO, specific models for which were examined by molecular modeling.

  8. Modulation of substrate binding to naphthalene 1,2-dioxygenase by rieske cluster reduction/oxidation.

    PubMed

    Yang, Tran-Chin; Wolfe, Matt D; Neibergall, Matthew B; Mekmouche, Yasmina; Lipscomb, John D; Hoffman, Brian M

    2003-02-26

    The active site of the oxygenase component of naphthalene 1,2-dioxygenase (NDO) contains a Rieske Fe-S cluster and a mononuclear non-heme iron, which are contributed by different alpha-subunits in the (alphabeta)(3) structure. The enzyme catalyzes cis-dihydroxylation of aromatic substrates in addition to numerous other adventitious oxidation reactions. High-resolution Mims (2)H-ENDOR spectra have been recorded for the NO-ferrous center of NDO bound with d(8)-naphthalene and d(2)-naphthalene; spectra were collected for the enzyme with the Rieske diiron center both in its oxidized and in its reduced states. A sharp quartet ENDOR pattern from a nearby deuteron of substrate was detected for each substrate. Examination of the sample prepared with 1,4-dideutero-naphthalene shows that the signal arises from D1. The ENDOR data place D1 at a distance of ca. 4.4 A from the mononuclear Fe and with the Fe-D vector being roughly along the Fe-N(O) direction. Because reduction of the Rieske cluster is required for O(2) binding and subsequent catalysis, the effect of its oxidation state on substrate binding was examined. The spectra from the NDO-naphthalene complex reveal two different binding conformations, which change in relative population when the oxidation state of the Rieske cluster is changed. This shift, and the conformational coupling it implies, may hold the key to both oxygen gating and oxygen reactivity for Rieske aromatic dioxygenases.

  9. Metal oxide-based silver substrates for surface-enhanced Raman scattering

    SciTech Connect

    Li, Y.S.; Lin, X.

    1995-12-01

    New substrates were prepared by using sol-gel process for metal oxide (MgO and TiO{sub 2}) undercoating and by using chemical reduction method for silver coating. The substrates were found to exhibit strong Surface-Enhanced Raman Scattering (SERS) signals for benzoic acid (BA), terephthalic acid (TPA), p-nitrobenzoic acid (PNBA), p-aminobenzoic acid (PABA), p-nitrophenol (PNP), and p-nitroanaline. Optimization of metal oxide undercoating and silver deposition was conducted to obtain intense SER band of BA. It was shown that the substrates could be reused for the SER investigation of different samples. A study of the solvent effect on the SERS intensity of BA was conducted; an explanation to the result was suggested.

  10. Microplasmas for direct, substrate-independent deposition of nanostructured metal oxides

    NASA Astrophysics Data System (ADS)

    Mackie, Katherine E.; Pebley, Andrew C.; Butala, Megan M.; Zhang, Jinping; Stucky, Galen D.; Gordon, Michael J.

    2016-07-01

    A general, substrate-independent method for plasma deposition of nanostructured, crystalline metal oxides is presented. The technique uses a flow-through, micro-hollow cathode plasma discharge (supersonic microplasma jet) with a "remote" ring anode to deliver a highly directed flux of growth species to the substrate. A diverse range of nanostructured materials (e.g., CuO, α-Fe2O3, and NiO) can be deposited on any room temperature surface, e.g., conductors, insulators, plastics, fibers, and patterned surfaces, in a conformal fashion. The effects of deposition conditions, substrate type, and patterning on film morphology, nanostructure, and surface coverage are highlighted. The synthesis approach presented herein provides a general and tunable method to deposit a variety of functional and hierarchical metal oxide materials on many different surfaces. High surface area, conversion-type CuO electrodes for Li-ion batteries are demonstrated as a proof-of-concept example.

  11. Enhanced selective oxidation of h-BN nanosheet through a substrate-mediated localized charge effect.

    PubMed

    Mao, Keke; Wu, Xiaojun; Yang, Jinlong

    2017-02-08

    Manipulation of the chemical reactivity of two-dimensional materials is a challenge for advancing various nanotechnologies, ranging from electronics to catalysis. In this study, on the basis of first-principles calculations, we demonstrated that the chemical reactivity of h-BN sheets towards O2 can be significantly enhanced via a metal substrate-mediated charge effect. The chemisorption of O2 molecule on the h-BN sheet deposited on Ni, Co, or Cu substrate were almost spontaneous with negligible energy barrier, distinctly different from that on the freestanding h-BN sheet, which has ultra-high chemical stability. In particular, the enhanced oxidation of h-BN sheet can be confined in the nanoscale region due to the localized electronic states in the h-BN sheet. These findings imply a pathway to selectively oxidize h-BN sheet by patterning the metal substrate.

  12. Synthesis and electrochemical capacitance of long tungsten oxide nanorod arrays grown vertically on substrate

    SciTech Connect

    Park, Sun Hwa; Kim, Young Heon; Lee, Tae Geol; Shon, Hyun Kyong; Park, Hyun Min; Song, Jae Yong

    2012-11-15

    Highlights: ► Growth of long amorphous tungsten oxide nanorods on a substrate. ► Formation of single-crystalline tungsten oxide nanorods by a heat-treatment. ► High electrochemical pseudocapacitance of 2.8 mF cm{sup −2}. ► Excellent cyclability of psuedocapacitance up to 1000 cycles. -- Abstract: Long tungsten oxide nanorods are vertically grown on Al/W/Ti coated silicon substrates using a two-step anodization process. The first anodization of the Al film forms a mesh-like mask of anodic aluminum oxide, and the second anodization of the W film results in the formation of a buffer layer, a bottom nanorod, and a top nanorod of amorphous tungsten oxide. A pore-widening process prior to the second anodization leads to the enhancement of nanorod length above approximately 500 nm. After a heat-treatment, the tungsten oxide nanorods are crystallized to form a single crystalline structure while the buffer layer forms a polycrystalline structure. The crystalline tungsten oxide nanorods show a cyclic voltammogram retaining the quasi-rectangular shape of an electrochemically reversible faradaic redox reaction, i.e., a typical pseudocapacitive behavior. The maximum electrochemical capacitance per apparent surface area reaches approximately 2.8 mF cm{sup −2} at the voltage scan rate of 20 mV s{sup −1}, and the excellent cyclability of charge–discharge process is maintained up to 1000 cycles.

  13. Copper substrate as a catalyst for the oxidation of chemical vapor deposition-grown graphene

    SciTech Connect

    Li, Zhiting; Zhou, Feng; Parobek, David; Shenoy, Ganesh J.; Muldoon, Patrick; Liu, Haitao

    2015-04-15

    We report the catalytic effect of copper substrate on graphene–oxygen reaction at high temperature. Previous studies showed that graphene grown on copper are mostly defect-free with strong oxidation resistance. We found that a freshly prepared copper-supported graphene sample can be completely oxidized in trace amount of oxygen (<3 ppm) at 600 °C within 2 h. Both X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) suggest that upon ambient air exposure, oxygen molecules diffuse into the space between graphene and copper, resulting in the formation of copper oxide which acts as catalytic sites for the graphene-oxygen reaction. This result has important implications for the characterization, processing, and storage of copper-supported graphene samples. - Graphical abstract: The copper substrate enhances the thermel oxidation of single-layer graphene. - Highlights: • A copper-supported graphene can be oxidized in Ar (O{sub 2}<3 ppm, 600 °C, 2 h). • O{sub 2} intercalates between graphene and copper upon exposure to air. • The copper foil should not be considered as an inert substrate.

  14. Laser Direct Ablation of Indium Tin Oxide Films on Both Sides of Various Substrates.

    PubMed

    Oh, Gi Taek; Kwon, Sang Jik; Han, Jae-Hee; Cho, Eou Sik

    2015-03-01

    We demonstrate ablation of indium tin oxide (ITO) films onto both glass and polyethylene terephthalate (PET) substrates, using a Q-switched diode-pumped neodymium-doped yttrium vanadate laser (Nd:YVO4, λ = 1064 nm) incident on both the front and back sides of the substrate. From scanning electron microscope (SEM) images and depth profile data, ITO patterns that were laser-ablated onto glass from the back side showed a larger abrupt change in the ablated line width than those ablated from the front. However, there were only slight differences in ablated line widths due to the direction of the incident laser beam. We provide a possible explanation in terms of several factors: dispersion of laser beam energy through the substrate, overlapping of each laser beam spot due to scanning speed, and the thickness of glass and PET substrates.

  15. Gastrointestinal hormones regulating appetite

    PubMed Central

    Chaudhri, Owais; Small, Caroline; Bloom, Steve

    2006-01-01

    The role of gastrointestinal hormones in the regulation of appetite is reviewed. The gastrointestinal tract is the largest endocrine organ in the body. Gut hormones function to optimize the process of digestion and absorption of nutrients by the gut. In this capacity, their local effects on gastrointestinal motility and secretion have been well characterized. By altering the rate at which nutrients are delivered to compartments of the alimentary canal, the control of food intake arguably constitutes another point at which intervention may promote efficient digestion and nutrient uptake. In recent decades, gut hormones have come to occupy a central place in the complex neuroendocrine interactions that underlie the regulation of energy balance. Many gut peptides have been shown to influence energy intake. The most well studied in this regard are cholecystokinin (CCK), pancreatic polypeptide, peptide YY, glucagon-like peptide-1 (GLP-1), oxyntomodulin and ghrelin. With the exception of ghrelin, these hormones act to increase satiety and decrease food intake. The mechanisms by which gut hormones modify feeding are the subject of ongoing investigation. Local effects such as the inhibition of gastric emptying might contribute to the decrease in energy intake. Activation of mechanoreceptors as a result of gastric distension may inhibit further food intake via neural reflex arcs. Circulating gut hormones have also been shown to act directly on neurons in hypothalamic and brainstem centres of appetite control. The median eminence and area postrema are characterized by a deficiency of the blood–brain barrier. Some investigators argue that this renders neighbouring structures, such as the arcuate nucleus of the hypothalamus and the nucleus of the tractus solitarius in the brainstem, susceptible to influence by circulating factors. Extensive reciprocal connections exist between these areas and the hypothalamic paraventricular nucleus and other energy-regulating centres of the

  16. Protein oxidation in the intermembrane space of mitochondria is substrate-specific rather than general

    PubMed Central

    Peleh, Valentina; Riemer, Jan; Dancis, Andrew; Herrmann, Johannes M.

    2014-01-01

    In most cellular compartments cysteine residues are predominantly reduced. However, in the bacterial periplasm, the ER and the mitochondrial intermembrane space (IMS), sulfhydryl oxidases catalyze the formation of disulfide bonds. Nevertheless, many IMS proteins contain reduced cysteines that participate in binding metal- or heme-cofactors. In this study, we addressed the substrate specificity of the mitochondrial protein oxidation machinery. Dre2 is a cysteine-rich protein that is located in the cytosol. A large fraction of Dre2 bound to the cytosolic side of the outer membrane of mitochondria. Even when Dre2 is artificially targeted to the IMS, its cysteine residues remain in the reduced state. This indicates that protein oxidation in the IMS of mitochondria is not a consequence of the apparent oxidizing environment in this compartment but rather is substrate-specific and determined by the presence of Mia40-binding sites. PMID:28357226

  17. Copper Oxide Substrates and Epitaxial Copper Oxide/Zinc Oxide Thin Film Heterostructures for Solar Energy Conversion

    NASA Astrophysics Data System (ADS)

    Darvish, Davis Solomon

    Future fossil fuel scarcity and environmental degradation have demonstrated the need for renewable, low-carbon sources of energy to power an increasingly industrialized world. Solar energy with its infinite supply makes it an extraordinary resource that should not go unused. However with current materials, adoption is limited by cost and so a paradigm shift must occur to get everyone on the same page embracing solar technology. Cuprous Oxide (Cu2O) is a promising earth abundant material that can be a great alternative to traditional thin-film photovoltaic materials like CIGS, CdTe, etc. We have prepared Cu 2O bulk substrates by the thermal oxidation of copper foils as well Cu2O thin films deposited via plasma-assisted Molecular Beam Epitaxy. From preliminary Hall measurements it was determined that Cu2O would need to be doped extrinsically. This was further confirmed by simulations of ZnO/Cu2O heterojunctions. A cyclic interdependence between, defect concentration, minority carrier lifetime, film thickness, and carrier concentration manifests itself a primary reason for why efficiencies greater than 4% has yet to be realized. Our growth methodology for our thin-film heterostructures allow precise control of the number of defects that incorporate into our film during both equilibrium and nonequilibrium growth. We also report process flow/device design/fabrication techniques in order to create a device. A typical device without any optimizations exhibited open-circuit voltages Voc, values in excess 500mV; nearly 18% greater than previous solid state devices.

  18. Oral contraception and energy intake in women: impact on substrate oxidation during exercise.

    PubMed

    Isacco, Laurie; Thivel, David; Pelle, Anne Meddahi; Zouhal, Hassane; Duclos, Martine; Duche, Pascale; Boisseau, Nathalie

    2012-08-01

    Oral contraception (OC) and energy intake may play a role in fuel selection during exercise. The aim of this study was to investigate the effect of OCs (OC+ vs. OC-) in fed and fasting conditions on substrate oxidation and metabolic and hormonal responses in women during exercise. Substrate oxidation (respiratory exchange ratio and lipid and carbohydrates oxidation rates), metabolic (glycerol, free fatty acids (FFA), and glucose), and hormonal (insulin, adrenaline, and noradrenaline) responses were determined in 21 women: 10 regularly menstruating women (OC-) and 11 women using OCs (OC+: low-dose monophasic pill; ethinyl estradiol ≤ 30 µg) during 45 min at 65% of maximal oxygen consumption in fasting and postprandial states. At rest, OC+ presented higher low-density lipoprotein cholesterol, total cholesterol, and triglyceride plasma concentrations as compared with OC-. OC status had no influence on substrate oxidation and metabolic and hormonal responses during exercise. In the fasting state, whatever the OC status, women exhibited greater reliance on fat than in postprandial condition. This occurred in the presence of lower plasma insulin concentrations and higher plasma FFA and glycerol levels. The results indicated that the use of low-dose monophasic combined with OCs did not modify fuel selection and metabolic and hormonal responses during exercise in women. The fasting condition, compared with the fed condition, decreased carbohydrate oxidation during exercise, leading to a greater lipid mobilization and utilization whatever the OC status. Thus, in women, the realization of an exercise in either the fed or fasting conditions had a greater impact on substrate oxidation than OC status.

  19. Effect of Oxidation on the Bonding Formation of Plasma-Sprayed Stainless Steel Splats onto Stainless Steel Substrate

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Chang-Jiu; Yang, Guan-Jun; Li, Cheng-Xin

    2017-01-01

    Stainless steel splats were deposited on 304 stainless substrates with different thicknesses of oxide layer to examine the effect of substrate oxidation on splat morphology and splat-substrate interface bonding by inert low-pressure plasma spraying. The cross sections of splats showing the splat-substrate interface were prepared by focus ion beam (FIB). The splat morphology and splat-substrate interface bonding state were characterized by scanning electron microscopy. The interface bonding was also examined by an electrolytic etching process. Results showed that with increasing oxide layer thickness and surface roughness, the morphology of splat changed from disk shape to splashed finger-like shape. The examination into the interface bonding by using FIB-prepared cross-sectional samples revealed that the splat interface bonding depended on the oxide roughness and composition. The interface bonding with a ratio of 44% was formed at the inner part of a splat on the pre-oxidized substrate when iron oxide presented on the surface, and the roughness of oxide scale was <5 nm. When the pre-oxidizing temperature exceeded 800 °C, the surface roughness increased to 14 nm and chromium oxide covered the pre-oxidized surface, resulting in no effective bonding forming at the whole interface. Thus, surface roughness and oxide composition have a significant influence on the splat interface bonding formation.

  20. Substrate inhibition: Oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline medium

    NASA Astrophysics Data System (ADS)

    Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.

    2014-05-01

    In the oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline media, substrate inhibition was observed with both substrates, i.e., a decrease in the rate of the reaction was observed with an increase in the concentration of substrate. The substrate inhibition was attributed to the formation of stable complex between the substrate and periodate. The reactions were found to be first order in case of periodate and a positive fractional order with hydroxide ions. Arrhenius parameters were calculated for the oxidation of sorbitol and mannitol by potassium periodate in alkali media.

  1. In-situ Reflectance Monitoring of GaSb Substrate Oxide Desorption

    SciTech Connect

    C.J. Vineis; C.A. Wang; K.F. Jensen

    2000-08-21

    The use of specular reflectance to monitor GaSb substrate oxide desorption in-situ is reported. Substrates were loaded into the organometallic vapor phase epitaxy reactor either as-received (epi-ready) or after receiving a solvent degrease, acid etch and rinse. A variety of surface preparations and anneal conditions were investigated. HCL was used as the etchant, and in certain cases was followed by an additional etch in Br{sub 2}-HCl-HNO{sub 3}-CH{sub 3}COOH for comparison. Rinse comparisons included 2-propanol, methanol, and deionized water. Substrates were heated to either 525, 550, or 575 C. Features observed in the in-situ reflectance associated with the oxide desorption process were interpreted based on the starting oxide chemistry and thickness. Based on in-situ reflectance and ex-situ atomic force microscopy data, a recommendation on a reproducible GaSb substrate preparation technique suitable for high-quality epitaxial growth is suggested.

  2. Structure, stability and electrochromic properties of polyaniline film covalently bonded to indium tin oxide substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzhi; Ju, Wenxing; Wu, Xinming; Wang, Yan; Wang, Qiguan; Zhou, Hongwei; Wang, Sumin; Hu, Chenglong

    2016-03-01

    Indium tin oxide (ITO) substrate was modified with 4-aminobenzylphosphonic acid (ABPA), and then the polyaniline (PANI) film covalently bonded to ITO substrate was prepared by the chemical oxidation polymerization. X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR) spectroscopy, and atomic force microscopy (AFM) measurements demonstrated that chemical binding was formed between PANI and ABPA-modified ITO surface, and the maximum thickness of PANI layer is about 30 nm. The adhesive strength of PANI film on ITO substrate was tested by sonication. It was found that the film formed on the modified ITO exhibited a much better stability than that on bare one. Cyclic voltammetry (CV) and UV-vis spectroscopy measurements indicated that the oxidative potentials of PANI film on ABPA-modified ITO substrate were decreased and the film exhibited high electrochemical activities. Moreover, the optical contrast increased from 0.58 for PANI film (without ultrasound) to 1.06 for PANI film (after ultrasound for 60 min), which had an over 83% enhancement. The coloration time was 20.8 s, while the bleaching time was 19.5 s. The increase of electrochromic switching time was due to the lower ion diffusion coefficient of the large cation of (C4H9)4N+ under the positive and negative potentials as comparison with the small Li+ ion.

  3. Appetite and energy balancing.

    PubMed

    Rogers, Peter J; Brunstrom, Jeffrey M

    2016-10-01

    The idea that food intake is motivated by (or in anticipation of) 'hunger' arising from energy depletion is apparent in both public and scientific discourse on eating behaviour. In contrast, our thesis is that eating is largely unrelated to short-term energy depletion. Energy requirements meal-to-meal are trivial compared with total body energy stores, and energy supply to the body's tissues is maintained if a meal or even several meals are missed. Complex and exquisite metabolic machinery ensures that this happens, but metabolic regulation is only loosely coupled with the control of energy intake. Instead, food intake needs to be controlled because the limited capacity of the gut means that processing a meal presents a significant physiological challenge and potentially hinders other activities. We illustrate the relationship between energy (food) intake and energy expenditure with a simple analogy in which: (1) water in a bathtub represents body energy content, (2) water in a saucepan represents food in the gut, and (3) the bathtub is filled via the saucepan. Furthermore, (4) it takes hours to process and pass the full energy (macronutrient) content of the saucepan to the bathtub, and (5) both the saucepan and bathtub resist filling, representing negative feedbacks on appetite (desire to eat). This model is consistent with the observations that appetite is reduced acutely by energy intake (a meal added to the limited capacity of the saucepan/gut), but not increased by an acute increase in energy expenditure (energy removed from the large store of energy in the bathtub/body). The existence of relatively very weak but chronic negative feedback on appetite proportional to body fatness is supported by observations on the dynamics of energy intake and weight gain in rat dietary obesity. (We use the term 'appetite' here because 'hunger' implies energy depletion.) In our model, appetite is motivated by the accessibility of food and the anticipated and experienced

  4. Thermic effect and substrate oxidation in response to intravenous nutrition in cancer patients who lose weight.

    PubMed Central

    Lindmark, L; Bennegård, K; Edén, E; Svaninger, G; Ternell, M; Lundholm, K

    1986-01-01

    This study examined oxidative metabolism and thermogenesis in the acute response to controlled intravenous nutrition in seven cancer patients who lost weight. Six weight-losing and malnourished patients without cancer served as controls. Indirect calorimetry was used and measurements of arterial concentrations of various substrates, metabolic end products, and insulin were performed. Resting energy expenditure (REE) was measured after an overnight fast. The resting energy need was calculated for each patient according to REE. The nutrition program consisted of glucose and lipids (Intralipid KabiVitrum AB, Stockholm, Sweden) each as 50% of nonprotein calories and amino acids (6.9 mg N/kcal). These substrates were infused simultaneously at rates equivalent to one, two, and three times REE, over periods of 6.5 hours on 3 consecutive days after a 12-hour fast. Arterial substrate levels and energy expenditure were measured between 6 and 6.5 hours after the start of the infusion. The cancer patients had well-recognized metabolic changes in the fasted state, such as elevated plasma levels of glycerol, triglycerides, free fatty acids, and lactate, and higher energy expenditure than predicted. The cancer patients responded to strictly defined substrate challenge in a similar way as the malnourished patients without cancer. Whole body oxidative capacity and the proportion of infused glucose and lipids that were oxidized at different levels of infusion rates were not decreased in cancer patients compared with control patients. Similar arterial substrate concentrations among the groups during infusions argues for a maintained plasma clearance of the substrate in the cancer patients. This study supports the suggestion that cachectic cancer patients can generate and conserve energy normally in response to intravenous nutrition. This refers to cancer patients with a history of weight loss up to 15% of their normal body weight. Therefore, weight loss due to altered tumor

  5. Control of photophysical and photochemistry of colloidal quantum dots via metal and metal-oxide coated substrates

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.; Nejat, A.

    2013-03-01

    We studied how deposition of a very thin layer of gold or chromium oxide on glass substrates can modify the way irradiation changes the fluorescence of CdSe/ZnS quantum dots. We found that the gold layer tends to shield the quantum dots from the substrate, preventing photoinduced fluorescence enhancement caused by the Coulomb blockage. In this case the emission of the quantum dots did not show also any broadening but rather a slight red shift, independent of the irradiation time. In the case of the chromium-oxide coated substrates we observed significant broadening and blue shift, indicating such oxide could enhance photo-oxidation of colloidal quantum dots significantly.

  6. Neuropharmacology of Human Appetite Expression

    ERIC Educational Resources Information Center

    Halford, Jason C. G.; Harrold, Joanne A.

    2008-01-01

    The regulation of appetite relies on the integration of numerous episodic (meal) and tonic (energy storage) generated signals in energy regulatory centres within the central nervous system (CNS). These centers provide the pharmacological potential to modify human appetite (hunger and satiety) to increase or decrease caloric intake, or to normalize…

  7. Neuropharmacology of Human Appetite Expression

    ERIC Educational Resources Information Center

    Halford, Jason C. G.; Harrold, Joanne A.

    2008-01-01

    The regulation of appetite relies on the integration of numerous episodic (meal) and tonic (energy storage) generated signals in energy regulatory centres within the central nervous system (CNS). These centers provide the pharmacological potential to modify human appetite (hunger and satiety) to increase or decrease caloric intake, or to normalize…

  8. Developmental programing of thirst and sodium appetite.

    PubMed

    Mecawi, Andre S; Macchione, Ana F; Nuñez, Paula; Perillan, Carmen; Reis, Luis C; Vivas, Laura; Arguelles, Juan

    2015-04-01

    Thirst and sodium appetite are the sensations responsible for the motivated behaviors of water and salt intake, respectively, and both are essential responses for the maintenance of hydromineral homeostasis in animals. These sensations and their related behaviors develop very early in the postnatal period in animals. Many studies have demonstrated several pre- and postnatal stimuli that are responsible for the developmental programing of thirst and sodium appetite and, consequently, the pattern of water and salt intake in adulthood in need-free or need-induced conditions. The literature systematically reports the involvement of dietary changes, hydromineral and cardiovascular challenges, renin-angiotensin system and steroid hormone disturbances, and lifestyle in these developmental factors. Therefore, this review will address how pre- and postnatal challenges can program lifelong thirst and sodium appetite in animals and humans, as well as which neuroendocrine substrates are involved. In addition, the possible epigenetic molecular mechanisms responsible for the developmental programing of drinking behavior, the clinical implications of hydromineral disturbances during pre- and postnatal periods, and the developmental origins of adult hydromineral behavior will be discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. EXAMINATION OF THE OXIDATION PROTECTION OF ZINC COATINGS FORMED ON COPPER ALLOYS AND STEEL SUBSTRATES

    SciTech Connect

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.

    2010-01-21

    The exposure of metallic components at aggressive high temperature environments, usually limit their usage at similar application because they suffer from severe oxidation attack. Copper alloys are used in a wide range of high-quality indoor and outdoor applications, statue parts, art hardware, high strength and high thermal conductivity applications. On the other hand, steel is commonly used as mechanical part of industrial set outs or in the construction sector due to its high mechanical properties. The aim of the present work is the examination of the oxidation resistance of pack cementation zinc coatings deposited on copper, leaded brass and steel substrates at elevated temperature conditions. Furthermore, an effort made to make a long-term evaluation of the coated samples durability. The oxidation results showed that bare substrates appear to have undergone severe damage comparing with the coated ones. Furthermore, the mass gain of the uncoated samples was higher than this of the zinc covered ones. Particularly zinc coated brass was found to be more resistant to oxidation conditions in which it was exposed as it has the lower mass gain as compared to the bare substrates and zinc coated copper. Zinc coated steel was also proved to be more resistive than the uncoated steel.

  10. Highly flexible, hybrid-structured indium tin oxides for transparent electrodes on polymer substrates

    SciTech Connect

    Triambulo, Ross E.; Kim, Jung-Hoon; Park, Jin-Woo; Na, Min-Young; Chang, Hye-Jung

    2013-06-17

    We developed highly flexible, hybrid-structured crystalline indium tin oxide (ITO) for use as transparent electrodes on polymer substrates by embedding Ag nanoparticles (AgNPs) into the substrate. The hybrid ITO consists of domains in one orientation grown on the AgNPs and a matrix of the other orientation. The domains are stronger than the matrix and function as barriers to crack propagation. As a result, both the critical bending radius (r{sub c}) (under which the resistivity change ({Delta}{rho}) is less than a given value) and the change in {Delta}{rho} with decreasing r significantly decreased in the hybrid ITO compared with homogenous ITO.

  11. Anti-reflection coating of Cerium oxide on a plastic substrate

    NASA Astrophysics Data System (ADS)

    Kang, Hyunil; Choi, Wonseok; Kim, Doyoung

    2015-01-01

    Cerium oxide (CeO2) films are suitable for use as anti-reflective coatings for display panels, touch screens, and silicon solar cells. The CeO2 films grown by using a reactive radio frequency sputtering method under various deposition conditions was investigated. The CeO2 films were deposited at room temperature because the plastic substrate was too weak for use at higher temperatures. The films exhibited a strong (111) preferred orientation with properties varying as a function of the process conditions. We present the properties of CeO2 anti-reflective coatings on plastic substrates.

  12. Substrate control of anisotropic resistivity in heteroepitaxial nanostructured arrays of cryptomelane manganese oxide on strontium titanate.

    PubMed

    Espinal, Anais E; Yan, Yonggao; Zhang, Lichun; Espinal, Laura; Morey, Aimee; Wells, Barrett O; Aindow, Mark; Suib, Steven L

    2014-01-15

    Resistivity and resistance measurements have been carried out for thin films of cryptomelane-type manganese oxide (OMS-2) grown onto (001), (110), and (111)STO single crystals substrates via pulsed laser deposition. While the symmetries of the (001) and (111)STO substrate surfaces give deposits consisting of multiple nanofiber arrays with isotropic in-plane resistivities, only a single nanofiber array is formed on (110)STO giving highly anisotropic electrical properties with very low resistivity values measured parallel to the fibers and similar to the lowest value ever reported.

  13. X-ray Characterisation of Zinc Oxide (ZnO) Single Crystal Substrates

    SciTech Connect

    Dhanaraj, G.; Raghothamachar, B; Dudley, M

    2010-01-01

    Single crystal substrates of low defect density are paramount for fully realizing the numerous applications of zinc oxide (ZnO) wide bandgap semiconductors. While ZnO substrates are commercially available from various vendors, very little information is available on the structural properties of these substrates. Therefore, an extensive evaluation of available substrates would serve as a basis for the development of ZnO based devices and technologies. In this study, bulk ZnO single crystal substrates grown by different growth techniques have been characterised using synchrotron white beam X-ray topography and high resolution X-ray diffraction. The substrates exhibit a wide range of dislocation densities from as high as 10{sup 6} cm{sup -2} down to less than 1000 cm{sup -2} depending on the growth technique employed. The authors evaluation reveals that ZnO crystals grown by the hydrothermal technique possess the best structural quality with dislocation densities of 800-1000 cm{sup -2} and rocking curves with a full width half maximum of less than 12 arc seconds.

  14. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Tak; Choi, Mun-Ki; Sim, Yumin; Lim, Jung-Taek; Kim, Gil-Sung; Seong, Maeng-Je; Hyung, Jung-Hwan; Kim, Keun Soo; Umar, Ahmad; Lee, Sang-Kwon

    2016-09-01

    Control of living cells on biocompatible materials or on modified substrates is important for the development of bio-applications, including biosensors and implant biomaterials. The topography and hydrophobicity of substrates highly affect cell adhesion, growth, and cell growth kinetics, which is of great importance in bio-applications. Herein, we investigate the adhesion, growth, and morphology of cultured breast cancer cells on a silicon substrate, on which graphene oxides (GO) was partially formed. By minimizing the size and amount of the GO-containing solution and the further annealing process, GO-coated Si samples were prepared which partially covered the Si substrates. The coverage of GO on Si samples decreases upon annealing. The behaviors of cells cultured on two samples have been observed, i.e. partially GO-coated Si (P-GO) and annealed partially GO-coated Si (Annealed p-GO), with a different coverage of GO. Indeed, the spreading area covered by the cells and the number of cells for a given culture period in the incubator were highly dependent on the hydrophobicity and the presence of oxygenated groups on GO and Si substrates, suggesting hydrophobicity-driven cell growth. Thus, the presented method can be used to control the cell growth via an appropriate surface modification.

  15. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate

    PubMed Central

    Jeong, Jin-Tak; Choi, Mun-Ki; Sim, Yumin; Lim, Jung-Taek; Kim, Gil-Sung; Seong, Maeng-Je; Hyung, Jung-Hwan; Kim, Keun Soo; Umar, Ahmad; Lee, Sang-Kwon

    2016-01-01

    Control of living cells on biocompatible materials or on modified substrates is important for the development of bio-applications, including biosensors and implant biomaterials. The topography and hydrophobicity of substrates highly affect cell adhesion, growth, and cell growth kinetics, which is of great importance in bio-applications. Herein, we investigate the adhesion, growth, and morphology of cultured breast cancer cells on a silicon substrate, on which graphene oxides (GO) was partially formed. By minimizing the size and amount of the GO-containing solution and the further annealing process, GO-coated Si samples were prepared which partially covered the Si substrates. The coverage of GO on Si samples decreases upon annealing. The behaviors of cells cultured on two samples have been observed, i.e. partially GO-coated Si (P-GO) and annealed partially GO-coated Si (Annealed p-GO), with a different coverage of GO. Indeed, the spreading area covered by the cells and the number of cells for a given culture period in the incubator were highly dependent on the hydrophobicity and the presence of oxygenated groups on GO and Si substrates, suggesting hydrophobicity-driven cell growth. Thus, the presented method can be used to control the cell growth via an appropriate surface modification. PMID:27652886

  16. Investigation of thin oxide layer removal from Si substrates using an SiO2 atomic layer etching approach: the importance of the reactivity of the substrate

    NASA Astrophysics Data System (ADS)

    Metzler, Dominik; Li, Chen; Lai, C. Steven; Hudson, Eric A.; Oehrlein, Gottlieb S.

    2017-06-01

    The evaluation of a plasma-based atomic layer etching (ALE) approach for native oxide surface removal from Si substrates is described. Objectives include removal of the native oxide while minimizing substrate damage, surface residues and substrate loss. Oxide thicknesses were measured using in situ ellipsometry and surface chemistry was analyzed by x-ray photoelectron spectroscopy. The cyclic ALE approach when used for removal of native oxide SiO2 from a Si substrate did not remove native oxide to the extent required. This is due to the high reactivity of the silicon substrate during the low-energy (<40 eV) ion bombardment phase of the cyclic ALE approach which leads to reoxidation of the silicon surface. A modified process, which used continuously biased Ar plasma with periodic CF4 injection, achieved significant oxygen removal from the Si surface, with some residual carbon and fluorine. A subsequent H2/Ar plasma exposure successfully removed residual carbon and fluorine while passivating the silicon surface. The combined treatment reduced oxygen and carbon levels to about half compared to as received silicon surfaces. The downside of this process sequence is a net loss of about 40 Å of Si. A generic insight of this work is the importance of the substrate and final surface chemistry in addition to precise etch control of the target film for ALE processes. By a fluorocarbon-based ALE technique, thin SiO2 layer removal at the Ångstrom level can be precisely performed from an inert substrate, e.g. a thick SiO2 layer. However, from a reactive substrate, like Si, complete removal of the thin SiO2 layer is prevented by the high reactivity of low energy Ar+ ion bombarded Si. The Si surfaces are reoxidized during the ALE ion bombardment etch step, even for very clean and ultra-low O2 process conditions.

  17. Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping

    NASA Astrophysics Data System (ADS)

    Glynn, Colm; Aureau, Damien; Collins, Gillian; O'Hanlon, Sally; Etcheberry, Arnaud; O'Dwyer, Colm

    2015-11-01

    Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings. Here, we report a facile solution processed technique for the formation of a transparent thin film through an inter-diffusion process involving substrate dopant species at a range of low annealing temperatures compatible with processing conditions required by many state-of-the-art devices. The inter-diffusion process facilitates the movement of Si, Na and O species from the substrate into the as-deposited vanadium oxide thin film forming a composite fully transparent V0.0352O0.547Si0.4078Na0.01. Thin film X-ray diffraction and Raman scattering spectroscopy show the crystalline component of the structure to be α-NaVO3 within a glassy matrix. This optical coating exhibits high broadband transparency, exceeding 90-97% absolute transmission across the UV-to-NIR spectral range, while having low roughness and free of surface defects and pinholes. The production of transparent films for advanced optoelectronic devices, optical coatings, and low- or high-k oxides is important for planar or complex shaped optics or surfaces. It provides opportunities for doping metal oxides to ternary, quaternary or other mixed metal oxides on glass, encapsulants or other substrates that facilitate diffusional movement of dopant species.Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings

  18. No effect of acute, single dose oral administration of Momordica charantia Linn., on glycemia, energy expenditure and appetite: a pilot study in non-diabetic overweight men.

    PubMed

    Kasbia, Gursevak S; Arnason, Jon Thor; Imbeault, Pascal

    2009-10-29

    Momordica charantia Linn. Cucurbitaceae (MC), has been used to treat glycemic impairment in humans for centuries. The objective of this study was to determine the acute effect of MC on postprandial glucose levels, energy expenditure/fuel mixture and appetite in overweight men. Five healthy overweight men were supplemented on three randomized conditions where (1) no MC (placebo), (2) 50 mg/kg body weight (MC50) or (3) 100 mg/kg body weight of freeze dried MC were administered orally prior to a 75 g oral glucose tolerance test (OGTT). Plasma glucose and insulin levels were measured before and during the OGTT. Energy expenditure as well as carbohydrate and lipid oxidation rates were measured by indirect calorimetry. Visual analogue scales were used to rate appetite profile. Plasma glucose and insulin levels significantly increased during the OGTT (p < or =0.05) but no significant difference was observed between experimental conditions. Energy expenditure, carbohydrate and lipid oxidation rates as well as appetite profile did not differ between experimental conditions. These results suggest that from an acute standpoint, a freeze dried MC extraction in its present dose form does not affect plasma glucose/insulin levels, energy expenditure, substrate mixture and appetite scores following an oral glucose load in non-diabetic overweight men.

  19. Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping.

    PubMed

    Glynn, Colm; Aureau, Damien; Collins, Gillian; O'Hanlon, Sally; Etcheberry, Arnaud; O'Dwyer, Colm

    2015-12-21

    Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings. Here, we report a facile solution processed technique for the formation of a transparent thin film through an inter-diffusion process involving substrate dopant species at a range of low annealing temperatures compatible with processing conditions required by many state-of-the-art devices. The inter-diffusion process facilitates the movement of Si, Na and O species from the substrate into the as-deposited vanadium oxide thin film forming a composite fully transparent V0.0352O0.547Si0.4078Na0.01. Thin film X-ray diffraction and Raman scattering spectroscopy show the crystalline component of the structure to be α-NaVO3 within a glassy matrix. This optical coating exhibits high broadband transparency, exceeding 90-97% absolute transmission across the UV-to-NIR spectral range, while having low roughness and free of surface defects and pinholes. The production of transparent films for advanced optoelectronic devices, optical coatings, and low- or high-k oxides is important for planar or complex shaped optics or surfaces. It provides opportunities for doping metal oxides to ternary, quaternary or other mixed metal oxides on glass, encapsulants or other substrates that facilitate diffusional movement of dopant species.

  20. A Molecular Dissociation between Cued and Contextual Appetitive Learning

    ERIC Educational Resources Information Center

    Kheirbek, Mazen A.; Beeler, Jeff A.; Chi, Wanhao; Ishikawa, Yoshihiro; Zhuang, Xiaoxi

    2010-01-01

    In appetitive Pavlovian learning, animals learn to associate discrete cues or environmental contexts with rewarding outcomes, and these cues and/or contexts can potentiate an ongoing instrumental response for reward. Although anatomical substrates underlying cued and contextual learning have been proposed, it remains unknown whether specific…

  1. A Molecular Dissociation between Cued and Contextual Appetitive Learning

    ERIC Educational Resources Information Center

    Kheirbek, Mazen A.; Beeler, Jeff A.; Chi, Wanhao; Ishikawa, Yoshihiro; Zhuang, Xiaoxi

    2010-01-01

    In appetitive Pavlovian learning, animals learn to associate discrete cues or environmental contexts with rewarding outcomes, and these cues and/or contexts can potentiate an ongoing instrumental response for reward. Although anatomical substrates underlying cued and contextual learning have been proposed, it remains unknown whether specific…

  2. Local anodic oxidation on hydrogen-intercalated graphene layers: oxide composition analysis and role of the silicon carbide substrate.

    PubMed

    Colangelo, Francesco; Piazza, Vincenzo; Coletti, Camilla; Roddaro, Stefano; Beltram, Fabio; Pingue, Pasqualantonio

    2017-03-10

    We investigate nanoscale local anodic oxidation (LAO) on hydrogen-intercalated graphene grown by controlled sublimation of silicon carbide (SiC). Scanning probe microscopy was used as a lithographic and characterization tool in order to investigate the local properties of the nanofabricated structures. The anomalous thickness observed after the graphene oxidation process is linked to the impact of LAO on the substrate. Micro-Raman (μ-Raman) spectroscopy was employed to demonstrate the presence of two oxidation regimes depending on the applied bias. We show that partial and total etching of monolayer graphene can be achieved by tuning the bias voltage during LAO. Finally, a complete compositional characterization was achieved by scanning electron microscopy and energy dispersive spectroscopy.

  3. Local anodic oxidation on hydrogen-intercalated graphene layers: oxide composition analysis and role of the silicon carbide substrate

    NASA Astrophysics Data System (ADS)

    Colangelo, Francesco; Piazza, Vincenzo; Coletti, Camilla; Roddaro, Stefano; Beltram, Fabio; Pingue, Pasqualantonio

    2017-03-01

    We investigate nanoscale local anodic oxidation (LAO) on hydrogen-intercalated graphene grown by controlled sublimation of silicon carbide (SiC). Scanning probe microscopy was used as a lithographic and characterization tool in order to investigate the local properties of the nanofabricated structures. The anomalous thickness observed after the graphene oxidation process is linked to the impact of LAO on the substrate. Micro-Raman (μ-Raman) spectroscopy was employed to demonstrate the presence of two oxidation regimes depending on the applied bias. We show that partial and total etching of monolayer graphene can be achieved by tuning the bias voltage during LAO. Finally, a complete compositional characterization was achieved by scanning electron microscopy and energy dispersive spectroscopy.

  4. Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenhua; Chang, Kee-Chul; Kubal, Joseph; Markovic, Nenad M.; Greeley, Jeffrey

    2017-06-01

    Design of cost-effective electrocatalysts with enhanced stability and activity is of paramount importance for the next generation of energy conversion systems, including fuel cells and electrolysers. However, electrocatalytic materials generally improve one of these properties at the expense of the other. Here, using density functional theory calculations and electrochemical surface science measurements, we explore atomic-level features of ultrathin (hydroxy)oxide films on transition metal substrates and demonstrate that these films exhibit both excellent stability and activity for electrocatalytic applications. The films adopt structures with stabilities that significantly exceed bulk Pourbaix limits, including stoichiometries not found in bulk and properties that are tunable by controlling voltage, film composition, and substrate identity. Using nickel (hydroxy)oxide/Pt(111) as an example, we further show how the films enhance activity for hydrogen evolution through a bifunctional effect. The results suggest design principles for this class of electrocatalysts with simultaneously enhanced stability and activity for energy conversion.

  5. Electrochromic properties of vanadium oxide thin films prepared by PSPT: Effect of substrate temperature

    NASA Astrophysics Data System (ADS)

    Patil, C. E.; Jadhav, P. R.; Tarwal, N. L.; Deshmukh, H. P.; Karanjakar, M. M.; Wali, A. A.; Patil, P. S.

    2013-06-01

    Electrochromic vanadium oxide (V2O5) thin films were deposited onto glass and fluorine doped tin oxide (FTO) coated glass substrates from methanolic vanadium chloride solution by pulsed spray pyrolysis technique (PSPT). The films were synthesized at different substrate temperatures ranging from 350°C-450°C with a temperature step of 50°C. The structural, morphological, optical and electrochromic properties of the synthesized films were investigated. The films were polycrystalline with tetragonal crystal structure. Scanning electron microscopy reveals compact morphology at high temperature. All films exhibited cathodic electrochromism in lithium containing electrolyte (0.5 M LiClO4 + Propylene Carbonate). Maximum coloration efficiency (CE) 15.16 cm2C-1, was observed for the films deposited at 350°C.

  6. Preparation of hydroxyapatite-containing titania coating on titanium substrate by micro-arc oxidation

    SciTech Connect

    Ni Jiahua; Shi Yulong Yan Fengying; Chen Jianzhi; Wang Lei

    2008-01-08

    Hydroxyapatite-containing titania coatings on titanium substrates were formed by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH{sub 3}COO){sub 2}Ca.H{sub 2}O) and sodium phosphate monobasic dihydrate (NaH{sub 2}PO{sub 4}.2H{sub 2}O) using a pulse power supply. Scanning electron microscopy (SEM) with Energy dispersive X-ray spectrometer (EDX) and X-ray diffraction (XRD) were employed to characterize the microstructure, elemental composition and phase components of the coatings. The coatings were rough and porous, without apparent interface to the titanium substrates. All the oxidized coatings contained Ca and P as well as Ti and O, and the porous coatings were made up of anatase, rutile and hydroxyapatite. Such MAO films are expected to have significant applications as artificial bone joints and dental implants.

  7. Dye-sensitized solar cells based on different nano-oxides on plastic PET substrate

    NASA Astrophysics Data System (ADS)

    Mikula, Milan; Gemeiner, Pavol; Beková, Zuzana; Dvonka, Vladimír; Búc, Dalibor

    2015-01-01

    Polyethylene-terephthalate (PET) foils and glass slides coated with thin conductive layers were used as substrates for TiO2 or ZnO based photoactive electrodes of dye-sensitized solar cells (DSSC) with organo-metallic Ru-dye, standard iodine electrolyte and Pt coated FTO/glass counterelectrode (CE). Different compositions of nanoparticle oxides in forms of alcohol pastes as well as the CE paste were applied onto the substrates by screen printing or by doctor blade techniques. Photocurrents and I-V loading characteristics were measured depending on the solar cell structure and preparation, including the oxide composition, electrode conductivity and the dye type. The influence of thin TiO2 blocking layer prepared by sol-gel technique is also discussed.

  8. F2-laser patterning of indium tin oxide (ITO) thin film on glass substrate

    NASA Astrophysics Data System (ADS)

    Xu, M. Y.; Li, J.; Lilge, L. D.; Herman, P. R.

    2006-10-01

    This paper reports the controlled micromachining of 100 nm thick indium tin oxide (ITO) thin films on glass substrates with a vacuum-ultraviolet 157 nm F2 laser. Partial to complete film removal was observed over a wide fluence window from 0.49 J/cm2 to an optimized single pulse fluence of 4.5 J/cm2 for complete film removal. Optical microscopy, atomic force microscopy, and energy dispersive X-ray analysis show little substrate or collateral damage by the laser pulse which conserved the stoichiometry, optical transparency and electrical conductivity of ITO coating adjacent to the trenches. At higher fluence, a parallel micron sized channel can be etched in the glass substrate. The high photon energy and top-hat beam homogenized optical system of the F2 laser opens new means for direct structuring of electrodes and microchannels in biological microfluidic systems or in optoelectronics.

  9. Unlocking the binding and reaction mechanism of hydroxyurea substrates as biological nitric oxide donors

    PubMed Central

    Vankayala, Sai Lakshmana; Hargis, Jacqueline C.; Woodcock, H. Lee

    2012-01-01

    Hydroxyurea is the only FDA approved treatment of sickle cell disease. It is believed the primary mechanism of action is associated with the pharmacological elevation of nitric oxide in the blood; however, the exact details of this are still unclear. In the current work, we investigate the atomic level details of this process using a combination of flexible-ligand / flexible-receptor virtual screening coupled with energetic analysis that decomposes interaction energies. Utilizing these methods we were able to elucidate the previously unknown substrate binding modes of a series of hydroxyurea analogs to hemoglobin and the concomitant structural changes of the enzyme. We identify a backbone carbonyl that forms a hydrogen bond with bound substrates. Our results are consistent with kinetic and EPR measurements of hydroxyurea-hemoglobin reactions and a full mechanism is proposed that offers new insights into possibly improving substrate binding and/or reactivity. PMID:22519847

  10. Electrodeposition of Sb2Se3 on indium-doped tin oxides substrate: Nucleation and growth

    NASA Astrophysics Data System (ADS)

    Shi, Xuezhao; zhang, Xin; Tian, Yuan; Shen, Chengmin; Wang, Chunming; Gao, Hong-Jun

    2012-01-01

    The mechanisms related to the initial stages of the nucleation and growth of antimony selenide (Sb2Se3) semiconductor compounds onto the indium-doped tin oxides (ITO) coated glass surface have been investigated using chronoamperometry (CA) technique. The fabrication was conducted from nitric acid bath containing both Sb3+ and SeO2 species at ambient conditions. No underpotential deposition (UPD) of antimony and selenium onto ITO substrate was observed in the investigated systems indicating a weak precursor-substrate interaction. Deposition of antimony and selenium onto ITO substrate occurred with large overvoltage through 3D nucleation and growth mechanism followed by diffusion limited growth. FE-SEM and XRD results show that orthorhombic phase Sb2Se3 particles with their size between 90 and 125 nm were obtained and the atomic ratio for antimony and selenium was 2:2.63 according to the EDX results.

  11. GDH-Dependent Glutamate Oxidation in the Brain Dictates Peripheral Energy Substrate Distribution.

    PubMed

    Karaca, Melis; Frigerio, Francesca; Migrenne, Stephanie; Martin-Levilain, Juliette; Skytt, Dorte M; Pajecka, Kamilla; Martin-del-Rio, Rafael; Gruetter, Rolf; Tamarit-Rodriguez, Jorge; Waagepetersen, Helle S; Magnan, Christophe; Maechler, Pierre

    2015-10-13

    Glucose, the main energy substrate used in the CNS, is continuously supplied by the periphery. Glutamate, the major excitatory neurotransmitter, is foreseen as a complementary energy contributor in the brain. In particular, astrocytes actively take up glutamate and may use it through oxidative glutamate dehydrogenase (GDH) activity. Here, we investigated the significance of glutamate as energy substrate for the brain. Upon glutamate exposure, astrocytes generated ATP in a GDH-dependent way. The observed lack of glutamate oxidation in brain-specific GDH null CnsGlud1(-/-) mice resulted in a central energy-deprivation state with increased ADP/ATP ratios and phospho-AMPK in the hypothalamus. This induced changes in the autonomous nervous system balance, with increased sympathetic activity promoting hepatic glucose production and mobilization of substrates reshaping peripheral energy stores. Our data reveal the importance of glutamate as necessary energy substrate for the brain and the role of central GDH in the regulation of whole-body energy homeostasis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Indium tin oxide-free tandem polymer solar cells on opaque substrates with top illumination.

    PubMed

    Gupta, Dhritiman; Wienk, Martijn M; Janssen, René A J

    2014-08-27

    Top-illuminated, indium tin oxide (ITO)-free, tandem polymer solar cells are fabricated on opaque substrates in an inverted device configuration. In the tandem cell, a wide band gap subcell, consisting of poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) blended with [70]PCBM is combined with a small band gap subcell consisting of a mixture of poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bisthiophene]-5,5'-diyl}] (PDPPTPT) and [60]PCBM. Compared to the more common bottom-illuminated inverted tandem polymer solar cells on transparent ITO substrates, the front and back cells must be reversed when using opaque substrates and a transparent and conductive top contact must be employed to enable top illumination. A high conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer in combination with Ag lines surrounding the active area as current collection electrode is used for this purpose. The tandem polymer solar cell on an opaque glass/metal substrate yields a power conversion efficiency of 6.1% when the thicknesses of the photoactive layers are balanced for optimum performance. This is similar to the equivalent inverted tandem device fabricated on a transparent glass/ITO substrate.

  13. Substrate Oxidation by Indoleamine 2,3-Dioxygenase: EVIDENCE FOR A COMMON REACTION MECHANISM.

    PubMed

    Booth, Elizabeth S; Basran, Jaswir; Lee, Michael; Handa, Sandeep; Raven, Emma L

    2015-12-25

    The kynurenine pathway is the major route of L-tryptophan (L-Trp) catabolism in biology, leading ultimately to the formation of NAD(+). The initial and rate-limiting step of the kynurenine pathway involves oxidation of L-Trp to N-formylkynurenine. This is an O2-dependent process and catalyzed by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. More than 60 years after these dioxygenase enzymes were first isolated (Kotake, Y., and Masayama, I. (1936) Z. Physiol. Chem. 243, 237-244), the mechanism of the reaction is not established. We examined the mechanism of substrate oxidation for a series of substituted tryptophan analogues by indoleamine 2,3-dioxygenase. We observed formation of a transient intermediate, assigned as a Compound II (ferryl) species, during oxidation of L-Trp, 1-methyl-L-Trp, and a number of other substrate analogues. The data are consistent with a common reaction mechanism for indoleamine 2,3-dioxygenase-catalyzed oxidation of tryptophan and other tryptophan analogues.

  14. Extracting mechanical properties of copper coatings on oxidized silicon substrates by nanoindentation

    NASA Astrophysics Data System (ADS)

    Moharrami, N.; Oila, A.; Bull, S. J.

    2014-08-01

    The thickness of the copper coatings that are used for the manufacture of conducting tracks in microelectronic devices are being aggressively scaled down and there is a need to monitor the mechanical response of metallization at a scale comparable to the material microstructure. When using indentation tests to assess the properties of thin films, the plastic zone dimensions are of a similar scale to the grain size. For the purposes of designs based on continuum mechanics approaches it is usually required that the grain size is much smaller than the deforming volume, which is not always observed in practice. Considerable differences between predicted and observed performance can be seen depending on the material tested and its grain size; the extent of oxidation of the copper after deposition is critical, as is that of its underlying silicon substrate. Whereas it is possible to make good measurements of metallization properties on stiff substrates such as silicon there are serious issues with the reliability of Young's modulus and hardness data from coatings on device quality wafers which may have been oxidized prior to use. The effects of grain size, shape and orientation on the mechanical response of metallic thin films used for semiconductor metallization on oxidized silicon are presented in this paper. The appropriate conditions for the successful use of continuum mechanics are discussed and the importance of considering the consequences of crystallographic anisotropy and oxidation on the selection of suitable design data is presented with regards to copper coatings.

  15. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates

    PubMed Central

    2010-01-01

    Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO) substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20–80 nm in diameter, up to 6 μm in length, density <40 nm apart) at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells. PMID:20676196

  16. Use of aluminum oxide as a permeation barrier for producing thin films on aluminum substrates

    SciTech Connect

    Provo, James L.

    2016-07-15

    Aluminum has desirable characteristics of good thermal properties, good electrical characteristics, good optical properties, and the characteristic of being nonmagnetic and having a low atomic weight (26.98 g atoms), but because of its low melting point (660 °C) and ability as a reactive metal to alloy with most common metals in use, it has been ignored as a substrate material for use in processing thin films. The author developed a simple solution to this problem, by putting a permeation barrier of alumina (Al{sub 2}O{sub 3}) onto the surface of pure Al substrates by using a standard chemical oxidation process of the surface (i.e., anodization), before additional film deposition of reactive metals at temperatures up to 500 °C for 1-h, without the formation of alloys or intermetallic compounds to affect the good properties of Al substrates. The chromic acid anodization process used (MIL-A-8625) produced a film barrier of ∼(500–1000) nm of alumina. The fact that refractory Al{sub 2}O{sub 3} can inhibit the reaction of metals with Al at temperatures below 500 °C suggests that Al is a satisfactory substrate if properly oxidized prior to film deposition. To prove this concept, thin film samples of Cr, Mo, Er, Sc, Ti, and Zr were prepared on anodized Al substrates and studied by x-ray diffraction, Rutherford ion back scattering, and Auger/argon sputter surface profile analysis to determine any film substrate interactions. In addition, a major purpose of our study was to determine if ErD{sub 2} thin films could be produced on Al substrates with fully hydrided Er films. Thus, a thin film of ErD{sub 2} on an anodized Al substrate was prepared and studied, with and without the alumina permeation barrier. Films for study were prepared on 1.27 cm diameter Al substrates with ∼500 nm of the metals studied after anodization. Substrates were weighed, cleaned, and vacuum fired at 500 °C prior to use. The Al substrates were deposited using standard electron

  17. The use of ozone as an oxidizing agent to evaluate antioxidant activities of natural substrates.

    PubMed

    He, Q C; Krone, K; Scherl, D; Kotler, M; Tavakkol, A

    2004-01-01

    Ozone, the main component of photochemical smog and air pollution, can damage the skin by oxidizing stratum corneum enzymes, lipids and structural proteins. We have developed a rapid screening assay to determine free radical scavenging capacity of various active ingredients that are frequently used in personal care products. Several known antioxidants including vitamin C, vitamin E analog Trolox, walnut seed extract, lipoic acid and ergothioneine inner salt were assayed for their ability to neutralize ozone-induced oxidation of beta-phycoerythrin, a fluorescent reporter protein derived from algae. The free radical scavenging capacities of these antioxidants were quantified and compared. The results demonstrate that this assay is a valuable primary screening tool for identifying antioxidant activity of natural or synthetic substrates that can be used in personal care products to protect the uppermost layer of our skin from oxidizing damage induced by O3.

  18. Prevention of electron field emission from molybdenum substrates for photocathodes by the native oxide layer

    NASA Astrophysics Data System (ADS)

    Lagotzky, Stefan; Barday, Roman; Jankowiak, Andreas; Kamps, Thorsten; Klimm, Carola; Knobloch, Jens; Müller, Günter; Senkovskiy, Boris; Siewert, Frank

    2015-05-01

    Comprehensive investigations of the electron field emission (FE) properties of annealed single crystal and polycrystalline molybdenum plugs, which are used as substrates for actual alkali-based photocathodes were performed with a FE scanning microscope. Well-polished and dry-ice cleaned Mo samples with native oxide did not show parasitic FE up to a field level of 50 MV/m required for photoinjector cavities. In situ heat treatments (HT) above 400 °C, which are usual before photocathode deposition, activated field emission at lower field strength. Oxygen loading into the Mo surface, however, partially weakened these emitters. X-ray photoelectron spectroscopy of comparable Mo samples showed the dissolution of the native oxide during such heat treatments. These results reveal the suppression of field emission by native Mo oxides. Possible improvements for the photocathode preparation will be discussed.

  19. Metal Catalyst for Low-Temperature Growth of Controlled Zinc Oxide Nanowires on Arbitrary Substrates

    PubMed Central

    Kim, Baek Hyun; Kwon, Jae W.

    2014-01-01

    Zinc oxide nanowires generated by hydrothermal method present superior physical and chemical characteristics. Quality control of the growth has been very challenging and controlled growth is only achievable under very limited conditions using homogeneous seed layers with high temperature processes. Here we show the controlled ZnO nanowire growth on various organic and inorganic materials without the requirement of a homogeneous seed layer and a high temperature process. We also report the discovery of an important role of the electronegativity in the nanowire growth on arbitrary substrates. Using heterogeneous metal oxide interlayers with low-temperature hydrothermal methods, we demonstrate well-controlled ZnO nanowire arrays and single nanowires on flat or curved surfaces. A metal catalyst and heterogeneous metal oxide interlayers are found to determine lattice-match with ZnO and to largely influence the controlled alignment. These findings will contribute to the development of novel nanodevices using controlled nanowires. PMID:24625584

  20. Metal catalyst for low-temperature growth of controlled zinc oxide nanowires on arbitrary substrates.

    PubMed

    Kim, Baek Hyun; Kwon, Jae W

    2014-03-14

    Zinc oxide nanowires generated by hydrothermal method present superior physical and chemical characteristics. Quality control of the growth has been very challenging and controlled growth is only achievable under very limited conditions using homogeneous seed layers with high temperature processes. Here we show the controlled ZnO nanowire growth on various organic and inorganic materials without the requirement of a homogeneous seed layer and a high temperature process. We also report the discovery of an important role of the electronegativity in the nanowire growth on arbitrary substrates. Using heterogeneous metal oxide interlayers with low-temperature hydrothermal methods, we demonstrate well-controlled ZnO nanowire arrays and single nanowires on flat or curved surfaces. A metal catalyst and heterogeneous metal oxide interlayers are found to determine lattice-match with ZnO and to largely influence the controlled alignment. These findings will contribute to the development of novel nanodevices using controlled nanowires.

  1. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, Vinod K.

    1990-01-01

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  2. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, V.K.

    1990-08-21

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  3. Enriched Iron(III)-Reducing Bacterial Communities are Shaped by Carbon Substrate and Iron Oxide Mineralogy.

    PubMed

    Lentini, Christopher J; Wankel, Scott D; Hansel, Colleen M

    2012-01-01

    Iron (Fe) oxides exist in a spectrum of structures in the environment, with ferrihydrite widely considered the most bioavailable phase. Yet, ferrihydrite is unstable and rapidly transforms to more crystalline Fe(III) oxides (e.g., goethite, hematite), which are poorly reduced by model dissimilatory Fe(III)-reducing microorganisms. This begs the question, what processes and microbial groups are responsible for reduction of crystalline Fe(III) oxides within sedimentary environments? Further, how do changes in Fe mineralogy shape oxide-hosted microbial populations? To address these questions, we conducted a large-scale cultivation effort using various Fe(III) oxides (ferrihydrite, goethite, hematite) and carbon substrates (glucose, lactate, acetate) along a dilution gradient to enrich for microbial populations capable of reducing Fe oxides spanning a wide range of crystallinities and reduction potentials. While carbon source was the most important variable shaping community composition within Fe(III)-reducing enrichments, both Fe oxide type and sediment dilution also had a substantial influence. For instance, with acetate as the carbon source, only ferrihydrite enrichments displayed a significant amount of Fe(III) reduction and the well-known dissimilatory metal reducer Geobacter sp. was the dominant organism enriched. In contrast, when glucose and lactate were provided, all three Fe oxides were reduced and reduction coincided with the presence of fermentative (e.g., Enterobacter spp.) and sulfate-reducing bacteria (e.g., Desulfovibrio spp.). Thus, changes in Fe oxide structure and resource availability may shift Fe(III)-reducing communities between dominantly metal-respiring to fermenting and/or sulfate-reducing organisms which are capable of reducing more recalcitrant Fe phases. These findings highlight the need for further targeted investigations into the composition and activity of speciation-directed metal-reducing populations within natural environments.

  4. Enriched Iron(III)-Reducing Bacterial Communities are Shaped by Carbon Substrate and Iron Oxide Mineralogy

    PubMed Central

    Lentini, Christopher J.; Wankel, Scott D.; Hansel, Colleen M.

    2012-01-01

    Iron (Fe) oxides exist in a spectrum of structures in the environment, with ferrihydrite widely considered the most bioavailable phase. Yet, ferrihydrite is unstable and rapidly transforms to more crystalline Fe(III) oxides (e.g., goethite, hematite), which are poorly reduced by model dissimilatory Fe(III)-reducing microorganisms. This begs the question, what processes and microbial groups are responsible for reduction of crystalline Fe(III) oxides within sedimentary environments? Further, how do changes in Fe mineralogy shape oxide-hosted microbial populations? To address these questions, we conducted a large-scale cultivation effort using various Fe(III) oxides (ferrihydrite, goethite, hematite) and carbon substrates (glucose, lactate, acetate) along a dilution gradient to enrich for microbial populations capable of reducing Fe oxides spanning a wide range of crystallinities and reduction potentials. While carbon source was the most important variable shaping community composition within Fe(III)-reducing enrichments, both Fe oxide type and sediment dilution also had a substantial influence. For instance, with acetate as the carbon source, only ferrihydrite enrichments displayed a significant amount of Fe(III) reduction and the well-known dissimilatory metal reducer Geobacter sp. was the dominant organism enriched. In contrast, when glucose and lactate were provided, all three Fe oxides were reduced and reduction coincided with the presence of fermentative (e.g., Enterobacter spp.) and sulfate-reducing bacteria (e.g., Desulfovibrio spp.). Thus, changes in Fe oxide structure and resource availability may shift Fe(III)-reducing communities between dominantly metal-respiring to fermenting and/or sulfate-reducing organisms which are capable of reducing more recalcitrant Fe phases. These findings highlight the need for further targeted investigations into the composition and activity of speciation-directed metal-reducing populations within natural environments. PMID

  5. Is My Child's Appetite Normal?

    MedlinePlus

    ... HEALTH 17 Nutrition Newsletters for Parents of Young Children, USDA, Food and Nutrition Service Is My Child’s Appetite Normal? ... HEALTH 17 Nutrition Newsletters for Parents of Young Children, USDA, Food and Nutrition Service

  6. Characterization of Thermal Oxides on 4H-SiC Epitaxial Substrates Using Fourier-Transform Infrared Spectroscopy.

    PubMed

    Seki, Hirofumi; Yoshikawa, Masanobu; Kobayashi, Takuma; Kimoto, Tsunenobu; Ozaki, Yukihiro

    2016-07-12

    Fourier transform infrared (FT-IR) spectra were measured for thermal oxides with different electrical properties grown on 4H-SiC substrates. The peak frequency of the transverse optical (TO) phonon mode was blue-shifted by 5 cm(-1) as the oxide-layer thickness decreased to 3 nm. The blue shift of the TO mode indicates interfacial compressive stress in the oxide. Comparison of data for the oxide on a SiC substrate with that for similar oxides on a Si substrate implies that the peak shift of the TO mode at the SiO2/SiC interface is larger than that of SiO2/Si, which suggests that the interfacial stress for the oxide on the SiC substrate is larger than that on the Si substrate. For the SiO2/SiC interfacial region (<3 nm oxide thickness), despite the fact that the blue shift of the TO modes becomes larger while approaching the oxide/SiC interface, the peak frequency of the TO modes red-shifts at the oxide/SiC interface. The peak-frequency shift of the TO mode for the sample without post-oxidation annealing was larger than that for the samples post-annealed in a nitric oxide atmosphere. The channel mobilities are correlated with the degree of shift of the TO mode when the oxide thickness is <3 nm. It appears that the compressive stress at the SiO2/SiC interface generates silicon suboxide components and weakens the Si-O bonds. As the result, the TO mode was red-shifted and the oxygen deficiency increased to relax the compressive stress in the oxide with <3 nm thickness. Fourier transform infrared spectroscopy measurements provide unique and useful information about stress and inhomogeneity at the oxide/SiC interface.

  7. Use of chemical auxiliaries to control p450 enzymes for predictable oxidations at unactivated C-h bonds of substrates.

    PubMed

    Auclair, Karine; Polic, Vanja

    2015-01-01

    Cytochrome P450 enzymes (P450s) have the ability to oxidize unactivated C-H bonds of substrates with remarkable regio- and stereoselectivity. Comparable selectivity for chemical oxidizing agents is typically difficult to achieve. Hence, there is an interest in exploiting P450s as potential biocatalysts. Despite their impressive attributes, the current use of P450s as biocatalysts is limited. While bacterial P450 enzymes typically show higher activity, they tend to be highly selective for one or a few substrates. On the other hand, mammalian P450s, especially the drug-metabolizing enzymes, display astonishing substrate promiscuity. However, product prediction continues to be challenging. This review discusses the use of small molecules for controlling P450 substrate specificity and product selectivity. The focus will be on two approaches in the area: (1) the use of decoy molecules, and (2) the application of substrate engineering to control oxidation by the enzyme.

  8. Use of Chemical Auxiliaries to Control P450 Enzymes for Predictable Oxidations at Unactivated C–H Bonds of Substrates

    PubMed Central

    Auclair, Karine; Polic, Vanja

    2016-01-01

    Cytochrome P450 enzymes (P450s) have the ability to oxidize unactivated C-H bonds of substrates with remarkable regio- and stereoselectivity. Comparable selectivity for chemical oxidizing agents is typically difficult to achieve. Hence, there is an interest in exploiting P450s as potential biocatalysts. Despite their impressive attributes, the current use of P450s as biocatalysts is limited. While bacterial P450 enzymes typically show higher activity, they tend to be highly selective for one or a few substrates. On the other hand, mammalian P450s, especially the drug-metabolizing enzymes, display astonishing substrate promiscuity. However, product prediction continues to be challenging. This review discusses the use of small molecules for controlling P450 substrate specificity and product selectivity. The focus will be on two approaches in the area: (1) the use of decoy molecules, and (2) the application of substrate engineering to control oxidation by the enzyme. PMID:26002737

  9. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers

    NASA Astrophysics Data System (ADS)

    Bara, Marek; Kubica, Marek

    2014-02-01

    The paper discusses the shaping mechanism and changes occurring in the structure and topography of the surface of nanoceramic oxide layers during their formation. The paper presents the influence of substrate preparation on the surface topography of oxide layers. The layers were produced via hard anodizing on the EN AW-5251 aluminum alloy. The layers obtained were subjected to microscope examinations, image and chemical composition analyses, and stereometric examinations. Heredity of substrate properties in the topography of the surface of nanoceramic oxide layers formed as a result of electrochemical oxidation has been shown.

  10. Gaseous Oxidized Mercury Flux from Substrates Associated with Industrial Scale Gold Mining in Nevada, USA

    NASA Astrophysics Data System (ADS)

    Miller, M. B.

    2015-12-01

    Gaseous elemental and oxidized mercury (Hg) fluxes were measured in a laboratory setting from substrate materials derived from industrial-scale open pit gold mining operations in Nevada, USA. Mercury is present in these substrates at a range of concentrations (10 - 40000 ng g-1), predominantly of local geogenic origin in association with the mineralized gold ores, but altered and redistributed to a varying degree by subsequent ore extraction and processing operations, including deposition of Hg recently emitted to the atmosphere from large point sources on the mines. Waste rock, heap leach, and tailings material usually comprise the most extensive and Hg emission relevant substrate surfaces. All three of these material types were collected from active Nevada mine sites in 2010 for previous research, and have since been stored undisturbed at the University of Nevada, Reno. Gaseous elemental Hg (GEM) flux was previously measured from these materials under a variety of conditions, and was re-measured in this study, using Teflon® flux chambers and Tekran® 2537A automated ambient air analyzers. GEM flux from dry undisturbed materials was comparable between the two measurement periods. Gaseous oxidized Hg (GOM) flux from these materials was quantified using an active filter sampling method that consisted of polysulfone cation-exchange membranes deployed in conjunction with the GEM flux apparatus. Initial measurements conducted within greenhouse laboratory space indicate that in dry conditions GOM is deposited to relatively low Hg cap and leach materials, but may be emitted from the much higher Hg concentration tailings material.

  11. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOEpatents

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  12. Obesity and Appetite Control

    PubMed Central

    Suzuki, Keisuke; Jayasena, Channa N.; Bloom, Stephen R.

    2012-01-01

    Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity. PMID:22899902

  13. Obesity and appetite control.

    PubMed

    Suzuki, Keisuke; Jayasena, Channa N; Bloom, Stephen R

    2012-01-01

    Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity.

  14. (110)-oriented indium tin oxide films grown on m- and r-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Chern, Ming-Yau; Lu, Tso-Wen; Xu, Wei-Lun

    2015-04-01

    Indium tin oxide (ITO) thin films have been deposited by pulsed laser deposition on m-plane (100) and r-plane (012) sapphire substrates. For both substrates, the films were grown with their [110] direction perpendicular to the substrate planes under the conditions of high growth temperature and high oxygen pressure. Their in-plane epitaxial relations with the substrates were identified to be ITO[001] ∥ Al2O3[020] and \\text{ITO}[1\\bar{1}0]\\parallel \\text{Al}2\\text{O}3[001] for the m-plane substrate. For the r-plane substrate, two types of lattice matching were observed: one being \\text{ITO}[001]\\parallel \\text{Al}2\\text{O}3[2,1, - 1/2] and \\text{ITO}[1\\bar{1}0]\\parallel \\text{Al}2\\text{O}3[4/3, - 4/3,2/3], the other being \\text{ITO}[001]\\parallel \\text{Al}2\\text{O}3[1, - 1,1/2] and \\text{ITO}[1\\bar{1}0]/\\text{Al}2\\text{O}3[8/3,4/3, - 2/3]. The electrical properties were measured by the Hall effect and van der Pauw methods at room temperature. All of the samples have low electrical resistivity on the order of 3.0 × 10-4 Ω cm, high carrier concentration of about 2.5 × 1020 cm-3, and mobility ranging from 70 to 90 cm2 V-1 s-1.

  15. Electrocatalytic Oxidation of Alcohols on Cu2O/Cu Thin Film Electrodeposited on Titanium Substrate

    NASA Astrophysics Data System (ADS)

    Bezghiche-Imloul, T.; Hammache-Makhloufi, H.; Ait Ahmed, N.

    2016-05-01

    A novel class of nanomaterials consisting of a composite thin film of cooper metal nanoparticles and cuprous oxide (Cu2O/Cu) for the catalytic electrooxidation of methanol, ethanol and ethylene glycol is considered here. The material was prepared by electrochemical deposition under a potentiostatic condition of -250mV vs saturated calomel electrode (SCE) from acetate bath at titanium substrate. The effect of electrodeposition time on the structure, composition and morphology of the deposit was investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated the formation of pure cuprous oxide Cu2O thin film at low electrodeposition time (5 min) and Cu2O oxide thin film decorated with Cu nanoparticles (Cu2O/Cu) at high electrodeposition time. The obtained Cu2O and Cu2O/Cu thin films were explored for the electrochemical oxidation of alcohols in 1 M NaOH alkaline medium using cyclic voltammetry (CV) method. The Cu2O/Cu thin film grown at electrodeposition time of 15 min shows the best electrocatalytic performance toward ethanol oxidation. The effect of concentration of alcohols on the oxidation reaction was studied by CV and chronoamperometry. It was found that the reaction is governed by an irreversible diffusion process. The promising electrocatalytic activity of the Cu2O/Cu electrode provides a new platform for the fabrication of high-performance thin films for alcohols oxidation in alkaline medium. Therefore, the Cu2O/Cu electrode is a suitable as a less expensive electrocatalyst for alcohols oxidation.

  16. Density profile in thin films of polybutadiene on silicon oxide substrates: a TOF-NR study.

    PubMed

    Hoppe, E Tilo; Sepe, Alessandro; Haese-Seiller, Martin; Moulin, Jean-François; Papadakis, Christine M

    2013-08-27

    We have investigated thin films from fully deuterated polybutadiene (PB-d6) on silicon substrates with the aim of detecting and characterizing a possible interphase in the polymer film near the substrate using time-of-flight neutron reflectometry (TOF-NR). As substrates, thermally oxidized silicon wafers were either used as such or they were coated with triethylethoxysilyl modified 1,2-PB prior to deposition of the PB-d6 film. TOF-NR reveals that, for both substrates, the scattering length density (SLD) of the PB films decreases near the solid interface. The reduction of SLD is converted to an excess fraction of free volume. To further verify the existence of the interphase in PB-d6, we attempt to model the TOF-NR curves with density profiles which do not feature an interphase. These density profiles do not describe the TOF-NR curves adequately. We conclude that, near the solid interface, an interphase having an SLD lower than the bulk of the film is present.

  17. Substrate activation for O2 reactions by oxidized metal centers in biology.

    PubMed

    Pau, Monita Y M; Lipscomb, John D; Solomon, Edward I

    2007-11-20

    The uncatalyzed reactions of O(2) (S = 1) with organic substrates (S = 0) are thermodynamically favorable but kinetically slow because they are spin-forbidden and the one-electron reduction potential of O(2) is unfavorable. In nature, many of these important O(2) reactions are catalyzed by metalloenzymes. In the case of mononuclear non-heme iron enzymes, either Fe(II) or Fe(III) can play the catalytic role in these spin-forbidden reactions. Whereas the ferrous enzymes activate O(2) directly for reaction, the ferric enzymes activate the substrate for O(2) attack. The enzyme-substrate complex of the ferric intradiol dioxygenases exhibits a low-energy catecholate to Fe(III) charge transfer transition that provides a mechanism by which both the Fe center and the catecholic substrate are activated for the reaction with O(2). In this Perspective, we evaluate how the coupling between this experimentally observed charge transfer and the change in geometry and ligand field of the oxidized metal center along the reaction coordinate can overcome the spin-forbidden nature of the O(2) reaction.

  18. Extraordinary elevation of the glass transition temperature of thin polymer films grafted to silicon oxide substrates

    NASA Astrophysics Data System (ADS)

    Tate, Ranjeet S.; Fryer, David S.; Pasqualini, Silvia; Montague, Martha F.; de Pablo, Juan J.; Nealey, Paul F.

    2001-12-01

    We used local thermal analysis and ellipsometry to measure the glass transition temperatures (Tg) of supported thin films of poly(4-hydroxystyrene) (PHS) and hydroxy terminated polystyrene (PS-OH). The films were spuncast from solution onto silicon oxide substrates and annealed under vacuum at elevated temperatures to graft the polymer to the substrate. Grafting was verified and characterized in terms of the thickness of and the advancing contact angle of water on the residual layer after solvent extraction. For PHS, each segment of the polymer chain was capable of grafting to the substrate. The thickness of the residual layer increased with increasing annealing temperature. For this polymer the critical thickness below which the Tg of the film deviated from the bulk value was nearly 200 nm after annealing at the highest temperature (190 °C); the Tg of films 100 nm thick or less were elevated by more than 50 °C above the bulk value. For PS-OH films the polymer was only capable of grafting at one chain end, forming a brush layer at the substrate interface. The critical thicknesses for PS-OH films and the Tg elevations were substantially higher than for ungrafted PS films, but were not as large as for PHS. The film thickness dependence of Tg for PHS and PS-OH were well described as piecewise linear, consistent with a "dual-mechanism" model.

  19. Influence of organic substrates on the kinetics of bacterial As(III) oxidation

    NASA Astrophysics Data System (ADS)

    Lescure, T.; Joulian, C.; Bauda, P.; Hénault, C.; Battaglia-Brunet, F.

    2012-04-01

    Soil microflora plays a major role on the behavior of metals and metalloids. Arsenic speciation, in particular, is related to the activity of bacteria able to oxidize, reduce or methylate this element, and determines mobility, bioavailability and toxicity of As. Arsenite (AsIII) is more toxic and more mobile than arsenate (AsV). Bacterial As(III)-oxidation tends to reduce the toxicity of arsenic in soils and the risk of transfer toward underlying aquifers, that would affect the quality of water resources. Previous results suggest that organic matter may affect kinetics or efficiency of bacterial As(III)-oxidation in presence of oxygen, thus in conventional physico-chemical conditions of a surface soil. Different hypothesis can be proposed to explain the influence of organic matter on As(III) oxidation. Arsenic is a potential energy source for bacteria. The presence of easily biodegradable organic matter may inhibit the As(III) oxidation process because bacteria would first metabolize these more energetic substrates. A second hypothesis would be that, in presence of organic matter, the Ars system involved in bacterial resistance to arsenic would be more active and would compete with the Aio system of arsenite oxidation, decreasing the global As(III) oxidation rate. In addition, organic matter influences the solubility of iron oxides which often act as the main pitfalls of arsenic in soils. The concentration and nature of organic matter could therefore have a significant influence on the bioavailability of arsenic and hence on its environmental impact. The influence of organic matter on biological As(III) oxidation has not yet been determined in natural soils. In this context, soil amendment with organic matter during operations of phytostabilization or, considering diffuse pollutions, through agricultural practices, may affect the mobility and bio-availability of the toxic metalloid. The objective of the present project is to quantify the influence of organic matter

  20. Thermal oxidation synthesis of crystalline iron-oxide nanowires on low-cost steel substrates for solar water splitting

    NASA Astrophysics Data System (ADS)

    Dlugosch, T.; Chnani, A.; Muralidhar, P.; Schirmer, A.; Biskupek, J.; Strehle, S.

    2017-08-01

    Iron-oxide and in particular its crystallographic phase hematite (α-Fe2O3) is a promising candidate for non-toxic, earth abundant and low cost photo-anodes in the field of photo-electrochemical water splitting. We report here on the synthesis of α-Fe2O3 nanowires by thermal oxidation of low-cost steel substrates. Nanowires grown in this manner exhibit often a blade-like shape but can also possess a wire-like geometry partly decorated at their tip with an iron-rich ellipsoidal head consisting also of crystalline iron-oxide. We show furthermore that these ellipsoidal heads represent suitable growth sites leading in some cases to an additional growth of so-called antenna nanowires. Besides nanowires also nanoflakes were frequently observed at the surface. We discuss the influence of the oxidation temperature and other synthesis parameters as well as dispute the current growth models. Finally, we show that our α-Fe2O3 nanostructures on steel are also photo-electrochemically active supporting in principle their use as photo-anode material.

  1. Polypyrrole Coated Cellulosic Substrate Modified by Copper Oxide as Electrode for Nitrate Electroreduction

    NASA Astrophysics Data System (ADS)

    Hamam, A.; Oukil, D.; Dib, A.; Hammache, H.; Makhloufi, L.; Saidani, B.

    2015-08-01

    The aim of this work is to synthesize polypyrrole (PPy) films on nonconducting cellulosic substrate and modified by copper oxide particles for use in the nitrate electroreduction process. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is conducted by using FeCl3 as an oxidant and pyrrole as monomer. The thickness and topography of the different PPy films obtained were estimated using a profilometer apparatus. The electrochemical reactivity of the obtained electrodes was tested by voltamperometry technique and electrochemical impedance spectroscopy. Secondly, the modification of the PPy film surface by incorporation of copper oxide particles is conducted by applying a galvanostatic procedure from a CuCl2 solution. The SEM, EDX and XRD analysis showed the presence of CuO particles in the polymer films with dimensions less than 50 nm. From cyclic voltamperometry experiments, the composite activity for the nitrate electroreduction reaction was evaluated and the peak of nitrate reduction is found to vary linearly with initial nitrate concentration.

  2. EFFECT OF SURFACE CONDITION ON SPALLATION BEHAVIOR OF OXIDE SCALE ON SS 441 SUBSTRATE USED IN SOFC

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-03-01

    As operating temperature of SOFC decreases, ferritic stainless steel has attracted a great deal of attention for its use as an interconnect in SOFCs because of its gas-tightness, low electrical resistivity, ease of fabrication, and cost-effectiveness. However, oxidation reaction of the metallic interconnects in a typical SOFC working environment is unavoidable. The growth stresses in the oxide scale and on the scale/substrate interface combined with the thermal stresses induced by thermal expansion coefficient mismatch between the oxide scale and the substrate may lead to scale delamination/buckling and eventual spallation during stack cooling, which can lead to serious cell performance degradation. Therefore, the interfacial adhesion strength between the oxide scale and substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. In this paper, we investigated the effect of the surface conditions on the interfacial strength of oxide scale and SS441 substrate experimentally. Contrary to the conventional sense, it was found that rough surface of SS441 substrate will decrease the interfacial adhesive strength of the oxide scale and SS441 substrate

  3. Fabrication and characterization of nano porous lattice biosensor using anodic aluminum oxide substrate

    NASA Astrophysics Data System (ADS)

    Ito, Takeshi; Matsuda, Yuki; Jinba, Takatoshi; Asai, Naoto; Shimizu, Tomohiro; Shingubara, Shoso

    2017-06-01

    Localized surface plasmon resonance (LSPR) attracts attention for the fabrication of a biosensor because it can be used easily and is highly sensitive to the change in surface reflective index. Anodic aluminum oxide (AAO) has self-assembled nanoholes and is fabricated easily all over the Al substrate. The depth and diameter of the nanoholes are easily controlled by changing the etching solution and applied voltage. By depositing a Au thin film on the AAO substrate, the sensitivity of the sensor chip was affected by both optical interference and LSPR. In this study, the optical property of the AAO-based LSPR sensor chip was characterized on the basis of the nanostructure. We presented a biosensing application of the AAO-based LSPR sensor chip. The highest sensitivity of the sensor chip was observed at the AAO nanohole diameter of 75 nm and the AAO nanohole depth of 0.5 µm, when bovine serum albumin (BSA) adsorbed on the sensor chip.

  4. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    PubMed

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.

  5. Role of nitric oxide in the regulation of substrate metabolism in heart failure.

    PubMed

    Recchia, Fabio A

    2002-04-01

    Solid experimental evidence indicates that nitric oxide (NO) inhibits oxygen utilization in vitro and in vivo. The role played by NO in cellular metabolism is likely extended to the control of substrate utilization. Studies performed in normal hearts show that NO inhibits glucose uptake and that a reduced synthesis of NO impairs free fatty acid consumption. Interestingly, we found also that myocardial free fatty acid utilization decreases while glucose consumption is enhanced in end stage heart failure, when cardiac NO production falls dramatically. This phenomenon led us to the hypothesis that the reduced synthesis of NO could be at least in part responsible for myocardial metabolic alterations occurring in severe heart failure. The present review mentions some of the seminal studies that defined the function of NO as metabolic modulator. A particular emphasis is put on available data suggesting a role for NO in the control of cardiac substrate utilization in normal and failing hearts.

  6. Substrate oxidation capacity in rodent skeletal muscle: effects of exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Herrick, R. E.; McCue, S. A.

    1993-01-01

    A study was conducted, as part of the integrated National Aeronautics and Space Administration Space Life Sciences 1 mission flown in June of 1991, to ascertain the effects of 9 days of exposure to zero gravity on the capacity of rodent skeletal muscle fiber types to oxidize either [14C]pyruvate or [14C]palmitate under state 3 metabolic conditions, i.e., nonlimiting amounts of substrate and cofactors. In addition, activity levels of marker enzymes of the tricarboxylic acid cycle, malate shuttle, and beta-oxidation were measured. Results showed that significant differences in muscle weight occurred in both the predominantly slow vastus intermedius and predominantly fast vastus lateralis of flight vs. control groups (P < 0.05). Total protein content of the muscle samples was similar between groups. Both pyruvate oxidation capacity and the marker oxidative enzymes were not altered in the flight relative to control animals. However, the capacity to oxidize long-chain fatty acids was significantly reduced by 37% in both the high- and low-oxidative regions of the vastus muscle (P < 0.05). Although these findings of a selective reduction in fatty acid oxidation capacity in response to spaceflight are surprising, they are consistent with previous findings showing 1) an increased capacity to take up glucose and upregulate glucose transporter proteins and 2) a marked accumulation of triglycerides in the skeletal muscles of rats subjected to states of unloading. Thus, skeletal muscle of animals exposed to non-weight-bearing environments undergo subcellular transformations that may preferentially bias energy utilization to carbohydrates.

  7. Substrate oxidation capacity in rodent skeletal muscle: effects of exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Herrick, R. E.; McCue, S. A.

    1993-01-01

    A study was conducted, as part of the integrated National Aeronautics and Space Administration Space Life Sciences 1 mission flown in June of 1991, to ascertain the effects of 9 days of exposure to zero gravity on the capacity of rodent skeletal muscle fiber types to oxidize either [14C]pyruvate or [14C]palmitate under state 3 metabolic conditions, i.e., nonlimiting amounts of substrate and cofactors. In addition, activity levels of marker enzymes of the tricarboxylic acid cycle, malate shuttle, and beta-oxidation were measured. Results showed that significant differences in muscle weight occurred in both the predominantly slow vastus intermedius and predominantly fast vastus lateralis of flight vs. control groups (P < 0.05). Total protein content of the muscle samples was similar between groups. Both pyruvate oxidation capacity and the marker oxidative enzymes were not altered in the flight relative to control animals. However, the capacity to oxidize long-chain fatty acids was significantly reduced by 37% in both the high- and low-oxidative regions of the vastus muscle (P < 0.05). Although these findings of a selective reduction in fatty acid oxidation capacity in response to spaceflight are surprising, they are consistent with previous findings showing 1) an increased capacity to take up glucose and upregulate glucose transporter proteins and 2) a marked accumulation of triglycerides in the skeletal muscles of rats subjected to states of unloading. Thus, skeletal muscle of animals exposed to non-weight-bearing environments undergo subcellular transformations that may preferentially bias energy utilization to carbohydrates.

  8. Thermal oxidation of amorphous germanium thin films on SiO2 substrates

    NASA Astrophysics Data System (ADS)

    de los Santos Valladares, L.; Bustamante Dominguez, A.; Ionescu, A.; Brown, A.; Sepe, A.; Steiner, U.; Avalos Quispe, O.; Holmes, S.; Majima, Y.; Langford, R.; Barnes, C. H. W.

    2016-12-01

    In this work we report the thermal oxidation of amorphous germanium (a-Ge) thin films (140 nm thickness) in air. Following fabrication by conventional thermal evaporation on SiO2 substrates, the samples were annealed in air at different temperatures ranging from 300 to 1000 °C. By means of x-ray diffraction, x-ray reflectivity, synchrotron grazing-incidence wide-angle x-ray scattering and cross-sectional transmission electron microscopy analysis it is found that the a-Ge films abruptly crystallize at 475 °C, while simultaneously increasing the thickness of the oxide (GeO2) in a layer by layer fashion. X-ray photoemission spectroscopy reveals that the oxidation state of the Ge atoms in the GeO2 layer is 4+. However, a reaction at the GeO2/Ge interface occurs between 500 and 550 °C reducing the oxide layer to GeO x (x < 2) and containing Ge2+ and Ge+. The thickness of the oxide layer grows with the annealing temperature following an Arrhenius behavior with an activation energy of 0.82 ± 0.09 eV up to 500 °C. Remarkably, we observed simultaneous enhancement of the oxidation and crystallization of the a-Ge in the temperature interval 450 °C-500 °C, in which the oxidation rate reaches a maximum of around 0.8 nm °C-1 at around 500 °C.

  9. Elemental Metals or Oxides Distributed on a Carbon Substrate or Self-Supported and the Manufacturing Process Using Graphite Oxide as Template

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen (Inventor)

    1999-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a percursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  10. Elemental Metals or Oxides Distributed on a Carbon Substrate or Self-Supported and the Manufacturing Process Using Graphite Oxide as Template

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    1999-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate-solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  11. Electrochemical analysis of transparent oxide-less photovoltaic cell with perforation patterned metal substrate

    NASA Astrophysics Data System (ADS)

    Kim, Myoung; You, In-Kyu; Lee, Kyoung-Won; Lee, In-Hwan; Yun, Ho-Gyeong

    2013-05-01

    In terms of electrochemical behaviour, a transparent conductive oxide (TCO)-less dye-sensitized solar cell (DSSC) with two metal foils was compared with those of a metal foil-based DSSC with a TCO-coated substrate. By virtue of electrochemical impedance spectroscopy, intensity modulated photocurrent spectroscopy, intensity modulated photovoltage spectroscopy, open-circuit voltage decay, and photocurrent transient measurements, it was clearly confirmed that the limited performance of the TCO-less DSSC was caused by the restricted transport of ion species in the electrolyte due to the perforation patterned metal foil.

  12. Crystal Structure of Oxidative Stress Sensor Keap1 in Complex with Selective Autophagy Substrate p62

    NASA Astrophysics Data System (ADS)

    Kurokawa, Hirofumi

    Keap1, an adaptor protein of cullin-RING ubiquitin ligase complex, represses cytoprotective transcription factor Nrf2 in an oxidative stress-dependent manner. The accumulation of selective autophagy substrate p62 also activates Nrf2 target genes, but the detailed mechanism has not been elucidated. Crystal structure of Keap1-p62 complex revealed the structural basis for the Nrf2 activation in which Keap1 is inactivated by p62. The accumulation of p62 is observed in hepatocellular carcinoma. The activation of Nrf2 target genes, including detoxifying enzymes and efflux transporters, by p62 may protect the cancer cells from anti-cancer drugs.

  13. The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts

    PubMed Central

    Guo, Yin; Bandaru, Viswanath; Jaruga, Pawel; Zhao, Xiaobei; Burrows, Cynthia J.; Iwai, Shigenori; Dizdaroglu, Miral; Bond, Jeffrey P.; Wallace, Susan S.

    2010-01-01

    The DNA glycosylases that remove oxidized DNA bases fall into two general families: the Fpg/Nei family and the Nth superfamily. Based on protein sequence alignments, we identified four putative Fpg/Nei family members, as well as a putative Nth protein in Mycobacterium tuberculosis H37Rv. All four Fpg/Nei proteins were successfully overexpressed using a bicistronic vector created in our laboratory. The MtuNth protein was also overexpressed in soluble form. The substrate specificities of the purified enzymes were characterized in vitro with oligodeoxynucleotide substrates containing single lesions. Some were further characterized by gas chromatography/mass spectrometry (GC/MS) analysis of products released from γ-irradiated DNA. MtuFpg1 has a substrate specificity similar to that of EcoFpg. Both EcoFpg and MtuFpg1 are more efficient at removing spiroiminodihydantoin (Sp) than 7,8-dihydro-8-oxoguanine (8-oxoG). However, MtuFpg1 shows a substantially increased opposite base discrimination compared to EcoFpg. MtuFpg2 contains only the C-terminal domain of an Fpg protein and has no detectable DNA binding activity or DNA glycosylase/lyase activity and thus appears to be a pseudogene. MtuNei1 recognizes oxidized pyrimidines on both double-stranded and single-stranded DNA and exhibits uracil DNA glycosylase activity. MtuNth recognizes a variety of oxidized bases, including urea, 5,6-dihydrouracil (DHU), 5-hydroxyuracil (5-OHU), 5-hydroxycytosine (5-OHC) and methylhydantoin (MeHyd). Both MtuNei1 and MtuNth excise thymine glycol (Tg); however, MtuNei1 strongly prefers the (5R) isomers, whereas MtuNth recognizes only the (5S) isomers. MtuNei2 did not demonstrate activity in vitro as a recombinant protein, but like MtuNei1 when expressed in Escherichia coli, it decreased the spontaneous mutation frequency of both the fpg mutY nei triple and nei nth double mutants, suggesting that MtuNei2 is functionally active in vivo recognizing both guanine and cytosine oxidation products

  14. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition.

    PubMed

    D'Arcy, Julio M; Tran, Henry D; Stieg, Adam Z; Gimzewski, James K; Kaner, Richard B

    2012-05-21

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.

  15. Fabrication of Direct Silicon Bonded Hybrid Orientation Substrate by Separation by Implanted Oxygen Layer Transfer and Oxide Dissolution Annealing

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Xue, Zhongying; Wu, Aimin; Cao, Gongbai; Zhang, Bo; Lin, Chenglu; Zhang, Miao; Wang, Xi

    2011-03-01

    The quasi direct Si bonded (DSB) hybrid orientation substrate with a 3 nm interfacial oxide layer between the (100) superficial Si and the (110) handle wafer is fabricated by the separation by implanted oxygen layer transfer (SLT) process. The quasi DSB hybrid orientation substrates are annealed in oxygen-containing and oxygen-free ambient. The cross-sectional transmission electron microscopy (XTEM) results show the oxide-free (100) Si/(110) Si bonding interface, indicating that the direct Si-Si bonded structure is realized by these two processes. The anisotropic bonding interface morphology of the DSB hybrid orientation substrates is observed, and the formation mechanism is discussed in detail.

  16. Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12.

    PubMed

    Butterfield, Cristina N; Tebo, Bradley M

    2017-02-22

    Manganese(ii) oxidation in the environment is thought to be driven by bacteria because enzymatic catalysis is many orders of magnitude faster than the abiotic processes. The heterologously purified Mn oxidase (Mnx) from marine Bacillus sp. PL-12 is made up of the multicopper oxidase (MCO) MnxG and two small Cu and heme-binding proteins of unknown function, MnxE and MnxF. Mnx binds Cu and oxidizes both Mn(ii) and Mn(iii), generating Mn(iv) oxide minerals that resemble those found on the Bacillus spore surface. Spectroscopic techniques have illuminated details about the metallo-cofactors of Mnx, but very little is known about their requirement for catalytic activity, and even less is known about the substrate specificity of Mnx. Here we quantify the canonical MCO Cu and persistent peripheral Cu bound to Mnx, and test Mnx oxidizing ability toward different substrates at varying pH. Mn(ii) appears to be the best substrate in terms of kcat, but its oxidation does not follow Michaelis-Menten kinetics, instead showing a sigmoidal cooperative behavior. Mnx also oxidizes Fe(ii) substrate, but in a Michaelis-Menten manner and with a decreased activity, as well as organic substrates. The reduced metals are more rapidly consumed than the larger organic substrates, suggesting the hypothesis that the Mnx substrate site is small and tuned for metal oxidation. Of biological relevance is the result that Mnx has the highest catalytic efficiency for Mn(ii) at the pH of sea water, especially when the protein is loaded with greater than the requisite four MCO copper atoms, suggesting that the protein has evolved specifically for Mn oxidation.

  17. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity.

    PubMed

    Qi, Hetong; Yu, Ping; Wang, Yuexiang; Han, Guangchao; Liu, Huibiao; Yi, Yuanping; Li, Yuliang; Mao, Lanqun

    2015-04-29

    Graphdiyne (GDY), a novel kind of two-dimensional carbon allotrope consisting of sp- and sp(2)-hybridized carbon atoms, is found to be able to serve as the reducing agent and stabilizer for electroless deposition of highly dispersed Pd nanoparticles owing to its low reduction potential and highly conjugated electronic structure. Furthermore, we observe that graphdiyne oxide (GDYO), the oxidation form of GDY, can be used as an even excellent substrate for electroless deposition of ultrafine Pd clusters to form Pd/GDYO nanocomposite that exhibits a high catalytic performance toward the reduction of 4-nitrophenol. The high catalytic performance is considered to benefit from the rational design and electroless deposition of active metal catalysts with GDYO as the support.

  18. Effects of substrates on N2O emissions in an anaerobic ammonium oxidation (anammox) reactor.

    PubMed

    Jin, Yue; Wang, Dunqiu; Zhang, Wenjie

    2016-01-01

    N2O emission in the anaerobic ammonium oxidation (anammox) process is of growing concern. In this study, effects of substrate concentrations on N2O emissions were investigated in an anammox reactor. Extremely high N2O emissions of 1.67 % were led by high NH4-N concentrations. Results showed that N2O emissions have a positive correlation with NH4-N concentrations in the anammox reactor. Reducing NH4-N concentrations by recycling pump resulted in decreasing N2O emissions. In addition, further studies were performed to identify a key biological process that is contributed to N2O emissions from the anammox reactor. Based on the results obtained, Nitrosomonas, which can oxidize ammonia to nitrite, was deemed as the main sources of N2O emissions.

  19. Tin Oxide Films On Glass Substrates By A SOL-GEL Technique

    NASA Astrophysics Data System (ADS)

    Puyane, R.; Kato, I.

    1983-11-01

    The novel sol-gel technique has been implemented to deposit electroconductive tin oxide films to be used as transparent electrodes, mainly for display applications. Thin films of antimony-doped tin oxide were deposited on several types of glass substrates (soda-lime-silica, borosilicate and fused silica) using a dip-coating procedure. Alcoholic solutions of tin and antimony organometallic compounds were prepared under controlled conditions. The dipcoating procedure is described° in detail as well as subsequent thermal treatments under controlled atmosphere and temperatures up to 630 C. The optical and electrical characteristics of the films were studied as a function of the process parameters, firing conditions and number of coatings. After the subsequent thermal treatments, 2film resistances of about 200 ohms square could be measured corresponding to resistivities of about 10 ohm cm. The films optical transmission was above 80 percent.

  20. Silver Nanoparticle-Embedded Thin Silica-Coated Graphene Oxide as an SERS Substrate

    PubMed Central

    Pham, Xuan-Hung; Hahm, Eunil; Kim, Hyung-Mo; Shim, Seongbo; Kim, Tae Han; Jeong, Dae Hong; Lee, Yoon-Sik; Jun, Bong-Hyun

    2016-01-01

    A hybrid of Ag nanoparticle (NP)-embedded thin silica-coated graphene oxide (GO@SiO2@Ag NPs) was prepared as a surface-enhanced Raman scattering (SERS) substrate. A 6 nm layer of silica was successfully coated on the surface of GO by the physical adsorption of sodium silicate, followed by the hydrolysis of 3-mercaptopropyl trimethoxysilane. Ag NPs were introduced onto the thin silica-coated graphene oxide by the reduction of Ag+ to prepare GO@SiO2@Ag NPs. The GO@SiO2@Ag NPs exhibited a 1.8-fold enhanced Raman signal compared to GO without a silica coating. The GO@SiO2@Ag NPs showed a detection limit of 4-mercaptobenzoic acid (4-MBA) at 0.74 μM. PMID:28335304

  1. Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly.

    PubMed

    Ou, Junfei; Wang, Jinqing; Liu, Sheng; Mu, Bo; Ren, Junfang; Wang, Honggang; Yang, Shengrong

    2010-10-19

    Reduced graphene oxide (RGO) sheets were covalently assembled onto silicon wafers via a multistep route based on the chemical adsorption and thermal reduction of graphene oxide (GO). The formation and microstructure of RGO were analyzed by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Raman spectroscopy, and water contact angle (WCA) measurements. Characterization by atomic force microscopy (AFM) was performed to evaluate the morphology and microtribological behaviors of the samples. Macrotribological performance was tested on a ball-on-plate tribometer. Results show that the assembled RGO possesses good friction reduction and antiwear ability, properties ascribed to its intrinsic structure, that is, the covalent bonding to the substrate and self-lubricating property of RGO.

  2. Expanding the Scope of Biocatalysis: Oxidative Biotransformations on Solid-Supported Substrates

    PubMed Central

    Brooks, Sarah J.; Coulombel, Lydie; Ahuja, Disha; Clark, Douglas S.

    2011-01-01

    Oxidative biocatalytic reactions were performed on solid-supported substrates, thus expanding the repertoire of biotransformations that can be carried out on the solid phase. Various phenylacetic and benzoic acid analogs were attached to controlled pore glass beads via an enzyme-cleavable linker. Reactions catalyzed by peroxidases (soybean and chloro), tyrosinase, and alcohol oxidase/dehydrogenase gave a range of products, including oligophenols, halogenated aromatics, catechols, and aryl aldehydes. The resulting products were recovered following cleavage from the beads using α-chymotrypsin to selectively hydrolyze a chemically non-labile amide linkage. Controlled pore glass (CPG) modified with a polyethylene glycol (PEG) linker afforded substantially higher product yields than non-PEGylated CPG or non-swellable polymeric resins. This work represents the first attempt to combine solid-phase oxidative biotransformations with subsequent protease-catalyzed cleavage, and serves to further expand the use of biocatalysis in synthetic and medicinal chemistry. PMID:21881621

  3. Reverse changes in cardiac substrate oxidation in dogs recovering from heart failure.

    PubMed

    Qanud, Khaled; Mamdani, Mohammed; Pepe, Martino; Khairallah, Ramzi J; Gravel, John; Lei, Biao; Gupte, Sachin A; Sharov, Victor G; Sabbah, Hani N; Stanley, William C; Recchia, Fabio A

    2008-11-01

    When recovering from heart failure (HF), the myocardium displays a marked plasticity and can regain normal gene expression and function; however, recovery of substrate oxidation capacity has not been explored. We tested whether cardiac functional recovery is matched by normalization of energy substrate utilization during post-HF recovery. HF was induced in dogs by pacing the left ventricle (LV) at 210-240 beats/min for 4 wk. Tachycardia was discontinued, and the heart was allowed to recover. An additional group was studied in HF, and healthy dogs served as controls (n = 8/group). Cardiac free fatty acids (FFAs) and glucose oxidation were measured with [3H]oleate and [14C]glucose. At 10 days of recovery, hemodynamic parameters returned to control values; however, the contractile response to dobutamine remained depressed, LV end-diastolic volume was 28% higher than control, and the heart mass-to-body mass ratio was increased (9.8 +/- 0.4 vs. 7.5 +/- 0.2 g/kg, P < 0.05). HF increased glucose oxidation (76.8 +/- 19.7 nmol.min(-1).g(-1)) and decreased FFA oxidation (20.7 +/- 6.4 nmol.min(-1).g(-1)), compared with normal dogs (24.5 +/- 6.3 and 51.7 +/- 9.6 nmol.min(-1).g(-1), respectively), and reversed to normal values at 10 days of recovery (25.4 +/- 6.0 and 46.6 +/- 6.7 nmol.min(-1).g(-1), respectively). However, similar to HF, the recovered dogs failed to increase glucose and fatty acid uptake in response to pacing stress. The activity of myocardial citrate synthase and aconitase was significantly decreased during recovery compared with that in control dogs (58 and 27% lower, respectively, P < 0.05), indicating a persistent reduction in mitochondrial oxidative capacity. In conclusion, cardiac energy substrate utilization is normalized in the early stage of post-HF recovery at baseline, but not under stress conditions.

  4. Reverse changes in cardiac substrate oxidation in dogs recovering from heart failure

    PubMed Central

    Qanud, Khaled; Mamdani, Mohammed; Pepe, Martino; Khairallah, Ramzi J.; Gravel, John; Lei, Biao; Gupte, Sachin A.; Sharov, Victor G.; Sabbah, Hani N.; Stanley, William C.; Recchia, Fabio A.

    2008-01-01

    When recovering from heart failure (HF), the myocardium displays a marked plasticity and can regain normal gene expression and function; however, recovery of substrate oxidation capacity has not been explored. We tested whether cardiac functional recovery is matched by normalization of energy substrate utilization during post-HF recovery. HF was induced in dogs by pacing the left ventricle (LV) at 210–240 beats/min for 4 wk. Tachycardia was discontinued, and the heart was allowed to recover. An additional group was studied in HF, and healthy dogs served as controls (n = 8/group). Cardiac free fatty acids (FFAs) and glucose oxidation were measured with [3H]oleate and [14C]glucose. At 10 days of recovery, hemodynamic parameters returned to control values; however, the contractile response to dobutamine remained depressed, LV end-diastolic volume was 28% higher than control, and the heart mass-to-body mass ratio was increased (9.8 ± 0.4 vs. 7.5 ± 0.2 g/kg, P < 0.05). HF increased glucose oxidation (76.8 ± 19.7 nmol·min−1·g−1) and decreased FFA oxidation (20.7 ± 6.4 nmol·min−1·g−1), compared with normal dogs (24.5 ± 6.3 and 51.7 ± 9.6 nmol·min−1·g−1, respectively), and reversed to normal values at 10 days of recovery (25.4 ± 6.0 and 46.6 ± 6.7 nmol·min−1·g−1, respectively). However, similar to HF, the recovered dogs failed to increase glucose and fatty acid uptake in response to pacing stress. The activity of myocardial citrate synthase and aconitase was significantly decreased during recovery compared with that in control dogs (58 and 27% lower, respectively, P < 0.05), indicating a persistent reduction in mitochondrial oxidative capacity. In conclusion, cardiac energy substrate utilization is normalized in the early stage of post-HF recovery at baseline, but not under stress conditions. PMID:18820029

  5. Effect of a phase advance and phase delay of the 24-h cycle on energy metabolism, appetite, and related hormones.

    PubMed

    Gonnissen, Hanne K J; Rutters, Femke; Mazuy, Claire; Martens, Eveline A P; Adam, Tanja C; Westerterp-Plantenga, Margriet S

    2012-10-01

    The disruption of the circadian system has been associated with the development of obesity. We examined the effects of circadian misalignment on sleep, energy expenditure, substrate oxidation, appetite, and related hormones. Thirteen subjects [aged 24.3 ± 2.5 (mean ± SD) y; BMI (in kg/m²): 23.6 ± 1.7 (mean ± SD)] completed a randomized crossover study. For each condition, subjects stayed time blinded in the respiration chamber during 3 light-entrained circadian cycles that resulted in a phase advance (3 × 21 h) and a phase delay (3 × 27 h) compared with during a 24-h cycle. Sleep, energy expenditure, substrate oxidation, and appetite were quantified. Blood and saliva samples were taken to determine melatonin, glucose, insulin, ghrelin, leptin, glucagon-like peptide 1 (GLP-1), and cortisol concentrations. Circadian misalignment, either phase advanced or phase delayed, did not result in any changes in appetite or energy expenditure, whereas meal-related blood variables (glucose, insulin, ghrelin, leptin, and GLP-1) followed the new meal patterns. However, phase-advanced misalignment caused flattening of the cortisol-secretion pattern (P < 0.001), increased insulin concentrations (P = 0.04), and increased carbohydrate oxidation (P = 0.03) and decreased protein oxidation (P = 0.001). Phase-delayed misalignment increased rapid eye movement sleep (P < 0.001) and the sleeping metabolic rate (P = 0.02), increased glucose (P = 0.02) and decreased GLP-1 (P = 0.02) concentrations, and increased carbohydrate oxidation (P = 0.01) and decreased protein oxidation (P = 0.003). The main effect of circadian misalignment, either phase advanced or phase delayed, is a concomitant disturbance of the glucose-insulin metabolism and substrate oxidation, whereas the energy balance or sleep is not largely affected. Chronically eating and sleeping at unusual circadian times may create a health risk through a metabolic disturbance. This trial was registered at the International Clinical

  6. Microstructure and Thermal Oxidation of Cube Textured NiCrW Metallic Substrate for HTS Coated Conductors

    NASA Astrophysics Data System (ADS)

    Tuissi, A.; Villa, E.; Zamboni, M.

    The non-magnetic highly resistant to oxygenation Ni88Cr8W4 tape demonstrated to be a good metallic substrate for the production high Tc coated conductors. In this work rhe rolling assisted biaxially textured substrates (RABiTS) method has been used to promote a sharp (100)[001] texture on NiCrW metallic tape. The influence of the critical processing parameters on the cube texture development of the tape is investigated Moreover thermal oxidation of the textured NiCrW substrate has been performed at several conditions to study the oxide growth on the surface. Electron BackScatter Diffraction (EBSD) analysis was used for high resolution crystal orientation mapping of the surfaces. The microstructure of the substrates has also been investigated by X-ray and SEM. Differential thermal analysis (TG/DTA) was used to study the oxidation behavior of the NiCrW tapes.

  7. Immobilization of Reduced Graphene Oxide on Hydrogen-Terminated Silicon Substrate as a Transparent Conductive Protector.

    PubMed

    Tu, Yudi; Utsunomiya, Toru; Kokufu, Sho; Soga, Masahiro; Ichii, Takashi; Sugimura, Hiroyuki

    2017-10-02

    Silicon is a promising electrode material for photoelectrochemical and photocatalytic reactions. However, the chemically active surface of silicon will be easily oxidized when exposed to the oxidation environment. We immobilized graphene oxide (GO) onto hydrogen-terminated silicon (H-Si) and reduced it through ultraviolet (UV) and vacuum-ultraviolet (VUV) irradiation. This acted as an ultrathin conductive layer to protect H-Si from oxidation. The elemental evolution of GO was studied by X-ray photoelectron spectroscopy, and it was found that GO was partially reduced soon after the deposition onto H-Si and further reduced after UV or VUV light irradiation. The VUV photoreduction demonstrated ca. 100 times higher efficiency compared to the UV reduction based on the irradiation dose. The saturated oxygen-to-carbon ratio (RO/C) of the reduced graphene oxide (rGO) was 0.21 ± 0.01, which is lower than the photoreduction of GO on SiO2 substrate. This indicated the H-Si played an important role in assisting the photoreduction of GO. No obvious exfoliation of rGO was observed after sonicating the rGO-covered H-Si sample in water, which indicated rGO was immobilized on H-Si. The electrical conductivity of H-Si surface was maintained in the rGO-covered region while the exposed H-Si region became insulating, which was observed by conductive atomic force microscopy. The rGO was verified capable to protect the active H-Si against the oxidation under an ambient environment.

  8. Carbohydrate intake and glycemic index affect substrate oxidation during a controlled weight cycle in healthy men.

    PubMed

    Kahlhöfer, J; Lagerpusch, M; Enderle, J; Eggeling, B; Braun, W; Pape, D; Müller, M J; Bosy-Westphal, A

    2014-09-01

    Because both, glycemic index (GI) and carbohydrate content of the diet increase insulin levels and could thus impair fat oxidation, we hypothesized that refeeding a low GI, moderate-carbohydrate diet facilitates weight maintenance. Healthy men (n=32, age 26.0±3.9 years; BMI 23.4±2.0 kg/m(2)) followed 1 week of controlled overfeeding, 3 weeks of caloric restriction and 2 weeks of hypercaloric refeeding (+50, -50 and +50% energy requirement) with low vs high GI (41 vs 74) and moderate vs high CHO intake (50% vs 65% energy). We measured adaptation of fasting macronutrient oxidation and the capacity to supress fat oxidation during an oral glucose tolerance test. Changes in fat mass were measured by quantitative magnetic resonance. During overfeeding, participants gained 1.9±1.2 kg body weight, followed by a weight loss of -6.3±0.6 kg and weight regain of 2.8±1.0 kg. Subjects with 65% CHO gained more body weight compared with 50% CHO diet (P<0.05) particularly with HGI meals (P<0.01). Refeeding a high-GI diet led to an impaired basal fat oxidation when compared with a low-GI diet (P<0.02), especially at 65% CHO intake. Postprandial metabolic flexibility was unaffected by refeeding at 50% CHO but clearly impaired by 65% CHO diet (P<0.05). Impairment in fasting fat oxidation was associated with regain in fat mass (r=0.43, P<0.05) and body weight (r=0.35; P=0.051). Both higher GI and higher carbohydrate content affect substrate oxidation and thus the regain in body weight in healthy men. These results argue in favor of a lower glycemic load diet for weight maintenance after weight loss.

  9. Reduced Graphene Oxide Thin Film on Conductive Substrates by Bipolar Electrochemistry

    PubMed Central

    Anis, Allagui; Mohammad, Ali Abdelkareem; Hussain, Alawadhi; Ahmed, S. Elwakil

    2016-01-01

    Recent years have shown an increased interest in developing manufacturing processes for graphene and its derivatives that consider the environmental impact and large scale cost-effectiveness. However, today’s most commonly used synthesis routes still suffer from their excessive use of harsh chemicals and/or the complexity and financial cost of the process. Furthermore, the subsequent transfer of the material onto a substrate makes the overall process even more intricate and time-consuming. Here we describe a single-step, single-cell preparation procedure of metal-supported reduced graphene oxide (rGO) using the principle of bipolar electrochemistry of graphite in deionized water. Under the effect of an electric field between two stainless steel feeder electrodes, grapheme layers at the anodic pole of the wireless graphite were oxidized into colloidal dispersion of GO, which migrated electrophoretically towards the anodic side of the cell, and deposited in the form of rGO (d(002) = 0.395 nm) by van der Waals forces. For substrates chemically more susceptible to the high anodic voltage, we show that the electrochemical setup can be adapted by placing the latter between the wireless graphite and the stainless steel feeder anode. This method is straightforward, inexpensive, environmentally-friendly, and could be easily scaled up for high yield and large area production of rGO thin films. PMID:26883173

  10. Morphological and substrate effects on the electrochemical behaviour of doped tin oxide anodes

    NASA Astrophysics Data System (ADS)

    Miljkovic, Bojan

    Films of Sb-doped SnO2 were successfully fabricated on a Ti substrate through precursor application by spin coating followed by a thermal decomposition process. The dependence of film characteristics on fabrication temperature was studied in the range of 500 to 800°C. An optimum electrocatalytic response was found for a firing temperature of 600°C. This was attributed to a balance between Sb-doping effects, titanium substrate oxidation, and film morphological development. This was determined through observation of the morphology, crystallographic texture, and electrochemical characteristics, such as the oxygen evolution potential (OEP), ferri/ferrocyanide electron transfer reaction, and phenol oxidation. Polymerization of phenol and the subsequent deactivation of the anode surface was related to the active surface area of the SnO2 film. Preliminary studies on the effect of Ni-Sb and Zn-Sb co-doping of SnO2 were conducted. The addition of Ni was shown to decrease the film conductivity while maintaining the OEP. Inclusion of Zn resulted in the formation of a second phase, Zn2SnO4 , which effectively inhibited oxygen evolution causing an increase in the OEP.

  11. Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion

    DOE PAGES

    Zeng, Zhenhua; Chang, Kee-Chul; Kubal, Joseph; ...

    2017-05-08

    Design of cost-effective electrocatalysts with enhanced stability and activity is of paramount importance for the next generation of energy conversion systems, including fuel cells and electrolyzers. However, electrocatalytic materials generally improve one of these properties at the expense of the other. Here, using Density Functional Theory calculations and electrochemical surface science measurements, we explore atomic-level features of ultrathin (hydroxy)oxide films on transition metal substrates and demonstrate that these films exhibit both excellent stability and activity for electrocatalytic applications. The films adopt structures with stabilities that significantly exceed bulk Pourbaix limits, including stoichiometries not found in bulk and properties that aremore » tunable by controlling voltage, film composition, and substrate identity. Using nickel (hydroxy)oxide/Pt(111) as an example, we further show how the films enhance activity for hydrogen evolution through a bifunctional effect. Finally, the results suggest design principles for a new class of electrocatalysts with simultaneously enhanced stability and activity for energy conversion.« less

  12. Substrate temperature effect on the photophysical and microstructural properties of fluorine-doped tin oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Abideen, Ibiyemi; Gbadebo, Yusuf; Abass, Faremi

    2017-07-01

    Transparent conducting oxide of fluorine-doped tin oxide (FTO) thin films was deposited from chemical solutions of tin chloride and ammonium fluoride using streaming process for electroless and electrochemical deposition (SPEED) at substrate temperature 450, 500, and 530 °C respectively. The effect of substrate temperatures on the microstructural properties such as crystallite size, dislocation density, micro strain, volume of the unit cell, volume of the nanoparticles, number of the unit cell, bond length and the lattice constants were examined using XRD technique. Only reflections from (110) and (200) planes of tetragonal SnO2 crystal structure were obvious. The peaks are relatively weak indicating that the deposited materials constitute grains in the nano dimension. Hall measurements, which were done using van der Pauw technique, showed that the FTO films are n-type semiconductors. The most favorable electrical values were achieved for the film grown at 530 °C with low resistivity of 7.64 × 10-4Ω·cm and Hall mobility of -9.92 cm2/(V·s).

  13. Coffee polyphenols modulate whole-body substrate oxidation and suppress postprandial hyperglycaemia, hyperinsulinaemia and hyperlipidaemia.

    PubMed

    Murase, Takatoshi; Yokoi, Yuka; Misawa, Koichi; Ominami, Hideo; Suzuki, Yasuto; Shibuya, Yusuke; Hase, Tadashi

    2012-06-01

    Postprandial energy metabolism, including postprandial hyperglycaemia, hyperinsulinaemia and hyperlipidaemia, is related to the risk for developing obesity and CVD. In the present study, we examined the effects of polyphenols purified from coffee (coffee polyphenols (CPP)) on postprandial carbohydrate and lipid metabolism, and whole-body substrate oxidation in C57BL/6J mice. In mice that co-ingested CPP with a lipid-carbohydrate (sucrose or starch)-mixed emulsion, the respiratory quotient determined by indirect calorimetry was significantly lower than that in control mice, whereas there was no difference in VO2 (energy expenditure), indicating that CPP modulates postprandial energy partitioning. CPP also suppressed postprandial increases in plasma glucose, insulin, glucose-dependent insulinotropic polypeptide and TAG levels. Inhibition experiments on digestive enzymes revealed that CPP inhibits maltase and sucrase, and, to a lesser extent, pancreatic lipase in a concentration-dependent manner. Among the nine kinds of polyphenols (caffeoyl quinic acids (CQA), di-CQA, feruloyl quinic acids (FQA)) contained in CPP, di-CQA showed more potent inhibitory activity than CQA or FQA on these digestive enzymes, suggesting a predominant role of di-CQA in the regulation of postprandial energy metabolism. These results suggest that CPP modulates whole-body substrate oxidation by suppressing postprandial hyperglycaemia and hyperinsulinaemia, and these effects are mediated by inhibiting digestive enzymes.

  14. Reduced Graphene Oxide Thin Film on Conductive Substrates by Bipolar Electrochemistry

    NASA Astrophysics Data System (ADS)

    Anis, Allagui; Mohammad, Ali Abdelkareem; Hussain, Alawadhi; Ahmed, S. Elwakil

    2016-02-01

    Recent years have shown an increased interest in developing manufacturing processes for graphene and its derivatives that consider the environmental impact and large scale cost-effectiveness. However, today’s most commonly used synthesis routes still suffer from their excessive use of harsh chemicals and/or the complexity and financial cost of the process. Furthermore, the subsequent transfer of the material onto a substrate makes the overall process even more intricate and time-consuming. Here we describe a single-step, single-cell preparation procedure of metal-supported reduced graphene oxide (rGO) using the principle of bipolar electrochemistry of graphite in deionized water. Under the effect of an electric field between two stainless steel feeder electrodes, grapheme layers at the anodic pole of the wireless graphite were oxidized into colloidal dispersion of GO, which migrated electrophoretically towards the anodic side of the cell, and deposited in the form of rGO (d(002) = 0.395 nm) by van der Waals forces. For substrates chemically more susceptible to the high anodic voltage, we show that the electrochemical setup can be adapted by placing the latter between the wireless graphite and the stainless steel feeder anode. This method is straightforward, inexpensive, environmentally-friendly, and could be easily scaled up for high yield and large area production of rGO thin films.

  15. Synthesis of reduced graphene oxide/ZnO nanorods composites on graphene coated PET flexible substrates

    SciTech Connect

    Huang, Lei Guo, Guilue; Liu, Yang; Chang, Quanhong; Shi, Wangzhou

    2013-10-15

    Graphical abstract: - Highlights: • ZnO nanorods synthesized on CVD-graphene and rGO surfaces, respectively. • ZnO/CVD-graphene and ZnO/rGO form a distinctive porous 3D structure. • rGO/ZnO nanostructures possibility in energy storage devices. - Abstract: In this work, reduced graphene oxide (rGO)/ZnO nanorods composites were synthesized on graphene coated PET flexible substrates. Both chemical vapor deposition (CVD) graphene and reduced graphene oxide (rGO) films were prepared following by hydrothermal growth of vertical aligned ZnO nanorods. Reduced graphene sheets were then spun coated on the ZnO materials to form a three dimensional (3D) porous nanostructure. The morphologies of the ZnO/CVD graphene and ZnO/rGO were investigated by SEM, which shows that the ZnO nanorods grown on rGO are larger in diameters and have lower density compared with those grown on CVD graphene substrate. As a result of fact, the rough surface of nano-scale ZnO on rGO film allows rGO droplets to seep into the large voids of ZnO nanorods, then to form the rGO/ZnO hierarchical structure. By comparison of the different results, we conclude that rGO/ZnO 3D nanostructure is more desirable for the application of energy storage devices.

  16. Microstructural characteristics of tin oxide-based thin films on (0001) Al2O3 substrates: effects of substrate temperature and RF power during co-sputtering.

    PubMed

    Hwang, Sooyeon; Lee, Ju Ho; Kim, Young Yi; Yun, Myeong Goo; Lee, Kwan-Hun; Lee, Jeong Yong; Cho, Hyung Koun

    2014-12-01

    While tin oxides such as SnO and SnO2 are widely used in various applications, surprisingly, only a limited number of reports have been presented on the microstructural characteristics of tin oxide thin films grown under various growth conditions. In this paper, the effects of the substrate temperature and content of foreign Zn ion on the microstructural characteristics of tin oxide thin films grown by radio-frequency magnetron sputtering were investigated. The increase in substrate temperature induced change in the stoichiometry of the thin films from SnO(1+x) to SnO(2-x). Additionally, the phase contrast in the transmission electron microscopy image revealed that SnO(1+x) and SnO(2-x) phases were alternating in thin films and the width of each phase became narrower at high substrate temperature. The ternary zinc tin oxide thin films were deposited using the co-sputtering method. As the ZnO target power increased, the crystallinity of the thin films became poly-crystalline, and then showed improved crystallinity again with two types of phases.

  17. Investigation into the role of NaCL deposited on oxide and metal substrates in the initiation of hot corrosion

    NASA Technical Reports Server (NTRS)

    Birks, N.

    1981-01-01

    The conversion to Na2SO4 of NaCl deposited on oxide substrates was studied as a function of temperature, in air with various SO2 and H2O partial pressures. The substrate was either a pure oxide or an oxide scale growing on a metal specimen. The progress of the reaction was observed using the SEM-EDAX technique to monitor morphological effects and, as far as possible, establish the rate of the process. The physical characteristics of the interaction between salt and substrate were also examined with particular reference to physical damage to the underlying oxide, especially when this is a scale on a metal specimen. An effort was also made to establish the conditions under which liquid phases may form and the mechanisms by which they form.

  18. The amphetamine appetite suppressant saga.

    PubMed

    2004-02-01

    (1) In 1999, all amphetamine derivatives still sold in France as appetite suppressants were withdrawn from the market because of serious cardiovascular adverse effects. Sibutramine, marketed in France since 2001, is closely related to this group of drugs. (2) The adverse effects shared by these drugs are mainly neuropsychiatric (due to a psychostimulant action) and cardiovascular (arterial hypertension and tachycardia). (3) More specific cardiovascular adverse effects, such as pulmonary hypertension and severe cardiac valve damage, emerged after several years of use. The first reports date back to the 1960s. (4) The pulmonary hypertension associated with appetite suppressants can be fatal or necessitate transplantation. (5) Cardiac valve damage due to appetite suppressants is generally irreversible and sometimes requires surgery.

  19. Compact laser molecular beam epitaxy system using laser heating of substrate for oxide film growth

    NASA Astrophysics Data System (ADS)

    Ohashi, S.; Lippmaa, M.; Nakagawa, N.; Nagasawa, H.; Koinuma, H.; Kawasaki, M.

    1999-01-01

    A high-temperature, oxygen compatible, and compact laser molecular beam epitaxy (laser MBE) system has been developed. The 1.06 μm infrared light from a continuous wave neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was used to achieve a wide range and rapid control of substrate temperature in ultrahigh vacuum and at up to 1 atm oxygen pressure. The maximum usable temperature was limited to 1453 °C by the melting point of the nickel sample holder. To our knowledge, this is the highest temperature reported for pulsed laser deposition of oxide films. The efficient laser heating combined with temperature monitoring by a pyrometer and feedback control of the Nd:YAG laser power by a personal computer made it possible to regulate the substrate temperature accurately and to achieve high sample heating and cooling rates. The oxygen pressure and ablation laser triggering were also controlled by the computer. The accurate growth parameter control was combined with real-time in situ surface structure monitoring by reflection high energy electron diffraction to investigate oxide thin film growth in detail over a wide range of temperatures, oxygen partial pressures, and deposition rates. We have demonstrated the performance of this system by the fabrication of homoepitaxial SrTiO3 films as well as heteroepitaxial Sr2RuO4, and SrRuO3 films on SrTiO3 substrates at temperatures of up to 1300 °C. This temperature was high enough to change the film growth mode from layer by layer to step flow.

  20. Electrophoretic deposition on non-conducting substrates: The case of YSZ film on NiO-YSZ composite substrates for solid oxide fuel cell application

    NASA Astrophysics Data System (ADS)

    Besra, Laxmidhar; Compson, Charles; Liu, Meilin

    This paper report the results of our investigation on electrophoretic deposition (EPD) of YSZ particles from its suspension in acetylacetone onto a non-conducting NiO-YSZ substrate. In principle, it is not possible to carry out electrophoretic deposition on non-conducting substrates. In this case, the EPD of YSZ particles on a NiO-YSZ substrate was made possible through the use of an adequately porous substrate. The continuous pores in the substrates, when saturated with the solvent, helped in establishing a "conductive path" between the electrode and the particles in suspension. Deposition rate was found to increase with increasing substrate porosity up to a certain value. The higher the applied voltage, the faster the deposition. For a given applied voltage, there exists a threshold porosity value below which EPD becomes practically impossible. An SOFC constructed on bi-layers of NiO-YSZ/YSZ with YSZ layer thickness of 40 μm exhibited an open circuit voltage (OCV) of 0.97 V at 650 °C and peak power density of 263.8 mW cm -2 at 850 °C when tested with H 2 as fuel and ambient air as oxidant.

  1. Organic molecules on metal and oxide semiconductor substrates: Adsorption behavior and electronic energy level alignment

    NASA Astrophysics Data System (ADS)

    Ruggieri, Charles M.

    Modern devices such as organic light emitting diodes use organic/oxide and organic/metal interfaces for crucial processes such as charge injection and charge transfer. Understanding fundamental physical processes occurring at these interfaces is essential to improving device performance. The ultimate goal of studying such interfaces is to form a predictive model of interfacial interactions, which has not yet been established. To this end, this thesis focuses on obtaining a better understanding of fundamental physical interactions governing molecular self-assembly and electronic energy level alignment at organic/metal and organic/oxide interfaces. This is accomplished by investigating both the molecular adsorption geometry using scanning tunneling microscopy, as well as the electronic structure at the interface using direct and inverse photoemission spectroscopy, and analyzing the results in the context of first principles electronic structure calculations. First, we study the adsorption geometry of zinc tetraphenylporphyrin (ZnTPP) molecules on three noble metal surfaces: Au(111), Ag(111), and Ag(100). These surfaces were chosen to systematically compare the molecular self-assembly and adsorption behavior on two metals of the same surface symmetry and two surface symmetries of one metal. From this investigation, we improve the understanding of self-assembly at organic/metal interfaces and the relative strengths of competing intermolecular and molecule-substrate interactions that influence molecular adsorption geometry. We then investigate the electronic structure of the ZnTPP/Au(111), Ag(111), and Ag(100) interfaces as examples of weakly-interacting systems. We compare these cases to ZnTPP on TiO2(110), a wide-bandgap oxide semiconductor, and explain the intermolecular and molecule-substrate interactions that determine the electronic energy level alignment at the interface. Finally we study tetracyanoquinodimethane (TCNQ), a strong electron acceptor, on TiO2

  2. Lipid oxidation in minced beef meat with added Krebs cycle substrates to stabilise colour.

    PubMed

    Yi, G; Grabež, V; Bjelanovic, M; Slinde, E; Olsen, K; Langsrud, O; Phung, V T; Haug, A; Oostindjer, M; Egelandsdal, B

    2015-11-15

    Krebs cycle substrates (KCS) can stabilise the colour of packaged meat by oxygen reduction. This study tested whether this reduction releases reactive oxygen species that may lead to lipid oxidation in minced meat under two different storage conditions. KCS combinations of succinate and glutamate increased peroxide forming potential (PFP, 1.18-1.32 mmol peroxides/kg mince) and thiobarbituric acid reactive substances (TBARS, 0.30-0.38 mg malondialdehyde (MDA) equivalents/kg mince) under low oxygen storage conditions. Both succinate and glutamate were metabolised. Moreover, under high oxygen (75%) storage conditions, KCS combinations of glutamate, citrate and malate increased PFP (from 1.22 to 1.29 mmol peroxides/kg) and TBARS (from 0.37 to 0.40 mg MDA equivalents/kg mince). Only glutamate was metabolised. The KCS combinations that were added to stabilise colour were metabolised during storage, and acted as pro-oxidants that promoted lipid oxidation in both high and low oxygen conditions. Copyright © 2015. Published by Elsevier Ltd.

  3. L-propionylcarnitine enhancement of substrate oxidation and mitochondrial respiration in the diabetic rat heart.

    PubMed

    Broderick, T L; Haloftis, G; Paulson, D J

    1996-02-01

    This study was designed to determine whether L-propionylcarnitine (LPC) treatment is beneficial in preventing the depression in cardiac function from occurring in chronic diabetes. Diabetes was induced by tail vein injection of streptozotocin (60 mg/kg). Two weeks later, treatment was initiated by supplementing the drinking water with LPC at the concentration of 1 mg/ml. Following a 6-week treatment period, myocardial substrate utilization and cardiac function were determined in isolated working hearts. In a separate group of hearts, the effects of LPC treatment on mitochondrial respiration were also determined. The results showed that diabetic hearts, compared with those of controls, oxidized glucose at a much lower rate, but oxidized palmitate at a similar rate. The effect of diabetes compared a controls was also characterized by a pronounced decrease in cardiac pump function. Following treatment with LPC, however, there was a marked increase in the rates at which glucose and palmitate were oxidized by diabetic hearts, and a significant improvement in cardiac pump performance. In addition, the depression of cardiac mitochondrial respiration seen in diabetes was prevented with LPC treatment. Our findings show that the depression of cardiac pump function by diabetes can be prevented with chronic LPC treatment. Possible mechanisms for this beneficial effect include an energetically favorable shift in glucose and fatty acid metabolism.

  4. Thiamine biosensor based on oxidative trapping of enzyme-substrate intermediate.

    PubMed

    Halma, Matilte; Doumèche, Bastien; Hecquet, Laurence; Prévot, Vanessa; Mousty, Christine; Charmantray, Franck

    2017-01-15

    In the present work, we describe a new thiamine amperometric biosensor based on thiamine pyrophosphate (ThDP)-dependent transketolase (TK)-catalyzed reaction, followed by the oxidative trapping of TK intermediate α,β-dihydroxyethylthiamine diphosphate (DHEThDP) within the enzymatic active site. For the biosensor design purpose, TK from Escherichia coli (TKec) was immobilized in Mg2Al-NO3 Layered Double Hydroxides (LDH) and the electrochemical detection was achieved with the TKec/LDH modified glassy carbon electrode (GCE). The transduction process was based on the ability of Fe(CN)6(3-) to oxidize DHEThDP to glycolic acid along with ThDP regeneration. The released Fe(CN)6(4-) was re-oxidized at +0.5V vs Ag-AgCl and the reaction was followed by chronoamperometry. The TKec/LDH/GCE biosensor was optimized using the best TK donor substrates, namely l-erythrulose and d-fructose-6-phosphate. ThDP was assayed with great sensitivity (3831mAM(-1)cm(-2)) over 20-400nM linear range.

  5. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions

    PubMed Central

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl‐Heinz

    2012-01-01

    Summary Due to its high global warming potential, nitrous oxide (N2O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N2O production. In this study, two lab‐scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N2O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH4+) and nitrite (NO2‐) led to increased N2O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N2O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments. PMID:22296600

  6. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions.

    PubMed

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl-Heinz

    2012-05-01

    Due to its high global warming potential, nitrous oxide (N(2)O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N(2)O production. In this study, two lab-scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N(2)O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH(4)(+)) and nitrite (NO(2)(-)) led to increased N(2)O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N(2)O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments.

  7. Iron(II) Complexes Supported by Sulfonamido Tripodal Ligands: Endogenous versus Exogenous Substrate Oxidation

    PubMed Central

    2015-01-01

    High-valent iron species are known to act as powerful oxidants in both natural and synthetic systems. While biological enzymes have evolved to prevent self-oxidation by these highly reactive species, development of organic ligand frameworks that are capable of supporting a high-valent iron center remains a challenge in synthetic chemistry. We describe here the reactivity of an Fe(II) complex that is supported by a tripodal sulfonamide ligand with both dioxygen and an oxygen-atom transfer reagent, 4-methylmorpholine-N-oxide (NMO). An Fe(III)–hydroxide complex is obtained from reaction with dioxygen, while NMO gives an Fe(III)–alkoxide product resulting from activation of a C–H bond of the ligand. Inclusion of Ca2+ ions in the reaction with NMO prevented this ligand activation and resulted in isolation of an Fe(III)–hydroxide complex in which the Ca2+ ion is coordinated to the tripodal sulfonamide ligand and the hydroxo ligand. Modification of the ligand allowed the Fe(III)–hydroxide complex to be isolated from NMO in the absence of Ca2+ ions, and a C–H bond of an external substrate could be activated during the reaction. This study highlights the importance of robust ligand design in the development of synthetic catalysts that utilize a high-valent iron center. PMID:25264932

  8. Effect of substrates on structural and optical properties of tin oxide (SnO2) nanostructures.

    PubMed

    Johari, Anima; Bhatnagar, M C; Rana, Vikas

    2012-10-01

    We report on controlling the morphology of tin oxide (SnO2) nanostructures and the study of the effect of surface morphology on structural and optical properties of SnO2 nanostuctures. In present work, Tin oxide (SnO2) nanostructures such as nanowires and nanorods have been grown by thermal evaporation of SnO2 powder. To demonstrate the effect of different substrates on the morphology of grown SnO2 nanostructures, the thermal evaporation of SnO2 powder was carried out on Si and gold catalyzed Si (Au/Si) substrates. The scanning-electron-microscopic analysis shows the growth of SnO2 nanowires on Au/Si substrate and growth of SnO2 nanorods on Si substrate. The scanning-and transmission-electron-microscopic analysis shows that the diameter of SnO2 nanowires and nanorods are about 70 nm and 95 nm respectively and their length is about 80 microm and 30 microm respectively. The vapor-liquid-solid (VLS) growth of SnO2 nanowires and vapor-solid (VS) growth of SnO2 nanorods is also confirmed with the help of TEM and EDX spectra. The synthesized SnO2 nanowires show tetragonal rutile structure of SnO2, whereas SnO2 nanorods show tetragonal rutile as well as cassiterite structure of SnO2. UV-Vis absorption spectra showed the optical band gaps of 4.1 eV and 3.8 eV for the SnO2 nanowires and the nanorods, respectively. The SnO2 nanowires and nanorods show photoluminescence with broad emission peaks centred at around 600 nm and 580 nm respectively. Raman spectra of SnO2 nanowires shows three Raman shifts (478, 632, 773 cm(-1)) corresponding to Eg, A1g and B2g vibration modes, whereas in Raman spectra of SnO2 nanorods, A1g peak is dramatically reduced and the B2g mode is totally quenched.

  9. Central regulation of sodium appetite.

    PubMed

    Geerling, Joel C; Loewy, Arthur D

    2008-02-01

    Sodium appetite, the behavioural drive to ingest salt, is stimulated by prolonged physiological sodium deficiency in many animal species. The same neural mechanisms that are responsible for sodium appetite in laboratory animals may influence human behaviour as well, with particular relevance to the dietary salt intake of patients with diseases such as heart failure, renal failure, liver failure and salt-sensitive hypertension. Since the original experimental work of Curt Richter in the 1930s, much has been learned about the regulation of salt-ingestive behaviour. Here, we review data from physiology, pharmacology, neuroanatomy and neurobehavioural investigations into the stimulatory and inhibitory signals that regulate sodium appetite. A rudimentary framework is proposed for the brain circuits that integrate peripheral information representing the need for sodium with neural signals for the gustatory detection of salt in order to drive a motivated ingestive response. Based on this model, areas of remaining uncertainty are highlighted where future information would allow a more detailed understanding of the neural circuitry responsible for sodium appetite.

  10. Human plasma platelet-activating factor acetylhydrolase. Oxidatively fragmented phospholipids as substrates.

    PubMed

    Stremler, K E; Stafforini, D M; Prescott, S M; McIntyre, T M

    1991-06-15

    Human plasma platelet-activating factor (PAF) acetylhydrolase hydrolyzes the sn-2 acetyl residue of PAF, but not phospholipids with long chain sn-2 residues. It is associated with low density lipoprotein (LDL) particles, and is the LDL-associated phospholipase A2 activity that specifically degrades oxidatively damaged phospholipids (Stremler, K. E., Stafforini, D. M., Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M. (1989) J. Biol. Chem. 264, 5331-5334). To identify potential substrates, we synthesized phosphatidylcholines with sn-2 residues from two to nine carbon atoms long, and found the V/k ratio decreased as the sn-2 residue was lengthened: the C5 homolog was 50%, the C6 20%, while the C9 homolog was only 2% as efficient as PAF. However, the presence of an omega-oxo function radically affected hydrolysis: the half-life of the sn-2 9-aldehydic homolog was identical to that of PAF. We oxidized [2-arachidonoyl]phosphatidylcholine and isolated a number of more polar phosphatidylcholines. We treated these with phospholipase C, derivatized the resulting diglycerides for gas chromatographic/mass spectroscopic analysis, and found a number of diglycerides where the m/z ratio was consistent with a series of short to medium length sn-2 residues. We treated the polar phosphatidylcholines with acetylhydrolase and derivatized the products for analysis by gas chromatography/mass spectroscopy. The liberated residues were more polar than straight chain standards and had m/z ratios from 129 to 296, consistent with short to medium chain residues. Therefore, oxidation fragments the sn-2 residue of phospholipids, and the acetylhydrolase specifically degrades such oxidatively fragmented phospholipids.

  11. The piezoelectric effect on zinc oxide nano on polyimide substrate by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Idris, A. A. M.; Arsat, R.; Ahmad, M. K.

    2017-03-01

    This paper reports the effect of the deposition conditions crystal quality and film thickness of the Zinc Oxide (ZnO) film on the polyimide substrate. The ZnO film has been deposited by using the spray pyrolysis technique. This technique needs Zinc Nitrate Hexahydrate with the mixture of deionized water. At 350 °C, a higher c-axis preferred orientation at peak 0002 crystal orientation, which is critical for piezoelectric applications in ZnO thin films are obtained with the thickness of thin film is 300ηm. It also produces the 204.8 Hz of frequency which is higher than other frequency obtained by lower growth temperature.

  12. Micropatterning of mammalian cells on indium tin oxide substrates using ion implantation.

    PubMed

    Hwang, In-Tae; Ahn, Mi-Young; Jung, Chan-Hee; Choi, Jae-Hak; Shin, Kwanwoo

    2013-05-01

    In this study, a simple surface patterning method to create micropatterns of mammalian cells on indium tin oxide (ITO) substrates was developed using ion implantation. Thin polystyrene (PS) films spin-coated on an ITO glass was selectively implanted with accelerated proton ions through a pattern mask and then developed to generate PS micropatterns. Well-organized negative PS patterns were generated on the ITO glass. The results of the in vitro cell culture on the PS-patterned ITO glass with two types of cancer cell lines revealed the formation of well-defined cell patterns through a selective cell adhesion and proliferation only onto the ITO regions separated by PS regions. This facile method for cell patterning may be used to create a desired platform for cellular device applications, such as biosensors and cell microarrays.

  13. Oxidative potential of some endophytic fungi using 1-indanone as a substrate.

    PubMed

    Fill, Taicia Pacheco; da Silva, Jose Vinicius; de Oliveira, Kleber Thiago; da Silva, Bianca Ferreira; Rodrigues-Fo, Edson

    2012-06-01

    The oxidative potential of the fungus Penicillium brasilianum, a strain isolated as an endophyte from a Meliaceae plant (Melia azedarach), was investigated using 1-indanone as a substrate to track the production of monooxygenases. The fungus produced the dihydrocoumarin from 1-indanone with the classical Baeyer-Villiger reaction regiochemistry, and (-)-(R)-3-hydroxy-1-indanone with 78% ee. Minor compounds resulting from lipase and SAM activities were also detected. The biotransformation procedures were also applied to a collection of Penicillium and Aspergillus fungi obtained from M. azedarach and Murraya paniculata. The results showed that Baeyer-Villiger were mostly active in fungi isolated from M. azedarach. Almost all of the fungi tested produced 3-hydroxy-1-indanone..

  14. Click chemistry-based functionalization on non-oxidized silicon substrates.

    PubMed

    Li, Yan; Cai, Chengzhi

    2011-10-04

    Copper-catalyzed azide-alkyne cycloaddition (CuAAC), combined with the chemical stability of the Si-C-bound organic layer, serves as an efficient tool for the modification of silicon substrates, particularly for the immobilization of complex biomolecules. This review covers recent advances in the preparation of alkynyl- or azido-terminated "clickable" platforms on non-oxidized silicon and their further derivatization by means of the CuAAC reaction. The exploitation of these "click"-functionalized organic thin films as model surfaces to study many biological events was also addressed, as they are directly relevant to the on-going effort of creating silicon-based molecular electronics and chemical/biomolecular sensors.

  15. The oxidation of hydrophobic aromatic substrates using a variant of the P450 monooxygenase CYP101B1.

    PubMed

    Sarkar, Md Raihan; Lee, Joel H Z; Bell, Stephen Graham

    2017-09-03

    The cytochrome P450 monooxygenase CYP101B1, from a Novosphingobium bacterium is able to bind and oxidise aromatic substrates but at a lower activity and efficiency compared to norisoprenoids and monoterpenoid esters. Histidine 85 of CYP101B1 aligns with tyrosine 96 of CYP101A1, which in this enzyme forms the only hydrophilic interaction with its substrate, camphor. The histidine residue of CYP101B1 was modified to a phenylalanine with the aim of improving the activity of the enzyme for hydrophobic substrates. The H85F mutant lowered the binding affinity and activity of the enzyme for β-ionone and altered the oxidation selectivity. This variant also showed enhanced affinity and activity towards alkylbenzenes, styrenes and methylnaphthalenes. For example the product formation rate of acenaphthene oxidation was improved 6-fold to 245 nmol.nmol-CYP-1.min-1. Certain disubstituted naphthalenes and substrates such as phenylcyclohexane, and biphenyls, were oxidised with lower activity by the H85F variant. Variants at H85 (A and G) designed to introduce additional space in the active site to accommodate these larger substrates did not engender improvements in the oxidation activity. As the H85F mutant of CYP101B1 improved the oxidation of hydrophobic substrates this residue is likely to be in the substrate binding pocket or the access channel of the enzyme. The side chain of the histidine may interact with the carbonyl groups of the favoured norisoprenoid substrates of CYP101B1. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances.

    PubMed Central

    Flatt, J P; Ravussin, E; Acheson, K J; Jéquier, E

    1985-01-01

    To study the effect of dietary fat on postprandial substrate utilization and nutrient balance, respiratory exchange was determined in seven young men for 1 h before and 9 h after the ingestion of one of three different breakfasts: i.e., bread, jam, and dried meat (482 kcal: 27% protein, 62% carbohydrate, and 11% fat); bread, jam, and dried meat plus 50 g of margarine containing long-chain triglycerides (LCT); or bread, jam, and dried meat plus 40 g medium-chain triglycerides (MCT) and 10 g LCT margarine (858 kcal: 15% protein, 35% carbohydrate, and 50% fat). Plasma glucose concentrations peaked 45 min after the start of the meals. When compared with the low fat meal, the LCT margarine supplement had no effect at any time on circulating glucose and insulin concentrations, nor on the respiratory quotient. When MCTs were consumed, plasma glucose and insulin concentrations remained lower and plasma FFA concentrations higher during the first 2 h. 9 h after the breakfasts, the amounts of substrates oxidized were similar in each case, i.e., approximately 320, 355, and 125 kcal for carbohydrate, fat, and protein, respectively. This resulted in comparable carbohydrate (mean +/- SD = -22 +/- 32, -22 +/- 37, and -24 +/- 22 kcal) and protein balances (-7 +/- 9, +7 +/- 7, and -8 +/- 11 kcal) after the low fat, LCT- and MCT-supplemented test meals, respectively. However, after the low fat meal, the lipid balance was negative (-287 +/- 60 kcal), which differed significantly (P less than 0.001) from the fat balances after the LCT- and MCT-supplemented meals, i.e., +60 +/- 33 and +57 +/- 25 kcal, respectively. The results demonstrate that the rates of fat and of carbohydrate oxidation are not influenced by the fat content of a meal. PMID:3900133

  17. Intracellular reactive oxidative stress, cell proliferation and apoptosis of Schwann cells on carbon nanofibrous substrates.

    PubMed

    Jain, Shilpee; Webster, Thomas J; Sharma, Ashutosh; Basu, Bikramjit

    2013-07-01

    Despite considerable research to develop carbon based materials for biomedical applications, the toxicity of carbon remains a major concern. In order to address this issue as well as to investigate the cell fate processes of neural cells from the perspective of neural tissue engineering applications, the in vitro cytocompatibility of polyacrylonitrile (PAN) derived continuous carbon nanofibers and PAN derived carbon thin films were investigated both quantitatively and qualitatively using in vitro biochemical assays followed by extensive flow cytometry analysis. The experimental results of Schwann cell fate, i.e. cell proliferation, cell metabolic activity and cell apoptosis on amorphous carbon substrates are discussed in reference to the time dependent evolution of intracellular oxidative stress. Apart from providing evidence that an electrospun carbon nanofibrous substrate can physically guide the cultured Schwann cells, this study suggested that continuous carbon nanofibers and amorphous carbon films are not cytotoxic in vitro and do not significantly induce apoptosis of Schwann cells, but in fact even facilitate their proliferation and growth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Substrate-specific interactions with the heme-bound oxygen molecule of nitric-oxide synthase.

    PubMed

    Chartier, François J M; Couture, Manon

    2007-07-20

    We report the characterization by resonance Raman spectroscopy of the oxygenated complex (Fe(II)O(2)) of nitric-oxide synthases of Staphylococcus aureus (saNOS) and Bacillus subtilis (bsNOS) saturated with N(omega)-hydroxy-l-arginine. The frequencies of the nu(Fe-O) and nu(O-O) modes were 530 and 1135 cm(-), respectively, in both the presence and absence of tetrahydrobiopterin. On the basis of a comparison of these frequencies with those of saNOS and bsNOS saturated with l-arginine (nu(Fe-O) at 517 cm(-1) and nu(O-O) at 1123 cm(-1)) and those of substrate-free saNOS (nu(Fe-O) at 517 and nu(O-O) at 1135 cm(-1)) (Chartier, F. J. M., Blais, S. P., and Couture, M. (2006) J. Biol. Chem. 281, 9953-9962), we propose two models that account for the frequency shift of nu(Fe-O) (but not nu(O-O)) upon N(omega)-hydroxy-l-arginine binding as well as the frequency shift of nu(O-O) (but not nu(Fe-O)) upon l-arginine binding. The implications of these substrate-specific interactions with respect to catalysis by NOSs are discussed.

  19. Laser scribing of indium tin oxide (ITO) thin films deposited on various substrates for touch panels

    NASA Astrophysics Data System (ADS)

    Tseng, Shih-Feng; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Chiang, Donyau; Chen, Ming-Fei; Chou, Chang-Pin

    2010-12-01

    In this study, a Nd:YAG laser with wavelength of 1064 nm is used to scribe the indium tin oxide (ITO) thin films coated on three types of substrate materials, i.e. soda-lime glass, polycarbonate (PC), and cyclic-olefin-copolymer (COC) materials with thickness of 20 nm, 30 nm, and 20 nm, respectively. The effect of exposure time adjusted from 10 μs to 100 μs on the ablated mark width, depth, and electrical properties of the scribed film was investigated. The maximum laser power of 2.2 W was used to scribe these thin films. In addition, the surface morphology, surface reaction, surface roughness, optical properties, and electrical conductivity properties were measured by a scanning electron microscope, a three-dimensional confocal laser scanning microscope, an atomic force microscope, and a four-point probe. The measured results of surface morphology show that the residual ITO layer was produced on the scribed path with the laser exposure time at 10 μs and 20 μs. The better edge qualities of the scribed lines can be obtained when the exposure time extends from 30 μs to 60 μs. When the laser exposure time is longer than 60 μs, the partially burned areas of the scribed thin films on PC and COC substrates are observed. Moreover, the isolated line width and resistivity values increase when the laser exposure time increases.

  20. Effect of pH, substrate and free nitrous acid concentrations on ammonium oxidation rate.

    PubMed

    Jiménez, E; Giménez, J B; Seco, A; Ferrer, J; Serralta, J

    2012-11-01

    Respirometric techniques have been used to determine the effect of pH, free nitrous acid (FNA) and substrate concentration on the activity of the ammonium oxidizing bacteria (AOB) present in an activated sludge reactor. With this aim, bacterial activity has been measured at different pH values (ranging from 6.2 to 9.7), total ammonium nitrogen concentrations (ranging from 0.1 to 10 mg TAN L(-1)) and total nitrite concentrations (ranging from 3 to 43 mg NO(2)-NL(-1)). According to the results obtained, the most appropriate kinetic expression for the growth of AOB in activated sludge reactors has been established. Substrate half saturation constant and FNA and pH inhibition constants have been obtained by adjusting model predictions to experimental results. Different kinetic parameter values and different Monod terms should be used to model the growth of AOB in activated sludge processes and SHARON reactors due to the different AOB species that predominate in both systems.

  1. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate

    NASA Astrophysics Data System (ADS)

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-12-01

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 107, a high saturation mobility (μsat) of 66.7 cm2/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays.

  2. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate.

    PubMed

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-12-12

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 10(7), a high saturation mobility (μsat) of 66.7 cm(2)/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays.

  3. Localized Plasmon-Stimulated Nanochemistry of Graphene Oxide on a SERS Substrate.

    PubMed

    Ramanauskaite, Lina; Xu, Huizhong; Snitka, Valentinas

    2016-03-16

    In recent years, there has been remarkable progress in the reduction and functionalization of graphene oxide (GO) using nanoparticles and high-energy optical photons. Most of these reactions are carried out in solutions, whereas the local modification of GO on solid substrates still remains a challenge. In this work, we demonstrate the local reduction of GO and its further destruction, leading to the synthesis of polyaromatic hydrocarbons (PAHs) stimulated by localized surface plasmons (LSPs). The reduction of GO and the synthesis of PAHs have been carried out on a substrate designed for surface-enhanced Raman spectroscopy (SERS). We found that LSPs initiate the destruction of water molecules entrapped in the nanogaps between silver nanoparticles after the deposition of GO from the aqueous suspension. It was demonstrated that OH radicals, as a result of water decomposition, initiate the reduction of GO, leading to the synthesis of PAHs. The reactions have been observed in real time by using SERS. The measurement of current-voltage (I-V) characteristics through conductive atomic force microscopy (AFM), recorded in an LSP-stimulated area, have shown the increased electrical conductivity (more than ten times) compared with the conductivity of GO. The synthesis of new compounds in the LSP-stimulated area has been confirmed by the appearance of new peaks in the Raman spectra and nonlinear I-V characteristics typical for PAHs. We show that the used method allows the local modification of electrical properties of GO and controlled nanopattering of organic compounds on the surface.

  4. THz behavior of indium-tin-oxide films on p-Si substrates

    SciTech Connect

    Brown, E. R. Zhang, W-D.; Chen, H.; Mearini, G. T.

    2015-08-31

    This paper reports broadband THz free-space transmission measurements and modeling of indium-tin-oxide (ITO) thin films on p-doped Si substrates. Two such samples having ITO thickness of 50 and 100 nm, and DC sheet conductance 260 and 56 Ω/sq, respectively, were characterized between 0.2 and 1.2 THz using a frequency-domain spectrometer. The 50-nm-film sample displayed very flat transmittance over the 1-THz bandwidth, suggesting it is close to the critical THz sheet conductance that suppresses multi-pass interference in the substrate. An accurate transmission-line-based equivalent circuit is developed to explain the effect, and then used to show that the net reflectivity and absorptivity necessarily oscillate with frequency. This has important implications for the use of thin-film metallic coupling layers on THz components and devices, such as detectors and sources. Consistent with previous reported results, the sheet conductance that best fits the THz transmittance data is roughly 50% higher than the DC values for both samples.

  5. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate

    PubMed Central

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-01-01

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 107, a high saturation mobility (μsat) of 66.7 cm2/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays. PMID:27941915

  6. Effects of hydrolysed casein, intact casein and intact whey protein on energy expenditure and appetite regulation: a randomised, controlled, cross-over study.

    PubMed

    Bendtsen, Line Q; Lorenzen, Janne K; Gomes, Sisse; Liaset, Bjørn; Holst, Jens J; Ritz, Christian; Reitelseder, Søren; Sjödin, Anders; Astrup, Arne

    2014-10-28

    Casein and whey differ in amino acid composition and in the rate of absorption; however, the absorption rate of casein can be increased to mimic that of whey by exogenous hydrolysis. The objective of the present study was to compare the effects of hydrolysed casein (HC), intact casein (IC) and intact whey (IW) on energy expenditure (EE) and appetite regulation, and thereby to investigate the influence of amino acid composition and the rate of absorption. In the present randomised cross-over study, twenty-four overweight and moderately obese young men and women consumed three isoenergetic dietary treatments that varied in protein source. The study was conducted in a respiration chamber, where EE, substrate oxidation and subjective appetite were measured over 24 h at three independent visits. Moreover, blood and urine samples were collected from the participants. The results showed no differences in 24 h and postprandial EE or appetite regulation. However, lipid oxidation, estimated from the respiratory quotient (RQ), was found to be higher after consumption of IW than after consumption of HC during daytime (P= 0·014) as well as during the time after the breakfast meal (P= 0·008) when the food was provided. Likewise, NEFA concentrations were found to be higher after consumption of IW than after consumption of HC and IC (P< 0·01). However, there was no overall difference in the concentration of insulin or glucagon-like peptide 1. In conclusion, dietary treatments when served as high-protein mixed meals induced similar effects on EE and appetite regulation, except for lipid oxidation, where RQ values suggest that it is higher after consumption of IW than after consumption of HC.

  7. Flexible electrochromics: magnetron sputtered tungsten oxide (WO3-x) thin films on Lexan (optically transparent polycarbonate) substrates

    NASA Astrophysics Data System (ADS)

    Uday Kumar, K.; Murali, Dhanya S.; Subrahmanyam, A.

    2015-06-01

    Tungsten oxide (WO3-x) based electrochromics on flexible substrates is a topic of recent interest. The present communication reports the electrochromic properties of WO3-x thin films grown on lexan, an optically transparent polycarbonate thermoplastic substrate. The WO3-x films are prepared at room temperature (300 K) by the reactive DC magnetron sputtering technique. The physical properties of metal oxide thin films are known to be controlled by the oxygen stoichiometry of the film. In the present work, the WO3-x thin films are prepared by varying the oxygen flow rates. All the WO3-x thin films are amorphous in nature. The electrochromic performance of the WO3-x thin films is evaluated by cyclic voltammetry measurements on tin doped indium oxide (ITO) coated lexan and glass substrates. The optical band gap of WO3-x thin films grown on lexan substrates (at any given oxygen flow rate) is significantly higher than those grown on glass substrates. The coloration efficiency of WO3-x thin films (at an oxygen flow rate of 10 sccm) on lexan substrates is: 143.9 cm2 C-1 which is higher compared to that grown on glass: 90.4 cm2 C-1.

  8. Periodate-oxidized AMP as a substrate, an inhibitor and an affinity label of human placental alkaline phosphatase.

    PubMed Central

    Chang, G G; Wang, S C; Pan, F

    1981-01-01

    Human placental alkaline phosphatase (EC 3.1.3.1) was inactivated by periodate-oxidized AMP. The inactivation showed saturation kinetics and could be partially prevented by the substrate AMP or the product inhibitor inorganic phosphate. Oxidized AMP was itself a substrate for this enzyme, with an apparent Km of 0.67 mM. The hydrolytic products of oxidized AMP were identified as oxidized adenosine hemiacetals. Oxidized AMP was also found to be a non-competitive inhibitor with respect to p-nitrophenyl phosphate, with identical Kis and Kii values of 0.15 mM. Our results indicate that oxidized AMP could combine with the enzyme to form a binary complex, followed by reaction with the proximal lysyl amino group to yield a Schiff base. The latter was reduced with NaBH4 and identified by t.l.c. The incorporation of only 1.5 molecules of oxidized [14C]AMP per enzyme subunit resulted in a complete inactivation of the enzyme. The modified enzyme showed higher apparent Km for the substrates and higher Ki for inorganic phosphate, but lower [32P]phosphate incorporation, than the native enzyme. These results support the conclusion that a lysine residue is involved in the phosphate-binding site of human placental alkaline phosphatase. PMID:7340804

  9. Parametric investigation of substrate temperatures on the properties of Zinc oxide deposited over a flexible polymeric substrate via spray technique

    NASA Astrophysics Data System (ADS)

    Rajagopalan, P.; Gagrani, Rohit; Nakamura, Daisuke; Okada, Tatsuo; Singh, Vipul; Palani, I. A.

    2016-09-01

    Here we report the influence of substrate temperature (300-500 °C) on the deposition and growth of ZnO over a Flexible polyimide film. Owing to its simplicity, large area deposition capability and Cost effectivity Spray Pyrolysis technique was used. We have modified the conventional process of Spray pyrolysis by spraying for shorter durations and repeating the process which in turn reduced the Island formation of ZnO. Moreover, this technique helped in maintaining the constant temperature and uniformity during the deposition as prolonged spraying reduces the temperature of the heating plate drastically. Photoluminescence (PL) reveals that at 350 and 400° C the defect have reduced. XRD reveals the crystallinity and Impurities present. FE-SEM reveals the structure morphology changes with the change in the substrate temperature. TGA was done to ensure that substrate does not undergoes dissociation at high temperature. It was observed at the film deposited at 400 °C was found to be more uniform, defect free and crystalline. Hence, IV characterization of the film deposited at 400 °C was done which showed good rectification behaviour of the Schottky diodes.

  10. Nanoclusters and Nanolines: the Effect of Molybdenum Oxide Substrate Stoichiometry on Iron Self-assembly.

    PubMed

    Lübben, Olaf; Krasnikov, Sergey; Walls, Brian; Sergeeva, Natalia; Murphy, Barry; Chaika, Alexander; Bozhko, Sergei; Shvets, Igor

    2017-04-04

    The growth of Fe nanostructures on the stoichiometric MoO2/Mo(110) and oxygen-rich MoO2+x/Mo(110) surfaces has been studied using low temperature scanning tunneling microscopy (STM) and density functional theory calculations. STM results indicate that at low coverage Fe nucleates on the MoO2/Mo(110) surface, forming small, well-ordered nanoclusters of uniform size, each consisting of 5 Fe atoms. These 5-atom clusters can agglomerate into larger nanostructures reflecting the substrate geometry but retain their individual character within the structure. Linear Fe nanocluster arrays are formed on the MoO2/Mo(110) surface at room temperature when the surface coverage is greater than 0.6 monolayers. These nanocluster arrays follow the direction of the oxide rows of the strained MoO2/Mo(110) surface. Slightly altering the preparation procedure of MoO2/Mo(110) leads to the presence of oxygen adatoms on this surface. Fe deposition onto the oxygen-rich MoO2+x/Mo(110) surface results in elongated nanostructures that reach up to 24 nm in length. These nanolines have a zigzag shape and are likely composed of an iron oxide formed upon reaction with the oxygen-rich surface.

  11. Low-cost flexible supercapacitors based on laser reduced graphene oxide supported on polyethylene terephthalate substrate

    NASA Astrophysics Data System (ADS)

    Ghoniem, Engy; Mori, Shinsuke; Abdel-Moniem, Ahmed

    2016-08-01

    A controlled high powered CO2 laser system is used to reduce and pattern graphene oxide (GO) film supported onto a flexible polyethylene terephthalate (PET) substrate. The laser reduced graphene oxide (rGO) film is characterized and evaluated electrochemically in the absence and presence of an overlying anodicaly deposited thin film of pseuodcapactive MnO2 as electrodes for supercapacitor applications using aqueous electrolyte. The laser treatment of the GO film leads to an overlapped structure of defective multi-layer rGO sheets with an electrical conductivity of 273 S m-1. The rGO and MnO2/rGO electrodes exhibit specific capacitance in the range of 82-107 and 172-368 Fg-1 at applied current range of 0.1-1.0 mA cm-2 and retain 98 and 95% of their initial capacitances after 2000 cycles at a current density of 1.0 mA cm-2, respectively. Also, the rGO is assigned as an electrode material for flexible conventionally stacked and interdigitated in-plane supercapacitor structures using gel electrolyte. Three electrode architectures of 2, 4, and 6 sub-electrodes are studied for the interdigital in-plane design. The device with interdigital 6 sub-electrodes architecture I-PS(6) delivers power density of 537.1 Wcm-3 and an energy density of 0.45 mWh cm-3.

  12. Thermal stability studies of plasma sprayed yttrium oxide coatings deposited on pure tantalum substrate

    NASA Astrophysics Data System (ADS)

    Nagaraj, A.; Anupama, P.; Mukherjee, Jaya; Sreekumar, K. P.; Satpute, R. U.; Padmanabhan, P. V. A.; Gantayet, L. M.

    2010-02-01

    Plasma sprayed Yttrium oxide is used for coating of crucibles and moulds that are used at high temperature to handle highly reactive molten metals like uranium, titanium, chromium, and beryllium. The alloy bond layer is severely attacked by the molten metal. This commonly used layer contributes to the impurity addition to the pure liquid metal. Yttrium oxide was deposited on tantalum substrates (25 mm × 10mm × 1mm thk and 40 mm × 8mm × 1mm thk) by atmospheric plasma spray technique with out any bond coat using optimized coating parameters. Resistance to thermal shock was evaluated by subjecting the coated specimens, to controlled heating and cooling cycles between 300K to 1600K in an induction furnace in argon atmosphere having <= 0.1ppm of oxygen. The experiments were designed to examine the sample tokens by both destructive and non-destructive techniques, after a predetermined number of thermal cycles. The results upto 24 thermal cycles of 25 mm × 10mm × 1mm thk coupons and upto 6 cycles of 40 mm × 8mm × 1mm thk coupons are discussed. The coatings produced with the optimized parameters were found to exhibit excellent thermal shock resistance.

  13. Transparent bipolar resistive switching memory on a flexible substrate with indium-zinc-oxide electrodes

    NASA Astrophysics Data System (ADS)

    Yeom, Seung-Won; Ha, Hyeon Jun; Park, Junsu; Shim, Jae Won; Ju, Byeong-Kwon

    2016-12-01

    We fabricated transparent indium zinc oxide (IZO)/TiO2/IZO devices on flexible polyethylene phthalate (PET) substrates. These devices demonstrate bipolar resistive switching behavior, exhibit a transmittance greater than 80 % for visible light, and have stable resistive switching properties, including long retention and good endurance. In addition, the devices were investigated based on their temperature dependence; the results show metallic properties in the low-resistance state (LRS) and semiconducting properties in the high-resistance state (HRS). The conduction mechanism for resistive switching in our device was well-fitted with Ohmic conduction in the LRS and Poole-Frenkel emission in the HRS. The mechanism could be explained by the formation and the rupture of the conduction paths formed by the movement of oxygen ions and vacancies. Moreover, acute bending of the devices did not affect the memory characteristics because of the pliability of both the IZO electrodes and the thin oxide layer. These results indicate potential applications as resistive random access memories in future flexible, transparent electronic devices.

  14. [Oxidation of sulfur-containing substrates by an association of acidophilic chemolithotrophic microorganisms].

    PubMed

    Revenko, A A; Melamud, V S; Krasil'nikov, G S; Pivovarova, T A; Belyĭ, V A; Kondrat'eva, T F

    2009-01-01

    Quantitative and qualitative changes in the content of elements in the solid and liquid phases occurred as the pulp moved through fermenters during biooxidation of an ore flotation concentrate. The association of microorganisms were adapted for utilizing sulfur-containing substrates; however, the rate of their oxidation was insufficient, which led to an increase in the amount of sodium cyanide required for gold recovery. The replacement of one-fourth of the liquid phase of the pulp (density, 13%) with a mineral medium without an energy source, the fractional addition of FeSO4 x 7H2O (1 g/l per day), and the improvement of pulp aeration made it possible to increase the content of SO4(2-) by 80.7, 86.2, and 58.5%, respectively. When one-fourth of the liquid phasa of the pulp (density, 24%) was replaced with a mineral medium without an energy source, the rate of additional oxidation of sulfide minerals increased, which increased the efficiency of gold extraction into solution and gold recovery on charcoal by 3.4 and 3.6%, respectively, and reduced sodium cyanide consumption by 3 kg/ton.

  15. Parabrachial and hypothalamic interaction in sodium appetite

    PubMed Central

    Dayawansa, S.; Peckins, S.; Ruch, S.

    2011-01-01

    Rats with bilateral lesions of the lateral hypothalamus (LH) fail to exhibit sodium appetite. Lesions of the parabrachial nuclei (PBN) also block salt appetite. The PBN projection to the LH is largely ipsilateral. If these deficits are functionally dependent, damaging the PBN on one side and the LH on the other should also block Na appetite. First, bilateral ibotenic acid lesions of the LH were needed because the electrolytic damage used previously destroyed both cells and axons. The ibotenic LH lesions produced substantial weight loss and eliminated Na appetite. Controls with ipsilateral PBN and LH lesions gained weight and displayed robust sodium appetite. The rats with asymmetric PBN-LH lesions also gained weight, but after sodium depletion consistently failed to increase intake of 0.5 M NaCl. These results dissociate loss of sodium appetite from the classic weight loss after LH damage and prove that Na appetite requires communication between neurons in the LH and the PBN. PMID:21270347

  16. Prolonged exercise after diuretic-induced hypohydration: effects on substrate turnover and oxidation.

    PubMed

    Roy, B D; Green, H J; Burnett, M

    2000-12-01

    To determine the influence of a diuretic-induced reduction in plasma volume (PV) on substrate turnover and oxidation, 10 healthy young males were studied during 60 min of cycling exercise at 61% peak oxygen uptake on two separate occasions > or =1 wk apart. Exercise was performed under control conditions (CON; placebo), and after 4 days of diuretic administration (DIU; Novotriamazide; 100 mg triamterene and 50 mg hydrochlorothiazide). DIU resulted in a calculated reduction of PV by 14.6 +/- 3.3% (P < 0.05). Rates of glucose appearance (R(a)) and disappearance (R(d)) and glycerol R(a) were determined by using primed constant infusions of [6,6-(2)H]glucose and [(2)H(5)]glycerol, respectively. No differences in oxygen uptake during exercise were observed between trials. Main effects for condition (P < 0.05) were observed for plasma glucose and glycerol, such that the values observed for DIU were higher than for CON. No differences were observed in plasma lactate and serum free fatty acid concentrations either at rest or during exercise. Hypohydration led to lower (P < 0.05) glucose R(a) and R(d) at rest and at 15 and 30 min of exercise, but by 60 min, the effects were reversed (P < 0. 05). Hypohydration had no effect on rates of whole body lipolysis or total carbohydrate or fat oxidation. A main effect for condition (P < 0.05) was observed for plasma glucagon concentrations such that larger values were observed for DIU than for CON. A similar decline in plasma insulin occurred with exercise in both conditions. These results indicate that diuretic-induced reductions in PV decreases glucose kinetics during moderate-intensity dynamic exercise in the absence of changes in total carbohydrate and fat oxidation. The specific effect on glucose kinetics depends on the duration of the exercise.

  17. Imaging the neuroendocrinology of appetite

    PubMed Central

    Salem, Victoria; De Silva, Akila; Matthews, Paul M.; Dhillo, Waljit S.

    2012-01-01

    Functional magnetic resonance imaging has become a powerful tool to investigate the neuroendocrinology of appetite. In a recent study, we demonstrated that the brain activation pattern seen following the infusion of the anorectic gut hormones PYY3–36 and GLP-17–36 amide to fasted individuals resembles the brain activation pattern seen in the physiological satiated state. This commentary discusses the significance of these findings and compares them with other landmark studies in the field, with specific reference to the brain areas involved in appetite regulation. We highlight the importance of this type of research in order to pave the way for the development of efficacious and safe anti-obesity therapies. PMID:23700513

  18. PERIPHERAL MECHANISMS IN APPETITE REGULATION

    PubMed Central

    Camilleri, Michael

    2014-01-01

    Peripheral mechanisms in appetite regulation include the motor functions of the stomach, such as the rate of emptying and accommodation, which convey symptoms of satiation to the brain. The rich repertoire of peripherally released peptides and hormones provides feedback from the arrival of nutrients in different regions of the gut from where they are released to exert effects on satiation, or regulate metabolism through their incretin effects. Ultimately, these peripheral factors provide input to the highly organized hypothalamic circuitry and vagal complex of nuclei to determine cessation of energy intake during meal ingestion, and the return of appetite and hunger after fasting. Understanding these mechanisms is key to the physiological control of feeding and the derangements that occur in obesity and their restoration with treatment (as demonstrated by the effects of bariatric surgery). PMID:25241326

  19. Peripheral mechanisms in appetite regulation.

    PubMed

    Camilleri, Michael

    2015-05-01

    Peripheral mechanisms in appetite regulation include the motor functions of the stomach, such as the rate of emptying and accommodation, which convey symptoms of satiation to the brain. The rich repertoire of peripherally released peptides and hormones provides feedback from the arrival of nutrients in different regions of the gut from where they are released to exert effects on satiation, or regulate metabolism through their incretin effects. Ultimately, these peripheral factors provide input to the highly organized hypothalamic circuitry and vagal complex of nuclei to determine cessation of energy intake during meal ingestion, and the return of appetite and hunger after fasting. Understanding these mechanisms is key to the physiological control of feeding and the derangements that occur in obesity and their restoration with treatment (as shown by the effects of bariatric surgery). Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Cyclic Oxidation Behavior of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Barrett, C.; Karthikeyan, J.; Garlick, R.

    2006-01-01

    A newly developed Cu-23 (wt %) Cr-5%Al (CuCrAl) alloy shown to resist hydridation and oxidation in an as-cast form is currently being considered as a protective coating for GRCop-84, which is an advanced copper alloy containing 8 (at.%) Cr and 4 (at.%) Nb. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. About a 10 percent weight loss observed at 973 and 1073 K was attributed to the excessive oxidation of the uncoated sides. In contrast, the uncoated substrate lost as much as 80 percent of its original weight under similar test conditions. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  1. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  2. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2003-09-09

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  3. A method for on-line measurement of wastewater organic substrate oxidation level during aerobic heterotrophic respiration.

    PubMed

    Rudelle, E A; Vollertsen, J; Hvitved-Jacobsen, T; Nielsen, A H

    2013-01-01

    A method for on-line measurement of the organic carbon oxidation level (OXC) during aerobic heterotrophic respiration in domestic wastewater was developed and tested. The method is based on batch incubation of sewer wastewater in an intermittently aerated respirometric reactor. Between aeration cycles, measured pH, dissolved oxygen (DO) and dissolved carbon dioxide (CO2) were used to calculate electron flow accepted by DO and the resulting production of dissolved inorganic carbon (DIC). The CO2 production was measured using a novel fiber-optic sensor based on luminescence quenching. The method was tested on domestic wastewater with a relatively high pH and alkalinity. From the DO and DIC measurements, it was possible to evaluate substrate oxidation levels with a temporal resolution of less than an hour. Addition of organic substrates during the experiments confirmed the method's applicability. The substrates tested included ethanol (OXC = -2), glucose (OXC = 0) and oxalic acid (OXC = 3).

  4. Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom

    DOEpatents

    Christen, David K.; He, Qing

    2001-01-01

    The present invention provides a biaxially textured laminate article having a polycrystalline biaxially textured metallic substrate with an electrically conductive oxide layer epitaxially deposited thereon and methods for producing same. In one embodiment a biaxially texture Ni substrate has a layer of LaNiO.sub.3 deposited thereon. An initial layer of electrically conductive oxide buffer is epitaxially deposited using a sputtering technique using a sputtering gas which is an inert or forming gas. A subsequent layer of an electrically conductive oxide layer is then epitaxially deposited onto the initial layer using a sputtering gas comprising oxygen. The present invention will enable the formation of biaxially textured devices which include HTS wires and interconnects, large area or long length ferromagnetic and/or ferroelectric memory devices, large area or long length, flexible light emitting semiconductors, ferroelectric tapes, and electrodes.

  5. Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom

    DOEpatents

    Christen, David K.; He, Qing

    2003-04-29

    The present invention provides a biaxially textured laminate article having a polycrystalline biaxially textured metallic substrate with an electrically conductive oxide layer epitaxially deposited thereon and methods for producing same. In one embodiment a biaxially texture Ni substrate has a layer of LaNiO.sub.3 deposited thereon. An initial layer of electrically conductive oxide buffer is epitaxially deposited using a sputtering technique using a sputtering gas which is an inert or forming gas. A subsequent layer of an electrically conductive oxide layer is then epitaxially deposited onto the initial layer using a sputtering gas comprising oxygen. The present invention will enable the formation of biaxially textured devices which include HTS wires and interconnects, large area or long length ferromagnetic and/or ferroelectric memory devices, large area or long length, flexible light emitting semiconductors, ferroelectric tapes, and electrodes.

  6. Rate-determining Attack on Substrate Precedes Rieske Cluster Oxidation during cis-Dihydroxylation by Benzoate Dioxygenase

    PubMed Central

    Rivard, Brent S.; Rogers, Melanie S.; Marell, Daniel J.; Neibergall, Matthew B.; Chakrabarty, Sarmistha; Cramer, Christopher J.; Lipscomb, John D.

    2015-01-01

    Rieske dearomatizing dioxygenases utilize a Rieske iron-sulfur cluster and a mononuclear Fe(II) located 15 Å across a subunit boundary to catalyze O2-dependent formation of cis-dihydrodiol products from aromatic substrates. During catalysis, O2 binds to the Fe(II) while the substrate bind nearby. Single turnover reactions have shown that one electron from each metal center is required for catalysis. This finding suggested that the reactive intermediate is Fe(III)-(H)peroxo or HO-Fe(V)=O formed by O-O bond scission. Surprisingly, several kinetic phases were observed during the single turnover Rieske cluster oxidation. Here, the Rieske cluster oxidation and product formation steps of a single turnover of benzoate 1,2-dioxygenase are investigated using benzoate and three fluorinated analogs. It is shown that the rate constant for product formation correlates with the reciprocal relaxation time of only the fastest kinetic phase (RRT-1) for each substrate, suggesting that the slower phases are not mechanistically relevant. RRT-1 is strongly dependent on substrate type, suggesting a role for substrate in electron transfer from the Rieske cluster to the mononuclear iron site. This insight, together with the substrate and O2 concentration dependencies of RRT-1, indicates that a reactive species is formed after substrate and O2 binding, but before electron transfer from the Rieske cluster. Computational studies show that RRT-1 is correlated with the electron density at the substrate carbon closest to the Fe(II), consistent with initial electrophilic attack by an Fe(III)-superoxo intermediate. The resulting Fe(III)-peroxo-aryl radical species would then readily accept an electron from the Rieske cluster to complete the cis-dihydroxylation reaction. PMID:26154836

  7. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    SciTech Connect

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; Bobb-Semple, Dara; Tao, Jing; Tong, Xiao; Wang, Lei; Lewis, Crystal S.; Vuklmirovic, Miomir; Zhu, Yimei; Adzic, Radoslav R.

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs). Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.

  8. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    DOE PAGES

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; ...

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs).more » Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.« less

  9. Xylo- and cello-oligosaccharide oxidation by gluco-oligosaccharide oxidase from Sarocladium strictum and variants with reduced substrate inhibition

    PubMed Central

    2013-01-01

    Background The oxidation of carbohydrates from lignocellulose can facilitate the synthesis of new biopolymers and biochemicals, and also reduce sugar metabolism by lignocellulolytic microorganisms, reserving aldonates for fermentation to biofuels. Although oxidoreductases that oxidize cellulosic hydrolysates have been well characterized, none have been reported to oxidize substituted or branched xylo-oligosaccharides. Moreover, this is the first report that identifies amino acid substitutions leading to GOOX variants with reduced substrate inhibition. Results The recombinant wild type gluco-oligosaccharide oxidase (GOOX) from the fungus Sarocladium strictum, along with variants that were generated by site-directed mutagenesis, retained the FAD cofactor, and showed high activity on cello-oligosaccharide and xylo-oligosaccharides, including substituted and branched xylo-oligosaccharides. Mass spectrometric analyses confirmed that GOOX introduces one oxygen atom to oxidized products, and 1H NMR and tandem mass spectrometry analysis confirmed that oxidation was restricted to the anomeric carbon. The A38V mutation, which is close to a predicted divalent ion-binding site in the FAD-binding domain of GOOX but 30 Å away from the active site, significantly increased the kcat and catalytic efficiency of the enzyme on all oligosaccharides. Eight amino acid substitutions were separately introduced to the substrate-binding domain of GOOX-VN (at positions Y72, E247, W351, Q353 and Q384). In all cases, the Km of the enzyme variant was higher than that of GOOX, supporting the role of corresponding residues in substrate binding. Most notably, W351A increased Km values by up to two orders of magnitude while also increasing kcat up to 3-fold on cello- and xylo-oligosaccharides and showing no substrate inhibition. Conclusions This study provides further evidence that S. strictum GOOX has broader substrate specificity than the enzyme name implies, and that substrate inhibition can be

  10. Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw.

    PubMed

    Pedersen, Mads; Meyer, Anne S

    2009-01-01

    In the worldwide quest for producing biofuels from lignocellulosic biomass, the importance of the substrate pretreatment is becoming increasingly apparent. This work examined the effects of reducing the substrate particle sizes of wheat straw by grinding prior to wet oxidation and enzymatic hydrolysis. The yields of glucose and xylose were assessed after treatments with a benchmark cellulase system consisting of Celluclast 1.5 L (Trichoderma reesei) and Novozym 188 beta-glucosidase (Aspergillus niger). Both wet oxidized and not wet oxidized wheat straw particles gave increased glucose release with reduced particle size. After wet oxidation, the glucose release from the smallest particles (53-149 mum) reached 90% of the theoretical maximum after 24 h of enzyme treatment. The corresponding glucose release from the wet oxidized reference samples (2-4 cm) was approximately 65% of the theoretical maximum. The xylose release only increased (by up to 39%) with particle size decrease for the straw particles that had not been wet oxidized. Wet oxidation pretreatment increased the enzymatic xylose release by 5.4 times and the glucose release by 1.8 times across all particle sizes. Comparison of scanning electron microscopy images of the straw particles revealed edged, nonspherical, porous particles with variable surface structures as a result of the grinding. Wet oxidation pretreatment tore up the surface structures of the particles to retain vascular bundles of xylem and phloem. The enzymatic hydrolysis left behind a significant amount of solid, apparently porous structures within all particles size groups of both the not wet oxidized and wet oxidized particles.

  11. Nanoclusters and nanolines: the effect of molybdenum oxide substrate stoichiometry on iron self-assembly

    NASA Astrophysics Data System (ADS)

    Lübben, O.; Krasnikov, S. A.; Walls, B.; Sergeeva, N. N.; E Murphy, B.; Chaika, A. N.; Bozhko, S. I.; Shvets, I. V.

    2017-05-01

    The growth of Fe nanostructures on the stoichiometric MoO2/Mo(110) and oxygen-rich MoO2+x /Mo(110) surfaces has been studied using low-temperature scanning tunnelling microscopy (STM) and density functional theory calculations. STM results indicate that at low coverage Fe nucleates on the MoO2/Mo(110) surface, forming small, well-ordered nanoclusters of uniform size, each consisting of five Fe atoms. These five-atom clusters can agglomerate into larger nanostructures reflecting the substrate geometry, but they retain their individual character within the structure. Linear Fe nanocluster arrays are formed on the MoO2/Mo(110) surface at room temperature when the surface coverage is greater than 0.6 monolayers. These nanocluster arrays follow the direction of the oxide rows of the strained MoO2/Mo(110) surface. Slightly altering the preparation procedure of MoO2/Mo(110) leads to the presence of oxygen adatoms on this surface. Fe deposition onto the oxygen-rich MoO2+x /Mo(110) surface results in elongated nanostructures that reach up to 24 nm in length. These nanolines have a zigzag shape and are likely composed of partially oxidised Fe formed upon reaction with the oxygen-rich surface.

  12. Uniting Superhydrophobic, Superoleophobic and Lubricant Infused Slippery Behavior on Copper Oxide Nano-structured Substrates

    PubMed Central

    Ujjain, Sanjeev Kumar; Roy, Pritam Kumar; Kumar, Sumana; Singha, Subhash; Khare, Krishnacharya

    2016-01-01

    Alloys, specifically steel, are considered as the workhorse of our society and are inimitable engineering materials in the field of infrastructure, industry and possesses significant applications in our daily life. However, creating a robust synthetic metallic surface that repels various liquids has remained extremely challenging. The wettability of a solid surface is known to be governed by its geometric nano-/micro structure and the chemical composition. Here, we are demonstrating a facile and economical way to generate copper oxide micro-nano structures with spherical (0D), needle (1D) and hierarchical cauliflower (3D) morphologies on galvanized steel substrates using a simple chemical bath deposition method. These nano/micro textured steel surfaces, on subsequent coating of a low surface energy material display excellent superhydrophobic, superoleophobic and slippery behavior. Polydimethylsiloxane coated textured surfaces illustrate superhydrophobicity with water contact angle about 160°(2) and critical sliding angle ~2°. When functionalized with low-surface energy perfluoroalkylsilane, these surfaces display high repellency for low surface tension oils as well as hydrocarbons. Among them, the hierarchical cauliflower morphology exhibits re-entrant structure thereby showing the best superoleophobicity with contact angle 149° for dodecane. Once infused with a lubricant like silicone oil, they show excellent slippery behavior with low contact angle hysteresis (~ 2°) for water drops. PMID:27752098

  13. Thickness-dependent Crack Propagation in Uniaxially Strained Conducting Graphene Oxide Films on Flexible Substrates.

    PubMed

    Sakorikar, Tushar; Kavitha, Maheswari Kavirajan; Vayalamkuzhi, Pramitha; Jaiswal, Manu

    2017-06-01

    We demonstrate that crack propagation in uniaxially strained reduced graphene oxide (rGO) films is substantially dependent on the film thickness, for films in the sub-micron regime. rGO film on flexible polydimethylsiloxane (PDMS) substrate develop quasi-periodic cracks upon application of strain. The crack density and crack width follow contrasting trends as film thickness is increased and the results are described in terms of a sequential cracking model. Further, these cracks also have a tendency to relax when the strain is released. These features are also reflected in the strain-dependent electrical dc and ac conductivity studies. For an optimal thickness (3-coat), the films behave as strain-resistant, while for all other values it becomes strain-responsive, attributed to a favorable combination of crack density and width. This study of the film thickness dependent response and the crack propagation mechanism under strain is a significant step for rationalizing the application of layered graphene-like systems for flexible optoelectronic and strain sensing applications. When the thickness is tuned for enhanced extent of crack propagation, strain-sensors with gauge factor up to ∼470 are realized with the same material. When thickness is chosen to suppress the crack propagation, strain-resistive flexible TiO2- rGO UV photoconductor is realized.

  14. Pressure-induced evaporation dynamics of gold nanoparticles on oxide substrate.

    PubMed

    Meng, Gang; Yanagida, Takeshi; Kanai, Masaki; Suzuki, Masaru; Nagashima, Kazuki; Xu, Bo; Zhuge, Fuwei; Klamchuen, Annop; He, Yong; Rahong, Sakon; Kai, Shoichi; Kawai, Tomoji

    2013-01-01

    Here we report thermal evaporation dynamics of Au nanoparticles on single crystal oxide substrates, including MgO, SrTiO(3), and Al(2)O(3). The size reduction rate of Au nanoparticles via thermal treatments is strongly dependent on not only temperature but also pressure. Lowering the pressure of inert Ar gas from 10(5) to 10 Pa increases the size reduction rate over 30 times in the temperature range 800 °C-950 °C. The temperature dependence is solely due to the variation of saturated vapor pressure of Au, whereas the pressure dependence of the surrounding inert gas can be interpreted in terms of a pressure dependence on a gas-phase diffusion of evaporated Au atoms into the surroundings. We present a simplified model to explain an evaporation dynamics, which well describes the pressure dependence on a size reduction rate of Au nanoparticles. By utilizing this useful pressure-induced evaporation dynamics, we succeeded in manipulating a size reduction of Au nanoparticle arrays down to -10 nm diameter range from -300 nm initial size by programming sequentially a surrounding pressure.

  15. Optoelectrochemical biorecognition by optically transparent highly conductive graphene-modified fluorine-doped tin oxide substrates.

    PubMed

    Lamberti, F; Brigo, L; Favaro, M; Luni, C; Zoso, A; Cattelan, M; Agnoli, S; Brusatin, G; Granozzi, G; Giomo, M; Elvassore, N

    2014-12-24

    Both optical and electrochemical graphene-based sensors have gone through rapid development, reaching high sensitivity at low cost and with fast response time. However, the complex validating biochemical operations, needed for their consistent use, currently limits their effective application. We propose an integration strategy for optoelectrochemical detection that overcomes previous limitations of these sensors used separately. We develop an optoelectrochemical sensor for aptamer-mediated protein detection based on few-layer graphene immobilization on selectively modified fluorine-doped tin oxide (FTO) substrates. Our results show that the electrochemical properties of graphene-modified FTO samples are suitable for complex biological detection due to the stability and inertness of the engineered electrodic interface. In addition, few-layer immobilization of graphene sheets through electrostatic linkage with an electrochemically grafted FTO surface allows obtaining an optically accessible and highly conductive platform. As a proof of concept, we used insulin as the target molecule to reveal in solution. Because of its transparency and low sampling volume (a few microliters), our sensing unit can be easily integrated in lab-on-a-chip cell culture systems for effectively monitoring subnanomolar concentrations of proteins relevant for biomedical applications.

  16. Synthesis of monoclinic structure gallium oxide film on sapphire substrate by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sun, Jian-xu; Mi, Wei; Zhang, De-shuang; Yang, Zheng-chun; Zhang, Kai-liang; Han, Ye-mei; Yuan, Yu-jie; Zhao, Jin-shi; Li, Bo

    2017-07-01

    Gallium oxide (Ga2O3) films were deposited on singlecrystalline sapphire (0001) substrate by radio frequency (RF) magnetron sputtering technique in the temperature range of 300—500 °C. The microstructure of the β-Ga2O3 films were investigated in detail using X-ray diffractometer (XRD) and scanning electron microscope (SEM). The results show that the film prepared at 500 °C exhibits the best crystallinity with a monoclinic structure ( β-Ga2O3). Structure analysis reveals a clear out-of-plane orientation of β-Ga2O3 (2̅01) ǁ Al2O3 (0001). The average transmittance of these films in the visible wavelength range exceeds 90%, and the optical band gap of the films varies from 4.68 eV to 4.94 eV which were measured by an ultraviolet-visible-near infrared (UV-vis-NIR) spectrophotometer. Therefore, it is hopeful that the β-Ga2O3 film can be used in the UV optoelectronic devices.

  17. Uniting Superhydrophobic, Superoleophobic and Lubricant Infused Slippery Behavior on Copper Oxide Nano-structured Substrates

    NASA Astrophysics Data System (ADS)

    Ujjain, Sanjeev Kumar; Roy, Pritam Kumar; Kumar, Sumana; Singha, Subhash; Khare, Krishnacharya

    2016-10-01

    Alloys, specifically steel, are considered as the workhorse of our society and are inimitable engineering materials in the field of infrastructure, industry and possesses significant applications in our daily life. However, creating a robust synthetic metallic surface that repels various liquids has remained extremely challenging. The wettability of a solid surface is known to be governed by its geometric nano-/micro structure and the chemical composition. Here, we are demonstrating a facile and economical way to generate copper oxide micro-nano structures with spherical (0D), needle (1D) and hierarchical cauliflower (3D) morphologies on galvanized steel substrates using a simple chemical bath deposition method. These nano/micro textured steel surfaces, on subsequent coating of a low surface energy material display excellent superhydrophobic, superoleophobic and slippery behavior. Polydimethylsiloxane coated textured surfaces illustrate superhydrophobicity with water contact angle about 160°(2) and critical sliding angle ~2°. When functionalized with low-surface energy perfluoroalkylsilane, these surfaces display high repellency for low surface tension oils as well as hydrocarbons. Among them, the hierarchical cauliflower morphology exhibits re-entrant structure thereby showing the best superoleophobicity with contact angle 149° for dodecane. Once infused with a lubricant like silicone oil, they show excellent slippery behavior with low contact angle hysteresis (~ 2°) for water drops.

  18. Uniting Superhydrophobic, Superoleophobic and Lubricant Infused Slippery Behavior on Copper Oxide Nano-structured Substrates.

    PubMed

    Ujjain, Sanjeev Kumar; Roy, Pritam Kumar; Kumar, Sumana; Singha, Subhash; Khare, Krishnacharya

    2016-10-18

    Alloys, specifically steel, are considered as the workhorse of our society and are inimitable engineering materials in the field of infrastructure, industry and possesses significant applications in our daily life. However, creating a robust synthetic metallic surface that repels various liquids has remained extremely challenging. The wettability of a solid surface is known to be governed by its geometric nano-/micro structure and the chemical composition. Here, we are demonstrating a facile and economical way to generate copper oxide micro-nano structures with spherical (0D), needle (1D) and hierarchical cauliflower (3D) morphologies on galvanized steel substrates using a simple chemical bath deposition method. These nano/micro textured steel surfaces, on subsequent coating of a low surface energy material display excellent superhydrophobic, superoleophobic and slippery behavior. Polydimethylsiloxane coated textured surfaces illustrate superhydrophobicity with water contact angle about 160°(2) and critical sliding angle ~2°. When functionalized with low-surface energy perfluoroalkylsilane, these surfaces display high repellency for low surface tension oils as well as hydrocarbons. Among them, the hierarchical cauliflower morphology exhibits re-entrant structure thereby showing the best superoleophobicity with contact angle 149° for dodecane. Once infused with a lubricant like silicone oil, they show excellent slippery behavior with low contact angle hysteresis (~ 2°) for water drops.

  19. Anomalous charge transport in reduced graphene oxide films on a uniaxially strained elastic substrate

    NASA Astrophysics Data System (ADS)

    Shaina, P. R.; Sakorikar, Tushar; Sarkar, Biporjoy; Kavitha, M. K.; Vayalamkuzhi, Pramitha; Jaiswal, Manu

    2017-06-01

    We investigate temperature-dependent charge transport in reduced graphene oxide (rGO) films coated on flexible polydimethylsiloxane (PDMS) substrates which are subject to uniaxial strain. Variable strain, up to 10%, results in an anisotropic morphology comprising of quasi-periodic linear array of deformations which are oriented perpendicular to the direction of strain. The anisotropy is reflected in the charge transport measurements, when conduction in the direction parallel and perpendicular to the applied strain are compared. Temperature dependence of resistance is measured for different values of strain in the temperature interval 80-300 K. While the resistance increases significantly upon application of strain, the temperature-dependent response shows anomalous decrease in resistance ratio R 80 K/R 300 K upon application of strain. This observation of favorable conduction processes under strain is further corroborated by reduced activation energy analysis of the temperature-dependent transport data. These anomalous transport features can be reconciled based on mutually competing effects of two processes: (i) thinning of graphene at the sites of periodic deformations, which tends to enhance the overall resistance by a purely geometrical effect, and (ii) locally enhanced inter-flake coupling in these same regions which contributes to improved temperature-dependent conduction.

  20. Transparent resistive switching memory using aluminum oxide on a flexible substrate.

    PubMed

    Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon

    2016-02-19

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.

  1. Effects of UV Aging on the Cracking of Titanium Oxide Layer on Poly(ethylene terephthalate) Substrate: Preprint

    SciTech Connect

    Zhang, Chao; Gray, Matthew H.; Tirawat, Robert; Larsen, Ross E.; Chen, Fangliang

    2016-04-18

    Thin oxide and metal films deposited on polymer substrates is an emerging technology for advanced reflectors for concentrated solar power applications, due to their unique combination of light weight, flexibility and inexpensive manufacture. Thus far, there is little knowledge on the mechanical integrity or structural persistence of such multi-layer thin film systems under long-term environmental aging. In this paper, the cracking of a brittle titanium dioxide layer deposited onto elasto-plastic poly(ethylene terephthalate) (PET) substrate is studied through a combination of experiment and modeling. In-situ fragmentation tests have been conducted to monitor the onset and evolution of cracks both on pristine and on samples aged with ultraviolet (UV) light. An analytical model is presented to simulate the cracking behavior and to predict the effects of UV aging. Based on preliminary experimental observation, the effect of aging is divided into three aspects and analyzed independently: mechanical property degradation of the polymer substrate; degradation of the interlayer between substrate and oxide coating; and internal stress-induced cracks on the oxide coating.

  2. Direct-writing of copper-based micropatterns on polymer substrates using femtosecond laser reduction of copper (II) oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mizoshiri, Mizue; Ito, Yasuaki; Sakurai, Junpei; Hata, Seiichi

    2017-04-01

    Copper (Cu)-based micropatterns were fabricated on polymer substrates using femtosecond laser reduction of copper (II) oxide (CuO) nanoparticles. CuO nanoparticle solution, which consisted of CuO nanoparticles, ethylene glycol as a reductant agent, and polyvinylpyrrolidone as a dispersant, was spin-coated on poly(dimethylsiloxane) (PDMS) substrates and was irradiated by focused femtosecond laser pulses to fabricate Cu-based micropatterns. When the laser pulses were raster-scanned onto the solution, CuO nanoparticles were reduced and sintered. Cu-rich and copper (I)-oxide (Cu2O)-rich micropatterns were formed at laser scanning speeds of 15 mm/s and 0.5 mm/s, respectively, and at a pulse energy of 0.54 nJ. Cu-rich electrically conductive micropatterns were obtained without significant damages on the substrates. On the other hand, Cu2O-rich micropatterns exhibited no electrical conductivity, indicating that microcracks were generated on the micropatterns by thermal expansion and shrinking of the substrates. We demonstrated a direct-writing of Cu-rich micro-temperature sensors on PDMS substrates using the foregoing laser irradiation condition. The resistance of the fabricated sensors increased with increasing temperature, which is consistent with that of Cu. This direct-writing technique is useful for fabricating Cu-polymer composite microstructures.

  3. Oxidation and interdiffusion behavior of Niobium substrate coated MoSi2 coating prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Yan, JianHui; Wang, Yi; Liu, LongFei; Wang, Yueming

    2014-11-01

    In order to protect Niobium material from oxidation, MoSi2 coating was prepared on the Niobium substrate by spark plasma sintering. Oxidation behavior of MoSi2 coating was investigated in air over the temperature range of 1200-1500 °C. The interfacial diffusion between MoSi2 coating and Niobium substrate was also examined. Dense MoSi2 coating was successfully prepared using spark plasma sintering. The porosities of top and side coatings are about 5.5% and 6.4%, respectively. No cracks were present in the MoSi2 coating. Cracking and spallation of the SiO2 scale did not occur at test temperatures. Two intermediate phases-(Nb,Mo)5Si3 and Nb5Si3 phases, were detected in the boundary of MoSi2 coating and Nb substrate. The growth of the reaction layer was dominated by the diffusion of Si toward the Nb substrate and obeyed a parabolic rate law. A multi-layered structural coating formed on Nb substrate, which consisted of MoSi2, (Mo,Nb)5Si3 and Nb5Si3 in turn.

  4. Appetite-Enhancing Effects of Curry Oil.

    PubMed

    Ogawa, Kakuyou; Ito, Michiho

    2016-01-01

    Inhalation of scent compounds with phenylpropanoidal structures, such as trans-cinnamaldehyde, is expected to increase the appetite. The scent of curry powder is well known for its appetite-enhancing effect on humans. In this work, we show that the appetite of mice after inhalation of curry powder essential oil or benzylacetone showed a similar increase. The components of curry oil, trans-cinnamaldehyde, trans-anethole, and eugenol, each showed appetite-enhancing effects; therefore, these three scent compounds may be the active compounds in curry powder oil.

  5. Involvement of matrix NADP turnover in the oxidation of NAD-linked substrates by pea leaf mitochondria.

    PubMed

    Bykova, Natalia V.; Møller, Ian M.

    2001-04-01

    The involvement of the internal rotenone-insensitive NADPH dehydrogenase on the inner surface of the inner mitochondrial membrane [NDin(NADPH)] in the oxidation of strictly NAD+-linked substrates by pea (Pisum sativum L.) leaf mitochondria was measured. As estimated by the inhibition caused by 5 µM diphenyleneiodonium (DPI) in the presence of rotenone to inhibit complex I, the activity of NDin(NADPH) during glycine oxidation (measured both as O2 uptake and as CO2 release) was 40-50 nmol mg-1 protein min-1. No significant activity of NDin(NADPH) could be detected during the oxidation of 2-oxoglutarate, another strictly NAD+-linked substrate; this was possibly due to its relatively low oxidation rate. Control experiments showed that, even at 125 µM, DPI had no effect on the activity of glycine decarboxylase complex (GDC) and lipoamide dehydrogenase. The relative activity of complex I, NDin(NADPH), and NDin(NADH) during glycine oxidation, estimated using rotenone and DPI, differed depending on the pyridine nucleotide supply in the mitochondrial matrix. This was shown by loading the mitochondria with NAD+ and NADP+, both of which were taken up by the organelle. We conclude that the involvement of NADP turnover during glycine oxidation is not due to the direct production of NADPH by GDC but is an indirect result of this process. It probably occurs via the interconversion of NADH to NADPH by the two non-energy-linked transhydrogenase activities recently identified in plant mitochondria.

  6. Fasting substrate oxidation at rest assessed by indirect calorimetry: is prior dietary macronutrient level and composition a confounder?

    PubMed

    Miles-Chan, J L; Dulloo, A G; Schutz, Y

    2015-07-01

    Indirect calorimetry, the measurement of O₂ consumption and CO₂ production, constitutes an invaluable tool as the most common method for analyzing whole-body energy expenditure, and also provides an index of the nature of macronutrient substrate oxidation--namely, carbohydrate (CHO) versus fat oxidation. The latter constitutes a key etiological factor in obesity as this condition can only develop when total fat oxidation is chronically lower than total exogenous fat intake. The standardization of indirect calorimetry measurements is essential for accurately tracking the relative proportion of energy expenditure derived from CHO and fat oxidation. Here we analyze literature data to show that the average fasting respiratory quotient typically shifts from approximately 0.80 to 0.90 (indicating a doubling of resting CHO oxidation) in response to a switch in dietary CHO intake (as % energy) from 30 to 60%. This underscores the importance of taking into account dietary macronutrient composition prior to indirect calorimetry studies in the interpretation of data on substrate utilization and oxidation.

  7. Calvin Cycle Flux, Pathway Constraints, and Substrate Oxidation State Together Determine the H2 Biofuel Yield in Photoheterotrophic Bacteria

    PubMed Central

    McKinlay, James B.; Harwood, Caroline S.

    2011-01-01

    Hydrogen gas (H2) is a possible future transportation fuel that can be produced by anoxygenic phototrophic bacteria via nitrogenase. The electrons for H2 are usually derived from organic compounds. Thus, one would expect more H2 to be produced when anoxygenic phototrophs are supplied with increasingly reduced (electron-rich) organic compounds. However, the H2 yield does not always differ according to the substrate oxidation state. To understand other factors that influence the H2 yield, we determined metabolic fluxes in Rhodopseudomonas palustris grown on 13C-labeled fumarate, succinate, acetate, and butyrate (in order from most oxidized to most reduced). The flux maps revealed that the H2 yield was influenced by two main factors in addition to substrate oxidation state. The first factor was the route that a substrate took to biosynthetic precursors. For example, succinate took a different route to acetyl-coenzyme A (CoA) than acetate. As a result, R. palustris generated similar amounts of reducing equivalents and similar amounts of H2 from both succinate and acetate, even though succinate is more oxidized than acetate. The second factor affecting the H2 yield was the amount of Calvin cycle flux competing for electrons. When nitrogenase was active, electrons were diverted away from the Calvin cycle towards H2, but to various extents, depending on the substrate. When Calvin cycle flux was blocked, the H2 yield increased during growth on all substrates. In general, this increase in H2 yield could be predicted from the initial Calvin cycle flux. PMID:21427286

  8. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    NASA Astrophysics Data System (ADS)

    Patty, Kira; Sadeghi, Seyed M.; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Mao, Chuanbin

    2014-09-01

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.

  9. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    SciTech Connect

    Patty, Kira; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Sadeghi, Seyed M.; Mao, Chuanbin

    2014-09-21

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.

  10. Influence of Mo Back-Contact Oxidation on Properties of CIGSe2 Thin Film Solar Cells on Glass Substrates

    NASA Astrophysics Data System (ADS)

    Rissom, Thorsten; Kaufmann, Christian A.; Caballero, Raquel; Schniebs, Jan; Schock, Hans-Werner; Wiedenbeck, Michael

    2012-10-01

    Copper indium gallium diselenide (CIGSe) solar cells grown on glass substrates have reached an efficiency of 20.3%. Their industrial production is becoming increasingly relevant. While various deposition techniques for the fabrication of the absorber are used by different groups and corporations, molybdenum (Mo) has become the back contact material of choice. Oxidation of the bare Mo layer prior to absorber deposition is a phenomenon that is generally hard to control or to avoid. Since the incorporation of sodium (Na) into the absorber layer is commonly achieved by diffusion from a glass substrate through the Mo layer, oxidation of the back contact will influence the diffusion, and thus the availability of Na during the CIGSe growth process. In order to investigate this effect, Na containing glass substrates with Mo layers in different stages of oxidation have been prepared using a damp heat treatment. The samples were coated with CIGSe by physical vapor deposition in a multistage co-evaporation process. The CIGSe/Mo-interface is investigated by Raman spectroscopy and secondary ion mass spectroscopy, using a lift-off technique. The damp heat treatment led to the formation of an oxide layer (presumably MoO2) and an increase of the sodium content in the grown absorber layers.

  11. Calvin cycle flux, pathway constraints, and substrate oxidation state together determine the H2 biofuel yield in photoheterotrophic bacteria.

    PubMed

    McKinlay, James B; Harwood, Caroline S

    2011-01-01

    Hydrogen gas (H(2)) is a possible future transportation fuel that can be produced by anoxygenic phototrophic bacteria via nitrogenase. The electrons for H(2) are usually derived from organic compounds. Thus, one would expect more H(2) to be produced when anoxygenic phototrophs are supplied with increasingly reduced (electron-rich) organic compounds. However, the H(2) yield does not always differ according to the substrate oxidation state. To understand other factors that influence the H(2) yield, we determined metabolic fluxes in Rhodopseudomonas palustris grown on (13)C-labeled fumarate, succinate, acetate, and butyrate (in order from most oxidized to most reduced). The flux maps revealed that the H(2) yield was influenced by two main factors in addition to substrate oxidation state. The first factor was the route that a substrate took to biosynthetic precursors. For example, succinate took a different route to acetyl-coenzyme A (CoA) than acetate. As a result, R. palustris generated similar amounts of reducing equivalents and similar amounts of H(2) from both succinate and acetate, even though succinate is more oxidized than acetate. The second factor affecting the H(2) yield was the amount of Calvin cycle flux competing for electrons. When nitrogenase was active, electrons were diverted away from the Calvin cycle towards H(2), but to various extents, depending on the substrate. When Calvin cycle flux was blocked, the H(2) yield increased during growth on all substrates. In general, this increase in H(2) yield could be predicted from the initial Calvin cycle flux. Photoheterotrophic bacteria, like Rhodopseudomonas palustris, obtain energy from light and carbon from organic compounds during anaerobic growth. Cells can naturally produce the biofuel H(2) as a way of disposing of excess electrons. Unexpectedly, feeding cells organic compounds with more electrons does not necessarily result in more H(2). Despite repeated observations over the last 40 years, the

  12. Combining Solvent Isotope Effects with Substrate Isotope Effects in Mechanistic Studies of Alcohol and Amine Oxidation by Enzymes*

    PubMed Central

    Fitzpatrick, Paul F.

    2014-01-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin-and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. PMID:25448013

  13. Effects of subthalamic nucleus deep brain stimulation and levodopa on energy production rate and substrate oxidation in Parkinson's disease.

    PubMed

    Perlemoine, Caroline; Macia, Frédéric; Tison, François; Coman, Isabelle; Guehl, Dominique; Burbaud, Pierre; Cuny, Emmanuel; Baillet, Laurence; Gin, Henri; Rigalleau, Vincent

    2005-02-01

    Patients with Parkinson's disease (PD) often lose weight, but after subthalamic nucleus deep brain stimulation (STN-DBS), they gain weight. We compared daily energy intake (DEI), resting energy expenditure (REE) and substrate oxidation rates (measured by indirect calorimetry) in nineteen STN-DBS-treated patients (Group S), thirteen others on pharmacologic treatment by levodopa (Group L) and eight control subjects. We also determined the acute effects of STN-DBS and levodopa on REE and substrate oxidation rates. STN-DBS treated patients gained 9.7 (SEM 7.1) kg after surgery, whereas patients on pharmacologic treatment lost 3.8 (SEM 10.0) kg since diagnosis. In STN-DBS-treated patients, REE (-16.5 %; P<0.001), lipid oxidation (-27 %; P<0.05) and protein oxidation (-46 %; P<0.05) were decreased, whereas glucose oxidation was elevated (+81 %; P<0.05) as compared to patients on pharmacologic treatment. Levodopa acutely reduced REE (-8.3 %; P<0.05) and glucose oxidation (-37 %; P<0.01) with a slight hyperglycaemic effect (after levodopa challenge: 5.6 (SEM 0.8) v. before levodopa challenge: 5.3 (SEM 0.6) mmol/l; P<0.01). Switching 'on' STN-DBS acutely reduced REE (-17.5 %; P<0.01) and lipid oxidation (-24 %; P<0.001) 30 min after starting stimulation. Fasting glycaemia was slightly but significantly reduced (5.4 (SEM 1.4) v. 5.5 (SEM 1.3) mmol/l; P<0.01). After STN-DBS, the normalization of REE and the reduction in lipid and protein oxidation contribute to the restoration of weight. As levodopa decreases glucose oxidation, the reduction in daily dose of levodopa in STN-DBS-treated patients helps prevent the effect of weight gain on glycaemia.

  14. Substrate-specific modifications on magnetic iron oxide nanoparticles as an artificial peroxidase for improving sensitivity in glucose detection.

    PubMed

    Liu, Yanping; Yu, Faquan

    2011-04-08

    Magnetic iron oxide nanoparticles (MION) were recently found to act as a peroxidase with intrinsic advantages over natural counterparts. Their limited affinity toward catalysis substrates, however, dramatically reduces their utility. In this paper, some effective groups were screened out and conjugated on MION as substrate-specific modifications for improving MION's affinity to substrates and hence utility. Nanoparticles of four different superficial structures were synthesized and characterized by TEM, size, zeta potential and SQUID, and assayed for peroxidase activity. Glucose detection was selected as an application model system to evaluate the bonus thereof. Catalysis was found to follow Michaelis-Menten kinetics. Sulfhydryl groups incorporated on MION (SH-MION) notably improve the affinity toward a substrate (hydrogen peroxide) and so do amino groups (NH₂-MION) toward another substrate, proved by variation in the determined kinetic parameters. A synergistically positive effect was observed and an apparently elevated detection sensitivity and a significantly lowered detection limit of glucose were achieved when integrated with both sulfhydryl and amino groups (SH-NH₂-MION). Our findings suggest that substrate-specific surface modifications are a straightforward and robust strategy to improve MION peroxidase-like activity. The high activity extends magnetic nanoparticles to wide applications other than glucose detection.

  15. Nd:YVO4 laser direct ablation of indium tin oxide films deposited on glass and polyethylene terephthalate substrates.

    PubMed

    Wang, Jian-Xun; Kwon, Sang Jik; Han, Jae-Hee; Cho, Eou Sik

    2013-09-01

    A Q-switched diode-pumped neodymium-doped yttrium vanadate (Nd:YVO4, lambda = 1064 nm) laser was applied to obtain the indium tin oxide (ITO) patterns on flexible polyethylene terephthalate (PET) substrate by a direct etching method. After the ITO films were deposited on a soda-lime glass and PET substrate, laser ablations were carried out on the ITO films for various conditions and the laser ablated results on the ITO films were investigated and analyzed considering the effects of substrates on the laser etching. The laser ablated widths on ITO deposited on glass were found to be much narrower than those on ITO deposited on PET substrate, especially, at a higher scanning speed of laser beam such as 1000 mm/s and 2000 mm/s. As the thermal conductivity of glass substrate is about 7.5 times higher than that of PET, more thermal energy would be spread and transferred to lateral direction in the ITO film in case of PET substrate.

  16. Composite plasma electrolytic oxidation to improve the thermal radiation performance and corrosion resistance on an Al substrate

    NASA Astrophysics Data System (ADS)

    Kim, Donghyun; Sung, Dahye; Lee, Junghoon; Kim, Yonghwan; Chung, Wonsub

    2015-12-01

    A composite plasma electrolytic oxidation (PEO) was performed for enhancing the thermal radiation performance and corrosion resistance on an Al alloy by dispersing cupric oxide (CuO) particles in a conventional PEO electrolyte. Cu-based oxides (CuO and Cu2O) formed by composite PEO increased the emissivity of the substrate to 0.892, and made the surface being dark color, similar to a black body, i.e., an ideal radiator. In addition, the corrosion resistance was analyzed using potentio-dynamic polarization and electrochemical impedance spectroscopy tests in 3.5 wt.% NaCl aqueous solution. An optimum condition of 10 ampere per square decimeter (ASD) current density and 30 min processing time produced appropriate surface morphologies and coating thicknesses, as well as dense Cu- and Al-based oxides that constituted the coating layers.

  17. Epitaxy of mercury-based high temperature superconducting films on oxide and metal substrates

    NASA Astrophysics Data System (ADS)

    Xie, Yi-Yuan

    High-Tc superconducting (HTS) cuprates are highly anisotropic thus epitaxy along certain crystalline directions is essential to realize high-current-carrying capability at temperatures above 77 K. Hg-based HTS (Hg-HTS) cuprates have the record-high Tc up to 135 K, therefore are of great interest for fundamental research and practical applications. However, growth Of epitaxial Hg-HTS films is extremely difficult in conventional thermal-reaction process since Hg is highly volatile. Motivated by this, we first developed a cation-exchange process for growing epitaxial Hg-HTS films, which involves two steps: selection of precursor matrices with predesigned structure and composition followed by cation-exchange processing. New materials are formed via "atomic surgery" on an existing structure rather than thermal reaction among amorphous oxides in conventional process, thus the structural features of the precursor are inherited by the new material. Using epitaxial Tl-based HTS films as precursor and annealing them in Hg-vapor, epitaxial Hg-HTS films with superior quality have been obtained. This success encouraged us to develop epitaxy on metal tapes for coated conductors and On large-area wafers for electronic devices. For coated conductors, we addressed three critical issues: epitaxy on metal substrates, enhancement of in-field Jcs and scale-up in thickness and length. First, using a fabrication scheme that combines two processes: cation-exchange and fast-temperature-ramping-annealing, epitaxial HgBa2CaCu2O6+delta films were grown on rolling-assisted-biaxially-textured Ni substrates buffered with CeO 2/YSZ/CeO2 for the first time. We fabricated HgBa2CaCu 2O6+delta coated conductors with Tc = 122--124 K and self-field Jc > 1 x 106A/cm2 at 92 K which are record-high for HTS coated conductors. Second, we demonstrated improved in-field J cs via overdoping HgBa2CaCu 2O6+delta films (by means Of charge "overdoped"), heavy-ion-irradiation and substrate engineering. Finally

  18. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate

    NASA Astrophysics Data System (ADS)

    Ghazali, Norizzawati Mohd; Yasui, Kanji; Hashim, Abdul Manaf

    2014-12-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm2 using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si.

  19. Structural and optical properties of manganese oxide thin films deposited by pulsed laser deposition at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Jamil, H.; Khaleeq-ur-Rahman, M.; Dildar, I. M.; Shaukat, Saima

    2017-09-01

    We report the use of pulsed laser deposition (PLD) to grow manganese oxide thin films at a fixed low oxygen pressure at different temperatures on silicon (1 0 0) substrates. Structural properties of the thin films were examined using x-ray diffraction and Fourier transform infrared spectroscopy. Surface morphology and topography of the films was determined using atomic force microscopy and optical microscopy, while optical properties of the thin films were studied using spectroscopic ellipsometry. It was found that PLD is a convenient technique to deposit different phases of manganese oxide by tuning the deposition temperature. All measured physical properties such as morphology, topography, crystallite size, and optical band gap were clearly dependent on the substrate temperature chosen.

  20. Indium tin oxide films deposited by thermionic-enhanced DC magnetron sputtering on unheated polyethylene terephthalate polymer substrate

    SciTech Connect

    Lan, Y.F.; Peng, W.C.; Lo, Y.H.; He, J.L.

    2009-08-05

    Indium tin oxide thin films were deposited onto polyethylene terephthalate substrates via thermionic enhanced DC magnetron sputtering at low substrate temperatures. The structural, optical and electrical properties of these films are methodically investigated. The results show that compared with traditional sputtering, the films deposited with thermionic emission exhibit higher crystallinity, and their optical and electrical properties are also improved. Indium tin oxide films deposited by utilizing thermionic emission exhibit an average visible transmittance of 80% and an electrical resistivity of 4.5 x 10{sup -4} {Omega} cm, while films made without thermionic emission present an average visible transmittance of 74% and an electrical resistivity of 1.7 x 10{sup -3} {Omega} cm.

  1. Effect of Native Oxide Film on Commercial Magnesium Alloys Substrates and Carbonate Conversion Coating Growth and Corrosion Resistance

    PubMed Central

    Feliu, Sebastián; Samaniego, Alejandro; Bermudez, Elkin Alejandro; El-Hadad, Amir Abdelsami; Llorente, Irene; Galván, Juan Carlos

    2014-01-01

    Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO3 solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface. PMID:28788582

  2. Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings

    DOEpatents

    Thompson, Anthony Mark; Gray, Dennis Michael; Jackson, Melvin Robert

    2002-01-01

    A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

  3. Growth of light-emitting SiGe heterostructures on strained silicon-on-insulator substrates with a thin oxide layer

    SciTech Connect

    Baidakova, N. A.; Bobrov, A. I.; Drozdov, M. N.; Novikov, A. V.; Pavlov, D. A.; Shaleev, M. V.; Yunin, P. A.; Yurasov, D. V.; Krasilnik, Z. F.

    2015-08-15

    The possibility of using substrates based on “strained silicon on insulator” structures with a thin (25 nm) buried oxide layer for the growth of light-emitting SiGe structures is studied. It is shown that, in contrast to “strained silicon on insulator” substrates with a thick (hundreds of nanometers) oxide layer, the temperature stability of substrates with a thin oxide is much lower. Methods for the chemical and thermal cleaning of the surface of such substrates, which make it possible to both retain the elastic stresses in the thin Si layer on the oxide and provide cleaning of the surface from contaminating impurities, are perfecte. It is demonstrated that it is possible to use the method of molecular-beam epitaxy to grow light-emitting SiGe structures of high crystalline quality on such substrates.

  4. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    PubMed Central

    Pai Kotebagilu, Namratha; Reddy Palvai, Vanitha; Urooj, Asna

    2015-01-01

    Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol) of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%), methanol extract of Andrographis paniculata (72.15%), and methanol extract of Canthium parviflorum (49.55%) in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r = 0.816) and low-density lipoprotein (r = 0.948) and Costus speciosus in brain (r = 0.977, polyphenols, and r = 0.949, flavonoids) correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates. PMID:26933511

  5. Postprandial energy metabolism and substrate oxidation in response to the inclusion of a sugar- or non-nutritive sweetened beverage with meals differing in protein content

    USDA-ARS?s Scientific Manuscript database

    Protein-rich diets may promote achieving and maintaining a healthy body weight by increasing energy metabolism and substrate oxidation, especially fat oxidation. Sugar sweetened beverages (SSBs) are considered a major contributor to the obesogenic food environment and may decrease fat oxidation. The...

  6. Differential role of insular cortex muscarinic and NMDA receptors in one-trial appetitive taste learning.

    PubMed

    Parkes, Shauna L; De la Cruz, Vanesa; Bermúdez-Rattoni, Federico; Coutureau, Etienne; Ferreira, Guillaume

    2014-12-01

    Our current understanding of the neurobiology of taste learning and memory has been greatly facilitated by the use of a reliable behavioural model, conditioned taste aversion (CTA). This model has revealed that the insular cortex (IC), specifically muscarinic and N-methyl-d-aspartate (NMDA) receptor activation in the IC, is critical for the formation of aversive taste memories. In contrast, current models of appetitive taste learning are less adequate, relying on the use of neophobic tastes (attenuation of neophobia) or on the integration of appetitive and aversive taste memories (latent inhibition of CTA). While these models have implicated IC muscarinic receptors, the involvement of NMDA receptors in the IC remains unclear. Here, we examined the role of both muscarinic and NMDA receptors in appetitive taste learning using a simple paradigm that is independent of neophobic and aversive components. First, we demonstrated that a single exposure to a novel taste, saccharin 0.1%, is sufficient to promote an appetitive taste memory as revealed by an increase in saccharin consumption during the second presentation. This increase was blocked by bilateral infusion in the IC of the muscarinic receptor antagonist, scopolamine. In contrast, infusion of the NMDA receptor antagonist, AP5, did not block appetitive taste learning but did abolish CTA. Therefore, common and distinct molecular substrates within the IC mediate appetitive versus aversive learning about the same taste.

  7. Multi-laminated copper nanoparticles deposited on conductive substrates for electrocatalytic oxidation of methanol in alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Xia, Lun-Peng; Guo, Peng; Wang, Yan; Ding, Shi-Qi; He, Jian-Bo

    2014-09-01

    A simple electrodeposition approach to grow multi-laminated copper particles on two conductive substrates is presented. Morphological and structural characterization was performed using SEM and XRD. The copper crystallites are preferentially oriented with {111} planes parallel to the substrate surfaces, providing an optimum interface for methanol oxidation. There are a large number of edges, corners, and atomic steps around individual multi-laminated nanostructured particles. The excellent electrocatalytic activity of the particles to methanol oxidation in alkaline solutions is demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The presence of the conductive poly(2-amino-5-mercapto-1,3,4-thiadiazole) interlayer between the Cu particles and the carbon paste substrate results in larger specific surface areas of the particles and smaller charge-transfer resistances of methanol oxidation reaction in the lower potential range. Such an anisotropic laminated structure of non-noble metal nanomaterials deserves further investigation for finding a suitable alternative to noble metal-based anodic catalysts in fuel cells.

  8. Neuroscience and appetitive behavior research: 25 years.

    PubMed

    Hoebel, B G

    1997-10-01

    Neuroscience techniques have made major contributions to the understanding of appetitive behavior. Highlights in six areas are summarized to illustrate progress during the 25 years of the Columbia Appetitive Behavior Seminar: (1) discovery of angiotensin and aldosterone in the control of thirst and salt appetite; (2) electrophysiological decoding of chemoreceptive information in the brain; (3) a new foundation in the hypothalamus built on peptides, such as neuropeptide Y and galanin, interacting with monoamines and steroids in the control of appetite for macronutrients; (4) discovery of numerous peptides that mediate and integrate satiety, such as cholecystokinin, insulin, leptin and enterostatin, and other systems that suppress eating during illness; (5) better understanding of appetite suppressant drugs, and (6) exploration of a circuit that translates hypothalamic signals into behavioral action through connections to brainstem reflex arcs and forebrain instrumental response systems.

  9. Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.; Chisholm, Matthew F.

    2000-01-01

    A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

  10. Low- and high-resistivity silicon substrate characterization using the Al/silicon-rich oxide/Si structure with comparison to the metal oxide semiconductor technique

    NASA Astrophysics Data System (ADS)

    Luna-López, A.; Aceves-Mijares, M.; Malik, O.; Glaenzer, R.

    2005-05-01

    High-resistivity silicon substrates (HRS, NB<1014 cm-3) are commonly used, especially in optoelectronic integrated circuits. However, standard metal oxide semiconductor (MOS) characterization methods fail to predict correctly the dopant concentration and lifetime. This is due to the high resistance in series with the MOS capacitor, which causes an erroneous capacitance measurement at high frequency. To overcome this restriction, a different characterization method is proposed, using the electronic transport property of silicon-rich oxide (SRO) films, with aluminum/silicon-rich oxide (Al/SRO/Si) devices and using capacitance-voltage (C-V) and current-voltage (I-V) characteristics, the dopant concentration and lifetime can be estimated with these method. In addition, using low/high-frequency C-V measurements in MOS structure on HRS can be used to determine the dopant concentration. In this work, low-resistivity silicon and HRS substrates are characterized. The results for both type of substrates and for the different methods are compared. It is shown that the results are similar and any of these methods produce reliable results, but the Al/SRO/Si structure has the advantage that the generation lifetime is easily obtained.

  11. Soft-proton exchange on magnesium-oxide-doped substrates: A route toward efficient and power-resistant nonlinear converters

    NASA Astrophysics Data System (ADS)

    Lunghi, T.; Doutre, F.; Legoff, G.; Ayenew, G.; Tronche, H.; Tanzilli, S.; Baldi, P.; De Micheli, M.

    2017-07-01

    Despite their attractive features, integrated optical devices based on Congruent-melted Lithium Niobate (CLN) suffer from Photo-Refractive Damage (PRD). This light-induced refractive-index change hampers the use of CLN when high-power densities are in play, a typical regime in integrated optics. In bulk devices, the resistance to PRD can be largely improved by doping the lithium-niobate substrates with magnesium oxide. However, the fabrication of waveguides on MgO-doped substrates is not as straightforward as on CLN and either the resistance to PRD is strongly reduced by the waveguide fabrication process (as it happens in Ti-indiffused waveguides) or the nonlinear conversion efficiency is lowered (as it occurs in annealed-proton exchange). Here, we fabricate waveguides starting from MgO-doped substrates using the Soft-Proton Exchange (SPE) technique and we show that this combination represents a promising alternative. We demonstrate that, with a small adaptation of the exchange parameters, SPE allows producing MgO-doped LN refractive-index profiles almost identical to those produced in CLN without reducing the nonlinearity in the substrate. We also prove that the SPE does not affect substantially the resistance to PRD characteristics of MgO-doped substrates. Therefore, we think that SPE is the right recipe to outperform standard techniques and to fabricate robust and efficient waveguides for high-intensity-beam confinement.

  12. Growth of tin oxide thin films composed of nanoparticles on hydrophilic and hydrophobic glass substrates by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Paloly, Abdul Rasheed; Satheesh, M.; Martínez-Tomás, M. Carmen; Muñoz-Sanjosé, Vicente; Rajappan Achary, Sreekumar; Bushiri, M. Junaid

    2015-12-01

    In this paper, we have demonstrated the growth of tin oxide (SnO2) thin films composed of nanoparticles on hydrophobic (siliconized) and hydrophilic (non-siliconized) glass substrates by using the spray pyrolysis technique. X-ray diffraction (XRD) analysis confirmed the formation of SnO2 thin films with tetragonal rutile-phase structure. Average particle size of nanoparticles was determined to be in the range of 3-4 nm measured from the front view images obtained by a field emission gun scanning electron microscope (FESEM), while the size of nanoparticle clusters, when present, were in the range of 11-20 nm. Surface morphology of SnO2 films grown over hydrophobic substrates revealed larger isolated particles which are less crowded compared to the highly crowded and agglomerated smaller particles in films on hydrophilic substrates. Blue shift in the band gap is observed in samples in which the average particle size is slightly larger than the exciton Bohr radius. Photoluminescence (PL) analysis of samples grown over hydrophobic substrates exhibited an intense defect level emission and a weak near band edge emission. The enhanced visible emission from these SnO2 thin films is attributed to lattice defects formed during the film growth due to the mismatch between the film and the hydrophobic substrate surface.

  13. Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics.

    PubMed

    Dizdaroglu, Miral; Coskun, Erdem; Jaruga, Pawel

    Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy. Published by Elsevier B.V.

  14. A colorimetric sensor based on anodized aluminum oxide (AAO) substrate for the detection of nitroaromatics.

    SciTech Connect

    Liu, Y.; Wang, H. H.; Indacochea, J. E.; Wang, M. L.

    2011-12-15

    Simple and low cost colorimetric sensors for explosives detection were explored and developed. Anodized aluminum oxide (AAO) with large surface area through its porous structure and light background color was utilized as the substrate for colorimetric sensors. Fabricated thin AAO films with thickness less than {approx} 500 nm allowed us to observe interference colors which were used as the background color for colorimetric detection. AAO thin films with various thickness and pore-to-pore distance were prepared through anodizing aluminum foils at different voltages and times in dilute sulfuric acid. Various interference colors were observed on these samples due to their difference in structures. Accordingly, suitable anodization conditions that produce AAO samples with desired light background colors for optical applications were obtained. Thin film interference model was applied to analyze the UV-vis reflectance spectra and to estimate the thickness of the AAO membranes. We found that the thickness of produced AAO films increased linearly with anodization time in sulfuric acid. In addition, the growth rate was higher for AAO anodized using higher voltages. The thin film interference formulism was further validated with a well established layer by layer deposition technique. Coating poly(styrene sulfonate) sodium salt (PSS) and poly(allylamine hydrochloride) (PAH) layer by layer on AAO thin film consistently shifted its surface color toward red due to the increase in thickness. The red shift of UV-vis reflectance was correlated quantitatively to the number of layers been assembled. This sensitive red shift due to molecular attachment (increase in thickness) on AAO substrate was applied toward nitroaromatics detection. Aminopropyltrimethoxysilane (APTS) which can be attached onto AAO nanowells covalently through silanization and attract TNT molecules was coated and applied for TNT detection. UV-vis spectra of AAO with APTS shifted to the longer wavelength side due to

  15. Catalytic transformations of biomass substrates using mixed metal oxides derived from substituted hydrotalcites

    NASA Astrophysics Data System (ADS)

    Macala, Gerald Stephen, II

    Fueled by seemingly endless reserves of cheap and easily accessible fossil energy, the industrial age has brought to the developed world tremendous advances in human health and well being. Unfortunately the burning of fossil fuels has also been implicated in increasing atmospheric CO2 concentrations and global climate change. Concerns about short-term and long-term supply further build a case for the need for alternative energy sources. Biomass derived materials are a tantalizing source of fuels and fine chemicals. Unlike petroleum derived hydrocarbons, biomass can be both renewable and carbon neutral. Crops can be regenerated annually or even more often in tropical climates, and since the captured carbon originates as atmospheric CO2, the overall cycle has the potential to be nearly carbon neutral regardless of the final fate of the carbon. In contrast to petroleum derived hydrocarbons, which can often be made more valuable by adding functionality, biomass derived materials are already highly functionalized and can usually be made more valuable by selective removal of functionality. The development of robust catalysts capable of selective defuntionalization of biomass derived substrates remains an important challenge with potentially enormous economic and societal impact. In addition to being robust and selective, catalysts should preferably be heterogeneous to allow for easier removal and regeneration after the reaction is complete. New materials consisting of Mg-Al hydrotalcite-like structures, with a limiting percentage of Mg or Al substituted with other M2+ or M3+ cations, were synthesized by a co-precipitation process in basic aqueous solution with carbonate as counterion. Calcination of these materials at 460 °C resulted in evolution of CO2 and water and yielded high surface area mixed metal oxides with enhanced reactivity. Materials were characterized by ICP for elemental analysis, XRD for structural information, XPS for surface elemental analysis and TEM

  16. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate

    PubMed Central

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm2 using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si. PMID:25593562

  17. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate.

    PubMed

    Ghazali, Norizzawati Mohd; Yasui, Kanji; Hashim, Abdul Manaf

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm(2) using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si.

  18. Appetitive conditioning in Octopus cyanea.

    PubMed

    Papini, M R; Bitterman, M E

    1991-06-01

    The performance of Octopus cyanea was studied in 3 appetitive conditioning situations. In Experiment 1, 2 groups were trained in a runway; a large reward produced faster acquisition when reinforcement was consistent and better subsequent performance on a partial schedule than did a small reward. In Experiment 2, activity in the vicinity of a feeder was measured, and in Experiment 3, latency and probability of response were measured in an automated version of a traditional conditioned attack situation (Boycott & Young, 1950). There was evidence of acquisition with continuous reinforcement in both experiments but in neither with partial reinforcement. All of the results can be understood in terms of growth and decline in the strength of stimulus-reinforcer associations with reinforcement and nonreinforcement.

  19. Molecular mechanisms of appetite regulation.

    PubMed

    Yu, Ji Hee; Kim, Min-Seon

    2012-12-01

    The prevalence of obesity has been rapidly increasing worldwide over the last several decades and has become a major health problem in developed countries. The brain, especially the hypothalamus, plays a key role in the control of food intake by sensing metabolic signals from peripheral organs and modulating feeding behaviors. To accomplish these important roles, the hypothalamus communicates with other brain areas such as the brainstem and reward-related limbic pathways. The adipocyte-derived hormone leptin and pancreatic β-cell-derived insulin inform adiposity to the hypothalamus. Gut hormones such as cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide 1, and oxyntomodulin transfer satiety signals to the brain and ghrelin relays hunger signals. The endocannabinoid system and nutrients are also involved in the physiological regulation of food intake. In this article, we briefly review physiological mechanisms of appetite regulation.

  20. Formation of NiWO4 during high temperature oxidation of cube textured Ni 3 at.% W substrates

    NASA Astrophysics Data System (ADS)

    Woodcock, T. G.; Cheung, Y. L.; Grenfell, J. R. A.; Abell, J. S.

    2005-05-01

    Cube textured Ni-3 at.% W tapes were heated to temperatures in the range 800-1200 °C in flowing oxygen and either air-quenched or held for 1 h and furnace cooled. Cross-sectional backscattered electron images (BSEIs) and energy dispersive x-ray (EDX) analysis showed the formation of the ternary oxide NiWO4 at temperatures greater than 1000 °C in addition to the usual NiO. The nickel tungstate phase appeared first as a layer at the metal/NiO interface and then as internal oxides within the substrate. At some temperatures, the presence of this phase was observed to cause buckling and catastrophic spallation of the oxide.

  1. The liver: Key in regulating appetite and body weight.

    PubMed

    Fam, Barbara C; Joannides, Christos N; Andrikopoulos, Sofianos

    2012-10-01

    Liver fructose-1,6-bisphosphatase (FBPase) is a regulatory enzyme in gluconeogenesis that is elevated by obesity and dietary fat intake. Whether FBPase functions only in glucose metabolism or has other metabolic roles is currently unclear. In our recently published study, we examined the importance of liver FBPase in body weight regulation by performing a series of comprehensive physiological and biochemical assessments of energy balance and specific intervention studies in our transgenic mouse line that overexpresses FBPase specifically in the liver. Compared with negative littermates, these FBPase transgenic mice weighed 10% less, had 50% less adiposity, ate 15% less food but did not have altered energy expenditure. Increased circulating leptin and cholecystokinin levels, elevated fatty acid oxidation and reduced appetite stimulating neuropeptides, neuropeptide Y (NPY) and agouti-related peptide (AGRP), underpinned this phenotype. Blocking the action of FBPase returned food intake and body weight to those of the negative littermates. Our study is the first to identify liver FBPase as a previously unknown regulator of appetite and adiposity. Importantly, this work recognizes the liver as an important organ in appetite and body weight regulation. This commentary will provide further insight and expand on this novel concept that the liver does in fact play an important role in adiposity.

  2. Method For Improving The Oxidation Resistance Of Metal Substrates Coated With Thermal Barrier Coatings

    DOEpatents

    Thompson, Anthony Mark; Gray, Dennis Michael; Jackson, Melvin Robert

    2003-05-13

    A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described. A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

  3. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, V.K.

    1991-07-30

    A process is disclosed for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900--1500 C and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  4. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, Vinod K.

    1991-01-01

    A process for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900.degree.-1500.degree. C. and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  5. Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography.

    PubMed

    Hoehenwarter, Wolfgang; Thomas, Martin; Nukarinen, Ella; Egelhofer, Volker; Röhrig, Horst; Weckwerth, Wolfram; Conrath, Uwe; Beckers, Gerold J M

    2013-02-01

    Mitogen-activated protein kinase (MPK) cascades are important for eukaryotic signal transduction. They convert extracellular stimuli (e.g. some hormones, growth factors, cytokines, microbe- or damage-associated molecular patterns) into intracellular responses while at the same time amplifying the transmitting signal. By doing so, they ensure proper performance, and eventually survival, of a given organism, for example in times of stress. MPK cascades function via reversible phosphorylation of cascade components MEKKs, MEKs, and MPKs. In plants the identity of most MPK substrates remained elusive until now. Here, we provide a robust and powerful approach to identify and quantify, with high selectivity, site-specific phosphorylation of MPK substrate candidates in the model plant Arabidopsis thaliana. Our approach represents a two-step chromatography combining phosphoprotein enrichment using Al(OH)(3)-based metal oxide affinity chromatography, tryptic digest of enriched phosphoproteins, and TiO(2)-based metal oxide affinity chromatography to enrich phosphopeptides from complex protein samples. When applied to transgenic conditional gain-of-function Arabidopsis plants supporting in planta activation of MPKs, the approach allows direct measurement and quantification ex vivo of site-specific phosphorylation of several reported and many yet unknown putative MPK substrates in just a single experiment.

  6. Identification of Novel in vivo MAP Kinase Substrates in Arabidopsis thaliana Through Use of Tandem Metal Oxide Affinity Chromatography*

    PubMed Central

    Hoehenwarter, Wolfgang; Thomas, Martin; Nukarinen, Ella; Egelhofer, Volker; Röhrig, Horst; Weckwerth, Wolfram; Conrath, Uwe; Beckers, Gerold J. M.

    2013-01-01

    Mitogen-activated protein kinase (MPK) cascades are important for eukaryotic signal transduction. They convert extracellular stimuli (e.g. some hormones, growth factors, cytokines, microbe- or damage-associated molecular patterns) into intracellular responses while at the same time amplifying the transmitting signal. By doing so, they ensure proper performance, and eventually survival, of a given organism, for example in times of stress. MPK cascades function via reversible phosphorylation of cascade components MEKKs, MEKs, and MPKs. In plants the identity of most MPK substrates remained elusive until now. Here, we provide a robust and powerful approach to identify and quantify, with high selectivity, site-specific phosphorylation of MPK substrate candidates in the model plant Arabidopsis thaliana. Our approach represents a two-step chromatography combining phosphoprotein enrichment using Al(OH)3-based metal oxide affinity chromatography, tryptic digest of enriched phosphoproteins, and TiO2-based metal oxide affinity chromatography to enrich phosphopeptides from complex protein samples. When applied to transgenic conditional gain-of-function Arabidopsis plants supporting in planta activation of MPKs, the approach allows direct measurement and quantification ex vivo of site-specific phosphorylation of several reported and many yet unknown putative MPK substrates in just a single experiment. PMID:23172892

  7. Appetitive behaviours of children attending obesity treatment.

    PubMed

    Croker, H; Cooke, L; Wardle, J

    2011-10-01

    Associations between appetite and adiposity have not been examined in clinical samples of obese children. The Children's Eating Behaviour Questionnaire (CEBQ) was used to compare appetite in community (n=406) and clinical (n=66) samples. Clear graded patterns were seen for food responsiveness and emotional overeating; levels increased with increasing BMI SDS and the clinical sample scored highest. The reverse was seen for satiety responsiveness/slowness in eating. Differences were not solely explained by weight differences, suggesting that the clinical sample had more pronounced 'obesogenic' appetitive traits. This could make adherence to dietary guidance difficult.

  8. Enhancement of Characteristics of Transparent Conductive Electrode on Flexible Substrate by Combination of Solution-Based Oxide and Metallic Layers.

    PubMed

    Hong, Sung-Jei; Kim, Yong-Hoon; Cha, Seung-Jae; Kim, Yong-Sung

    2015-10-01

    This study investigates solution-processed transparent conductors with hybrid structure consisting of silver nanowires (AgNWs) and indium-tin-oxide nanoparticles (ITO-NPs) layers fabricated on polymeric flexible polyethylene terephthalate (PET) substrate. The transparent conductors had stacked structures of AgNWs/ITO-NPs on 125-μm-thick PET and ITO-NPs/AgNWs/ITO-NPs on 125-μm-thick PET, 188-μm-thick PET, or 700-μm-thick glass substrate, respectively. Successful integrations were possible on the substrates without any deformation or distortion. Sheet resistance of the triple-layered transparent conductor samples exhibits low values ranging from 22.41 Ω/square to 22.99 Ω/squarer. Also, their optical transmittance exhibits high values ranging from 83.78 to 87.29% at 550 nm. The triple-layered transparent conductor showed a good thermal stability in terms of sheet resistance and optical transmittance against the high-temperature environment up to 250 °C. All the double and triple-layered transparent conductors fabricated on PET and glass substrates are so stable against the accelerated thermal aging from 110 °C to 130 °C, that ΔR/R0 and ΔT(550)/T0(550) values exhibit less than 0.068 and 0.049, respectively. Furthermore, the layers are so flexible that ΔR/R0 of the layers on PET substrates is lower than 0.1 even at 4.0-mm bending. Especially, triple-layered transparent conductor on 125-μm-thick PET substrates exhibits ΔR/R0 value of 0.042 even at 4.0 mm bending. Thus, it can be concluded that the hybrid structures have the advantage of both thermal stability and flexibility for electrical and optical properties of transparent conductive electrode; which makes them highly applicable in flexible electronics.

  9. Laser-induced dehydration of graphite oxide coatings on polymer substrates

    SciTech Connect

    Longo, Angela Palomba, Mariano; Carotenuto, Gianfranco; Nicolais, Luigi; Orabona, Emanuele; Maddalena, Pasqualino; Ambrosio, Antonio

    2014-05-15

    Nanosized graphite has been oxidized by the Hummers method to give high quality graphite oxide. This reaction is characterized by a very fast kinetic behavior and a high yield. The produced graphite oxide has been conveniently used to pattern graphene by using a standard photolithographic method, and the resulting systems have been characterized by optical microscopy (OM), scanning electron microscopy (SEM) and by Fourier transform infrared spectroscopy (FT-IR) and Visible-Near Infrared spectroscopy (Vis-NIR)

  10. Morphology and Optical Properties of Zinc Oxide Films Grown on Metal Coated Glass Substrates by Aqueous Chemical Growth

    NASA Astrophysics Data System (ADS)

    Bakar, M. A.; Hamid, M. A. A.; Jalar, A.; Shamsudin, R.

    2013-04-01

    Zinc oxide films were deposited on three different metal coated substrates (gold, nickel and platinum) by aqueous chemical growth method. This paper discusses the effect of metal coated substrates on the morphology and optical properties of grown ZnO films. X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and UV-visible spectroscopy (UV-vis) were employed to characterize the samples. All the as-deposited ZnO films exhibit crystalline hexagonal wurzite structure. The crystallite size of the ZnO films were in the range of 29 to 32 nm. FESEM micrographs revealed hexagonal rod, oval-like and flower-like ZnO structures formed on all metal coated substrates. The Pt coated film contains higher density hexagonal rod as compared to others metal coated substrate. Most probably the Pt lattice parameter is the nearest to ZnO compared to nickel and gold. The optical band gap energy, Eg of ZnO films were estimated to be 3.30 eV which is near to bulk Eg, 3.37 eV. This indicates that the ZnO grown by aqueous chemical growth is able to produce similar quality properties to other conventional method either films or bulk size.

  11. Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates.

    PubMed

    Yoo, Kicheon; Kim, Jae-Yup; Lee, Jin Ah; Kim, Jin Soo; Lee, Doh-Kwon; Kim, Kyungkon; Kim, Jin Young; Kim, BongSoo; Kim, Honggon; Kim, Won Mok; Kim, Jong Hak; Ko, Min Jae

    2015-04-28

    To achieve commercialization and widespread application of next-generation photovoltaics, it is important to develop flexible and cost-effective devices. Given this, the elimination of expensive transparent conducting oxides (TCO) and replacement of conventional glass substrates with flexible plastic substrates presents a viable strategy to realize extremely low-cost photovoltaics with a potentially wide applicability. To this end, we report a completely TCO-free and flexible dye-sensitized solar cell (DSSC) fabricated on a plastic substrate using a unique transfer method and back-contact architecture. By adopting unique transfer techniques, the working and counter electrodes were fabricated by transferring high-temperature-annealed TiO2 and Pt/carbon films, respectively, onto flexible plastic substrates without any exfoliation. The fabricated working electrode with the conventional counter electrode exhibited a record efficiency for flexible DSSCs of 8.10%, despite its TCO-free structure. In addition, the completely TCO-free and flexible DSSC exhibited a remarkable efficiency of 7.27%. Furthermore, by using an organic hole-transporting material (spiro-MeOTAD) with the same transfer method, solid-state flexible TCO-free DSSCs were also successfully fabricated, yielding a promising efficiency of 3.36%.

  12. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2016-07-01

    A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.

  13. Room temperature crystallization of indium tin oxide films on glass and polyethylene terephthalate substrates using rf plasma

    SciTech Connect

    Ohsaki, H.; Suzuki, M.; Shibayama, Y.; Kinbara, A.; Watanabe, T.

    2007-07-15

    The crystallization of amorphous indium tin oxide (ITO) films was achieved by rf (13.56 MHz) plasma treatment. Although the films were crystallized after 2 min, the sample temperature was lower than 90 deg. C without compulsory cooling even after 10 min of treatment and polyethylene terephthalate (PET) substrates had no damage. Plasma-crystallized sputtered ITO films have a bixbite structure and the resistivity reached to 1.6x10{sup -4} {omega}{center_dot}cm. ITO thin films have almost the same resistivity in both cases of PET and glass substrates used and plasma-treated PET ITO films have a bit higher resistivity than that of glass ITO films, while mass spectroscopy measurements indicated that ITO films deposited on PET substrates are expected to include no apparent gas species ejected from PET substrate. It was found that the plasma gas pressure is the key parameter for the effective crystallization and the appropriate gas pressure depends on the plasma gas species.

  14. Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity

    NASA Astrophysics Data System (ADS)

    Losurdo, M.; Giangregorio, M.; Capezzuto, P.; Bruno, G.; de Rosa, R.; Roca, F.; Summonte, C.; Plá, J.; Rizzoli, R.

    2002-01-01

    Indium-tin-oxide (ITO) films deposited by sputtering and e-gun evaporation on both transparent (Corning glass) and opaque (c-Si, c-Si/SiO2) substrates and in c-Si/a-Si:H/ITO heterostructures have been analyzed by spectroscopic ellipsometry (SE) in the range 1.5-5.0 eV. Taking the SE advantage of being applicable to absorbent substrate, ellipsometry is used to determine the spectra of the refractive index and extinction coefficient of the ITO films. The effect of the substrate surface on the ITO optical properties is focused and discussed. To this aim, a parametrized equation combining the Drude model, which considers the free-carrier response at the infrared end, and a double Lorentzian oscillator, which takes into account the interband transition contribution at the UV end, is used to model the ITO optical properties in the useful UV-visible range, whatever the substrate and deposition technique. Ellipsometric analysis is corroborated by sheet resistance measurements.

  15. Role of surfactant-mediated electrodeposited titanium oxide substrate in improving electrocatalytic features of supported platinum particles

    NASA Astrophysics Data System (ADS)

    Spătaru, Tanţa; Preda, Loredana; Osiceanu, Petre; Munteanu, Cornel; Anastasescu, Mihai; Marcu, Maria; Spătaru, Nicolae

    2014-01-01

    A new hybrid system with improved photocatalytic and electrocatalytic performances was obtained by two-step potentiostatic deposition on highly boron-doped diamond (BDD) substrate. First, hydrated TiO2 was anodically deposited from a TiCl3 aqueous solution, both in the presence and in the absence of sodium dodecyl sulfate (SDS). The study of the UV irradiation effect evidenced that titanium oxide coatings obtained by surfactant-assisted electrodeposition (TiO2:SDS) exhibit enhanced photocurrent, due to its very rough texture and presumably to better efficiency of charge carrier separation. Electrochemical deposition of platinum on the oxide-coated BDD was carried out in a second step and AFM, SEM and XPS measurements have shown that, on the TiO2:SDS substrate, Pt particles are smaller, more uniformly distributed, and tend to form clusters, leading to a specific surface area of the electrocatalyst of ca. 6.55 m2 g-1. Carbon monoxide stripping experiments demonstrated that, when deposited on TiO2:SDS, Pt particles are also less sensitive to CO-poisoning during methanol anodic oxidation.

  16. Oxidation of linoleyl alcohol by potato tuber lipoxygenase: possible mechanism and the role of carboxylic group in substrate binding.

    PubMed

    Butovich, I A; Lukyanova, S M; Reddy, C C

    1998-08-19

    We have studied the aerobic oxidation of linoleyl alcohol (LAL) by potato tuber lipoxygenase in the presence of 0.02% (w/v) non-ionic detergent Lubrol PX (and its analog C12E10) and 0.1 mM sodium dodecyl sulfate to investigate the role of carboxylic group in substrate binding. While the enzyme displayed a comparable affinity toward LA and LAL, the rate of LAL oxidation was approximately one-fourth of that of linoleic acid. The pH-profile of the reaction suggests that the rate of LAL oxidation is controlled by two ionizable groups with pKa values of 5.3 and 7.5, with optimal pH being 6.4+/-0.1. Since LAL is not ionizable at this pH, we conclude that the rate of the reaction is controlled by two ionogenic groups of the enzyme. The primary dioxygenation product(s) of LAL had a maximal absorbance at 233+/-1 nm. The products have been isolated, catalytically hydrogenated with H2 over Pd on carbon, and analyzed by GC-MS. Two major equimolar products were found to be 9- and 13-hydroxystearyl alcohols, indicating that 9- and 13-hydroperoxylinoleyl alcohols are the primary dioxygenation products. Based on these results we propose that the carboxyl group of polyunsaturated fatty acid may not be involved in substrate binding of potato tuber lipoxygenase. Copyright 1998 Academic Press.

  17. Combining solvent isotope effects with substrate isotope effects in mechanistic studies of alcohol and amine oxidation by enzymes.

    PubMed

    Fitzpatrick, Paul F

    2015-11-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin- and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.

  18. Effects of MAR-M247 substrate (modified) composition on coating oxidation coating/substrate interdiffusion. M.S. Thesis. Final Report; [protective coatings for hot section components of gas turbine engines

    NASA Technical Reports Server (NTRS)

    Pilsner, B. H.

    1985-01-01

    The effects of gamma+gamma' Mar-M247 substrate composition on gamma+beta Ni-Cr-Al-Zr coating oxidation and coating/substrate interdiffusion were evaluated. These results were also compared to a prior study for a Ni-Cr-Al-Zr coated gamma Ni-Cr-Al substrate with equivalent Al and Cr atomic percentages. Cyclic oxidation behavior at 1130 C was investigated using change in weight curves. Concentration/distance profiles were measured for Al, Cr, Co, W, and Ta. The surface oxides were examined by X-ray diffraction and scanning electron microscopy. The results indicate that variations of Ta and C concentrations in the substrate do not affect oxidation resistance, while additions of grain boundary strengthening elements (Zr, Hf, B) increase oxidation resistance. In addition, the results indicate that oxidation phenomena in gamma+beta/gamma+gamma' Mar-M247 systems have similar characteristics to the l gamma+beta/gamma Ni-Cr-Al system.

  19. Hippocampus ghrelin signaling mediates appetite through lateral hypothalamic orexin pathways

    PubMed Central

    Hsu, Ted M; Hahn, Joel D; Konanur, Vaibhav R; Noble, Emily E; Suarez, Andrea N; Thai, Jessica; Nakamoto, Emily M; Kanoski, Scott E

    2015-01-01

    Feeding behavior rarely occurs in direct response to metabolic deficit, yet the overwhelming majority of research on the biology of food intake control has focused on basic metabolic and homeostatic neurobiological substrates. Most animals, including humans, have habitual feeding patterns in which meals are consumed based on learned and/or environmental factors. Here we illuminate a novel neural system regulating higher-order aspects of feeding through which the gut-derived hormone ghrelin communicates with ventral hippocampus (vHP) neurons to stimulate meal-entrained conditioned appetite. Additional results show that the lateral hypothalamus (LHA) is a critical downstream substrate for vHP ghrelin-mediated hyperphagia and that vHP ghrelin activated neurons communicate directly with neurons in the LHA that express the neuropeptide, orexin. Furthermore, activation of downstream orexin-1 receptors is required for vHP ghrelin-mediated hyperphagia. These findings reveal novel neurobiological circuitry regulating appetite through which ghrelin signaling in hippocampal neurons engages LHA orexin signaling. DOI: http://dx.doi.org/10.7554/eLife.11190.001 PMID:26745307

  20. Copper-Aβ Peptides and Oxidation of Catecholic Substrates: Reactivity and Endogenous Peptide Damage.

    PubMed

    Pirota, Valentina; Dell'Acqua, Simone; Monzani, Enrico; Nicolis, Stefania; Casella, Luigi

    2016-11-14

    The oxidative reactivity of copper complexes with Aβ peptides 1-16 and 1-28 (Aβ16 and Aβ28) against dopamine and related catechols under physiological conditions has been investigated in parallel with the competitive oxidative modification undergone by the peptides. It was found that both Aβ16 and Aβ28 markedly increase the oxidative reactivity of copper(II) towards the catechol compounds, up to a molar ratio of about 4:1 of peptide/copper(II). Copper redox cycling during the catalytic activity induces the competitive modification of the peptide at selected amino acid residues. The main modifications consist of oxidation of His13/14 to 2-oxohistidine and Phe19/20 to ortho-tyrosine, and the formation of a covalent His6-catechol adduct. Competition by the endogenous peptide is rather efficient, as approximately one peptide molecule is oxidized every 10 molecules of 4-methylcatechol.

  1. Appetite Regulation In Relation To Energy Provision.

    PubMed

    Fatima, Sadia; Ahmed, Nasir; Fatima, Fozia; Wazir, Salim

    2016-01-01

    Appetite control is a very complex process which influences the short term feeding behaviour and a long term adaptive process that responds to the energy input. Appetite control and food intake is influenced by a combination of behavioural, psychological and neuro-endocrine influences. For identification of articles search engines of the databases EMBASE, OVID, Pub med and MEDLINE were used for papers published from 2002 to 2015 in English language. The higher endogenous peptide YY (PYY) and cholecystokinin (CCK) and lower ghrelin levels are not always associated with subjective feelings of fullness or hunger and a decreased energy intake which highlights the fact that appetite control and food intake is a very intricate process. When food is ingested, numerous physiological, hormonal, social and psychological processes are triggered in an intricate manner. Therefore, it can be said that ghrelin, PYY and CCK are just few pieces, which contributes to the process of appetite control and energy intake.

  2. Latina mothers' influences on child appetite regulation

    USDA-ARS?s Scientific Manuscript database

    Parents influence child weight through interactions that shape the development of child eating behaviors. In this study we examined the association between maternal autonomy promoting serving practices and child appetite regulation. We predicted that maternal autonomy promoting serving practices wou...

  3. Electrochemical investigation of chromium oxide-coated Ti-6Al-4V and Co-Cr-Mo alloy substrates.

    PubMed

    Swaminathan, Viswanathan; Zeng, Haitong; Lawrynowicz, Daniel; Zhang, Zongtao; Gilbert, Jeremy L

    2011-08-01

    Hard coatings for articulating surfaces of total joint replacements may improve the overall wear resistance. However, any coating approach must take account of changes in corrosion behavior. This preliminary assessment analyzes the corrosion kinetics, impedance and mechanical-electrochemical stability of 100 μm thick plasma sprayed chromium oxide (Cr₂O₃) coatings on bearing surfaces in comparison to the native alloy oxide films on Co-Cr-Mo and Ti-6Al-6V. Cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, and mechanical abrasion under potentiostatic conditions were performed on coated and substrate surfaces in physiological saline. SEM analysis characterized the coating morphology. The results showed that the corrosion current density values of chromium oxide coatings (0.4-1.2 μA/cm²) were of the same order of magnitude as Ti-6Al-4V alloy. Mechanical abrasion did not increase corrosion rates of chromium oxide coatings but did for uncoated Co-Cr-Mo and Ti-6Al-4V. The impedance response of chromium oxide coatings was very different than Co-Cr-Mo and Ti-6Al-4V native oxides characterized by a defected coating model. More of a frequency-independent purely resistive response was seen in mid-frequency range for the coatings (CPE(coat) : 40-280 nF/cm² (rad/s)(1-α) , α: 0.67-0.83) whereas a more capacitive character is seen for Co-Cr-Mo and Ti-6Al-4V (CPE(ox) around 20 μF/cm² (rad/s)(1-α) , α around 0.9). Pores, interparticle gaps and incomplete fusion typical for thermal spray coatings were present in these oxides which could have influenced corrosion resistance. The coating microstructure could have allowed some fluid penetration. Overall, these coatings appear to have suitable corrosion properties for wear surfaces. Copyright © 2011 Wiley Periodicals, Inc.

  4. Fabrication of p-type porous silicon nanowire with oxidized silicon substrate through one-step MACE

    SciTech Connect

    Li, Shaoyuan; Ma, Wenhui; Zhou, Yang; Chen, Xiuhua; Xiao, Yongyin; Ma, Mingyu; Wei, Feng; Yang, Xi

    2014-05-01

    In this paper, the simple pre-oxidization process is firstly used to treat the starting silicon wafer, and then MPSiNWs are successfully fabricated from the moderately doped wafer by one-step MACE technology in HF/AgNO{sub 3} system. The PL spectrum of MPSiNWs obtained from the oxidized silicon wafers show a large blue-shift, which can be attributed to the deep Q. C. effect induced by numerous mesoporous structures. The effects of HF and AgNO{sub 3} concentration on formation of SiNWs were carefully investigated. The results indicate that the higher HF concentration is favorable to the growth of SiNWs, and the density of SiNWs is significantly reduced when Ag{sup +} ions concentrations are too high. The deposition behaviors of Ag{sup +} ions on oxidized and unoxidized silicon surface were studied. According to the experimental results, a model was proposed to explain the formation mechanism of porous SiNWs by etching the oxidized starting silicon. - Graphical abstract: Schematic cross-sectional views of PSiNWs array formation by etching oxidized silicon wafer in HF/AgNO{sub 3} solution. (A) At the starting point; (B) during the etching process; and (C) after Ag dendrites remove. - Highlights: • Prior to etching, a simple pre-oxidation is firstly used to treat silicon substrate. • The medially doped p-type MPSiNWs are prepared by one-step MACE. • Deposition behaviors of Ag{sup +} ions on oxidized and unoxidized silicon are studied. • A model is finally proposed to explain the formation mechanism of PSiNWs.

  5. A high-fat vs. a moderate-fat meal in obese boys: nutrient balance, appetite, and gastrointestinal hormone changes.

    PubMed

    Maffeis, Claudio; Surano, Maria G; Cordioli, Sira; Gasperotti, Sandra; Corradi, Massimiliano; Pinelli, Leonardo

    2010-03-01

    Meal composition is a contributing factor to fat gain. In this study, we investigated the relationship between postprandial nutrient balance, satiety, and hormone changes induced by a high-fat meal vs. a moderate-fat meal. Ten prepubertal obese boys (BMI z-score range: 1.3-3.0) were recruited. Two meals (energy: 590 kcal) were compared: (i) high-fat (HF) meal: 12% protein, 52% fat, 36% carbohydrates; (ii) moderate-fat (MF) meal: 12% protein, 27% fat, 61% carbohydrates. Pre- and postprandial (5 h) substrate oxidation (indirect calorimetry), appetite (visual analogue scale), biochemical parameters and gastrointestinal hormone concentrations were measured. Carbohydrate balance was significantly (P < 0.001) lower (31.3 (5.7) g/5 h vs. 66.9 (5.9) g/5 h) and fat balance was significantly (P < 0.001) higher (11.5 (3.3) g/5 h vs. -0.7 (2.9) g/5 h) after HF than MF meal. Appetite (area under the curve (AUC)) was significantly reduced after an MF than an HF meal (494 (55) cm.300 min vs. 595 (57) cm.300 min, P < 0.05). Postprandial triglyceride concentration (AUC) was significantly (P < 0.05) higher after an HF than an MF meal: 141.1 (30.3) mmol.300 min/l vs. 79.3 (23.8) mmol.300 min/l, respectively. Peptide YY (PYY), cholecystokinin (CCK), and ghrelin concentrations (AUC) were not significantly different after an HF and MF meal. Glucagon-like peptide-1 (GLP-1) was significantly (P < 0.05) higher after an HF than after an MF meal (72.3 (9.8) ng/ml vs. 22.7 (7.6) ng/ml, respectively), but it did not affect subjective appetite. In conclusion, an MF meal induced a better postprandial metabolic nutrient balance, triglyceride levels, and appetite suppression than an HF meal. Gastrointestinal hormones were not related to clinically assessed hunger suppression after both meals.

  6. Samarium electrodeposited acetate and oxide thin films on stainless steel substrate characterized by XPS

    DOE PAGES

    Myhre, Kristian; Burns, Jonathan; Meyer, Harry; ...

    2016-06-01

    Characterization of a samarium thin film deposited on a stainless steel substrate using molecular electrodeposition was carried out using a Thermo Scientific K-Alpha X-ray photoelectron spectrometer. We studied two types of samarium electrodeposition samples, one as-deposited and one heated to 700 °C in an air flow. Survey scans include peaks coming from the stainless steel substrate, such as Fe and Cr. An X-ray photoelectron spectroscopy (XPS) survey spectrum, Sm 3d, C 1s, and O 1s narrow scans are shown. It was determined that the heating process decomposed the deposited Sm acetate to Sm2O3 using XPS.

  7. Steady state creep of Ni-8YSZ substrates for application in solid oxide fuel and electrolysis cells

    NASA Astrophysics Data System (ADS)

    Wei, J.; Malzbender, J.

    2017-08-01

    Steady state creep was characterized for Ni-8YSZ solid oxide fuel/electrolysis cell (SOFC/SOEC) substrate material. Intrinsic and extrinsic factors affecting creep behavior were assessed, such as compositional ratio, porosity and mechanical loading configuration. Mechanical tests were supported by analytical and numerical calculations. The results indicated a diffusion-dominated creep mechanism under both compressive and tensile creep conditions. Creep appeared to be dominated by the ceramic phase. Porosity significantly reduced creep resistance. The activation energy was discussed based on loading configuration, temperature and porosity.

  8. Large area Co nanoring arrays fabricated on silicon substrate by anodic aluminum oxide template-assisted electrodeposition

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Tang, S. L.; Xia, W. B.; Chen, L. Y.; Wang, Y.; Tang, T.; Du, Y. W.

    2012-04-01

    A simple approach based on anodic aluminum oxide template-assisted electrodeposition was developed to fabricate large-area Co nanoring arrays on silicon substrate. The ring outer diameter and interspace can be modulated by varying the anodization parameters. Magnetic measurements and micromagnetic simulation revealed that the onion to vortex (O-V) transition is strongly diameter dependent. With increasing the outer diameter from 100 nm to 300 nm, the O-V switching field gradually changes from positive value to negative value. This was also proved by in situ observation of the magnetic states of the rings under different external fields using magnetic force microscope.

  9. Versatile Oxidation Methods for Organic and Inorganic Substrates Catalyzed by Platinum-Group Metals on Carbons.

    PubMed

    Sawama, Yoshinari; Asai, Shota; Monguchi, Yasunari; Sajiki, Hironao

    2016-02-01

    Platinum-group metals on activated carbon catalysts, represented by Pd/C, Ru/C, Rh/C, etc., are widely utilized to accomplish green and sustainable organic reactions due to their favorable features, such as easy handling, recoverability, and reusability. The efficient oxidation methods of various organic compounds using heterogeneous platinum-group metals on carbons with or without added oxidants are summarized in this Personal Account. The oxidation of internal alkynes into diketones was effectively catalyzed by Pd/C in the presence of dimethyl sulfoxide and molecular oxygen or pyridine N-oxide. The Pd/C-catalyzed mild combustion of gaseous hydrogen with molecular oxygen provided hydrogen peroxide, which could be directly utilized for the oxidation of sulfide derivatives into sulfoxides. Furthermore, the Ru/C-catalyzed aerobic oxidation of primary and secondary alcohols gave the corresponding aldehydes and ketones, respectively. On the other hand, the dehydrogenative oxidation of secondary alcohols into ketones was achieved using Rh/C in water, and primary alcohols were effectively dehydrogenated by Pd/C in water under mildly reduced pressure to produce carboxylic acids.

  10. The pharmacology of human appetite expression.

    PubMed

    Halford, Jason C G; Cooper, Gillian D; Dovey, Terence M

    2004-04-01

    The discovery of the adiposity signal leptin a decade ago revolutionised our understanding of the hypothalamic mechanisms underpinning the central control of ingestive behaviour. Subsequently, the structure and function of various hypothalamic peptide systems (Neuropeptide Y (NPY), Orexins, Melanocortins, Cocaine and Amphetamine Regulating Transcript (CART), Galanin/Galanin Like Peptides (GALP) and endocannabinoids) have been characterised in detail in rodent models. The therapeutic benefit of targeting these systems remains to be discovered. More is becoming known about the pharmacological potential of peripheral, meal-induced, episodic endogenous peptides. Hormones such as Cholecystokinin (CCK), Gastrin Releasing Peptides (GRP), Glucagon-Like Peptide I (GLP-1) Enterostatin, Amylin, Peptide YY (PYY) and Ghrelin are released prior to, during and/or after a meal, controlling intake and subjective feelings of appetite (hunger and satiety). In addition, there is an expanding body of literature detailing the effects of a wide variety of drugs on human appetite and food intake. Some of these drugs act upon CNS monoamine systems such as Serotonin (5-HT). Dopamine (DA) and Noradrenaline (NA), have long been implicated in appetite regulation. Detailed examination of both the effect of agonising endogenous gut peptide systems and the effect of various monoaminergic drugs on the expression of human appetite can provide a greater understanding of mechanisms underpinning normal appetite regulation. However, such an understanding must be based on knowledge of the effect of the treatment on meal size, eating rate, meal pattern, food choice and the subjective experience of appetite flux (hunger and satiety), and notjust food intake.

  11. Effect of organic solar cells using various power O2 plasma treatments on the indium tin oxide substrate.

    PubMed

    Ke, Jhong-Ciao; Wang, Yeong-Her; Chen, Kan-Lin; Huang, Chien-Jung

    2016-03-01

    The effect of organic solar cells (OSCs) by using different power O2 plasma treatments on indium tin oxide (ITO) substrate was studied. The power of O2 plasma treatment on ITO substrate was varied from 20W to 80W, and the power conversion efficiency of device was improved from 1.18% to 1.93% at 20W O2 plasma treatment. The function of O2 plasma treatment on ITO substrate was to remove the surface impurity and to improve the work function of ITO, which can reduce the energy offset between the ITO and SubPc layer and depress the leakage current of device, leading to the shunt resistance increased from 897 to 1100Ωcm(2). The surface roughness of ITO decreased from 3.81 to 3.33nm and the work function of ITO increased from 4.75 to 5.2eV after 20W O2 plasma treatment on ITO substrate. As a result, the open circuit voltage and the fill factor were improved from 0.46 to 0.70V and from 0.56 to 0.61, respectively. However, the series resistance of device was dramatically increased as the power of O2 plasma treatment exceeds 40W, leading to the efficiency reduction. The result is attributed to the variation of oxygen vacancies in ITO film after the 60, 80W O2 plasma treatment. As a consequence, the power of O2 plasma treatment on ITO substrate for the OSCs application should be controlled below 40W to avoid affecting the electricity of ITO film. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Epitaxial growth of aluminium-doped zinc oxide films by magnetron sputtering on (001), (110), and (012) oriented sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kuppusami, P.; Vollweiler, G.; Rafaja, D.; Ellmer, K.

    2005-01-01

    Highly aluminium-doped zinc oxide (ZnO) films have been grown on differently oriented sapphire substrates by magnetron sputtering from an oxidic target. Rocking curve measurements, Rutherford backscattering analysis and transmission electron microscopy show that the films exhibit a disturbed film growth. However, despite the large nominal lattice mismatch between ZnO and sapphire (-31%), the films grow epitaxially on every sapphire orientation, even at room temperature. This was proven by pole figure analysis. The reason that epitaxial growth can be observed is an incommensurate lattice fitting between ZnO and sapphire by a mutual rotational alignment of their lattices. Films of the best crystallographic quality have been grown on (110)-oriented sapphire, which is also reflected by the highest Hall mobility in these layers.

  13. Sn and Cu oxide nanoparticles deposited on TiO2 nanoflower 3D substrates by Inert Gas Condensation technique

    NASA Astrophysics Data System (ADS)

    Kusior, A.; Kollbek, K.; Kowalski, K.; Borysiewicz, M.; Wojciechowski, T.; Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M.; Zakrzewska, K.

    2016-09-01

    Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO2 3D substrates obtained in the oxidation process of Ti-foil in 30% H2O2. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity.

  14. Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate

    SciTech Connect

    Yu, Wonjong; Cho, Gu Young; Noh, Seungtak; Tanveer, Waqas Hassan; Cha, Suk Won; Ji, Sanghoon; An, Jihwan

    2015-01-15

    An ultrathin yttria-stabilized zirconia (YSZ) blocking layer deposited by atomic layer deposition (ALD) was utilized for improving the performance and reliability of low-temperature solid oxide fuel cells (SOFCs) supported by an anodic aluminum oxide substrate. Physical vapor-deposited YSZ and gadolinia-doped ceria (GDC) electrolyte layers were deposited by a sputtering method. The ultrathin ALD YSZ blocking layer was inserted between the YSZ and GDC sputtered layers. To investigate the effects of an inserted ultrathin ALD blocking layer, SOFCs with and without an ultrathin ALD blocking layer were electrochemically characterized. The open circuit voltage (1.14 V) of the ALD blocking-layered SOFC was visibly higher than that (1.05 V) of the other cell. Furthermore, the ALD blocking layer augmented the power density and improved the reproducibility.

  15. Effect of substrate crystalline morphology on the adhesion of plasma enhanced chemical vapor deposited thin silicon oxide coatings on polyamide

    NASA Astrophysics Data System (ADS)

    Rochat, G.; Leterrier, Y.; Plummer, C. J. G.; Mânson, J.-A. E.; Szoszkiewicz, R.; Kulik, A. J.; Fayet, P.

    2004-05-01

    The influence of the surface morphology of semicrystalline polyamide 12 (PA12) on the adhesion of thin silicon oxide coatings is analyzed by means of uniaxial fragmentation tests and scanning local-acceleration microscopy (SLAM). Two types of PA12 substrates are investigated, namely, as-received PA12, which contains large spherulites, and quenched PA12, which has a relatively smooth, homogeneous surface structure. The adhesion of the coating is found to be identical for the two types of PA12. This indicates that plasma deposition of the oxide leads to an equivalent functionalization of the two types of surfaces. Nonetheless, localized delamination is observed at spherulite boundaries, and is argued to result from strain concentrations in the corresponding soft zones, revealed by SLAM measurements.

  16. An oxidized derivative of phosphatidylcholine is a substrate for the platelet-activating factor acetylhydrolase from human plasma.

    PubMed

    Stremler, K E; Stafforini, D M; Prescott, S M; Zimmerman, G A; McIntyre, T M

    1989-04-05

    Platelet-activating factor (PAF) is a glycerophospholipid that has diverse potent biological actions. A plasma enzyme catalyzes the hydrolysis of the sn-2 acetoyl group of PAF and thereby abolishes its bioactivity. This PAF acetylhydrolase is specific for phospholipids, such as PAF, with a short acyl group at the sn-2 position. The majority of it (60-70%) is associated with low density lipoprotein (LDL), and the remainder is with high density lipoprotein (HDL). LDL also has a phospholipase A2 activity that is specific for oxidized polyunsaturated fatty acids, which may be important in determining how LDL is recognized by cellular receptors. We previously have purified and characterized the PAF acetylhydrolase from human plasma. We now have found that the purified PAF acetylhydrolase catalyzes the hydrolysis of the oxidized fragments of arachidonic acid from the sn-2 position of phosphatidylcholine. One of the preferred substrates appeared by mass spectrometry to have 5-oxovalerate at the sn-2 position. We synthesized 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine and found that the PAF acetylhydrolase had the same apparent Km for it (11.3 microM) as for PAF (12.5 microM), with Vmax values of 100 and 167 mumol/h/mg of protein, respectively. We also conclude that the PAF acetylhydrolase is the sole activity in LDL that degrades oxidized phospholipids since we found co-localization of the activity against both substrates to LDL and HDL, and precipitation of enzyme activity with an antibody to the PAF acetylhydrolase. Thus, the PAF acetylhydrolase in human plasma degrades oxidized phospholipids, which may be involved in the modification of apolipoprotein B100 and other pathological processes.

  17. Mouth rinsing with a sweet solution increases energy expenditure and decreases appetite during 60 min of self-regulated walking exercise.

    PubMed

    Deighton, Kevin; Duckworth, Lauren; Matu, Jamie; Suter, Matthew; Fletcher, Charlotte; Stead, Samuel; Ali, Shaho; Gunby, Neil; Korsness, Keelie

    2016-12-01

    Carbohydrate mouth rinsing can improve endurance exercise performance and is most ergogenic when exercise is completed in the fasted state. This strategy may also be beneficial to increase exercise capacity and the energy deficit achieved during moderate-intensity exercise relevant to weight control when performed after an overnight fast. Eighteen healthy men (mean (SD); age, 23 (4) years; body mass index, 23.1 (2.4) kg·m(-2)) completed a familiarisation trial and 3 experimental trials. After an overnight fast, participants performed 60 min of treadmill walking at a speed that equated to a rating of perceived exertion of 13 ("fairly hard"). Participants manually adjusted the treadmill speed to maintain this exertion. Mouth rinses for the experimental trials contained either a 6.4% maltodextrin solution with sweetener (CHO), a taste-matched placebo (PLA), or water (WAT). Appetite ratings were collected using visual analogue scales and exercise energy expenditure and substrate oxidation were calculated from online gas analysis. Increased walking distance during CHO and PLA induced greater energy expenditure compared with WAT (mean difference (90% confidence interval); 79 (60) kJ, P = 0.035, d = 0.24; and 90 (63) kJ, P = 0.024, d = 0.27, respectively). Appetite area under the curve was lower in CHO and PLA than WAT (8 (6) mm, P = 0.042, d = 0.43; and 6 (8) mm, P = 0.201, d = 0.32, respectively). Carbohydrate oxidation was higher in CHO than PLA and WAT (7.3 (6.7) g, P = 0.078, d = 0.47; and 10.1 (6.5) g, P = 0.015, d = 0.81, respectively). This study provides novel evidence that mouth rinsing with a sweetened solution may promote a greater energy deficit during moderate-exertion walking exercise by increasing energy expenditure and decreasing appetite. A placebo effect may have contributed to these benefits.

  18. Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma electrolytic oxidation.

    PubMed

    Akatsu, T; Yamada, Y; Hoshikawa, Y; Onoki, T; Shinoda, Y; Wakai, F

    2013-12-01

    Plasma electrolytic oxidation (PEO) was used to make a multifunctional porous titanium oxide (TiO2) coating on a titanium substrate. The key finding of this study is that a highly crystalline TiO2 coating can be made by performing the PEO in an ammonium acetate (CH3COONH4) solution; the PEO coating was formed by alternating between rapid heating by spark discharges and quenching in the solution. The high crystallinity of the TiO2 led to the surface having multiple functions, including apatite forming ability and photocatalytic activity. Hydroxyapatite formed on the PEO coating when it was soaked in simulated body fluid. The good apatite forming ability can be attributed to the high density of hydroxyl groups on the anatase and rutile phases in the coating. The degradation of methylene blue under ultraviolet radiation indicated that the coating had high photocatalytic activity.

  19. Oxidations of Organic and Inorganic Substrates by Superoxo-, hydroperoxo-, and oxo-compounds of the transition metals.

    SciTech Connect

    Vasbinder, Michael John

    2006-01-01

    fitting the observed rate constants to the Hammett correlation. It was found that the values of the Hammett reaction constant PN were -1.0(1) for 4-nitro-2-methylpyridine-N-oxide and -2.6(4) for 4-methylpyridine-N-oxide as substrates. The negative value confirms pyridine is acting as a nucleophile. Nucleophiles other than pyridine derivatives were also tested. In the end, it was found that the most effective nucleophiles were the pyridine-N-oxides themselves, meaning that a second equivalent of substrate serves as the most efficient promoter of this oxygen-atom transfer reaction. This relative nucleophilicity of pyridines and pyridine-N-oxides is similar to what is observed in other OAT reactions generating high-valent metal-oxo species.

  20. Oxidation of Phe454 in the Gating Segment Inactivates Trametes multicolor Pyranose Oxidase during Substrate Turnover

    PubMed Central

    Volc, Jindrich; Peterbauer, Clemens K.; Leitner, Christian; Haltrich, Dietmar

    2016-01-01

    The flavin-dependent enzyme pyranose oxidase catalyses the oxidation of several pyranose sugars at position C-2. In a second reaction step, oxygen is reduced to hydrogen peroxide. POx is of interest for biocatalytic carbohydrate oxidations, yet it was found that the enzyme is rapidly inactivated under turnover conditions. We studied pyranose oxidase from Trametes multicolor (TmPOx) inactivated either during glucose oxidation or by exogenous hydrogen peroxide using mass spectrometry. MALDI-MS experiments of proteolytic fragments of inactivated TmPOx showed several peptides with a mass increase of 16 or 32 Da indicating oxidation of certain amino acids. Most of these fragments contain at least one methionine residue, which most likely is oxidised by hydrogen peroxide. One peptide fragment that did not contain any amino acid residue that is likely to be oxidised by hydrogen peroxide (DAFSYGAVQQSIDSR) was studied in detail by LC-ESI-MS/MS, which showed a +16 Da mass increase for Phe454. We propose that oxidation of Phe454, which is located at the flexible active-site loop of TmPOx, is the first and main step in the inactivation of TmPOx by hydrogen peroxide. Oxidation of methionine residues might then further contribute to the complete inactivation of the enzyme. PMID:26828796

  1. Reversible electron-transfer reactions within a nanoscale metal oxide cage mediated by metallic substrates

    SciTech Connect

    Fleming, C.; Long, D. L.; McMillian, N.; Johnston, J.; Bovet N.; Dhanak, V.; Gadegaard, N.; Kogerler, P.; Cronin, L.; Kadodwala, M.

    2008-03-30

    Transition metal oxides exhibit a rich collection of electronic properties and have many practical applications in areas such as catalysis and ultra-high-density magnetic data storage. Therefore the development of switchable molecular transition metal oxides has potential for the engineering of single-molecule devices and nanoscale electronics. At present, the electronic properties of transition metal oxides can only be tailored through the irreversible introduction of dopant ions, modifying the electronic structure by either injecting electrons or core holes. Here we show that a molybdenum(VI) oxide 'polyoxometalate' molecular nanocluster containing two embedded redox agents is activated by a metallic surface and can reversibly interconvert between two electronic states. Upon thermal activation two electrons are ejected from the active sulphite anions and delocalized over the metal oxide cluster cage, switching it from a fully oxidized state to a two-electron reduced state along with the concomitant formation of an S-S bonding interaction between the two sulphur centres inside the cluster shell.

  2. Preparation SnO₂ nanolayer on flexible polyimide substrates via direct ion-exchange and in situ oxidation process.

    PubMed

    Cui, Guanghui; Wu, Dezhen; Qi, Shengli; Jin, Shao; Wu, Zhanpeng; Jin, Riguang

    2011-03-01

    Tin oxide (SnO(2)) nanolayers were formed on flexible polyimide (PI) substrate via direct ion-exchange and in situ oxidation process utilizing pyromellitic dianhydride/4,4'-oxidianiline-based poly(amic acid) films as polyimide precursor. During an ion-exchange process, stannous ions were doped into the precursor by immersion in ethanolic solution of stannous chloride. Subsequent thermal treatment of the tin(II)-containing precursor at a constant heating rate not only imidized poly(amic acid) to PI but also converted stannous ions into SnO(2) clusters, which diffused and aggregated onto the surface of polymer matrix, forming continuous tin oxide layers. Inductively coupled plasma (ICP) was used to investigate the ion-exchange process. Changes in chemical structure of the poly(amic acid) film and the crystal structure of tin oxides were analyzed by attenuated total reflection-Fourier transform infrared (ATR-FTIR) and X-ray diffraction (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the microstructure of the PI/SnO(2) nanocomposite films. The nanocomposite film maintained essential mechanical property and thermal stability of pristine PI films.

  3. The effect of a calorie controlled diet containing walnuts on substrate oxidation during 8-hours in a room calorimeter.

    PubMed

    Tapsell, Linda; Batterham, Marijka; Tan, Sze-Yen; Warensjö, Eva

    2009-10-01

    Dietary macronutrient proportions affect substrate utilization, but in practice people consume foods. We hypothesized that in overweight adults, a calorie controlled diet based on core foods and including walnuts may be advantageous in promoting greater use of fat stores. This crossover study tested the effects of diet-related energy expenditure and fat oxidation in 16 overweight individuals over an 8-hour period. The 2 diets included breakfast and lunch meals during the measurement period and an evening meal the night before. They comprised core foods of bread/cereals, fruit, vegetables, milk/yogurt, and meat, and either walnuts (walnut diet) or olive oil (control diet). There was no difference in the energy and macronutrient composition of the diets in the measurement period. Energy expenditure, respiratory quotient (RQ), and macronutrient oxidation were assessed during two 8-hour stays in a room calorimeter facility. During the 8-hour measurement period, no difference in energy expenditure was noted between the diets, but a significant difference in RQ was observed between diets (control 0.908 +/- 0.046 vs. walnut 0.855 +/- 0.036, p = 0.029). Carbohydrate oxidation was lower and fat oxidation was higher during the walnut period than during the control period. A calorie controlled diet of core foods including walnuts may be advantageous in promoting the use of body fat stores, at least under acute conditions.

  4. Catalyst-Free Synthesis of ZnO Nanowires on Oxidized Silicon Substrate for Gas Sensing Applications.

    PubMed

    Behera, B; Chandra, S

    2015-06-01

    In the present work, we report the synthesis of nanostructured ZnO by oxidation of zinc film without using a seed or catalyst layer. The zinc films were deposited on oxidized Si substrates by RF magnetron sputtering process. These were oxidized in dry and wet air/oxygen ambient. The optimized process yielded long nanowires of ZnO having diameter of around 60-70 nm and spread uniformly over the surface. The effect of oxidation temperature, time, Zn film thickness and the ambient has strong influence on the morphology of resulting nanostruxctured ZnO film. The films were characterized by scanning electron microscopy for morphological studies and X-ray diffraction (XRD) analysis to study the phase of the nanostructured ZnO. Room temperature photoluminescence (PL) measurements of the nanowires show UV and green emission. A sensor was designed and fabricated using nanostructured ZnO film, incorporating inter-digital-electrode (IDE) for the measurement of resistance of the sensing layer. The gas sensing properties were investigated from the measurement of change in resistance when exposed to vapours of different volatile organic compound (VOC) such as acetone, ethanol, methanol and 2-propanol. The results suggest that ZnO nanowires fabricated by this method have potential application in gas sensors.

  5. COSIM: A Finite-Difference Computer Model to Predict Ternary Concentration Profiles Associated with Oxidation and Interdiffusion of Overlay-Coated Substrates

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    2000-01-01

    A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating fife based on a concentration dependent failure criterion (e.g., surface solute content drops to two percent). The computer code, written in an extension of FORTRAN 77, employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.

  6. COSIM: A Finite-Difference Computer Model to Predict Ternary Concentration Profiles Associated With Oxidation and Interdiffusion of Overlay-Coated Substrates

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    2001-01-01

    A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating life based on a concentration dependent failure criterion (e.g., surface solute content drops to 2%). The computer code is written in FORTRAN and employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.

  7. Structural, optical, and electrical properties of epitaxial titanium oxide thin films on LaAlO3 substrate

    NASA Astrophysics Data System (ADS)

    Sbaï, N.; Perrière, J.; Gallas, B.; Millon, E.; Seiler, W.; Bernard, M. C.

    2008-08-01

    Titanium oxide thin films were prepared by pulsed-laser deposition on LaAlO3 single crystal substrate at 700 °C. Pure anatase films are obtained at high oxygen pressure (10-1 mbar), while the rutile phase is evidenced at low oxygen pressure (10-5 mbar) despite a large oxygen deficiency (O/Ti=1.75). From asymmetric x-ray diffraction measurements, the in-plane epitaxial relationships be0tween the substrate and the titanium oxide phases are highlighted. Optical constants (refractive index n and extinction coefficient k) were deduced from ellipsometric measurements. The optical band gap energies of the anatase and rutile films are found to be 3.4 and 3.3 eV, respectively. Since the nearly stoichiometric anatase films are resistive (>103 Ω cm), the large oxygen deficiency in rutile films leads to noticeable increase in the conductivity due to the Ti3+ species, which supply electrons in the conduction band. At low temperature (T <200 K) the resistivity of rutile films versus temperature may be explained by a variable range hopping mechanism based on both two or three dimensional electron transfer between the Ti3+ and Ti4+ species.

  8. Real-Time and Tunable Substrate for Surface Enhanced Raman Spectroscopy by Synthesis of Copper Oxide Nanoparticles via Electrolysis.

    PubMed

    Sardari, Behzad; Özcan, Meriç

    2017-08-10

    Here we show the capability of copper oxide (CuO) nanoparticles formed on copper (Cu) electrodes by the electrolysis as a real time active substrate for surface enhanced Raman scattering (SERS). We have experimentally found that using just the ultra pure water as the electrolyte and the Cu electrodes, ions are extracted from the copper anode form copper oxide nanoparticles on the anode surface in matter of minutes. Average particle size on the anode reaches to 100 nm in ninety seconds and grows to about 300 nm in five minutes. This anode is used in Raman experiments in real time as the nanoparticles were forming and the maximum enhancement factor (EF) of Raman signals were over five orders of magnitude. Other metal electrodes made of brass, zinc (Zn), silver (Ag) and aluminum (Al) were also tried for the anode material for a possible real-time substrate for SERS applications. Experimentally obtained enhancement factors were above five orders of magnitude for brass electrodes like the copper but for the other metals no enhancement is observed. Electron microscope images show the cubic nanoparticle formation on copper and brass electrodes but none in the other metals studied.

  9. Spontaneous Reduction and Assembly of Graphene oxide into Three-Dimensional Graphene Network on Arbitrary Conductive Substrates

    PubMed Central

    Hu, Chuangang; Zhai, Xiangquan; Liu, Lili; Zhao, Yang; Jiang, Lan; Qu, Liangti

    2013-01-01

    Chemical reduction of graphene oxide (GO) is the main route to produce the mass graphene-based materials with tailored surface chemistry and functions. However, the toxic reducing circumstances, multiple steps, and even incomplete removal of the oxygen-containing groups were involved, and the produced graphenes existed usually as the assembly-absent precipitates. Herein, a substrate-assisted reduction and assembly of GO (SARA-GO) method was developed for spontaneous formation of 3D graphene network on arbitrary conductive substrates including active and inert metals, semiconducting Si, nonmetallic carbon, and even indium-tin oxide glass without any additional reducing agents. The SARA-GO process offers a facile, efficient approach for constructing unique graphene assemblies such as microtubes, multi-channel networks, micropatterns, and allows the fabrication of high-performance binder-free rechargeable lithium-ion batteries. The versatile SARD-GO method significantly improves the processablity of graphenes, which could thus benefit many important applications in sensors and energy-related devices. PMID:23799368

  10. Investigation of structural and electrical properties on substrate material for high frequency metal-oxide-semiconductor (MOS) devices

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Yang, Sung-Hyun; Janardhan Reddy, K.; JagadeeshChandra, S. V.

    2017-04-01

    Hafnium oxide (HfO2) thin films were grown on cleaned P-type <1 0 0> Ge and Si substrates by using atomic layer deposition technique (ALD) with thickness of 8 nm. The composition analysis of as-deposited and annealed HfO2 films was characterized by XPS, further electrical measurements; we fabricated the metal-oxide-semiconductor (MOS) devices with Pt electrode. Post deposition annealing in O2 ambient at 500 °C for 30 min was carried out on both Ge and Si devices. Capacitance-voltage (C-V) and conductance-voltage (G-V) curves measured at 1 MHz. The Ge MOS devices showed improved interfacial and electrical properties, high dielectric constant (~19), smaller EOT value (0.7 nm), and smaller D it value as Si MOS devices. The C-V curves shown significantly high accumulation capacitance values from Ge devices, relatively when compare with the Si MOS devices before and after annealing. It could be due to the presence of very thin interfacial layer at HfO2/Ge stacks than HfO2/Si stacks conformed by the HRTEM images. Besides, from current-voltage (I-V) curves of the Ge devices exhibited similar leakage current as Si devices. Therefore, Ge might be a reliable substrate material for structural, electrical and high frequency applications.

  11. Graphene oxide mediated surface-enhanced Raman scattering substrate: Well-suspending and label-free detecting for protein

    NASA Astrophysics Data System (ADS)

    Jiao, Shengjiang; Wang, Yankai; Chen, Chen; Wu, Xiaodong; Bei, Fengli

    2014-03-01

    This study reports a Graphene Oxide Mediated SERS (GOMS) Substrate supporting silver nanoparticles (AgNPs), which is characterized with the relatively clean surface of nanoparticles and formation of stable suspension in the detection. Moreover the tight anchoring of silver nanoparticles on the platform by a multiple oxygen-containing groups on GO carbon grid favors for the generation of large number of "hot" spots. We demonstrate that anchoring of the 4-mercaptopyridine (4-Mpy) analyte at these system leads to a pronounced intensification of its Raman emission using described SERS assay. Most impressively, acting as a new type of SERS substrate, the GOMS Substrate can disperse well in water during the detection process, which makes the Raman signals very uniform. This work not only shows that target molecule such as 4-Mpy has a strong interaction with the nanoparticle surface can be detected quickly and accurately with high sensitivity and stability, but also show SERS activity successfully for Bovine Serum Albumin (BSA), which interaction with nanoparticle surface is weak, in about physiological saline of Label-free detection. The results reported herein may lead to many applications in SERS techniques.

  12. Influence of defects and processing parameters on the properties of indium tin oxide films on polyethylene napthalate substrate

    SciTech Connect

    Han, H.; Zoo, Yeongseok; Bhagat, S. K.; Lewis, J. S.; Alford, T. L.

    2007-09-15

    Indium tin oxide (ITO) thin films were deposited on polyethylene napthalate (PEN) by rf sputtering using different rf powers (60 and 120 W) and at different substrate temperatures (room temperature and 100 deg. C). Selected PEN substrates were pretreated using an Ar plasma before ITO sputter deposition. Rutherford backscattering spectrometry was used to determine the oxygen content in the films. Hall effect measurements were used to evaluate the electrical properties. In this paper the influence of defect structure, sputtering conditions, and the effect of annealing on the electrical and optical properties of ITO on PEN have been investigated. Electrical properties such as carrier concentration, mobility, and resistivity of the ITO films varied with rf power and substrate temperature. The electrical and optical properties of the films changed after annealing in air. This study also describes how the as-deposited amorphous ITO changes from amorphous to crystalline as a result of heat treatment, and investigates the effects of Sn defect clustering on electrical and optical properties of the ITO films.

  13. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-12-01

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10-15 M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology.

  14. Influence of substrate heating and annealing on the properties and photoresponse of manganese doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Sugumar, Ravishankar; Angappane, S.

    2017-10-01

    The structural and optical properties of manganese doped zinc oxide thin films deposited at different substrate temperatures and annealing conditions have been studied. Further, the UV light sensing properties of the fabricated thin film devices have been carried out. The 3% Mn doped ZnO (MZO) films were deposited by RF magnetron sputtering. The as-prepared film, deposited without substrate heating, shows the polycrystalline nature with under-developed grains, which develops well-defined crystal boundaries after annealing. On the other hand, the films deposited at 700 °C and annealed at 700 °C show single crystalline c-axis orientated growth. Notably, there are changes observed in the band gap and photoluminescence of the films subject to different deposition and annealing conditions. The photoresponse of the MZO thin film devices shows responsivity varying from 2.5 × 10-2 to 7.9 A/W, detectivity from 1.6 × 1010 to 37.8 × 1010 Jones and sensitivity from 4.7 to 15.4% under the UV light. Markedly, the films show the response times varying from ∼0.1 to ∼28 s and the recovery times varying between ∼0.1 and ∼120 s. These findings demonstrate the influence of structural and optical properties brought out by the substrate heating and annealing of 3% Mn doped ZnO films on the photoresponse of devices.

  15. Osteogenic potential of in situ TiO2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate

    NASA Astrophysics Data System (ADS)

    Tan, A. W.; Ismail, R.; Chua, K. H.; Ahmad, R.; Akbar, S. A.; Pingguan-Murphy, B.

    2014-11-01

    Titanium dioxide (TiO2) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO2 nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO2 nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO2 nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.

  16. Graphene oxide-silver nanocomposite as SERS substrate for dye detection: Effects of silver loading amount and composite dosage

    NASA Astrophysics Data System (ADS)

    Ding, Guihong; Xie, Shi; Liu, Ying; Wang, Li; Xu, Fugang

    2015-08-01

    Hybrid of graphene or graphene oxide (GO) with gold or silver nanoparticles (AgNPs) as substrate for SERS detection often brings large background and low signal to noise ratio, which leads to poor sensitivity. In this study, it is proposed that the silver loading amount on GO and dosage of GO-Ag composite have significant influence on its SERS activity (SERS signal intensity and signal to noise ratio). The adsorption ability and SERS activity of GO-Ag composite for several dye molecules were investigated in detail. It was found increasing the dosage of GO-Ag or AgNPs loading on GO always enhances its absorption to dye molecules, while in both cases the SERS signal first increase and then decrease. The reason for this fluctuation of SERS signal was investigated and discussed, which indicate high silver loading amount leads to enhanced background response, while high composite dosage could decrease the signal of target molecule. Finally, an optimized GO-Ag substrate providing strong SERS signal and high signal to noise ratio was used for the detection of several dye molecules by SERS with the lowest detectable concentration down to 1 μM. Our results indicated that great caution should be paid on the silver loading amount and dosage of GO-Au/Ag when using GO-Au/Ag as SERS substrate for molecule sensing or comparing different results reported in reference.

  17. Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper

    NASA Astrophysics Data System (ADS)

    Xiao, Guina; Li, Yunxiang; Shi, Wangzhou; Shen, Leo; Chen, Qi; Huang, Lei

    2017-05-01

    Paper-based surface-enhanced Raman scattering (SERS) substrates receive a great deal of attention due to low cost and high flexibility. Herein, we developed an efficient SERS substrate by gravure printing of sulfonated reduced graphene-oxide (S-RGO) thin film and inkjet printing of silver nanoparticles (AgNPs) on weighing paper successively. Malachite green (MG) and rhodamine 6G (R6G) were chosen as probe molecules to evaluate the enhanced performance of the fabricated SERS-active substrates. It was found that the S-RGO/AgNPs composite structure possessed higher enhancement ability than the pure AgNPs. The Raman enhancement factor of S-RGO/AgNPs was calculated to be as large as 109. The minimum detection limit for MG and R6G was down to 10-7 M with good linear responses (R2 = 0.9996, 0.9983) range from 10-4 M to 10-7 M. In addition, the S-RGO/AgNPs exhibited good uniformity with a relative standard deviation (RSD) of 7.90% measured by 572 points, excellent reproducibility with RSD smaller than 3.36%, and long-term stability with RSD less than 7.19%.

  18. Fabrication of SERS-active substrates using silver nanofilm-coated porous anodic aluminum oxide for detection of antibiotics.

    PubMed

    Chen, Jing; Feng, Shaolong; Gao, Fang; Grant, Edward; Xu, Jie; Wang, Shuo; Huang, Qian; Lu, Xiaonan

    2015-04-01

    We have developed a silver nanofilm-coated porous anodic aluminum oxide (AAO) as a surface-enhanced Raman scattering (SERS)-active substrate for the detection of trace level of chloramphenicol, a representative antibiotic in food systems. The ordered aluminum template generated during the synthesis of AAO serves as a patterned matrix on which a coated silver film replicates the patterned AAO matrix to form a 2-dimensional ordered nanostructure. We used atomic force microscopy and scanning electron microscopy images to determine the morphology of this nanosubstrate, and characterized its localized surface plasmon resonance by ultraviolet-visible reflection. We gauged the SERS effect of this nanosubstrate by confocal micro-Raman spectroscopy (782-nm laser), finding a satisfactory and consistent performance with enhancement factors of approximately 2 × 10(4) and a limit of detection for chloramphenicol of 7.5 ppb. We applied principal component analysis to determine the limit of quantification for chloramphenicol of 10 ppb. Using electromagnetic field theory, we developed a detailed mathematical model to explain the mechanism of Raman signal enhancement of this nanosubstrate. With simple sample pretreatment and separation steps, this silver nanofilm-coated AAO substrate could detect 50 ppb chloramphenicol in milk, indicating good potential as a reliable SERS-active substrate for rapid detection of chemical contaminants in agricultural and food products.

  19. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si.

    PubMed

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-12-07

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10(-15) M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology.

  20. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si

    PubMed Central

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-01-01

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10−15 M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology. PMID:27924863

  1. (-201) β-Gallium oxide substrate for high quality GaN materials

    NASA Astrophysics Data System (ADS)

    Roqan, I. S.; Muhammed, M. M.

    2014-03-01

    (-201) oriented β-Ga2O3 has the potential to be used as a transparent and conductive substrate for GaN-growth. The key advantages of Ga2O3 are its small lattice mismatches (4.7%), appropriate structural, thermal and electrical properties and a competitive price compared to other substrates. Optical characterization show that GaN layers grown on (-201) oriented β-Ga2O3 are dominated by intense bandedge emission with a high luminescence efficiency. Atomic force microscopy studies show a modest threading dislocation density of ~108 cm-2, while complementary Raman spectroscopy indicates that the GaN epilayer is of high quality with slight compressive strain. Room temperature time-findings suggest that the limitation of the photoluminescence lifetime (~500 ps) is due to nonradiative recombination arising from threading dislocation. Therefore, by optimizing the growth conditions, high quality material with significant optical efficiency can be obtained.

  2. Samarium electrodeposited acetate and oxide thin films on stainless steel substrate characterized by XPS

    SciTech Connect

    Myhre, Kristian; Burns, Jonathan; Meyer, Harry; Sims, Nathan; Boll, Rose

    2016-06-01

    Characterization of a samarium thin film deposited on a stainless steel substrate using molecular electrodeposition was carried out using a Thermo Scientific K-Alpha X-ray photoelectron spectrometer. We studied two types of samarium electrodeposition samples, one as-deposited and one heated to 700 °C in an air flow. Survey scans include peaks coming from the stainless steel substrate, such as Fe and Cr. An X-ray photoelectron spectroscopy (XPS) survey spectrum, Sm 3d, C 1s, and O 1s narrow scans are shown. It was determined that the heating process decomposed the deposited Sm acetate to Sm2O3 using XPS.

  3. Ultrafast dynamics of ligand and substrate interaction in endothelial nitric oxide synthase under Soret excitation.

    PubMed

    Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S

    2016-01-01

    Ultrafast transient absorption spectroscopy of endothelial NOS oxygenase domain (eNOS-oxy) was performed to study dynamics of ligand or substrate interaction under Soret band excitation. Photo-excitation dissociates imidazole ligand in <300fs, then followed by vibrational cooling and recombination within 2ps. Such impulsive bond breaking and late rebinding generate proteinquakes, which relaxes in several tens of picoseconds. The photo excited dynamics of eNOS-oxy with L-arginine substrate mainly occurs at the local site of heme, including ultrafast internal conversion within 400fs, vibrational cooling, charge transfer, and complete ground-state recovery within 1.4ps. The eNOS-oxy without additive is partially bound with water molecule, thus its photoexcited dynamics also shows ligand dissociation in <800fs. Then it followed by vibrational cooling coupled with charge transfer in 4.8ps, and recombination of ligand to distal side of heme in 12ps.

  4. Samarium electrodeposited acetate and oxide thin films on stainless steel substrate characterized by XPS

    SciTech Connect

    Myhre, Kristian; Burns, Jonathan; Meyer, Harry; Sims, Nathan; Boll, Rose

    2016-06-01

    Characterization of a samarium thin film deposited on a stainless steel substrate using molecular electrodeposition was carried out using a Thermo Scientific K-Alpha X-ray photoelectron spectrometer. We studied two types of samarium electrodeposition samples, one as-deposited and one heated to 700 °C in an air flow. Survey scans include peaks coming from the stainless steel substrate, such as Fe and Cr. An X-ray photoelectron spectroscopy (XPS) survey spectrum, Sm 3d, C 1s, and O 1s narrow scans are shown. It was determined that the heating process decomposed the deposited Sm acetate to Sm2O3 using XPS.

  5. Investigation of TiN thin film oxidation depending on the substrate temperature at vacuum break

    SciTech Connect

    Piallat, Fabien; Gassilloud, Remy; Caubet, Pierre; Vallée, Christophe

    2016-09-15

    Due to the reduction of the thickness of the layers used in the advanced technology nodes, there is a growing importance of the surface phenomena in the definition of the general properties of the materials. One of the least controlled and understood phenomenon is the oxidation of metals after deposition, at the vacuum break. In this study, the influence of the sample temperature at vacuum break on the oxidation level of TiN deposited by metalorganic chemical vapor deposition is investigated. TiN resistivity appears to be lower for samples which underwent vacuum break at high temperature. Using X-ray photoelectron spectrometry analysis, this change is correlated to the higher oxidation of the TiN layer. Moreover, angle resolved XPS analysis reveals that higher is the temperature at the vacuum break, higher is the surface oxidation of the sample. This surface oxidation is in turn limiting the diffusion of oxygen in the volume of the layer. Additionally, evolution of TiN layers resistivity was monitored in time and it shows that resistivity increases until a plateau is reached after about 10 days, with the lowest temperature at vacuum break resulting in the highest increase, i.e., the resistivity of the sample released to atmosphere at high temperature increased by a factor 1.7 whereas the resistivity of the sample cooled down under vacuum temperature increased by a factor 2.7.

  6. C-Myc regulates substrate oxidation patterns during early pressure-overload hypertrophy

    SciTech Connect

    Ledee, Dolena R.; Smith, Lincoln; Kajimoto, Masaki; Bruce, Margaret; Isern, Nancy G.; Xu, Chun; Portman, Michael A.; Olson, Aaron

    2013-11-26

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of glycolytic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected FVB mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketones and unlabeled glucose and insulin. Western blots were used to evaluate metabolic enzymes. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (presumably glucose) contribution. Myc inactivation (MycKO-TAC) inhibited these metabolic changes. Hypertrophy in general increased protein levels of PKM2; however this change was not linked to Myc status. Protein post-translation modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. In conclusion, Myc regulates substrate utilization during early pressure overload hypertrophy. Our results show that the metabolic switch during hypertrophy is not necessary to maintain cardiac function, but it may be important mechanism to promote cardiomyocyte growth. Myc also regulates protein O-GlcNAcylation during hypertrophy.

  7. Polyunsaturated-fatty-acid oxidation in Hydra: regioselectivity, substrate-dependent enantioselectivity and possible biological role.

    PubMed Central

    Di Marzo, V; Gianfrani, C; De Petrocellis, L; Milone, A; Cimino, G

    1994-01-01

    A novel and abundant lipoxygenase-like activity converting cis-eicosa-5,8,11,14-tetraenoic acid (arachidonic acid) into (11R)-hydroxyeicosatetraenoic acid has been recently described in homogenates of the freshwater hydrozoan Hydra vulgaris. In this study, other substrates for this enzyme were selected from the polyunsaturated fatty acids (PUFAs) present in H. vulgaris, and the chemical natures of the hydroperoxy and hydroxy derivatives produced, as well as the activity of some of the latter on hydroid tentacle regeneration, were investigated. The highest conversion among C20 fatty acids was observed for arachidonic acid, and among C18 fatty acids for cis-octadeca-9,12,15- and cis-octadeca-6,9,12-trienoic (alpha- and gamma-linolenic) acids. Cis double bonds on the 10th carbon atom from the aliphatic end of the substrate (e.g. C-9, C-11 and C-13 respectively in C18, C20 and C22 PUFAs) were regiospecifically peroxidized. Conversely, trans-octadeca-9,12-dienoic (linoelaidic) acid was not a substrate for lipoxygenase activity. Enantioselectivity of lipoxygenation depended on the degree of unsaturation of the substrate, with the amount of the R enantiomer increasing when passing, for example, from cis-eicosa-11,14-dienoic to cis-eicosa-5,8,11,14,17-pentaenoic acid. Regiospecific formation of keto acids was observed only when incubating C18 PUFAs. Commercially available hydroxyacids corresponding to the reaction products of some of the most abundant H. vulgaris PUFAs were tested for effects on Hydra tentacle regeneration. An enhancement of average tentacle number, in a fashion depending on the stereochemistry and on the number of double bonds, was found for two compounds, thus suggesting for the 11-lipoxygenase-like enzyme a role in the production of metabolites potentially active in the control of hydroid regenerative processes. PMID:8002956

  8. ScAlMgO{sub 4}: An oxide substrate for GaN epitaxy

    SciTech Connect

    Hellman, E.S.; Brandle, C.D.; Schneemeyer, L.F.; Wiesmann, D.; Brener, I.; Siegrist, T.; Berkstresser, G.W.; Buchanan, D.N.E.; Hartford, E.H. Jr.

    1996-11-01

    The authors report the use of ScAlMgO{sub 4} as a substrate for the epitaxial growth of wurzitic GaN. The low misfit (+ 1.8%) allows coherent epitaxy of GaN, as observed by RHEED. The congruent melting of ScAlMgO{sub 4} makes Czochralski growth possible, suggesting that large, high quality substrates can be realized. Boules about 17 mm in diameter are reported. The authors have used nitrogen-plasma molecular beam epitaxy to grow GaN epitaxial films onto ScAlMgO{sub 4} substrates. Band-gap photoluminescence has been observed from some of these films, depending primarily on the deposition conditions. A 3 x 3 superstructure has been observed by RHEED on the GaN surfaces. Structural analysis by x-ray diffraction indicates very good in-plane alignment of the GaN films. They also report thermal expansion measurements for ScAlMgO{sub 4}.

  9. Growth and properties of crystalline barium oxide on the GaAs(100) substrate

    SciTech Connect

    Yasir, M.; Dahl, J.; Lång, J.; Tuominen, M.; Punkkinen, M. P. J.; Laukkanen, P. Kokko, K.; Kuzmin, M.; Korpijärvi, V.-M.; Polojärvi, V.; Guina, M.

    2013-11-04

    Growing a crystalline oxide film on III-V semiconductor renders possible approaches to improve operation of electronics and optoelectronics heterostructures such as oxide/semiconductor junctions for transistors and window layers for solar cells. We demonstrate the growth of crystalline barium oxide (BaO) on GaAs(100) at low temperatures, even down to room temperature. Photoluminescence (PL) measurements reveal that the amount of interface defects is reduced for BaO/GaAs, compared to Al{sub 2}O{sub 3}/GaAs, suggesting that BaO is a useful buffer layer to passivate the surface of the III-V device material. PL and photoemission data show that the produced junction tolerates the post heating around 600 °C.

  10. Fabrication and characterization of MOSCAP on bulk beta-gallium oxide substrate with ALD silicon dioxide

    NASA Astrophysics Data System (ADS)

    Zeng, Ke

    Beta-gallium oxide (beta-Ga2O3) has recently attracted a lot of attention because of its very high Baliga's figure of merit (BFOM), which indicates a good application prospect for it in the field of power electronics. Its high breakdown field and low cost makes it very attractive, but the low thermal conductivity and low mobility hinder its performance improvement. MOSFET with ALD Al2O3 gate dielectric has been successfully fabricated and reported. In this thesis, we investigated an alternative choice for gate dielectric -- ALD SiO2. This new dielectric not only offers bigger conduction band offset, but also gives a very nice interface property. And both of them are very important for improving the performance of power devices. MOSCAPs are fabricated using several special techniques to study the properties related to this new oxide. Conduction band offset, oxide trap density and interface trap density are extracted using a few IV and CV methods.

  11. Impact of high-fat, low-carbohydrate diet on myocardial substrate oxidation, insulin sensitivity, and cardiac function after ischemia-reperfusion.

    PubMed

    Liu, Jian; Wang, Peipei; Douglas, Samuel L; Tate, Joshua M; Sham, Simon; Lloyd, Steven G

    2016-07-01

    High-fat, low-carbohydrate Diet (HFLCD) impairs the myocardial response to ischemia-reperfusion, but the underlying mechanisms remain elusive. We sought to determine the magnitude of diet-induced alterations in intrinsic properties of the myocardium (including insulin sensitivity and substrate oxidation) and circulating substrate and insulin differences resulting from diet, leading to this impaired response. Rats were fed HFLCD (60% kcal from fat/30% protein/10% carbohydrate) or control diet (CONT) (16%/19%/65%) for 2 wk. Isolated hearts underwent global low-flow ischemia followed by reperfusion (I/R). Carbon-13 NMR spectroscopy was used to determine myocardial substrate TCA cycle entry. Myocardial insulin sensitivity was assessed as dose-response of Akt phosphorylation. There was a significant effect of HFLCD and I/R with both these factors leading to an increase in free fatty acid (FFA) oxidation and a decrease in carbohydrate or ketone oxidation. Following I/R, HFLCD led to decreased ketone and increased FFA oxidation; the recovery of left ventricular (LV) function was decreased in HFLCD and was negatively correlated with FFA oxidation and positively associated with ketone oxidation. HFLCD also resulted in reduced insulin sensitivity. Under physiologic ranges, there were no direct effects of buffer insulin and ketone levels on oxidation of any substrate and recovery of cardiac function after I/R. An insulin-ketone interaction exists for myocardial substrate oxidation characteristics. We conclude that the impaired recovery of function after ischemia-reperfusion with HFLCD is largely due to intrinsic diet effects on myocardial properties, rather than to diet effect on circulating insulin or substrate levels.

  12. Impact of high-fat, low-carbohydrate diet on myocardial substrate oxidation, insulin sensitivity, and cardiac function after ischemia-reperfusion

    PubMed Central

    Liu, Jian; Wang, Peipei; Douglas, Samuel L.; Tate, Joshua M.; Sham, Simon

    2016-01-01

    High-fat, low-carbohydrate Diet (HFLCD) impairs the myocardial response to ischemia-reperfusion, but the underlying mechanisms remain elusive. We sought to determine the magnitude of diet-induced alterations in intrinsic properties of the myocardium (including insulin sensitivity and substrate oxidation) and circulating substrate and insulin differences resulting from diet, leading to this impaired response. Rats were fed HFLCD (60% kcal from fat/30% protein/10% carbohydrate) or control diet (CONT) (16%/19%/65%) for 2 wk. Isolated hearts underwent global low-flow ischemia followed by reperfusion (I/R). Carbon-13 NMR spectroscopy was used to determine myocardial substrate TCA cycle entry. Myocardial insulin sensitivity was assessed as dose-response of Akt phosphorylation. There was a significant effect of HFLCD and I/R with both these factors leading to an increase in free fatty acid (FFA) oxidation and a decrease in carbohydrate or ketone oxidation. Following I/R, HFLCD led to decreased ketone and increased FFA oxidation; the recovery of left ventricular (LV) function was decreased in HFLCD and was negatively correlated with FFA oxidation and positively associated with ketone oxidation. HFLCD also resulted in reduced insulin sensitivity. Under physiologic ranges, there were no direct effects of buffer insulin and ketone levels on oxidation of any substrate and recovery of cardiac function after I/R. An insulin-ketone interaction exists for myocardial substrate oxidation characteristics. We conclude that the impaired recovery of function after ischemia-reperfusion with HFLCD is largely due to intrinsic diet effects on myocardial properties, rather than to diet effect on circulating insulin or substrate levels. PMID:27199129

  13. Effects of oxidation conditions on the microstructure and texture of NiO in a cube-textured polycrystalline nickel substrate

    NASA Astrophysics Data System (ADS)

    Ahn, Ji-Hyun; Kim, Byeong-Joo; Kim, Jae-Geun; Kim, Ho-Jin; Hong, Gye-Won; Lee, Hee-Gyoun; Yoo, Jai-Moo; Pradeep, Halder

    2006-10-01

    Surface oxidation behavior of cube-textured polycrystalline nickel was investigated at various oxidation conditions. Cube-textured nickel substrate, which was prepared by rolling and texture anneal, was used. Cube-textured NiO film was formed on a cube-textured polycrystalline nickel regardless of oxidation conditions but different growth behavior of NiO crystals was observed depending on the oxidation conditions. The introduction of water vapor in O2 did not affect on the texture evolution but rough and porous microstructure was developed. Microstructure of NiO film tends to be denser as the oxygen partial pressure is increased. It is interesting that (1 1 1) oriented crystal grew favorably in the substrate oxidized in air atmosphere while (2 0 0) plane was major in the substrate oxidized in high purity argon gas. Other crystallographic planes than (2 0 0) plane were developed when N2O was used as an oxidant while only (2 0 0) plane crystal was formed in dry O2 atmosphere. The morphology and texture of NiO crystal were changed from smooth one into faceted one when oxidation was performed at 900 °C in dry O2 gas followed by the reduction under a reducing atmosphere. It is thought that absorption behavior of oxygen or OH varies depending on the oxidizing species.

  14. Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte

    PubMed Central

    Ji, Sanghoon; Tanveer, Waqas Hassan; Yu, Wonjong; Kang, Sungmin; Cho, Gu Young; Kim, Sung Han

    2015-01-01

    Summary Solid oxide fuel cells with atomic layer-deposited thin film electrolytes supported on anodic aluminum oxide (AAO) are electrochemically characterized with varying thickness of bottom electrode catalyst (BEC); BECs which are 0.5 and 4 times thicker than the size of AAO pores are tested. The thicker BEC ensures far more active mass transport on the BEC side and resultantly the thicker BEC cell generates ≈11 times higher peak power density than the thinner BEC cell at 500 °C. PMID:26425432

  15. Community analysis of biofilms on flame-oxidized stainless steel anodes in microbial fuel cells fed with different substrates.

    PubMed

    Eyiuche, Nweze Julius; Asakawa, Shiho; Yamashita, Takahiro; Ikeguchi, Atsuo; Kitamura, Yutaka; Yokoyama, Hiroshi

    2017-06-29

    The flame-oxidized stainless steel anode (FO-SSA) is a newly developed electrode that enhances microbial fuel cell (MFC) power generation; however, substrate preference and community structure of the biofilm developed on FO-SSA have not been well characterized. Herein, we investigated the community on FO-SSA using high-throughput sequencing of the 16S rRNA gene fragment in acetate-, starch-, glucose-, and livestock wastewater-fed MFCs. Furthermore, to analyze the effect of the anode material, the acetate-fed community formed on a common carbon-based electrode-carbon-cloth anode (CCA)-was examined for comparison. Substrate type influenced the power output of MFCs using FO-SSA; the highest electricity was generated using acetate as a substrate, followed by peptone, starch and glucose, and wastewater. Intensity of power generation using FO-SSA was related to the abundance of exoelectrogenic genera, namely Geobacter and Desulfuromonas, of the phylum Proteobacteria, which were detected at a higher frequency in acetate-fed communities than in communities fed with other substrates. Lactic acid bacteria (LAB)-Enterococcus and Carnobacterium-were predominant in starch- and glucose-fed communities, respectively. In the wastewater-fed community, members of phylum Planctomycetes were frequently detected (36.2%). Exoelectrogenic genera Geobacter and Desulfuromonas were also detected in glucose-, starch-, and wastewater-fed communities on FO-SSA, but with low frequency (0-3.2%); the lactate produced by Carnobacterium and Enterococcus in glucose- and starch-fed communities might affect exoelectrogenic bacterial growth, resulting in low power output by MFCs fed with these substrates. Furthermore, in the acetate-fed community on FO-SSA, Desulfuromonas was abundant (15.4%) and Geobacter had a minor proportion (0.7%), while in that on CCA, both Geobacter and Desulfuromonas were observed at similar frequencies (6.0-9.8%), indicating that anode material affects exoelectrogenic genus

  16. Photochemical activation of ruthenium(II)-pyridylamine complexes having a pyridine-N-oxide pendant toward oxygenation of organic substrates.

    PubMed

    Kojima, Takahiko; Nakayama, Kazuya; Sakaguchi, Miyuki; Ogura, Takashi; Ohkubo, Kei; Fukuzumi, Shunichi

    2011-11-09

    Ruthenium(II)-acetonitrile complexes having η(3)-tris(2-pyridylmethyl)amine (TPA) with an uncoordinated pyridine ring and diimine such as 2,2'-bipyridine (bpy) and 2,2'-bipyrimidine (bpm), [Ru(II)(η(3)-TPA)(diimine)(CH(3)CN)](2+), reacted with m-chloroperbenzoic acid to afford corresponding Ru(II)-acetonitrile complexes having an uncoordinated pyridine-N-oxide arm, [Ru(II)(η(3)-TPA-O)(diimine)(CH(3)CN)](2+), with retention of the coordination environment. Photoirradiation of the acetonitrile complexes having diimine and the η(3)-TPA with the uncoordinated pyridine-N-oxide arm afforded a mixture of [Ru(II)(TPA)(diimine)](2+), intermediate-spin (S = 1) Ru(IV)-oxo complex with uncoordinated pyridine arm, and intermediate-spin Ru(IV)-oxo complex with uncoordinated pyridine-N-oxide arm. A Ru(II) complex bearing an oxygen-bound pyridine-N-oxide as a ligand and bpm as a diimine ligand was also obtained, and its crystal structure was determined by X-ray crystallography. Femtosecond laser flash photolysis of the isolated O-coordinated Ru(II)-pyridine-N-oxide complex has been investigated to reveal the photodynamics. The Ru(IV)-oxo complex with an uncoordinated pyridine moiety was alternatively prepared by reaction of the corresponding acetonitrile complex with 2,6-dichloropyridine-N-oxide (Cl(2)py-O) to identify the Ru(IV)-oxo species. The formation of Ru(IV)-oxo complexes was concluded to proceed via intermolecular oxygen atom transfer from the uncoordinated pyridine-N-oxide to a Ru(II) center on the basis of the results of the reaction with Cl(2)py-O and the concentration dependence of the consumption of the starting Ru(II) complexes having the uncoordinated pyridine-N-oxide moiety. Oxygenation reactions of organic substrates by [Ru(II)(η(3)-TPA-O)(diimine)(CH(3)CN)](2+) were examined under irradiation (at 420 ± 5 nm) and showed selective allylic oxygenation of cyclohexene to give cyclohexen-1-ol and cyclohexen-1-one and cumene oxygenation to afford cumyl alcohol

  17. Effects of sputtering power on properties of copper oxides thin films deposited on glass substrates

    SciTech Connect

    Ooi, P. K.; Ng, S. S.; Abdullah, M. J.

    2015-04-24

    Copper oxides are deposited by radio frequency sputtering using copper target in the mixture of argon and oxygen gasses. The structural and optical properties of the copper oxides deposited at different sputtering powers have been investigated. All the films are single phase polycrystalline. At low RF power (100 W), the film is monoclinic structure of cupric oxide (CuO). Meanwhile, the films are cubic structure of cuprous oxide (Cu2O) at higher RF power. Field emission scanning electron microscopy images show the films have different morphologies with small grain size and consist of a lot of voids. The analysis of energy dispersive X-ray spectroscopy shows that the ratio of Cu to O is increased as the RF power increased. From the ultraviolet–visible spectroscopy, the films have a broad absorption edge in the range of 300–500 nm. The band gap of the films grown at RF power of 100 W, and 120 W and above, were 1.18 eV and 2.16 eV, respectively.

  18. Memory reconsolidation in aversive and appetitive settings

    PubMed Central

    Reichelt, Amy C.; Lee, Jonathan L. C.

    2013-01-01

    Memory reconsolidation has been observed across species and in a number of behavioral paradigms. The majority of memory reconsolidation studies have been carried out in Pavlovian fear conditioning and other aversive memory settings, with potential implications for the treatment of post-traumatic stress disorder. However, there is a growing literature on memory reconsolidation in appetitive reward-related memory paradigms, including translational models of drug addiction. While there appears to be substantial similarity in the basic phenomenon and underlying mechanisms of memory reconsolidation across unconditioned stimulus valence, there are also notable discrepancies. These arise both when comparing aversive to appetitive paradigms and also across different paradigms within the same valence of memory. We review the demonstration of memory reconsolidation across different aversive and appetitive memory paradigms, the commonalities and differences in underlying mechanisms and the conditions under which each memory undergoes reconsolidation. We focus particularly on whether principles derived from the aversive literature are applicable to appetitive settings, and also whether the expanding literature in appetitive paradigms is informative for fear memory reconsolidation. PMID:24058336

  19. Glass-(nAg, nCu) Biocide Coatings on Ceramic Oxide Substrates

    PubMed Central

    Esteban-Tejeda, Leticia; Malpartida, Francisco; Díaz, Luis Antonio; Torrecillas, Ramón; Rojo, Fernando; Moya, José Serafín

    2012-01-01

    The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based) substrates. Both glassy coatings showed a high biocide activity against Gram−, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1–2 µg/cm2 in the case of silver nanoparticles, and 10–15 µg/cm2 for the copper nanoparticles. PMID:22427967

  20. A study on structural, optical, electrical and microstructural properties of thin TiO x films upon thermal oxidation: Effect of substrate temperature and oxidation temperature

    NASA Astrophysics Data System (ADS)

    Sreemany, Monjoy; Bose, Ankita; Sen, Suchitra

    2010-01-01

    Influences of both substrate temperature, Ts (∼305, 473 K) and oxidation temperature, Ta (∼623-973 K) on the structural, optical, electrical and microstructural properties of thin TiO x ( x≤2) films obtained by thermal oxidation of sputtered titanium thin films have been investigated. Ts is found to be an important parameter that affects both the as deposited film morphology and phase evolution of TiO x films during oxidation. As deposited and oxidized films processed at Ta∼623 K exist in TiO form. Formation of anatase (TiO 2) phase takes place at Ta∼723 K. As the Ta increases above 723 K, degree of crystallinity of the film improves and rutile (TiO 2) phase appears along with anatase phase at Ta∼873 K. Further increase in the Ta enhances the contribution of rutile phase at the expense of anatase contribution. Apparent crystallite size, L, and refractive index of the TiO x ( x≈2) films increase with Ta but band gap energy, Eg decreases from ∼3.4 to 3.35 eV. Scanning electron microscopic study reveals that both film densification and grain size improve with Ta. As the Ta increases above 873 K, rutile phase contribution as well as grains of the oxidized films deposited at a lower Ts grow at a faster rate than that of the TiO x films prepared at a higher Ts. Room temperature resistivity of the as deposited films is found to be dependent on Ts. Film-resistivity increases with oxidation temperature and at Ta∼723 K, resistivity of the film increases drastically. Temperature coefficient of resistivity (TCR) for all the as deposited and oxidized films processed at Ta∼623 K is found to be negative and lie between ∼1.2×10 -3-2.1×10 -3 K -1. Thermal activation energy, Ea, of the as deposited and oxidized ( Ta∼623 K) TiO x ( x≈1) films is estimated to vary over the range ∼0.015-0.027 eV. Observed change in the film electrical properties with Ta is discussed in the light of oxygen incorporation in the TiO x structure.

  1. Effects of selective breeding for increased wheel-running behavior on circadian timing of substrate oxidation and ingestive behavior.

    PubMed

    Jónás, I; Vaanholt, L M; Doornbos, M; Garland, T; Scheurink, A J W; Nyakas, C; van Dijk, G

    2010-04-19

    Fluctuations in substrate preference and utilization across the circadian cycle may be influenced by the degree of physical activity and nutritional status. In the present study, we assessed these relationships in control mice and in mice from a line selectively bred for high voluntary wheel-running behavior, either when feeding a carbohydrate-rich/low-fat (LF) or a high-fat (HF) diet. Housed without wheels, selected mice, and in particular the females, exhibited higher cage activity than their non-selected controls during the dark phase and at the onset of the light phase, irrespective of diet. This was associated with increases in energy expenditure in both sexes of the selection line. In selected males, carbohydrate oxidation appeared to be increased compared to controls. In contrast, selected females had profound increases in fat oxidation above the levels in control females to cover the increased energy expenditure during the dark phase. This is remarkable in light of the finding that the selected mice, and in particular the females showed higher preference for the LF diet relative to controls. It is likely that hormonal and/or metabolic signals increase carbohydrate preference in the selected females, which may serve optimal maintenance of cellular metabolism in the presence of augmented fat oxidation. (c) 2010 Elsevier Inc. All rights reserved.

  2. Microbial utilization of low molecular weight organic substrates in soil depends on their carbon oxidation state

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Smith, Andrew; Jones, Davey; Kuzyakov, Yakov

    2017-04-01

    Removal of low molecular weight organic substances (LMWOS), originating from plants and microorganisms, from soil solution is regulated by microbial uptake. In addition to the concentration of LMWOS in soil solution, the chemical properties of each substance (e.g. C oxidation state, number of C atoms, number of -COOH groups) can affect their uptake and subsequent partitioning of C within the soil microbial community. The aim of this study was to trace the initial fate of three dominant classes of LMWOS in soil (sugars, carboxylic and amino acids), including their removal from solution and utilization by microorganisms, and to reveal the effect of substance chemical properties on these processes. Soil solution, spiked at natural abundance levels with 14C-labelled glucose, fructose, malate, succinate, formate, alanine or glycine, was added to the soil and 14C was traced in the dissolved organic carbon (DOC), CO2, cytosol and soil organic carbon (SOC) over 24 hours. The half-life time of all LMWOS in the DOC (T1 /2-solution) varied between 0.6-5.0 min showing extremely fast initial uptake of LMWOS. The T1 /2-solution of substances was dependent on C oxidation state, indicating that less oxidized organic substances (with C oxidation state "0") were retained longer in soil solution than oxidized substances. The LMWOS-C T1 /2-fast, characterizing the half-life time of 14C in the fast mineralization pool, ranged between 30 and 80 min, with the T1 /2-fast of carboxylic acids (malic acid) being the fastest and the T1 /2-fast of amino acids (glycine) being the slowest. An absence of correlation between T1 /2-fast and either C oxidation state, number of C atoms, or number of -COOH groups suggests that intercellular metabolic pathways are more important for LMWOS transformation in soil than their basic chemical properties. The CO2 release during LMWOS mineralization accounted for 20-90% of 14C applied. Mineralization of LMWOS was the least for sugars and the greatest for

  3. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates

    NASA Astrophysics Data System (ADS)

    Naganuma, Tamaki; Traversa, Enrico

    2014-05-01

    Abundant oxygen vacancies coexisting with Ce3+ ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce3+ ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce3+ ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs correlate with the catalytic ability that involves redox reactions between Ce3+ and Ce4+ ions in given application environments (e.g. high temperature in carbon monoxide gas conversion and immersion conditions in biomedical applications). To better understand the mechanism by which Ce3+ ions achieve stability in CNPLs, we examined (i) extra-long air-stability, (ii) thermal stability up to 500 °C, and (iii) aqueous stability of Ce3+ ions in water, buffer solution and cell culture medium. It is noteworthy that air-stability of Ce3+ ions in CNPLs persisted for more than 1 year. Thermal stability results showed that oxidation of Ce3+ to Ce4+ occurred at 350 °C in air. Highly concentrated Ce3+ ions in ultra-thin CNPLs slowly oxidized in water within 1 day, but stability was improved in the cell culture medium. Ce3+ stability of CNPLs immersed in the medium was associated with phosphorus adsorption on the Ce3+ sites. This study also illuminates the potential interaction mechanisms of stable Ce3+ ions in CNPLs. These findings could be utilized to understand catalytic mechanisms of CNPs with abundant oxygen vacancies in their application environments.Abundant oxygen vacancies coexisting with Ce3+ ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce3+ ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce3+ ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs

  4. Stability Comparison of Perovskite Solar Cells Based on Zinc Oxide and Titania on Polymer Substrates.

    PubMed

    Dkhissi, Yasmina; Meyer, Steffen; Chen, Dehong; Weerasinghe, Hasitha C; Spiccia, Leone; Cheng, Yi-Bing; Caruso, Rachel A

    2016-04-07

    Device scale-up and long-term stability constitute two major hurdles that the emerging perovskite solar technology will have to overcome before commercialization. Here, a comparative study was performed between ZnO and TiO2 electron-selective layers, two materials that allow the low-temperature processing of perovskite solar cells on polymer substrates. Although the use of TiO2 is well established on glass substrates, ZnO was chosen because it can be readily printed at low temperature and offers the potential for the large-scale roll-to-roll manufacturing of flexible photovoltaics at a low cost. However, a rapid degradation of CH3 NH3 PbI3 was observed if it was deposited on ZnO, therefore, the influence of the perovskite film preparation conditions on its morphology and degradation kinetics was investigated. This study showed that CH3 NH3 PbI3 could withstand a higher temperature on TiO2 than ZnO and that TiO2-based perovskite devices were more stable than their ZnO analogues.

  5. Template-Free Mesoporous Electrochromic Films on Flexible Substrates from Tungsten Oxide Nanorods.

    PubMed

    Heo, Sungyeon; Kim, Jongwook; Ong, Gary K; Milliron, Delia J

    2017-09-13

    Low-temperature processed mesoporous nanocrystal thin films are platforms for fabricating functional composite thin films on flexible substrates. Using a random arrangement of anisotropic nanocrystals can be a facile solution to generate pores without templates. However, the tendency for anisotropic particles to spontaneously assemble into a compact structure must be overcome. Here, we present a method to achieve random networking of nanorods during solution phase deposition by switching their ligand-stabilized colloidal nature into a charge-stabilized nature by a ligand-stripping chemistry. Ligand-stripped tungsten suboxide (WO2.72) nanorods result in uniform mesoporous thin films owing to repulsive electrostatic forces preventing nanorods from densely packing. Porosity and pore size distribution of thin films are controlled by changing the aspect ratio of the nanorods. This template-free mesoporous structure, achieved without annealing, provides a framework for introducing guest components, therefore enabling our fabrication of inorganic nanocomposite electrochromic films on flexible substrates. Following infilling of niobium polyoxometalate clusters into pores and successive chemical condensation, a WOx-NbOx composite film is produced that selectively controls visible and near-infrared light transmittance without any annealing required. The composite shows rapid switching kinetics and can be stably cycled between optical states over 2000 times. This simple strategy of using anisotropic nanocrystals gives insight into mesoporous thin film fabrication with broader applications for flexible devices.

  6. Effect of Oxidation Temperature on Physical and Electrical Properties of Sm2O3 Thin-Film Gate Oxide on Si Substrate

    NASA Astrophysics Data System (ADS)

    Goh, Kian Heng; Haseeb, A. S. M. A.; Wong, Yew Hoong

    2016-10-01

    Thermal oxidation of 150-nm sputtered pure samarium metal film on silicon substrate has been carried out in oxygen ambient at various temperatures (600°C to 900°C) for 15 min and the effect of the oxidation temperature on the structural, chemical, and electrical properties of the resulting Sm2O3 layers investigated. The crystallinity of the Sm2O3 films and the existence of an interfacial layer were evaluated by x-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, and Raman analysis. The crystallite size and microstrain of Sm2O3 were estimated by Williamson-Hall (W-H) plot analysis, with comparison of the former with the crystallite size of Sm2O3 as calculated using the Scherrer equation. High-resolution transmission electron microscopy (HRTEM) with energy-dispersive x-ray (EDX) spectroscopy analysis was carried out to investigate the cross-sectional morphology and chemical distribution of selected regions. The activation energy or growth rate of each stacked layer was calculated from Arrhenius plots. The surface roughness and topography of the Sm2O3 layers were examined by atomic force microscopy (AFM) analysis. A physical model based on semipolycrystalline nature of the interfacial layer is suggested and explained. Results supporting such a model were obtained by FTIR, XRD, Raman, EDX, and HRTEM analyses. Electrical characterization revealed that oxidation temperature at 700°C yielded the highest breakdown voltage, lowest leakage current density, and highest barrier height value.

  7. Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism.

    PubMed

    Rowe, Annette R; Chellamuthu, Prithiviraj; Lam, Bonita; Okamoto, Akihiro; Nealson, Kenneth H

    2014-01-01

    Little is known about the importance and/or mechanisms of biological mineral oxidation in sediments, partially due to the difficulties associated with culturing mineral-oxidizing microbes. We demonstrate that electrochemical enrichment is a feasible approach for isolation of microbes capable of gaining electrons from insoluble minerals. To this end we constructed sediment microcosms and incubated electrodes at various controlled redox potentials. Negative current production was observed in incubations and increased as redox potential decreased (tested -50 to -400 mV vs. Ag/AgCl). Electrode-associated biomass responded to the addition of nitrate and ferric iron as terminal electron acceptors in secondary sediment-free enrichments. Elemental sulfur, elemental iron and amorphous iron sulfide enrichments derived from electrode biomass demonstrated products indicative of sulfur or iron oxidation. The microbes isolated from these enrichments belong to the genera Halomonas, Idiomarina, Marinobacter, and Pseudomonas of the Gammaproteobacteria, and Thalassospira and Thioclava from the Alphaproteobacteria. Chronoamperometry data demonstrates sustained electrode oxidation from these isolates in the absence of alternate electron sources. Cyclic voltammetry demonstrated the variability in dominant electron transfer modes or interactions with electrodes (i.e., biofilm, planktonic or mediator facilitated) and the wide range of midpoint potentials observed for each microbe (from 8 to -295 mV vs. Ag/AgCl). The diversity of extracellular electron transfer mechanisms observed in one sediment and one redox condition, illustrates the potential importance and abundance of these interactions. This approach has promise for increasing our understanding the extent and diversity of microbe mineral interactions, as well as increasing the repository of microbes available for electrochemical applications.

  8. [The modification of nitric oxide production by exogenous substrates of Krebs cycle during acute hypoxia].

    PubMed

    Kurhaliuk, N M; Kotsiuruba, A V; Sahach, V F

    2005-01-01

    Hypoxia causes the disruption of mitochondria electron respiratory chain, production of active oxygen forms and the unoxidative protection. In experiments on Wistar rats the influence of sodium succinate (50 mg/kg) and 6-ketoglutarate (200 mg/kg) on NO2-, NO3-, urea and polyamines contents in blood and liver under acute hypoxia (7% O2 in N2, 30 min) was investigated. Nitrite and nitrate content decreased in erythrocytes and liver but not in plasma under acute hypoxia. The exogenous succinate (SK) stimulated production of nitric oxide in erythrocytes and liver while 6-ketoglutarate (KG) only in liver. The switch from more intensive SK oxidation that reveals adrenomimetic influence and causes the synthesis and release of NO from erythrocyte, to less intensive KG correlates with well-known decrease of tissue respiration under the activation of the cholinergic system due to urea cycle activation particularly in liver. The activation of the SK oxidation takes place mainly under the different stress conditions and causes NO production in the blood cells. These conditions of the intensive and fast action under acute hypoxia are accompanied on the one hand by the increase of oxygen input ratio and on the other hand by activation of the free radical oxidation. The protective effect of the natural Krebs cycle intermediates--SK and KG in particular, is related to the regulation of NO synthesis and its metabolism in the main organs. These results proved the existence not only metabolite control of NO system by Krebs cycle intermediates, but the existence of the systemic mechanism for the support of the functional state of mitochondria under hypoxia.

  9. Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism

    PubMed Central

    Rowe, Annette R.; Chellamuthu, Prithiviraj; Lam, Bonita; Okamoto, Akihiro; Nealson, Kenneth H.

    2015-01-01

    Little is known about the importance and/or mechanisms of biological mineral oxidation in sediments, partially due to the difficulties associated with culturing mineral-oxidizing microbes. We demonstrate that electrochemical enrichment is a feasible approach for isolation of microbes capable of gaining electrons from insoluble minerals. To this end we constructed sediment microcosms and incubated electrodes at various controlled redox potentials. Negative current production was observed in incubations and increased as redox potential decreased (tested −50 to −400 mV vs. Ag/AgCl). Electrode-associated biomass responded to the addition of nitrate and ferric iron as terminal electron acceptors in secondary sediment-free enrichments. Elemental sulfur, elemental iron and amorphous iron sulfide enrichments derived from electrode biomass demonstrated products indicative of sulfur or iron oxidation. The microbes isolated from these enrichments belong to the genera Halomonas, Idiomarina, Marinobacter, and Pseudomonas of the Gammaproteobacteria, and Thalassospira and Thioclava from the Alphaproteobacteria. Chronoamperometry data demonstrates sustained electrode oxidation from these isolates in the absence of alternate electron sources. Cyclic voltammetry demonstrated the variability in dominant electron transfer modes or interactions with electrodes (i.e., biofilm, planktonic or mediator facilitated) and the wide range of midpoint potentials observed for each microbe (from 8 to −295 mV vs. Ag/AgCl). The diversity of extracellular electron transfer mechanisms observed in one sediment and one redox condition, illustrates the potential importance and abundance of these interactions. This approach has promise for increasing our understanding the extent and diversity of microbe mineral interactions, as well as increasing the repository of microbes available for electrochemical applications. PMID:25642220

  10. Development of Oxidation Resistant Coatings on GRCop-84 Substrates by Cold Spray Process

    NASA Technical Reports Server (NTRS)

    Karthikeyan, J.

    2007-01-01

    GRCop-84, a Cu-CR-Nb alloy, has been developed for rocket engine liner applications. For maximum life additional oxidation protection is required to prevent blanching. NiCrAlY was identified as a suitable coating, and efforts were initiated to develop suitable coating techniques. Cold spray is one technique under consideration. Efforts at ASB Industries to produce dense, adherent coatings are detailed. The work culminated in the production of samples for testing at NASA Glenn Research Center.

  11. Appetite suppressants and valvular heart disease.

    PubMed

    Weissman, N J

    2001-04-01

    The association between valvular heart disease and diet pills was discovered several years ago in a small cohort of patients. Subsequent uncontrolled surveys and reports suggested a prevalence of cardiac abnormalities as high as 30%. These results led to widespread concern by millions of appetite suppressant users and the withdrawal of both fenfluramine and dexfenfluramine from the market. Through this review of the literature, it becomes apparent that we have better defined the association between valvular heart disease and appetite suppressants; nonetheless, many questions and controversies remain. Most large scale, multicenter, controlled studies have shown that a prevalence of significant valve regurgitation is between 2 and 12% and that the likelihood of disease increases with increasing dose and/or duration of appetite suppressant use, but several other issues, such as the mechanism of action, remain unanswered.

  12. Effect of Surface Roughness of an Electropolished Aluminum Substrate on the Thickness, Morphology, and Hardness of Aluminum Oxide Coatings Formed During Anodization in Oxalic Acid

    NASA Astrophysics Data System (ADS)

    Choudhary, R. K.; Sreeshma, K. P.; Mishra, P.

    2017-07-01

    Aluminum specimens were electropolished to five different roughness profiles and anodized in 10% oxalic acid under identical conditions in order to study the effect of surface topography on the thickness, morphology, chemical composition and hardness of the anodic aluminum oxide coatings formed. Field emission scanning electron microscopy showed that the anodic coating grown on a substrate having an average roughness of 250 nm was dense, whereas the microstructure became more porous with increasing the substrate roughness. The thickness of the coating was found to be a parabolic function of substrate roughness. Energy-dispersive x-ray analysis of coatings revealed a continuous increase in O/Al ratio with increasing substrate roughness suggesting increased incorporation of anions during oxide growth and also a tendency toward the formation of stoichiometric Al2O3. Coatings with higher O/Al ratio displayed improved hardness values.

  13. Glutamate and GABA in Appetite Regulation

    PubMed Central

    Delgado, Teresa C.

    2013-01-01

    Appetite is regulated by a coordinated interplay between gut, adipose tissue, and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms. Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using 13C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-13C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-13C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the glutamate

  14. Appetitive vs. Aversive conditioning in humans

    PubMed Central

    Andreatta, Marta; Pauli, Paul

    2015-01-01

    In classical conditioning, an initially neutral stimulus (conditioned stimulus, CS) becomes associated with a biologically salient event (unconditioned stimulus, US), which might be pain (aversive conditioning) or food (appetitive conditioning). After a few associations, the CS is able to initiate either defensive or consummatory responses, respectively. Contrary to aversive conditioning, appetitive conditioning is rarely investigated in humans, although its importance for normal and pathological behaviors (e.g., obesity, addiction) is undeniable. The present study intents to translate animal findings on appetitive conditioning to humans using food as an US. Thirty-three participants were investigated between 8 and 10 am without breakfast in order to assure that they felt hungry. During two acquisition phases, one geometrical shape (avCS+) predicted an aversive US (painful electric shock), another shape (appCS+) predicted an appetitive US (chocolate or salty pretzel according to the participants' preference), and a third shape (CS–) predicted neither US. In a extinction phase, these three shapes plus a novel shape (NEW) were presented again without US delivery. Valence and arousal ratings as well as startle and skin conductance (SCR) responses were collected as learning indices. We found successful aversive and appetitive conditioning. On the one hand, the avCS+ was rated as more negative and more arousing than the CS– and induced startle potentiation and enhanced SCR. On the other hand, the appCS+ was rated more positive than the CS– and induced startle attenuation and larger SCR. In summary, we successfully confirmed animal findings in (hungry) humans by demonstrating appetitive learning and normal aversive learning. PMID:26042011

  15. Neuroendocrine regulation of appetitive ingestive behavior

    PubMed Central

    Keen-Rhinehart, Erin; Ondek, Katelynn; Schneider, Jill E.

    2013-01-01

    Food availability in nature is often irregular, and famine is commonplace. Increased motivation to engage in ingestive behaviors increases the chance of survival, providing additional potential opportunities for reproduction. Because of the advantages conferred by entraining ingestive behavior to environmental conditions, neuroendocrine mechanisms regulating the motivation to acquire and ingest food have evolved to be responsive to exogenous (i.e., food stored for future consumption) and endogenous (i.e., body fat stores) fuel availability. Motivated behaviors like eating occur in two phases. The appetitive phase brings animals into contact with food (e.g., foraging, food hoarding), and the more reflexive consummatory phase results in ingestion (e.g., chewing, swallowing). Quantifiable appetitive behaviors are part of the natural ingestive behavioral repertoire of species such as hamsters and humans. This review summarizes current knowledge about neuroendocrine regulators of ingestive behavior, with an emphasis appetitive behavior. We will discuss hormonal regulators of appetitive ingestive behaviors, including the orexigenic hormone ghrelin, which potently stimulates foraging and food hoarding in Siberian hamsters. This section includes a discussion of the hormone leptin, its relation to endogenous fat stores, and its role in food deprivation-induced increases in appetitive ingestive behaviors. Next, we discuss how hormonal regulators interact with neurotransmitters involved in the regulation of ingestive behaviors, such as neuropeptide Y (NPY), agouti-related protein (AgRP) and α-melanocyte stimulating hormone (α-MSH), to regulate ingestive behavior. Finally, we discuss the potential impact that perinatal nutrient availability can have on the neuroendocrine regulation of ingestive behavior. Understanding the hormonal mechanisms that connect metabolic fuel availability to central appetite regulatory circuits should provide a better understanding of the

  16. Appetitive vs. Aversive conditioning in humans.

    PubMed

    Andreatta, Marta; Pauli, Paul

    2015-01-01

    In classical conditioning, an initially neutral stimulus (conditioned stimulus, CS) becomes associated with a biologically salient event (unconditioned stimulus, US), which might be pain (aversive conditioning) or food (appetitive conditioning). After a few associations, the CS is able to initiate either defensive or consummatory responses, respectively. Contrary to aversive conditioning, appetitive conditioning is rarely investigated in humans, although its importance for normal and pathological behaviors (e.g., obesity, addiction) is undeniable. The present study intents to translate animal findings on appetitive conditioning to humans using food as an US. Thirty-three participants were investigated between 8 and 10 am without breakfast in order to assure that they felt hungry. During two acquisition phases, one geometrical shape (avCS+) predicted an aversive US (painful electric shock), another shape (appCS+) predicted an appetitive US (chocolate or salty pretzel according to the participants' preference), and a third shape (CS-) predicted neither US. In a extinction phase, these three shapes plus a novel shape (NEW) were presented again without US delivery. Valence and arousal ratings as well as startle and skin conductance (SCR) responses were collected as learning indices. We found successful aversive and appetitive conditioning. On the one hand, the avCS+ was rated as more negative and more arousing than the CS- and induced startle potentiation and enhanced SCR. On the other hand, the appCS+ was rated more positive than the CS- and induced startle attenuation and larger SCR. In summary, we successfully confirmed animal findings in (hungry) humans by demonstrating appetitive learning and normal aversive learning.

  17. Appetite-Controlling Endocrine Systems in Teleosts

    PubMed Central

    Rønnestad, Ivar; Gomes, Ana S.; Murashita, Koji; Angotzi, Rita; Jönsson, Elisabeth; Volkoff, Hélène

    2017-01-01

    Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms. PMID:28458653

  18. Glutamate and GABA in Appetite Regulation.

    PubMed

    Delgado, Teresa C

    2013-01-01

    Appetite is regulated by a coordinated interplay between gut, adipose tissue, and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms. Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using (13)C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-(13)C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-(13)C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the glutamate

  19. Epitaxial iron oxide nanocrystals with memory function grown on Si substrates

    NASA Astrophysics Data System (ADS)

    Ishibe, Takafumi; Matsui, Hideki; Watanabe, Kentaro; Takeuchi, Shotaro; Sakai, Akira; Nakamura, Yoshiaki

    2016-05-01

    High-density Fe3O4-δ nanocrystals (NCs) were epitaxially grown on Si substrates by molecular beam epitaxy with epitaxial Ge NCs being used as nucleation sites. Scanning tunneling spectroscopy measurements showed that the surface bandgap of the as-grown Fe3O4-δ NCs was ˜0.2 eV, consistent with that reported for Fe3O4-δ films. Conductive atomic force microscopy measurements of the NCs revealed hysteresis in the voltage-current curves, indicating bipolar resistive switching behavior. The measurement results established the superiority of the NCs to thin conventional polycrystalline Fe3O4-δ films/Si in terms of resistive switching characteristics. This demonstrated the possibility of developing resistance random access memory devices composed of ubiquitous Fe3O4-δ NC materials.

  20. Topological Insulators as Substrates for CO Oxidation Catalysis by Ultrathin Au Films

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Zhu, Wenguang; Xiao, Di; Zhang, Zhenyu

    2011-03-01

    We propose a novel application of three dimensional topological insulators (3DTIs) in heterogeneous catalysis based on first- principles calculations within density functional theory. We use a Bi 2 Se 3 substrate as the support of an ultrathin Au film, and show that the Au adatoms are strongly bound to and able to wet the surface of Bi 2 Se 3 . More importantly, we find the topological surface states of Bi 2 Se 3 are robust against Au deposition, and it can enhance the interaction between Au and CO, O2 molecules by acting as an electron bath . The present study may broaden the potential technological applications of 3DTIs, and shine some new light on the understanding of the role of surface states in heterogeneous catalysis. Supported by DMSE/BES of USDOE, USNSF, and NNSFC.

  1. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt

    NASA Astrophysics Data System (ADS)

    Sun, Ningbo; Zhang, Yingchun; Lang, Shaoting; Jiang, Fan; Wang, Lili

    2014-12-01

    Tungsten is considered as plasma facing material in fusion devices because of its high melting point, its good thermal conductivity, its low erosion rate and its benign neutron activation properties. On the other hand, carbon based materials like C/C fiber composites (CFC) have been used for plasma facing materials (PFMs) due to their high thermal shock resistance, light weight and high strength. Tungsten coatings on CFC substrates are used in the JET divertor in the frame of the JET ITER-like wall project, and have been prepared by plasma spray (PS) and other techniques. In this study, tungsten coatings were electro-deposited on CFC from Na2WO4-WO3 molten salt under various deposition parameters at 900 °C in air. In order to obtain tungsten coatings with excellent performance, the effects of pulse duration ratio and pulse current density on microstructures and crystal structures of tungsten coatings were investigated by X-ray diffraction (XRD, Rigaku Industrial Co., Ltd., D/MAX-RB) and a scanning electron microscope (SEM, JSM 6480LV). It is found that the pulsed duration ratio and pulse current density had a significant influence on tungsten nucleation and electro-crystallization phenomena. SEM observation revealed that intact, uniform and dense tungsten coatings formed on the CFC substrates. Both the average grain size and thickness of the coating increased with the pulsed current density. The XRD results showed that the coatings consisted of a single phase of tungsten with the body centered cubic (BCC) structure. The oxygen content of electro-deposited tungsten coatings was lower than 0.05%, and the micro-hardness was about 400 HV.

  2. Ceria catalyst for inert-substrate-supported tubular solid oxide fuel cells running on methane fuel

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Kim, Bok-Hee; Du, Yanhai; Xu, Qing; Ahn, Byung-Guk

    2016-05-01

    A ceria catalyst is applied to an inert-substrate supported tubular single cell for direct operation on methane fuel. The tubular single cell comprises a porous yttria-stabilized zirconia (YSZ) supporter, a Ni-Ce0.8Sm0.2O1.9 anode, a YSZ/Ce0.8Sm0.2O1.9 bi-layer electrolyte, and a La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. The ceria catalyst is incorporated into the porous YSZ supporter layer by a cerium nitrate impregnation. The effects of ceria on the microstructure and electrochemical performance of the tubular single cell are investigated with respect to the number of impregnations. The optimum number of impregnations is determined to be four based on the maximum power density and polarization property of the tubular single cell in hydrogen and methane fuels. At 700 °C, the tubular single cell shows similar maximum power densities of ˜260 mW cm-2 in hydrogen and methane fuels, respectively. Moreover, the ceria catalyst significantly improves the performance stability of the cell running on methane fuel. At a current density of 350 mA cm-2, the single cell shows a low degradation rate of 2.5 mV h-1 during the 13 h test in methane fuel. These results suggest the feasibility of applying the ceria catalyst to the inert-substrate supported tubular single cell for direct operation on methane fuel.

  3. Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid β-oxidation.

    PubMed

    van Roermund, Carlo W T; Visser, Wouter F; Ijlst, Lodewijk; Waterham, Hans R; Wanders, Ronald J A

    2011-03-01

    The gene mutated in X-linked adrenoleukodystrophy (X-ALD) codes for the HsABCD1 protein, also named ALDP, which is a member of the superfamily of ATP-binding cassette (ABC) transporters and required for fatty acid transport across the peroxisomal membrane. Although a defective HsABCD1 results in the accumulation of very long-chain fatty acids in plasma of X-ALD patients, there is still no direct biochemical evidence that HsABCD1 actually transports very long-chain fatty acids. We used the yeast Saccharomyces cerevisiae to study the transport of fatty acids across the peroxisomal membrane. Our earlier work showed that in yeast the uptake of fatty acids into peroxisomes may occur via two routes, either as (1.) free fatty acid or as (2.) acyl-CoA ester. The latter route involves the two peroxisomal half-ABC transporters, Pxa1p and Pxa2p, which form a heterodimeric complex in the peroxisomal membrane. We here report that the phenotype of the pxa1/pxa2Δ yeast mutant, i.e. impaired growth on oleate containing medium and deficient oxidation of oleic acid, cannot only be partially rescued by human ABCD1, but also by human ABCD2 (ALDRP), which indicates that HsABCD1 and HsABCD2 can both function as homodimers. Fatty acid oxidation studies in the pxa1/pxa2Δ mutant transformed with either HsABCD1 or HsABCD2 revealed clear differences suggesting that HsABCD1 and HsABCD2 have distinct substrate specificities. Indeed, full rescue of beta-oxidation activity in cells expressing human ABCD2 was observed with C22:0 and different unsaturated very long-chain fatty acids including C24:6 and especially C22:6 whereas in cells expressing HsABCD1 rescue of beta-oxidation activity was best with C24:0 and C26:0 as substrates. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Effect of pH on sulfite oxidation by Thiobacillus thiooxidans cells with sulfurous acid or sulfur dioxide as a possible substrate.

    PubMed Central

    Takeuchi, T L; Suzuki, I

    1994-01-01

    The oxidation of sulfite by Thiobacillus thiooxidans was studied at various pH values with changing concentrations of potassium sulfite. The optimal pH for sulfite oxidation by cells was a function of sulfite concentrations, rising with increasing substrate concentrations, while that by the cell extracts was unaffected. The sulfite oxidation by cells was inhibited at high sulfite concentrations, particularly at low pH values. The results from kinetic studies show that the fully protonated form of sulfite, sulfurous acid or sulfur dioxide, is the form which penetrates the cells for the oxidation. PMID:8300544

  5. Effect of time and of precursor molecule on the deposition of hydrophobic nanolayers on ethyelene tetrafluoroethylene-silicon oxide substrates

    NASA Astrophysics Data System (ADS)

    Rossi, Gabriella; Castellano, Piera; Incarnato, Loredana

    2016-10-01

    A method was developed for generating transparent and hydrophobic nanolayers chemisorbed onto flexible substrates of ethylene tetrafluoroethylene-silicon oxide (ETFE-SiOx). In particular, the effect of the deposition time and of the precursor molecule on the nanocoating process was analyzed with the aim of pursuing an optimization of the above method in an industrial application perspective. It was found that precursor molecule of triethoxysilane allowed to obtain better hydrophobic properties on the SiOx surface in shorter times compared to trichlorosilane, reaching the 92 % of final contact angle (CA) value of 106° after only 1 h of deposition. The optical properties and surface morphology were also assessed in function of time, revealing that an initial transparency reduction is followed by a subsequent transmittance increase during the self assembly of fluoroalkylsilanes on the SiOx surface, coherently with the surface roughness analysis data. Encouraging results were also obtained in terms of oleophobic properties improvement of the nanocoated surfaces.

  6. Substrate Fermi level effects in photocatalysis on oxides: Properties of ultrathin TiO2/Si films

    NASA Astrophysics Data System (ADS)

    Kazazis, D.; Guha, S.; Bojarczuk, N. A.; Zaslavsky, A.; Kim, H.-C.

    2009-08-01

    Photocatalysis has widespread applications from solar cells to photolithography. We studied the photocatalytic properties of TiO2 films of thicknesses down to 2 nm, grown on n-type and p-type silicon wafers, using the oxidation of isopropanol as a model system. Direct in vacuo mass spectrometry measurements were performed under irradiation above the TiO2 bandgap. We present a model consistent with our experimental results, which indicate that only near-surface electron-hole pair generation is relevant and that the reaction rate can be controlled by varying the substrate Fermi level in going from n-type to p-type silicon, by approximately a factor of 2.

  7. Surface studies on aluminized and thermally oxidized superalloy 690 substrates interacted with simulated nuclear waste and sodium borosilicate melt

    SciTech Connect

    Yusufali, C. Sengupta, P.; Dutta, R. S.; Dey, G. K.; Kshirsagar, R. J.; Mishra, R. K.; Kaushik, C. P.

    2014-04-24

    Aluminized and thermally oxidized Ni-Cr-Fe based superalloy 690 substrates with Al{sub 2}O{sub 3} layer on top have been exposed in nitrate based environment (simulated high level nuclear liquid waste) at 373 K for 216 hours and sodium borosilicate melt at 1248 K for 192 hours. The surfaces of exposed samples have been characterized by using Electron probe micro-analyzer (EPMA). Elemental X-ray mapping on coated specimen that exposed in simulated nuclear waste solution revealed that the surface is enriched with Ni, Cr and Al. X-ray mapping on surface of the specimen that interacted with sodium borosilicate melt indicated that the surface is composed of Al, Fe, Ni and Cr.

  8. Magneto-transport properties of oriented Mn{sub 2}CoAl films sputtered on thermally oxidized Si substrates

    SciTech Connect

    Xu, G. Z.; Du, Y.; Zhang, X. M.; Liu, E. K.; Wang, W. H. Wu, G. H.; Zhang, H. G.

    2014-06-16

    Spin gapless semiconductors are interesting family of materials by embracing both magnetism and semiconducting due to their unique band structure. Its potential application in future spintronics requires realization in thin film form. In this Letter, we report fabrication and transport properties of spin gapless Mn{sub 2}CoAl films prepared on thermally oxidized Si substrates by magnetron sputtering deposition. The films deposited at 673 K are well oriented to (001) direction and display a uniform-crystalline surface. Magnetotransport measurements on the oriented films reveal a semiconducting-like resistivity, small anomalous Hall conductivity, and linear magnetoresistance representative of the transport signatures of spin gapless semiconductors. The magnetic properties of the films have also been investigated and compared to that of bulk Mn{sub 2}CoAl, showing small discrepancy induced by the composition deviation.

  9. Flexible transparent memory cell: bipolar resistive switching via indium-tin oxide nanowire networks on a poly(dimethylsiloxane) substrate

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Tian, Zhenhuan; Shang, Geng; Wang, Jiangteng; Li, Yufeng; Yun, Feng

    2016-11-01

    This report describes the fabrication and resistive switching (RS) characteristics of a novel flexible transparent (FT) resistive random access memory (ReRAM) device with a Ag/indium-tin oxide (ITO) nanowire network/ITO capacitor deposited on a PDMS substrate. The transmittance of the device is ˜70% in the visible region, and it exhibits a stable high-resistance state (HRS) to low-resistance state (LRS) ratio (HRS/LRS ratio) in different bending states. The RS characteristics are attributed to the congregate state of oxygen vacancies at different voltages, and the difference between positive and negative bending is mainly contributed by the effect of stress on the conductive layer. The FT-ReRAM can be used as nonvolatile memory element in future flexible transparent devices.

  10. Substrate Fermi level effects in photocatalysis on oxides: Properties of ultrathin TiO{sub 2}/Si films

    SciTech Connect

    Kazazis, D.; Zaslavsky, A.; Guha, S.; Bojarczuk, N. A.; Kim, H.-C.

    2009-08-10

    Photocatalysis has widespread applications from solar cells to photolithography. We studied the photocatalytic properties of TiO{sub 2} films of thicknesses down to 2 nm, grown on n-type and p-type silicon wafers, using the oxidation of isopropanol as a model system. Direct in vacuo mass spectrometry measurements were performed under irradiation above the TiO{sub 2} bandgap. We present a model consistent with our experimental results, which indicate that only near-surface electron-hole pair generation is relevant and that the reaction rate can be controlled by varying the substrate Fermi level in going from n-type to p-type silicon, by approximately a factor of 2.

  11. Enhanced field emission properties from well-aligned zinc oxide nanoneedles grown on the Au/Ti/n-Si substrate

    SciTech Connect

    Park, Chan Jun; Choi, Duck-Kyun; Yoo, Jinkyoung; Yi, Gyu-Chul; Lee, Cheol Jin

    2007-02-19

    The authors investigated the field emission from vertically well-aligned zinc oxide (ZnO) nanoneedles grown on the Au/Ti/n-Si (100) substrate using metal organic chemical vapor deposition. The turn-on field of ZnO nanoneedles was about 0.85 V/{mu}m at the current density of 0.1 {mu}A/cm{sup 2}, and the emission current density of 1 mA/cm{sup 2} was achieved at the applied electric field of 5.0 V/{mu}m. The low turn-on field of the ZnO nanoneedles was attributed to very sharp tip morphology, and the high emission current density was mainly caused by the formation of the stable Ohmic contact between the ZnO nanoneedles and Au film.

  12. VO2 Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy

    PubMed Central

    Zhang, Dong; Sun, Hong-Jun; Wang, Min-Huan; Miao, Li-Hua; Liu, Hong-Zhu; Zhang, Yu-Zhi; Bian, Ji-Ming

    2017-01-01

    Vanadium dioxide (VO2) thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF)-plasma assisted oxide molecular beam epitaxy (O-MBE). The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. An excellent reversible metal-to-insulator transition (MIT) characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR) transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT) deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO2-based smart windows. PMID:28772673

  13. VO₂ Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy.

    PubMed

    Zhang, Dong; Sun, Hong-Jun; Wang, Min-Huan; Miao, Li-Hua; Liu, Hong-Zhu; Zhang, Yu-Zhi; Bian, Ji-Ming

    2017-03-19

    Vanadium dioxide (VO₂) thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF)-plasma assisted oxide molecular beam epitaxy (O-MBE). The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. An excellent reversible metal-to-insulator transition (MIT) characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR) transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT) deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO₂-based smart windows.

  14. Surface studies on aluminized and thermally oxidized superalloy 690 substrates interacted with simulated nuclear waste and sodium borosilicate melt

    NASA Astrophysics Data System (ADS)

    Yusufali, C.; Kshirsagar, R. J.; Mishra, R. K.; Kaushik, C. P.; Sengupta, P.; Dutta, R. S.; Dey, G. K.

    2014-04-01

    Aluminized and thermally oxidized Ni-Cr-Fe based superalloy 690 substrates with Al2O3 layer on top have been exposed in nitrate based environment (simulated high level nuclear liquid waste) at 373 K for 216 hours and sodium borosilicate melt at 1248 K for 192 hours. The surfaces of exposed samples have been characterized by using Electron probe micro-analyzer (EPMA). Elemental X-ray mapping on coated specimen that exposed in simulated nuclear waste solution revealed that the surface is enriched with Ni, Cr and Al. X-ray mapping on surface of the specimen that interacted with sodium borosilicate melt indicated that the surface is composed of Al, Fe, Ni and Cr.

  15. Effect of Fe coating of nucleation sites on epitaxial growth of Fe oxide nanocrystals on Si substrates

    NASA Astrophysics Data System (ADS)

    Ishibe, Takafumi; Watanabe, Kentaro; Nakamura, Yoshiaki

    2016-08-01

    We studied the effect of Fe coating on the epitaxial growth of Fe3O4 nanocrystals (NCs) over Fe-coated Ge epitaxial nuclei on Si(111). To completely cover Ge nuclei with Fe, some amount of Fe (>8 monolayers) must be deposited. Such covering is a key to epitaxial growth because an Fe coating layer prevents the oxidation of Ge surfaces during Fe3O4 formation, resulting in the epitaxial growth of Fe3O4 on them. This study demonstrates that an appropriate Fe coating of nucleation sites leads to the epitaxial growth of Fe3O4 NCs on Si substrates, indicating the realization of environmentally friendly and low-cost Fe3O4 NCs as the resistance random access memory material.

  16. Synthesis of epitaxial Si(100) nanowires on Si(100) substrate using vapor liquid solid growth in anodic aluminum oxide nanopore arrays

    NASA Astrophysics Data System (ADS)

    Shimizu, T.; Senz, S.; Shingubara, S.; Gösele, U.

    2007-06-01

    The synthesis of epitaxial Si nanowires with growth direction parallel to Si [100] on Si(100) substrate was demonstrated using a combination of anodic aluminum oxide (AAO) template, catalytic gold film sandwiched between the template and the Si(100) substrate and vapor-liquid-solid growth using SiH4 as the Si source. After growing out from the AAO nanopores, most Si nanowires changed their diameter and growth direction into larger diameter and <111> direction.

  17. Impaired coordination of nutrient intake and substrate oxidation in melanocortin-4 receptor knockout mice.

    PubMed

    Albarado, Diana C; McClaine, Jennifer; Stephens, Jacqueline M; Mynatt, Randall L; Ye, Jianping; Bannon, Anthony W; Richards, William G; Butler, Andrew A

    2004-01-01

    Mutations in the melanocortin-4 receptor (MC4R) are associated with obesity. The obesity syndrome observed in humans with MC4R haploinsufficiency is similar to that observed in MC4R knockout mice, including increased longitudinal growth, hyperphagia, and fasting hyperinsulinemia. For comparison with other commonly investigated models of obesity and insulin resistance, we have backcrossed Mc4r-/- mice into the C57BL/6J (B6) background. Female obese Mc4r-/- mice exhibit reduced energy expenditure and an attenuated increase in fatty acid (FA) oxidation after exposure to high-fat diets compared with obese Lepob/Lepob mice. The reduced energy expenditure and FA oxidation correlates with changes in hepatic gene expression. The expression of genes involved in FA oxidation increased in obese Lepob/Lepob mice compared with wild-type and obese Mc4r-/- mice. In contrast, a key lipogenic enzyme, FA synthase (FAS), is increased in obese Mc4r-/- mice compared with obese Lepob/Lepob mice. Hyperinsulinemia, increased FAS mRNA expression and hepatic steatosis appear to be secondary to obesity in B6 Mc4r-/- mice. However, Mc4r-/- mice in a mixed genetic background develop severe hepatic steatosis at an early age. This might suggest an important role of the MC4R in regulating liver FA metabolism that is masked on the B6 background. Interestingly, the 10- to 20-fold increase in liver triglyceride in the outbred strain of Mc4r-/- mice is not always associated with fasting hyperinsulinemia or increased FAS mRNA expression. This observation suggests that changes in liver secondary to triglyceride accumulation lead to hyperinsulinemia and increased hepatic FAS expression in Mc4r-/- mice.

  18. Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in Nicotiana attenuata.

    PubMed

    Halitschke, Rayko; Ziegler, Jörg; Keinänen, Markku; Baldwin, Ian T

    2004-10-01

    The fatty acid hydroperoxide (HP) substrates required for the biosynthesis of jasmonic acid (JA) and green leaf volatiles (GLVs) are supplied by separate lipoxygenases (LOX). We silenced the expression of two genes downstream of the LOX: allene oxide synthase (AOS) and HP lyase (HPL) by antisense expression of endogenous genes (NaAOS, NaHPL) in Nicotiana attenuata, in which the biosynthesis of JA is amplified by herbivore-specific elicitors. We report that these elicitors also amplify wound-induced GLV releases, but suppress the wound-induced increase of NaHPL transcripts, suggesting that substrate flux controls GLV biosynthesis. As expected, silencing of NaHPL and NaAOS reduced GLV release and JA accumulation, respectively. Surprisingly, HPL- and AOS-silenced plants had enhanced JA and GLV responses, suggesting substrate 'crosstalk' between these two oxylipin cascades. Plants with depleted GLVs (as-hpl) were less attractive than wild type (WT) or empty vector control plants in choice-tests with native lepidopteran herbivores. In feeding trials, Manduca sexta larvae developed slower on as-hpl plants. The reduced larval consumption and performance, which was not caused by increases in defense responses in as-hpl plants, could be restored to WT levels by the addition of synthetic GLVs, demonstrating that GLVs function as feeding stimulants. Gene expression profiling by cDNA microarray analysis and characterization of several induced defenses in herbivore-elicited as-hpl and as-aos plants revealed differential involvement of JA and GLVs in defense signaling. Elicitation of volatile terpenoids (an indirect defense) requires JA signaling, where as trypsin protease inhibitor elicitation (a direct defense) requires both functional JA and GLV cascades.

  19. Toward Plastic Smart Windows: Optimization of Indium Tin Oxide Electrodes for the Synthesis of Electrochromic Devices on Polycarbonate Substrates.

    PubMed

    Laurenti, Marco; Bianco, Stefano; Castellino, Micaela; Garino, Nadia; Virga, Alessandro; Pirri, Candido F; Mandracci, Pietro

    2016-03-01

    Plastic smart windows are becoming one of the key elements in view of the fabrication of inexpensive, lightweight electrochromic (EC) devices to be integrated in the new generation of high-energy-efficiency buildings and automotive applications. However, fabricating electrochromic devices on polymer substrates requires a reduction of process temperature, so in this work we focus on the development of a completely room-temperature deposition process aimed at the preparation of ITO-coated polycarbonate (PC) structures acting as transparent and conductive plastic supports. Without providing any substrate heating or surface activation pretreatments of the polymer, different deposition conditions are used for growing indium tin oxide (ITO) thin films by the radiofrequency magnetron sputtering technique. According to the characterization results, the set of optimal deposition parameters is selected to deposit ITO electrodes having high optical transmittance in the visible range (∼90%) together with low sheet resistance (∼8 ohm/sq). The as-prepared ITO/PC structures are then successfully tested as conductive supports for the fabrication of plastic smart windows. To this purpose, tungsten trioxide thin films are deposited by the reactive sputtering technique on the ITO/PC structures, and the resulting single electrode EC devices are characterized by chronoamperometric experiments and cyclic voltammetry. The fast switching response between colored and bleached states, together with the stability and reversibility of their electrochromic behavior after several cycling tests, are considered to be representative of the high quality of the EC film but especially of the ITO electrode. Indeed, even if no adhesion promoters, additional surface activation pretreatments, or substrate heating were used to promote the mechanical adhesion among the electrode and the PC surface, the observed EC response confirmed that the developed materials can be successfully employed for the

  20. Steady-state kinetics with nitric oxide reductase (NOR): new considerations on substrate inhibition profile and catalytic mechanism.

    PubMed

    Duarte, Américo G; Cordas, Cristina M; Moura, José J G; Moura, Isabel

    2014-03-01

    Nitric oxide reductase (NOR) from denitrifying bacteria is an integral membrane protein that catalyses the two electron reduction of NO to N2O, as part of the denitrification process, being responsible for an exclusive reaction, the NN bond formation, the key step of this metabolic pathway. Additionally, this class of enzymes also presents residual oxidoreductase activity, reducing O2 to H2O in a four electron/proton reaction. In this work we report, for the first time, steady-state kinetics with the Pseudomonas nautica NOR, either in the presence of its physiological electron donor (cyt. c552) or immobilised on a graphite electrode surface, in the presence of its known substrates, namely NO or O2. The obtained results show that the enzyme has high affinity for its natural substrate, NO, and different kinetic profiles according to the electron donor used. The kinetic data, as shown by the pH dependence, is modelled by ionisable amino acid residues nearby the di-nuclear catalytic site. The catalytic mechanism is revised and a mononitrosyl-non-heme Fe complex (FeB(II)-NO) species is favoured as the first catalytic intermediate involved on the NO reduction.

  1. Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Tatara, J. D.

    2005-01-01

    Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.

  2. Optical and electrical properties of lithium doped nickel oxide films deposited by spray pyrolysis onto alumina substrates

    NASA Astrophysics Data System (ADS)

    Garduño, I. A.; Alonso, J. C.; Bizarro, M.; Ortega, R.; Rodríguez-Fernández, L.; Ortiz, A.

    2010-11-01

    Non-doped and lithium doped nickel oxide crystalline films have been prepared onto quartz and crystalline alumina substrates at high substrate temperature (600 °C) by the pneumatic spray pyrolysis process using nickel and lithium acetates as source materials. The structure of all the deposited films was the crystalline cubic phase related to NiO, although this crystalline structure was a little bit stressed for the films with higher lithium concentration. The grain size had values between 60 and 70 nm, almost independently of doping concentration. The non-doped and lithium doped films have an energy band gap of the order of 3.6 eV. Hot point probe results show that all deposited films have a p-type semiconductor behavior. From current-voltage measurements it was observed that the electrical resistivity decreases as the lithium concentration increases, indicating that the doping action of lithium is carried out. The electrical resistivity changed from 10 6 Ω cm for the non-doped films up to 10 2 Ω cm for the films prepared with the highest doping concentration.

  3. Spectroscopic Ellipsometry Measurements of Wurtzite Gallium Nitride Surfaces as a Function of Buffered Oxide Etch Substrate Submersion

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester; Constantin, Costel; Duda, John; Hopkins, Patrick; Optical Studies of GaN interfaces Collaboration

    2013-03-01

    Gallium nitride (GaN) is considered the most important semiconductor after the discovery of silicon. Understanding the optical properties of GaN surfaces is imperative in determining the utility and applicability of this class of materials to devices. In this work, we present preliminary results of spectroscopic ellipsometry measurements as a function of surface root mean square (RMS). We used commercially available 5mm x 5mm, one side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a wurtzite crystal structure and they are slightly n-type doped. The GaN substrates were cleaned with Acetone (20 min)/Isopropanol(20 min)/DI water (20 min) before they were submerged into Buffered Oxide Etch (BOE) for 10s - 60s steps. This BOE treatment produced RMS values of 1-30 nm as measured with an atomic force microscope. Preliminary qualitative ellipsometric measurements show that the complex refractive index and the complex dielectric function decrease with an increase of RMS. More measurements need to be done in order to provide explicit quantitative results. This work was supported by the 4-VA Collaborative effort between James Madison University and University of Virginia.

  4. The effects of precursor concentration and thermal annealing on the growth of zinc oxide nanostructures grown on silicon substrate

    NASA Astrophysics Data System (ADS)

    Paculba, H. M. D.; Alguno, A. C.; Vequizo, R. M.

    2015-06-01

    This study focuses on the growth of Zinc Oxide (ZnO) nanostructures on SiO2/Si(100) substrate via chemical bath deposition (CBD) with varying NH4OH concentration and annealing temperature. The grown ZnOnanostructures were characterized via SEM-EDS for the surface morphology and elemental composition and UV-Vis spectroscopy for the reflectance measurement. Increasing the concentration of NH4OH produced denser ZnOnanostructures composed of rods having smaller diameter. It is believed that at higher concentration of NH4OH, more Zn(OH)2 seed will act as nucleation site for ZnOformation which suggests higher probability of ZnOgrowth. Thermal annealing increased the average diameter of ZnOnanorods. Annealing provided enough energy for unstable atoms to rearrange into a more suitable position. This would result to larger rods that have been formed in expense of the smaller rods. Furthermore, it is confirmed in the UV-Vis spectroscopy results that ZnOnanostructures were successfully grown on SiO2/Si(100) substrate. This successful growth of ZnOnanostructures is a promising material for solar cell technology.

  5. Part 2: Ultra-short pulse laser patterning of very thin indium tin oxide on glass substrates

    NASA Astrophysics Data System (ADS)

    McDonnell, C.; Milne, D.; Chan, H.; Rostohar, D.; O'Connor, G. M.

    2016-06-01

    We investigate selective patterning of ultra-thin 20 nm Indium Tin Oxide (ITO) thin films on glass substrates, using 343, 515, and 1030 nm femtosecond (fs), and 1030 nm picoseconds (ps) laser pulses. An ablative removal mechanism is observed for all wavelengths at both femtosecond and picoseconds time-scales. The absorbed threshold fluence values were determined to be 12.5 mJ cm-2 at 343 nm, 9.68 mJ cm-2 at 515 nm, and 7.50 mJ cm-2 at 1030 nm for femtosecond and 9.14 mJ cm-2 at 1030 nm for picosecond laser exposure. Surface analysis of ablated craters using atomic force microscopy confirms that the selective removal of the film from the glass substrate is dependent on the applied fluence. Film removal is shown to be primarily through ultrafast lattice deformation generated by an electron blast force. The laser absorption and heating process was simulated using a two temperature model (TTM). The predicted surface temperatures confirm that film removal below 1 J cm-2 to be predominately by a non-thermal mechanism.

  6. Nanotribological properties of alkanephosphonic acid self-assembled monolayers on aluminum oxide: effects of fluorination and substrate crystallinity.

    PubMed

    Brukman, Matthew J; Oncins Marco, Gerard; Dunbar, Timothy D; Boardman, Larry D; Carpick, Robert W

    2006-04-25

    Two phosphonic acid (PA) self-assembled monolayers (SAMs) are studied on three aluminum oxide surfaces: the C and R crystallographic planes of single crystal alpha-alumina (sapphire) and an amorphous vapor-deposited alumina thin film. SAMs are either fully hydrogenated CH3(CH2)17PO3H2 or semifluorinated CF3(CF2)7(CH2)11PO3H2. Atomic force microscope (AFM) topographic imaging reveals that the deposited films are homogeneous, atomically smooth, and stable for months in the laboratory environment. Static and advancing contact angle measurements agree with previous work on identical or similar films, but receding measurements suggest reduced coverage here. To enable reproducible nanotribology measurements with the AFM, a scanning protocol is developed that leads to a stable configuration of the silicon tip. Adhesion for the semifluorinated films is either comparable to or lower than that for the hydrogenated films, with a dependence on contact history observed. Friction between each film and the tips depends strongly upon the type of molecule, with the fluorinated species exhibiting substantially higher friction. Subtle but reproducible differences in friction are observed for a given SAM depending on the substrate, revealing differences in packing density for the SAMs on the different substrates. Friction is seen to increase linearly with load, a consequence of the tip's penetration into the monolayer.

  7. Structural and Magnetoresistive Properties of Nanometric Films Based on Iron and Chromium Oxides on the Si Substrate

    NASA Astrophysics Data System (ADS)

    Smirnov, Aleksey B.; Kryvyi, Serhii B.; Mulenko, Sergii A.; Sadovnikova, Maria L.; Savkina, Rada K.; Stefan, Nicolaie

    2016-10-01

    Ultraviolet photons of KrF laser (248 nm) was used for the synthesis of nanometric films based on iron and chromium oxides (Fe2O3 - X (0 ≤ x ≤ 1) and Cr3 - X O3 - Y (0 ≤ x ≤ 2; 0 ≤ y ≤ 2)) with variable thickness, stoichiometry, and electrical properties. Film deposition was carried out on the silicon substrate Si < 100 > at the substrate's temperature T S = 293 K. X-ray diffraction and X-ray reflectometry analysis were used for the obtained structure characterization. Such a combined investigation reveals the composition and texture for samples investigated and provides useful information about layer thickness and roughness. Fe2O3 - X (0 ≤ x ≤ 1) nanometric films demonstrate the negative magnetoresistance in magnetic fields up 7 kOe. At the same time, for hybrid systems of the alternate layers Fe2O3 - X (0 ≤ x ≤ 1)/Cr3 - X O3 - Y (0 ≤ x ≤ 2; 0 ≤ y ≤ 2), the positive magnetoresistance as well as the magnetic hysteresis and magnetoresistivity switching effect in the low magnetic fields were observed.

  8. Instantaneous and continuous measurement of /sup 14/C-labeled substrate oxidation to /sup 14/CO2 by minute tissue specimens: an ionization chamber method

    SciTech Connect

    Davidson, W.D.; Klein, K.L.; Kurokawa, K.; Soll, A.H.

    1981-06-01

    The vibrating reed electrometer and ionization chamber have been adapted for the instantaneous and continuous measurement of /sup 14/C-labeled substrate oxidation to /sup 14/CO2 by minute quantities of isolated tissues. This modified technique, utilizing a ''closed'' circulation incubation system, is 10-50 times as sensitive as the previously described ''open'' circulation techniques. Substrate oxidation curves are described for human erythrocytes and polymorphonuclear leucocytes, canine parietal cells and isolated segments of the rat nephron. This apparatus should prove to be a useful tool for metabolic studies of small quantities of isolated tissue.

  9. Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor.

    PubMed

    Kassu, Aschalew; Farley, Carlton; Sharma, Anup; Kim, Wonkyu; Guo, Junpeng

    2015-11-30

    A sensitive surface enhanced Raman scattering chemical sensor is demonstrated by using inexpensive gold-coated nanoporous anodic aluminum oxide substrates. To optimize the performance of the substrates for sensing by the Surface-enhanced Raman scattering (SERS) technique, the size of the nanopores is varied from 18 nm to 150 nm and the gold film thickness is varied from 30 nm to 120 nm. The sensitivity of gold-coated nanoporous surface enhanced Raman scattering sensor is characterized by detecting low concentrations of Rhodamine 6G laser dye molecules. The morphology of the SERS substrates is characterized by atomic force microscopy. Optical properties of the nanoporous SERS substrates including transmittance, reflectance, and absorbance are also investigated. Relative signal enhancement is plotted for a range of substrate parameters and a detection limit of 10(-6) M is established.

  10. Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor

    PubMed Central

    Kassu, Aschalew; Farley, Carlton; Sharma, Anup; Kim, Wonkyu; Guo, Junpeng

    2015-01-01

    A sensitive surface enhanced Raman scattering chemical sensor is demonstrated by using inexpensive gold-coated nanoporous anodic aluminum oxide substrates. To optimize the performance of the substrates for sensing by the Surface-enhanced Raman scattering (SERS) technique, the size of the nanopores is varied from 18 nm to 150 nm and the gold film thickness is varied from 30 nm to 120 nm. The sensitivity of gold-coated nanoporous surface enhanced Raman scattering sensor is characterized by detecting low concentrations of Rhodamine 6G laser dye molecules. The morphology of the SERS substrates is characterized by atomic force microscopy. Optical properties of the nanoporous SERS substrates including transmittance, reflectance, and absorbance are also investigated. Relative signal enhancement is plotted for a range of substrate parameters and a detection limit of 10−6 M is established. PMID:26633402

  11. Nanostructural surface engineering of grafted polymers on inorganic oxide substrates for membrane separations

    NASA Astrophysics Data System (ADS)

    Yoshida, Wayne Hiroshi

    Nanostructural engineering of inorganic substrates by free radical graft polymerization was studied with the goal of developing new membrane materials for pervaporation. Graft polymerization consisted of modification of surface hydroxyls with vinyl trimethoxysilane, followed by solution graft polymerization reaction using either vinyl acetate (VAc) or vinyl pyrrolidone (VP). The topology of the modified surfaces was studied by atomic force microscopy (AFM) on both atomically smooth silicon wafer substrates and microporous inorganic membrane supports in order to deduce the effects of modification on the nanostructural properties of the membrane. While unmodified wafers showed a root-mean-square (RMS) surface roughness of 0.21 +/- 0.03 nm, roughness increased to 3.15 +/- 0.23 nm upon silylation. Under poor solvent conditions (i.e., air), surfaces modified with higher poly(vinyl acetate) (PVAc) or poly(vinyl pyrrolidone) (PVP) polymer graft yields displayed lateral inhomogeneities in the polymer layer. Although RMS surface roughness was nearly identical (0.81--0.85 nm) for PVAc-modified surfaces grafted at different monomer concentrations, the skewness of the height distribution decreased from 2.22 to 0.78 as polymer graft yield increased from 0.8 to 3.5 mg/m2. The polymer-modified surfaces were used to create inorganic pervaporation membranes consisting of a single macromolecular separation layer formed by graft polymerization. PVAc grafted silica membranes (500A native pore size) were found selective for MTBE in the separation of 0.1--1% (v/v) MTBE from water, achieving MTBE enrichment factors as high as 371 at a permeate flux of 0.38 l/m2 hr and a Reynolds number of 6390; however, these membranes could not separate anhydrous organic mixtures. Pervaporative separation of methanol/MTBE mixtures was possible with PVAc and PVP-modified alumina supports of 50A native pore size, where the separation layer consisted of grafted polymer chains with estimated radius of

  12. Caffeine Affects Time to Exhaustion and Substrate Oxidation during Cycling at Maximal Lactate Steady State.

    PubMed

    Cruz, Rogério Santos de Oliveira; de Aguiar, Rafael Alves; Turnes, Tiago; Guglielmo, Luiz Guilherme Antonacci; Beneke, Ralph; Caputo, Fabrizio

    2015-06-30

    This study analyzed the effects of caffeine intake on whole-body substrate metabolism and exercise tolerance during cycling by using a more individualized intensity for merging the subjects into homogeneous metabolic responses (the workload associated with the maximal lactate steady state-MLSS). MLSS was firstly determined in eight active males (25 ± 4 years, 176 ± 7 cm, 77 ± 11 kg) using from two to four constant-load tests of 30 min. On two following occasions, participants performed a test until exhaustion at the MLSS workload 1 h after taking either 6 mg/kg of body mass of caffeine or placebo (dextrose), in a randomized, double-blinded manner. Respiratory exchange ratio was calculated from gas exchange measurements. There was an improvement of 22.7% in time to exhaustion at MLSS workload following caffeine ingestion (95% confidence limits of ±10.3%, p = 0.002), which was accompanied by decrease in respiratory exchange ratio (p = 0.001). These results reinforce findings indicating that sparing of the endogenous carbohydrate stores could be one of the several physiological effects of caffeine during submaximal performance around 1 h.

  13. Substrate-tuning of correlated spin-orbit oxides revealed by optical conductivity calculations

    PubMed Central

    Kim, Bongjae; Kim, Beom Hyun; Kim, Kyoo; Min, B. I.

    2016-01-01

    We have systematically investigated substrate-strain effects on the electronic structures of two representative Sr-iridates, a correlated-insulator Sr2IrO4 and a metal SrIrO3. Optical conductivities obtained by the ab initio electronic structure calculations reveal that the tensile strain shifts the optical peak positions to higher energy side with altered intensities, suggesting the enhancement of the electronic correlation and spin-orbit coupling (SOC) strength in Sr-iridates. The response of the electronic structure upon tensile strain is found to be highly correlated with the direction of magnetic moment, the octahedral connectivity, and the SOC strength, which cooperatively determine the robustness of Jeff = 1/2 ground states. Optical responses are analyzed also with microscopic model calculation and compared with corresponding experiments. In the case of SrIrO3, the evolution of the electronic structure near the Fermi level shows high tunability of hole bands, as suggested by previous experiments. PMID:27256281

  14. Caffeine Affects Time to Exhaustion and Substrate Oxidation during Cycling at Maximal Lactate Steady State

    PubMed Central

    de Oliveira Cruz, Rogério Santos; de Aguiar, Rafael Alves; Turnes, Tiago; Guglielmo, Luiz Guilherme Antonacci; Beneke, Ralph; Caputo, Fabrizio

    2015-01-01

    This study analyzed the effects of caffeine intake on whole-body substrate metabolism and exercise tolerance during cycling by using a more individualized intensity for merging the subjects into homogeneous metabolic responses (the workload associated with the maximal lactate steady state—MLSS). MLSS was firstly determined in eight active males (25 ± 4 years, 176 ± 7 cm, 77 ± 11 kg) using from two to four constant-load tests of 30 min. On two following occasions, participants performed a test until exhaustion at the MLSS workload 1 h after taking either 6 mg/kg of body mass of caffeine or placebo (dextrose), in a randomized, double-blinded manner. Respiratory exchange ratio was calculated from gas exchange measurements. There was an improvement of 22.7% in time to exhaustion at MLSS workload following caffeine ingestion (95% confidence limits of ±10.3%, p = 0.002), which was accompanied by decrease in respiratory exchange ratio (p = 0.001). These results reinforce findings indicating that sparing of the endogenous carbohydrate stores could be one of the several physiological effects of caffeine during submaximal performance around 1 h. PMID:26133971

  15. Graphene oxide single sheets as substrates for high resolution cryoTEM.

    PubMed

    van de Put, Marcel W P; Patterson, Joseph P; Bomans, Paul H H; Wilson, Neil R; Friedrich, Heiner; van Benthem, Rolf A T M; de With, Gijsbertus; O'Reilly, Rachel K; Sommerdijk, Nico A J M

    2015-02-04

    CryoTEM is an important tool in the analysis of soft matter, where generally defocus conditions are used to enhance the contrast in the images, but this is at the expense of the maximum resolution that can be obtained. Here, we demonstrate the use of graphene oxide single sheets as support for the formation of 10 nm thin films for high resolution cryoTEM imaging, using DNA as an example. With this procedure, the overlap of objects in the vitrified film is avoided. Moreover, in these thin films less background scattering occurs and as a direct result, an increased contrast can be observed in the images. Hence, imaging closer to focus as compared with conventional cryoTEM procedures is achieved, without losing contrast. In addition, we demonstrate an ~1.8 fold increase in resolution, which is crucial for accurate size analysis of nanostructures.

  16. Stability improvement of organic light emitting diodes by the insertion of hole injection materials on the indium tin oxide substrate

    SciTech Connect

    Chang, Jung-Hung; Liu, Shang-Yi; Wu, I-Wen; Chen, Tsung-Chin; Liu, Chia-Wei; Wu, Chih-I

    2014-03-28

    The degradation of organic light-emitting diodes (OLEDs) is a very complex issue, which might include interfacial charge accumulation, material diffusion, and electrical-induced chemical reaction during the operation. In this study, the origins of improvement in device stability from inserting a hole injection layer (HIL) at the indium tin oxide (ITO) anode are investigated. The results from aging single-layer devices show that leakage current increases in the case of ITO/hole transport layer contact, but this phenomenon can be prevented by inserting molybdenum oxide (MoO{sub 3}) or 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN{sub 6}) as an HIL. Moreover, X-ray photoemission spectroscopy suggests that the diffusion of indium atoms and active oxygen species can be impeded by introducing MoO{sub 3} or HAT-CN{sub 6} as an HIL. These results reveal that the degradation of OLEDs is related to indium and oxygen out-diffusion from the ITO substrates, and that the stability of OLEDs can be improved by impeding this diffusion with HILs.

  17. Pre-steady-state Kinetics Reveal the Substrate Specificity and Mechanism of Halide Oxidation of Truncated Human Peroxidasin 1*

    PubMed Central

    Paumann-Page, Martina; Katz, Romy-Sophie; Bellei, Marzia; Schwartz, Irene; Edenhofer, Eva; Sevcnikar, Benjamin; Soudi, Monika

    2017-01-01

    Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid that mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here, we present the first multimixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immunoglobulin-like domains and the catalytically active peroxidase domain. The kinetic data unravel the so far unknown substrate specificity and mechanism of halide oxidation of human peroxidasin 1. The heme enzyme is shown to follow the halogenation cycle that is induced by the rapid H2O2-mediated oxidation of the ferric enzyme to the redox intermediate compound I. We demonstrate that chloride cannot act as a two-electron donor of compound I, whereas thiocyanate, iodide, and bromide efficiently restore the ferric resting state. We present all relevant apparent bimolecular rate constants, the spectral signatures of the redox intermediates, and the standard reduction potential of the Fe(III)/Fe(II) couple, and we demonstrate that the prosthetic heme group is post-translationally modified and cross-linked with the protein. These structural features provide the basis of human peroxidasin 1 to act as an effective generator of hypobromous acid, which mediates the formation of covalent cross-links in collagen IV. PMID:28154175

  18. Spectroscopic Studies of Band Edge Electronic States in Elemental High-k Oxide Dielectrics on Si and Ge Substrates

    SciTech Connect

    Lucovsky, G.; Seo, H.; Fleming, L. B.; Ulrich, M. D.; Luening, J.

    2007-09-26

    This paper uses X-ray absorption spectroscopy, and vacuum ultra-violet spectroscopic ellipsometry to distinguish between i) non-crystallinity, and ii) nano-crystallinity in transition metal (TM) elemental oxides. Near edge X-ray absorption spectroscopy is used to distinguish between two different scales of nano-crystalline order. The observation of band edge Jahn-Teller splittings in anti-bonding states with TM p-character correlate with the observation of nano-crystalline-order that can be detected by X-ray diffraction, and establish a length scale for order, {lambda}{sub s}>3 to 4 nm, The suppression of J-T splittings, and a spectral broadening is associated with reduced nano-crystalline order that can be detected by atomic-scale imaging and/or extended X-ray absorption spectroscopy for {lambda}{sub s}<{approx}2.5 nm. These different states of nano-crystalline grain-size order for addressed in elemental transition metal oxides on both Si and Ge substrates.

  19. Extending the alkene substrate range of vinyl chloride utilizing Nocardioides sp. strain JS614 with ethene oxide.

    PubMed

    Taylor, Anne E; Arp, Daniel J; Bottomley, Peter J; Semprini, Lewis

    2010-08-01

    Nocardioides sp. strain JS614 grows on the C(2) alkenes ethene (Eth), vinyl chloride, and vinyl fluoride as sole carbon sources. The presence of 400-800 microM ethene oxide (EtO) extended the growth substrate range to propene (C(3)) and butene (C(4)). Propene-dependent growth of JS614 was CO(2) dependent and was prevented by the carboxylase/reductase inhibitor 2-bromoethanesulfonic acid, sodium salt (BES), while growth on Eth was not CO(2) dependent or BES sensitive. Although unable to promote growth, both propene and propene oxide (PrO)-induced expression of the genes encoding the alpha subunit of alkene monooxygenase (etnC) and epoxyethane CoM transferase (etnE) to similar levels as did Eth and EtO. Propene was transformed by Eth-grown and propene-grown/EtO-induced JS614 to PrO at a rate 4.2 times faster than PrO was consumed. As a result PrO accumulated in growth medium to 900 microM during EtO-induced growth on propene. PrO (50-100 microM) exerted inhibitory effects on growth of JS614 on both acetate and Eth, and on EtO-induced growth on Eth. However, higher EtO concentrations (300-400 microM) overcame the negative effects of PrO on Eth-dependent growth.

  20. N-sulfotestosteronan, a novel substrate for heparan sulfate 6-O-sulfotransferases and its analysis by oxidative degradation

    PubMed Central

    Li, Guoyun; Masuko, Sayaka; Green, Dixy E.; Xu, Yongmei; Li, Lingyun; Zhang, Fuming; Xue, Changhu; Liu, Jian; DeAngelis, Paul. L.; Linhardt, Robert J.

    2013-01-01

    Testosteronan, an unusual glycosaminoglycan first isolated from the microbe Comamonas testosteroni, was enzymatically synthesized in vitro by transferring uridine diphosphate sugars on β-p-nitrophenyl glucuronide acceptor. After chemically converting testosteronan to N-sulfotestosteronan it was tested as a substrate for sulfotransferases involved in the biosynthesis of the glycosaminoglycan, heparan sulfate. Studies using 35S-labeled 3′-phosphodenosine-5′-phosphosulfate (PAPS) showed that only 6-O-sulfotransferases acted on N-sulfotestosteronan. An oxidative depolymerization reaction was explored to generate oligosaccharides from 34S-labeled 6-O-sulfo-N-sulfotestosteroran using 34S-labeled PAPS because testosteronan was resistant to all of the tested glycosaminoglycan-degrading enzymes. Liquid chromotography-mass spectrometric analysis of the oxidatively depolymerized polysaccharides confirmed the incorporation of 34S into ~14% of the glucosamine residues. Nuclear magnetic resonance spectroscopy also showed that the sulfo groups were transferred to ~20% of the 6-hydroxyl groups in the glucosamine residue of N-sulfotestosteronan. The bioactivity of 6-O–sulfo-N-sulfotestosteronan was examined by performing protein-binding studies with fibroblast growth factors and antithrombin III using a surface plasmon resonance competition assay. The introduction of 6-O-sulfo groups enhanced N-sulfotestosteronan binding to the fibroblast growth factors, but not to antithrombin III. PMID:23606289

  1. Appetite stimulants use in cystic fibrosis.

    PubMed

    Nasr, Samya Z; Drury, Donna

    2008-03-01

    Cystic fibrosis (CF) is an autosomal recessive disease. It affects multiple body organs. The lungs and pancreas are the most affected which results in progressive lung damage and pancreatic insufficiency. Due to the disease process, CF patients require significantly higher caloric intake than recommended for other individuals. The nutritional goal for CF patients is to achieve normal growth and development and, once genetic potential is reached, to maintain good nutritional status throughout life. Evidence has shown that lung function is closely associated with nutritional status in CF and that nutritional status is an independent predictor of survival. Most CF patients are on a high calorie diet to help achieve normal growth and development and maintain good lung function. Inadequate caloric intake in CF can lead to malnutrition. Malnutrition in CF requires careful, multidisciplinary history taking, physical exam, and overall patient/family assessment. Only by determining the actual cause of the malnutrition can appropriate and safe therapies be used to treat it. Appetite stimulants, although efficacious in treating malnutrition in CF, should only be prescribed if decreased food intake secondary to inadequate appetite is the principal cause of the malnutrition and all other contributing factors have been assessed, ruled-out or treated. In this review, we attempted to summarize the use of several appetite stimulants used in CF and other diseases to improve appetite and maximize caloric intake.

  2. Developmental programming of appetite/satiety.

    PubMed

    Ross, Michael G; Desai, Mina

    2014-01-01

    Obesity is often attributed to a Western lifestyle, a high-fat diet and decreased activity. While these factors certainly contribute to adult obesity, compelling data from our laboratory and others indicate that this explanation is oversimplified. Recent studies strongly argue that maternal/fetal under- or overnutrition predisposes the offspring to become hyperphagic and increases the risk of later obesity. Both infants small for gestational age (SGA) or infants born to obese mothers who consume a high-fat diet are at a markedly increased risk of adult obesity. Specific alterations in the fetal metabolic/energy environment directly influence the development of appetite regulatory pathways. Specifically, SGA infants demonstrate (1) impaired satiety and anorexigenic cell signaling, (2) enhanced cellular orexigenic responses, (3) programmed dysfunction of neuroprogenitor cell proliferation/differentiation, and (4) increased expression of appetite (NPY) versus satiety (POMC) neurons. In both hypothalamic tissue and ex vivo culture, SGA newborns exhibit increased levels of the nutrient sensor SIRT1, signifying reduced energy, whereas maternal high-fat-exposed newborns exhibit reduced levels of pAMPK, signifying energy excess. Via downstream regulation of bHLH neuroproliferation (Hes1) and neurodifferentiation factors (Mash1, Ngn3), neurogenesis is biased toward orexigenic and away from anorexigenic neurons, resulting in excess appetite, reduced satiety and development of obesity. Despite the developmental programming of appetite neurogenesis, the potential for neuronal remodeling raises the opportunity for novel interventions.

  3. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    PubMed Central

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  4. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model.

    PubMed

    Baquedano, Eva; Burgos-Ramos, Emma; Canelles, Sandra; González-Rodríguez, Agueda; Chowen, Julie A; Argente, Jesús; Barrios, Vicente; Valverde, Angela M; Frago, Laura M

    2016-05-01

    Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. © 2016. Published by The Company of Biologists Ltd.

  5. Introduction of thiol moieties, including their thiol-ene reactions and air oxidation, onto polyelectrolyte multilayer substrates.

    PubMed

    Madaan, Nitesh; Romriell, Naomi; Tuscano, Joshua; Schlaad, Helmut; Linford, Matthew R

    2015-12-01

    We describe the derivatization of uncross-linked and cross-linked layer-by-layer (LbL) assemblies of polyelectrolytes (polyallylamine hydrochloride and polyacrylic acid) with sulfydryl groups via Traut's reagent (2-iminothiolane). This thiolation was optimized with regards to temperature, concentration, and pH. The stability of the resulting -SH groups in the air was determined by X-ray photoelectron spectroscopy (XPS). This air oxidation has obvious implications for the use of thiol-ene reactions in materials chemistry, and there appears to be little on this topic in the literature. Three main S 2s signals were observed by XPS: at 231.5 eV (oxidized sulfur), 227.6 eV (thiol groups), and 225.4 eV (thiolate groups). Due to their rapid oxidation, we recommend that thiolated surfaces be used immediately after they are prepared. As driven by 254 nm UV light, thiol groups on polyelectrolyte multilayers react with 1,2-polybutadiene (PBd), and residual carbon-carbon double bonds on adsorbed PBd similarly react with another thiol. In the case of a fluorinated thiol, surfaces with high water contact angles (ca. 120°) are obtained. Modest exposures to light result in derivatization, while longer exposures damage the assemblies. Polyelectrolyte-thiol-PBd-thiol assemblies delaminate from their substrates when immersed for long periods of time in water. Surface silanization with an amino silane prevents this delamination and leads to stable assemblies. These assemblies withstand various stability tests. Techniques used to analyze the materials in this study include X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), atomic force microscopy (AFM), and contact angle goniometry. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Initiation of atomic layer deposition of metal oxides on polymer substrates by water plasma pretreatment

    SciTech Connect

    Steven Brandt, E.; Grace, Jeremy M.

    2012-01-15

    The role of surface hydroxyl content in atomic layer deposition (ALD) of aluminum oxide (AO) on polymers is demonstrated by performing an atomic layer deposition of AO onto a variety of polymer types, before and after pretreatment in a plasma struck in water vapor. The treatment and deposition reactions are performed in situ in a high vacuum chamber that is interfaced to an x-ray photoelectron spectrometer to prevent adventitious exposure to atmospheric contaminants. X-ray photoelectron spectroscopy is used to follow the surface chemistries of the polymers, including theformation of surface hydroxyls and subsequent growth of AO by ALD. Using dimethyl aluminum isopropoxide and water as reactants, ALD is obtained for water-plasma-treated poly(styrene) (PS), poly(propylene) (PP), poly(vinyl alcohol) (PVA), and poly(ethylene naphthalate) (PEN). For PS, PP, and PEN, initial growth rates of AO on the native (untreated) polymers are at least an order of magnitude lower than on the same polymer surface following the plasma treatment. By contrast, native PVA is shown to initiate ALD of AO as a result of the presence of intrinsic surface hydroxyls that are derived from the repeat unit of this polymer.

  7. Evidence for two growth modes during tungsten oxide vapor deposition on mica substrates

    NASA Astrophysics Data System (ADS)

    Mašek, Karel; Gillet, Marcel; Matolín, Vladimír

    2014-05-01

    The morphology, the structure and the orientation of tungsten oxide nanorods grown on mica are investigated as a function of the deposition time. The previous results are recalled to point out the changes with the nanorod thickness. The investigations were conducted by Atomic Force Microscopy (AFM) and Reflection High Energy Electron Diffraction (RHEED). The results evidence two successive growth modes. In the first stage thin and long nanorods were formed. They grew layer by layer with a hexagonal tungsten bronze structure and two different (1-10) and (2-10) planes parallel to the mica surface. In the second stage, as the deposition time increased thin nanorods with the (1-10) orientation grew in thickness when the others preserve their morphology and structure. In the discussion the difference between the two growth modes is emphasized. In the first stage the nanorod growth proceeds mainly by the surface diffusion of KxWO3 species. In the second stage the growth is due to the by direct impinging of WO3 molecules on some thin nanorods having already the (1-10) orientation, leading to growth of thick nanorods with a monoclinic structure.

  8. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    SciTech Connect

    Das, Sayantan; Alford, T. L.

    2013-06-28

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  9. Room temperature reduction of multilayer graphene oxide film on a copper substrate: Penetration and participation of coper phase in redox reactions.

    SciTech Connect

    Voylov, Dmitry N; Agapov, Alexander L; Sokolov, Alexei P; Shulga, Y.M.; Arbuzov, Artem

    2014-01-01

    A self-reduction of graphene oxide (GO) at room temperature after prolonged storage on a copper substrate is evidenced by decrease of oxygen content and a dramatic, 6 orders in magnitude, increase in dc conductivity. Experiments revealed that the stored GO film contains copper hydroxide phase embedded in the reduced GO structure.

  10. Formation of iron(III) (hydr)oxides on polyaspartate- and alginate-coated substrates: effects of coating hydrophilicity and functional group.

    PubMed

    Ray, Jessica R; Lee, Byeongdu; Baltrusaitis, Jonas; Jun, Young-Shin

    2012-12-18

    To better understand the transport of contaminants in aqueous environments, we need more accurate information about heterogeneous and homogeneous nucleation of iron(III) hydroxide nanoparticles in the presence of organics. We combined synchrotron-based grazing incidence small-angle X-ray scattering (GISAXS) and SAXS and other nanoparticle and substrate surface characterization techniques to observe iron(III) (hydr)oxide [10⁻⁴ M Fe(NO₃)₃ in 10 mM NaNO₃] precipitation on quartz and on polyaspartate- and alginate-coated glass substrates and in solution (pH = 3.7 ± 0.2). Polyaspartate was determined to be the most negatively charged substrate and quartz the least; however, after 2 h, total nanoparticle volume calculations--from GISAXS--indicate that positively charged precipitation on quartz is twice that of alginate and 10 times higher than on polyaspartate, implying that electrostatics do not govern iron(III) (hydr)oxide nucleation. On the basis of contact angle measurements and surface characterization, we concluded that the degree of hydrophilicity may control heterogeneous nucleation on quartz and organic-coated substrates. The arrangement of functional groups at the substrate surface (--OH and --COOH) may also contribute. These results provide new information for elucidating the effects of polymeric organic substrate coatings on the size, volume, and location of nucleating iron hydroxides, which will help predict nanoparticle interactions in natural and engineered systems.

  11. High spectral selectivity for solar absorbers using a monolayer transparent conductive oxide coated on a metal substrate

    NASA Astrophysics Data System (ADS)

    Shimizu, Makoto; Suzuki, Mari; Iguchi, Fumitada; Yugami, Hiroo

    2017-05-01

    A spectrally selective absorber composed of a monolayer transparent conductive oxide (TCO) coated on a metal substrate is investigated for use in solar systems operating at temperatures higher (>973 K) than the operation temperature of conventional systems ( ˜ 673 K). This method is different from the currently used solar-selective coating technologies, such as those using multilayered and cermet materials. The spectral selective absorption property can be attributed to the inherent optical property of TCO owing to the plasma frequency and interferences between the substrates. Since spectral selectivity can be achieved using monolayered materials, the effect of atomic diffusion occurring at each layer boundary in a multilayer or cermet coatings under high-temperature conditions can be reduced. In addition, since this property is attributed to the inherent property of TCO, the precise control of the layer thickness can be omitted if the layer is sufficiently thick (>0.5 μm). The optimum TCO properties, namely, carrier density and mobility, required for solar-selective absorbers are analyzed to determine the cutoff wavelength and emittance in the infrared range. A solar absorptance of 0.95 and hemispherical emittance of 0.10 at 973 K are needed for achieving the optimum TCO properties, i.e., a carrier density of 5.5 × 1020 cm-3 and mobility of 90 cm2 V-1 s-1 are required. Optical simulations indicate that the spectrally selective absorption weakly depends on the incident angle and film thickness. The thermal stability of the fabricated absorber treated at temperatures up to 973 K for 10 h is verified in vacuum by introducing a SiO2 interlayer, which plays an important role as a diffusion barrier.

  12. Raman spectroscopy and electrical properties of InAs nanowires with local oxidation enabled by substrate micro-trenches and laser irradiation

    SciTech Connect

    Tanta, R.; Krogstrup, P.; Nygård, J.; Jespersen, T. S.; Madsen, M. H.; Liao, Z.; Vosch, T.

    2015-12-14

    The thermal gradients along indium arsenide nanowires were engineered by a combination of fabricated micro-trenches in the supporting substrate and focused laser irradiation. This allowed local spatial control of thermally activated oxidation reactions of the nanowire on the scale of the diffraction limit. The locality of the oxidation was detected by micro-Raman mapping, and the results were found to be consistent with numerical simulations of the temperature profile. Applying the technique to nanowires in electrical devices the locally oxidized nanowires remained conducting with a lower conductance as expected for an effectively thinner conducting core.

  13. Raman spectroscopy and electrical properties of InAs nanowires with local oxidation enabled by substrate micro-trenches and laser irradiation

    NASA Astrophysics Data System (ADS)

    Tanta, R.; Madsen, M. H.; Liao, Z.; Krogstrup, P.; Vosch, T.; Nygârd, J.; Jespersen, T. S.

    2015-12-01

    The thermal gradients along indium arsenide nanowires were engineered by a combination of fabricated micro-trenches in the supporting substrate and focused laser irradiation. This allowed local spatial control of thermally activated oxidation reactions of the nanowire on the scale of the diffraction limit. The locality of the oxidation was detected by micro-Raman mapping, and the results were found to be consistent with numerical simulations of the temperature profile. Applying the technique to nanowires in electrical devices the locally oxidized nanowires remained conducting with a lower conductance as expected for an effectively thinner conducting core.

  14. Lack of effects of fish oil supplementation for 12 weeks on resting metabolic rate and substrate oxidation in healthy young men: A randomized controlled trial.

    PubMed

    Jannas-Vela, Sebastian; Roke, Kaitlin; Boville, Stephanie; Mutch, David M; Spriet, Lawrence L

    2017-01-01

    Fish oil (FO) has been shown to have beneficial effects in the body via incorporation into the membranes of many tissues. It has been proposed that omega-3 fatty acids in FO may increase whole body resting metabolic rate (RMR) and fatty acid (FA) oxidation in human subjects, but the results to date are equivocal. The purpose of this study was to investigate the effects of a 12 week FO supplementation period on RMR and substrate oxidation, in comparison to an olive oil (OO) control group, in young healthy males (n = 26; 22.8 ± 2.6 yr). Subjects were matched for age, RMR, physical activity, VO2max and body mass, and were randomly separated into a group supplemented with either OO (3 g/d) or FO containing 2 g/d eicosapentaenoic acid (EPA) and 1 g/d docosahexaenoic acid (DHA). Participants visited the lab for RMR and substrate oxidation measurements after an overnight fast (10-12 hr) at weeks 0, 6 and 12. Fasted blood samples were taken at baseline and after 12 weeks of supplementation. There were significant increases in the EPA (413%) and DHA (59%) levels in red blood cells after FO supplementation, with no change of these fatty acids in the OO group. RMR and substrate oxidation did not change after supplementation with OO or FO after 6 and 12 weeks. Since there was no effect of supplementation on metabolic measures, we pooled the two treatment groups to determine whether there was a seasonal effect on RMR and substrate oxidation. During the winter season, there was an increase in FA oxidation (36%) with a concomitant decrease (34%) in carbohydrate (CHO) oxidation (p < 0.01), with no change in RMR. These measures were unaffected during the summer season. In conclusion, FO supplementation had no effect on RMR and substrate oxidation in healthy young males. Resting FA oxidation was increased and CHO oxidation reduced over a 12 week period in the winter, with no change in RMR.

  15. Lack of effects of fish oil supplementation for 12 weeks on resting metabolic rate and substrate oxidation in healthy young men: A randomized controlled trial

    PubMed Central

    Jannas-Vela, Sebastian; Roke, Kaitlin; Boville, Stephanie; Mutch, David M.; Spriet, Lawrence L.

    2017-01-01

    Fish oil (FO) has been shown to have beneficial effects in the body via incorporation into the membranes of many tissues. It has been proposed that omega-3 fatty acids in FO may increase whole body resting metabolic rate (RMR) and fatty acid (FA) oxidation in human subjects, but the results to date are equivocal. The purpose of this study was to investigate the effects of a 12 week FO supplementation period on RMR and substrate oxidation, in comparison to an olive oil (OO) control group, in young healthy males (n = 26; 22.8 ± 2.6 yr). Subjects were matched for age, RMR, physical activity, VO2max and body mass, and were randomly separated into a group supplemented with either OO (3 g/d) or FO containing 2 g/d eicosapentaenoic acid (EPA) and 1 g/d docosahexaenoic acid (DHA). Participants visited the lab for RMR and substrate oxidation measurements after an overnight fast (10–12 hr) at weeks 0, 6 and 12. Fasted blood samples were taken at baseline and after 12 weeks of supplementation. There were significant increases in the EPA (413%) and DHA (59%) levels in red blood cells after FO supplementation, with no change of these fatty acids in the OO group. RMR and substrate oxidation did not change after supplementation with OO or FO after 6 and 12 weeks. Since there was no effect of supplementation on metabolic measures, we pooled the two treatment groups to determine whether there was a seasonal effect on RMR and substrate oxidation. During the winter season, there was an increase in FA oxidation (36%) with a concomitant decrease (34%) in carbohydrate (CHO) oxidation (p < 0.01), with no change in RMR. These measures were unaffected during the summer season. In conclusion, FO supplementation had no effect on RMR and substrate oxidation in healthy young males. Resting FA oxidation was increased and CHO oxidation reduced over a 12 week period in the winter, with no change in RMR. Trial Registration: ClinicalTrials.gov NCT02092649 PMID:28212390

  16. Appetitive Aggression in Women: Comparing Male and Female War Combatants

    PubMed Central

    Meyer-Parlapanis, Danie; Weierstall, Roland; Nandi, Corina; Bambonyé, Manassé; Elbert, Thomas; Crombach, Anselm

    2016-01-01

    Appetitive aggression refers to positive feelings being associated with the perpetration of violent behavior and has been shown to provide resilience against the development of PTSD in combatants returning from the battlefield. Until this point, appetitive aggression has been primarily researched in males. This study investigates appetitive aggression in females. Female and male combatants and civilians from Burundi were assessed for levels of appetitive aggression. In contrast to non-combatants, no sex difference in appetitive aggression could be detected for combatants. Furthermore, each of the female and male combatant groups displayed substantially higher levels of appetitive aggression than each of the male and female civilian control groups. This study demonstrates that in violent contexts, such as armed conflict, in which individuals perpetrate numerous aggressive acts against others, the likelihood for an experience of appetitive aggression increases- regardless of whether the individuals are male or female. PMID:26779084

  17. [A little-known new components of the appetite control].

    PubMed

    Nylec, Marcin; Olszanecka-Glinianowicz, Magdalena

    2010-06-11

    Appetite control is a complex process regulated by both neurotransmitters, such as: appetite- increasing neuropeptide Y (NPY), Agouti related peptide (AgRP), orexins A and B, as well as appetite-suppressing propiomelanocortin (POMC) and a peptide (CART) which transcription is regulated by cocaine and amphetamine. In addition, other factors are involved such as hormones of the alimentary tract (appetite-stimulating ghrelin and appetite-decreasing cholecystokinin, peptide YY, glucagon like peptide-1, oxyntomodulin, pancreatic peptide, enterostatin and amylin). In this process participates also leptin, an appetite-suppressing hormone produced by adipocytes. The authors focus on other, little-known neurotransmitters involved in the control of appetite: RFamide Peptide (QRFP43) and VGF-Derived Peptide, TLQP-21, as well as xenin, another hunger-decreasing hormone of the alimentary tract.

  18. Study of the oxidation effects on isothermal solidification based high temperature stable Pt/In/Au and Pt/In/Ag thick film interconnections on LTCC substrate

    SciTech Connect

    Kumar, Duguta Suresh Khanna, P. K.; Suri, Nikhil; Sharma, R. P.

    2016-03-09

    The objective of the presented paper is to determine the oxidized phase compositions of indium lead-free solders during solidification at 190 ° C under room environment with the help of X-ray diffraction (XRD) and Energy dispersive spectroscopy (EDX). Many lead-free solders alloys available oxidizes and have poor wetting properties. The oxidation of pure indium solder foil, Au, Pt, and Ag alloys were identified and investigated, in the process of isothermal solidification based solder joints construction at room environment and humidity. Both EDX and XRD characterization techniques were performed to trace out the amount of oxide levels and variety of oxide formations at solder interface respectively. The paper also aims to report the isothermal solidification technique to provide interconnections to pads on Low temperature co-fired ceramic (LTCC) substrate. It also elaborates advantages of isothermal solidification over the other methods of interconnection. Scanning electron microscope (SEM) used to identify the oxidized spots on the surface of Pt, Ag substrates and In solder. The identified oxides were reported.

  19. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Park, Jin-Seong; Kim, Tae-Woong; Stryakhilev, Denis; Lee, Jae-Sup; An, Sung-Guk; Pyo, Yong-Shin; Lee, Dong-Bum; Mo, Yeon Gon; Jin, Dong-Un; Chung, Ho Kyoon

    2009-07-01

    We have fabricated 6.5 in. flexible full-color top-emission active matrix organic light-emitting diode display on a polyimide (PI) substrate driven amorphous indium gallium zinc oxide thin-film transistors (a-IGZO TFTs). The a-IGZO TFTs exhibited field-effect mobility (μFE) of 15.1 cm2/V s, subthreshold slope of 0.25 V/dec, threshold voltage (VTH) of 0.9 V. The electrical characteristics of TFTs on PI substrate, including a bias-stress instability after 1 h long gate bias at 15 V, were indistinguishable from those on glass substrate and showed high degree of spatial uniformity. TFT samples on 10 μm thick PI substrate withstood bending down to R =3 mm under tension and compression without any performance degradation.

  20. Short-term starvation is a strategy to unravel the cellular capacity of oxidizing specific exogenous/endogenous substrates in mitochondria.

    PubMed

    Zeidler, Julianna D; Fernandes-Siqueira, Lorena O; Carvalho, Ana S; Cararo-Lopes, Eduardo; Dias, Matheus H; Ketzer, Luisa A; Galina, Antonio; Da Poian, Andrea T

    2017-08-25

    Mitochondrial oxidation of nutrients is tightly regulated in response to the cellular environment and changes in energy demands. In vitro studies evaluating the mitochondrial capacity of oxidizing different substrates are important for understanding metabolic shifts in physiological adaptations and pathological conditions, but may be influenced by the nutrients present in the culture medium or by the utilization of endogenous stores. One such influence is exemplified by the Crabtree effect (the glucose-mediated inhibition of mitochondrial respiration) as most in vitro experiments are performed in glucose-containing media. Here, using high-resolution respirometry, we evaluated the oxidation of endogenous or exogenous substrates by cell lines harboring different metabolic profiles. We found that a 1-h deprivation of the main energetic nutrients is an appropriate strategy to abolish interference of endogenous or undesirable exogenous substrates with the cellular capacity of oxidizing specific substrates, namely glutamine, pyruvate, glucose, or palmitate, in mitochondria. This approach primed mitochondria to immediately increase their oxygen consumption after the addition of the exogenous nutrients. All starved cells could oxidize exogenous glutamine, whereas the capacity for oxidizing palmitate was limited to human hepatocarcinoma Huh7 cells and to C2C12 mouse myoblasts that differentiated into myotubes. In the presence of exogenous glucose, starvation decreased the Crabtree effect in Huh7 and C2C12 cells and abrogated it in mouse neuroblastoma N2A cells. Interestingly, the fact that the Crabtree effect was observed only for mitochondrial basal respiration but not for the maximum respiratory capacity suggests it is not caused by a direct effect on the electron transport system. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Network of hypothalamic neurons that control appetite.

    PubMed

    Sohn, Jong-Woo

    2015-04-01

    The central nervous system (CNS) controls food intake and energy expenditure via tight coordinations between multiple neuronal populations. Specifically, two distinct neuronal populations exist in the arcuate nucleus of hypothalamus (ARH): the anorexigenic (appetite-suppressing) pro-opiomelanocortin (POMC) neurons and the orexigenic (appetite-increasing) neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons. The coordinated regulation of neuronal circuit involving these neurons is essential in properly maintaining energy balance, and any disturbance therein may result in hyperphagia/obesity or hypophagia/starvation. Thus, adequate knowledge of the POMC and NPY/AgRP neuron physiology is mandatory to understand the pathophysiology of obesity and related metabolic diseases. This review will discuss the history and recent updates on the POMC and NPY/AgRP neuronal circuits, as well as the general anorexigenic and orexigenic circuits in the CNS.

  2. Gut hormones and the control of appetite.

    PubMed

    Small, Caroline J; Bloom, Stephen R

    2004-08-01

    Obesity is the main cause of premature death in the UK. Worldwide its prevalence is accelerating. It has been hypothesized that a gut nutriment sensor signals to appetite centres in the brain to reduce food intake after meals. Gut hormones have been identified as an important mechanism for this. Ghrelin stimulates, and glucagon like peptide-1, oxyntomodulin, peptide YY (PYY), cholecystokinin and pancreatic polypeptide inhibit, appetite. At physiological postprandial concentrations they can alter food intake markedly in humans and rodents. In addition, in obese humans fasting levels of PYY are suppressed and postprandial release is reduced. Administration of gut hormones might provide a novel and physiological approach in anti-obesity therapy. Here, we summarize some of the recent advances in this field.

  3. Appetite suppressants and valvular heart disease.

    PubMed

    Seghatol, Frank F; Rigolin, Vera H

    2002-09-01

    Appetite suppressants fenfluramine, dexfenfluramine, and phentermine have been used alone or in combination as an alternative to diet and surgery in the management of obesity. This therapy was halted in 1997 after reports of valvular lesions affecting almost one third of patients treated with these drugs. Fortunately, most cases of appetite suppressant-related valve disease are mild or moderate and rarely required valve repair or replacement. Follow-up studies have suggested improvement in valvulopathy after discontinuation of the treatment. The mechanism of valve disease induced by these drugs is speculative and may be related to their serotonergic effects. Echocardiographic features are similar to carcinoid heart disease and valvulopathy associated with ergot use. Most cases require only follow-up and endocarditis prophylaxis; surgery is rarely needed.

  4. Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application

    PubMed Central

    Azam, Ameer; Babkair, Saeed Salem

    2014-01-01

    Well-aligned and single-crystalline zinc oxide (ZnO) nanorod arrays were grown on silicon (Si) substrate using a wet chemical route for the photodegradation of organic dyes. Structural analysis using X-ray diffraction, high-resolution transmission electron microscopy, and selected area electron diffraction confirmed the formation of ZnO nanorods grown preferentially oriented in the (001) direction and with a single phase nature with a wurtzite structure. Field emission scanning electron microscopy and transmission electron microscopy micrographs showed that the length and diameter of the well-aligned rods were about ~350–400 nm and ~80–90 nm, respectively. Raman scattering spectra of ZnO nanorod arrays revealed the characteristic E2 (high) mode that is related to the vibration of oxygen atoms in the wurtzite ZnO. The photodegradation of methylene blue (MB) using ZnO nanorod arrays was performed under ultraviolet light irradiation. The results of photodegradation showed that ZnO nanorod arrays were capable of degrading ~80% of MB within 60 minutes of irradiation, whereas ~92% of degradation was achieved in 120 minutes. Complete degradation of MB was observed after 270 minutes of irradiation time. Owing to enhanced photocatalytic degradation efficiency and low-temperature growth method, prepared ZnO nanorod arrays may open up the possibility for the successful utilization of ZnO nanorod arrays as a future photocatalyst for environmental remediation. PMID:24812511

  5. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-09-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  6. Vascular and hormonal responses to arginine: provision of substrate for nitric oxide or non-specific effect?

    PubMed

    MacAllister, R J; Calver, A L; Collier, J; Edwards, C M; Herreros, B; Nussey, S S; Vallance, P

    1995-08-01

    1. The vascular and hormonal effects of L- and D-arginine were compared in healthy subjects and in patients with insulin-dependent diabetes mellitus or untreated essential hypertension. 2. Infusion of L- or D-arginine (40 mumol/l) in the forearm vascular bed, sufficient to increase the local concentration approximately 20-fold, had no effect on blood flow or the vasodilator response to acetylcholine (30 and 100 nmol/min) in patients with insulin-dependent diabetes (n = 7) or essential hypertension (n = 7), or in age- and sex-matched control subjects (n = 7 in both groups). 3. Systemic infusion of 10 g of L-arginine (n = 5) or D-arginine (n = 3) increased plasma concentration of arginine approximately 20-fold without altering supine or erect haemodynamics. Increases in plasma insulin, prolactin and glucagon were seen with both enantiomers. The stereopurity of arginine was confirmed in a cell-culture assay system. 4. We conclude that, in healthy subjects and patients with essential hypertension or insulin-dependent diabetes, synthesis of nitric oxide within the vasculature is not limited by substrate availability. At high concentrations of arginine, non-stereospecific effects, including alterations in hormone concentration, occur. It remains to be determined whether these non-stereospecific hormonal changes might contribute to certain haemodynamic effects of arginine.

  7. One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection.

    PubMed

    Fu, Wen Liang; Zhen, Shu Jun; Huang, Cheng Zhi

    2013-05-21

    In this contribution, graphene oxide/gold nanoparticle (GO/AuNPs) hybrids were in situ fabricated through a green one-pot procedure by using tyrosine as an environment friendly and biocompatible reducing agent, which can be used as highly efficient surface enhanced Raman scattering (SERS) substrates with the enhancement factor at 3.8 × 10(3). The as-prepared GO/AuNPs hybrids have good biocompatibility, providing the prospect of applications for biomedicine determinations. In addition, taking the advantages of the electromagnetic and chemical enhancement mechanism and the high affinity of GO and AuNPs towards positive dyes, a sensitive, selective and label-free malachite green (MG) detection method was demonstrated. The SERS measurement showed that the minimum detection concentration of MG in water was as low as 2.5 μmol L(-1) with a linear response range from 2.5 to 100 μmol L(-1) (R(2) = 0.996). Moreover, this method can be applied to detect MG in a fishery water sample with satisfactory results.

  8. Epitaxial growth of highly-crystalline spinel ferrite thin films on perovskite substrates for all-oxide devices

    PubMed Central

    Moyer, Jarrett A.; Gao, Ran; Schiffer, Peter; Martin, Lane W.

    2015-01-01

    The potential growth modes for epitaxial growth of Fe3O4 on SrTiO3 (001) are investigated through control of the energetics of the pulsed-laser deposition growth process (via substrate temperature and laser fluence). We find that Fe3O4 grows epitaxially in three distinct growth modes: 2D-like, island, and 3D-to-2D, the last of which is characterized by films that begin growth in an island growth mode before progressing to a 2D growth mode. Films grown in the 2D-like and 3D-to-2D growth modes are atomically flat and partially strained, while films grown in the island growth mode are terminated in islands and fully relaxed. We find that the optimal structural, transport, and magnetic properties are obtained for films grown on the 2D-like/3D-to-2D growth regime boundary. The viability for including such thin films in perovskite-based all-oxide devices is demonstrated by growing a Fe3O4/La0.7Sr0.3MnO3 spin valve epitaxially on SrTiO3. PMID:26030835

  9. The effect of laser patterning parameters on fluorine-doped tin oxide films deposited on glass substrates

    NASA Astrophysics Data System (ADS)

    Tseng, Shih-Feng; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Chiang, Donyau

    2011-08-01

    The purpose of this study is to pattern the fluorine-doped tin oxide thin film deposited on the soda-lime glass substrates for touch screen applications by ultraviolet laser. The patterned film structures provide the electrical isolation and prevent the electrical contact from each region for various touch screens. The surface morphology, edge quality, three-dimensional topography, and profile of isolated lines and electrode structures after laser patterning were measured by a confocal laser scanning microscope. Moreover, a four-point probe instrument was used to measure the sheet resistance before and after laser patterning on film surfaces and also to discuss the electrical property at different laser spot overlaps. After laser patterning, a high overlapping area of laser spot was used to pattern the electrode layer on film surfaces that could obtain an excellent machined quality of edge profile. All sheet resistance values of film surfaces near the isolated line edge were larger than the original ones. Moreover, the sheet resistance values increased with increasing laser spot overlapping area.

  10. Controlling the size of gold nanoparticles grown on indium tin oxide substrates prepared by seed mediated growth method

    SciTech Connect

    Fauzia, Vivi Pratiwi, Nur Intan; Adela, Faiz; Djuhana, Dede

    2016-04-19

    One of the unique optical properties of gold nanoparticles is the enhanced absorption and scattering light around metal nanoparticles commonly called the Localized Surface Plasmon Resonance (LSPR) effect of gold nanoparticles. This property is determined by the shape and size of gold nanoparticles. In this work, we observed the role of three materials used in synthesis process on the morphology and the LSPR effect of gold nanoparticles. The gold nanoparticles were directly grown on indium tin oxide (ITO) coated glass substrates using the seed mediated growth method with three different concentrations of trisodium citrate (Na{sub 3}C{sub 6}H{sub 5}O{sub 7}), C{sub 16}TAB and ascorbic acid (C{sub 6}H{sub 8}O{sub 6}). Based on the FESEM image and optical absorption spectrum of gold nanoparticles, it was found that the higher concentration of those materials has decreased the size of gold nananoparticles and shifted the LSPR peaks to lower wavelength.

  11. Structure-Based Alteration of Substrate Specificity and Catalytic Activity of Sulfite Oxidase from Sulfite Oxidation to Nitrate Reduction

    SciTech Connect

    Qiu, James A.; Wilson, Heather L.; Rajagopalan, K.V.

    2012-04-18

    Eukaryotic sulfite oxidase is a dimeric protein that contains the molybdenum cofactor and catalyzes the metabolically essential conversion of sulfite to sulfate as the terminal step in the metabolism of cysteine and methionine. Nitrate reductase is an evolutionarily related molybdoprotein in lower organisms that is essential for growth on nitrate. In this study, we describe human and chicken sulfite oxidase variants in which the active site has been modified to alter substrate specificity and activity from sulfite oxidation to nitrate reduction. On the basis of sequence alignments and the known crystal structure of chicken sulfite oxidase, two residues are conserved in nitrate reductases that align with residues in the active site of sulfite oxidase. On the basis of the crystal structure of yeast nit